SemaTemplate.cpp revision 206084
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  LookupResult::Filter filter = R.makeFilter();
67  while (filter.hasNext()) {
68    NamedDecl *Orig = filter.next();
69    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
70    if (!Repl)
71      filter.erase();
72    else if (Repl != Orig)
73      filter.replace(Repl);
74  }
75  filter.done();
76}
77
78TemplateNameKind Sema::isTemplateName(Scope *S,
79                                      const CXXScopeSpec &SS,
80                                      UnqualifiedId &Name,
81                                      TypeTy *ObjectTypePtr,
82                                      bool EnteringContext,
83                                      TemplateTy &TemplateResult) {
84  assert(getLangOptions().CPlusPlus && "No template names in C!");
85
86  DeclarationName TName;
87
88  switch (Name.getKind()) {
89  case UnqualifiedId::IK_Identifier:
90    TName = DeclarationName(Name.Identifier);
91    break;
92
93  case UnqualifiedId::IK_OperatorFunctionId:
94    TName = Context.DeclarationNames.getCXXOperatorName(
95                                              Name.OperatorFunctionId.Operator);
96    break;
97
98  case UnqualifiedId::IK_LiteralOperatorId:
99    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
100    break;
101
102  default:
103    return TNK_Non_template;
104  }
105
106  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
107
108  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
109                 LookupOrdinaryName);
110  R.suppressDiagnostics();
111  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
112  if (R.empty())
113    return TNK_Non_template;
114
115  TemplateName Template;
116  TemplateNameKind TemplateKind;
117
118  unsigned ResultCount = R.end() - R.begin();
119  if (ResultCount > 1) {
120    // We assume that we'll preserve the qualifier from a function
121    // template name in other ways.
122    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
123    TemplateKind = TNK_Function_template;
124  } else {
125    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
126
127    if (SS.isSet() && !SS.isInvalid()) {
128      NestedNameSpecifier *Qualifier
129        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
130      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
131    } else {
132      Template = TemplateName(TD);
133    }
134
135    if (isa<FunctionTemplateDecl>(TD))
136      TemplateKind = TNK_Function_template;
137    else {
138      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
139      TemplateKind = TNK_Type_template;
140    }
141  }
142
143  TemplateResult = TemplateTy::make(Template);
144  return TemplateKind;
145}
146
147bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
148                                       SourceLocation IILoc,
149                                       Scope *S,
150                                       const CXXScopeSpec *SS,
151                                       TemplateTy &SuggestedTemplate,
152                                       TemplateNameKind &SuggestedKind) {
153  // We can't recover unless there's a dependent scope specifier preceding the
154  // template name.
155  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
156      computeDeclContext(*SS))
157    return false;
158
159  // The code is missing a 'template' keyword prior to the dependent template
160  // name.
161  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
162  Diag(IILoc, diag::err_template_kw_missing)
163    << Qualifier << II.getName()
164    << FixItHint::CreateInsertion(IILoc, "template ");
165  SuggestedTemplate
166    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
167  SuggestedKind = TNK_Dependent_template_name;
168  return true;
169}
170
171void Sema::LookupTemplateName(LookupResult &Found,
172                              Scope *S, const CXXScopeSpec &SS,
173                              QualType ObjectType,
174                              bool EnteringContext) {
175  // Determine where to perform name lookup
176  DeclContext *LookupCtx = 0;
177  bool isDependent = false;
178  if (!ObjectType.isNull()) {
179    // This nested-name-specifier occurs in a member access expression, e.g.,
180    // x->B::f, and we are looking into the type of the object.
181    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
182    LookupCtx = computeDeclContext(ObjectType);
183    isDependent = ObjectType->isDependentType();
184    assert((isDependent || !ObjectType->isIncompleteType()) &&
185           "Caller should have completed object type");
186  } else if (SS.isSet()) {
187    // This nested-name-specifier occurs after another nested-name-specifier,
188    // so long into the context associated with the prior nested-name-specifier.
189    LookupCtx = computeDeclContext(SS, EnteringContext);
190    isDependent = isDependentScopeSpecifier(SS);
191
192    // The declaration context must be complete.
193    if (LookupCtx && RequireCompleteDeclContext(SS))
194      return;
195  }
196
197  bool ObjectTypeSearchedInScope = false;
198  if (LookupCtx) {
199    // Perform "qualified" name lookup into the declaration context we
200    // computed, which is either the type of the base of a member access
201    // expression or the declaration context associated with a prior
202    // nested-name-specifier.
203    LookupQualifiedName(Found, LookupCtx);
204
205    if (!ObjectType.isNull() && Found.empty()) {
206      // C++ [basic.lookup.classref]p1:
207      //   In a class member access expression (5.2.5), if the . or -> token is
208      //   immediately followed by an identifier followed by a <, the
209      //   identifier must be looked up to determine whether the < is the
210      //   beginning of a template argument list (14.2) or a less-than operator.
211      //   The identifier is first looked up in the class of the object
212      //   expression. If the identifier is not found, it is then looked up in
213      //   the context of the entire postfix-expression and shall name a class
214      //   or function template.
215      //
216      // FIXME: When we're instantiating a template, do we actually have to
217      // look in the scope of the template? Seems fishy...
218      if (S) LookupName(Found, S);
219      ObjectTypeSearchedInScope = true;
220    }
221  } else if (isDependent) {
222    // We cannot look into a dependent object type or nested nme
223    // specifier.
224    return;
225  } else {
226    // Perform unqualified name lookup in the current scope.
227    LookupName(Found, S);
228  }
229
230  // FIXME: Cope with ambiguous name-lookup results.
231  assert(!Found.isAmbiguous() &&
232         "Cannot handle template name-lookup ambiguities");
233
234  if (Found.empty() && !isDependent) {
235    // If we did not find any names, attempt to correct any typos.
236    DeclarationName Name = Found.getLookupName();
237    if (CorrectTypo(Found, S, &SS, LookupCtx)) {
238      FilterAcceptableTemplateNames(Context, Found);
239      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
240        if (LookupCtx)
241          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
242            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
243            << FixItHint::CreateReplacement(Found.getNameLoc(),
244                                          Found.getLookupName().getAsString());
245        else
246          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
247            << Name << Found.getLookupName()
248            << FixItHint::CreateReplacement(Found.getNameLoc(),
249                                          Found.getLookupName().getAsString());
250        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
251          Diag(Template->getLocation(), diag::note_previous_decl)
252            << Template->getDeclName();
253      } else
254        Found.clear();
255    } else {
256      Found.clear();
257    }
258  }
259
260  FilterAcceptableTemplateNames(Context, Found);
261  if (Found.empty())
262    return;
263
264  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
265    // C++ [basic.lookup.classref]p1:
266    //   [...] If the lookup in the class of the object expression finds a
267    //   template, the name is also looked up in the context of the entire
268    //   postfix-expression and [...]
269    //
270    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
271                            LookupOrdinaryName);
272    LookupName(FoundOuter, S);
273    FilterAcceptableTemplateNames(Context, FoundOuter);
274    // FIXME: Handle ambiguities in this lookup better
275
276    if (FoundOuter.empty()) {
277      //   - if the name is not found, the name found in the class of the
278      //     object expression is used, otherwise
279    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
280      //   - if the name is found in the context of the entire
281      //     postfix-expression and does not name a class template, the name
282      //     found in the class of the object expression is used, otherwise
283    } else {
284      //   - if the name found is a class template, it must refer to the same
285      //     entity as the one found in the class of the object expression,
286      //     otherwise the program is ill-formed.
287      if (!Found.isSingleResult() ||
288          Found.getFoundDecl()->getCanonicalDecl()
289            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
290        Diag(Found.getNameLoc(),
291             diag::err_nested_name_member_ref_lookup_ambiguous)
292          << Found.getLookupName();
293        Diag(Found.getRepresentativeDecl()->getLocation(),
294             diag::note_ambig_member_ref_object_type)
295          << ObjectType;
296        Diag(FoundOuter.getFoundDecl()->getLocation(),
297             diag::note_ambig_member_ref_scope);
298
299        // Recover by taking the template that we found in the object
300        // expression's type.
301      }
302    }
303  }
304}
305
306/// ActOnDependentIdExpression - Handle a dependent id-expression that
307/// was just parsed.  This is only possible with an explicit scope
308/// specifier naming a dependent type.
309Sema::OwningExprResult
310Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
311                                 DeclarationName Name,
312                                 SourceLocation NameLoc,
313                                 bool isAddressOfOperand,
314                           const TemplateArgumentListInfo *TemplateArgs) {
315  NestedNameSpecifier *Qualifier
316    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
317
318  if (!isAddressOfOperand &&
319      isa<CXXMethodDecl>(CurContext) &&
320      cast<CXXMethodDecl>(CurContext)->isInstance()) {
321    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
322
323    // Since the 'this' expression is synthesized, we don't need to
324    // perform the double-lookup check.
325    NamedDecl *FirstQualifierInScope = 0;
326
327    return Owned(CXXDependentScopeMemberExpr::Create(Context,
328                                                     /*This*/ 0, ThisType,
329                                                     /*IsArrow*/ true,
330                                                     /*Op*/ SourceLocation(),
331                                                     Qualifier, SS.getRange(),
332                                                     FirstQualifierInScope,
333                                                     Name, NameLoc,
334                                                     TemplateArgs));
335  }
336
337  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
338}
339
340Sema::OwningExprResult
341Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
342                                DeclarationName Name,
343                                SourceLocation NameLoc,
344                                const TemplateArgumentListInfo *TemplateArgs) {
345  return Owned(DependentScopeDeclRefExpr::Create(Context,
346               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
347                                                 SS.getRange(),
348                                                 Name, NameLoc,
349                                                 TemplateArgs));
350}
351
352/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
353/// that the template parameter 'PrevDecl' is being shadowed by a new
354/// declaration at location Loc. Returns true to indicate that this is
355/// an error, and false otherwise.
356bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
357  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
358
359  // Microsoft Visual C++ permits template parameters to be shadowed.
360  if (getLangOptions().Microsoft)
361    return false;
362
363  // C++ [temp.local]p4:
364  //   A template-parameter shall not be redeclared within its
365  //   scope (including nested scopes).
366  Diag(Loc, diag::err_template_param_shadow)
367    << cast<NamedDecl>(PrevDecl)->getDeclName();
368  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
369  return true;
370}
371
372/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
373/// the parameter D to reference the templated declaration and return a pointer
374/// to the template declaration. Otherwise, do nothing to D and return null.
375TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
376  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
377    D = DeclPtrTy::make(Temp->getTemplatedDecl());
378    return Temp;
379  }
380  return 0;
381}
382
383static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
384                                            const ParsedTemplateArgument &Arg) {
385
386  switch (Arg.getKind()) {
387  case ParsedTemplateArgument::Type: {
388    TypeSourceInfo *DI;
389    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
390    if (!DI)
391      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
392    return TemplateArgumentLoc(TemplateArgument(T), DI);
393  }
394
395  case ParsedTemplateArgument::NonType: {
396    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
397    return TemplateArgumentLoc(TemplateArgument(E), E);
398  }
399
400  case ParsedTemplateArgument::Template: {
401    TemplateName Template
402      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
403    return TemplateArgumentLoc(TemplateArgument(Template),
404                               Arg.getScopeSpec().getRange(),
405                               Arg.getLocation());
406  }
407  }
408
409  llvm_unreachable("Unhandled parsed template argument");
410  return TemplateArgumentLoc();
411}
412
413/// \brief Translates template arguments as provided by the parser
414/// into template arguments used by semantic analysis.
415void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
416                                      TemplateArgumentListInfo &TemplateArgs) {
417 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
418   TemplateArgs.addArgument(translateTemplateArgument(*this,
419                                                      TemplateArgsIn[I]));
420}
421
422/// ActOnTypeParameter - Called when a C++ template type parameter
423/// (e.g., "typename T") has been parsed. Typename specifies whether
424/// the keyword "typename" was used to declare the type parameter
425/// (otherwise, "class" was used), and KeyLoc is the location of the
426/// "class" or "typename" keyword. ParamName is the name of the
427/// parameter (NULL indicates an unnamed template parameter) and
428/// ParamName is the location of the parameter name (if any).
429/// If the type parameter has a default argument, it will be added
430/// later via ActOnTypeParameterDefault.
431Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
432                                         SourceLocation EllipsisLoc,
433                                         SourceLocation KeyLoc,
434                                         IdentifierInfo *ParamName,
435                                         SourceLocation ParamNameLoc,
436                                         unsigned Depth, unsigned Position) {
437  assert(S->isTemplateParamScope() &&
438         "Template type parameter not in template parameter scope!");
439  bool Invalid = false;
440
441  if (ParamName) {
442    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
443    if (PrevDecl && PrevDecl->isTemplateParameter())
444      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
445                                                           PrevDecl);
446  }
447
448  SourceLocation Loc = ParamNameLoc;
449  if (!ParamName)
450    Loc = KeyLoc;
451
452  TemplateTypeParmDecl *Param
453    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
454                                   Loc, Depth, Position, ParamName, Typename,
455                                   Ellipsis);
456  if (Invalid)
457    Param->setInvalidDecl();
458
459  if (ParamName) {
460    // Add the template parameter into the current scope.
461    S->AddDecl(DeclPtrTy::make(Param));
462    IdResolver.AddDecl(Param);
463  }
464
465  return DeclPtrTy::make(Param);
466}
467
468/// ActOnTypeParameterDefault - Adds a default argument (the type
469/// Default) to the given template type parameter (TypeParam).
470void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
471                                     SourceLocation EqualLoc,
472                                     SourceLocation DefaultLoc,
473                                     TypeTy *DefaultT) {
474  TemplateTypeParmDecl *Parm
475    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
476
477  TypeSourceInfo *DefaultTInfo;
478  GetTypeFromParser(DefaultT, &DefaultTInfo);
479
480  assert(DefaultTInfo && "expected source information for type");
481
482  // C++0x [temp.param]p9:
483  // A default template-argument may be specified for any kind of
484  // template-parameter that is not a template parameter pack.
485  if (Parm->isParameterPack()) {
486    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
487    return;
488  }
489
490  // C++ [temp.param]p14:
491  //   A template-parameter shall not be used in its own default argument.
492  // FIXME: Implement this check! Needs a recursive walk over the types.
493
494  // Check the template argument itself.
495  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
496    Parm->setInvalidDecl();
497    return;
498  }
499
500  Parm->setDefaultArgument(DefaultTInfo, false);
501}
502
503/// \brief Check that the type of a non-type template parameter is
504/// well-formed.
505///
506/// \returns the (possibly-promoted) parameter type if valid;
507/// otherwise, produces a diagnostic and returns a NULL type.
508QualType
509Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
510  // C++ [temp.param]p4:
511  //
512  // A non-type template-parameter shall have one of the following
513  // (optionally cv-qualified) types:
514  //
515  //       -- integral or enumeration type,
516  if (T->isIntegralType() || T->isEnumeralType() ||
517      //   -- pointer to object or pointer to function,
518      (T->isPointerType() &&
519       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
520        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
521      //   -- reference to object or reference to function,
522      T->isReferenceType() ||
523      //   -- pointer to member.
524      T->isMemberPointerType() ||
525      // If T is a dependent type, we can't do the check now, so we
526      // assume that it is well-formed.
527      T->isDependentType())
528    return T;
529  // C++ [temp.param]p8:
530  //
531  //   A non-type template-parameter of type "array of T" or
532  //   "function returning T" is adjusted to be of type "pointer to
533  //   T" or "pointer to function returning T", respectively.
534  else if (T->isArrayType())
535    // FIXME: Keep the type prior to promotion?
536    return Context.getArrayDecayedType(T);
537  else if (T->isFunctionType())
538    // FIXME: Keep the type prior to promotion?
539    return Context.getPointerType(T);
540
541  Diag(Loc, diag::err_template_nontype_parm_bad_type)
542    << T;
543
544  return QualType();
545}
546
547/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
548/// template parameter (e.g., "int Size" in "template<int Size>
549/// class Array") has been parsed. S is the current scope and D is
550/// the parsed declarator.
551Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
552                                                    unsigned Depth,
553                                                    unsigned Position) {
554  TypeSourceInfo *TInfo = 0;
555  QualType T = GetTypeForDeclarator(D, S, &TInfo);
556
557  assert(S->isTemplateParamScope() &&
558         "Non-type template parameter not in template parameter scope!");
559  bool Invalid = false;
560
561  IdentifierInfo *ParamName = D.getIdentifier();
562  if (ParamName) {
563    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
564    if (PrevDecl && PrevDecl->isTemplateParameter())
565      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
566                                                           PrevDecl);
567  }
568
569  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
570  if (T.isNull()) {
571    T = Context.IntTy; // Recover with an 'int' type.
572    Invalid = true;
573  }
574
575  NonTypeTemplateParmDecl *Param
576    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
577                                      D.getIdentifierLoc(),
578                                      Depth, Position, ParamName, T, TInfo);
579  if (Invalid)
580    Param->setInvalidDecl();
581
582  if (D.getIdentifier()) {
583    // Add the template parameter into the current scope.
584    S->AddDecl(DeclPtrTy::make(Param));
585    IdResolver.AddDecl(Param);
586  }
587  return DeclPtrTy::make(Param);
588}
589
590/// \brief Adds a default argument to the given non-type template
591/// parameter.
592void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
593                                                SourceLocation EqualLoc,
594                                                ExprArg DefaultE) {
595  NonTypeTemplateParmDecl *TemplateParm
596    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
597  Expr *Default = static_cast<Expr *>(DefaultE.get());
598
599  // C++ [temp.param]p14:
600  //   A template-parameter shall not be used in its own default argument.
601  // FIXME: Implement this check! Needs a recursive walk over the types.
602
603  // Check the well-formedness of the default template argument.
604  TemplateArgument Converted;
605  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
606                            Converted)) {
607    TemplateParm->setInvalidDecl();
608    return;
609  }
610
611  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
612}
613
614
615/// ActOnTemplateTemplateParameter - Called when a C++ template template
616/// parameter (e.g. T in template <template <typename> class T> class array)
617/// has been parsed. S is the current scope.
618Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
619                                                     SourceLocation TmpLoc,
620                                                     TemplateParamsTy *Params,
621                                                     IdentifierInfo *Name,
622                                                     SourceLocation NameLoc,
623                                                     unsigned Depth,
624                                                     unsigned Position) {
625  assert(S->isTemplateParamScope() &&
626         "Template template parameter not in template parameter scope!");
627
628  // Construct the parameter object.
629  TemplateTemplateParmDecl *Param =
630    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
631                                     TmpLoc, Depth, Position, Name,
632                                     (TemplateParameterList*)Params);
633
634  // Make sure the parameter is valid.
635  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
636  // do anything yet. However, if the template parameter list or (eventual)
637  // default value is ever invalidated, that will propagate here.
638  bool Invalid = false;
639  if (Invalid) {
640    Param->setInvalidDecl();
641  }
642
643  // If the tt-param has a name, then link the identifier into the scope
644  // and lookup mechanisms.
645  if (Name) {
646    S->AddDecl(DeclPtrTy::make(Param));
647    IdResolver.AddDecl(Param);
648  }
649
650  return DeclPtrTy::make(Param);
651}
652
653/// \brief Adds a default argument to the given template template
654/// parameter.
655void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
656                                                 SourceLocation EqualLoc,
657                                        const ParsedTemplateArgument &Default) {
658  TemplateTemplateParmDecl *TemplateParm
659    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
660
661  // C++ [temp.param]p14:
662  //   A template-parameter shall not be used in its own default argument.
663  // FIXME: Implement this check! Needs a recursive walk over the types.
664
665  // Check only that we have a template template argument. We don't want to
666  // try to check well-formedness now, because our template template parameter
667  // might have dependent types in its template parameters, which we wouldn't
668  // be able to match now.
669  //
670  // If none of the template template parameter's template arguments mention
671  // other template parameters, we could actually perform more checking here.
672  // However, it isn't worth doing.
673  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
674  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
675    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
676      << DefaultArg.getSourceRange();
677    return;
678  }
679
680  TemplateParm->setDefaultArgument(DefaultArg);
681}
682
683/// ActOnTemplateParameterList - Builds a TemplateParameterList that
684/// contains the template parameters in Params/NumParams.
685Sema::TemplateParamsTy *
686Sema::ActOnTemplateParameterList(unsigned Depth,
687                                 SourceLocation ExportLoc,
688                                 SourceLocation TemplateLoc,
689                                 SourceLocation LAngleLoc,
690                                 DeclPtrTy *Params, unsigned NumParams,
691                                 SourceLocation RAngleLoc) {
692  if (ExportLoc.isValid())
693    Diag(ExportLoc, diag::warn_template_export_unsupported);
694
695  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
696                                       (NamedDecl**)Params, NumParams,
697                                       RAngleLoc);
698}
699
700static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
701  if (SS.isSet())
702    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
703                        SS.getRange());
704}
705
706Sema::DeclResult
707Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
708                         SourceLocation KWLoc, const CXXScopeSpec &SS,
709                         IdentifierInfo *Name, SourceLocation NameLoc,
710                         AttributeList *Attr,
711                         TemplateParameterList *TemplateParams,
712                         AccessSpecifier AS) {
713  assert(TemplateParams && TemplateParams->size() > 0 &&
714         "No template parameters");
715  assert(TUK != TUK_Reference && "Can only declare or define class templates");
716  bool Invalid = false;
717
718  // Check that we can declare a template here.
719  if (CheckTemplateDeclScope(S, TemplateParams))
720    return true;
721
722  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
723  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
724
725  // There is no such thing as an unnamed class template.
726  if (!Name) {
727    Diag(KWLoc, diag::err_template_unnamed_class);
728    return true;
729  }
730
731  // Find any previous declaration with this name.
732  DeclContext *SemanticContext;
733  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
734                        ForRedeclaration);
735  if (SS.isNotEmpty() && !SS.isInvalid()) {
736    if (RequireCompleteDeclContext(SS))
737      return true;
738
739    SemanticContext = computeDeclContext(SS, true);
740    if (!SemanticContext) {
741      // FIXME: Produce a reasonable diagnostic here
742      return true;
743    }
744
745    LookupQualifiedName(Previous, SemanticContext);
746  } else {
747    SemanticContext = CurContext;
748    LookupName(Previous, S);
749  }
750
751  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
752  NamedDecl *PrevDecl = 0;
753  if (Previous.begin() != Previous.end())
754    PrevDecl = *Previous.begin();
755
756  // If there is a previous declaration with the same name, check
757  // whether this is a valid redeclaration.
