SemaCXXScopeSpec.cpp revision 202379
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25
26/// \brief Find the current instantiation that associated with the given type.
27static CXXRecordDecl *
28getCurrentInstantiationOf(ASTContext &Context, DeclContext *CurContext,
29                          QualType T) {
30  if (T.isNull())
31    return 0;
32
33  T = Context.getCanonicalType(T);
34
35  for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getParent()) {
36    // If we've hit a namespace or the global scope, then the
37    // nested-name-specifier can't refer to the current instantiation.
38    if (Ctx->isFileContext())
39      return 0;
40
41    // Skip non-class contexts.
42    CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
43    if (!Record)
44      continue;
45
46    // If this record type is not dependent,
47    if (!Record->isDependentType())
48      return 0;
49
50    // C++ [temp.dep.type]p1:
51    //
52    //   In the definition of a class template, a nested class of a
53    //   class template, a member of a class template, or a member of a
54    //   nested class of a class template, a name refers to the current
55    //   instantiation if it is
56    //     -- the injected-class-name (9) of the class template or
57    //        nested class,
58    //     -- in the definition of a primary class template, the name
59    //        of the class template followed by the template argument
60    //        list of the primary template (as described below)
61    //        enclosed in <>,
62    //     -- in the definition of a nested class of a class template,
63    //        the name of the nested class referenced as a member of
64    //        the current instantiation, or
65    //     -- in the definition of a partial specialization, the name
66    //        of the class template followed by the template argument
67    //        list of the partial specialization enclosed in <>. If
68    //        the nth template parameter is a parameter pack, the nth
69    //        template argument is a pack expansion (14.6.3) whose
70    //        pattern is the name of the parameter pack.
71    //        (FIXME: parameter packs)
72    //
73    // All of these options come down to having the
74    // nested-name-specifier type that is equivalent to the
75    // injected-class-name of one of the types that is currently in
76    // our context.
77    if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T)
78      return Record;
79
80    if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) {
81      QualType InjectedClassName
82        = Template->getInjectedClassNameType(Context);
83      if (T == Context.getCanonicalType(InjectedClassName))
84        return Template->getTemplatedDecl();
85    }
86    // FIXME: check for class template partial specializations
87  }
88
89  return 0;
90}
91
92/// \brief Compute the DeclContext that is associated with the given type.
93///
94/// \param T the type for which we are attempting to find a DeclContext.
95///
96/// \returns the declaration context represented by the type T,
97/// or NULL if the declaration context cannot be computed (e.g., because it is
98/// dependent and not the current instantiation).
99DeclContext *Sema::computeDeclContext(QualType T) {
100  if (const TagType *Tag = T->getAs<TagType>())
101    return Tag->getDecl();
102
103  return ::getCurrentInstantiationOf(Context, CurContext, T);
104}
105
106/// \brief Compute the DeclContext that is associated with the given
107/// scope specifier.
108///
109/// \param SS the C++ scope specifier as it appears in the source
110///
111/// \param EnteringContext when true, we will be entering the context of
112/// this scope specifier, so we can retrieve the declaration context of a
113/// class template or class template partial specialization even if it is
114/// not the current instantiation.
115///
116/// \returns the declaration context represented by the scope specifier @p SS,
117/// or NULL if the declaration context cannot be computed (e.g., because it is
118/// dependent and not the current instantiation).
119DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
120                                      bool EnteringContext) {
121  if (!SS.isSet() || SS.isInvalid())
122    return 0;
123
124  NestedNameSpecifier *NNS
125    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
126  if (NNS->isDependent()) {
127    // If this nested-name-specifier refers to the current
128    // instantiation, return its DeclContext.
129    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
130      return Record;
131
132    if (EnteringContext) {
133      if (const TemplateSpecializationType *SpecType
134            = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
135        // We are entering the context of the nested name specifier, so try to
136        // match the nested name specifier to either a primary class template
137        // or a class template partial specialization.
138        if (ClassTemplateDecl *ClassTemplate
139              = dyn_cast_or_null<ClassTemplateDecl>(
140                            SpecType->getTemplateName().getAsTemplateDecl())) {
141          QualType ContextType
142            = Context.getCanonicalType(QualType(SpecType, 0));
143
144          // If the type of the nested name specifier is the same as the
145          // injected class name of the named class template, we're entering
146          // into that class template definition.
