SemaExceptionSpec.cpp revision 205219
1//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ exception specification testing.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/Basic/Diagnostic.h"
19#include "clang/Basic/SourceManager.h"
20#include "llvm/ADT/SmallPtrSet.h"
21
22namespace clang {
23
24static const FunctionProtoType *GetUnderlyingFunction(QualType T)
25{
26  if (const PointerType *PtrTy = T->getAs<PointerType>())
27    T = PtrTy->getPointeeType();
28  else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
29    T = RefTy->getPointeeType();
30  else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
31    T = MPTy->getPointeeType();
32  return T->getAs<FunctionProtoType>();
33}
34
35/// CheckSpecifiedExceptionType - Check if the given type is valid in an
36/// exception specification. Incomplete types, or pointers to incomplete types
37/// other than void are not allowed.
38bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
39
40  // This check (and the similar one below) deals with issue 437, that changes
41  // C++ 9.2p2 this way:
42  // Within the class member-specification, the class is regarded as complete
43  // within function bodies, default arguments, exception-specifications, and
44  // constructor ctor-initializers (including such things in nested classes).
45  if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined())
46    return false;
47
48  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
49  //   an incomplete type.
50  if (RequireCompleteType(Range.getBegin(), T,
51      PDiag(diag::err_incomplete_in_exception_spec) << /*direct*/0 << Range))
52    return true;
53
54  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
55  //   an incomplete type a pointer or reference to an incomplete type, other
56  //   than (cv) void*.
57  int kind;
58  if (const PointerType* IT = T->getAs<PointerType>()) {
59    T = IT->getPointeeType();
60    kind = 1;
61  } else if (const ReferenceType* IT = T->getAs<ReferenceType>()) {
62    T = IT->getPointeeType();
63    kind = 2;
64  } else
65    return false;
66
67  // Again as before
68  if (T->isRecordType() && T->getAs<RecordType>()->isBeingDefined())
69    return false;
70
71  if (!T->isVoidType() && RequireCompleteType(Range.getBegin(), T,
72      PDiag(diag::err_incomplete_in_exception_spec) << kind << Range))
73    return true;
74
75  return false;
76}
77
78/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
79/// to member to a function with an exception specification. This means that
80/// it is invalid to add another level of indirection.
81bool Sema::CheckDistantExceptionSpec(QualType T) {
82  if (const PointerType *PT = T->getAs<PointerType>())
83    T = PT->getPointeeType();
84  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
85    T = PT->getPointeeType();
86  else
87    return false;
88
89  const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
90  if (!FnT)
91    return false;
92
93  return FnT->hasExceptionSpec();
94}
95
96bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
97  bool MissingEmptyExceptionSpecification = false;
98  if (!CheckEquivalentExceptionSpec(diag::err_mismatched_exception_spec,
99                                    diag::note_previous_declaration,
100                                    Old->getType()->getAs<FunctionProtoType>(),
101                                    Old->getLocation(),
102                                    New->getType()->getAs<FunctionProtoType>(),
103                                    New->getLocation(),
104                                    &MissingEmptyExceptionSpecification))
105    return false;
106
107  // The failure was something other than an empty exception
108  // specification; return an error.
109  if (!MissingEmptyExceptionSpecification)
110    return true;
111
112  // The new function declaration is only missing an empty exception
113  // specification "throw()". If the throw() specification came from a
114  // function in a system header that has C linkage, just add an empty
115  // exception specification to the "new" declaration. This is an
116  // egregious workaround for glibc, which adds throw() specifications
117  // to many libc functions as an optimization. Unfortunately, that
118  // optimization isn't permitted by the C++ standard, so we're forced
119  // to work around it here.
120  if (isa<FunctionProtoType>(New->getType()) &&
121      Context.getSourceManager().isInSystemHeader(Old->getLocation()) &&
122      Old->isExternC()) {
123    const FunctionProtoType *NewProto
124      = cast<FunctionProtoType>(New->getType());
125    QualType NewType = Context.getFunctionType(NewProto->getResultType(),
126                                               NewProto->arg_type_begin(),
127                                               NewProto->getNumArgs(),
128                                               NewProto->isVariadic(),
129                                               NewProto->getTypeQuals(),
130                                               true, false, 0, 0,
131                                               NewProto->getNoReturnAttr(),
132                                               NewProto->getCallConv());
133    New->setType(NewType);
134    return false;
135  }
136
137  Diag(New->getLocation(), diag::err_mismatched_exception_spec);
138  Diag(Old->getLocation(), diag::note_previous_declaration);
139  return true;
140}
141
142/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
143/// exception specifications. Exception specifications are equivalent if
144/// they allow exactly the same set of exception types. It does not matter how
145/// that is achieved. See C++ [except.spec]p2.