758  ClassTemplateDecl *PrevClassTemplate
759    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
760
761  // We may have found the injected-class-name of a class template,
762  // class template partial specialization, or class template specialization.
763  // In these cases, grab the template that is being defined or specialized.
764  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
765      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
766    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
767    PrevClassTemplate
768      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
769    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
770      PrevClassTemplate
771        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
772            ->getSpecializedTemplate();
773    }
774  }
775
776  if (TUK == TUK_Friend) {
777    // C++ [namespace.memdef]p3:
778    //   [...] When looking for a prior declaration of a class or a function
779    //   declared as a friend, and when the name of the friend class or
780    //   function is neither a qualified name nor a template-id, scopes outside
781    //   the innermost enclosing namespace scope are not considered.
782    DeclContext *OutermostContext = CurContext;
783    while (!OutermostContext->isFileContext())
784      OutermostContext = OutermostContext->getLookupParent();
785
786    if (PrevDecl &&
787        (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
788         OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
789      SemanticContext = PrevDecl->getDeclContext();
790    } else {
791      // Declarations in outer scopes don't matter. However, the outermost
792      // context we computed is the semantic context for our new
793      // declaration.
794      PrevDecl = PrevClassTemplate = 0;
795      SemanticContext = OutermostContext;
796    }
797
798    if (CurContext->isDependentContext()) {
799      // If this is a dependent context, we don't want to link the friend
800      // class template to the template in scope, because that would perform
801      // checking of the template parameter lists that can't be performed
802      // until the outer context is instantiated.
803      PrevDecl = PrevClassTemplate = 0;
804    }
805  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
806    PrevDecl = PrevClassTemplate = 0;
807
808  if (PrevClassTemplate) {
809    // Ensure that the template parameter lists are compatible.
810    if (!TemplateParameterListsAreEqual(TemplateParams,
811                                   PrevClassTemplate->getTemplateParameters(),
812                                        /*Complain=*/true,
813                                        TPL_TemplateMatch))
814      return true;
815
816    // C++ [temp.class]p4:
817    //   In a redeclaration, partial specialization, explicit
818    //   specialization or explicit instantiation of a class template,
819    //   the class-key shall agree in kind with the original class
820    //   template declaration (7.1.5.3).
821    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
822    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
823      Diag(KWLoc, diag::err_use_with_wrong_tag)
824        << Name
825        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
826      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
827      Kind = PrevRecordDecl->getTagKind();
828    }
829
830    // Check for redefinition of this class template.
831    if (TUK == TUK_Definition) {
832      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
833        Diag(NameLoc, diag::err_redefinition) << Name;
834        Diag(Def->getLocation(), diag::note_previous_definition);
835        // FIXME: Would it make sense to try to "forget" the previous
836        // definition, as part of error recovery?
837        return true;
838      }
839    }
840  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
841    // Maybe we will complain about the shadowed template parameter.
842    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
843    // Just pretend that we didn't see the previous declaration.
844    PrevDecl = 0;
845  } else if (PrevDecl) {
846    // C++ [temp]p5:
847    //   A class template shall not have the same name as any other
848    //   template, class, function, object, enumeration, enumerator,
849    //   namespace, or type in the same scope (3.3), except as specified
850    //   in (14.5.4).
851    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
852    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
853    return true;
854  }
855
856  // Check the template parameter list of this declaration, possibly
857  // merging in the template parameter list from the previous class
858  // template declaration.
859  if (CheckTemplateParameterList(TemplateParams,
860            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
861                                 TPC_ClassTemplate))
862    Invalid = true;
863
864  // FIXME: If we had a scope specifier, we better have a previous template
865  // declaration!
866
867  CXXRecordDecl *NewClass =
868    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
869                          PrevClassTemplate?
870                            PrevClassTemplate->getTemplatedDecl() : 0,
871                          /*DelayTypeCreation=*/true);
872  SetNestedNameSpecifier(NewClass, SS);
873
874  ClassTemplateDecl *NewTemplate
875    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
876                                DeclarationName(Name), TemplateParams,
877                                NewClass, PrevClassTemplate);
878  NewClass->setDescribedClassTemplate(NewTemplate);
879
880  // Build the type for the class template declaration now.
881  QualType T = NewTemplate->getInjectedClassNameSpecialization(Context);
882  T = Context.getInjectedClassNameType(NewClass, T);
883  assert(T->isDependentType() && "Class template type is not dependent?");
884  (void)T;
885
886  // If we are providing an explicit specialization of a member that is a
887  // class template, make a note of that.
888  if (PrevClassTemplate &&
889      PrevClassTemplate->getInstantiatedFromMemberTemplate())
890    PrevClassTemplate->setMemberSpecialization();
891
892  // Set the access specifier.
893  if (!Invalid && TUK != TUK_Friend)
894    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
895
896  // Set the lexical context of these templates
897  NewClass->setLexicalDeclContext(CurContext);
898  NewTemplate->setLexicalDeclContext(CurContext);
899
900  if (TUK == TUK_Definition)
901    NewClass->startDefinition();
902
903  if (Attr)
904    ProcessDeclAttributeList(S, NewClass, Attr);
905
906  if (TUK != TUK_Friend)
907    PushOnScopeChains(NewTemplate, S);
908  else {
909    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
910      NewTemplate->setAccess(PrevClassTemplate->getAccess());
911      NewClass->setAccess(PrevClassTemplate->getAccess());
912    }
913
914    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
915                                       PrevClassTemplate != NULL);
916
917    // Friend templates are visible in fairly strange ways.
918    if (!CurContext->isDependentContext()) {
919      DeclContext *DC = SemanticContext->getLookupContext();
920      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
921      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
922        PushOnScopeChains(NewTemplate, EnclosingScope,
923                          /* AddToContext = */ false);
924    }
925
926    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
927                                            NewClass->getLocation(),
928                                            NewTemplate,
929                                    /*FIXME:*/NewClass->getLocation());
930    Friend->setAccess(AS_public);
931    CurContext->addDecl(Friend);
932  }
933
934  if (Invalid) {
935    NewTemplate->setInvalidDecl();
936    NewClass->setInvalidDecl();
937  }
938  return DeclPtrTy::make(NewTemplate);
939}
940
941/// \brief Diagnose the presence of a default template argument on a
942/// template parameter, which is ill-formed in certain contexts.
943///
944/// \returns true if the default template argument should be dropped.
945static bool DiagnoseDefaultTemplateArgument(Sema &S,
946                                            Sema::TemplateParamListContext TPC,
947                                            SourceLocation ParamLoc,
948                                            SourceRange DefArgRange) {
949  switch (TPC) {
950  case Sema::TPC_ClassTemplate:
951    return false;
952
953  case Sema::TPC_FunctionTemplate:
954    // C++ [temp.param]p9:
955    //   A default template-argument shall not be specified in a
956    //   function template declaration or a function template
957    //   definition [...]
958    // (This sentence is not in C++0x, per DR226).
959    if (!S.getLangOptions().CPlusPlus0x)
960      S.Diag(ParamLoc,
961             diag::err_template_parameter_default_in_function_template)
962        << DefArgRange;
963    return false;
964
965  case Sema::TPC_ClassTemplateMember:
966    // C++0x [temp.param]p9:
967    //   A default template-argument shall not be specified in the
968    //   template-parameter-lists of the definition of a member of a
969    //   class template that appears outside of the member's class.
970    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
971      << DefArgRange;
972    return true;
973
974  case Sema::TPC_FriendFunctionTemplate:
975    // C++ [temp.param]p9:
976    //   A default template-argument shall not be specified in a
977    //   friend template declaration.
978    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
979      << DefArgRange;
980    return true;
981
982    // FIXME: C++0x [temp.param]p9 allows default template-arguments
983    // for friend function templates if there is only a single
984    // declaration (and it is a definition). Strange!
985  }
986
987  return false;
988}
989
990/// \brief Checks the validity of a template parameter list, possibly
991/// considering the template parameter list from a previous
992/// declaration.
993///
994/// If an "old" template parameter list is provided, it must be
995/// equivalent (per TemplateParameterListsAreEqual) to the "new"
996/// template parameter list.
997///
998/// \param NewParams Template parameter list for a new template
999/// declaration. This template parameter list will be updated with any
1000/// default arguments that are carried through from the previous
1001/// template parameter list.
1002///
1003/// \param OldParams If provided, template parameter list from a
1004/// previous declaration of the same template. Default template
1005/// arguments will be merged from the old template parameter list to
1006/// the new template parameter list.
1007///
1008/// \param TPC Describes the context in which we are checking the given
1009/// template parameter list.
1010///
1011/// \returns true if an error occurred, false otherwise.
1012bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1013                                      TemplateParameterList *OldParams,
1014                                      TemplateParamListContext TPC) {
1015  bool Invalid = false;
1016
1017  // C++ [temp.param]p10:
1018  //   The set of default template-arguments available for use with a
1019  //   template declaration or definition is obtained by merging the
1020  //   default arguments from the definition (if in scope) and all
1021  //   declarations in scope in the same way default function
1022  //   arguments are (8.3.6).
1023  bool SawDefaultArgument = false;
1024  SourceLocation PreviousDefaultArgLoc;
1025
1026  bool SawParameterPack = false;
1027  SourceLocation ParameterPackLoc;
1028
1029  // Dummy initialization to avoid warnings.
1030  TemplateParameterList::iterator OldParam = NewParams->end();
1031  if (OldParams)
1032    OldParam = OldParams->begin();
1033
1034  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1035                                    NewParamEnd = NewParams->end();
1036       NewParam != NewParamEnd; ++NewParam) {
1037    // Variables used to diagnose redundant default arguments
1038    bool RedundantDefaultArg = false;
1039    SourceLocation OldDefaultLoc;
1040    SourceLocation NewDefaultLoc;
1041
1042    // Variables used to diagnose missing default arguments
1043    bool MissingDefaultArg = false;
1044
1045    // C++0x [temp.param]p11:
1046    // If a template parameter of a class template is a template parameter pack,
1047    // it must be the last template parameter.
1048    if (SawParameterPack) {
1049      Diag(ParameterPackLoc,
1050           diag::err_template_param_pack_must_be_last_template_parameter);
1051      Invalid = true;
1052    }
1053
1054    if (TemplateTypeParmDecl *NewTypeParm
1055          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1056      // Check the presence of a default argument here.
1057      if (NewTypeParm->hasDefaultArgument() &&
1058          DiagnoseDefaultTemplateArgument(*this, TPC,
1059                                          NewTypeParm->getLocation(),
1060               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1061                                                       .getFullSourceRange()))
1062        NewTypeParm->removeDefaultArgument();
1063
1064      // Merge default arguments for template type parameters.
1065      TemplateTypeParmDecl *OldTypeParm
1066          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1067
1068      if (NewTypeParm->isParameterPack()) {
1069        assert(!NewTypeParm->hasDefaultArgument() &&
1070               "Parameter packs can't have a default argument!");
1071        SawParameterPack = true;
1072        ParameterPackLoc = NewTypeParm->getLocation();
1073      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1074                 NewTypeParm->hasDefaultArgument()) {
1075        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1076        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1077        SawDefaultArgument = true;
1078        RedundantDefaultArg = true;
1079        PreviousDefaultArgLoc = NewDefaultLoc;
1080      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1081        // Merge the default argument from the old declaration to the
1082        // new declaration.
1083        SawDefaultArgument = true;
1084        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1085                                        true);
1086        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1087      } else if (NewTypeParm->hasDefaultArgument()) {
1088        SawDefaultArgument = true;
1089        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1090      } else if (SawDefaultArgument)
1091        MissingDefaultArg = true;
1092    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1093               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1094      // Check the presence of a default argument here.
1095      if (NewNonTypeParm->hasDefaultArgument() &&
1096          DiagnoseDefaultTemplateArgument(*this, TPC,
1097                                          NewNonTypeParm->getLocation(),
1098                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1099        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1100        NewNonTypeParm->setDefaultArgument(0);
1101      }
1102
1103      // Merge default arguments for non-type template parameters
1104      NonTypeTemplateParmDecl *OldNonTypeParm
1105        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1106      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1107          NewNonTypeParm->hasDefaultArgument()) {
1108        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1109        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1110        SawDefaultArgument = true;
1111        RedundantDefaultArg = true;
1112        PreviousDefaultArgLoc = NewDefaultLoc;
1113      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1114        // Merge the default argument from the old declaration to the
1115        // new declaration.
1116        SawDefaultArgument = true;
1117        // FIXME: We need to create a new kind of "default argument"
1118        // expression that points to a previous template template
1119        // parameter.
1120        NewNonTypeParm->setDefaultArgument(
1121                                        OldNonTypeParm->getDefaultArgument());
1122        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1123      } else if (NewNonTypeParm->hasDefaultArgument()) {
1124        SawDefaultArgument = true;
1125        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1126      } else if (SawDefaultArgument)
1127        MissingDefaultArg = true;
1128    } else {
1129      // Check the presence of a default argument here.
1130      TemplateTemplateParmDecl *NewTemplateParm
1131        = cast<TemplateTemplateParmDecl>(*NewParam);
1132      if (NewTemplateParm->hasDefaultArgument() &&
1133          DiagnoseDefaultTemplateArgument(*this, TPC,
1134                                          NewTemplateParm->getLocation(),
1135                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1136        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1137
1138      // Merge default arguments for template template parameters
1139      TemplateTemplateParmDecl *OldTemplateParm
1140        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1141      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1142          NewTemplateParm->hasDefaultArgument()) {
1143        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1144        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1145        SawDefaultArgument = true;
1146        RedundantDefaultArg = true;
1147        PreviousDefaultArgLoc = NewDefaultLoc;
1148      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1149        // Merge the default argument from the old declaration to the
1150        // new declaration.
1151        SawDefaultArgument = true;
1152        // FIXME: We need to create a new kind of "default argument" expression
1153        // that points to a previous template template parameter.
1154        NewTemplateParm->setDefaultArgument(
1155                                        OldTemplateParm->getDefaultArgument());
1156        PreviousDefaultArgLoc
1157          = OldTemplateParm->getDefaultArgument().getLocation();
1158      } else if (NewTemplateParm->hasDefaultArgument()) {
1159        SawDefaultArgument = true;
1160        PreviousDefaultArgLoc
1161          = NewTemplateParm->getDefaultArgument().getLocation();
1162      } else if (SawDefaultArgument)
1163        MissingDefaultArg = true;
1164    }
1165
1166    if (RedundantDefaultArg) {
1167      // C++ [temp.param]p12:
1168      //   A template-parameter shall not be given default arguments
1169      //   by two different declarations in the same scope.
1170      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1171      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1172      Invalid = true;
1173    } else if (MissingDefaultArg) {
1174      // C++ [temp.param]p11:
1175      //   If a template-parameter has a default template-argument,
1176      //   all subsequent template-parameters shall have a default
1177      //   template-argument supplied.
1178      Diag((*NewParam)->getLocation(),
1179           diag::err_template_param_default_arg_missing);
1180      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1181      Invalid = true;
1182    }
1183
1184    // If we have an old template parameter list that we're merging
1185    // in, move on to the next parameter.
1186    if (OldParams)
1187      ++OldParam;
1188  }
1189
1190  return Invalid;
1191}
1192
1193/// \brief Match the given template parameter lists to the given scope
1194/// specifier, returning the template parameter list that applies to the
1195/// name.
1196///
1197/// \param DeclStartLoc the start of the declaration that has a scope
1198/// specifier or a template parameter list.
1199///
1200/// \param SS the scope specifier that will be matched to the given template
1201/// parameter lists. This scope specifier precedes a qualified name that is
1202/// being declared.
1203///
1204/// \param ParamLists the template parameter lists, from the outermost to the
1205/// innermost template parameter lists.
1206///
1207/// \param NumParamLists the number of template parameter lists in ParamLists.
1208///
1209/// \param IsExplicitSpecialization will be set true if the entity being
1210/// declared is an explicit specialization, false otherwise.
1211///
1212/// \returns the template parameter list, if any, that corresponds to the
1213/// name that is preceded by the scope specifier @p SS. This template
1214/// parameter list may be have template parameters (if we're declaring a
1215/// template) or may have no template parameters (if we're declaring a
1216/// template specialization), or may be NULL (if we were's declaring isn't
1217/// itself a template).
1218TemplateParameterList *
1219Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1220                                              const CXXScopeSpec &SS,
1221                                          TemplateParameterList **ParamLists,
1222                                              unsigned NumParamLists,
1223                                              bool &IsExplicitSpecialization) {
1224  IsExplicitSpecialization = false;
1225
1226  // Find the template-ids that occur within the nested-name-specifier. These
1227  // template-ids will match up with the template parameter lists.
1228  llvm::SmallVector<const TemplateSpecializationType *, 4>
1229    TemplateIdsInSpecifier;
1230  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1231    ExplicitSpecializationsInSpecifier;
1232  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1233       NNS; NNS = NNS->getPrefix()) {
1234    const Type *T = NNS->getAsType();
1235    if (!T) break;
1236
1237    // C++0x [temp.expl.spec]p17:
1238    //   A member or a member template may be nested within many
1239    //   enclosing class templates. In an explicit specialization for
1240    //   such a member, the member declaration shall be preceded by a
1241    //   template<> for each enclosing class template that is
1242    //   explicitly specialized.
1243    //
1244    // Following the existing practice of GNU and EDG, we allow a typedef of a
1245    // template specialization type.
1246    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1247      T = TT->LookThroughTypedefs().getTypePtr();
1248
1249    if (const TemplateSpecializationType *SpecType
1250                                  = dyn_cast<TemplateSpecializationType>(T)) {
1251      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1252      if (!Template)
1253        continue; // FIXME: should this be an error? probably...
1254
1255      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1256        ClassTemplateSpecializationDecl *SpecDecl
1257          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1258        // If the nested name specifier refers to an explicit specialization,
1259        // we don't need a template<> header.
1260        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1261          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1262          continue;
1263        }
1264      }
1265
1266      TemplateIdsInSpecifier.push_back(SpecType);
1267    }
1268  }
1269
1270  // Reverse the list of template-ids in the scope specifier, so that we can
1271  // more easily match up the template-ids and the template parameter lists.
1272  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1273
1274  SourceLocation FirstTemplateLoc = DeclStartLoc;
1275  if (NumParamLists)
1276    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1277
1278  // Match the template-ids found in the specifier to the template parameter
1279  // lists.
1280  unsigned Idx = 0;
1281  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1282       Idx != NumTemplateIds; ++Idx) {
1283    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1284    bool DependentTemplateId = TemplateId->isDependentType();
1285    if (Idx >= NumParamLists) {
1286      // We have a template-id without a corresponding template parameter
1287      // list.
1288      if (DependentTemplateId) {
1289        // FIXME: the location information here isn't great.
1290        Diag(SS.getRange().getBegin(),
1291             diag::err_template_spec_needs_template_parameters)
1292          << TemplateId
1293          << SS.getRange();
1294      } else {
1295        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1296          << SS.getRange()
1297          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1298        IsExplicitSpecialization = true;
1299      }
1300      return 0;
1301    }
1302
1303    // Check the template parameter list against its corresponding template-id.
1304    if (DependentTemplateId) {
1305      TemplateDecl *Template
1306        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1307
1308      if (ClassTemplateDecl *ClassTemplate
1309            = dyn_cast<ClassTemplateDecl>(Template)) {
1310        TemplateParameterList *ExpectedTemplateParams = 0;
1311        // Is this template-id naming the primary template?
1312        if (Context.hasSameType(TemplateId,
1313                 ClassTemplate->getInjectedClassNameSpecialization(Context)))
1314          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1315        // ... or a partial specialization?
1316        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1317                   = ClassTemplate->findPartialSpecialization(TemplateId))
1318          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1319
1320        if (ExpectedTemplateParams)
1321          TemplateParameterListsAreEqual(ParamLists[Idx],
1322                                         ExpectedTemplateParams,
1323                                         true, TPL_TemplateMatch);
1324      }
1325
1326      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1327    } else if (ParamLists[Idx]->size() > 0)
1328      Diag(ParamLists[Idx]->getTemplateLoc(),
1329           diag::err_template_param_list_matches_nontemplate)
1330        << TemplateId
1331        << ParamLists[Idx]->getSourceRange();
1332    else
1333      IsExplicitSpecialization = true;
1334  }
1335
1336  // If there were at least as many template-ids as there were template
1337  // parameter lists, then there are no template parameter lists remaining for
1338  // the declaration itself.
1339  if (Idx >= NumParamLists)
1340    return 0;
1341
1342  // If there were too many template parameter lists, complain about that now.
1343  if (Idx != NumParamLists - 1) {
1344    while (Idx < NumParamLists - 1) {
1345      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1346      Diag(ParamLists[Idx]->getTemplateLoc(),
1347           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1348                               : diag::err_template_spec_extra_headers)
1349        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1350                       ParamLists[Idx]->getRAngleLoc());
1351
1352      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1353        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1354             diag::note_explicit_template_spec_does_not_need_header)
1355          << ExplicitSpecializationsInSpecifier.back();
1356        ExplicitSpecializationsInSpecifier.pop_back();
1357      }
1358
1359      ++Idx;
1360    }
1361  }
1362
1363  // Return the last template parameter list, which corresponds to the
1364  // entity being declared.
1365  return ParamLists[NumParamLists - 1];
1366}
1367
1368QualType Sema::CheckTemplateIdType(TemplateName Name,
1369                                   SourceLocation TemplateLoc,
1370                              const TemplateArgumentListInfo &TemplateArgs) {
1371  TemplateDecl *Template = Name.getAsTemplateDecl();
1372  if (!Template) {
1373    // The template name does not resolve to a template, so we just
1374    // build a dependent template-id type.
1375    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1376  }
1377
1378  // Check that the template argument list is well-formed for this
1379  // template.
