ExprConstant.cpp revision 234982
11541Srgrimes//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
21541Srgrimes//
31541Srgrimes//                     The LLVM Compiler Infrastructure
41541Srgrimes//
51541Srgrimes// This file is distributed under the University of Illinois Open Source
61541Srgrimes// License. See LICENSE.TXT for details.
71541Srgrimes//
81541Srgrimes//===----------------------------------------------------------------------===//
91541Srgrimes//
101541Srgrimes// This file implements the Expr constant evaluator.
111541Srgrimes//
121541Srgrimes// Constant expression evaluation produces four main results:
131541Srgrimes//
141541Srgrimes//  * A success/failure flag indicating whether constant folding was successful.
151541Srgrimes//    This is the 'bool' return value used by most of the code in this file. A
161541Srgrimes//    'false' return value indicates that constant folding has failed, and any
171541Srgrimes//    appropriate diagnostic has already been produced.
181541Srgrimes//
191541Srgrimes//  * An evaluated result, valid only if constant folding has not failed.
201541Srgrimes//
211541Srgrimes//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
221541Srgrimes//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
231541Srgrimes//    where it is possible to determine the evaluated result regardless.
241541Srgrimes//
251541Srgrimes//  * A set of notes indicating why the evaluation was not a constant expression
261541Srgrimes//    (under the C++11 rules only, at the moment), or, if folding failed too,
271541Srgrimes//    why the expression could not be folded.
281541Srgrimes//
291541Srgrimes// If we are checking for a potential constant expression, failure to constant
301541Srgrimes// fold a potential constant sub-expression will be indicated by a 'false'
311541Srgrimes// return value (the expression could not be folded) and no diagnostic (the
321541Srgrimes// expression is not necessarily non-constant).
331541Srgrimes//
341541Srgrimes//===----------------------------------------------------------------------===//
351541Srgrimes
361541Srgrimes#include "clang/AST/APValue.h"
371541Srgrimes#include "clang/AST/ASTContext.h"
381541Srgrimes#include "clang/AST/CharUnits.h"
3942957Sdillon#include "clang/AST/RecordLayout.h"
401541Srgrimes#include "clang/AST/StmtVisitor.h"
411541Srgrimes#include "clang/AST/TypeLoc.h"
421541Srgrimes#include "clang/AST/ASTDiagnostic.h"
431541Srgrimes#include "clang/AST/Expr.h"
441541Srgrimes#include "clang/Basic/Builtins.h"
451541Srgrimes#include "clang/Basic/TargetInfo.h"
461541Srgrimes#include "llvm/ADT/SmallString.h"
471541Srgrimes#include <cstring>
481541Srgrimes#include <functional>
4933058Sbde
5033058Sbdeusing namespace clang;
519507Sdgusing llvm::APSInt;
521541Srgrimesusing llvm::APFloat;
535455Sdg
545455Sdgstatic bool IsGlobalLValue(APValue::LValueBase B);
5540286Sdg
569507Sdgnamespace {
579507Sdg  struct LValue;
5834206Sdyson  struct CallStackFrame;
5912767Sdyson  struct EvalInfo;
6042957Sdillon
611541Srgrimes  static QualType getType(APValue::LValueBase B) {
621541Srgrimes    if (!B) return QualType();
631541Srgrimes    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
641541Srgrimes      return D->getType();
651541Srgrimes    return B.get<const Expr*>()->getType();
661541Srgrimes  }
671541Srgrimes
681541Srgrimes  /// Get an LValue path entry, which is known to not be an array index, as a
691541Srgrimes  /// field or base class.
701541Srgrimes  static
711541Srgrimes  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
721541Srgrimes    APValue::BaseOrMemberType Value;
731541Srgrimes    Value.setFromOpaqueValue(E.BaseOrMember);
741541Srgrimes    return Value;
751541Srgrimes  }
761541Srgrimes
771541Srgrimes  /// Get an LValue path entry, which is known to not be an array index, as a
781541Srgrimes  /// field declaration.
7934206Sdyson  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
8034206Sdyson    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
8134206Sdyson  }
821541Srgrimes  /// Get an LValue path entry, which is known to not be an array index, as a
8330354Sphk  /// base class declaration.
8430354Sphk  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
8530354Sphk    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
8630354Sphk  }
8730354Sphk  /// Determine whether this LValue path entry for a base class names a virtual
889759Sbde  /// base class.
899759Sbde  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
9042957Sdillon    return getAsBaseOrMember(E).getInt();
919759Sbde  }
9240286Sdg
937090Sbde  /// Find the path length and type of the most-derived subobject in the given
949507Sdg  /// path, and find the size of the containing array, if any.
9542957Sdillon  static
9642957Sdillon  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
975455Sdg                                    ArrayRef<APValue::LValuePathEntry> Path,
989507Sdg                                    uint64_t &ArraySize, QualType &Type) {
995455Sdg    unsigned MostDerivedLength = 0;
1005455Sdg    Type = Base;
10142957Sdillon    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
1025455Sdg      if (Type->isArrayType()) {
1035455Sdg        const ConstantArrayType *CAT =
1045455Sdg          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
10542957Sdillon        Type = CAT->getElementType();
10642957Sdillon        ArraySize = CAT->getSize().getZExtValue();
10742957Sdillon        MostDerivedLength = I + 1;
10842957Sdillon      } else if (Type->isAnyComplexType()) {
10942957Sdillon        const ComplexType *CT = Type->castAs<ComplexType>();
11042957Sdillon        Type = CT->getElementType();
11142957Sdillon        ArraySize = 2;
11242957Sdillon        MostDerivedLength = I + 1;
11342957Sdillon      } else if (const FieldDecl *FD = getAsField(Path[I])) {
11442957Sdillon        Type = FD->getType();
11542957Sdillon        ArraySize = 0;
11642957Sdillon        MostDerivedLength = I + 1;
11742957Sdillon      } else {
11842957Sdillon        // Path[I] describes a base class.
11942957Sdillon        ArraySize = 0;
12042957Sdillon      }
12142957Sdillon    }
12242957Sdillon    return MostDerivedLength;
12342957Sdillon  }
12442957Sdillon
12542957Sdillon  // The order of this enum is important for diagnostics.
12642957Sdillon  enum CheckSubobjectKind {
12742957Sdillon    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
12842957Sdillon    CSK_This, CSK_Real, CSK_Imag
12942957Sdillon  };
13042957Sdillon
13142957Sdillon  /// A path from a glvalue to a subobject of that glvalue.
13242957Sdillon  struct SubobjectDesignator {
13342957Sdillon    /// True if the subobject was named in a manner not supported by C++11. Such
13442957Sdillon    /// lvalues can still be folded, but they are not core constant expressions
13542957Sdillon    /// and we cannot perform lvalue-to-rvalue conversions on them.
13642957Sdillon    bool Invalid : 1;
13742957Sdillon
13842957Sdillon    /// Is this a pointer one past the end of an object?
13942957Sdillon    bool IsOnePastTheEnd : 1;
14042957Sdillon
14142957Sdillon    /// The length of the path to the most-derived object of which this is a
14242957Sdillon    /// subobject.
14342957Sdillon    unsigned MostDerivedPathLength : 30;
14442957Sdillon
14542957Sdillon    /// The size of the array of which the most-derived object is an element, or
14642957Sdillon    /// 0 if the most-derived object is not an array element.
14742957Sdillon    uint64_t MostDerivedArraySize;
14842957Sdillon
14942957Sdillon    /// The type of the most derived object referred to by this address.
15042957Sdillon    QualType MostDerivedType;
15142957Sdillon
15242957Sdillon    typedef APValue::LValuePathEntry PathEntry;
1531541Srgrimes
1541541Srgrimes    /// The entries on the path from the glvalue to the designated subobject.
1555455Sdg    SmallVector<PathEntry, 8> Entries;
156
157    SubobjectDesignator() : Invalid(true) {}
158
159    explicit SubobjectDesignator(QualType T)
160      : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
161        MostDerivedArraySize(0), MostDerivedType(T) {}
162
163    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
164      : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
165        MostDerivedPathLength(0), MostDerivedArraySize(0) {
166      if (!Invalid) {
167        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
168        ArrayRef<PathEntry> VEntries = V.getLValuePath();
169        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
170        if (V.getLValueBase())
171          MostDerivedPathLength =
172              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
173                                       V.getLValuePath(), MostDerivedArraySize,
174                                       MostDerivedType);
175      }
176    }
177
178    void setInvalid() {
179      Invalid = true;
180      Entries.clear();
181    }
182
183    /// Determine whether this is a one-past-the-end pointer.
184    bool isOnePastTheEnd() const {
185      if (IsOnePastTheEnd)
186        return true;
187      if (MostDerivedArraySize &&
188          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
189        return true;
190      return false;
191    }
192
193    /// Check that this refers to a valid subobject.
194    bool isValidSubobject() const {
195      if (Invalid)
196        return false;
197      return !isOnePastTheEnd();
198    }
199    /// Check that this refers to a valid subobject, and if not, produce a
200    /// relevant diagnostic and set the designator as invalid.
201    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
202
203    /// Update this designator to refer to the first element within this array.
204    void addArrayUnchecked(const ConstantArrayType *CAT) {
205      PathEntry Entry;
206      Entry.ArrayIndex = 0;
207      Entries.push_back(Entry);
208
209      // This is a most-derived object.
210      MostDerivedType = CAT->getElementType();
211      MostDerivedArraySize = CAT->getSize().getZExtValue();
212      MostDerivedPathLength = Entries.size();
213    }
214    /// Update this designator to refer to the given base or member of this
215    /// object.
216    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
217      PathEntry Entry;
218      APValue::BaseOrMemberType Value(D, Virtual);
219      Entry.BaseOrMember = Value.getOpaqueValue();
220      Entries.push_back(Entry);
221
222      // If this isn't a base class, it's a new most-derived object.
223      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
224        MostDerivedType = FD->getType();
225        MostDerivedArraySize = 0;
226        MostDerivedPathLength = Entries.size();
227      }
228    }
229    /// Update this designator to refer to the given complex component.
