ItaniumCXXABI.cpp revision 226633
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targeting the Itanium C++ ABI.  The class
11// in this file generates structures that follow the Itanium C++ ABI, which is
12// documented at:
13//  http://www.codesourcery.com/public/cxx-abi/abi.html
14//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15//
16// It also supports the closely-related ARM ABI, documented at:
17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18//
19//===----------------------------------------------------------------------===//
20
21#include "CGCXXABI.h"
22#include "CGRecordLayout.h"
23#include "CodeGenFunction.h"
24#include "CodeGenModule.h"
25#include <clang/AST/Mangle.h>
26#include <clang/AST/Type.h>
27#include <llvm/Intrinsics.h>
28#include <llvm/Target/TargetData.h>
29#include <llvm/Value.h>
30
31using namespace clang;
32using namespace CodeGen;
33
34namespace {
35class ItaniumCXXABI : public CodeGen::CGCXXABI {
36private:
37  llvm::IntegerType *PtrDiffTy;
38protected:
39  bool IsARM;
40
41  // It's a little silly for us to cache this.
42  llvm::IntegerType *getPtrDiffTy() {
43    if (!PtrDiffTy) {
44      QualType T = getContext().getPointerDiffType();
45      llvm::Type *Ty = CGM.getTypes().ConvertType(T);
46      PtrDiffTy = cast<llvm::IntegerType>(Ty);
47    }
48    return PtrDiffTy;
49  }
50
51  bool NeedsArrayCookie(const CXXNewExpr *expr);
52  bool NeedsArrayCookie(const CXXDeleteExpr *expr,
53                        QualType elementType);
54
55public:
56  ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
57    CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
58
59  bool isZeroInitializable(const MemberPointerType *MPT);
60
61  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
62
63  llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
64                                               llvm::Value *&This,
65                                               llvm::Value *MemFnPtr,
66                                               const MemberPointerType *MPT);
67
68  llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
69                                            llvm::Value *Base,
70                                            llvm::Value *MemPtr,
71                                            const MemberPointerType *MPT);
72
73  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
74                                           const CastExpr *E,
75                                           llvm::Value *Src);
76
77  llvm::Constant *EmitMemberPointerConversion(llvm::Constant *C,
78                                              const CastExpr *E);
79
80  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
81
82  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
83  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
84                                        CharUnits offset);
85
86  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
87                                           llvm::Value *L,
88                                           llvm::Value *R,
89                                           const MemberPointerType *MPT,
90                                           bool Inequality);
91
92  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
93                                          llvm::Value *Addr,
94                                          const MemberPointerType *MPT);
95
96  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
97                                 CXXCtorType T,
98                                 CanQualType &ResTy,
99                                 SmallVectorImpl<CanQualType> &ArgTys);
100
101  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
102                                CXXDtorType T,
103                                CanQualType &ResTy,
104                                SmallVectorImpl<CanQualType> &ArgTys);
105
106  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
107                                   QualType &ResTy,
108                                   FunctionArgList &Params);
109
110  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
111
112  CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
113  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
114                                     llvm::Value *NewPtr,
115                                     llvm::Value *NumElements,
116                                     const CXXNewExpr *expr,
117                                     QualType ElementType);
118  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
119                       const CXXDeleteExpr *expr,
120                       QualType ElementType, llvm::Value *&NumElements,
121                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
122
123  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
124                       llvm::GlobalVariable *DeclPtr);
125};
126
127class ARMCXXABI : public ItaniumCXXABI {
128public:
129  ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
130
131  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
132                                 CXXCtorType T,
133                                 CanQualType &ResTy,
134                                 SmallVectorImpl<CanQualType> &ArgTys);
135
136  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
137                                CXXDtorType T,
138                                CanQualType &ResTy,
139                                SmallVectorImpl<CanQualType> &ArgTys);
140
141  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
142                                   QualType &ResTy,
143                                   FunctionArgList &Params);
144
145  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
146
147  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
148
149  CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
150  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
151                                     llvm::Value *NewPtr,
152                                     llvm::Value *NumElements,
153                                     const CXXNewExpr *expr,
154                                     QualType ElementType);
155  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
156                       const CXXDeleteExpr *expr,
157                       QualType ElementType, llvm::Value *&NumElements,
158                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
159
160private:
161  /// \brief Returns true if the given instance method is one of the
162  /// kinds that the ARM ABI says returns 'this'.