147          QualType Injected = ClassTemplate->getInjectedClassNameType(Context);
148          if (Context.hasSameType(Injected, ContextType))
149            return ClassTemplate->getTemplatedDecl();
150
151          // If the type of the nested name specifier is the same as the
152          // type of one of the class template's class template partial
153          // specializations, we're entering into the definition of that
154          // class template partial specialization.
155          if (ClassTemplatePartialSpecializationDecl *PartialSpec
156                = ClassTemplate->findPartialSpecialization(ContextType))
157            return PartialSpec;
158        }
159      } else if (const RecordType *RecordT
160                   = dyn_cast_or_null<RecordType>(NNS->getAsType())) {
161        // The nested name specifier refers to a member of a class template.
162        return RecordT->getDecl();
163      }
164    }
165
166    return 0;
167  }
168
169  switch (NNS->getKind()) {
170  case NestedNameSpecifier::Identifier:
171    assert(false && "Dependent nested-name-specifier has no DeclContext");
172    break;
173
174  case NestedNameSpecifier::Namespace:
175    return NNS->getAsNamespace();
176
177  case NestedNameSpecifier::TypeSpec:
178  case NestedNameSpecifier::TypeSpecWithTemplate: {
179    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
180    assert(Tag && "Non-tag type in nested-name-specifier");
181    return Tag->getDecl();
182  } break;
183
184  case NestedNameSpecifier::Global:
185    return Context.getTranslationUnitDecl();
186  }
187
188  // Required to silence a GCC warning.
189  return 0;
190}
191
192bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
193  if (!SS.isSet() || SS.isInvalid())
194    return false;
195
196  NestedNameSpecifier *NNS
197    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
198  return NNS->isDependent();
199}
200
201// \brief Determine whether this C++ scope specifier refers to an
202// unknown specialization, i.e., a dependent type that is not the
203// current instantiation.
204bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
205  if (!isDependentScopeSpecifier(SS))
206    return false;
207
208  NestedNameSpecifier *NNS
209    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
210  return getCurrentInstantiationOf(NNS) == 0;
211}
212
213/// \brief Determine whether the given scope specifier refers to a
214/// current instantiation that has any dependent base clases.
215///
216/// This check is typically used when we've performed lookup into the
217/// current instantiation of a template, but that lookup failed. When
218/// there are dependent bases present, however, the lookup needs to be
219/// delayed until template instantiation time.
220bool Sema::isCurrentInstantiationWithDependentBases(const CXXScopeSpec &SS) {
221  if (!SS.isSet())
222    return false;
223
224  NestedNameSpecifier *NNS = (NestedNameSpecifier*)SS.getScopeRep();
225  if (!NNS->isDependent())
226    return false;
227
228  CXXRecordDecl *CurrentInstantiation = getCurrentInstantiationOf(NNS);
229  if (!CurrentInstantiation)
230    return false;
231
232  return CurrentInstantiation->hasAnyDependentBases();
233}
234
235/// \brief If the given nested name specifier refers to the current
236/// instantiation, return the declaration that corresponds to that
237/// current instantiation (C++0x [temp.dep.type]p1).
238///
239/// \param NNS a dependent nested name specifier.
240CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
241  assert(getLangOptions().CPlusPlus && "Only callable in C++");
242  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
243
244  if (!NNS->getAsType())
245    return 0;
246
247  QualType T = QualType(NNS->getAsType(), 0);
248  return ::getCurrentInstantiationOf(Context, CurContext, T);
249}
250
251/// \brief Require that the context specified by SS be complete.
252///
253/// If SS refers to a type, this routine checks whether the type is
254/// complete enough (or can be made complete enough) for name lookup
255/// into the DeclContext. A type that is not yet completed can be
256/// considered "complete enough" if it is a class/struct/union/enum
257/// that is currently being defined. Or, if we have a type that names
258/// a class template specialization that is not a complete type, we
259/// will attempt to instantiate that class template.
260bool Sema::RequireCompleteDeclContext(const CXXScopeSpec &SS) {
261  if (!SS.isSet() || SS.isInvalid())
262    return false;
263
264  DeclContext *DC = computeDeclContext(SS, true);
265  if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
266    // If we're currently defining this type, then lookup into the
267    // type is okay: don't complain that it isn't complete yet.
268    const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
269    if (TagT->isBeingDefined())
270      return false;
271
272    // The type must be complete.
273    return RequireCompleteType(SS.getRange().getBegin(),
274                               Context.getTypeDeclType(Tag),
275                               PDiag(diag::err_incomplete_nested_name_spec)
276                                 << SS.getRange());
277  }
278
279  return false;
280}
281
282/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
283/// global scope ('::').
284Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
285                                                     SourceLocation CCLoc) {
286  return NestedNameSpecifier::GlobalSpecifier(Context);
287}
288
289/// \brief Determines whether the given declaration is an valid acceptable
290/// result for name lookup of a nested-name-specifier.
291bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
292  if (!SD)
293    return false;
294
295  // Namespace and namespace aliases are fine.
296  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
297    return true;
298
299  if (!isa<TypeDecl>(SD))
300    return false;
301
302  // Determine whether we have a class (or, in C++0x, an enum) or
303  // a typedef thereof. If so, build the nested-name-specifier.
304  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
305  if (T->isDependentType())
306    return true;
307  else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
308    if (TD->getUnderlyingType()->isRecordType() ||
309        (Context.getLangOptions().CPlusPlus0x &&
310         TD->getUnderlyingType()->isEnumeralType()))
311      return true;
312  } else if (isa<RecordDecl>(SD) ||
313             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
314    return true;
315
316  return false;
317}
318
319/// \brief If the given nested-name-specifier begins with a bare identifier
320/// (e.g., Base::), perform name lookup for that identifier as a
321/// nested-name-specifier within the given scope, and return the result of that
322/// name lookup.
323NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
324  if (!S || !NNS)
325    return 0;
326
327  while (NNS->getPrefix())
328    NNS = NNS->getPrefix();
329
330  if (NNS->getKind() != NestedNameSpecifier::Identifier)
331    return 0;
332
333  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
334                     LookupNestedNameSpecifierName);
335  LookupName(Found, S);
336  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
337
338  if (!Found.isSingleResult())
339    return 0;
340
341  NamedDecl *Result = Found.getFoundDecl();
342  if (isAcceptableNestedNameSpecifier(Result))
343    return Result;
344
345  return 0;
346}
347
348/// \brief Build a new nested-name-specifier for "identifier::", as described
349/// by ActOnCXXNestedNameSpecifier.
350///
351/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
352/// that it contains an extra parameter \p ScopeLookupResult, which provides
353/// the result of name lookup within the scope of the nested-name-specifier
354/// that was computed at template definition time.
355///
356/// If ErrorRecoveryLookup is true, then this call is used to improve error
357/// recovery.  This means that it should not emit diagnostics, it should
358/// just return null on failure.  It also means it should only return a valid
359/// scope if it *knows* that the result is correct.  It should not return in a
360/// dependent context, for example.
361Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
362                                                    const CXXScopeSpec &SS,
363                                                    SourceLocation IdLoc,
364                                                    SourceLocation CCLoc,
365                                                    IdentifierInfo &II,
366                                                    QualType ObjectType,
367                                                  NamedDecl *ScopeLookupResult,
368                                                    bool EnteringContext,
369                                                    bool ErrorRecoveryLookup) {
370  NestedNameSpecifier *Prefix
371    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
372
373  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
374
375  // Determine where to perform name lookup
376  DeclContext *LookupCtx = 0;
377  bool isDependent = false;
378  if (!ObjectType.isNull()) {
379    // This nested-name-specifier occurs in a member access expression, e.g.,
380    // x->B::f, and we are looking into the type of the object.
381    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
382    LookupCtx = computeDeclContext(ObjectType);
383    isDependent = ObjectType->isDependentType();
384  } else if (SS.isSet()) {
385    // This nested-name-specifier occurs after another nested-name-specifier,
386    // so long into the context associated with the prior nested-name-specifier.
387    LookupCtx = computeDeclContext(SS, EnteringContext);
388    isDependent = isDependentScopeSpecifier(SS);
389    Found.setContextRange(SS.getRange());
390  }
391
392
393  bool ObjectTypeSearchedInScope = false;
394  if (LookupCtx) {
395    // Perform "qualified" name lookup into the declaration context we
396    // computed, which is either the type of the base of a member access
397    // expression or the declaration context associated with a prior
398    // nested-name-specifier.
399
400    // The declaration context must be complete.
401    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
402      return 0;
403
404    LookupQualifiedName(Found, LookupCtx);
405
406    if (!ObjectType.isNull() && Found.empty()) {
407      // C++ [basic.lookup.classref]p4:
408      //   If the id-expression in a class member access is a qualified-id of
409      //   the form
410      //
411      //        class-name-or-namespace-name::...