146bool Sema::CheckEquivalentExceptionSpec(
147    const FunctionProtoType *Old, SourceLocation OldLoc,
148    const FunctionProtoType *New, SourceLocation NewLoc) {
149  return CheckEquivalentExceptionSpec(diag::err_mismatched_exception_spec,
150                                      diag::note_previous_declaration,
151                                      Old, OldLoc, New, NewLoc);
152}
153
154/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
155/// exception specifications. Exception specifications are equivalent if
156/// they allow exactly the same set of exception types. It does not matter how
157/// that is achieved. See C++ [except.spec]p2.
158bool Sema::CheckEquivalentExceptionSpec(
159    const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
160    const FunctionProtoType *Old, SourceLocation OldLoc,
161    const FunctionProtoType *New, SourceLocation NewLoc,
162    bool *MissingEmptyExceptionSpecification) {
163  if (MissingEmptyExceptionSpecification)
164    *MissingEmptyExceptionSpecification = false;
165
166  bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
167  bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
168  if (OldAny && NewAny)
169    return false;
170  if (OldAny || NewAny) {
171    if (MissingEmptyExceptionSpecification && Old->hasExceptionSpec() &&
172        !Old->hasAnyExceptionSpec() && Old->getNumExceptions() == 0 &&
173        !New->hasExceptionSpec()) {
174      // The old type has a throw() exception specification and the
175      // new type has no exception specification, and the caller asked
176      // to handle this itself.
177      *MissingEmptyExceptionSpecification = true;
178      return true;
179    }
180
181    Diag(NewLoc, DiagID);
182    if (NoteID.getDiagID() != 0)
183      Diag(OldLoc, NoteID);
184    return true;
185  }
186
187  bool Success = true;
188  // Both have a definite exception spec. Collect the first set, then compare
189  // to the second.
190  llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
191  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
192       E = Old->exception_end(); I != E; ++I)
193    OldTypes.insert(Context.getCanonicalType(*I).getUnqualifiedType());
194
195  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
196       E = New->exception_end(); I != E && Success; ++I) {
197    CanQualType TypePtr = Context.getCanonicalType(*I).getUnqualifiedType();
198    if(OldTypes.count(TypePtr))
199      NewTypes.insert(TypePtr);
200    else
201      Success = false;
202  }
203
204  Success = Success && OldTypes.size() == NewTypes.size();
205
206  if (Success) {
207    return false;
208  }
209  Diag(NewLoc, DiagID);
210  if (NoteID.getDiagID() != 0)
211    Diag(OldLoc, NoteID);
212  return true;
213}
214
215/// CheckExceptionSpecSubset - Check whether the second function type's
216/// exception specification is a subset (or equivalent) of the first function
217/// type. This is used by override and pointer assignment checks.
218bool Sema::CheckExceptionSpecSubset(
219    const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
220    const FunctionProtoType *Superset, SourceLocation SuperLoc,
221    const FunctionProtoType *Subset, SourceLocation SubLoc) {
222  // FIXME: As usual, we could be more specific in our error messages, but
223  // that better waits until we've got types with source locations.
224
225  if (!SubLoc.isValid())
226    SubLoc = SuperLoc;
227
228  // If superset contains everything, we're done.
229  if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
230    return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
231
232  // It does not. If the subset contains everything, we've failed.
233  if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
234    Diag(SubLoc, DiagID);
235    if (NoteID.getDiagID() != 0)
236      Diag(SuperLoc, NoteID);
237    return true;
238  }
239
240  // Neither contains everything. Do a proper comparison.
241  for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
242       SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
243    // Take one type from the subset.
244    QualType CanonicalSubT = Context.getCanonicalType(*SubI);
245    // Unwrap pointers and references so that we can do checks within a class
246    // hierarchy. Don't unwrap member pointers; they don't have hierarchy
247    // conversions on the pointee.
248    bool SubIsPointer = false;
249    if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
250      CanonicalSubT = RefTy->getPointeeType();
251    if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
252      CanonicalSubT = PtrTy->getPointeeType();
253      SubIsPointer = true;
254    }
255    bool SubIsClass = CanonicalSubT->isRecordType();
256    CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
257
258    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
259                       /*DetectVirtual=*/false);
260
261    bool Contained = false;
262    // Make sure it's in the superset.