230    void addComplexUnchecked(QualType EltTy, bool Imag) {
231      PathEntry Entry;
232      Entry.ArrayIndex = Imag;
233      Entries.push_back(Entry);
234
235      // This is technically a most-derived object, though in practice this
236      // is unlikely to matter.
237      MostDerivedType = EltTy;
238      MostDerivedArraySize = 2;
239      MostDerivedPathLength = Entries.size();
240    }
241    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
242    /// Add N to the address of this subobject.
243    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
244      if (Invalid) return;
245      if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
246        Entries.back().ArrayIndex += N;
247        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
248          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
249          setInvalid();
250        }
251        return;
252      }
253      // [expr.add]p4: For the purposes of these operators, a pointer to a
254      // nonarray object behaves the same as a pointer to the first element of
255      // an array of length one with the type of the object as its element type.
256      if (IsOnePastTheEnd && N == (uint64_t)-1)
257        IsOnePastTheEnd = false;
258      else if (!IsOnePastTheEnd && N == 1)
259        IsOnePastTheEnd = true;
260      else if (N != 0) {
261        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
262        setInvalid();
263      }
264    }
265  };
266
267  /// A stack frame in the constexpr call stack.
268  struct CallStackFrame {
269    EvalInfo &Info;
270
271    /// Parent - The caller of this stack frame.
272    CallStackFrame *Caller;
273
274    /// CallLoc - The location of the call expression for this call.
275    SourceLocation CallLoc;
276
277    /// Callee - The function which was called.
278    const FunctionDecl *Callee;
279
280    /// Index - The call index of this call.
281    unsigned Index;
282
283    /// This - The binding for the this pointer in this call, if any.
284    const LValue *This;
285
286    /// ParmBindings - Parameter bindings for this function call, indexed by
287    /// parameters' function scope indices.
288    const APValue *Arguments;
289
290    typedef llvm::DenseMap<const Expr*, APValue> MapTy;
291    typedef MapTy::const_iterator temp_iterator;
292    /// Temporaries - Temporary lvalues materialized within this stack frame.
293    MapTy Temporaries;
294
295    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
296                   const FunctionDecl *Callee, const LValue *This,
297                   const APValue *Arguments);
298    ~CallStackFrame();
299  };
300
301  /// A partial diagnostic which we might know in advance that we are not going
302  /// to emit.
303  class OptionalDiagnostic {
304    PartialDiagnostic *Diag;
305
306  public:
307    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
308
309    template<typename T>
310    OptionalDiagnostic &operator<<(const T &v) {
311      if (Diag)
312        *Diag << v;
313      return *this;
314    }
315
316    OptionalDiagnostic &operator<<(const APSInt &I) {
317      if (Diag) {
318        llvm::SmallVector<char, 32> Buffer;
319        I.toString(Buffer);
320        *Diag << StringRef(Buffer.data(), Buffer.size());
321      }
322      return *this;
323    }
324
325    OptionalDiagnostic &operator<<(const APFloat &F) {
326      if (Diag) {
327        llvm::SmallVector<char, 32> Buffer;
328        F.toString(Buffer);
329        *Diag << StringRef(Buffer.data(), Buffer.size());
330      }
331      return *this;
332    }
333  };
334
335  /// EvalInfo - This is a private struct used by the evaluator to capture
336  /// information about a subexpression as it is folded.  It retains information
337  /// about the AST context, but also maintains information about the folded
338  /// expression.
339  ///
340  /// If an expression could be evaluated, it is still possible it is not a C
341  /// "integer constant expression" or constant expression.  If not, this struct
342  /// captures information about how and why not.
343  ///
344  /// One bit of information passed *into* the request for constant folding
345  /// indicates whether the subexpression is "evaluated" or not according to C
346  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
347  /// evaluate the expression regardless of what the RHS is, but C only allows
348  /// certain things in certain situations.
349  struct EvalInfo {
350    ASTContext &Ctx;
351
352    /// EvalStatus - Contains information about the evaluation.
353    Expr::EvalStatus &EvalStatus;
354
355    /// CurrentCall - The top of the constexpr call stack.
356    CallStackFrame *CurrentCall;
357
358    /// CallStackDepth - The number of calls in the call stack right now.
359    unsigned CallStackDepth;
360
361    /// NextCallIndex - The next call index to assign.
362    unsigned NextCallIndex;
363
364    typedef llvm::DenseMap<const OpaqueValueExpr*, APValue> MapTy;
365    /// OpaqueValues - Values used as the common expression in a
366    /// BinaryConditionalOperator.
367    MapTy OpaqueValues;
368
369    /// BottomFrame - The frame in which evaluation started. This must be
370    /// initialized after CurrentCall and CallStackDepth.
371    CallStackFrame BottomFrame;
372
373    /// EvaluatingDecl - This is the declaration whose initializer is being
374    /// evaluated, if any.
375    const VarDecl *EvaluatingDecl;
376
377    /// EvaluatingDeclValue - This is the value being constructed for the
378    /// declaration whose initializer is being evaluated, if any.
379    APValue *EvaluatingDeclValue;
380
381    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
382    /// notes attached to it will also be stored, otherwise they will not be.
383    bool HasActiveDiagnostic;
384
385    /// CheckingPotentialConstantExpression - Are we checking whether the
386    /// expression is a potential constant expression? If so, some diagnostics
387    /// are suppressed.
388    bool CheckingPotentialConstantExpression;
389
390    EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
391      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
392        CallStackDepth(0), NextCallIndex(1),
393        BottomFrame(*this, SourceLocation(), 0, 0, 0),
394        EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
395        CheckingPotentialConstantExpression(false) {}
396
397    const APValue *getOpaqueValue(const OpaqueValueExpr *e) const {
398      MapTy::const_iterator i = OpaqueValues.find(e);
399      if (i == OpaqueValues.end()) return 0;
400      return &i->second;
401    }
402
403    void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
404      EvaluatingDecl = VD;
405      EvaluatingDeclValue = &Value;
406    }
407
408    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
409
410    bool CheckCallLimit(SourceLocation Loc) {
411      // Don't perform any constexpr calls (other than the call we're checking)
412      // when checking a potential constant expression.
413      if (CheckingPotentialConstantExpression && CallStackDepth > 1)
414        return false;
415      if (NextCallIndex == 0) {
416        // NextCallIndex has wrapped around.
417        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
418        return false;
419      }
420      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
421        return true;
422      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
423        << getLangOpts().ConstexprCallDepth;
424      return false;
425    }
426
427    CallStackFrame *getCallFrame(unsigned CallIndex) {
428      assert(CallIndex && "no call index in getCallFrame");
429      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
430      // be null in this loop.
431      CallStackFrame *Frame = CurrentCall;
432      while (Frame->Index > CallIndex)
433        Frame = Frame->Caller;
434      return (Frame->Index == CallIndex) ? Frame : 0;
435    }
436
437  private:
438    /// Add a diagnostic to the diagnostics list.
439    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
440      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
441      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
442      return EvalStatus.Diag->back().second;
443    }
444
445    /// Add notes containing a call stack to the current point of evaluation.
446    void addCallStack(unsigned Limit);
447
448  public:
449    /// Diagnose that the evaluation cannot be folded.
450    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
451                              = diag::note_invalid_subexpr_in_const_expr,
452                            unsigned ExtraNotes = 0) {
453      // If we have a prior diagnostic, it will be noting that the expression
454      // isn't a constant expression. This diagnostic is more important.
455      // FIXME: We might want to show both diagnostics to the user.
456      if (EvalStatus.Diag) {
457        unsigned CallStackNotes = CallStackDepth - 1;
458        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
459        if (Limit)
460          CallStackNotes = std::min(CallStackNotes, Limit + 1);
461        if (CheckingPotentialConstantExpression)
462          CallStackNotes = 0;
463
464        HasActiveDiagnostic = true;
465        EvalStatus.Diag->clear();
466        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
467        addDiag(Loc, DiagId);
468        if (!CheckingPotentialConstantExpression)
469          addCallStack(Limit);
470        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
471      }
472      HasActiveDiagnostic = false;
473      return OptionalDiagnostic();
474    }
475
476    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
477                              = diag::note_invalid_subexpr_in_const_expr,
478                            unsigned ExtraNotes = 0) {
479      if (EvalStatus.Diag)
480        return Diag(E->getExprLoc(), DiagId, ExtraNotes);
481      HasActiveDiagnostic = false;
482      return OptionalDiagnostic();
483    }
484
485    /// Diagnose that the evaluation does not produce a C++11 core constant
486    /// expression.
487    template<typename LocArg>
488    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
489                                 = diag::note_invalid_subexpr_in_const_expr,
490                               unsigned ExtraNotes = 0) {
491      // Don't override a previous diagnostic.
492      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
493        HasActiveDiagnostic = false;
494        return OptionalDiagnostic();
495      }
496      return Diag(Loc, DiagId, ExtraNotes);
497    }
498
499    /// Add a note to a prior diagnostic.
500    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
501      if (!HasActiveDiagnostic)
502        return OptionalDiagnostic();
503      return OptionalDiagnostic(&addDiag(Loc, DiagId));
504    }
505
506    /// Add a stack of notes to a prior diagnostic.
507    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
508      if (HasActiveDiagnostic) {
509        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
510                                Diags.begin(), Diags.end());
511      }
512    }
513
514    /// Should we continue evaluation as much as possible after encountering a
515    /// construct which can't be folded?
516    bool keepEvaluatingAfterFailure() {
517      return CheckingPotentialConstantExpression &&
518             EvalStatus.Diag && EvalStatus.Diag->empty();
519    }
520  };
521
522  /// Object used to treat all foldable expressions as constant expressions.
523  struct FoldConstant {
524    bool Enabled;
525
526    explicit FoldConstant(EvalInfo &Info)
527      : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
528                !Info.EvalStatus.HasSideEffects) {
529    }
530    // Treat the value we've computed since this object was created as constant.
531    void Fold(EvalInfo &Info) {
532      if (Enabled && !Info.EvalStatus.Diag->empty() &&
533          !Info.EvalStatus.HasSideEffects)
534        Info.EvalStatus.Diag->clear();
535    }
536  };
537
538  /// RAII object used to suppress diagnostics and side-effects from a
539  /// speculative evaluation.