1380  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1381                                        TemplateArgs.size());
1382  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1383                                false, Converted))
1384    return QualType();
1385
1386  assert((Converted.structuredSize() ==
1387            Template->getTemplateParameters()->size()) &&
1388         "Converted template argument list is too short!");
1389
1390  QualType CanonType;
1391
1392  if (Name.isDependent() ||
1393      TemplateSpecializationType::anyDependentTemplateArguments(
1394                                                      TemplateArgs)) {
1395    // This class template specialization is a dependent
1396    // type. Therefore, its canonical type is another class template
1397    // specialization type that contains all of the converted
1398    // arguments in canonical form. This ensures that, e.g., A<T> and
1399    // A<T, T> have identical types when A is declared as:
1400    //
1401    //   template<typename T, typename U = T> struct A;
1402    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1403    CanonType = Context.getTemplateSpecializationType(CanonName,
1404                                                   Converted.getFlatArguments(),
1405                                                   Converted.flatSize());
1406
1407    // FIXME: CanonType is not actually the canonical type, and unfortunately
1408    // it is a TemplateSpecializationType that we will never use again.
1409    // In the future, we need to teach getTemplateSpecializationType to only
1410    // build the canonical type and return that to us.
1411    CanonType = Context.getCanonicalType(CanonType);
1412  } else if (ClassTemplateDecl *ClassTemplate
1413               = dyn_cast<ClassTemplateDecl>(Template)) {
1414    // Find the class template specialization declaration that
1415    // corresponds to these arguments.
1416    llvm::FoldingSetNodeID ID;
1417    ClassTemplateSpecializationDecl::Profile(ID,
1418                                             Converted.getFlatArguments(),
1419                                             Converted.flatSize(),
1420                                             Context);
1421    void *InsertPos = 0;
1422    ClassTemplateSpecializationDecl *Decl
1423      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1424    if (!Decl) {
1425      // This is the first time we have referenced this class template
1426      // specialization. Create the canonical declaration and add it to
1427      // the set of specializations.
1428      Decl = ClassTemplateSpecializationDecl::Create(Context,
1429                                    ClassTemplate->getDeclContext(),
1430                                    ClassTemplate->getLocation(),
1431                                    ClassTemplate,
1432                                    Converted, 0);
1433      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1434      Decl->setLexicalDeclContext(CurContext);
1435    }
1436
1437    CanonType = Context.getTypeDeclType(Decl);
1438    assert(isa<RecordType>(CanonType) &&
1439           "type of non-dependent specialization is not a RecordType");
1440  }
1441
1442  // Build the fully-sugared type for this class template
1443  // specialization, which refers back to the class template
1444  // specialization we created or found.
1445  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1446}
1447
1448Action::TypeResult
1449Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1450                          SourceLocation LAngleLoc,
1451                          ASTTemplateArgsPtr TemplateArgsIn,
1452                          SourceLocation RAngleLoc) {
1453  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1454
1455  // Translate the parser's template argument list in our AST format.
1456  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1457  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1458
1459  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1460  TemplateArgsIn.release();
1461
1462  if (Result.isNull())
1463    return true;
1464
1465  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1466  TemplateSpecializationTypeLoc TL
1467    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1468  TL.setTemplateNameLoc(TemplateLoc);
1469  TL.setLAngleLoc(LAngleLoc);
1470  TL.setRAngleLoc(RAngleLoc);
1471  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1472    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1473
1474  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1475}
1476
1477Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1478                                              TagUseKind TUK,
1479                                              DeclSpec::TST TagSpec,
1480                                              SourceLocation TagLoc) {
1481  if (TypeResult.isInvalid())
1482    return Sema::TypeResult();
1483
1484  // FIXME: preserve source info, ideally without copying the DI.
1485  TypeSourceInfo *DI;
1486  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1487
1488  // Verify the tag specifier.
1489  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1490
1491  if (const RecordType *RT = Type->getAs<RecordType>()) {
1492    RecordDecl *D = RT->getDecl();
1493
1494    IdentifierInfo *Id = D->getIdentifier();
1495    assert(Id && "templated class must have an identifier");
1496
1497    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1498      Diag(TagLoc, diag::err_use_with_wrong_tag)
1499        << Type
1500        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1501      Diag(D->getLocation(), diag::note_previous_use);
1502    }
1503  }
1504
1505  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1506
1507  return ElabType.getAsOpaquePtr();
1508}
1509
1510Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1511                                                 LookupResult &R,
1512                                                 bool RequiresADL,
1513                                 const TemplateArgumentListInfo &TemplateArgs) {
1514  // FIXME: Can we do any checking at this point? I guess we could check the
1515  // template arguments that we have against the template name, if the template
1516  // name refers to a single template. That's not a terribly common case,
1517  // though.
1518
1519  // These should be filtered out by our callers.
1520  assert(!R.empty() && "empty lookup results when building templateid");
1521  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1522
1523  NestedNameSpecifier *Qualifier = 0;
1524  SourceRange QualifierRange;
1525  if (SS.isSet()) {
1526    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1527    QualifierRange = SS.getRange();
1528  }
1529
1530  // We don't want lookup warnings at this point.
1531  R.suppressDiagnostics();
1532
1533  bool Dependent
1534    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1535                                              &TemplateArgs);
1536  UnresolvedLookupExpr *ULE
1537    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1538                                   Qualifier, QualifierRange,
1539                                   R.getLookupName(), R.getNameLoc(),
1540                                   RequiresADL, TemplateArgs);
1541  ULE->addDecls(R.begin(), R.end());
1542
1543  return Owned(ULE);
1544}
1545
1546// We actually only call this from template instantiation.
1547Sema::OwningExprResult
1548Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1549                                   DeclarationName Name,
1550                                   SourceLocation NameLoc,
1551                             const TemplateArgumentListInfo &TemplateArgs) {
1552  DeclContext *DC;
1553  if (!(DC = computeDeclContext(SS, false)) ||
1554      DC->isDependentContext() ||
1555      RequireCompleteDeclContext(SS))
1556    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1557
1558  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1559  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1560
1561  if (R.isAmbiguous())
1562    return ExprError();
1563
1564  if (R.empty()) {
1565    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1566      << Name << SS.getRange();
1567    return ExprError();
1568  }
1569
1570  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1571    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1572      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1573    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1574    return ExprError();
1575  }
1576
1577  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1578}
1579
1580/// \brief Form a dependent template name.
1581///
1582/// This action forms a dependent template name given the template
1583/// name and its (presumably dependent) scope specifier. For
1584/// example, given "MetaFun::template apply", the scope specifier \p
1585/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1586/// of the "template" keyword, and "apply" is the \p Name.
1587Sema::TemplateTy
1588Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1589                                 const CXXScopeSpec &SS,
1590                                 UnqualifiedId &Name,
1591                                 TypeTy *ObjectType,
1592                                 bool EnteringContext) {
1593  DeclContext *LookupCtx = 0;
1594  if (SS.isSet())
1595    LookupCtx = computeDeclContext(SS, EnteringContext);
1596  if (!LookupCtx && ObjectType)
1597    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1598  if (LookupCtx) {
1599    // C++0x [temp.names]p5:
1600    //   If a name prefixed by the keyword template is not the name of
1601    //   a template, the program is ill-formed. [Note: the keyword
1602    //   template may not be applied to non-template members of class
1603    //   templates. -end note ] [ Note: as is the case with the
1604    //   typename prefix, the template prefix is allowed in cases
1605    //   where it is not strictly necessary; i.e., when the
1606    //   nested-name-specifier or the expression on the left of the ->
1607    //   or . is not dependent on a template-parameter, or the use
1608    //   does not appear in the scope of a template. -end note]
1609    //
1610    // Note: C++03 was more strict here, because it banned the use of
1611    // the "template" keyword prior to a template-name that was not a
1612    // dependent name. C++ DR468 relaxed this requirement (the
1613    // "template" keyword is now permitted). We follow the C++0x
1614    // rules, even in C++03 mode, retroactively applying the DR.
1615    TemplateTy Template;
1616    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1617                                          EnteringContext, Template);
1618    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1619        isa<CXXRecordDecl>(LookupCtx) &&
1620        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1621      // This is a dependent template.
1622    } else if (TNK == TNK_Non_template) {
1623      Diag(Name.getSourceRange().getBegin(),
1624           diag::err_template_kw_refers_to_non_template)
1625        << GetNameFromUnqualifiedId(Name)
1626        << Name.getSourceRange();
1627      return TemplateTy();
1628    } else {
1629      // We found something; return it.
1630      return Template;
1631    }
1632  }
1633
1634  NestedNameSpecifier *Qualifier
1635    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1636
1637  switch (Name.getKind()) {
1638  case UnqualifiedId::IK_Identifier:
1639    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1640                                                             Name.Identifier));
1641
1642  case UnqualifiedId::IK_OperatorFunctionId:
1643    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1644                                             Name.OperatorFunctionId.Operator));
1645
1646  case UnqualifiedId::IK_LiteralOperatorId:
1647    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1648
1649  default:
1650    break;
1651  }
1652
1653  Diag(Name.getSourceRange().getBegin(),
1654       diag::err_template_kw_refers_to_non_template)
1655    << GetNameFromUnqualifiedId(Name)
1656    << Name.getSourceRange();
1657  return TemplateTy();
1658}
1659
1660bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1661                                     const TemplateArgumentLoc &AL,
1662                                     TemplateArgumentListBuilder &Converted) {
1663  const TemplateArgument &Arg = AL.getArgument();
1664
1665  // Check template type parameter.
1666  if (Arg.getKind() != TemplateArgument::Type) {
1667    // C++ [temp.arg.type]p1:
1668    //   A template-argument for a template-parameter which is a
1669    //   type shall be a type-id.
1670
1671    // We have a template type parameter but the template argument
1672    // is not a type.
1673    SourceRange SR = AL.getSourceRange();
1674    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1675    Diag(Param->getLocation(), diag::note_template_param_here);
1676
1677    return true;
1678  }
1679
1680  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1681    return true;
1682
1683  // Add the converted template type argument.
1684  Converted.Append(
1685                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1686  return false;
1687}
1688
1689/// \brief Substitute template arguments into the default template argument for
1690/// the given template type parameter.
1691///
1692/// \param SemaRef the semantic analysis object for which we are performing
1693/// the substitution.
1694///
1695/// \param Template the template that we are synthesizing template arguments
1696/// for.
1697///
1698/// \param TemplateLoc the location of the template name that started the
1699/// template-id we are checking.
1700///
1701/// \param RAngleLoc the location of the right angle bracket ('>') that
1702/// terminates the template-id.
1703///
1704/// \param Param the template template parameter whose default we are
1705/// substituting into.
1706///
1707/// \param Converted the list of template arguments provided for template
1708/// parameters that precede \p Param in the template parameter list.
1709///
1710/// \returns the substituted template argument, or NULL if an error occurred.
1711static TypeSourceInfo *
1712SubstDefaultTemplateArgument(Sema &SemaRef,
1713                             TemplateDecl *Template,
1714                             SourceLocation TemplateLoc,
1715                             SourceLocation RAngleLoc,
1716                             TemplateTypeParmDecl *Param,
1717                             TemplateArgumentListBuilder &Converted) {
1718  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1719
1720  // If the argument type is dependent, instantiate it now based
1721  // on the previously-computed template arguments.
1722  if (ArgType->getType()->isDependentType()) {
1723    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1724                                      /*TakeArgs=*/false);
1725
1726    MultiLevelTemplateArgumentList AllTemplateArgs
1727      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1728
1729    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1730                                     Template, Converted.getFlatArguments(),
1731                                     Converted.flatSize(),
1732                                     SourceRange(TemplateLoc, RAngleLoc));
1733
1734    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1735                                Param->getDefaultArgumentLoc(),
1736                                Param->getDeclName());
1737  }
1738
1739  return ArgType;
1740}
1741
1742/// \brief Substitute template arguments into the default template argument for
1743/// the given non-type template parameter.
1744///
1745/// \param SemaRef the semantic analysis object for which we are performing
1746/// the substitution.
1747///
1748/// \param Template the template that we are synthesizing template arguments
1749/// for.
1750///
1751/// \param TemplateLoc the location of the template name that started the
1752/// template-id we are checking.
1753///
1754/// \param RAngleLoc the location of the right angle bracket ('>') that
1755/// terminates the template-id.
1756///
1757/// \param Param the non-type template parameter whose default we are
1758/// substituting into.
1759///
1760/// \param Converted the list of template arguments provided for template
1761/// parameters that precede \p Param in the template parameter list.
1762///
1763/// \returns the substituted template argument, or NULL if an error occurred.
1764static Sema::OwningExprResult
1765SubstDefaultTemplateArgument(Sema &SemaRef,
1766                             TemplateDecl *Template,
1767                             SourceLocation TemplateLoc,
1768                             SourceLocation RAngleLoc,
1769                             NonTypeTemplateParmDecl *Param,
1770                             TemplateArgumentListBuilder &Converted) {
1771  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1772                                    /*TakeArgs=*/false);
1773
1774  MultiLevelTemplateArgumentList AllTemplateArgs
1775    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1776
1777  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1778                                   Template, Converted.getFlatArguments(),
1779                                   Converted.flatSize(),
1780                                   SourceRange(TemplateLoc, RAngleLoc));
1781
1782  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1783}
1784
1785/// \brief Substitute template arguments into the default template argument for
1786/// the given template template parameter.
1787///
1788/// \param SemaRef the semantic analysis object for which we are performing
1789/// the substitution.
1790///
1791/// \param Template the template that we are synthesizing template arguments
1792/// for.
1793///
1794/// \param TemplateLoc the location of the template name that started the
1795/// template-id we are checking.
1796///
1797/// \param RAngleLoc the location of the right angle bracket ('>') that
1798/// terminates the template-id.
1799///
1800/// \param Param the template template parameter whose default we are
1801/// substituting into.
1802///
1803/// \param Converted the list of template arguments provided for template
1804/// parameters that precede \p Param in the template parameter list.
1805///
1806/// \returns the substituted template argument, or NULL if an error occurred.
1807static TemplateName
1808SubstDefaultTemplateArgument(Sema &SemaRef,
1809                             TemplateDecl *Template,
1810                             SourceLocation TemplateLoc,
1811                             SourceLocation RAngleLoc,
1812                             TemplateTemplateParmDecl *Param,
1813                             TemplateArgumentListBuilder &Converted) {
1814  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1815                                    /*TakeArgs=*/false);
1816
1817  MultiLevelTemplateArgumentList AllTemplateArgs
1818    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1819
1820  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1821                                   Template, Converted.getFlatArguments(),
1822                                   Converted.flatSize(),
1823                                   SourceRange(TemplateLoc, RAngleLoc));
1824
1825  return SemaRef.SubstTemplateName(
1826                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1827                              Param->getDefaultArgument().getTemplateNameLoc(),
1828                                   AllTemplateArgs);
1829}
1830
1831/// \brief If the given template parameter has a default template
1832/// argument, substitute into that default template argument and
1833/// return the corresponding template argument.
1834TemplateArgumentLoc
1835Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1836                                              SourceLocation TemplateLoc,
1837                                              SourceLocation RAngleLoc,
1838                                              Decl *Param,
1839                                     TemplateArgumentListBuilder &Converted) {
1840  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1841    if (!TypeParm->hasDefaultArgument())
1842      return TemplateArgumentLoc();
1843
1844    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1845                                                      TemplateLoc,
1846                                                      RAngleLoc,
1847                                                      TypeParm,
1848                                                      Converted);
1849    if (DI)
1850      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1851
1852    return TemplateArgumentLoc();
1853  }
1854
1855  if (NonTypeTemplateParmDecl *NonTypeParm
1856        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1857    if (!NonTypeParm->hasDefaultArgument())
1858      return TemplateArgumentLoc();
1859
1860    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1861                                                        TemplateLoc,
1862                                                        RAngleLoc,
1863                                                        NonTypeParm,
1864                                                        Converted);
1865    if (Arg.isInvalid())
1866      return TemplateArgumentLoc();
1867
1868    Expr *ArgE = Arg.takeAs<Expr>();
1869    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1870  }
1871
1872  TemplateTemplateParmDecl *TempTempParm
1873    = cast<TemplateTemplateParmDecl>(Param);
1874  if (!TempTempParm->hasDefaultArgument())
1875    return TemplateArgumentLoc();
1876
1877  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1878                                                    TemplateLoc,
1879                                                    RAngleLoc,
1880                                                    TempTempParm,
1881                                                    Converted);
1882  if (TName.isNull())
1883    return TemplateArgumentLoc();
1884
1885  return TemplateArgumentLoc(TemplateArgument(TName),
1886                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1887                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1888}
1889
1890/// \brief Check that the given template argument corresponds to the given
1891/// template parameter.
1892bool Sema::CheckTemplateArgument(NamedDecl *Param,
1893                                 const TemplateArgumentLoc &Arg,
1894                                 TemplateDecl *Template,
1895                                 SourceLocation TemplateLoc,
1896                                 SourceLocation RAngleLoc,
1897                                 TemplateArgumentListBuilder &Converted,
1898                                 CheckTemplateArgumentKind CTAK) {
1899  // Check template type parameters.
1900  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1901    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1902
1903  // Check non-type template parameters.
1904  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1905    // Do substitution on the type of the non-type template parameter
1906    // with the template arguments we've seen thus far.
1907    QualType NTTPType = NTTP->getType();
1908    if (NTTPType->isDependentType()) {
1909      // Do substitution on the type of the non-type template parameter.
1910      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1911                                 NTTP, Converted.getFlatArguments(),
1912                                 Converted.flatSize(),
1913                                 SourceRange(TemplateLoc, RAngleLoc));
1914
1915      TemplateArgumentList TemplateArgs(Context, Converted,
1916                                        /*TakeArgs=*/false);
1917      NTTPType = SubstType(NTTPType,
1918                           MultiLevelTemplateArgumentList(TemplateArgs),
1919                           NTTP->getLocation(),
1920                           NTTP->getDeclName());
1921      // If that worked, check the non-type template parameter type
1922      // for validity.
1923      if (!NTTPType.isNull())
1924        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1925                                                     NTTP->getLocation());
1926      if (NTTPType.isNull())
1927        return true;
1928    }
1929
1930    switch (Arg.getArgument().getKind()) {
1931    case TemplateArgument::Null:
1932      assert(false && "Should never see a NULL template argument here");
1933      return true;
1934
1935    case TemplateArgument::Expression: {
1936      Expr *E = Arg.getArgument().getAsExpr();
1937      TemplateArgument Result;
1938      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
1939        return true;
1940
1941      Converted.Append(Result);
1942      break;
1943    }
1944
1945    case TemplateArgument::Declaration:
1946    case TemplateArgument::Integral:
1947      // We've already checked this template argument, so just copy
1948      // it to the list of converted arguments.
1949      Converted.Append(Arg.getArgument());
1950      break;
1951
1952    case TemplateArgument::Template:
1953      // We were given a template template argument. It may not be ill-formed;
1954      // see below.
1955      if (DependentTemplateName *DTN
1956            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1957        // We have a template argument such as \c T::template X, which we
1958        // parsed as a template template argument. However, since we now
1959        // know that we need a non-type template argument, convert this
1960        // template name into an expression.
1961        Expr *E = DependentScopeDeclRefExpr::Create(Context,
1962                                                    DTN->getQualifier(),
1963                                               Arg.getTemplateQualifierRange(),
1964                                                    DTN->getIdentifier(),
1965                                                    Arg.getTemplateNameLoc());
1966
1967        TemplateArgument Result;
1968        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1969          return true;
1970
1971        Converted.Append(Result);
1972        break;
1973      }
1974
1975      // We have a template argument that actually does refer to a class
1976      // template, template alias, or template template parameter, and
1977      // therefore cannot be a non-type template argument.
1978      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1979        << Arg.getSourceRange();
1980
1981      Diag(Param->getLocation(), diag::note_template_param_here);
1982      return true;
1983
1984    case TemplateArgument::Type: {
1985      // We have a non-type template parameter but the template
1986      // argument is a type.
1987
1988      // C++ [temp.arg]p2:
1989      //   In a template-argument, an ambiguity between a type-id and
1990      //   an expression is resolved to a type-id, regardless of the
1991      //   form of the corresponding template-parameter.
1992      //
1993      // We warn specifically about this case, since it can be rather
1994      // confusing for users.
1995      QualType T = Arg.getArgument().getAsType();
1996      SourceRange SR = Arg.getSourceRange();
1997      if (T->isFunctionType())
1998        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1999      else
2000        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2001      Diag(Param->getLocation(), diag::note_template_param_here);
2002      return true;
2003    }
2004
2005    case TemplateArgument::Pack:
2006      llvm_unreachable("Caller must expand template argument packs");
2007      break;
2008    }
2009
2010    return false;
2011  }
2012
2013
2014  // Check template template parameters.
2015  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2016
2017  // Substitute into the template parameter list of the template
2018  // template parameter, since previously-supplied template arguments
2019  // may appear within the template template parameter.
2020  {
2021    // Set up a template instantiation context.
2022    LocalInstantiationScope Scope(*this);
2023    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2024                               TempParm, Converted.getFlatArguments(),
2025                               Converted.flatSize(),
2026                               SourceRange(TemplateLoc, RAngleLoc));
2027
2028    TemplateArgumentList TemplateArgs(Context, Converted,
2029                                      /*TakeArgs=*/false);
2030    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2031                      SubstDecl(TempParm, CurContext,
2032                                MultiLevelTemplateArgumentList(TemplateArgs)));
2033    if (!TempParm)
2034      return true;
2035
2036    // FIXME: TempParam is leaked.
2037  }
2038
2039  switch (Arg.getArgument().getKind()) {
2040  case TemplateArgument::Null:
2041    assert(false && "Should never see a NULL template argument here");
2042    return true;
2043
2044  case TemplateArgument::Template:
2045    if (CheckTemplateArgument(TempParm, Arg))
2046      return true;
2047
2048    Converted.Append(Arg.getArgument());
2049    break;
2050
2051  case TemplateArgument::Expression:
2052  case TemplateArgument::Type:
2053    // We have a template template parameter but the template
2054    // argument does not refer to a template.