163  static bool HasThisReturn(GlobalDecl GD) {
164    const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
165    return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
166            (isa<CXXConstructorDecl>(MD)));
167  }
168};
169}
170
171CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
172  return new ItaniumCXXABI(CGM);
173}
174
175CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
176  return new ARMCXXABI(CGM);
177}
178
179llvm::Type *
180ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
181  if (MPT->isMemberDataPointer())
182    return getPtrDiffTy();
183  return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL);
184}
185
186/// In the Itanium and ARM ABIs, method pointers have the form:
187///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
188///
189/// In the Itanium ABI:
190///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
191///  - the this-adjustment is (memptr.adj)
192///  - the virtual offset is (memptr.ptr - 1)
193///
194/// In the ARM ABI:
195///  - method pointers are virtual if (memptr.adj & 1) is nonzero
196///  - the this-adjustment is (memptr.adj >> 1)
197///  - the virtual offset is (memptr.ptr)
198/// ARM uses 'adj' for the virtual flag because Thumb functions
199/// may be only single-byte aligned.
200///
201/// If the member is virtual, the adjusted 'this' pointer points
202/// to a vtable pointer from which the virtual offset is applied.
203///
204/// If the member is non-virtual, memptr.ptr is the address of
205/// the function to call.
206llvm::Value *
207ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
208                                               llvm::Value *&This,
209                                               llvm::Value *MemFnPtr,
210                                               const MemberPointerType *MPT) {
211  CGBuilderTy &Builder = CGF.Builder;
212
213  const FunctionProtoType *FPT =
214    MPT->getPointeeType()->getAs<FunctionProtoType>();
215  const CXXRecordDecl *RD =
216    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
217
218  llvm::FunctionType *FTy =
219    CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT),
220                                   FPT->isVariadic());
221
222  llvm::IntegerType *ptrdiff = getPtrDiffTy();
223  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
224
225  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
226  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
227  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
228
229  // Extract memptr.adj, which is in the second field.
230  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
231
232  // Compute the true adjustment.
233  llvm::Value *Adj = RawAdj;
234  if (IsARM)
235    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
236
237  // Apply the adjustment and cast back to the original struct type
238  // for consistency.
239  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
240  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
241  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
242
243  // Load the function pointer.
244  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
245
246  // If the LSB in the function pointer is 1, the function pointer points to
247  // a virtual function.
248  llvm::Value *IsVirtual;
249  if (IsARM)
250    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
251  else
252    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
253  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
254  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
255
256  // In the virtual path, the adjustment left 'This' pointing to the
257  // vtable of the correct base subobject.  The "function pointer" is an
258  // offset within the vtable (+1 for the virtual flag on non-ARM).
259  CGF.EmitBlock(FnVirtual);
260
261  // Cast the adjusted this to a pointer to vtable pointer and load.
262  llvm::Type *VTableTy = Builder.getInt8PtrTy();
263  llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
264  VTable = Builder.CreateLoad(VTable, "memptr.vtable");
265
266  // Apply the offset.
267  llvm::Value *VTableOffset = FnAsInt;
268  if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
269  VTable = Builder.CreateGEP(VTable, VTableOffset);
270
271  // Load the virtual function to call.
272  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
273  llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
274  CGF.EmitBranch(FnEnd);
275
276  // In the non-virtual path, the function pointer is actually a
277  // function pointer.
278  CGF.EmitBlock(FnNonVirtual);
279  llvm::Value *NonVirtualFn =
280    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
281
282  // We're done.
283  CGF.EmitBlock(FnEnd);
284  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
285  Callee->addIncoming(VirtualFn, FnVirtual);
286  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
287  return Callee;
288}
289
290/// Compute an l-value by applying the given pointer-to-member to a
291/// base object.
292llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
293                                                         llvm::Value *Base,
294                                                         llvm::Value *MemPtr,
295                                           const MemberPointerType *MPT) {
296  assert(MemPtr->getType() == getPtrDiffTy());
297
298  CGBuilderTy &Builder = CGF.Builder;
299
300  unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
301
302  // Cast to char*.
303  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
304
305  // Apply the offset, which we assume is non-null.
306  llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
307
308  // Cast the address to the appropriate pointer type, adopting the
309  // address space of the base pointer.
310  llvm::Type *PType
311    = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
312  return Builder.CreateBitCast(Addr, PType);
313}
314
315/// Perform a derived-to-base or base-to-derived member pointer conversion.
316///
317/// Obligatory offset/adjustment diagram:
318///         <-- offset -->          <-- adjustment -->
319///   |--------------------------|----------------------|--------------------|
320///   ^Derived address point     ^Base address point    ^Member address point
321///
322/// So when converting a base member pointer to a derived member pointer,
323/// we add the offset to the adjustment because the address point has
324/// decreased;  and conversely, when converting a derived MP to a base MP
325/// we subtract the offset from the adjustment because the address point
326/// has increased.
327///
328/// The standard forbids (at compile time) conversion to and from
329/// virtual bases, which is why we don't have to consider them here.
330///
331/// The standard forbids (at run time) casting a derived MP to a base
332/// MP when the derived MP does not point to a member of the base.