540  class SpeculativeEvaluationRAII {
541    EvalInfo &Info;
542    Expr::EvalStatus Old;
543
544  public:
545    SpeculativeEvaluationRAII(EvalInfo &Info,
546                              llvm::SmallVectorImpl<PartialDiagnosticAt>
547                                *NewDiag = 0)
548      : Info(Info), Old(Info.EvalStatus) {
549      Info.EvalStatus.Diag = NewDiag;
550    }
551    ~SpeculativeEvaluationRAII() {
552      Info.EvalStatus = Old;
553    }
554  };
555}
556
557bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
558                                         CheckSubobjectKind CSK) {
559  if (Invalid)
560    return false;
561  if (isOnePastTheEnd()) {
562    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
563      << CSK;
564    setInvalid();
565    return false;
566  }
567  return true;
568}
569
570void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
571                                                    const Expr *E, uint64_t N) {
572  if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
573    Info.CCEDiag(E, diag::note_constexpr_array_index)
574      << static_cast<int>(N) << /*array*/ 0
575      << static_cast<unsigned>(MostDerivedArraySize);
576  else
577    Info.CCEDiag(E, diag::note_constexpr_array_index)
578      << static_cast<int>(N) << /*non-array*/ 1;
579  setInvalid();
580}
581
582CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
583                               const FunctionDecl *Callee, const LValue *This,
584                               const APValue *Arguments)
585    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
586      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
587  Info.CurrentCall = this;
588  ++Info.CallStackDepth;
589}
590
591CallStackFrame::~CallStackFrame() {
592  assert(Info.CurrentCall == this && "calls retired out of order");
593  --Info.CallStackDepth;
594  Info.CurrentCall = Caller;
595}
596
597/// Produce a string describing the given constexpr call.
598static void describeCall(CallStackFrame *Frame, llvm::raw_ostream &Out) {
599  unsigned ArgIndex = 0;
600  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
601                      !isa<CXXConstructorDecl>(Frame->Callee) &&
602                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
603
604  if (!IsMemberCall)
605    Out << *Frame->Callee << '(';
606
607  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
608       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
609    if (ArgIndex > (unsigned)IsMemberCall)
610      Out << ", ";
611
612    const ParmVarDecl *Param = *I;
613    const APValue &Arg = Frame->Arguments[ArgIndex];
614    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
615
616    if (ArgIndex == 0 && IsMemberCall)
617      Out << "->" << *Frame->Callee << '(';
618  }
619
620  Out << ')';
621}
622
623void EvalInfo::addCallStack(unsigned Limit) {
624  // Determine which calls to skip, if any.
625  unsigned ActiveCalls = CallStackDepth - 1;
626  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
627  if (Limit && Limit < ActiveCalls) {
628    SkipStart = Limit / 2 + Limit % 2;
629    SkipEnd = ActiveCalls - Limit / 2;
630  }
631
632  // Walk the call stack and add the diagnostics.
633  unsigned CallIdx = 0;
634  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
635       Frame = Frame->Caller, ++CallIdx) {
636    // Skip this call?
637    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
638      if (CallIdx == SkipStart) {
639        // Note that we're skipping calls.
640        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
641          << unsigned(ActiveCalls - Limit);
642      }
643      continue;
644    }
645
646    llvm::SmallVector<char, 128> Buffer;
647    llvm::raw_svector_ostream Out(Buffer);
648    describeCall(Frame, Out);
649    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
650  }
651}
652
653namespace {
654  struct ComplexValue {
655  private:
656    bool IsInt;
657
658  public:
659    APSInt IntReal, IntImag;
660    APFloat FloatReal, FloatImag;
661
662    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
663
664    void makeComplexFloat() { IsInt = false; }
665    bool isComplexFloat() const { return !IsInt; }
666    APFloat &getComplexFloatReal() { return FloatReal; }
667    APFloat &getComplexFloatImag() { return FloatImag; }
668
669    void makeComplexInt() { IsInt = true; }
670    bool isComplexInt() const { return IsInt; }
671    APSInt &getComplexIntReal() { return IntReal; }
672    APSInt &getComplexIntImag() { return IntImag; }
673
674    void moveInto(APValue &v) const {
675      if (isComplexFloat())
676        v = APValue(FloatReal, FloatImag);
677      else
678        v = APValue(IntReal, IntImag);
679    }
680    void setFrom(const APValue &v) {
681      assert(v.isComplexFloat() || v.isComplexInt());
682      if (v.isComplexFloat()) {
683        makeComplexFloat();
684        FloatReal = v.getComplexFloatReal();
685        FloatImag = v.getComplexFloatImag();
686      } else {
687        makeComplexInt();
688        IntReal = v.getComplexIntReal();
689        IntImag = v.getComplexIntImag();
690      }
691    }
692  };
693
694  struct LValue {
695    APValue::LValueBase Base;
696    CharUnits Offset;
697    unsigned CallIndex;
698    SubobjectDesignator Designator;
699
700    const APValue::LValueBase getLValueBase() const { return Base; }
701    CharUnits &getLValueOffset() { return Offset; }
702    const CharUnits &getLValueOffset() const { return Offset; }
703    unsigned getLValueCallIndex() const { return CallIndex; }
704    SubobjectDesignator &getLValueDesignator() { return Designator; }
705    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
706
707    void moveInto(APValue &V) const {
708      if (Designator.Invalid)
709        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
710      else
711        V = APValue(Base, Offset, Designator.Entries,
712                    Designator.IsOnePastTheEnd, CallIndex);
713    }
714    void setFrom(ASTContext &Ctx, const APValue &V) {
715      assert(V.isLValue());
716      Base = V.getLValueBase();
717      Offset = V.getLValueOffset();
718      CallIndex = V.getLValueCallIndex();
719      Designator = SubobjectDesignator(Ctx, V);
720    }
721
722    void set(APValue::LValueBase B, unsigned I = 0) {
723      Base = B;
724      Offset = CharUnits::Zero();
725      CallIndex = I;
726      Designator = SubobjectDesignator(getType(B));
727    }
728
729    // Check that this LValue is not based on a null pointer. If it is, produce
730    // a diagnostic and mark the designator as invalid.
731    bool checkNullPointer(EvalInfo &Info, const Expr *E,
732                          CheckSubobjectKind CSK) {
733      if (Designator.Invalid)
734        return false;
735      if (!Base) {
736        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
737          << CSK;
738        Designator.setInvalid();
739        return false;
740      }
741      return true;
742    }
743
744    // Check this LValue refers to an object. If not, set the designator to be
745    // invalid and emit a diagnostic.
746    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
747      // Outside C++11, do not build a designator referring to a subobject of
748      // any object: we won't use such a designator for anything.
749      if (!Info.getLangOpts().CPlusPlus0x)
750        Designator.setInvalid();
751      return checkNullPointer(Info, E, CSK) &&
752             Designator.checkSubobject(Info, E, CSK);
753    }
754
755    void addDecl(EvalInfo &Info, const Expr *E,
756                 const Decl *D, bool Virtual = false) {
757      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
758        Designator.addDeclUnchecked(D, Virtual);
759    }
760    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
761      if (checkSubobject(Info, E, CSK_ArrayToPointer))
762        Designator.addArrayUnchecked(CAT);
763    }
764    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
765      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
766        Designator.addComplexUnchecked(EltTy, Imag);
767    }
768    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
769      if (checkNullPointer(Info, E, CSK_ArrayIndex))
770        Designator.adjustIndex(Info, E, N);
771    }
772  };
773
774  struct MemberPtr {
775    MemberPtr() {}
776    explicit MemberPtr(const ValueDecl *Decl) :
777      DeclAndIsDerivedMember(Decl, false), Path() {}
778
779    /// The member or (direct or indirect) field referred to by this member
780    /// pointer, or 0 if this is a null member pointer.
781    const ValueDecl *getDecl() const {
782      return DeclAndIsDerivedMember.getPointer();
783    }
784    /// Is this actually a member of some type derived from the relevant class?
785    bool isDerivedMember() const {
786      return DeclAndIsDerivedMember.getInt();
787    }
788    /// Get the class which the declaration actually lives in.
789    const CXXRecordDecl *getContainingRecord() const {
790      return cast<CXXRecordDecl>(
791          DeclAndIsDerivedMember.getPointer()->getDeclContext());
792    }
793
794    void moveInto(APValue &V) const {
795      V = APValue(getDecl(), isDerivedMember(), Path);
796    }
797    void setFrom(const APValue &V) {
798      assert(V.isMemberPointer());
799      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
800      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
801      Path.clear();
802      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
803      Path.insert(Path.end(), P.begin(), P.end());
804    }
805
806    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
807    /// whether the member is a member of some class derived from the class type
808    /// of the member pointer.
809    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
810    /// Path - The path of base/derived classes from the member declaration's
811    /// class (exclusive) to the class type of the member pointer (inclusive).
812    SmallVector<const CXXRecordDecl*, 4> Path;
813
814    /// Perform a cast towards the class of the Decl (either up or down the
815    /// hierarchy).
816    bool castBack(const CXXRecordDecl *Class) {
817      assert(!Path.empty());
818      const CXXRecordDecl *Expected;
819      if (Path.size() >= 2)
820        Expected = Path[Path.size() - 2];
821      else
822        Expected = getContainingRecord();
823      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
824        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
825        // if B does not contain the original member and is not a base or
826        // derived class of the class containing the original member, the result
827        // of the cast is undefined.
828        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
829        // (D::*). We consider that to be a language defect.
830        return false;
831      }
832      Path.pop_back();
833      return true;
834    }
835    /// Perform a base-to-derived member pointer cast.
836    bool castToDerived(const CXXRecordDecl *Derived) {
837      if (!getDecl())
838        return true;
839      if (!isDerivedMember()) {
840        Path.push_back(Derived);
841        return true;
842      }
843      if (!castBack(Derived))
844        return false;
845      if (Path.empty())
846        DeclAndIsDerivedMember.setInt(false);
847      return true;
848    }
849    /// Perform a derived-to-base member pointer cast.