2055    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2056    return true;
2057
2058  case TemplateArgument::Declaration:
2059    llvm_unreachable(
2060                       "Declaration argument with template template parameter");
2061    break;
2062  case TemplateArgument::Integral:
2063    llvm_unreachable(
2064                          "Integral argument with template template parameter");
2065    break;
2066
2067  case TemplateArgument::Pack:
2068    llvm_unreachable("Caller must expand template argument packs");
2069    break;
2070  }
2071
2072  return false;
2073}
2074
2075/// \brief Check that the given template argument list is well-formed
2076/// for specializing the given template.
2077bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2078                                     SourceLocation TemplateLoc,
2079                                const TemplateArgumentListInfo &TemplateArgs,
2080                                     bool PartialTemplateArgs,
2081                                     TemplateArgumentListBuilder &Converted) {
2082  TemplateParameterList *Params = Template->getTemplateParameters();
2083  unsigned NumParams = Params->size();
2084  unsigned NumArgs = TemplateArgs.size();
2085  bool Invalid = false;
2086
2087  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2088
2089  bool HasParameterPack =
2090    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2091
2092  if ((NumArgs > NumParams && !HasParameterPack) ||
2093      (NumArgs < Params->getMinRequiredArguments() &&
2094       !PartialTemplateArgs)) {
2095    // FIXME: point at either the first arg beyond what we can handle,
2096    // or the '>', depending on whether we have too many or too few
2097    // arguments.
2098    SourceRange Range;
2099    if (NumArgs > NumParams)
2100      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2101    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2102      << (NumArgs > NumParams)
2103      << (isa<ClassTemplateDecl>(Template)? 0 :
2104          isa<FunctionTemplateDecl>(Template)? 1 :
2105          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2106      << Template << Range;
2107    Diag(Template->getLocation(), diag::note_template_decl_here)
2108      << Params->getSourceRange();
2109    Invalid = true;
2110  }
2111
2112  // C++ [temp.arg]p1:
2113  //   [...] The type and form of each template-argument specified in
2114  //   a template-id shall match the type and form specified for the
2115  //   corresponding parameter declared by the template in its
2116  //   template-parameter-list.
2117  unsigned ArgIdx = 0;
2118  for (TemplateParameterList::iterator Param = Params->begin(),
2119                                       ParamEnd = Params->end();
2120       Param != ParamEnd; ++Param, ++ArgIdx) {
2121    if (ArgIdx > NumArgs && PartialTemplateArgs)
2122      break;
2123
2124    // If we have a template parameter pack, check every remaining template
2125    // argument against that template parameter pack.
2126    if ((*Param)->isTemplateParameterPack()) {
2127      Converted.BeginPack();
2128      for (; ArgIdx < NumArgs; ++ArgIdx) {
2129        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2130                                  TemplateLoc, RAngleLoc, Converted)) {
2131          Invalid = true;
2132          break;
2133        }
2134      }
2135      Converted.EndPack();
2136      continue;
2137    }
2138
2139    if (ArgIdx < NumArgs) {
2140      // Check the template argument we were given.
2141      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2142                                TemplateLoc, RAngleLoc, Converted))
2143        return true;
2144
2145      continue;
2146    }
2147
2148    // We have a default template argument that we will use.
2149    TemplateArgumentLoc Arg;
2150
2151    // Retrieve the default template argument from the template
2152    // parameter. For each kind of template parameter, we substitute the
2153    // template arguments provided thus far and any "outer" template arguments
2154    // (when the template parameter was part of a nested template) into
2155    // the default argument.
2156    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2157      if (!TTP->hasDefaultArgument()) {
2158        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2159        break;
2160      }
2161
2162      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2163                                                             Template,
2164                                                             TemplateLoc,
2165                                                             RAngleLoc,
2166                                                             TTP,
2167                                                             Converted);
2168      if (!ArgType)
2169        return true;
2170
2171      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2172                                ArgType);
2173    } else if (NonTypeTemplateParmDecl *NTTP
2174                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2175      if (!NTTP->hasDefaultArgument()) {
2176        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2177        break;
2178      }
2179
2180      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2181                                                              TemplateLoc,
2182                                                              RAngleLoc,
2183                                                              NTTP,
2184                                                              Converted);
2185      if (E.isInvalid())
2186        return true;
2187
2188      Expr *Ex = E.takeAs<Expr>();
2189      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2190    } else {
2191      TemplateTemplateParmDecl *TempParm
2192        = cast<TemplateTemplateParmDecl>(*Param);
2193
2194      if (!TempParm->hasDefaultArgument()) {
2195        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2196        break;
2197      }
2198
2199      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2200                                                       TemplateLoc,
2201                                                       RAngleLoc,
2202                                                       TempParm,
2203                                                       Converted);
2204      if (Name.isNull())
2205        return true;
2206
2207      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2208                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2209                  TempParm->getDefaultArgument().getTemplateNameLoc());
2210    }
2211
2212    // Introduce an instantiation record that describes where we are using
2213    // the default template argument.
2214    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2215                                        Converted.getFlatArguments(),
2216                                        Converted.flatSize(),
2217                                        SourceRange(TemplateLoc, RAngleLoc));
2218
2219    // Check the default template argument.
2220    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2221                              RAngleLoc, Converted))
2222      return true;
2223  }
2224
2225  return Invalid;
2226}
2227
2228/// \brief Check a template argument against its corresponding
2229/// template type parameter.
2230///
2231/// This routine implements the semantics of C++ [temp.arg.type]. It
2232/// returns true if an error occurred, and false otherwise.
2233bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2234                                 TypeSourceInfo *ArgInfo) {
2235  assert(ArgInfo && "invalid TypeSourceInfo");
2236  QualType Arg = ArgInfo->getType();
2237
2238  // C++ [temp.arg.type]p2:
2239  //   A local type, a type with no linkage, an unnamed type or a type
2240  //   compounded from any of these types shall not be used as a
2241  //   template-argument for a template type-parameter.
2242  //
2243  // FIXME: Perform the recursive and no-linkage type checks.
2244  const TagType *Tag = 0;
2245  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2246    Tag = EnumT;
2247  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2248    Tag = RecordT;
2249  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2250    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2251    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2252      << QualType(Tag, 0) << SR;
2253  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2254           !Tag->getDecl()->getTypedefForAnonDecl()) {
2255    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2256    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2257    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2258    return true;
2259  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2260    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2261    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2262  }
2263
2264  return false;
2265}
2266
2267/// \brief Checks whether the given template argument is the address
2268/// of an object or function according to C++ [temp.arg.nontype]p1.
2269static bool
2270CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2271                                               NonTypeTemplateParmDecl *Param,
2272                                               QualType ParamType,
2273                                               Expr *ArgIn,
2274                                               TemplateArgument &Converted) {
2275  bool Invalid = false;
2276  Expr *Arg = ArgIn;
2277  QualType ArgType = Arg->getType();
2278
2279  // See through any implicit casts we added to fix the type.
2280  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2281    Arg = Cast->getSubExpr();
2282
2283  // C++ [temp.arg.nontype]p1:
2284  //
2285  //   A template-argument for a non-type, non-template
2286  //   template-parameter shall be one of: [...]
2287  //
2288  //     -- the address of an object or function with external
2289  //        linkage, including function templates and function
2290  //        template-ids but excluding non-static class members,
2291  //        expressed as & id-expression where the & is optional if
2292  //        the name refers to a function or array, or if the
2293  //        corresponding template-parameter is a reference; or
2294  DeclRefExpr *DRE = 0;
2295
2296  // Ignore (and complain about) any excess parentheses.
2297  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2298    if (!Invalid) {
2299      S.Diag(Arg->getSourceRange().getBegin(),
2300             diag::err_template_arg_extra_parens)
2301        << Arg->getSourceRange();
2302      Invalid = true;
2303    }
2304
2305    Arg = Parens->getSubExpr();
2306  }
2307
2308  bool AddressTaken = false;
2309  SourceLocation AddrOpLoc;
2310  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2311    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2312      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2313      AddressTaken = true;
2314      AddrOpLoc = UnOp->getOperatorLoc();
2315    }
2316  } else
2317    DRE = dyn_cast<DeclRefExpr>(Arg);
2318
2319  if (!DRE) {
2320    if (S.Context.hasSameUnqualifiedType(ArgType, S.Context.OverloadTy)) {
2321      S.Diag(Arg->getLocStart(),
2322             diag::err_template_arg_unresolved_overloaded_function)
2323        << ParamType << Arg->getSourceRange();
2324    } else {
2325      S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2326        << Arg->getSourceRange();
2327    }
2328    S.Diag(Param->getLocation(), diag::note_template_param_here);
2329    return true;
2330  }
2331
2332  // Stop checking the precise nature of the argument if it is value dependent,
2333  // it should be checked when instantiated.
2334  if (Arg->isValueDependent()) {
2335    Converted = TemplateArgument(ArgIn->Retain());
2336    return false;
2337  }
2338
2339  if (!isa<ValueDecl>(DRE->getDecl())) {
2340    S.Diag(Arg->getSourceRange().getBegin(),
2341           diag::err_template_arg_not_object_or_func_form)
2342      << Arg->getSourceRange();
2343    S.Diag(Param->getLocation(), diag::note_template_param_here);
2344    return true;
2345  }
2346
2347  NamedDecl *Entity = 0;
2348
2349  // Cannot refer to non-static data members
2350  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2351    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2352      << Field << Arg->getSourceRange();
2353    S.Diag(Param->getLocation(), diag::note_template_param_here);
2354    return true;
2355  }
2356
2357  // Cannot refer to non-static member functions
2358  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2359    if (!Method->isStatic()) {
2360      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2361        << Method << Arg->getSourceRange();
2362      S.Diag(Param->getLocation(), diag::note_template_param_here);
2363      return true;
2364    }
2365
2366  // Functions must have external linkage.
2367  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2368    if (!isExternalLinkage(Func->getLinkage())) {
2369      S.Diag(Arg->getSourceRange().getBegin(),
2370             diag::err_template_arg_function_not_extern)
2371        << Func << Arg->getSourceRange();
2372      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2373        << true;
2374      return true;
2375    }
2376
2377    // Okay: we've named a function with external linkage.
2378    Entity = Func;
2379
2380    // If the template parameter has pointer type, the function decays.
2381    if (ParamType->isPointerType() && !AddressTaken)
2382      ArgType = S.Context.getPointerType(Func->getType());
2383    else if (AddressTaken && ParamType->isReferenceType()) {
2384      // If we originally had an address-of operator, but the
2385      // parameter has reference type, complain and (if things look
2386      // like they will work) drop the address-of operator.
2387      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2388                                            ParamType.getNonReferenceType())) {
2389        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2390          << ParamType;
2391        S.Diag(Param->getLocation(), diag::note_template_param_here);
2392        return true;
2393      }
2394
2395      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2396        << ParamType
2397        << FixItHint::CreateRemoval(AddrOpLoc);
2398      S.Diag(Param->getLocation(), diag::note_template_param_here);
2399
2400      ArgType = Func->getType();
2401    }
2402  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2403    if (!isExternalLinkage(Var->getLinkage())) {
2404      S.Diag(Arg->getSourceRange().getBegin(),
2405             diag::err_template_arg_object_not_extern)
2406        << Var << Arg->getSourceRange();
2407      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2408        << true;
2409      return true;
2410    }
2411
2412    // A value of reference type is not an object.
2413    if (Var->getType()->isReferenceType()) {
2414      S.Diag(Arg->getSourceRange().getBegin(),
2415             diag::err_template_arg_reference_var)
2416        << Var->getType() << Arg->getSourceRange();
2417      S.Diag(Param->getLocation(), diag::note_template_param_here);
2418      return true;
2419    }
2420
2421    // Okay: we've named an object with external linkage
2422    Entity = Var;
2423
2424    // If the template parameter has pointer type, we must have taken
2425    // the address of this object.
2426    if (ParamType->isReferenceType()) {
2427      if (AddressTaken) {
2428        // If we originally had an address-of operator, but the
2429        // parameter has reference type, complain and (if things look
2430        // like they will work) drop the address-of operator.
2431        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2432                                            ParamType.getNonReferenceType())) {
2433          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2434            << ParamType;
2435          S.Diag(Param->getLocation(), diag::note_template_param_here);
2436          return true;
2437        }
2438
2439        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2440          << ParamType
2441          << FixItHint::CreateRemoval(AddrOpLoc);
2442        S.Diag(Param->getLocation(), diag::note_template_param_here);
2443
2444        ArgType = Var->getType();
2445      }
2446    } else if (!AddressTaken && ParamType->isPointerType()) {
2447      if (Var->getType()->isArrayType()) {
2448        // Array-to-pointer decay.
2449        ArgType = S.Context.getArrayDecayedType(Var->getType());
2450      } else {
2451        // If the template parameter has pointer type but the address of
2452        // this object was not taken, complain and (possibly) recover by
2453        // taking the address of the entity.
2454        ArgType = S.Context.getPointerType(Var->getType());
2455        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2456          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2457            << ParamType;
2458          S.Diag(Param->getLocation(), diag::note_template_param_here);
2459          return true;
2460        }
2461
2462        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2463          << ParamType
2464          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2465
2466        S.Diag(Param->getLocation(), diag::note_template_param_here);
2467      }
2468    }
2469  } else {
2470    // We found something else, but we don't know specifically what it is.
2471    S.Diag(Arg->getSourceRange().getBegin(),
2472           diag::err_template_arg_not_object_or_func)
2473      << Arg->getSourceRange();
2474    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2475    return true;
2476  }
2477
2478  if (ParamType->isPointerType() &&
2479      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2480      S.IsQualificationConversion(ArgType, ParamType)) {
2481    // For pointer-to-object types, qualification conversions are
2482    // permitted.
2483  } else {
2484    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2485      if (!ParamRef->getPointeeType()->isFunctionType()) {
2486        // C++ [temp.arg.nontype]p5b3:
2487        //   For a non-type template-parameter of type reference to
2488        //   object, no conversions apply. The type referred to by the
2489        //   reference may be more cv-qualified than the (otherwise
2490        //   identical) type of the template- argument. The
2491        //   template-parameter is bound directly to the
2492        //   template-argument, which shall be an lvalue.
2493
2494        // FIXME: Other qualifiers?
2495        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2496        unsigned ArgQuals = ArgType.getCVRQualifiers();
2497
2498        if ((ParamQuals | ArgQuals) != ParamQuals) {
2499          S.Diag(Arg->getSourceRange().getBegin(),
2500                 diag::err_template_arg_ref_bind_ignores_quals)
2501            << ParamType << Arg->getType()
2502            << Arg->getSourceRange();
2503          S.Diag(Param->getLocation(), diag::note_template_param_here);
2504          return true;
2505        }
2506      }
2507    }
2508
2509    // At this point, the template argument refers to an object or
2510    // function with external linkage. We now need to check whether the
2511    // argument and parameter types are compatible.
2512    if (!S.Context.hasSameUnqualifiedType(ArgType,
2513                                          ParamType.getNonReferenceType())) {
2514      // We can't perform this conversion or binding.
2515      if (ParamType->isReferenceType())
2516        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2517          << ParamType << Arg->getType() << Arg->getSourceRange();
2518      else
2519        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2520          << Arg->getType() << ParamType << Arg->getSourceRange();
2521      S.Diag(Param->getLocation(), diag::note_template_param_here);
2522      return true;
2523    }
2524  }
2525
2526  // Create the template argument.
2527  Converted = TemplateArgument(Entity->getCanonicalDecl());
2528  return false;
2529}
2530
2531/// \brief Checks whether the given template argument is a pointer to
2532/// member constant according to C++ [temp.arg.nontype]p1.
2533bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2534                                                TemplateArgument &Converted) {
2535  bool Invalid = false;
2536
2537  // See through any implicit casts we added to fix the type.
2538  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2539    Arg = Cast->getSubExpr();
2540
2541  // C++ [temp.arg.nontype]p1:
2542  //
2543  //   A template-argument for a non-type, non-template
2544  //   template-parameter shall be one of: [...]
2545  //
2546  //     -- a pointer to member expressed as described in 5.3.1.
2547  DeclRefExpr *DRE = 0;
2548
2549  // Ignore (and complain about) any excess parentheses.
2550  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2551    if (!Invalid) {
2552      Diag(Arg->getSourceRange().getBegin(),
2553           diag::err_template_arg_extra_parens)
2554        << Arg->getSourceRange();
2555      Invalid = true;
2556    }
2557
2558    Arg = Parens->getSubExpr();
2559  }
2560
2561  // A pointer-to-member constant written &Class::member.
2562  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2563    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2564      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2565      if (DRE && !DRE->getQualifier())
2566        DRE = 0;
2567    }
2568  }
2569  // A constant of pointer-to-member type.
2570  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2571    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2572      if (VD->getType()->isMemberPointerType()) {
2573        if (isa<NonTypeTemplateParmDecl>(VD) ||
2574            (isa<VarDecl>(VD) &&
2575             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2576          if (Arg->isTypeDependent() || Arg->isValueDependent())
2577            Converted = TemplateArgument(Arg->Retain());
2578          else
2579            Converted = TemplateArgument(VD->getCanonicalDecl());
2580          return Invalid;
2581        }
2582      }
2583    }
2584
2585    DRE = 0;
2586  }
2587
2588  if (!DRE)
2589    return Diag(Arg->getSourceRange().getBegin(),
2590                diag::err_template_arg_not_pointer_to_member_form)
2591      << Arg->getSourceRange();
2592
2593  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2594    assert((isa<FieldDecl>(DRE->getDecl()) ||
2595            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2596           "Only non-static member pointers can make it here");
2597
2598    // Okay: this is the address of a non-static member, and therefore
2599    // a member pointer constant.
2600    if (Arg->isTypeDependent() || Arg->isValueDependent())
2601      Converted = TemplateArgument(Arg->Retain());
2602    else
2603      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2604    return Invalid;
2605  }
2606
2607  // We found something else, but we don't know specifically what it is.
2608  Diag(Arg->getSourceRange().getBegin(),
2609       diag::err_template_arg_not_pointer_to_member_form)
2610      << Arg->getSourceRange();
2611  Diag(DRE->getDecl()->getLocation(),
2612       diag::note_template_arg_refers_here);
2613  return true;
2614}
2615
2616/// \brief Check a template argument against its corresponding
2617/// non-type template parameter.
2618///
2619/// This routine implements the semantics of C++ [temp.arg.nontype].
2620/// It returns true if an error occurred, and false otherwise. \p
2621/// InstantiatedParamType is the type of the non-type template
2622/// parameter after it has been instantiated.
2623///
2624/// If no error was detected, Converted receives the converted template argument.
2625bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2626                                 QualType InstantiatedParamType, Expr *&Arg,
2627                                 TemplateArgument &Converted,
2628                                 CheckTemplateArgumentKind CTAK) {
2629  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2630
2631  // If either the parameter has a dependent type or the argument is
2632  // type-dependent, there's nothing we can check now.
2633  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2634    // FIXME: Produce a cloned, canonical expression?
2635    Converted = TemplateArgument(Arg);
2636    return false;
2637  }
2638
2639  // C++ [temp.arg.nontype]p5:
2640  //   The following conversions are performed on each expression used
2641  //   as a non-type template-argument. If a non-type
2642  //   template-argument cannot be converted to the type of the
2643  //   corresponding template-parameter then the program is
2644  //   ill-formed.
2645  //
2646  //     -- for a non-type template-parameter of integral or
2647  //        enumeration type, integral promotions (4.5) and integral
2648  //        conversions (4.7) are applied.
2649  QualType ParamType = InstantiatedParamType;
2650  QualType ArgType = Arg->getType();
2651  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2652    // C++ [temp.arg.nontype]p1:
2653    //   A template-argument for a non-type, non-template
2654    //   template-parameter shall be one of:
2655    //
2656    //     -- an integral constant-expression of integral or enumeration
2657    //        type; or
2658    //     -- the name of a non-type template-parameter; or
2659    SourceLocation NonConstantLoc;
2660    llvm::APSInt Value;
2661    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2662      Diag(Arg->getSourceRange().getBegin(),
2663           diag::err_template_arg_not_integral_or_enumeral)
2664        << ArgType << Arg->getSourceRange();
2665      Diag(Param->getLocation(), diag::note_template_param_here);
2666      return true;
2667    } else if (!Arg->isValueDependent() &&
2668               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2669      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2670        << ArgType << Arg->getSourceRange();
2671      return true;
2672    }
2673
2674    // From here on out, all we care about are the unqualified forms
2675    // of the parameter and argument types.
2676    ParamType = ParamType.getUnqualifiedType();
2677    ArgType = ArgType.getUnqualifiedType();
2678
2679    // Try to convert the argument to the parameter's type.
2680    if (Context.hasSameType(ParamType, ArgType)) {
2681      // Okay: no conversion necessary
2682    } else if (CTAK == CTAK_Deduced) {
2683      // C++ [temp.deduct.type]p17:
2684      //   If, in the declaration of a function template with a non-type
2685      //   template-parameter, the non-type template- parameter is used
2686      //   in an expression in the function parameter-list and, if the
2687      //   corresponding template-argument is deduced, the
2688      //   template-argument type shall match the type of the
2689      //   template-parameter exactly, except that a template-argument
2690      //   deduced from an array bound may be of any integral type.
2691      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2692        << ArgType << ParamType;
2693      Diag(Param->getLocation(), diag::note_template_param_here);
2694      return true;
2695    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2696               !ParamType->isEnumeralType()) {
2697      // This is an integral promotion or conversion.
2698      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2699    } else {
2700      // We can't perform this conversion.
2701      Diag(Arg->getSourceRange().getBegin(),
2702           diag::err_template_arg_not_convertible)
2703        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2704      Diag(Param->getLocation(), diag::note_template_param_here);
2705      return true;
2706    }
2707
2708    QualType IntegerType = Context.getCanonicalType(ParamType);
2709    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2710      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2711
2712    if (!Arg->isValueDependent()) {
2713      llvm::APSInt OldValue = Value;
2714
2715      // Coerce the template argument's value to the value it will have
2716      // based on the template parameter's type.
2717      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2718      if (Value.getBitWidth() != AllowedBits)
2719        Value.extOrTrunc(AllowedBits);
2720      Value.setIsSigned(IntegerType->isSignedIntegerType());
2721
2722      // Complain if an unsigned parameter received a negative value.