333/// This is why -1 is a reasonable choice for null data member
334/// pointers.
335llvm::Value *
336ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
337                                           const CastExpr *E,
338                                           llvm::Value *Src) {
339  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
340         E->getCastKind() == CK_BaseToDerivedMemberPointer);
341
342  if (isa<llvm::Constant>(Src))
343    return EmitMemberPointerConversion(cast<llvm::Constant>(Src), E);
344
345  CGBuilderTy &Builder = CGF.Builder;
346
347  const MemberPointerType *SrcTy =
348    E->getSubExpr()->getType()->getAs<MemberPointerType>();
349  const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>();
350
351  const CXXRecordDecl *SrcDecl = SrcTy->getClass()->getAsCXXRecordDecl();
352  const CXXRecordDecl *DestDecl = DestTy->getClass()->getAsCXXRecordDecl();
353
354  bool DerivedToBase =
355    E->getCastKind() == CK_DerivedToBaseMemberPointer;
356
357  const CXXRecordDecl *DerivedDecl;
358  if (DerivedToBase)
359    DerivedDecl = SrcDecl;
360  else
361    DerivedDecl = DestDecl;
362
363  llvm::Constant *Adj =
364    CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
365                                         E->path_begin(),
366                                         E->path_end());
367  if (!Adj) return Src;
368
369  // For member data pointers, this is just a matter of adding the
370  // offset if the source is non-null.
371  if (SrcTy->isMemberDataPointer()) {
372    llvm::Value *Dst;
373    if (DerivedToBase)
374      Dst = Builder.CreateNSWSub(Src, Adj, "adj");
375    else
376      Dst = Builder.CreateNSWAdd(Src, Adj, "adj");
377
378    // Null check.
379    llvm::Value *Null = llvm::Constant::getAllOnesValue(Src->getType());
380    llvm::Value *IsNull = Builder.CreateICmpEQ(Src, Null, "memptr.isnull");
381    return Builder.CreateSelect(IsNull, Src, Dst);
382  }
383
384  // The this-adjustment is left-shifted by 1 on ARM.
385  if (IsARM) {
386    uint64_t Offset = cast<llvm::ConstantInt>(Adj)->getZExtValue();
387    Offset <<= 1;
388    Adj = llvm::ConstantInt::get(Adj->getType(), Offset);
389  }
390
391  llvm::Value *SrcAdj = Builder.CreateExtractValue(Src, 1, "src.adj");
392  llvm::Value *DstAdj;
393  if (DerivedToBase)
394    DstAdj = Builder.CreateNSWSub(SrcAdj, Adj, "adj");
395  else
396    DstAdj = Builder.CreateNSWAdd(SrcAdj, Adj, "adj");
397
398  return Builder.CreateInsertValue(Src, DstAdj, 1);
399}
400
401llvm::Constant *
402ItaniumCXXABI::EmitMemberPointerConversion(llvm::Constant *C,
403                                           const CastExpr *E) {
404  const MemberPointerType *SrcTy =
405    E->getSubExpr()->getType()->getAs<MemberPointerType>();
406  const MemberPointerType *DestTy =
407    E->getType()->getAs<MemberPointerType>();
408
409  bool DerivedToBase =
410    E->getCastKind() == CK_DerivedToBaseMemberPointer;
411
412  const CXXRecordDecl *DerivedDecl;
413  if (DerivedToBase)
414    DerivedDecl = SrcTy->getClass()->getAsCXXRecordDecl();
415  else
416    DerivedDecl = DestTy->getClass()->getAsCXXRecordDecl();
417
418  // Calculate the offset to the base class.
419  llvm::Constant *Offset =
420    CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
421                                     E->path_begin(),
422                                     E->path_end());
423  // If there's no offset, we're done.
424  if (!Offset) return C;
425
426  // If the source is a member data pointer, we have to do a null
427  // check and then add the offset.  In the common case, we can fold
428  // away the offset.
429  if (SrcTy->isMemberDataPointer()) {
430    assert(C->getType() == getPtrDiffTy());
431
432    // If it's a constant int, just create a new constant int.
433    if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
434      int64_t Src = CI->getSExtValue();
435
436      // Null converts to null.
437      if (Src == -1) return CI;
438
439      // Otherwise, just add the offset.
440      int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
441      int64_t Dst = (DerivedToBase ? Src - OffsetV : Src + OffsetV);
442      return llvm::ConstantInt::get(CI->getType(), Dst, /*signed*/ true);
443    }
444
445    // Otherwise, we have to form a constant select expression.