850    bool castToBase(const CXXRecordDecl *Base) {
851      if (!getDecl())
852        return true;
853      if (Path.empty())
854        DeclAndIsDerivedMember.setInt(true);
855      if (isDerivedMember()) {
856        Path.push_back(Base);
857        return true;
858      }
859      return castBack(Base);
860    }
861  };
862
863  /// Compare two member pointers, which are assumed to be of the same type.
864  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
865    if (!LHS.getDecl() || !RHS.getDecl())
866      return !LHS.getDecl() && !RHS.getDecl();
867    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
868      return false;
869    return LHS.Path == RHS.Path;
870  }
871
872  /// Kinds of constant expression checking, for diagnostics.
873  enum CheckConstantExpressionKind {
874    CCEK_Constant,    ///< A normal constant.
875    CCEK_ReturnValue, ///< A constexpr function return value.
876    CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
877  };
878}
879
880static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
881static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
882                            const LValue &This, const Expr *E,
883                            CheckConstantExpressionKind CCEK = CCEK_Constant,
884                            bool AllowNonLiteralTypes = false);
885static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
886static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
887static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
888                                  EvalInfo &Info);
889static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
890static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
891static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
892                                    EvalInfo &Info);
893static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
894static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
895
896//===----------------------------------------------------------------------===//
897// Misc utilities
898//===----------------------------------------------------------------------===//
899
900/// Should this call expression be treated as a string literal?
901static bool IsStringLiteralCall(const CallExpr *E) {
902  unsigned Builtin = E->isBuiltinCall();
903  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
904          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
905}
906
907static bool IsGlobalLValue(APValue::LValueBase B) {
908  // C++11 [expr.const]p3 An address constant expression is a prvalue core
909  // constant expression of pointer type that evaluates to...
910
911  // ... a null pointer value, or a prvalue core constant expression of type
912  // std::nullptr_t.
913  if (!B) return true;
914
915  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
916    // ... the address of an object with static storage duration,
917    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
918      return VD->hasGlobalStorage();
919    // ... the address of a function,
920    return isa<FunctionDecl>(D);
921  }
922
923  const Expr *E = B.get<const Expr*>();
924  switch (E->getStmtClass()) {
925  default:
926    return false;
927  case Expr::CompoundLiteralExprClass: {
928    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
929    return CLE->isFileScope() && CLE->isLValue();
930  }
931  // A string literal has static storage duration.
932  case Expr::StringLiteralClass:
933  case Expr::PredefinedExprClass:
934  case Expr::ObjCStringLiteralClass:
935  case Expr::ObjCEncodeExprClass:
936  case Expr::CXXTypeidExprClass:
937  case Expr::CXXUuidofExprClass:
938    return true;
939  case Expr::CallExprClass:
940    return IsStringLiteralCall(cast<CallExpr>(E));
941  // For GCC compatibility, &&label has static storage duration.
942  case Expr::AddrLabelExprClass:
943    return true;
944  // A Block literal expression may be used as the initialization value for
945  // Block variables at global or local static scope.
946  case Expr::BlockExprClass:
947    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
948  case Expr::ImplicitValueInitExprClass:
949    // FIXME:
950    // We can never form an lvalue with an implicit value initialization as its
951    // base through expression evaluation, so these only appear in one case: the
952    // implicit variable declaration we invent when checking whether a constexpr
953    // constructor can produce a constant expression. We must assume that such
954    // an expression might be a global lvalue.
955    return true;
956  }
957}
958
959static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
960  assert(Base && "no location for a null lvalue");
961  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
962  if (VD)
963    Info.Note(VD->getLocation(), diag::note_declared_at);
964  else
965    Info.Note(Base.dyn_cast<const Expr*>()->getExprLoc(),
966              diag::note_constexpr_temporary_here);
967}
968
969/// Check that this reference or pointer core constant expression is a valid
970/// value for an address or reference constant expression. Return true if we
971/// can fold this expression, whether or not it's a constant expression.
972static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
973                                          QualType Type, const LValue &LVal) {
974  bool IsReferenceType = Type->isReferenceType();
975
976  APValue::LValueBase Base = LVal.getLValueBase();
977  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
978
979  // Check that the object is a global. Note that the fake 'this' object we
980  // manufacture when checking potential constant expressions is conservatively
981  // assumed to be global here.
982  if (!IsGlobalLValue(Base)) {
983    if (Info.getLangOpts().CPlusPlus0x) {
984      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
985      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
986        << IsReferenceType << !Designator.Entries.empty()
987        << !!VD << VD;
988      NoteLValueLocation(Info, Base);
989    } else {
990      Info.Diag(Loc);
991    }
992    // Don't allow references to temporaries to escape.
993    return false;
994  }
995  assert((Info.CheckingPotentialConstantExpression ||
996          LVal.getLValueCallIndex() == 0) &&
997         "have call index for global lvalue");
998
999  // Allow address constant expressions to be past-the-end pointers. This is
1000  // an extension: the standard requires them to point to an object.
1001  if (!IsReferenceType)
1002    return true;
1003
1004  // A reference constant expression must refer to an object.
1005  if (!Base) {
1006    // FIXME: diagnostic
1007    Info.CCEDiag(Loc);
1008    return true;
1009  }
1010
1011  // Does this refer one past the end of some object?
1012  if (Designator.isOnePastTheEnd()) {
1013    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1014    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1015      << !Designator.Entries.empty() << !!VD << VD;
1016    NoteLValueLocation(Info, Base);
1017  }
1018
1019  return true;
1020}
1021
1022/// Check that this core constant expression is of literal type, and if not,
1023/// produce an appropriate diagnostic.
1024static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
1025  if (!E->isRValue() || E->getType()->isLiteralType())
1026    return true;
1027
1028  // Prvalue constant expressions must be of literal types.
1029  if (Info.getLangOpts().CPlusPlus0x)
1030    Info.Diag(E, diag::note_constexpr_nonliteral)
1031      << E->getType();
1032  else
1033    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1034  return false;
1035}
1036
1037/// Check that this core constant expression value is a valid value for a
1038/// constant expression. If not, report an appropriate diagnostic. Does not
1039/// check that the expression is of literal type.
1040static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1041                                    QualType Type, const APValue &Value) {
1042  // Core issue 1454: For a literal constant expression of array or class type,
1043  // each subobject of its value shall have been initialized by a constant
1044  // expression.
1045  if (Value.isArray()) {
1046    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1047    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1048      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1049                                   Value.getArrayInitializedElt(I)))
1050        return false;
1051    }
1052    if (!Value.hasArrayFiller())
1053      return true;
1054    return CheckConstantExpression(Info, DiagLoc, EltTy,
1055                                   Value.getArrayFiller());
1056  }
1057  if (Value.isUnion() && Value.getUnionField()) {
1058    return CheckConstantExpression(Info, DiagLoc,
1059                                   Value.getUnionField()->getType(),
1060                                   Value.getUnionValue());
1061  }
1062  if (Value.isStruct()) {
1063    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1064    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1065      unsigned BaseIndex = 0;
1066      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1067             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1068        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1069                                     Value.getStructBase(BaseIndex)))
1070          return false;
1071      }
1072    }
1073    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1074         I != E; ++I) {
1075      if (!CheckConstantExpression(Info, DiagLoc, (*I)->getType(),
1076                                   Value.getStructField((*I)->getFieldIndex())))
1077        return false;
1078    }
1079  }
1080
1081  if (Value.isLValue()) {
1082    LValue LVal;
1083    LVal.setFrom(Info.Ctx, Value);
1084    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1085  }
1086
1087  // Everything else is fine.
1088  return true;
1089}
1090
1091const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1092  return LVal.Base.dyn_cast<const ValueDecl*>();
1093}
1094
1095static bool IsLiteralLValue(const LValue &Value) {
1096  return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
1097}
1098
1099static bool IsWeakLValue(const LValue &Value) {
1100  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1101  return Decl && Decl->isWeak();
1102}
1103
1104static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1105  // A null base expression indicates a null pointer.  These are always
1106  // evaluatable, and they are false unless the offset is zero.
1107  if (!Value.getLValueBase()) {
1108    Result = !Value.getLValueOffset().isZero();
1109    return true;
1110  }
1111
1112  // We have a non-null base.  These are generally known to be true, but if it's
1113  // a weak declaration it can be null at runtime.
1114  Result = true;
1115  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1116  return !Decl || !Decl->isWeak();
1117}
1118
1119static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1120  switch (Val.getKind()) {
1121  case APValue::Uninitialized:
1122    return false;
1123  case APValue::Int:
1124    Result = Val.getInt().getBoolValue();
1125    return true;
1126  case APValue::Float:
1127    Result = !Val.getFloat().isZero();
1128    return true;
1129  case APValue::ComplexInt:
1130    Result = Val.getComplexIntReal().getBoolValue() ||
1131             Val.getComplexIntImag().getBoolValue();
1132    return true;
1133  case APValue::ComplexFloat:
1134    Result = !Val.getComplexFloatReal().isZero() ||
1135             !Val.getComplexFloatImag().isZero();
1136    return true;
1137  case APValue::LValue:
1138    return EvalPointerValueAsBool(Val, Result);
1139  case APValue::MemberPointer:
1140    Result = Val.getMemberPointerDecl();
1141    return true;
1142  case APValue::Vector:
1143  case APValue::Array:
1144  case APValue::Struct:
1145  case APValue::Union:
1146  case APValue::AddrLabelDiff:
1147    return false;
1148  }
1149
1150  llvm_unreachable("unknown APValue kind");
1151}
1152
1153static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1154                                       EvalInfo &Info) {
1155  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1156  APValue Val;
1157  if (!Evaluate(Val, Info, E))
1158    return false;
1159  return HandleConversionToBool(Val, Result);
1160}
1161
1162template<typename T>
1163static bool HandleOverflow(EvalInfo &Info, const Expr *E,
1164                           const T &SrcValue, QualType DestType) {
1165  Info.Diag(E, diag::note_constexpr_overflow)
1166    << SrcValue << DestType;
1167  return false;
1168}
1169
1170static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1171                                 QualType SrcType, const APFloat &Value,
1172                                 QualType DestType, APSInt &Result) {
1173  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1174  // Determine whether we are converting to unsigned or signed.