412      //
413      //   the class-name-or-namespace-name following the . or -> operator is
414      //   looked up both in the context of the entire postfix-expression and in
415      //   the scope of the class of the object expression. If the name is found
416      //   only in the scope of the class of the object expression, the name
417      //   shall refer to a class-name. If the name is found only in the
418      //   context of the entire postfix-expression, the name shall refer to a
419      //   class-name or namespace-name. [...]
420      //
421      // Qualified name lookup into a class will not find a namespace-name,
422      // so we do not need to diagnoste that case specifically. However,
423      // this qualified name lookup may find nothing. In that case, perform
424      // unqualified name lookup in the given scope (if available) or
425      // reconstruct the result from when name lookup was performed at template
426      // definition time.
427      if (S)
428        LookupName(Found, S);
429      else if (ScopeLookupResult)
430        Found.addDecl(ScopeLookupResult);
431
432      ObjectTypeSearchedInScope = true;
433    }
434  } else if (isDependent) {
435    // Don't speculate if we're just trying to improve error recovery.
436    if (ErrorRecoveryLookup)
437      return 0;
438
439    // We were not able to compute the declaration context for a dependent
440    // base object type or prior nested-name-specifier, so this
441    // nested-name-specifier refers to an unknown specialization. Just build
442    // a dependent nested-name-specifier.
443    if (!Prefix)
444      return NestedNameSpecifier::Create(Context, &II);
445
446    return NestedNameSpecifier::Create(Context, Prefix, &II);
447  } else {
448    // Perform unqualified name lookup in the current scope.
449    LookupName(Found, S);
450  }
451
452  // FIXME: Deal with ambiguities cleanly.
453
454  if (Found.empty() && !ErrorRecoveryLookup) {
455    // We haven't found anything, and we're not recovering from a
456    // different kind of error, so look for typos.
457    DeclarationName Name = Found.getLookupName();
458    if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext) &&
459        Found.isSingleResult() &&
460        isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
461      if (LookupCtx)
462        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
463          << Name << LookupCtx << Found.getLookupName() << SS.getRange()
464          << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
465                                           Found.getLookupName().getAsString());
466      else
467        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
468          << Name << Found.getLookupName()
469          << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
470                                           Found.getLookupName().getAsString());
471
472      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
473        Diag(ND->getLocation(), diag::note_previous_decl)
474          << ND->getDeclName();
475    } else
476      Found.clear();
477  }
478
479  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
480  if (isAcceptableNestedNameSpecifier(SD)) {
481    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
482      // C++ [basic.lookup.classref]p4:
483      //   [...] If the name is found in both contexts, the
484      //   class-name-or-namespace-name shall refer to the same entity.
485      //
486      // We already found the name in the scope of the object. Now, look
487      // into the current scope (the scope of the postfix-expression) to
488      // see if we can find the same name there. As above, if there is no
489      // scope, reconstruct the result from the template instantiation itself.
490      NamedDecl *OuterDecl;
491      if (S) {
492        LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName);
493        LookupName(FoundOuter, S);
494        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
495      } else
496        OuterDecl = ScopeLookupResult;
497
498      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
499          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
500          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
501           !Context.hasSameType(
502                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
503                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
504             if (ErrorRecoveryLookup)
505               return 0;
506
507             Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
508               << &II;
509             Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
510               << ObjectType;
511             Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
512
513             // Fall through so that we'll pick the name we found in the object
514             // type, since that's probably what the user wanted anyway.
515           }
516    }
517
518    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
519      return NestedNameSpecifier::Create(Context, Prefix, Namespace);
520
521    // FIXME: It would be nice to maintain the namespace alias name, then
522    // see through that alias when resolving the nested-name-specifier down to
523    // a declaration context.
524    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
525      return NestedNameSpecifier::Create(Context, Prefix,
526
527                                         Alias->getNamespace());
528
529    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
530    return NestedNameSpecifier::Create(Context, Prefix, false,
531                                       T.getTypePtr());
532  }
533
534  // Otherwise, we have an error case.  If we don't want diagnostics, just
535  // return an error now.
536  if (ErrorRecoveryLookup)
537    return 0;
538
539  // If we didn't find anything during our lookup, try again with
540  // ordinary name lookup, which can help us produce better error
541  // messages.