446    llvm::Constant *Null = llvm::Constant::getAllOnesValue(C->getType());
447
448    llvm::Constant *IsNull =
449      llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, C, Null);
450
451    llvm::Constant *Dst;
452    if (DerivedToBase)
453      Dst = llvm::ConstantExpr::getNSWSub(C, Offset);
454    else
455      Dst = llvm::ConstantExpr::getNSWAdd(C, Offset);
456
457    return llvm::ConstantExpr::getSelect(IsNull, Null, Dst);
458  }
459
460  // The this-adjustment is left-shifted by 1 on ARM.
461  if (IsARM) {
462    int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
463    OffsetV <<= 1;
464    Offset = llvm::ConstantInt::get(Offset->getType(), OffsetV);
465  }
466
467  llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C);
468
469  llvm::Constant *Values[2] = { CS->getOperand(0), 0 };
470  if (DerivedToBase)
471    Values[1] = llvm::ConstantExpr::getSub(CS->getOperand(1), Offset);
472  else
473    Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset);
474
475  return llvm::ConstantStruct::get(CS->getType(), Values);
476}
477
478
479llvm::Constant *
480ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
481  llvm::Type *ptrdiff_t = getPtrDiffTy();
482
483  // Itanium C++ ABI 2.3:
484  //   A NULL pointer is represented as -1.
485  if (MPT->isMemberDataPointer())
486    return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
487
488  llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
489  llvm::Constant *Values[2] = { Zero, Zero };
490  return llvm::ConstantStruct::getAnon(Values);
491}
492
493llvm::Constant *
494ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
495                                     CharUnits offset) {
496  // Itanium C++ ABI 2.3:
497  //   A pointer to data member is an offset from the base address of
498  //   the class object containing it, represented as a ptrdiff_t
499  return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity());
500}
501
502llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
503  assert(MD->isInstance() && "Member function must not be static!");
504  MD = MD->getCanonicalDecl();
505
506  CodeGenTypes &Types = CGM.getTypes();
507  llvm::Type *ptrdiff_t = getPtrDiffTy();
508
509  // Get the function pointer (or index if this is a virtual function).
510  llvm::Constant *MemPtr[2];
511  if (MD->isVirtual()) {
512    uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
513
514    const ASTContext &Context = getContext();
515    CharUnits PointerWidth =
516      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
517    uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
518
519    if (IsARM) {
520      // ARM C++ ABI 3.2.1:
521      //   This ABI specifies that adj contains twice the this
522      //   adjustment, plus 1 if the member function is virtual. The
523      //   least significant bit of adj then makes exactly the same
524      //   discrimination as the least significant bit of ptr does for
525      //   Itanium.
526      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
527      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 1);
528    } else {
529      // Itanium C++ ABI 2.3:
530      //   For a virtual function, [the pointer field] is 1 plus the
531      //   virtual table offset (in bytes) of the function,
532      //   represented as a ptrdiff_t.
533      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
534      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
535    }
536  } else {
537    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
538    llvm::Type *Ty;
539    // Check whether the function has a computable LLVM signature.
540    if (Types.isFuncTypeConvertible(FPT)) {
541      // The function has a computable LLVM signature; use the correct type.
542      Ty = Types.GetFunctionType(Types.getFunctionInfo(MD),
543                                 FPT->isVariadic());
544    } else {
545      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
546      // function type is incomplete.
547      Ty = ptrdiff_t;
548    }
549    llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
550
551    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t);
552    MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
553  }
554
555  return llvm::ConstantStruct::getAnon(MemPtr);
556}
557
558/// The comparison algorithm is pretty easy: the member pointers are
559/// the same if they're either bitwise identical *or* both null.
560///
561/// ARM is different here only because null-ness is more complicated.
562llvm::Value *
563ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
564                                           llvm::Value *L,
565                                           llvm::Value *R,
566                                           const MemberPointerType *MPT,
567                                           bool Inequality) {
568  CGBuilderTy &Builder = CGF.Builder;
569
570  llvm::ICmpInst::Predicate Eq;
571  llvm::Instruction::BinaryOps And, Or;
572  if (Inequality) {
573    Eq = llvm::ICmpInst::ICMP_NE;
574    And = llvm::Instruction::Or;
575    Or = llvm::Instruction::And;
576  } else {
577    Eq = llvm::ICmpInst::ICMP_EQ;
578    And = llvm::Instruction::And;
579    Or = llvm::Instruction::Or;
580  }
581
582  // Member data pointers are easy because there's a unique null
583  // value, so it just comes down to bitwise equality.
584  if (MPT->isMemberDataPointer())
585    return Builder.CreateICmp(Eq, L, R);
586
587  // For member function pointers, the tautologies are more complex.
588  // The Itanium tautology is:
589  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
590  // The ARM tautology is:
591  //   (L == R) <==> (L.ptr == R.ptr &&
592  //                  (L.adj == R.adj ||
593  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
594  // The inequality tautologies have exactly the same structure, except
595  // applying De Morgan's laws.