1175  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1176
1177  Result = APSInt(DestWidth, !DestSigned);
1178  bool ignored;
1179  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1180      & APFloat::opInvalidOp)
1181    return HandleOverflow(Info, E, Value, DestType);
1182  return true;
1183}
1184
1185static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1186                                   QualType SrcType, QualType DestType,
1187                                   APFloat &Result) {
1188  APFloat Value = Result;
1189  bool ignored;
1190  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1191                     APFloat::rmNearestTiesToEven, &ignored)
1192      & APFloat::opOverflow)
1193    return HandleOverflow(Info, E, Value, DestType);
1194  return true;
1195}
1196
1197static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1198                                 QualType DestType, QualType SrcType,
1199                                 APSInt &Value) {
1200  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1201  APSInt Result = Value;
1202  // Figure out if this is a truncate, extend or noop cast.
1203  // If the input is signed, do a sign extend, noop, or truncate.
1204  Result = Result.extOrTrunc(DestWidth);
1205  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1206  return Result;
1207}
1208
1209static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1210                                 QualType SrcType, const APSInt &Value,
1211                                 QualType DestType, APFloat &Result) {
1212  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1213  if (Result.convertFromAPInt(Value, Value.isSigned(),
1214                              APFloat::rmNearestTiesToEven)
1215      & APFloat::opOverflow)
1216    return HandleOverflow(Info, E, Value, DestType);
1217  return true;
1218}
1219
1220static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1221                                  llvm::APInt &Res) {
1222  APValue SVal;
1223  if (!Evaluate(SVal, Info, E))
1224    return false;
1225  if (SVal.isInt()) {
1226    Res = SVal.getInt();
1227    return true;
1228  }
1229  if (SVal.isFloat()) {
1230    Res = SVal.getFloat().bitcastToAPInt();
1231    return true;
1232  }
1233  if (SVal.isVector()) {
1234    QualType VecTy = E->getType();
1235    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1236    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1237    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1238    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1239    Res = llvm::APInt::getNullValue(VecSize);
1240    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1241      APValue &Elt = SVal.getVectorElt(i);
1242      llvm::APInt EltAsInt;
1243      if (Elt.isInt()) {
1244        EltAsInt = Elt.getInt();
1245      } else if (Elt.isFloat()) {
1246        EltAsInt = Elt.getFloat().bitcastToAPInt();
1247      } else {
1248        // Don't try to handle vectors of anything other than int or float
1249        // (not sure if it's possible to hit this case).
1250        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1251        return false;
1252      }
1253      unsigned BaseEltSize = EltAsInt.getBitWidth();
1254      if (BigEndian)
1255        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1256      else
1257        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1258    }
1259    return true;
1260  }
1261  // Give up if the input isn't an int, float, or vector.  For example, we
1262  // reject "(v4i16)(intptr_t)&a".
1263  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1264  return false;
1265}
1266
1267/// Cast an lvalue referring to a base subobject to a derived class, by
1268/// truncating the lvalue's path to the given length.
1269static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1270                               const RecordDecl *TruncatedType,
1271                               unsigned TruncatedElements) {
1272  SubobjectDesignator &D = Result.Designator;
1273
1274  // Check we actually point to a derived class object.
1275  if (TruncatedElements == D.Entries.size())
1276    return true;
1277  assert(TruncatedElements >= D.MostDerivedPathLength &&
1278         "not casting to a derived class");
1279  if (!Result.checkSubobject(Info, E, CSK_Derived))
1280    return false;
1281
1282  // Truncate the path to the subobject, and remove any derived-to-base offsets.
1283  const RecordDecl *RD = TruncatedType;
1284  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1285    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1286    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1287    if (isVirtualBaseClass(D.Entries[I]))
1288      Result.Offset -= Layout.getVBaseClassOffset(Base);
1289    else
1290      Result.Offset -= Layout.getBaseClassOffset(Base);
1291    RD = Base;
1292  }
1293  D.Entries.resize(TruncatedElements);
1294  return true;
1295}
1296
1297static void HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1298                                   const CXXRecordDecl *Derived,
1299                                   const CXXRecordDecl *Base,
1300                                   const ASTRecordLayout *RL = 0) {
1301  if (!RL) RL = &Info.Ctx.getASTRecordLayout(Derived);
1302  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1303  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1304}
1305
1306static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1307                             const CXXRecordDecl *DerivedDecl,
1308                             const CXXBaseSpecifier *Base) {
1309  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1310
1311  if (!Base->isVirtual()) {
1312    HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1313    return true;
1314  }
1315
1316  SubobjectDesignator &D = Obj.Designator;
1317  if (D.Invalid)
1318    return false;
1319
1320  // Extract most-derived object and corresponding type.
1321  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1322  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1323    return false;
1324
1325  // Find the virtual base class.
1326  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1327  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1328  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1329  return true;
1330}
1331
1332/// Update LVal to refer to the given field, which must be a member of the type
1333/// currently described by LVal.
1334static void HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1335                               const FieldDecl *FD,
1336                               const ASTRecordLayout *RL = 0) {
1337  if (!RL)
1338    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1339
1340  unsigned I = FD->getFieldIndex();
1341  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1342  LVal.addDecl(Info, E, FD);
1343}
1344
1345/// Update LVal to refer to the given indirect field.
1346static void HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1347                                       LValue &LVal,
1348                                       const IndirectFieldDecl *IFD) {
1349  for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1350                                         CE = IFD->chain_end(); C != CE; ++C)
1351    HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C));
1352}
1353
1354/// Get the size of the given type in char units.
1355static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1356                         QualType Type, CharUnits &Size) {
1357  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1358  // extension.
1359  if (Type->isVoidType() || Type->isFunctionType()) {
1360    Size = CharUnits::One();
1361    return true;
1362  }
1363
1364  if (!Type->isConstantSizeType()) {
1365    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1366    // FIXME: Better diagnostic.
1367    Info.Diag(Loc);
1368    return false;
1369  }
1370
1371  Size = Info.Ctx.getTypeSizeInChars(Type);
1372  return true;
1373}
1374
1375/// Update a pointer value to model pointer arithmetic.
1376/// \param Info - Information about the ongoing evaluation.
1377/// \param E - The expression being evaluated, for diagnostic purposes.
1378/// \param LVal - The pointer value to be updated.
1379/// \param EltTy - The pointee type represented by LVal.
1380/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1381static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1382                                        LValue &LVal, QualType EltTy,
1383                                        int64_t Adjustment) {
1384  CharUnits SizeOfPointee;
1385  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1386    return false;
1387
1388  // Compute the new offset in the appropriate width.
1389  LVal.Offset += Adjustment * SizeOfPointee;
1390  LVal.adjustIndex(Info, E, Adjustment);
1391  return true;
1392}
1393
1394/// Update an lvalue to refer to a component of a complex number.
1395/// \param Info - Information about the ongoing evaluation.
1396/// \param LVal - The lvalue to be updated.
1397/// \param EltTy - The complex number's component type.
1398/// \param Imag - False for the real component, true for the imaginary.
1399static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1400                                       LValue &LVal, QualType EltTy,
1401                                       bool Imag) {
1402  if (Imag) {
1403    CharUnits SizeOfComponent;
1404    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1405      return false;
1406    LVal.Offset += SizeOfComponent;
1407  }
1408  LVal.addComplex(Info, E, EltTy, Imag);
1409  return true;
1410}
1411
1412/// Try to evaluate the initializer for a variable declaration.
1413static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1414                                const VarDecl *VD,
1415                                CallStackFrame *Frame, APValue &Result) {
1416  // If this is a parameter to an active constexpr function call, perform
1417  // argument substitution.
1418  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1419    // Assume arguments of a potential constant expression are unknown
1420    // constant expressions.
1421    if (Info.CheckingPotentialConstantExpression)
1422      return false;
1423    if (!Frame || !Frame->Arguments) {
1424      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1425      return false;
1426    }
1427    Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
1428    return true;
1429  }
1430
1431  // Dig out the initializer, and use the declaration which it's attached to.
1432  const Expr *Init = VD->getAnyInitializer(VD);
1433  if (!Init || Init->isValueDependent()) {
1434    // If we're checking a potential constant expression, the variable could be
1435    // initialized later.
1436    if (!Info.CheckingPotentialConstantExpression)
1437      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1438    return false;
1439  }
1440
1441  // If we're currently evaluating the initializer of this declaration, use that
1442  // in-flight value.
1443  if (Info.EvaluatingDecl == VD) {
1444    Result = *Info.EvaluatingDeclValue;
1445    return !Result.isUninit();
1446  }
1447
1448  // Never evaluate the initializer of a weak variable. We can't be sure that
1449  // this is the definition which will be used.
1450  if (VD->isWeak()) {
1451    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1452    return false;
1453  }
1454
1455  // Check that we can fold the initializer. In C++, we will have already done
1456  // this in the cases where it matters for conformance.
1457  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
1458  if (!VD->evaluateValue(Notes)) {
1459    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1460              Notes.size() + 1) << VD;
1461    Info.Note(VD->getLocation(), diag::note_declared_at);
1462    Info.addNotes(Notes);
1463    return false;
1464  } else if (!VD->checkInitIsICE()) {
1465    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1466                 Notes.size() + 1) << VD;
1467    Info.Note(VD->getLocation(), diag::note_declared_at);
1468    Info.addNotes(Notes);
1469  }
1470
1471  Result = *VD->getEvaluatedValue();
1472  return true;
1473}
1474
1475static bool IsConstNonVolatile(QualType T) {
1476  Qualifiers Quals = T.getQualifiers();
1477  return Quals.hasConst() && !Quals.hasVolatile();
1478}
1479
1480/// Get the base index of the given base class within an APValue representing
1481/// the given derived class.