263    for (FunctionProtoType::exception_iterator SuperI =
264           Superset->exception_begin(), SuperE = Superset->exception_end();
265         SuperI != SuperE; ++SuperI) {
266      QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
267      // SubT must be SuperT or derived from it, or pointer or reference to
268      // such types.
269      if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
270        CanonicalSuperT = RefTy->getPointeeType();
271      if (SubIsPointer) {
272        if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
273          CanonicalSuperT = PtrTy->getPointeeType();
274        else {
275          continue;
276        }
277      }
278      CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
279      // If the types are the same, move on to the next type in the subset.
280      if (CanonicalSubT == CanonicalSuperT) {
281        Contained = true;
282        break;
283      }
284
285      // Otherwise we need to check the inheritance.
286      if (!SubIsClass || !CanonicalSuperT->isRecordType())
287        continue;
288
289      Paths.clear();
290      if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
291        continue;
292
293      if (Paths.isAmbiguous(CanonicalSuperT))
294        continue;
295
296      // Do this check from a context without privileges.
297      switch (CheckBaseClassAccess(SourceLocation(),
298                                   CanonicalSuperT, CanonicalSubT,
299                                   Paths.front(),
300                                   /*Diagnostic*/ 0,
301                                   /*ForceCheck*/ true,
302                                   /*ForceUnprivileged*/ true)) {
303      case AR_accessible: break;
304      case AR_inaccessible: continue;
305      case AR_dependent:
306        llvm_unreachable("access check dependent for unprivileged context");
307        break;
308      case AR_delayed:
309        llvm_unreachable("access check delayed in non-declaration");
310        break;
311      }
312
313      Contained = true;
314      break;
315    }
316    if (!Contained) {
317      Diag(SubLoc, DiagID);
318      if (NoteID.getDiagID() != 0)
319        Diag(SuperLoc, NoteID);
320      return true;
321    }
322  }
323  // We've run half the gauntlet.
324  return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
325}
326
327static bool CheckSpecForTypesEquivalent(Sema &S,
328    const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
329    QualType Target, SourceLocation TargetLoc,
330    QualType Source, SourceLocation SourceLoc)
331{
332  const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
333  if (!TFunc)
334    return false;
335  const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
336  if (!SFunc)
337    return false;
338
339  return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
340                                        SFunc, SourceLoc);
341}
342
343/// CheckParamExceptionSpec - Check if the parameter and return types of the
344/// two functions have equivalent exception specs. This is part of the
345/// assignment and override compatibility check. We do not check the parameters
346/// of parameter function pointers recursively, as no sane programmer would
347/// even be able to write such a function type.
348bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
349    const FunctionProtoType *Target, SourceLocation TargetLoc,
350    const FunctionProtoType *Source, SourceLocation SourceLoc)
351{
352  if (CheckSpecForTypesEquivalent(*this,
353                           PDiag(diag::err_deep_exception_specs_differ) << 0, 0,
354                                  Target->getResultType(), TargetLoc,
355                                  Source->getResultType(), SourceLoc))
356    return true;
357
358  // We shouldn't even be testing this unless the arguments are otherwise
359  // compatible.
360  assert(Target->getNumArgs() == Source->getNumArgs() &&
361         "Functions have different argument counts.");
362  for (unsigned i = 0, E = Target->getNumArgs(); i != E; ++i) {
363    if (CheckSpecForTypesEquivalent(*this,
364                           PDiag(diag::err_deep_exception_specs_differ) << 1, 0,
365                                    Target->getArgType(i), TargetLoc,
366                                    Source->getArgType(i), SourceLoc))
367      return true;
368  }
369  return false;
370}
371
372bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
373{
374  // First we check for applicability.
375  // Target type must be a function, function pointer or function reference.
376  const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
377  if (!ToFunc)
378    return false;
379
380  // SourceType must be a function or function pointer.
381  const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
382  if (!FromFunc)
383    return false;
384
385  // Now we've got the correct types on both sides, check their compatibility.
386  // This means that the source of the conversion can only throw a subset of
387  // the exceptions of the target, and any exception specs on arguments or
388  // return types must be equivalent.
389  return CheckExceptionSpecSubset(diag::err_incompatible_exception_specs,
390                                  0, ToFunc, From->getSourceRange().getBegin(),
391                                  FromFunc, SourceLocation());
392}
393
394bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
395                                                const CXXMethodDecl *Old) {
396  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
397                                  diag::note_overridden_virtual_function,
398                                  Old->getType()->getAs<FunctionProtoType>(),
399                                  Old->getLocation(),
400                                  New->getType()->getAs<FunctionProtoType>(),
401                                  New->getLocation());
402}
403
404} // end namespace clang
405