542  if (Found.empty()) {
543    Found.clear(LookupOrdinaryName);
544    LookupName(Found, S);
545  }
546
547  unsigned DiagID;
548  if (!Found.empty())
549    DiagID = diag::err_expected_class_or_namespace;
550  else if (SS.isSet()) {
551    Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
552    return 0;
553  } else
554    DiagID = diag::err_undeclared_var_use;
555
556  if (SS.isSet())
557    Diag(IdLoc, DiagID) << &II << SS.getRange();
558  else
559    Diag(IdLoc, DiagID) << &II;
560
561  return 0;
562}
563
564/// ActOnCXXNestedNameSpecifier - Called during parsing of a
565/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
566/// we want to resolve "bar::". 'SS' is empty or the previously parsed
567/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
568/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
569/// Returns a CXXScopeTy* object representing the C++ scope.
570Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
571                                                    const CXXScopeSpec &SS,
572                                                    SourceLocation IdLoc,
573                                                    SourceLocation CCLoc,
574                                                    IdentifierInfo &II,
575                                                    TypeTy *ObjectTypePtr,
576                                                    bool EnteringContext) {
577  return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
578                                     QualType::getFromOpaquePtr(ObjectTypePtr),
579                                     /*ScopeLookupResult=*/0, EnteringContext,
580                                     false);
581}
582
583/// IsInvalidUnlessNestedName - This method is used for error recovery
584/// purposes to determine whether the specified identifier is only valid as
585/// a nested name specifier, for example a namespace name.  It is
586/// conservatively correct to always return false from this method.
587///
588/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
589bool Sema::IsInvalidUnlessNestedName(Scope *S, const CXXScopeSpec &SS,
590                                     IdentifierInfo &II, TypeTy *ObjectType,
591                                     bool EnteringContext) {
592  return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(),
593                                     II, QualType::getFromOpaquePtr(ObjectType),
594                                     /*ScopeLookupResult=*/0, EnteringContext,
595                                     true);
596}
597
598Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
599                                                    const CXXScopeSpec &SS,
600                                                    TypeTy *Ty,
601                                                    SourceRange TypeRange,
602                                                    SourceLocation CCLoc) {
603  NestedNameSpecifier *Prefix
604    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
605  QualType T = GetTypeFromParser(Ty);
606  return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
607                                     T.getTypePtr());
608}
609
610bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
611  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
612
613  NestedNameSpecifier *Qualifier =
614    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
615
616  // There are only two places a well-formed program may qualify a
617  // declarator: first, when defining a namespace or class member
618  // out-of-line, and second, when naming an explicitly-qualified
619  // friend function.  The latter case is governed by
620  // C++03 [basic.lookup.unqual]p10:
621  //   In a friend declaration naming a member function, a name used
622  //   in the function declarator and not part of a template-argument
623  //   in a template-id is first looked up in the scope of the member
624  //   function's class. If it is not found, or if the name is part of
625  //   a template-argument in a template-id, the look up is as
626  //   described for unqualified names in the definition of the class
627  //   granting friendship.
628  // i.e. we don't push a scope unless it's a class member.
629
630  switch (Qualifier->getKind()) {
631  case NestedNameSpecifier::Global:
632  case NestedNameSpecifier::Namespace:
633    // These are always namespace scopes.  We never want to enter a
634    // namespace scope from anything but a file context.
635    return CurContext->getLookupContext()->isFileContext();
636
637  case NestedNameSpecifier::Identifier:
638  case NestedNameSpecifier::TypeSpec:
639  case NestedNameSpecifier::TypeSpecWithTemplate:
640    // These are never namespace scopes.
641    return true;
642  }
643
644  // Silence bogus warning.
645  return false;
646}
647
648/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
649/// scope or nested-name-specifier) is parsed, part of a declarator-id.
650/// After this method is called, according to [C++ 3.4.3p3], names should be
651/// looked up in the declarator-id's scope, until the declarator is parsed and
652/// ActOnCXXExitDeclaratorScope is called.
653/// The 'SS' should be a non-empty valid CXXScopeSpec.
654bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
655  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
656
657  if (SS.isInvalid()) return true;
658
659  DeclContext *DC = computeDeclContext(SS, true);
660  if (!DC) return true;
661
662  // Before we enter a declarator's context, we need to make sure that
663  // it is a complete declaration context.
664  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS))
665    return true;
666
667  EnterDeclaratorContext(S, DC);
668  return false;
669}
670
671/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
672/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
673/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
674/// Used to indicate that names should revert to being looked up in the
675/// defining scope.
676void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
677  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
678  if (SS.isInvalid())
679    return;
680  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
681         "exiting declarator scope we never really entered");
682  ExitDeclaratorContext(S);
683}
684