596
597  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
598  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
599
600  // This condition tests whether L.ptr == R.ptr.  This must always be
601  // true for equality to hold.
602  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
603
604  // This condition, together with the assumption that L.ptr == R.ptr,
605  // tests whether the pointers are both null.  ARM imposes an extra
606  // condition.
607  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
608  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
609
610  // This condition tests whether L.adj == R.adj.  If this isn't
611  // true, the pointers are unequal unless they're both null.
612  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
613  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
614  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
615
616  // Null member function pointers on ARM clear the low bit of Adj,
617  // so the zero condition has to check that neither low bit is set.
618  if (IsARM) {
619    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
620
621    // Compute (l.adj | r.adj) & 1 and test it against zero.
622    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
623    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
624    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
625                                                      "cmp.or.adj");
626    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
627  }
628
629  // Tie together all our conditions.
630  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
631  Result = Builder.CreateBinOp(And, PtrEq, Result,
632                               Inequality ? "memptr.ne" : "memptr.eq");
633  return Result;
634}
635
636llvm::Value *
637ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
638                                          llvm::Value *MemPtr,
639                                          const MemberPointerType *MPT) {
640  CGBuilderTy &Builder = CGF.Builder;
641
642  /// For member data pointers, this is just a check against -1.
643  if (MPT->isMemberDataPointer()) {
644    assert(MemPtr->getType() == getPtrDiffTy());
645    llvm::Value *NegativeOne =
646      llvm::Constant::getAllOnesValue(MemPtr->getType());
647    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
648  }
649
650  // In Itanium, a member function pointer is not null if 'ptr' is not null.
651  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
652
653  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
654  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
655
656  // On ARM, a member function pointer is also non-null if the low bit of 'adj'
657  // (the virtual bit) is set.
658  if (IsARM) {
659    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
660    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
661    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
662    llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
663                                                  "memptr.isvirtual");
664    Result = Builder.CreateOr(Result, IsVirtual);
665  }
666
667  return Result;
668}
669
670/// The Itanium ABI requires non-zero initialization only for data
671/// member pointers, for which '0' is a valid offset.
672bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
673  return MPT->getPointeeType()->isFunctionType();
674}
675
676/// The generic ABI passes 'this', plus a VTT if it's initializing a
677/// base subobject.
678void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
679                                              CXXCtorType Type,
680                                              CanQualType &ResTy,
681                                SmallVectorImpl<CanQualType> &ArgTys) {
682  ASTContext &Context = getContext();
683
684  // 'this' is already there.
685
686  // Check if we need to add a VTT parameter (which has type void **).
687  if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
688    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
689}
690
691/// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
692void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
693                                          CXXCtorType Type,
694                                          CanQualType &ResTy,
695                                SmallVectorImpl<CanQualType> &ArgTys) {
696  ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
697  ResTy = ArgTys[0];
698}
699
700/// The generic ABI passes 'this', plus a VTT if it's destroying a
701/// base subobject.
702void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
703                                             CXXDtorType Type,
704                                             CanQualType &ResTy,
705                                SmallVectorImpl<CanQualType> &ArgTys) {
706  ASTContext &Context = getContext();
707
708  // 'this' is already there.
709
710  // Check if we need to add a VTT parameter (which has type void **).
711  if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
712    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
713}
714
715/// The ARM ABI does the same as the Itanium ABI, but returns 'this'
716/// for non-deleting destructors.
717void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
718                                         CXXDtorType Type,
719                                         CanQualType &ResTy,
720                                SmallVectorImpl<CanQualType> &ArgTys) {
721  ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
722
723  if (Type != Dtor_Deleting)
724    ResTy = ArgTys[0];
725}
726
727void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
728                                                QualType &ResTy,
729                                                FunctionArgList &Params) {
730  /// Create the 'this' variable.
731  BuildThisParam(CGF, Params);
732
733  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
734  assert(MD->isInstance());
735
736  // Check if we need a VTT parameter as well.
737  if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
738    ASTContext &Context = getContext();
739
740    // FIXME: avoid the fake decl
741    QualType T = Context.getPointerType(Context.VoidPtrTy);
742    ImplicitParamDecl *VTTDecl
743      = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
744                                  &Context.Idents.get("vtt"), T);
745    Params.push_back(VTTDecl);
746    getVTTDecl(CGF) = VTTDecl;
747  }
748}
749
750void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
751                                            QualType &ResTy,
752                                            FunctionArgList &Params) {
753  ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
754
755  // Return 'this' from certain constructors and destructors.
756  if (HasThisReturn(CGF.CurGD))
757    ResTy = Params[0]->getType();
758}
759
760void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
761  /// Initialize the 'this' slot.