1482static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1483                             const CXXRecordDecl *Base) {
1484  Base = Base->getCanonicalDecl();
1485  unsigned Index = 0;
1486  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1487         E = Derived->bases_end(); I != E; ++I, ++Index) {
1488    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1489      return Index;
1490  }
1491
1492  llvm_unreachable("base class missing from derived class's bases list");
1493}
1494
1495/// Extract the value of a character from a string literal. CharType is used to
1496/// determine the expected signedness of the result -- a string literal used to
1497/// initialize an array of 'signed char' or 'unsigned char' might contain chars
1498/// of the wrong signedness.
1499static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1500                                            uint64_t Index, QualType CharType) {
1501  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1502  const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
1503  assert(S && "unexpected string literal expression kind");
1504  assert(CharType->isIntegerType() && "unexpected character type");
1505
1506  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1507               CharType->isUnsignedIntegerType());
1508  if (Index < S->getLength())
1509    Value = S->getCodeUnit(Index);
1510  return Value;
1511}
1512
1513/// Extract the designated sub-object of an rvalue.
1514static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
1515                             APValue &Obj, QualType ObjType,
1516                             const SubobjectDesignator &Sub, QualType SubType) {
1517  if (Sub.Invalid)
1518    // A diagnostic will have already been produced.
1519    return false;
1520  if (Sub.isOnePastTheEnd()) {
1521    Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1522                (unsigned)diag::note_constexpr_read_past_end :
1523                (unsigned)diag::note_invalid_subexpr_in_const_expr);
1524    return false;
1525  }
1526  if (Sub.Entries.empty())
1527    return true;
1528  if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
1529    // This object might be initialized later.
1530    return false;
1531
1532  APValue *O = &Obj;
1533  // Walk the designator's path to find the subobject.
1534  for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
1535    if (ObjType->isArrayType()) {
1536      // Next subobject is an array element.
1537      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
1538      assert(CAT && "vla in literal type?");
1539      uint64_t Index = Sub.Entries[I].ArrayIndex;
1540      if (CAT->getSize().ule(Index)) {
1541        // Note, it should not be possible to form a pointer with a valid
1542        // designator which points more than one past the end of the array.
1543        Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1544                    (unsigned)diag::note_constexpr_read_past_end :
1545                    (unsigned)diag::note_invalid_subexpr_in_const_expr);
1546        return false;
1547      }
1548      // An array object is represented as either an Array APValue or as an
1549      // LValue which refers to a string literal.
1550      if (O->isLValue()) {
1551        assert(I == N - 1 && "extracting subobject of character?");
1552        assert(!O->hasLValuePath() || O->getLValuePath().empty());
1553        Obj = APValue(ExtractStringLiteralCharacter(
1554          Info, O->getLValueBase().get<const Expr*>(), Index, SubType));
1555        return true;
1556      } else if (O->getArrayInitializedElts() > Index)
1557        O = &O->getArrayInitializedElt(Index);
1558      else
1559        O = &O->getArrayFiller();
1560      ObjType = CAT->getElementType();
1561    } else if (ObjType->isAnyComplexType()) {
1562      // Next subobject is a complex number.
1563      uint64_t Index = Sub.Entries[I].ArrayIndex;
1564      if (Index > 1) {
1565        Info.Diag(E, Info.getLangOpts().CPlusPlus0x ?
1566                    (unsigned)diag::note_constexpr_read_past_end :
1567                    (unsigned)diag::note_invalid_subexpr_in_const_expr);
1568        return false;
1569      }
1570      assert(I == N - 1 && "extracting subobject of scalar?");
1571      if (O->isComplexInt()) {
1572        Obj = APValue(Index ? O->getComplexIntImag()
1573                            : O->getComplexIntReal());
1574      } else {
1575        assert(O->isComplexFloat());
1576        Obj = APValue(Index ? O->getComplexFloatImag()
1577                            : O->getComplexFloatReal());
1578      }
1579      return true;
1580    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
1581      if (Field->isMutable()) {
1582        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
1583          << Field;
1584        Info.Note(Field->getLocation(), diag::note_declared_at);
1585        return false;
1586      }
1587
1588      // Next subobject is a class, struct or union field.
1589      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
1590      if (RD->isUnion()) {
1591        const FieldDecl *UnionField = O->getUnionField();
1592        if (!UnionField ||
1593            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
1594          Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
1595            << Field << !UnionField << UnionField;
1596          return false;
1597        }
1598        O = &O->getUnionValue();
1599      } else
1600        O = &O->getStructField(Field->getFieldIndex());
1601      ObjType = Field->getType();
1602
1603      if (ObjType.isVolatileQualified()) {
1604        if (Info.getLangOpts().CPlusPlus) {
1605          // FIXME: Include a description of the path to the volatile subobject.
1606          Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
1607            << 2 << Field;
1608          Info.Note(Field->getLocation(), diag::note_declared_at);
1609        } else {
1610          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1611        }
1612        return false;
1613      }
1614    } else {
1615      // Next subobject is a base class.
1616      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
1617      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
1618      O = &O->getStructBase(getBaseIndex(Derived, Base));
1619      ObjType = Info.Ctx.getRecordType(Base);
1620    }
1621
1622    if (O->isUninit()) {
1623      if (!Info.CheckingPotentialConstantExpression)
1624        Info.Diag(E, diag::note_constexpr_read_uninit);
1625      return false;
1626    }
1627  }
1628
1629  // This may look super-stupid, but it serves an important purpose: if we just
1630  // swapped Obj and *O, we'd create an object which had itself as a subobject.
1631  // To avoid the leak, we ensure that Tmp ends up owning the original complete
1632  // object, which is destroyed by Tmp's destructor.
1633  APValue Tmp;
1634  O->swap(Tmp);
1635  Obj.swap(Tmp);
1636  return true;
1637}
1638
1639/// Find the position where two subobject designators diverge, or equivalently
1640/// the length of the common initial subsequence.
1641static unsigned FindDesignatorMismatch(QualType ObjType,
1642                                       const SubobjectDesignator &A,
1643                                       const SubobjectDesignator &B,
1644                                       bool &WasArrayIndex) {
1645  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
1646  for (/**/; I != N; ++I) {
1647    if (!ObjType.isNull() &&
1648        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
1649      // Next subobject is an array element.
1650      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
1651        WasArrayIndex = true;
1652        return I;
1653      }
1654      if (ObjType->isAnyComplexType())
1655        ObjType = ObjType->castAs<ComplexType>()->getElementType();
1656      else
1657        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
1658    } else {
1659      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
1660        WasArrayIndex = false;
1661        return I;
1662      }
1663      if (const FieldDecl *FD = getAsField(A.Entries[I]))
1664        // Next subobject is a field.
1665        ObjType = FD->getType();
1666      else
1667        // Next subobject is a base class.
1668        ObjType = QualType();
1669    }
1670  }
1671  WasArrayIndex = false;
1672  return I;
1673}
1674
1675/// Determine whether the given subobject designators refer to elements of the
1676/// same array object.
1677static bool AreElementsOfSameArray(QualType ObjType,
1678                                   const SubobjectDesignator &A,
1679                                   const SubobjectDesignator &B) {
1680  if (A.Entries.size() != B.Entries.size())
1681    return false;
1682
1683  bool IsArray = A.MostDerivedArraySize != 0;
1684  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
1685    // A is a subobject of the array element.
1686    return false;
1687
1688  // If A (and B) designates an array element, the last entry will be the array
1689  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
1690  // of length 1' case, and the entire path must match.
1691  bool WasArrayIndex;
1692  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
1693  return CommonLength >= A.Entries.size() - IsArray;
1694}
1695
1696/// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
1697/// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
1698/// for looking up the glvalue referred to by an entity of reference type.
1699///
1700/// \param Info - Information about the ongoing evaluation.
1701/// \param Conv - The expression for which we are performing the conversion.
1702///               Used for diagnostics.
1703/// \param Type - The type we expect this conversion to produce, before
1704///               stripping cv-qualifiers in the case of a non-clas type.
1705/// \param LVal - The glvalue on which we are attempting to perform this action.
1706/// \param RVal - The produced value will be placed here.
1707static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
1708                                           QualType Type,
1709                                           const LValue &LVal, APValue &RVal) {
1710  if (LVal.Designator.Invalid)
1711    // A diagnostic will have already been produced.
1712    return false;
1713
1714  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
1715
1716  if (!LVal.Base) {
1717    // FIXME: Indirection through a null pointer deserves a specific diagnostic.
1718    Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1719    return false;
1720  }
1721
1722  CallStackFrame *Frame = 0;
1723  if (LVal.CallIndex) {
1724    Frame = Info.getCallFrame(LVal.CallIndex);
1725    if (!Frame) {
1726      Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1727      NoteLValueLocation(Info, LVal.Base);
1728      return false;
1729    }
1730  }
1731
1732  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
1733  // is not a constant expression (even if the object is non-volatile). We also
1734  // apply this rule to C++98, in order to conform to the expected 'volatile'
1735  // semantics.
1736  if (Type.isVolatileQualified()) {
1737    if (Info.getLangOpts().CPlusPlus)
1738      Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
1739    else
1740      Info.Diag(Conv);
1741    return false;
1742  }
1743
1744  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
1745    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
1746    // In C++11, constexpr, non-volatile variables initialized with constant
1747    // expressions are constant expressions too. Inside constexpr functions,
1748    // parameters are constant expressions even if they're non-const.
1749    // In C, such things can also be folded, although they are not ICEs.
1750    const VarDecl *VD = dyn_cast<VarDecl>(D);
1751    if (VD) {
1752      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
1753        VD = VDef;
1754    }
1755    if (!VD || VD->isInvalidDecl()) {
1756      Info.Diag(Conv);
1757      return false;
1758    }
1759
1760    // DR1313: If the object is volatile-qualified but the glvalue was not,
1761    // behavior is undefined so the result is not a constant expression.
1762    QualType VT = VD->getType();
1763    if (VT.isVolatileQualified()) {
1764      if (Info.getLangOpts().CPlusPlus) {
1765        Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
1766        Info.Note(VD->getLocation(), diag::note_declared_at);
1767      } else {
1768        Info.Diag(Conv);
1769      }
1770      return false;
1771    }
1772
1773    if (!isa<ParmVarDecl>(VD)) {
1774      if (VD->isConstexpr()) {
1775        // OK, we can read this variable.