2723      if (IntegerType->isUnsignedIntegerType()
2724          && (OldValue.isSigned() && OldValue.isNegative())) {
2725        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2726          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2727          << Arg->getSourceRange();
2728        Diag(Param->getLocation(), diag::note_template_param_here);
2729      }
2730
2731      // Complain if we overflowed the template parameter's type.
2732      unsigned RequiredBits;
2733      if (IntegerType->isUnsignedIntegerType())
2734        RequiredBits = OldValue.getActiveBits();
2735      else if (OldValue.isUnsigned())
2736        RequiredBits = OldValue.getActiveBits() + 1;
2737      else
2738        RequiredBits = OldValue.getMinSignedBits();
2739      if (RequiredBits > AllowedBits) {
2740        Diag(Arg->getSourceRange().getBegin(),
2741             diag::warn_template_arg_too_large)
2742          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2743          << Arg->getSourceRange();
2744        Diag(Param->getLocation(), diag::note_template_param_here);
2745      }
2746    }
2747
2748    // Add the value of this argument to the list of converted
2749    // arguments. We use the bitwidth and signedness of the template
2750    // parameter.
2751    if (Arg->isValueDependent()) {
2752      // The argument is value-dependent. Create a new
2753      // TemplateArgument with the converted expression.
2754      Converted = TemplateArgument(Arg);
2755      return false;
2756    }
2757
2758    Converted = TemplateArgument(Value,
2759                                 ParamType->isEnumeralType() ? ParamType
2760                                                             : IntegerType);
2761    return false;
2762  }
2763
2764  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2765
2766  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2767  // from a template argument of type std::nullptr_t to a non-type
2768  // template parameter of type pointer to object, pointer to
2769  // function, or pointer-to-member, respectively.
2770  if (ArgType->isNullPtrType() &&
2771      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2772    Converted = TemplateArgument((NamedDecl *)0);
2773    return false;
2774  }
2775
2776  // Handle pointer-to-function, reference-to-function, and
2777  // pointer-to-member-function all in (roughly) the same way.
2778  if (// -- For a non-type template-parameter of type pointer to
2779      //    function, only the function-to-pointer conversion (4.3) is
2780      //    applied. If the template-argument represents a set of
2781      //    overloaded functions (or a pointer to such), the matching
2782      //    function is selected from the set (13.4).
2783      (ParamType->isPointerType() &&
2784       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2785      // -- For a non-type template-parameter of type reference to
2786      //    function, no conversions apply. If the template-argument
2787      //    represents a set of overloaded functions, the matching
2788      //    function is selected from the set (13.4).
2789      (ParamType->isReferenceType() &&
2790       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2791      // -- For a non-type template-parameter of type pointer to
2792      //    member function, no conversions apply. If the
2793      //    template-argument represents a set of overloaded member
2794      //    functions, the matching member function is selected from
2795      //    the set (13.4).
2796      (ParamType->isMemberPointerType() &&
2797       ParamType->getAs<MemberPointerType>()->getPointeeType()
2798         ->isFunctionType())) {
2799
2800    if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2801                                                              true,
2802                                                              FoundResult)) {
2803      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2804        return true;
2805
2806      Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2807      ArgType = Arg->getType();
2808    }
2809
2810    if (!ParamType->isMemberPointerType())
2811      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2812                                                            ParamType,
2813                                                            Arg, Converted);
2814
2815    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2816      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2817                        Arg->isLvalue(Context) == Expr::LV_Valid);
2818    } else if (!Context.hasSameUnqualifiedType(ArgType,
2819                                           ParamType.getNonReferenceType())) {
2820      // We can't perform this conversion.
2821      Diag(Arg->getSourceRange().getBegin(),
2822           diag::err_template_arg_not_convertible)
2823        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2824      Diag(Param->getLocation(), diag::note_template_param_here);
2825      return true;
2826    }
2827
2828    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2829  }
2830
2831  if (ParamType->isPointerType()) {
2832    //   -- for a non-type template-parameter of type pointer to
2833    //      object, qualification conversions (4.4) and the
2834    //      array-to-pointer conversion (4.2) are applied.
2835    // C++0x also allows a value of std::nullptr_t.
2836    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2837           "Only object pointers allowed here");
2838
2839    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2840                                                          ParamType,
2841                                                          Arg, Converted);
2842  }
2843
2844  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2845    //   -- For a non-type template-parameter of type reference to
2846    //      object, no conversions apply. The type referred to by the
2847    //      reference may be more cv-qualified than the (otherwise
2848    //      identical) type of the template-argument. The
2849    //      template-parameter is bound directly to the
2850    //      template-argument, which must be an lvalue.
2851    assert(ParamRefType->getPointeeType()->isObjectType() &&
2852           "Only object references allowed here");
2853
2854    if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2855                                               ParamRefType->getPointeeType(),
2856                                                              true,
2857                                                              FoundResult)) {
2858      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2859        return true;
2860
2861      Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2862      ArgType = Arg->getType();
2863    }
2864
2865    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2866                                                          ParamType,
2867                                                          Arg, Converted);
2868  }
2869
2870  //     -- For a non-type template-parameter of type pointer to data
2871  //        member, qualification conversions (4.4) are applied.
2872  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2873
2874  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2875    // Types match exactly: nothing more to do here.
2876  } else if (IsQualificationConversion(ArgType, ParamType)) {
2877    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2878                      Arg->isLvalue(Context) == Expr::LV_Valid);
2879  } else {
2880    // We can't perform this conversion.
2881    Diag(Arg->getSourceRange().getBegin(),
2882         diag::err_template_arg_not_convertible)
2883      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2884    Diag(Param->getLocation(), diag::note_template_param_here);
2885    return true;
2886  }
2887
2888  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2889}
2890
2891/// \brief Check a template argument against its corresponding
2892/// template template parameter.
2893///
2894/// This routine implements the semantics of C++ [temp.arg.template].
2895/// It returns true if an error occurred, and false otherwise.
2896bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2897                                 const TemplateArgumentLoc &Arg) {
2898  TemplateName Name = Arg.getArgument().getAsTemplate();
2899  TemplateDecl *Template = Name.getAsTemplateDecl();
2900  if (!Template) {
2901    // Any dependent template name is fine.
2902    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2903    return false;
2904  }
2905
2906  // C++ [temp.arg.template]p1:
2907  //   A template-argument for a template template-parameter shall be
2908  //   the name of a class template, expressed as id-expression. Only
2909  //   primary class templates are considered when matching the
2910  //   template template argument with the corresponding parameter;
2911  //   partial specializations are not considered even if their
2912  //   parameter lists match that of the template template parameter.
2913  //
2914  // Note that we also allow template template parameters here, which
2915  // will happen when we are dealing with, e.g., class template
2916  // partial specializations.
2917  if (!isa<ClassTemplateDecl>(Template) &&
2918      !isa<TemplateTemplateParmDecl>(Template)) {
2919    assert(isa<FunctionTemplateDecl>(Template) &&
2920           "Only function templates are possible here");
2921    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2922    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2923      << Template;
2924  }
2925
2926  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2927                                         Param->getTemplateParameters(),
2928                                         true,
2929                                         TPL_TemplateTemplateArgumentMatch,
2930                                         Arg.getLocation());
2931}
2932
2933/// \brief Given a non-type template argument that refers to a
2934/// declaration and the type of its corresponding non-type template
2935/// parameter, produce an expression that properly refers to that
2936/// declaration.
2937Sema::OwningExprResult
2938Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
2939                                              QualType ParamType,
2940                                              SourceLocation Loc) {
2941  assert(Arg.getKind() == TemplateArgument::Declaration &&
2942         "Only declaration template arguments permitted here");
2943  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
2944
2945  if (VD->getDeclContext()->isRecord() &&
2946      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
2947    // If the value is a class member, we might have a pointer-to-member.
2948    // Determine whether the non-type template template parameter is of
2949    // pointer-to-member type. If so, we need to build an appropriate
2950    // expression for a pointer-to-member, since a "normal" DeclRefExpr
2951    // would refer to the member itself.
2952    if (ParamType->isMemberPointerType()) {
2953      QualType ClassType
2954        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
2955      NestedNameSpecifier *Qualifier
2956        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
2957      CXXScopeSpec SS;
2958      SS.setScopeRep(Qualifier);
2959      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
2960                                           VD->getType().getNonReferenceType(),
2961                                                  Loc,
2962                                                  &SS);
2963      if (RefExpr.isInvalid())
2964        return ExprError();
2965
2966      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
2967      assert(!RefExpr.isInvalid() &&
2968             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
2969                                 ParamType));
2970      return move(RefExpr);
2971    }
2972  }
2973
2974  QualType T = VD->getType().getNonReferenceType();
2975  if (ParamType->isPointerType()) {
2976    // When the non-type template parameter is a pointer, take the
2977    // address of the declaration.
2978    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
2979    if (RefExpr.isInvalid())
2980      return ExprError();
2981
2982    if (T->isFunctionType() || T->isArrayType()) {
2983      // Decay functions and arrays.
2984      Expr *RefE = (Expr *)RefExpr.get();
2985      DefaultFunctionArrayConversion(RefE);
2986      if (RefE != RefExpr.get()) {
2987        RefExpr.release();
2988        RefExpr = Owned(RefE);
2989      }
2990
2991      return move(RefExpr);
2992    }
2993
2994    // Take the address of everything else
2995    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
2996  }
2997
2998  // If the non-type template parameter has reference type, qualify the
2999  // resulting declaration reference with the extra qualifiers on the
3000  // type that the reference refers to.
3001  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3002    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3003
3004  return BuildDeclRefExpr(VD, T, Loc);
3005}
3006
3007/// \brief Construct a new expression that refers to the given
3008/// integral template argument with the given source-location
3009/// information.
3010///
3011/// This routine takes care of the mapping from an integral template
3012/// argument (which may have any integral type) to the appropriate
3013/// literal value.
3014Sema::OwningExprResult
3015Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3016                                                  SourceLocation Loc) {
3017  assert(Arg.getKind() == TemplateArgument::Integral &&
3018         "Operation is only value for integral template arguments");
3019  QualType T = Arg.getIntegralType();
3020  if (T->isCharType() || T->isWideCharType())
3021    return Owned(new (Context) CharacterLiteral(
3022                                             Arg.getAsIntegral()->getZExtValue(),
3023                                             T->isWideCharType(),
3024                                             T,
3025                                             Loc));
3026  if (T->isBooleanType())
3027    return Owned(new (Context) CXXBoolLiteralExpr(
3028                                            Arg.getAsIntegral()->getBoolValue(),
3029                                            T,
3030                                            Loc));
3031
3032  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3033}
3034
3035
3036/// \brief Determine whether the given template parameter lists are
3037/// equivalent.
3038///
3039/// \param New  The new template parameter list, typically written in the
3040/// source code as part of a new template declaration.
3041///
3042/// \param Old  The old template parameter list, typically found via
3043/// name lookup of the template declared with this template parameter
3044/// list.
3045///
3046/// \param Complain  If true, this routine will produce a diagnostic if
3047/// the template parameter lists are not equivalent.
3048///
3049/// \param Kind describes how we are to match the template parameter lists.
3050///
3051/// \param TemplateArgLoc If this source location is valid, then we
3052/// are actually checking the template parameter list of a template
3053/// argument (New) against the template parameter list of its
3054/// corresponding template template parameter (Old). We produce
3055/// slightly different diagnostics in this scenario.
3056///
3057/// \returns True if the template parameter lists are equal, false
3058/// otherwise.
3059bool
3060Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3061                                     TemplateParameterList *Old,
3062                                     bool Complain,
3063                                     TemplateParameterListEqualKind Kind,
3064                                     SourceLocation TemplateArgLoc) {
3065  if (Old->size() != New->size()) {
3066    if (Complain) {
3067      unsigned NextDiag = diag::err_template_param_list_different_arity;
3068      if (TemplateArgLoc.isValid()) {
3069        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3070        NextDiag = diag::note_template_param_list_different_arity;
3071      }
3072      Diag(New->getTemplateLoc(), NextDiag)
3073          << (New->size() > Old->size())
3074          << (Kind != TPL_TemplateMatch)
3075          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3076      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3077        << (Kind != TPL_TemplateMatch)
3078        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3079    }
3080
3081    return false;
3082  }
3083
3084  for (TemplateParameterList::iterator OldParm = Old->begin(),
3085         OldParmEnd = Old->end(), NewParm = New->begin();
3086       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3087    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3088      if (Complain) {
3089        unsigned NextDiag = diag::err_template_param_different_kind;
3090        if (TemplateArgLoc.isValid()) {
3091          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3092          NextDiag = diag::note_template_param_different_kind;
3093        }
3094        Diag((*NewParm)->getLocation(), NextDiag)
3095          << (Kind != TPL_TemplateMatch);
3096        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3097          << (Kind != TPL_TemplateMatch);
3098      }
3099      return false;
3100    }
3101
3102    if (isa<TemplateTypeParmDecl>(*OldParm)) {
3103      // Okay; all template type parameters are equivalent (since we
3104      // know we're at the same index).
3105    } else if (NonTypeTemplateParmDecl *OldNTTP
3106                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3107      // The types of non-type template parameters must agree.
3108      NonTypeTemplateParmDecl *NewNTTP
3109        = cast<NonTypeTemplateParmDecl>(*NewParm);
3110
3111      // If we are matching a template template argument to a template
3112      // template parameter and one of the non-type template parameter types
3113      // is dependent, then we must wait until template instantiation time
3114      // to actually compare the arguments.
3115      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3116          (OldNTTP->getType()->isDependentType() ||
3117           NewNTTP->getType()->isDependentType()))
3118        continue;
3119
3120      if (Context.getCanonicalType(OldNTTP->getType()) !=
3121            Context.getCanonicalType(NewNTTP->getType())) {
3122        if (Complain) {
3123          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3124          if (TemplateArgLoc.isValid()) {
3125            Diag(TemplateArgLoc,
3126                 diag::err_template_arg_template_params_mismatch);
3127            NextDiag = diag::note_template_nontype_parm_different_type;
3128          }
3129          Diag(NewNTTP->getLocation(), NextDiag)
3130            << NewNTTP->getType()
3131            << (Kind != TPL_TemplateMatch);
3132          Diag(OldNTTP->getLocation(),
3133               diag::note_template_nontype_parm_prev_declaration)
3134            << OldNTTP->getType();
3135        }
3136        return false;
3137      }
3138    } else {
3139      // The template parameter lists of template template
3140      // parameters must agree.
3141      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3142             "Only template template parameters handled here");
3143      TemplateTemplateParmDecl *OldTTP
3144        = cast<TemplateTemplateParmDecl>(*OldParm);
3145      TemplateTemplateParmDecl *NewTTP
3146        = cast<TemplateTemplateParmDecl>(*NewParm);
3147      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3148                                          OldTTP->getTemplateParameters(),
3149                                          Complain,
3150              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3151                                          TemplateArgLoc))
3152        return false;
3153    }
3154  }
3155
3156  return true;
3157}
3158
3159/// \brief Check whether a template can be declared within this scope.
3160///
3161/// If the template declaration is valid in this scope, returns
3162/// false. Otherwise, issues a diagnostic and returns true.
3163bool
3164Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3165  // Find the nearest enclosing declaration scope.
3166  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3167         (S->getFlags() & Scope::TemplateParamScope) != 0)
3168    S = S->getParent();
3169
3170  // C++ [temp]p2:
3171  //   A template-declaration can appear only as a namespace scope or
3172  //   class scope declaration.
3173  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3174  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3175      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3176    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3177             << TemplateParams->getSourceRange();
3178
3179  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3180    Ctx = Ctx->getParent();
3181
3182  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3183    return false;
3184
3185  return Diag(TemplateParams->getTemplateLoc(),
3186              diag::err_template_outside_namespace_or_class_scope)
3187    << TemplateParams->getSourceRange();
3188}
3189
3190/// \brief Determine what kind of template specialization the given declaration
3191/// is.
3192static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3193  if (!D)
3194    return TSK_Undeclared;
3195
3196  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3197    return Record->getTemplateSpecializationKind();
3198  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3199    return Function->getTemplateSpecializationKind();
3200  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3201    return Var->getTemplateSpecializationKind();
3202
3203  return TSK_Undeclared;
3204}
3205
3206/// \brief Check whether a specialization is well-formed in the current
3207/// context.
3208///
3209/// This routine determines whether a template specialization can be declared
3210/// in the current context (C++ [temp.expl.spec]p2).
3211///
3212/// \param S the semantic analysis object for which this check is being
3213/// performed.
3214///
3215/// \param Specialized the entity being specialized or instantiated, which
3216/// may be a kind of template (class template, function template, etc.) or
3217/// a member of a class template (member function, static data member,
3218/// member class).
3219///
3220/// \param PrevDecl the previous declaration of this entity, if any.
3221///
3222/// \param Loc the location of the explicit specialization or instantiation of
3223/// this entity.
3224///
3225/// \param IsPartialSpecialization whether this is a partial specialization of
3226/// a class template.
3227///
3228/// \returns true if there was an error that we cannot recover from, false
3229/// otherwise.
3230static bool CheckTemplateSpecializationScope(Sema &S,
3231                                             NamedDecl *Specialized,
3232                                             NamedDecl *PrevDecl,
3233                                             SourceLocation Loc,
3234                                             bool IsPartialSpecialization) {
3235  // Keep these "kind" numbers in sync with the %select statements in the
3236  // various diagnostics emitted by this routine.
3237  int EntityKind = 0;
3238  bool isTemplateSpecialization = false;
3239  if (isa<ClassTemplateDecl>(Specialized)) {
3240    EntityKind = IsPartialSpecialization? 1 : 0;
3241    isTemplateSpecialization = true;
3242  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3243    EntityKind = 2;
3244    isTemplateSpecialization = true;
3245  } else if (isa<CXXMethodDecl>(Specialized))
3246    EntityKind = 3;
3247  else if (isa<VarDecl>(Specialized))
3248    EntityKind = 4;
3249  else if (isa<RecordDecl>(Specialized))
3250    EntityKind = 5;
3251  else {
3252    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3253    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3254    return true;
3255  }
3256
3257  // C++ [temp.expl.spec]p2:
3258  //   An explicit specialization shall be declared in the namespace
3259  //   of which the template is a member, or, for member templates, in
3260  //   the namespace of which the enclosing class or enclosing class
3261  //   template is a member. An explicit specialization of a member
3262  //   function, member class or static data member of a class
3263  //   template shall be declared in the namespace of which the class
3264  //   template is a member. Such a declaration may also be a
3265  //   definition. If the declaration is not a definition, the
3266  //   specialization may be defined later in the name- space in which
3267  //   the explicit specialization was declared, or in a namespace
3268  //   that encloses the one in which the explicit specialization was
3269  //   declared.
3270  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3271    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3272      << Specialized;
3273    return true;
3274  }
3275
3276  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3277    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3278      << Specialized;
3279    return true;
3280  }
3281
3282  // C++ [temp.class.spec]p6:
3283  //   A class template partial specialization may be declared or redeclared
3284  //   in any namespace scope in which its definition may be defined (14.5.1
3285  //   and 14.5.2).
3286  bool ComplainedAboutScope = false;
3287  DeclContext *SpecializedContext
3288    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3289  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3290  if ((!PrevDecl ||
3291       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3292       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3293    // There is no prior declaration of this entity, so this
3294    // specialization must be in the same context as the template
3295    // itself.
3296    if (!DC->Equals(SpecializedContext)) {
3297      if (isa<TranslationUnitDecl>(SpecializedContext))
3298        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3299        << EntityKind << Specialized;
3300      else if (isa<NamespaceDecl>(SpecializedContext))
3301        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3302        << EntityKind << Specialized
3303        << cast<NamedDecl>(SpecializedContext);
3304
3305      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3306      ComplainedAboutScope = true;
3307    }
3308  }
3309
3310  // Make sure that this redeclaration (or definition) occurs in an enclosing
3311  // namespace.
3312  // Note that HandleDeclarator() performs this check for explicit
3313  // specializations of function templates, static data members, and member
3314  // functions, so we skip the check here for those kinds of entities.
3315  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3316  // Should we refactor that check, so that it occurs later?
3317  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3318      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3319        isa<FunctionDecl>(Specialized))) {
3320    if (isa<TranslationUnitDecl>(SpecializedContext))
3321      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3322        << EntityKind << Specialized;
3323    else if (isa<NamespaceDecl>(SpecializedContext))
3324      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3325        << EntityKind << Specialized
3326        << cast<NamedDecl>(SpecializedContext);
3327
3328    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3329  }
3330
3331  // FIXME: check for specialization-after-instantiation errors and such.
3332
3333  return false;
3334}
3335
3336/// \brief Check the non-type template arguments of a class template
3337/// partial specialization according to C++ [temp.class.spec]p9.
3338///
3339/// \param TemplateParams the template parameters of the primary class
3340/// template.
3341///
3342/// \param TemplateArg the template arguments of the class template
3343/// partial specialization.
3344///
3345/// \param MirrorsPrimaryTemplate will be set true if the class
3346/// template partial specialization arguments are identical to the
3347/// implicit template arguments of the primary template. This is not
3348/// necessarily an error (C++0x), and it is left to the caller to diagnose
3349/// this condition when it is an error.
3350///
3351/// \returns true if there was an error, false otherwise.
3352bool Sema::CheckClassTemplatePartialSpecializationArgs(
3353                                        TemplateParameterList *TemplateParams,
3354                             const TemplateArgumentListBuilder &TemplateArgs,
3355                                        bool &MirrorsPrimaryTemplate) {
3356  // FIXME: the interface to this function will have to change to
3357  // accommodate variadic templates.
3358  MirrorsPrimaryTemplate = true;
3359
3360  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3361
3362  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3363    // Determine whether the template argument list of the partial
3364    // specialization is identical to the implicit argument list of
3365    // the primary template. The caller may need to diagnostic this as
3366    // an error per C++ [temp.class.spec]p9b3.