762  EmitThisParam(CGF);
763
764  /// Initialize the 'vtt' slot if needed.
765  if (getVTTDecl(CGF)) {
766    getVTTValue(CGF)
767      = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
768                               "vtt");
769  }
770}
771
772void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
773  ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
774
775  /// Initialize the return slot to 'this' at the start of the
776  /// function.
777  if (HasThisReturn(CGF.CurGD))
778    CGF.Builder.CreateStore(CGF.LoadCXXThis(), CGF.ReturnValue);
779}
780
781void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
782                                    RValue RV, QualType ResultType) {
783  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
784    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
785
786  // Destructor thunks in the ARM ABI have indeterminate results.
787  llvm::Type *T =
788    cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
789  RValue Undef = RValue::get(llvm::UndefValue::get(T));
790  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
791}
792
793/************************** Array allocation cookies **************************/
794
795bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) {
796  // If the class's usual deallocation function takes two arguments,
797  // it needs a cookie.
798  if (expr->doesUsualArrayDeleteWantSize())
799    return true;
800
801  // Automatic Reference Counting:
802  //   We need an array cookie for pointers with strong or weak lifetime.
803  QualType AllocatedType = expr->getAllocatedType();
804  if (getContext().getLangOptions().ObjCAutoRefCount &&
805      AllocatedType->isObjCLifetimeType()) {
806    switch (AllocatedType.getObjCLifetime()) {
807    case Qualifiers::OCL_None:
808    case Qualifiers::OCL_ExplicitNone:
809    case Qualifiers::OCL_Autoreleasing:
810      return false;
811
812    case Qualifiers::OCL_Strong:
813    case Qualifiers::OCL_Weak:
814      return true;
815    }
816  }
817
818  // Otherwise, if the class has a non-trivial destructor, it always
819  // needs a cookie.
820  const CXXRecordDecl *record =
821    AllocatedType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
822  return (record && !record->hasTrivialDestructor());
823}
824
825bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr,
826                                     QualType elementType) {
827  // If the class's usual deallocation function takes two arguments,
828  // it needs a cookie.
829  if (expr->doesUsualArrayDeleteWantSize())
830    return true;
831
832  return elementType.isDestructedType();
833}
834
835CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
836  if (!NeedsArrayCookie(expr))
837    return CharUnits::Zero();
838
839  // Padding is the maximum of sizeof(size_t) and alignof(elementType)
840  ASTContext &Ctx = getContext();
841  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
842                  Ctx.getTypeAlignInChars(expr->getAllocatedType()));
843}
844
845llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
846                                                  llvm::Value *NewPtr,
847                                                  llvm::Value *NumElements,
848                                                  const CXXNewExpr *expr,
849                                                  QualType ElementType) {
850  assert(NeedsArrayCookie(expr));
851
852  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
853
854  ASTContext &Ctx = getContext();
855  QualType SizeTy = Ctx.getSizeType();
856  CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
857
858  // The size of the cookie.
859  CharUnits CookieSize =
860    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
861
862  // Compute an offset to the cookie.
863  llvm::Value *CookiePtr = NewPtr;
864  CharUnits CookieOffset = CookieSize - SizeSize;
865  if (!CookieOffset.isZero())
866    CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
867                                                 CookieOffset.getQuantity());
868
869  // Write the number of elements into the appropriate slot.
870  llvm::Value *NumElementsPtr
871    = CGF.Builder.CreateBitCast(CookiePtr,
872                                CGF.ConvertType(SizeTy)->getPointerTo(AS));
873  CGF.Builder.CreateStore(NumElements, NumElementsPtr);
874
875  // Finally, compute a pointer to the actual data buffer by skipping
876  // over the cookie completely.
877  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
878                                                CookieSize.getQuantity());
879}
880
881void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
882                                    llvm::Value *Ptr,
883                                    const CXXDeleteExpr *expr,
884                                    QualType ElementType,
885                                    llvm::Value *&NumElements,
886                                    llvm::Value *&AllocPtr,
887                                    CharUnits &CookieSize) {
888  // Derive a char* in the same address space as the pointer.
889  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
890  llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
891
892  // If we don't need an array cookie, bail out early.
893  if (!NeedsArrayCookie(expr, ElementType)) {
894    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
895    NumElements = 0;
896    CookieSize = CharUnits::Zero();
897    return;
898  }
899
900  QualType SizeTy = getContext().getSizeType();
901  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
902  llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
903
904  CookieSize
905    = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType));
906
907  CharUnits NumElementsOffset = CookieSize - SizeSize;
908
909  // Compute the allocated pointer.