1776      } else if (VT->isIntegralOrEnumerationType()) {
1777        if (!VT.isConstQualified()) {
1778          if (Info.getLangOpts().CPlusPlus) {
1779            Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
1780            Info.Note(VD->getLocation(), diag::note_declared_at);
1781          } else {
1782            Info.Diag(Conv);
1783          }
1784          return false;
1785        }
1786      } else if (VT->isFloatingType() && VT.isConstQualified()) {
1787        // We support folding of const floating-point types, in order to make
1788        // static const data members of such types (supported as an extension)
1789        // more useful.
1790        if (Info.getLangOpts().CPlusPlus0x) {
1791          Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1792          Info.Note(VD->getLocation(), diag::note_declared_at);
1793        } else {
1794          Info.CCEDiag(Conv);
1795        }
1796      } else {
1797        // FIXME: Allow folding of values of any literal type in all languages.
1798        if (Info.getLangOpts().CPlusPlus0x) {
1799          Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1800          Info.Note(VD->getLocation(), diag::note_declared_at);
1801        } else {
1802          Info.Diag(Conv);
1803        }
1804        return false;
1805      }
1806    }
1807
1808    if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
1809      return false;
1810
1811    if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
1812      return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
1813
1814    // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
1815    // conversion. This happens when the declaration and the lvalue should be
1816    // considered synonymous, for instance when initializing an array of char
1817    // from a string literal. Continue as if the initializer lvalue was the
1818    // value we were originally given.
1819    assert(RVal.getLValueOffset().isZero() &&
1820           "offset for lvalue init of non-reference");
1821    Base = RVal.getLValueBase().get<const Expr*>();
1822
1823    if (unsigned CallIndex = RVal.getLValueCallIndex()) {
1824      Frame = Info.getCallFrame(CallIndex);
1825      if (!Frame) {
1826        Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1827        NoteLValueLocation(Info, RVal.getLValueBase());
1828        return false;
1829      }
1830    } else {
1831      Frame = 0;
1832    }
1833  }
1834
1835  // Volatile temporary objects cannot be read in constant expressions.
1836  if (Base->getType().isVolatileQualified()) {
1837    if (Info.getLangOpts().CPlusPlus) {
1838      Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
1839      Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
1840    } else {
1841      Info.Diag(Conv);
1842    }
1843    return false;
1844  }
1845
1846  if (Frame) {
1847    // If this is a temporary expression with a nontrivial initializer, grab the
1848    // value from the relevant stack frame.
1849    RVal = Frame->Temporaries[Base];
1850  } else if (const CompoundLiteralExpr *CLE
1851             = dyn_cast<CompoundLiteralExpr>(Base)) {
1852    // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
1853    // initializer until now for such expressions. Such an expression can't be
1854    // an ICE in C, so this only matters for fold.
1855    assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
1856    if (!Evaluate(RVal, Info, CLE->getInitializer()))
1857      return false;
1858  } else if (isa<StringLiteral>(Base)) {
1859    // We represent a string literal array as an lvalue pointing at the
1860    // corresponding expression, rather than building an array of chars.
1861    // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1862    RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
1863  } else {
1864    Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1865    return false;
1866  }
1867
1868  return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
1869                          Type);
1870}
1871
1872/// Build an lvalue for the object argument of a member function call.
1873static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
1874                                   LValue &This) {
1875  if (Object->getType()->isPointerType())
1876    return EvaluatePointer(Object, This, Info);
1877
1878  if (Object->isGLValue())
1879    return EvaluateLValue(Object, This, Info);
1880
1881  if (Object->getType()->isLiteralType())
1882    return EvaluateTemporary(Object, This, Info);
1883
1884  return false;
1885}
1886
1887/// HandleMemberPointerAccess - Evaluate a member access operation and build an
1888/// lvalue referring to the result.
1889///
1890/// \param Info - Information about the ongoing evaluation.
1891/// \param BO - The member pointer access operation.
1892/// \param LV - Filled in with a reference to the resulting object.
1893/// \param IncludeMember - Specifies whether the member itself is included in
1894///        the resulting LValue subobject designator. This is not possible when
1895///        creating a bound member function.
1896/// \return The field or method declaration to which the member pointer refers,
1897///         or 0 if evaluation fails.
1898static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
1899                                                  const BinaryOperator *BO,
1900                                                  LValue &LV,
1901                                                  bool IncludeMember = true) {
1902  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
1903
1904  bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
1905  if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
1906    return 0;
1907
1908  MemberPtr MemPtr;
1909  if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
1910    return 0;
1911
1912  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
1913  // member value, the behavior is undefined.
1914  if (!MemPtr.getDecl())
1915    return 0;
1916
1917  if (!EvalObjOK)
1918    return 0;
1919
1920  if (MemPtr.isDerivedMember()) {
1921    // This is a member of some derived class. Truncate LV appropriately.
1922    // The end of the derived-to-base path for the base object must match the
1923    // derived-to-base path for the member pointer.
1924    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
1925        LV.Designator.Entries.size())
1926      return 0;
1927    unsigned PathLengthToMember =
1928        LV.Designator.Entries.size() - MemPtr.Path.size();
1929    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
1930      const CXXRecordDecl *LVDecl = getAsBaseClass(
1931          LV.Designator.Entries[PathLengthToMember + I]);
1932      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
1933      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
1934        return 0;
1935    }
1936
1937    // Truncate the lvalue to the appropriate derived class.
1938    if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
1939                            PathLengthToMember))
1940      return 0;
1941  } else if (!MemPtr.Path.empty()) {
1942    // Extend the LValue path with the member pointer's path.
1943    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
1944                                  MemPtr.Path.size() + IncludeMember);
1945
1946    // Walk down to the appropriate base class.
1947    QualType LVType = BO->getLHS()->getType();
1948    if (const PointerType *PT = LVType->getAs<PointerType>())
1949      LVType = PT->getPointeeType();
1950    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
1951    assert(RD && "member pointer access on non-class-type expression");
1952    // The first class in the path is that of the lvalue.
1953    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
1954      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
1955      HandleLValueDirectBase(Info, BO, LV, RD, Base);
1956      RD = Base;
1957    }
1958    // Finally cast to the class containing the member.
1959    HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord());
1960  }
1961
1962  // Add the member. Note that we cannot build bound member functions here.
1963  if (IncludeMember) {
1964    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl()))
1965      HandleLValueMember(Info, BO, LV, FD);
1966    else if (const IndirectFieldDecl *IFD =
1967               dyn_cast<IndirectFieldDecl>(MemPtr.getDecl()))
1968      HandleLValueIndirectMember(Info, BO, LV, IFD);
1969    else
1970      llvm_unreachable("can't construct reference to bound member function");
1971  }
1972
1973  return MemPtr.getDecl();
1974}
1975
1976/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
1977/// the provided lvalue, which currently refers to the base object.
1978static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
1979                                    LValue &Result) {
1980  SubobjectDesignator &D = Result.Designator;
1981  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
1982    return false;
1983
1984  QualType TargetQT = E->getType();
1985  if (const PointerType *PT = TargetQT->getAs<PointerType>())
1986    TargetQT = PT->getPointeeType();
1987
1988  // Check this cast lands within the final derived-to-base subobject path.
1989  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
1990    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
1991      << D.MostDerivedType << TargetQT;
1992    return false;
1993  }
1994
1995  // Check the type of the final cast. We don't need to check the path,
1996  // since a cast can only be formed if the path is unique.
1997  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
1998  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
1999  const CXXRecordDecl *FinalType;
2000  if (NewEntriesSize == D.MostDerivedPathLength)
2001    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2002  else
2003    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2004  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2005    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2006      << D.MostDerivedType << TargetQT;
2007    return false;
2008  }
2009
2010  // Truncate the lvalue to the appropriate derived class.
2011  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2012}
2013
2014namespace {
2015enum EvalStmtResult {
2016  /// Evaluation failed.
2017  ESR_Failed,
2018  /// Hit a 'return' statement.
2019  ESR_Returned,
2020  /// Evaluation succeeded.
2021  ESR_Succeeded
2022};
2023}
2024
2025// Evaluate a statement.
2026static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2027                                   const Stmt *S) {
2028  switch (S->getStmtClass()) {
2029  default:
2030    return ESR_Failed;
2031
2032  case Stmt::NullStmtClass:
2033  case Stmt::DeclStmtClass:
2034    return ESR_Succeeded;
2035
2036  case Stmt::ReturnStmtClass: {
2037    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
2038    if (!Evaluate(Result, Info, RetExpr))
2039      return ESR_Failed;
2040    return ESR_Returned;
2041  }
2042
2043  case Stmt::CompoundStmtClass: {
2044    const CompoundStmt *CS = cast<CompoundStmt>(S);
2045    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
2046           BE = CS->body_end(); BI != BE; ++BI) {
2047      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
2048      if (ESR != ESR_Succeeded)
2049        return ESR;
2050    }
2051    return ESR_Succeeded;
2052  }
2053  }
2054}
2055
2056/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
2057/// default constructor. If so, we'll fold it whether or not it's marked as
2058/// constexpr. If it is marked as constexpr, we will never implicitly define it,
2059/// so we need special handling.
2060static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
2061                                           const CXXConstructorDecl *CD,
2062                                           bool IsValueInitialization) {
2063  if (!CD->isTrivial() || !CD->isDefaultConstructor())
2064    return false;
2065
2066  // Value-initialization does not call a trivial default constructor, so such a
2067  // call is a core constant expression whether or not the constructor is
2068  // constexpr.
2069  if (!CD->isConstexpr() && !IsValueInitialization) {
2070    if (Info.getLangOpts().CPlusPlus0x) {
2071      // FIXME: If DiagDecl is an implicitly-declared special member function,
2072      // we should be much more explicit about why it's not constexpr.
2073      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
2074        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
2075      Info.Note(CD->getLocation(), diag::note_declared_at);
2076    } else {
2077      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
2078    }
2079  }
2080  return true;
2081}
2082
2083/// CheckConstexprFunction - Check that a function can be called in a constant
2084/// expression.