3367    if (MirrorsPrimaryTemplate) {
3368      if (TemplateTypeParmDecl *TTP
3369            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3370        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3371              Context.getCanonicalType(ArgList[I].getAsType()))
3372          MirrorsPrimaryTemplate = false;
3373      } else if (TemplateTemplateParmDecl *TTP
3374                   = dyn_cast<TemplateTemplateParmDecl>(
3375                                                 TemplateParams->getParam(I))) {
3376        TemplateName Name = ArgList[I].getAsTemplate();
3377        TemplateTemplateParmDecl *ArgDecl
3378          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3379        if (!ArgDecl ||
3380            ArgDecl->getIndex() != TTP->getIndex() ||
3381            ArgDecl->getDepth() != TTP->getDepth())
3382          MirrorsPrimaryTemplate = false;
3383      }
3384    }
3385
3386    NonTypeTemplateParmDecl *Param
3387      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3388    if (!Param) {
3389      continue;
3390    }
3391
3392    Expr *ArgExpr = ArgList[I].getAsExpr();
3393    if (!ArgExpr) {
3394      MirrorsPrimaryTemplate = false;
3395      continue;
3396    }
3397
3398    // C++ [temp.class.spec]p8:
3399    //   A non-type argument is non-specialized if it is the name of a
3400    //   non-type parameter. All other non-type arguments are
3401    //   specialized.
3402    //
3403    // Below, we check the two conditions that only apply to
3404    // specialized non-type arguments, so skip any non-specialized
3405    // arguments.
3406    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3407      if (NonTypeTemplateParmDecl *NTTP
3408            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3409        if (MirrorsPrimaryTemplate &&
3410            (Param->getIndex() != NTTP->getIndex() ||
3411             Param->getDepth() != NTTP->getDepth()))
3412          MirrorsPrimaryTemplate = false;
3413
3414        continue;
3415      }
3416
3417    // C++ [temp.class.spec]p9:
3418    //   Within the argument list of a class template partial
3419    //   specialization, the following restrictions apply:
3420    //     -- A partially specialized non-type argument expression
3421    //        shall not involve a template parameter of the partial
3422    //        specialization except when the argument expression is a
3423    //        simple identifier.
3424    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3425      Diag(ArgExpr->getLocStart(),
3426           diag::err_dependent_non_type_arg_in_partial_spec)
3427        << ArgExpr->getSourceRange();
3428      return true;
3429    }
3430
3431    //     -- The type of a template parameter corresponding to a
3432    //        specialized non-type argument shall not be dependent on a
3433    //        parameter of the specialization.
3434    if (Param->getType()->isDependentType()) {
3435      Diag(ArgExpr->getLocStart(),
3436           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3437        << Param->getType()
3438        << ArgExpr->getSourceRange();
3439      Diag(Param->getLocation(), diag::note_template_param_here);
3440      return true;
3441    }
3442
3443    MirrorsPrimaryTemplate = false;
3444  }
3445
3446  return false;
3447}
3448
3449/// \brief Retrieve the previous declaration of the given declaration.
3450static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3451  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3452    return VD->getPreviousDeclaration();
3453  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3454    return FD->getPreviousDeclaration();
3455  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3456    return TD->getPreviousDeclaration();
3457  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3458    return TD->getPreviousDeclaration();
3459  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3460    return FTD->getPreviousDeclaration();
3461  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3462    return CTD->getPreviousDeclaration();
3463  return 0;
3464}
3465
3466Sema::DeclResult
3467Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3468                                       TagUseKind TUK,
3469                                       SourceLocation KWLoc,
3470                                       const CXXScopeSpec &SS,
3471                                       TemplateTy TemplateD,
3472                                       SourceLocation TemplateNameLoc,
3473                                       SourceLocation LAngleLoc,
3474                                       ASTTemplateArgsPtr TemplateArgsIn,
3475                                       SourceLocation RAngleLoc,
3476                                       AttributeList *Attr,
3477                               MultiTemplateParamsArg TemplateParameterLists) {
3478  assert(TUK != TUK_Reference && "References are not specializations");
3479
3480  // Find the class template we're specializing
3481  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3482  ClassTemplateDecl *ClassTemplate
3483    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3484
3485  if (!ClassTemplate) {
3486    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3487      << (Name.getAsTemplateDecl() &&
3488          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3489    return true;
3490  }
3491
3492  bool isExplicitSpecialization = false;
3493  bool isPartialSpecialization = false;
3494
3495  // Check the validity of the template headers that introduce this
3496  // template.
3497  // FIXME: We probably shouldn't complain about these headers for
3498  // friend declarations.
3499  TemplateParameterList *TemplateParams
3500    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3501                        (TemplateParameterList**)TemplateParameterLists.get(),
3502                                              TemplateParameterLists.size(),
3503                                              isExplicitSpecialization);
3504  if (TemplateParams && TemplateParams->size() > 0) {
3505    isPartialSpecialization = true;
3506
3507    // C++ [temp.class.spec]p10:
3508    //   The template parameter list of a specialization shall not
3509    //   contain default template argument values.
3510    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3511      Decl *Param = TemplateParams->getParam(I);
3512      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3513        if (TTP->hasDefaultArgument()) {
3514          Diag(TTP->getDefaultArgumentLoc(),
3515               diag::err_default_arg_in_partial_spec);
3516          TTP->removeDefaultArgument();
3517        }
3518      } else if (NonTypeTemplateParmDecl *NTTP
3519                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3520        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3521          Diag(NTTP->getDefaultArgumentLoc(),
3522               diag::err_default_arg_in_partial_spec)
3523            << DefArg->getSourceRange();
3524          NTTP->setDefaultArgument(0);
3525          DefArg->Destroy(Context);
3526        }
3527      } else {
3528        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3529        if (TTP->hasDefaultArgument()) {
3530          Diag(TTP->getDefaultArgument().getLocation(),
3531               diag::err_default_arg_in_partial_spec)
3532            << TTP->getDefaultArgument().getSourceRange();
3533          TTP->setDefaultArgument(TemplateArgumentLoc());
3534        }
3535      }
3536    }
3537  } else if (TemplateParams) {
3538    if (TUK == TUK_Friend)
3539      Diag(KWLoc, diag::err_template_spec_friend)
3540        << FixItHint::CreateRemoval(
3541                                SourceRange(TemplateParams->getTemplateLoc(),
3542                                            TemplateParams->getRAngleLoc()))
3543        << SourceRange(LAngleLoc, RAngleLoc);
3544    else
3545      isExplicitSpecialization = true;
3546  } else if (TUK != TUK_Friend) {
3547    Diag(KWLoc, diag::err_template_spec_needs_header)
3548      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3549    isExplicitSpecialization = true;
3550  }
3551
3552  // Check that the specialization uses the same tag kind as the
3553  // original template.
3554  TagDecl::TagKind Kind;
3555  switch (TagSpec) {
3556  default: assert(0 && "Unknown tag type!");
3557  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3558  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3559  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3560  }
3561  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3562                                    Kind, KWLoc,
3563                                    *ClassTemplate->getIdentifier())) {
3564    Diag(KWLoc, diag::err_use_with_wrong_tag)
3565      << ClassTemplate
3566      << FixItHint::CreateReplacement(KWLoc,
3567                            ClassTemplate->getTemplatedDecl()->getKindName());
3568    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3569         diag::note_previous_use);
3570    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3571  }
3572
3573  // Translate the parser's template argument list in our AST format.
3574  TemplateArgumentListInfo TemplateArgs;
3575  TemplateArgs.setLAngleLoc(LAngleLoc);
3576  TemplateArgs.setRAngleLoc(RAngleLoc);
3577  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3578
3579  // Check that the template argument list is well-formed for this
3580  // template.
3581  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3582                                        TemplateArgs.size());
3583  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3584                                TemplateArgs, false, Converted))
3585    return true;
3586
3587  assert((Converted.structuredSize() ==
3588            ClassTemplate->getTemplateParameters()->size()) &&
3589         "Converted template argument list is too short!");
3590
3591  // Find the class template (partial) specialization declaration that
3592  // corresponds to these arguments.
3593  llvm::FoldingSetNodeID ID;
3594  if (isPartialSpecialization) {
3595    bool MirrorsPrimaryTemplate;
3596    if (CheckClassTemplatePartialSpecializationArgs(
3597                                         ClassTemplate->getTemplateParameters(),
3598                                         Converted, MirrorsPrimaryTemplate))
3599      return true;
3600
3601    if (MirrorsPrimaryTemplate) {
3602      // C++ [temp.class.spec]p9b3:
3603      //
3604      //   -- The argument list of the specialization shall not be identical
3605      //      to the implicit argument list of the primary template.
3606      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3607        << (TUK == TUK_Definition)
3608        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3609      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3610                                ClassTemplate->getIdentifier(),
3611                                TemplateNameLoc,
3612                                Attr,
3613                                TemplateParams,
3614                                AS_none);
3615    }
3616
3617    // FIXME: Diagnose friend partial specializations
3618
3619    if (!Name.isDependent() &&
3620        !TemplateSpecializationType::anyDependentTemplateArguments(
3621                                             TemplateArgs.getArgumentArray(),
3622                                                         TemplateArgs.size())) {
3623      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3624        << ClassTemplate->getDeclName();
3625      isPartialSpecialization = false;
3626    } else {
3627      // FIXME: Template parameter list matters, too
3628      ClassTemplatePartialSpecializationDecl::Profile(ID,
3629                                                  Converted.getFlatArguments(),
3630                                                      Converted.flatSize(),
3631                                                      Context);
3632    }
3633  }
3634
3635  if (!isPartialSpecialization)
3636    ClassTemplateSpecializationDecl::Profile(ID,
3637                                             Converted.getFlatArguments(),
3638                                             Converted.flatSize(),
3639                                             Context);
3640  void *InsertPos = 0;
3641  ClassTemplateSpecializationDecl *PrevDecl = 0;
3642
3643  if (isPartialSpecialization)
3644    PrevDecl
3645      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3646                                                                    InsertPos);
3647  else
3648    PrevDecl
3649      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3650
3651  ClassTemplateSpecializationDecl *Specialization = 0;
3652
3653  // Check whether we can declare a class template specialization in
3654  // the current scope.
3655  if (TUK != TUK_Friend &&
3656      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3657                                       TemplateNameLoc,
3658                                       isPartialSpecialization))
3659    return true;
3660
3661  // The canonical type
3662  QualType CanonType;
3663  if (PrevDecl &&
3664      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3665               TUK == TUK_Friend)) {
3666    // Since the only prior class template specialization with these
3667    // arguments was referenced but not declared, or we're only
3668    // referencing this specialization as a friend, reuse that
3669    // declaration node as our own, updating its source location to
3670    // reflect our new declaration.
3671    Specialization = PrevDecl;
3672    Specialization->setLocation(TemplateNameLoc);
3673    PrevDecl = 0;
3674    CanonType = Context.getTypeDeclType(Specialization);
3675  } else if (isPartialSpecialization) {
3676    // Build the canonical type that describes the converted template
3677    // arguments of the class template partial specialization.
3678    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3679    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3680                                                  Converted.getFlatArguments(),
3681                                                  Converted.flatSize());
3682
3683    // Create a new class template partial specialization declaration node.
3684    ClassTemplatePartialSpecializationDecl *PrevPartial
3685      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3686    ClassTemplatePartialSpecializationDecl *Partial
3687      = ClassTemplatePartialSpecializationDecl::Create(Context,
3688                                             ClassTemplate->getDeclContext(),
3689                                                       TemplateNameLoc,
3690                                                       TemplateParams,
3691                                                       ClassTemplate,
3692                                                       Converted,
3693                                                       TemplateArgs,
3694                                                       CanonType,
3695                                                       PrevPartial);
3696    SetNestedNameSpecifier(Partial, SS);
3697
3698    if (PrevPartial) {
3699      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3700      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3701    } else {
3702      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3703    }
3704    Specialization = Partial;
3705
3706    // If we are providing an explicit specialization of a member class
3707    // template specialization, make a note of that.
3708    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3709      PrevPartial->setMemberSpecialization();
3710
3711    // Check that all of the template parameters of the class template
3712    // partial specialization are deducible from the template
3713    // arguments. If not, this class template partial specialization
3714    // will never be used.
3715    llvm::SmallVector<bool, 8> DeducibleParams;
3716    DeducibleParams.resize(TemplateParams->size());
3717    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3718                               TemplateParams->getDepth(),
3719                               DeducibleParams);
3720    unsigned NumNonDeducible = 0;
3721    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3722      if (!DeducibleParams[I])
3723        ++NumNonDeducible;
3724
3725    if (NumNonDeducible) {
3726      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3727        << (NumNonDeducible > 1)
3728        << SourceRange(TemplateNameLoc, RAngleLoc);
3729      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3730        if (!DeducibleParams[I]) {
3731          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3732          if (Param->getDeclName())
3733            Diag(Param->getLocation(),
3734                 diag::note_partial_spec_unused_parameter)
3735              << Param->getDeclName();
3736          else
3737            Diag(Param->getLocation(),
3738                 diag::note_partial_spec_unused_parameter)
3739              << std::string("<anonymous>");
3740        }
3741      }
3742    }
3743  } else {
3744    // Create a new class template specialization declaration node for
3745    // this explicit specialization or friend declaration.
3746    Specialization
3747      = ClassTemplateSpecializationDecl::Create(Context,
3748                                             ClassTemplate->getDeclContext(),
3749                                                TemplateNameLoc,
3750                                                ClassTemplate,
3751                                                Converted,
3752                                                PrevDecl);
3753    SetNestedNameSpecifier(Specialization, SS);
3754
3755    if (PrevDecl) {
3756      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3757      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3758    } else {
3759      ClassTemplate->getSpecializations().InsertNode(Specialization,
3760                                                     InsertPos);
3761    }
3762
3763    CanonType = Context.getTypeDeclType(Specialization);
3764  }
3765
3766  // C++ [temp.expl.spec]p6:
3767  //   If a template, a member template or the member of a class template is
3768  //   explicitly specialized then that specialization shall be declared
3769  //   before the first use of that specialization that would cause an implicit
3770  //   instantiation to take place, in every translation unit in which such a
3771  //   use occurs; no diagnostic is required.
3772  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3773    bool Okay = false;
3774    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3775      // Is there any previous explicit specialization declaration?
3776      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3777        Okay = true;
3778        break;
3779      }
3780    }
3781
3782    if (!Okay) {
3783      SourceRange Range(TemplateNameLoc, RAngleLoc);
3784      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3785        << Context.getTypeDeclType(Specialization) << Range;
3786
3787      Diag(PrevDecl->getPointOfInstantiation(),
3788           diag::note_instantiation_required_here)
3789        << (PrevDecl->getTemplateSpecializationKind()
3790                                                != TSK_ImplicitInstantiation);
3791      return true;
3792    }
3793  }
3794
3795  // If this is not a friend, note that this is an explicit specialization.
3796  if (TUK != TUK_Friend)
3797    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3798
3799  // Check that this isn't a redefinition of this specialization.
3800  if (TUK == TUK_Definition) {
3801    if (RecordDecl *Def = Specialization->getDefinition()) {
3802      SourceRange Range(TemplateNameLoc, RAngleLoc);
3803      Diag(TemplateNameLoc, diag::err_redefinition)
3804        << Context.getTypeDeclType(Specialization) << Range;
3805      Diag(Def->getLocation(), diag::note_previous_definition);
3806      Specialization->setInvalidDecl();
3807      return true;
3808    }
3809  }
3810
3811  // Build the fully-sugared type for this class template
3812  // specialization as the user wrote in the specialization
3813  // itself. This means that we'll pretty-print the type retrieved
3814  // from the specialization's declaration the way that the user
3815  // actually wrote the specialization, rather than formatting the
3816  // name based on the "canonical" representation used to store the
3817  // template arguments in the specialization.
3818  TypeSourceInfo *WrittenTy
3819    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3820                                                TemplateArgs, CanonType);
3821  if (TUK != TUK_Friend)
3822    Specialization->setTypeAsWritten(WrittenTy);
3823  TemplateArgsIn.release();
3824
3825  // C++ [temp.expl.spec]p9:
3826  //   A template explicit specialization is in the scope of the
3827  //   namespace in which the template was defined.
3828  //
3829  // We actually implement this paragraph where we set the semantic
3830  // context (in the creation of the ClassTemplateSpecializationDecl),
3831  // but we also maintain the lexical context where the actual
3832  // definition occurs.
3833  Specialization->setLexicalDeclContext(CurContext);
3834
3835  // We may be starting the definition of this specialization.
3836  if (TUK == TUK_Definition)
3837    Specialization->startDefinition();
3838
3839  if (TUK == TUK_Friend) {
3840    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3841                                            TemplateNameLoc,
3842                                            WrittenTy,
3843                                            /*FIXME:*/KWLoc);
3844    Friend->setAccess(AS_public);
3845    CurContext->addDecl(Friend);
3846  } else {
3847    // Add the specialization into its lexical context, so that it can
3848    // be seen when iterating through the list of declarations in that
3849    // context. However, specializations are not found by name lookup.
3850    CurContext->addDecl(Specialization);
3851  }
3852  return DeclPtrTy::make(Specialization);
3853}
3854
3855Sema::DeclPtrTy
3856Sema::ActOnTemplateDeclarator(Scope *S,
3857                              MultiTemplateParamsArg TemplateParameterLists,
3858                              Declarator &D) {
3859  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3860}
3861
3862Sema::DeclPtrTy
3863Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3864                               MultiTemplateParamsArg TemplateParameterLists,
3865                                      Declarator &D) {
3866  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3867  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3868         "Not a function declarator!");
3869  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3870
3871  if (FTI.hasPrototype) {
3872    // FIXME: Diagnose arguments without names in C.
3873  }
3874
3875  Scope *ParentScope = FnBodyScope->getParent();
3876
3877  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3878                                  move(TemplateParameterLists),
3879                                  /*IsFunctionDefinition=*/true);
3880  if (FunctionTemplateDecl *FunctionTemplate
3881        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3882    return ActOnStartOfFunctionDef(FnBodyScope,
3883                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3884  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3885    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3886  return DeclPtrTy();
3887}
3888
3889/// \brief Strips various properties off an implicit instantiation
3890/// that has just been explicitly specialized.
3891static void StripImplicitInstantiation(NamedDecl *D) {
3892  D->invalidateAttrs();
3893
3894  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3895    FD->setInlineSpecified(false);
3896  }
3897}
3898
3899/// \brief Diagnose cases where we have an explicit template specialization
3900/// before/after an explicit template instantiation, producing diagnostics
3901/// for those cases where they are required and determining whether the
3902/// new specialization/instantiation will have any effect.
3903///
3904/// \param NewLoc the location of the new explicit specialization or
3905/// instantiation.
3906///
3907/// \param NewTSK the kind of the new explicit specialization or instantiation.
3908///
3909/// \param PrevDecl the previous declaration of the entity.
3910///
3911/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3912///
3913/// \param PrevPointOfInstantiation if valid, indicates where the previus
3914/// declaration was instantiated (either implicitly or explicitly).
3915///
3916/// \param SuppressNew will be set to true to indicate that the new
3917/// specialization or instantiation has no effect and should be ignored.
3918///
3919/// \returns true if there was an error that should prevent the introduction of
3920/// the new declaration into the AST, false otherwise.
3921bool
3922Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3923                                             TemplateSpecializationKind NewTSK,
3924                                             NamedDecl *PrevDecl,
3925                                             TemplateSpecializationKind PrevTSK,
3926                                        SourceLocation PrevPointOfInstantiation,
3927                                             bool &SuppressNew) {
3928  SuppressNew = false;
3929
3930  switch (NewTSK) {
3931  case TSK_Undeclared:
3932  case TSK_ImplicitInstantiation:
3933    assert(false && "Don't check implicit instantiations here");
3934    return false;
3935
3936  case TSK_ExplicitSpecialization:
3937    switch (PrevTSK) {
3938    case TSK_Undeclared:
3939    case TSK_ExplicitSpecialization:
3940      // Okay, we're just specializing something that is either already
3941      // explicitly specialized or has merely been mentioned without any
3942      // instantiation.
3943      return false;
3944
3945    case TSK_ImplicitInstantiation:
3946      if (PrevPointOfInstantiation.isInvalid()) {
3947        // The declaration itself has not actually been instantiated, so it is
3948        // still okay to specialize it.
3949        StripImplicitInstantiation(PrevDecl);
3950        return false;
3951      }
3952      // Fall through
3953
3954    case TSK_ExplicitInstantiationDeclaration:
3955    case TSK_ExplicitInstantiationDefinition:
3956      assert((PrevTSK == TSK_ImplicitInstantiation ||
3957              PrevPointOfInstantiation.isValid()) &&
3958             "Explicit instantiation without point of instantiation?");
3959
3960      // C++ [temp.expl.spec]p6:
3961      //   If a template, a member template or the member of a class template
3962      //   is explicitly specialized then that specialization shall be declared
3963      //   before the first use of that specialization that would cause an
3964      //   implicit instantiation to take place, in every translation unit in
3965      //   which such a use occurs; no diagnostic is required.
3966      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3967        // Is there any previous explicit specialization declaration?
3968        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
3969          return false;
3970      }
3971
3972      Diag(NewLoc, diag::err_specialization_after_instantiation)
3973        << PrevDecl;
3974      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3975        << (PrevTSK != TSK_ImplicitInstantiation);
3976
3977      return true;
3978    }
3979    break;
3980
3981  case TSK_ExplicitInstantiationDeclaration:
3982    switch (PrevTSK) {
3983    case TSK_ExplicitInstantiationDeclaration:
3984      // This explicit instantiation declaration is redundant (that's okay).
3985      SuppressNew = true;
3986      return false;
3987
3988    case TSK_Undeclared:
3989    case TSK_ImplicitInstantiation:
3990      // We're explicitly instantiating something that may have already been
3991      // implicitly instantiated; that's fine.
3992      return false;
3993
3994    case TSK_ExplicitSpecialization:
3995      // C++0x [temp.explicit]p4:
3996      //   For a given set of template parameters, if an explicit instantiation
3997      //   of a template appears after a declaration of an explicit
3998      //   specialization for that template, the explicit instantiation has no
3999      //   effect.
4000      SuppressNew = true;
4001      return false;
4002
4003    case TSK_ExplicitInstantiationDefinition:
4004      // C++0x [temp.explicit]p10:
4005      //   If an entity is the subject of both an explicit instantiation
4006      //   declaration and an explicit instantiation definition in the same
4007      //   translation unit, the definition shall follow the declaration.