910  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
911  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
912                                                    -CookieSize.getQuantity());
913
914  llvm::Value *NumElementsPtr = AllocPtr;
915  if (!NumElementsOffset.isZero())
916    NumElementsPtr =
917      CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr,
918                                             NumElementsOffset.getQuantity());
919  NumElementsPtr =
920    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
921  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
922}
923
924CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
925  if (!NeedsArrayCookie(expr))
926    return CharUnits::Zero();
927
928  // On ARM, the cookie is always:
929  //   struct array_cookie {
930  //     std::size_t element_size; // element_size != 0
931  //     std::size_t element_count;
932  //   };
933  // TODO: what should we do if the allocated type actually wants
934  // greater alignment?
935  return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2;
936}
937
938llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
939                                              llvm::Value *NewPtr,
940                                              llvm::Value *NumElements,
941                                              const CXXNewExpr *expr,
942                                              QualType ElementType) {
943  assert(NeedsArrayCookie(expr));
944
945  // NewPtr is a char*.
946
947  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
948
949  ASTContext &Ctx = getContext();
950  CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
951  llvm::IntegerType *SizeTy =
952    cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
953
954  // The cookie is always at the start of the buffer.
955  llvm::Value *CookiePtr = NewPtr;
956
957  // The first element is the element size.
958  CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
959  llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
960                          Ctx.getTypeSizeInChars(ElementType).getQuantity());
961  CGF.Builder.CreateStore(ElementSize, CookiePtr);
962
963  // The second element is the element count.
964  CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
965  CGF.Builder.CreateStore(NumElements, CookiePtr);
966
967  // Finally, compute a pointer to the actual data buffer by skipping
968  // over the cookie completely.
969  CharUnits CookieSize = 2 * SizeSize;
970  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
971                                                CookieSize.getQuantity());
972}
973
974void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
975                                llvm::Value *Ptr,
976                                const CXXDeleteExpr *expr,
977                                QualType ElementType,
978                                llvm::Value *&NumElements,
979                                llvm::Value *&AllocPtr,
980                                CharUnits &CookieSize) {
981  // Derive a char* in the same address space as the pointer.
982  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
983  llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
984
985  // If we don't need an array cookie, bail out early.
986  if (!NeedsArrayCookie(expr, ElementType)) {
987    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
988    NumElements = 0;
989    CookieSize = CharUnits::Zero();
990    return;
991  }
992
993  QualType SizeTy = getContext().getSizeType();
994  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
995  llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
996
997  // The cookie size is always 2 * sizeof(size_t).
998  CookieSize = 2 * SizeSize;
999
1000  // The allocated pointer is the input ptr, minus that amount.
1001  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
1002  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1003                                               -CookieSize.getQuantity());
1004
1005  // The number of elements is at offset sizeof(size_t) relative to that.
1006  llvm::Value *NumElementsPtr
1007    = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1008                                             SizeSize.getQuantity());
1009  NumElementsPtr =
1010    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
1011  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
1012}
1013
1014/*********************** Static local initialization **************************/
1015
1016static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1017                                         llvm::PointerType *GuardPtrTy) {
1018  // int __cxa_guard_acquire(__guard *guard_object);
1019  llvm::FunctionType *FTy =
1020    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1021                            GuardPtrTy, /*isVarArg=*/false);
1022
1023  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire");
1024}
1025
1026static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1027                                         llvm::PointerType *GuardPtrTy) {
1028  // void __cxa_guard_release(__guard *guard_object);
1029  llvm::FunctionType *FTy =
1030    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1031                            GuardPtrTy, /*isVarArg=*/false);
1032
1033  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release");
1034}
1035
1036static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1037                                       llvm::PointerType *GuardPtrTy) {
1038  // void __cxa_guard_abort(__guard *guard_object);
1039  llvm::FunctionType *FTy =
1040    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1041                            GuardPtrTy, /*isVarArg=*/false);
1042
1043  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort");
1044}
1045
1046namespace {
1047  struct CallGuardAbort : EHScopeStack::Cleanup {
1048    llvm::GlobalVariable *Guard;
1049    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1050
1051    void Emit(CodeGenFunction &CGF, Flags flags) {
1052      CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
1053        ->setDoesNotThrow();
1054    }
1055  };
1056}
1057
1058/// The ARM code here follows the Itanium code closely enough that we
1059/// just special-case it at particular places.
1060void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
1061                                    const VarDecl &D,
1062                                    llvm::GlobalVariable *GV) {
1063  CGBuilderTy &Builder = CGF.Builder;
1064
1065  // We only need to use thread-safe statics for local variables;
1066  // global initialization is always single-threaded.
1067  bool threadsafe =
1068    (getContext().getLangOptions().ThreadsafeStatics && D.isLocalVarDecl());
1069
1070  llvm::IntegerType *GuardTy;
1071
1072  // If we have a global variable with internal linkage and thread-safe statics
1073  // are disabled, we can just let the guard variable be of type i8.