4008      Diag(NewLoc,
4009           diag::err_explicit_instantiation_declaration_after_definition);
4010      Diag(PrevPointOfInstantiation,
4011           diag::note_explicit_instantiation_definition_here);
4012      assert(PrevPointOfInstantiation.isValid() &&
4013             "Explicit instantiation without point of instantiation?");
4014      SuppressNew = true;
4015      return false;
4016    }
4017    break;
4018
4019  case TSK_ExplicitInstantiationDefinition:
4020    switch (PrevTSK) {
4021    case TSK_Undeclared:
4022    case TSK_ImplicitInstantiation:
4023      // We're explicitly instantiating something that may have already been
4024      // implicitly instantiated; that's fine.
4025      return false;
4026
4027    case TSK_ExplicitSpecialization:
4028      // C++ DR 259, C++0x [temp.explicit]p4:
4029      //   For a given set of template parameters, if an explicit
4030      //   instantiation of a template appears after a declaration of
4031      //   an explicit specialization for that template, the explicit
4032      //   instantiation has no effect.
4033      //
4034      // In C++98/03 mode, we only give an extension warning here, because it
4035      // is not not harmful to try to explicitly instantiate something that
4036      // has been explicitly specialized.
4037      if (!getLangOptions().CPlusPlus0x) {
4038        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4039          << PrevDecl;
4040        Diag(PrevDecl->getLocation(),
4041             diag::note_previous_template_specialization);
4042      }
4043      SuppressNew = true;
4044      return false;
4045
4046    case TSK_ExplicitInstantiationDeclaration:
4047      // We're explicity instantiating a definition for something for which we
4048      // were previously asked to suppress instantiations. That's fine.
4049      return false;
4050
4051    case TSK_ExplicitInstantiationDefinition:
4052      // C++0x [temp.spec]p5:
4053      //   For a given template and a given set of template-arguments,
4054      //     - an explicit instantiation definition shall appear at most once
4055      //       in a program,
4056      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4057        << PrevDecl;
4058      Diag(PrevPointOfInstantiation,
4059           diag::note_previous_explicit_instantiation);
4060      SuppressNew = true;
4061      return false;
4062    }
4063    break;
4064  }
4065
4066  assert(false && "Missing specialization/instantiation case?");
4067
4068  return false;
4069}
4070
4071/// \brief Perform semantic analysis for the given function template
4072/// specialization.
4073///
4074/// This routine performs all of the semantic analysis required for an
4075/// explicit function template specialization. On successful completion,
4076/// the function declaration \p FD will become a function template
4077/// specialization.
4078///
4079/// \param FD the function declaration, which will be updated to become a
4080/// function template specialization.
4081///
4082/// \param HasExplicitTemplateArgs whether any template arguments were
4083/// explicitly provided.
4084///
4085/// \param LAngleLoc the location of the left angle bracket ('<'), if
4086/// template arguments were explicitly provided.
4087///
4088/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4089/// if any.
4090///
4091/// \param NumExplicitTemplateArgs the number of explicitly-provided template
4092/// arguments. This number may be zero even when HasExplicitTemplateArgs is
4093/// true as in, e.g., \c void sort<>(char*, char*);
4094///
4095/// \param RAngleLoc the location of the right angle bracket ('>'), if
4096/// template arguments were explicitly provided.
4097///
4098/// \param PrevDecl the set of declarations that
4099bool
4100Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4101                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4102                                          LookupResult &Previous) {
4103  // The set of function template specializations that could match this
4104  // explicit function template specialization.
4105  UnresolvedSet<8> Candidates;
4106
4107  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4108  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4109         I != E; ++I) {
4110    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4111    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4112      // Only consider templates found within the same semantic lookup scope as
4113      // FD.
4114      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4115        continue;
4116
4117      // C++ [temp.expl.spec]p11:
4118      //   A trailing template-argument can be left unspecified in the
4119      //   template-id naming an explicit function template specialization
4120      //   provided it can be deduced from the function argument type.
4121      // Perform template argument deduction to determine whether we may be
4122      // specializing this template.
4123      // FIXME: It is somewhat wasteful to build
4124      TemplateDeductionInfo Info(Context, FD->getLocation());
4125      FunctionDecl *Specialization = 0;
4126      if (TemplateDeductionResult TDK
4127            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4128                                      FD->getType(),
4129                                      Specialization,
4130                                      Info)) {
4131        // FIXME: Template argument deduction failed; record why it failed, so
4132        // that we can provide nifty diagnostics.
4133        (void)TDK;
4134        continue;
4135      }
4136
4137      // Record this candidate.
4138      Candidates.addDecl(Specialization, I.getAccess());
4139    }
4140  }
4141
4142  // Find the most specialized function template.
4143  UnresolvedSetIterator Result
4144    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4145                         TPOC_Other, FD->getLocation(),
4146                  PDiag(diag::err_function_template_spec_no_match)
4147                    << FD->getDeclName(),
4148                  PDiag(diag::err_function_template_spec_ambiguous)
4149                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4150                  PDiag(diag::note_function_template_spec_matched));
4151  if (Result == Candidates.end())
4152    return true;
4153
4154  // Ignore access information;  it doesn't figure into redeclaration checking.
4155  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4156
4157  // FIXME: Check if the prior specialization has a point of instantiation.
4158  // If so, we have run afoul of .
4159
4160  // If this is a friend declaration, then we're not really declaring
4161  // an explicit specialization.
4162  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4163
4164  // Check the scope of this explicit specialization.
4165  if (!isFriend &&
4166      CheckTemplateSpecializationScope(*this,
4167                                       Specialization->getPrimaryTemplate(),
4168                                       Specialization, FD->getLocation(),
4169                                       false))
4170    return true;
4171
4172  // C++ [temp.expl.spec]p6:
4173  //   If a template, a member template or the member of a class template is
4174  //   explicitly specialized then that specialization shall be declared
4175  //   before the first use of that specialization that would cause an implicit
4176  //   instantiation to take place, in every translation unit in which such a
4177  //   use occurs; no diagnostic is required.
4178  FunctionTemplateSpecializationInfo *SpecInfo
4179    = Specialization->getTemplateSpecializationInfo();
4180  assert(SpecInfo && "Function template specialization info missing?");
4181
4182  bool SuppressNew = false;
4183  if (!isFriend &&
4184      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4185                                             TSK_ExplicitSpecialization,
4186                                             Specialization,
4187                                   SpecInfo->getTemplateSpecializationKind(),
4188                                         SpecInfo->getPointOfInstantiation(),
4189                                             SuppressNew))
4190    return true;
4191
4192  // Mark the prior declaration as an explicit specialization, so that later
4193  // clients know that this is an explicit specialization.
4194  if (!isFriend)
4195    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4196
4197  // Turn the given function declaration into a function template
4198  // specialization, with the template arguments from the previous
4199  // specialization.
4200  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4201                         new (Context) TemplateArgumentList(
4202                             *Specialization->getTemplateSpecializationArgs()),
4203                                        /*InsertPos=*/0,
4204                                    SpecInfo->getTemplateSpecializationKind());
4205
4206  // The "previous declaration" for this function template specialization is
4207  // the prior function template specialization.
4208  Previous.clear();
4209  Previous.addDecl(Specialization);
4210  return false;
4211}
4212
4213/// \brief Perform semantic analysis for the given non-template member
4214/// specialization.
4215///
4216/// This routine performs all of the semantic analysis required for an
4217/// explicit member function specialization. On successful completion,
4218/// the function declaration \p FD will become a member function
4219/// specialization.
4220///
4221/// \param Member the member declaration, which will be updated to become a
4222/// specialization.
4223///
4224/// \param Previous the set of declarations, one of which may be specialized
4225/// by this function specialization;  the set will be modified to contain the
4226/// redeclared member.
4227bool
4228Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4229  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4230
4231  // Try to find the member we are instantiating.
4232  NamedDecl *Instantiation = 0;
4233  NamedDecl *InstantiatedFrom = 0;
4234  MemberSpecializationInfo *MSInfo = 0;
4235
4236  if (Previous.empty()) {
4237    // Nowhere to look anyway.
4238  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4239    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4240           I != E; ++I) {
4241      NamedDecl *D = (*I)->getUnderlyingDecl();
4242      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4243        if (Context.hasSameType(Function->getType(), Method->getType())) {
4244          Instantiation = Method;
4245          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4246          MSInfo = Method->getMemberSpecializationInfo();
4247          break;
4248        }
4249      }
4250    }
4251  } else if (isa<VarDecl>(Member)) {
4252    VarDecl *PrevVar;
4253    if (Previous.isSingleResult() &&
4254        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4255      if (PrevVar->isStaticDataMember()) {
4256        Instantiation = PrevVar;
4257        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4258        MSInfo = PrevVar->getMemberSpecializationInfo();
4259      }
4260  } else if (isa<RecordDecl>(Member)) {
4261    CXXRecordDecl *PrevRecord;
4262    if (Previous.isSingleResult() &&
4263        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4264      Instantiation = PrevRecord;
4265      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4266      MSInfo = PrevRecord->getMemberSpecializationInfo();
4267    }
4268  }
4269
4270  if (!Instantiation) {
4271    // There is no previous declaration that matches. Since member
4272    // specializations are always out-of-line, the caller will complain about
4273    // this mismatch later.
4274    return false;
4275  }
4276
4277  // Make sure that this is a specialization of a member.
4278  if (!InstantiatedFrom) {
4279    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4280      << Member;
4281    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4282    return true;
4283  }
4284
4285  // C++ [temp.expl.spec]p6:
4286  //   If a template, a member template or the member of a class template is
4287  //   explicitly specialized then that spe- cialization shall be declared
4288  //   before the first use of that specialization that would cause an implicit
4289  //   instantiation to take place, in every translation unit in which such a
4290  //   use occurs; no diagnostic is required.
4291  assert(MSInfo && "Member specialization info missing?");
4292
4293  bool SuppressNew = false;
4294  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4295                                             TSK_ExplicitSpecialization,
4296                                             Instantiation,
4297                                     MSInfo->getTemplateSpecializationKind(),
4298                                           MSInfo->getPointOfInstantiation(),
4299                                             SuppressNew))
4300    return true;
4301
4302  // Check the scope of this explicit specialization.
4303  if (CheckTemplateSpecializationScope(*this,
4304                                       InstantiatedFrom,
4305                                       Instantiation, Member->getLocation(),
4306                                       false))
4307    return true;
4308
4309  // Note that this is an explicit instantiation of a member.
4310  // the original declaration to note that it is an explicit specialization
4311  // (if it was previously an implicit instantiation). This latter step
4312  // makes bookkeeping easier.
4313  if (isa<FunctionDecl>(Member)) {
4314    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4315    if (InstantiationFunction->getTemplateSpecializationKind() ==
4316          TSK_ImplicitInstantiation) {
4317      InstantiationFunction->setTemplateSpecializationKind(
4318                                                  TSK_ExplicitSpecialization);
4319      InstantiationFunction->setLocation(Member->getLocation());
4320    }
4321
4322    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4323                                        cast<CXXMethodDecl>(InstantiatedFrom),
4324                                                  TSK_ExplicitSpecialization);
4325  } else if (isa<VarDecl>(Member)) {
4326    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4327    if (InstantiationVar->getTemplateSpecializationKind() ==
4328          TSK_ImplicitInstantiation) {
4329      InstantiationVar->setTemplateSpecializationKind(
4330                                                  TSK_ExplicitSpecialization);
4331      InstantiationVar->setLocation(Member->getLocation());
4332    }
4333
4334    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4335                                                cast<VarDecl>(InstantiatedFrom),
4336                                                TSK_ExplicitSpecialization);
4337  } else {
4338    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4339    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4340    if (InstantiationClass->getTemplateSpecializationKind() ==
4341          TSK_ImplicitInstantiation) {
4342      InstantiationClass->setTemplateSpecializationKind(
4343                                                   TSK_ExplicitSpecialization);
4344      InstantiationClass->setLocation(Member->getLocation());
4345    }
4346
4347    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4348                                        cast<CXXRecordDecl>(InstantiatedFrom),
4349                                                   TSK_ExplicitSpecialization);
4350  }
4351
4352  // Save the caller the trouble of having to figure out which declaration
4353  // this specialization matches.
4354  Previous.clear();
4355  Previous.addDecl(Instantiation);
4356  return false;
4357}
4358
4359/// \brief Check the scope of an explicit instantiation.
4360static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4361                                            SourceLocation InstLoc,
4362                                            bool WasQualifiedName) {
4363  DeclContext *ExpectedContext
4364    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4365  DeclContext *CurContext = S.CurContext->getLookupContext();
4366
4367  // C++0x [temp.explicit]p2:
4368  //   An explicit instantiation shall appear in an enclosing namespace of its
4369  //   template.
4370  //
4371  // This is DR275, which we do not retroactively apply to C++98/03.
4372  if (S.getLangOptions().CPlusPlus0x &&
4373      !CurContext->Encloses(ExpectedContext)) {
4374    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4375      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4376        << D << NS;
4377    else
4378      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4379        << D;
4380    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4381    return;
4382  }
4383
4384  // C++0x [temp.explicit]p2:
4385  //   If the name declared in the explicit instantiation is an unqualified
4386  //   name, the explicit instantiation shall appear in the namespace where
4387  //   its template is declared or, if that namespace is inline (7.3.1), any
4388  //   namespace from its enclosing namespace set.
4389  if (WasQualifiedName)
4390    return;
4391
4392  if (CurContext->Equals(ExpectedContext))
4393    return;
4394
4395  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4396    << D << ExpectedContext;
4397  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4398}
4399
4400/// \brief Determine whether the given scope specifier has a template-id in it.
4401static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4402  if (!SS.isSet())
4403    return false;
4404
4405  // C++0x [temp.explicit]p2:
4406  //   If the explicit instantiation is for a member function, a member class
4407  //   or a static data member of a class template specialization, the name of
4408  //   the class template specialization in the qualified-id for the member
4409  //   name shall be a simple-template-id.
4410  //
4411  // C++98 has the same restriction, just worded differently.
4412  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4413       NNS; NNS = NNS->getPrefix())
4414    if (Type *T = NNS->getAsType())
4415      if (isa<TemplateSpecializationType>(T))
4416        return true;
4417
4418  return false;
4419}
4420
4421// Explicit instantiation of a class template specialization
4422// FIXME: Implement extern template semantics
4423Sema::DeclResult
4424Sema::ActOnExplicitInstantiation(Scope *S,
4425                                 SourceLocation ExternLoc,
4426                                 SourceLocation TemplateLoc,
4427                                 unsigned TagSpec,
4428                                 SourceLocation KWLoc,
4429                                 const CXXScopeSpec &SS,
4430                                 TemplateTy TemplateD,
4431                                 SourceLocation TemplateNameLoc,
4432                                 SourceLocation LAngleLoc,
4433                                 ASTTemplateArgsPtr TemplateArgsIn,
4434                                 SourceLocation RAngleLoc,
4435                                 AttributeList *Attr) {
4436  // Find the class template we're specializing
4437  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4438  ClassTemplateDecl *ClassTemplate
4439    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4440
4441  // Check that the specialization uses the same tag kind as the
4442  // original template.
4443  TagDecl::TagKind Kind;
4444  switch (TagSpec) {
4445  default: assert(0 && "Unknown tag type!");
4446  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4447  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4448  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4449  }
4450  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4451                                    Kind, KWLoc,
4452                                    *ClassTemplate->getIdentifier())) {
4453    Diag(KWLoc, diag::err_use_with_wrong_tag)
4454      << ClassTemplate
4455      << FixItHint::CreateReplacement(KWLoc,
4456                            ClassTemplate->getTemplatedDecl()->getKindName());
4457    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4458         diag::note_previous_use);
4459    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4460  }
4461
4462  // C++0x [temp.explicit]p2:
4463  //   There are two forms of explicit instantiation: an explicit instantiation
4464  //   definition and an explicit instantiation declaration. An explicit
4465  //   instantiation declaration begins with the extern keyword. [...]
4466  TemplateSpecializationKind TSK
4467    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4468                           : TSK_ExplicitInstantiationDeclaration;
4469
4470  // Translate the parser's template argument list in our AST format.
4471  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4472  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4473
4474  // Check that the template argument list is well-formed for this
4475  // template.
4476  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4477                                        TemplateArgs.size());
4478  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4479                                TemplateArgs, false, Converted))
4480    return true;
4481
4482  assert((Converted.structuredSize() ==
4483            ClassTemplate->getTemplateParameters()->size()) &&
4484         "Converted template argument list is too short!");
4485
4486  // Find the class template specialization declaration that
4487  // corresponds to these arguments.
4488  llvm::FoldingSetNodeID ID;
4489  ClassTemplateSpecializationDecl::Profile(ID,
4490                                           Converted.getFlatArguments(),
4491                                           Converted.flatSize(),
4492                                           Context);
4493  void *InsertPos = 0;
4494  ClassTemplateSpecializationDecl *PrevDecl
4495    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4496
4497  // C++0x [temp.explicit]p2:
4498  //   [...] An explicit instantiation shall appear in an enclosing
4499  //   namespace of its template. [...]
4500  //
4501  // This is C++ DR 275.
4502  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4503                                  SS.isSet());
4504
4505  ClassTemplateSpecializationDecl *Specialization = 0;
4506
4507  bool ReusedDecl = false;
4508  if (PrevDecl) {
4509    bool SuppressNew = false;
4510    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4511                                               PrevDecl,
4512                                              PrevDecl->getSpecializationKind(),
4513                                            PrevDecl->getPointOfInstantiation(),
4514                                               SuppressNew))
4515      return DeclPtrTy::make(PrevDecl);
4516
4517    if (SuppressNew)
4518      return DeclPtrTy::make(PrevDecl);
4519
4520    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4521        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4522      // Since the only prior class template specialization with these
4523      // arguments was referenced but not declared, reuse that
4524      // declaration node as our own, updating its source location to
4525      // reflect our new declaration.
4526      Specialization = PrevDecl;
4527      Specialization->setLocation(TemplateNameLoc);
4528      PrevDecl = 0;
4529      ReusedDecl = true;
4530    }
4531  }
4532
4533  if (!Specialization) {
4534    // Create a new class template specialization declaration node for
4535    // this explicit specialization.
4536    Specialization
4537      = ClassTemplateSpecializationDecl::Create(Context,
4538                                             ClassTemplate->getDeclContext(),
4539                                                TemplateNameLoc,
4540                                                ClassTemplate,
4541                                                Converted, PrevDecl);
4542    SetNestedNameSpecifier(Specialization, SS);
4543
4544    if (PrevDecl) {
4545      // Remove the previous declaration from the folding set, since we want
4546      // to introduce a new declaration.
4547      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4548      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4549    }
4550
4551    // Insert the new specialization.
4552    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4553  }
4554
4555  // Build the fully-sugared type for this explicit instantiation as
4556  // the user wrote in the explicit instantiation itself. This means
4557  // that we'll pretty-print the type retrieved from the
4558  // specialization's declaration the way that the user actually wrote
4559  // the explicit instantiation, rather than formatting the name based
4560  // on the "canonical" representation used to store the template
4561  // arguments in the specialization.
4562  TypeSourceInfo *WrittenTy
4563    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4564                                                TemplateArgs,
4565                                  Context.getTypeDeclType(Specialization));
4566  Specialization->setTypeAsWritten(WrittenTy);
4567  TemplateArgsIn.release();
4568
4569  if (!ReusedDecl) {
4570    // Add the explicit instantiation into its lexical context. However,
4571    // since explicit instantiations are never found by name lookup, we
4572    // just put it into the declaration context directly.
4573    Specialization->setLexicalDeclContext(CurContext);
4574    CurContext->addDecl(Specialization);
4575  }
4576
4577  // C++ [temp.explicit]p3:
4578  //   A definition of a class template or class member template
4579  //   shall be in scope at the point of the explicit instantiation of
4580  //   the class template or class member template.
4581  //
4582  // This check comes when we actually try to perform the
4583  // instantiation.
4584  ClassTemplateSpecializationDecl *Def
4585    = cast_or_null<ClassTemplateSpecializationDecl>(
4586                                              Specialization->getDefinition());
4587  if (!Def)
4588    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4589
4590  // Instantiate the members of this class template specialization.
4591  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4592                                       Specialization->getDefinition());
4593  if (Def) {
4594    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4595
4596    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4597    // TSK_ExplicitInstantiationDefinition
4598    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4599        TSK == TSK_ExplicitInstantiationDefinition)
4600      Def->setTemplateSpecializationKind(TSK);
4601
4602    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4603  }
4604
4605  return DeclPtrTy::make(Specialization);
4606}
4607
4608// Explicit instantiation of a member class of a class template.
4609Sema::DeclResult
4610Sema::ActOnExplicitInstantiation(Scope *S,
4611                                 SourceLocation ExternLoc,
4612                                 SourceLocation TemplateLoc,
4613                                 unsigned TagSpec,
4614                                 SourceLocation KWLoc,
4615                                 const CXXScopeSpec &SS,
4616                                 IdentifierInfo *Name,
4617                                 SourceLocation NameLoc,
4618                                 AttributeList *Attr) {
4619
4620  bool Owned = false;
4621  bool IsDependent = false;
4622  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4623                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4624                            MultiTemplateParamsArg(*this, 0, 0),
4625                            Owned, IsDependent);
4626  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4627
4628  if (!TagD)
4629    return true;
4630
4631  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4632  if (Tag->isEnum()) {
4633    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4634      << Context.getTypeDeclType(Tag);
4635    return true;
4636  }
4637
4638  if (Tag->isInvalidDecl())
4639    return true;
4640
4641  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4642  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4643  if (!Pattern) {
4644    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4645      << Context.getTypeDeclType(Record);
4646    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4647    return true;
4648  }
4649
4650  // C++0x [temp.explicit]p2:
4651  //   If the explicit instantiation is for a class or member class, the
4652  //   elaborated-type-specifier in the declaration shall include a
4653  //   simple-template-id.
4654  //
4655  // C++98 has the same restriction, just worded differently.
4656  if (!ScopeSpecifierHasTemplateId(SS))
4657    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4658      << Record << SS.getRange();
4659
4660  // C++0x [temp.explicit]p2:
4661  //   There are two forms of explicit instantiation: an explicit instantiation
4662  //   definition and an explicit instantiation declaration. An explicit
4663  //   instantiation declaration begins with the extern keyword. [...]
4664  TemplateSpecializationKind TSK
4665    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4666                           : TSK_ExplicitInstantiationDeclaration;
4667
4668  // C++0x [temp.explicit]p2:
4669  //   [...] An explicit instantiation shall appear in an enclosing
4670  //   namespace of its template. [...]
4671  //
4672  // This is C++ DR 275.
4673  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4674
4675  // Verify that it is okay to explicitly instantiate here.
4676  CXXRecordDecl *PrevDecl
4677    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4678  if (!PrevDecl && Record->getDefinition())
4679    PrevDecl = Record;
4680  if (PrevDecl) {
4681    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4682    bool SuppressNew = false;
4683    assert(MSInfo && "No member specialization information?");
4684    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4685                                               PrevDecl,
4686                                        MSInfo->getTemplateSpecializationKind(),
4687                                             MSInfo->getPointOfInstantiation(),
4688                                               SuppressNew))
4689      return true;
4690    if (SuppressNew)
4691      return TagD;
4692  }
4693
4694  CXXRecordDecl *RecordDef
4695    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4696  if (!RecordDef) {
4697    // C++ [temp.explicit]p3:
4698    //   A definition of a member class of a class template shall be in scope
4699    //   at the point of an explicit instantiation of the member class.
4700    CXXRecordDecl *Def
4701      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4702    if (!Def) {
4703      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4704        << 0 << Record->getDeclName() << Record->getDeclContext();
4705      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4706        << Pattern;
4707      return true;
4708    } else {
4709      if (InstantiateClass(NameLoc, Record, Def,
4710                           getTemplateInstantiationArgs(Record),
4711                           TSK))
4712        return true;
4713
4714      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4715      if (!RecordDef)
4716        return true;
4717    }
4718  }
4719
4720  // Instantiate all of the members of the class.
4721  InstantiateClassMembers(NameLoc, RecordDef,
4722                          getTemplateInstantiationArgs(Record), TSK);
4723
4724  // FIXME: We don't have any representation for explicit instantiations of
4725  // member classes. Such a representation is not needed for compilation, but it
4726  // should be available for clients that want to see all of the declarations in
4727  // the source code.
4728  return TagD;
4729}
4730
4731Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4732                                                  SourceLocation ExternLoc,
4733                                                  SourceLocation TemplateLoc,
4734                                                  Declarator &D) {
4735  // Explicit instantiations always require a name.
4736  DeclarationName Name = GetNameForDeclarator(D);
4737  if (!Name) {
4738    if (!D.isInvalidType())
4739      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4740           diag::err_explicit_instantiation_requires_name)
4741        << D.getDeclSpec().getSourceRange()
4742        << D.getSourceRange();
4743
4744    return true;
4745  }
4746
4747  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4748  // we find one that is.
4749  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4750         (S->getFlags() & Scope::TemplateParamScope) != 0)
4751    S = S->getParent();
4752
4753  // Determine the type of the declaration.
4754  QualType R = GetTypeForDeclarator(D, S, 0);
4755  if (R.isNull())
4756    return true;
4757
4758  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4759    // Cannot explicitly instantiate a typedef.
4760    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4761      << Name;
4762    return true;
4763  }
4764
4765  // C++0x [temp.explicit]p1:
4766  //   [...] An explicit instantiation of a function template shall not use the
4767  //   inline or constexpr specifiers.
4768  // Presumably, this also applies to member functions of class templates as
4769  // well.
4770  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4771    Diag(D.getDeclSpec().getInlineSpecLoc(),
4772         diag::err_explicit_instantiation_inline)
4773      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4774
4775  // FIXME: check for constexpr specifier.
4776
4777  // C++0x [temp.explicit]p2:
4778  //   There are two forms of explicit instantiation: an explicit instantiation
4779  //   definition and an explicit instantiation declaration. An explicit
4780  //   instantiation declaration begins with the extern keyword. [...]
4781  TemplateSpecializationKind TSK
4782    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4783                           : TSK_ExplicitInstantiationDeclaration;
4784
4785  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4786  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4787
4788  if (!R->isFunctionType()) {
4789    // C++ [temp.explicit]p1:
4790    //   A [...] static data member of a class template can be explicitly
4791    //   instantiated from the member definition associated with its class
4792    //   template.
4793    if (Previous.isAmbiguous())
4794      return true;
4795
4796    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4797    if (!Prev || !Prev->isStaticDataMember()) {
4798      // We expect to see a data data member here.
4799      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4800        << Name;
4801      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4802           P != PEnd; ++P)
4803        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4804      return true;
4805    }
4806
4807    if (!Prev->getInstantiatedFromStaticDataMember()) {
4808      // FIXME: Check for explicit specialization?
4809      Diag(D.getIdentifierLoc(),
4810           diag::err_explicit_instantiation_data_member_not_instantiated)
4811        << Prev;
4812      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4813      // FIXME: Can we provide a note showing where this was declared?
4814      return true;
4815    }
4816
4817    // C++0x [temp.explicit]p2:
4818    //   If the explicit instantiation is for a member function, a member class
4819    //   or a static data member of a class template specialization, the name of
4820    //   the class template specialization in the qualified-id for the member
4821    //   name shall be a simple-template-id.
4822    //
4823    // C++98 has the same restriction, just worded differently.
4824    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4825      Diag(D.getIdentifierLoc(),
4826           diag::err_explicit_instantiation_without_qualified_id)
4827        << Prev << D.getCXXScopeSpec().getRange();
4828
4829    // Check the scope of this explicit instantiation.
4830    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4831
4832    // Verify that it is okay to explicitly instantiate here.
4833    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4834    assert(MSInfo && "Missing static data member specialization info?");
4835    bool SuppressNew = false;
4836    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4837                                        MSInfo->getTemplateSpecializationKind(),
4838                                              MSInfo->getPointOfInstantiation(),
4839                                               SuppressNew))
4840      return true;
4841    if (SuppressNew)
4842      return DeclPtrTy();
4843
4844    // Instantiate static data member.
4845    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4846    if (TSK == TSK_ExplicitInstantiationDefinition)
4847      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4848                                            /*DefinitionRequired=*/true);
4849
4850    // FIXME: Create an ExplicitInstantiation node?
4851    return DeclPtrTy();
4852  }
4853
4854  // If the declarator is a template-id, translate the parser's template
4855  // argument list into our AST format.
4856  bool HasExplicitTemplateArgs = false;
4857  TemplateArgumentListInfo TemplateArgs;
4858  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4859    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4860    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4861    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4862    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4863                                       TemplateId->getTemplateArgs(),
4864                                       TemplateId->NumArgs);
4865    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4866    HasExplicitTemplateArgs = true;
4867    TemplateArgsPtr.release();
4868  }
4869
4870  // C++ [temp.explicit]p1:
4871  //   A [...] function [...] can be explicitly instantiated from its template.
4872  //   A member function [...] of a class template can be explicitly
4873  //  instantiated from the member definition associated with its class
4874  //  template.
4875  UnresolvedSet<8> Matches;
4876  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4877       P != PEnd; ++P) {
4878    NamedDecl *Prev = *P;
4879    if (!HasExplicitTemplateArgs) {
4880      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4881        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4882          Matches.clear();
4883
4884          Matches.addDecl(Method, P.getAccess());
4885          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
4886            break;
4887        }
4888      }
4889    }
4890
4891    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4892    if (!FunTmpl)
4893      continue;
4894
4895    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
4896    FunctionDecl *Specialization = 0;
4897    if (TemplateDeductionResult TDK
4898          = DeduceTemplateArguments(FunTmpl,
4899                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4900                                    R, Specialization, Info)) {
4901      // FIXME: Keep track of almost-matches?
4902      (void)TDK;
4903      continue;
4904    }
4905
4906    Matches.addDecl(Specialization, P.getAccess());
4907  }
4908
4909  // Find the most specialized function template specialization.
4910  UnresolvedSetIterator Result
4911    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
4912                         D.getIdentifierLoc(),
4913                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
4914                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
4915                         PDiag(diag::note_explicit_instantiation_candidate));
4916
4917  if (Result == Matches.end())
4918    return true;
4919
4920  // Ignore access control bits, we don't need them for redeclaration checking.
4921  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4922
4923  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4924    Diag(D.getIdentifierLoc(),
4925         diag::err_explicit_instantiation_member_function_not_instantiated)
4926      << Specialization
4927      << (Specialization->getTemplateSpecializationKind() ==
4928          TSK_ExplicitSpecialization);
4929    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4930    return true;
4931  }
4932
4933  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4934  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4935    PrevDecl = Specialization;
4936
4937  if (PrevDecl) {
4938    bool SuppressNew = false;
4939    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4940                                               PrevDecl,
4941                                     PrevDecl->getTemplateSpecializationKind(),
4942                                          PrevDecl->getPointOfInstantiation(),
4943                                               SuppressNew))
4944      return true;
4945
4946    // FIXME: We may still want to build some representation of this
4947    // explicit specialization.
4948    if (SuppressNew)
4949      return DeclPtrTy();
4950  }
4951
4952  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4953
4954  if (TSK == TSK_ExplicitInstantiationDefinition)
4955    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4956                                  false, /*DefinitionRequired=*/true);
4957
4958  // C++0x [temp.explicit]p2:
4959  //   If the explicit instantiation is for a member function, a member class
4960  //   or a static data member of a class template specialization, the name of
4961  //   the class template specialization in the qualified-id for the member
4962  //   name shall be a simple-template-id.
4963  //
4964  // C++98 has the same restriction, just worded differently.
4965  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4966  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4967      D.getCXXScopeSpec().isSet() &&
4968      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4969    Diag(D.getIdentifierLoc(),
4970         diag::err_explicit_instantiation_without_qualified_id)
4971    << Specialization << D.getCXXScopeSpec().getRange();
4972
4973  CheckExplicitInstantiationScope(*this,
4974                   FunTmpl? (NamedDecl *)FunTmpl
4975                          : Specialization->getInstantiatedFromMemberFunction(),
4976                                  D.getIdentifierLoc(),
4977                                  D.getCXXScopeSpec().isSet());
4978
4979  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4980  return DeclPtrTy();
4981}
4982
4983Sema::TypeResult
4984Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4985                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4986                        SourceLocation TagLoc, SourceLocation NameLoc) {
4987  // This has to hold, because SS is expected to be defined.
4988  assert(Name && "Expected a name in a dependent tag");
4989
4990  NestedNameSpecifier *NNS
4991    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4992  if (!NNS)
4993    return true;
4994
4995  ElaboratedTypeKeyword Keyword = ETK_None;
4996  switch (TagDecl::getTagKindForTypeSpec(TagSpec)) {
4997  case TagDecl::TK_struct: Keyword = ETK_Struct; break;
4998  case TagDecl::TK_class: Keyword = ETK_Class; break;
4999  case TagDecl::TK_union: Keyword = ETK_Union; break;
5000  case TagDecl::TK_enum: Keyword = ETK_Enum; break;
5001  }
5002  assert(Keyword != ETK_None && "Invalid tag kind!");
5003
5004  return Context.getDependentNameType(Keyword, NNS, Name).getAsOpaquePtr();
5005}
5006
5007Sema::TypeResult
5008Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5009                        const IdentifierInfo &II, SourceLocation IdLoc) {
5010  NestedNameSpecifier *NNS
5011    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5012  if (!NNS)
5013    return true;
5014
5015  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
5016  if (T.isNull())
5017    return true;
5018  return T.getAsOpaquePtr();
5019}
5020
5021Sema::TypeResult
5022Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5023                        SourceLocation TemplateLoc, TypeTy *Ty) {
5024  QualType T = GetTypeFromParser(Ty);
5025  NestedNameSpecifier *NNS
5026    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5027  const TemplateSpecializationType *TemplateId
5028    = T->getAs<TemplateSpecializationType>();
5029  assert(TemplateId && "Expected a template specialization type");
5030
5031  if (computeDeclContext(SS, false)) {
5032    // If we can compute a declaration context, then the "typename"
5033    // keyword was superfluous. Just build a QualifiedNameType to keep
5034    // track of the nested-name-specifier.
5035
5036    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
5037    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
5038  }
5039
5040  return Context.getDependentNameType(ETK_Typename, NNS, TemplateId)
5041                                                            .getAsOpaquePtr();
5042}
5043
5044/// \brief Build the type that describes a C++ typename specifier,
5045/// e.g., "typename T::type".
5046QualType
5047Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
5048                        SourceRange Range) {
5049  CXXRecordDecl *CurrentInstantiation = 0;
5050  if (NNS->isDependent()) {
5051    CurrentInstantiation = getCurrentInstantiationOf(NNS);
5052
5053    // If the nested-name-specifier does not refer to the current
5054    // instantiation, then build a typename type.
5055    if (!CurrentInstantiation)
5056      return Context.getDependentNameType(ETK_Typename, NNS, &II);
5057
5058    // The nested-name-specifier refers to the current instantiation, so the
5059    // "typename" keyword itself is superfluous. In C++03, the program is
5060    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
5061    // extraneous "typename" keywords, and we retroactively apply this DR to
5062    // C++03 code.
5063  }
5064
5065  DeclContext *Ctx = 0;
5066
5067  if (CurrentInstantiation)
5068    Ctx = CurrentInstantiation;
5069  else {
5070    CXXScopeSpec SS;
5071    SS.setScopeRep(NNS);
5072    SS.setRange(Range);
5073    if (RequireCompleteDeclContext(SS))
5074      return QualType();
5075
5076    Ctx = computeDeclContext(SS);
5077  }
5078  assert(Ctx && "No declaration context?");
5079
5080  DeclarationName Name(&II);
5081  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
5082  LookupQualifiedName(Result, Ctx);
5083  unsigned DiagID = 0;
5084  Decl *Referenced = 0;
5085  switch (Result.getResultKind()) {
5086  case LookupResult::NotFound:
5087    DiagID = diag::err_typename_nested_not_found;
5088    break;
5089
5090  case LookupResult::NotFoundInCurrentInstantiation:
5091    // Okay, it's a member of an unknown instantiation.
5092    return Context.getDependentNameType(ETK_Typename, NNS, &II);
5093
5094  case LookupResult::Found:
5095    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5096      // We found a type. Build a QualifiedNameType, since the
5097      // typename-specifier was just sugar. FIXME: Tell
5098      // QualifiedNameType that it has a "typename" prefix.
5099      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
5100    }
5101
5102    DiagID = diag::err_typename_nested_not_type;
5103    Referenced = Result.getFoundDecl();
5104    break;
5105
5106  case LookupResult::FoundUnresolvedValue:
5107    llvm_unreachable("unresolved using decl in non-dependent context");
5108    return QualType();
5109
5110  case LookupResult::FoundOverloaded:
5111    DiagID = diag::err_typename_nested_not_type;
5112    Referenced = *Result.begin();
5113    break;
5114
5115  case LookupResult::Ambiguous:
5116    return QualType();
5117  }
5118
5119  // If we get here, it's because name lookup did not find a
5120  // type. Emit an appropriate diagnostic and return an error.
5121  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
5122  if (Referenced)
5123    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5124      << Name;
5125  return QualType();
5126}
5127
5128namespace {
5129  // See Sema::RebuildTypeInCurrentInstantiation
5130  class CurrentInstantiationRebuilder
5131    : public TreeTransform<CurrentInstantiationRebuilder> {
5132    SourceLocation Loc;
5133    DeclarationName Entity;
5134
5135  public:
5136    CurrentInstantiationRebuilder(Sema &SemaRef,
5137                                  SourceLocation Loc,
5138                                  DeclarationName Entity)
5139    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5140      Loc(Loc), Entity(Entity) { }
5141
5142    /// \brief Determine whether the given type \p T has already been
5143    /// transformed.
5144    ///
5145    /// For the purposes of type reconstruction, a type has already been
5146    /// transformed if it is NULL or if it is not dependent.
5147    bool AlreadyTransformed(QualType T) {
5148      return T.isNull() || !T->isDependentType();
5149    }
5150
5151    /// \brief Returns the location of the entity whose type is being
5152    /// rebuilt.
5153    SourceLocation getBaseLocation() { return Loc; }
5154
5155    /// \brief Returns the name of the entity whose type is being rebuilt.
5156    DeclarationName getBaseEntity() { return Entity; }
5157
5158    /// \brief Sets the "base" location and entity when that
5159    /// information is known based on another transformation.
5160    void setBase(SourceLocation Loc, DeclarationName Entity) {
5161      this->Loc = Loc;
5162      this->Entity = Entity;
5163    }
5164
5165    /// \brief Transforms an expression by returning the expression itself
5166    /// (an identity function).
5167    ///
5168    /// FIXME: This is completely unsafe; we will need to actually clone the
5169    /// expressions.
5170    Sema::OwningExprResult TransformExpr(Expr *E) {
5171      return getSema().Owned(E);
5172    }
5173
5174    /// \brief Transforms a typename type by determining whether the type now
5175    /// refers to a member of the current instantiation, and then
5176    /// type-checking and building a QualifiedNameType (when possible).
5177    QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL,
5178                                   QualType ObjectType);
5179  };
5180}
5181
5182QualType
5183CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB,
5184                                                     DependentNameTypeLoc TL,
5185                                                     QualType ObjectType) {
5186  DependentNameType *T = TL.getTypePtr();
5187
5188  NestedNameSpecifier *NNS
5189    = TransformNestedNameSpecifier(T->getQualifier(),
5190                                   /*FIXME:*/SourceRange(getBaseLocation()),
5191                                   ObjectType);
5192  if (!NNS)
5193    return QualType();
5194
5195  // If the nested-name-specifier did not change, and we cannot compute the
5196  // context corresponding to the nested-name-specifier, then this
5197  // typename type will not change; exit early.
5198  CXXScopeSpec SS;
5199  SS.setRange(SourceRange(getBaseLocation()));
5200  SS.setScopeRep(NNS);
5201
5202  QualType Result;
5203  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
5204    Result = QualType(T, 0);
5205
5206  // Rebuild the typename type, which will probably turn into a
5207  // QualifiedNameType.
5208  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
5209    QualType NewTemplateId
5210      = TransformType(QualType(TemplateId, 0));
5211    if (NewTemplateId.isNull())
5212      return QualType();
5213
5214    if (NNS == T->getQualifier() &&
5215        NewTemplateId == QualType(TemplateId, 0))
5216      Result = QualType(T, 0);
5217    else
5218      Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5219                                                     NNS, NewTemplateId);
5220  } else
5221    Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5222                                                   NNS, T->getIdentifier(),
5223                                                  SourceRange(TL.getNameLoc()));
5224
5225  if (Result.isNull())
5226    return QualType();
5227
5228  DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
5229  NewTL.setNameLoc(TL.getNameLoc());
5230  return Result;
5231}
5232
5233/// \brief Rebuilds a type within the context of the current instantiation.
5234///
5235/// The type \p T is part of the type of an out-of-line member definition of
5236/// a class template (or class template partial specialization) that was parsed
5237/// and constructed before we entered the scope of the class template (or
5238/// partial specialization thereof). This routine will rebuild that type now
5239/// that we have entered the declarator's scope, which may produce different
5240/// canonical types, e.g.,
5241///
5242/// \code
5243/// template<typename T>
5244/// struct X {
5245///   typedef T* pointer;
5246///   pointer data();
5247/// };
5248///
5249/// template<typename T>
5250/// typename X<T>::pointer X<T>::data() { ... }
5251/// \endcode
5252///
5253/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5254/// since we do not know that we can look into X<T> when we parsed the type.
5255/// This function will rebuild the type, performing the lookup of "pointer"
5256/// in X<T> and returning a QualifiedNameType whose canonical type is the same
5257/// as the canonical type of T*, allowing the return types of the out-of-line
5258/// definition and the declaration to match.
5259QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
5260                                                 DeclarationName Name) {
5261  if (T.isNull() || !T->isDependentType())
5262    return T;
5263
5264  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5265  return Rebuilder.TransformType(T);
5266}
5267
5268/// \brief Produces a formatted string that describes the binding of
5269/// template parameters to template arguments.
5270std::string
5271Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5272                                      const TemplateArgumentList &Args) {
5273  // FIXME: For variadic templates, we'll need to get the structured list.
5274  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5275                                         Args.flat_size());
5276}
5277
5278std::string
5279Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5280                                      const TemplateArgument *Args,
5281                                      unsigned NumArgs) {
5282  std::string Result;
5283
5284  if (!Params || Params->size() == 0 || NumArgs == 0)
5285    return Result;
5286
5287  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5288    if (I >= NumArgs)
5289      break;
5290
5291    if (I == 0)
5292      Result += "[with ";
5293    else
5294      Result += ", ";
5295
5296    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5297      Result += Id->getName();
5298    } else {
5299      Result += '$';
5300      Result += llvm::utostr(I);
5301    }
5302
5303    Result += " = ";
5304
5305    switch (Args[I].getKind()) {
5306      case TemplateArgument::Null:
5307        Result += "<no value>";
5308        break;
5309
5310      case TemplateArgument::Type: {
5311        std::string TypeStr;
5312        Args[I].getAsType().getAsStringInternal(TypeStr,
5313                                                Context.PrintingPolicy);
5314        Result += TypeStr;
5315        break;
5316      }
5317
5318      case TemplateArgument::Declaration: {
5319        bool Unnamed = true;
5320        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5321          if (ND->getDeclName()) {
5322            Unnamed = false;
5323            Result += ND->getNameAsString();
5324          }
5325        }
5326
5327        if (Unnamed) {
5328          Result += "<anonymous>";
5329        }
5330        break;
5331      }
5332
5333      case TemplateArgument::Template: {
5334        std::string Str;
5335        llvm::raw_string_ostream OS(Str);
5336        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5337        Result += OS.str();
5338        break;
5339      }
5340
5341      case TemplateArgument::Integral: {
5342        Result += Args[I].getAsIntegral()->toString(10);
5343        break;
5344      }
5345
5346      case TemplateArgument::Expression: {
5347        assert(false && "No expressions in deduced template arguments!");
5348        Result += "<expression>";
5349        break;
5350      }
5351
5352      case TemplateArgument::Pack:
5353        // FIXME: Format template argument packs
5354        Result += "<template argument pack>";
5355        break;
5356    }
5357  }
5358
5359  Result += ']';
5360  return Result;
5361}
5362