1074  bool useInt8GuardVariable = !threadsafe && GV->hasInternalLinkage();
1075  if (useInt8GuardVariable) {
1076    GuardTy = CGF.Int8Ty;
1077  } else {
1078    // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
1079    GuardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty);
1080  }
1081  llvm::PointerType *GuardPtrTy = GuardTy->getPointerTo();
1082
1083  // Create the guard variable.
1084  llvm::SmallString<256> GuardVName;
1085  llvm::raw_svector_ostream Out(GuardVName);
1086  getMangleContext().mangleItaniumGuardVariable(&D, Out);
1087  Out.flush();
1088
1089  // Just absorb linkage and visibility from the variable.
1090  llvm::GlobalVariable *GuardVariable =
1091    new llvm::GlobalVariable(CGM.getModule(), GuardTy,
1092                             false, GV->getLinkage(),
1093                             llvm::ConstantInt::get(GuardTy, 0),
1094                             GuardVName.str());
1095  GuardVariable->setVisibility(GV->getVisibility());
1096
1097  // Test whether the variable has completed initialization.
1098  llvm::Value *IsInitialized;
1099
1100  // ARM C++ ABI 3.2.3.1:
1101  //   To support the potential use of initialization guard variables
1102  //   as semaphores that are the target of ARM SWP and LDREX/STREX
1103  //   synchronizing instructions we define a static initialization
1104  //   guard variable to be a 4-byte aligned, 4- byte word with the
1105  //   following inline access protocol.
1106  //     #define INITIALIZED 1
1107  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1108  //       if (__cxa_guard_acquire(&obj_guard))
1109  //         ...
1110  //     }
1111  if (IsARM && !useInt8GuardVariable) {
1112    llvm::Value *V = Builder.CreateLoad(GuardVariable);
1113    V = Builder.CreateAnd(V, Builder.getInt32(1));
1114    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1115
1116  // Itanium C++ ABI 3.3.2:
1117  //   The following is pseudo-code showing how these functions can be used:
1118  //     if (obj_guard.first_byte == 0) {
1119  //       if ( __cxa_guard_acquire (&obj_guard) ) {
1120  //         try {
1121  //           ... initialize the object ...;
1122  //         } catch (...) {
1123  //            __cxa_guard_abort (&obj_guard);
1124  //            throw;
1125  //         }
1126  //         ... queue object destructor with __cxa_atexit() ...;
1127  //         __cxa_guard_release (&obj_guard);
1128  //       }
1129  //     }
1130  } else {
1131    // Load the first byte of the guard variable.
1132    llvm::Type *PtrTy = Builder.getInt8PtrTy();
1133    llvm::LoadInst *LI =
1134      Builder.CreateLoad(Builder.CreateBitCast(GuardVariable, PtrTy));
1135    LI->setAlignment(1);
1136
1137    // Itanium ABI:
1138    //   An implementation supporting thread-safety on multiprocessor
1139    //   systems must also guarantee that references to the initialized
1140    //   object do not occur before the load of the initialization flag.
1141    //
1142    // In LLVM, we do this by marking the load Acquire.
1143    if (threadsafe)
1144      LI->setAtomic(llvm::Acquire);
1145
1146    IsInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
1147  }
1148
1149  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1150  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1151
1152  // Check if the first byte of the guard variable is zero.
1153  Builder.CreateCondBr(IsInitialized, InitCheckBlock, EndBlock);
1154
1155  CGF.EmitBlock(InitCheckBlock);
1156
1157  // Variables used when coping with thread-safe statics and exceptions.
1158  if (threadsafe) {
1159    // Call __cxa_guard_acquire.
1160    llvm::Value *V
1161      = Builder.CreateCall(getGuardAcquireFn(CGM, GuardPtrTy), GuardVariable);
1162
1163    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1164
1165    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1166                         InitBlock, EndBlock);
1167
1168    // Call __cxa_guard_abort along the exceptional edge.
1169    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, GuardVariable);
1170
1171    CGF.EmitBlock(InitBlock);
1172  }
1173
1174  // Emit the initializer and add a global destructor if appropriate.
1175  CGF.EmitCXXGlobalVarDeclInit(D, GV);
1176
1177  if (threadsafe) {
1178    // Pop the guard-abort cleanup if we pushed one.
1179    CGF.PopCleanupBlock();
1180
1181    // Call __cxa_guard_release.  This cannot throw.
1182    Builder.CreateCall(getGuardReleaseFn(CGM, GuardPtrTy), GuardVariable);
1183  } else {
1184    Builder.CreateStore(llvm::ConstantInt::get(GuardTy, 1), GuardVariable);
1185  }
1186
1187  CGF.EmitBlock(EndBlock);
1188}
1189