2085static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
2086                                   const FunctionDecl *Declaration,
2087                                   const FunctionDecl *Definition) {
2088  // Potential constant expressions can contain calls to declared, but not yet
2089  // defined, constexpr functions.
2090  if (Info.CheckingPotentialConstantExpression && !Definition &&
2091      Declaration->isConstexpr())
2092    return false;
2093
2094  // Can we evaluate this function call?
2095  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
2096    return true;
2097
2098  if (Info.getLangOpts().CPlusPlus0x) {
2099    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
2100    // FIXME: If DiagDecl is an implicitly-declared special member function, we
2101    // should be much more explicit about why it's not constexpr.
2102    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
2103      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
2104      << DiagDecl;
2105    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
2106  } else {
2107    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
2108  }
2109  return false;
2110}
2111
2112namespace {
2113typedef SmallVector<APValue, 8> ArgVector;
2114}
2115
2116/// EvaluateArgs - Evaluate the arguments to a function call.
2117static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
2118                         EvalInfo &Info) {
2119  bool Success = true;
2120  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
2121       I != E; ++I) {
2122    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
2123      // If we're checking for a potential constant expression, evaluate all
2124      // initializers even if some of them fail.
2125      if (!Info.keepEvaluatingAfterFailure())
2126        return false;
2127      Success = false;
2128    }
2129  }
2130  return Success;
2131}
2132
2133/// Evaluate a function call.
2134static bool HandleFunctionCall(SourceLocation CallLoc,
2135                               const FunctionDecl *Callee, const LValue *This,
2136                               ArrayRef<const Expr*> Args, const Stmt *Body,
2137                               EvalInfo &Info, APValue &Result) {
2138  ArgVector ArgValues(Args.size());
2139  if (!EvaluateArgs(Args, ArgValues, Info))
2140    return false;
2141
2142  if (!Info.CheckCallLimit(CallLoc))
2143    return false;
2144
2145  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
2146  return EvaluateStmt(Result, Info, Body) == ESR_Returned;
2147}
2148
2149/// Evaluate a constructor call.
2150static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
2151                                  ArrayRef<const Expr*> Args,
2152                                  const CXXConstructorDecl *Definition,
2153                                  EvalInfo &Info, APValue &Result) {
2154  ArgVector ArgValues(Args.size());
2155  if (!EvaluateArgs(Args, ArgValues, Info))
2156    return false;
2157
2158  if (!Info.CheckCallLimit(CallLoc))
2159    return false;
2160
2161  const CXXRecordDecl *RD = Definition->getParent();
2162  if (RD->getNumVBases()) {
2163    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
2164    return false;
2165  }
2166
2167  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
2168
2169  // If it's a delegating constructor, just delegate.
2170  if (Definition->isDelegatingConstructor()) {
2171    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
2172    return EvaluateInPlace(Result, Info, This, (*I)->getInit());
2173  }
2174
2175  // For a trivial copy or move constructor, perform an APValue copy. This is
2176  // essential for unions, where the operations performed by the constructor
2177  // cannot be represented by ctor-initializers.
2178  if (Definition->isDefaulted() &&
2179      ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
2180       (Definition->isMoveConstructor() && Definition->isTrivial()))) {
2181    LValue RHS;
2182    RHS.setFrom(Info.Ctx, ArgValues[0]);
2183    return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
2184                                          RHS, Result);
2185  }
2186
2187  // Reserve space for the struct members.
2188  if (!RD->isUnion() && Result.isUninit())
2189    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
2190                     std::distance(RD->field_begin(), RD->field_end()));
2191
2192  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2193
2194  bool Success = true;
2195  unsigned BasesSeen = 0;
2196#ifndef NDEBUG
2197  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
2198#endif
2199  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
2200       E = Definition->init_end(); I != E; ++I) {
2201    LValue Subobject = This;
2202    APValue *Value = &Result;
2203
2204    // Determine the subobject to initialize.
2205    if ((*I)->isBaseInitializer()) {
2206      QualType BaseType((*I)->getBaseClass(), 0);
2207#ifndef NDEBUG
2208      // Non-virtual base classes are initialized in the order in the class
2209      // definition. We have already checked for virtual base classes.
2210      assert(!BaseIt->isVirtual() && "virtual base for literal type");
2211      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
2212             "base class initializers not in expected order");
2213      ++BaseIt;
2214#endif
2215      HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
2216                             BaseType->getAsCXXRecordDecl(), &Layout);
2217      Value = &Result.getStructBase(BasesSeen++);
2218    } else if (FieldDecl *FD = (*I)->getMember()) {
2219      HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout);
2220      if (RD->isUnion()) {
2221        Result = APValue(FD);
2222        Value = &Result.getUnionValue();
2223      } else {
2224        Value = &Result.getStructField(FD->getFieldIndex());
2225      }
2226    } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
2227      // Walk the indirect field decl's chain to find the object to initialize,
2228      // and make sure we've initialized every step along it.
2229      for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
2230                                             CE = IFD->chain_end();
2231           C != CE; ++C) {
2232        FieldDecl *FD = cast<FieldDecl>(*C);
2233        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
2234        // Switch the union field if it differs. This happens if we had
2235        // preceding zero-initialization, and we're now initializing a union
2236        // subobject other than the first.
2237        // FIXME: In this case, the values of the other subobjects are
2238        // specified, since zero-initialization sets all padding bits to zero.
2239        if (Value->isUninit() ||
2240            (Value->isUnion() && Value->getUnionField() != FD)) {
2241          if (CD->isUnion())
2242            *Value = APValue(FD);
2243          else
2244            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
2245                             std::distance(CD->field_begin(), CD->field_end()));
2246        }
2247        HandleLValueMember(Info, (*I)->getInit(), Subobject, FD);
2248        if (CD->isUnion())
2249          Value = &Value->getUnionValue();
2250        else
2251          Value = &Value->getStructField(FD->getFieldIndex());
2252      }
2253    } else {
2254      llvm_unreachable("unknown base initializer kind");
2255    }
2256
2257    if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
2258                         (*I)->isBaseInitializer()
2259                                      ? CCEK_Constant : CCEK_MemberInit)) {
2260      // If we're checking for a potential constant expression, evaluate all
2261      // initializers even if some of them fail.
2262      if (!Info.keepEvaluatingAfterFailure())
2263        return false;
2264      Success = false;
2265    }
2266  }
2267
2268  return Success;
2269}
2270
2271namespace {
2272class HasSideEffect
2273  : public ConstStmtVisitor<HasSideEffect, bool> {
2274  const ASTContext &Ctx;
2275public:
2276
2277  HasSideEffect(const ASTContext &C) : Ctx(C) {}
2278
2279  // Unhandled nodes conservatively default to having side effects.
2280  bool VisitStmt(const Stmt *S) {
2281    return true;
2282  }
2283
2284  bool VisitParenExpr(const ParenExpr *E) { return Visit(E->getSubExpr()); }
2285  bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
2286    return Visit(E->getResultExpr());
2287  }
2288  bool VisitDeclRefExpr(const DeclRefExpr *E) {
2289    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
2290      return true;
2291    return false;
2292  }
2293  bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) {
2294    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
2295      return true;
2296    return false;
2297  }
2298
2299  // We don't want to evaluate BlockExprs multiple times, as they generate
2300  // a ton of code.
2301  bool VisitBlockExpr(const BlockExpr *E) { return true; }
2302  bool VisitPredefinedExpr(const PredefinedExpr *E) { return false; }
2303  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E)
2304    { return Visit(E->getInitializer()); }
2305  bool VisitMemberExpr(const MemberExpr *E) { return Visit(E->getBase()); }
2306  bool VisitIntegerLiteral(const IntegerLiteral *E) { return false; }
2307  bool VisitFloatingLiteral(const FloatingLiteral *E) { return false; }
2308  bool VisitStringLiteral(const StringLiteral *E) { return false; }
2309  bool VisitCharacterLiteral(const CharacterLiteral *E) { return false; }
2310  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E)
2311    { return false; }
2312  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E)
2313    { return Visit(E->getLHS()) || Visit(E->getRHS()); }
2314  bool VisitChooseExpr(const ChooseExpr *E)
2315    { return Visit(E->getChosenSubExpr(Ctx)); }
2316  bool VisitCastExpr(const CastExpr *E) { return Visit(E->getSubExpr()); }
2317  bool VisitBinAssign(const BinaryOperator *E) { return true; }
2318  bool VisitCompoundAssignOperator(const BinaryOperator *E) { return true; }
2319  bool VisitBinaryOperator(const BinaryOperator *E)
2320  { return Visit(E->getLHS()) || Visit(E->getRHS()); }
2321  bool VisitUnaryPreInc(const UnaryOperator *E) { return true; }
2322  bool VisitUnaryPostInc(const UnaryOperator *E) { return true; }
2323  bool VisitUnaryPreDec(const UnaryOperator *E) { return true; }
2324  bool VisitUnaryPostDec(const UnaryOperator *E) { return true; }
2325  bool VisitUnaryDeref(const UnaryOperator *E) {
2326    if (Ctx.getCanonicalType(E->getType()).isVolatileQualified())
2327      return true;
2328    return Visit(E->getSubExpr());
2329  }
2330  bool VisitUnaryOperator(const UnaryOperator *E) { return Visit(E->getSubExpr()); }
2331
2332  // Has side effects if any element does.
2333  bool VisitInitListExpr(const InitListExpr *E) {
2334    for (unsigned i = 0, e = E->getNumInits(); i != e; ++i)
2335      if (Visit(E->getInit(i))) return true;
2336    if (const Expr *filler = E->getArrayFiller())
2337      return Visit(filler);
2338    return false;
2339  }
2340
2341  bool VisitSizeOfPackExpr(const SizeOfPackExpr *) { return false; }
2342};
2343
2344class OpaqueValueEvaluation {
2345  EvalInfo &info;
2346  OpaqueValueExpr *opaqueValue;
2347
2348public:
2349  OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue,
2350                        Expr *value)
2351    : info(info), opaqueValue(opaqueValue) {
2352
2353    // If evaluation fails, fail immediately.
2354    if (!Evaluate(info.OpaqueValues[opaqueValue], info, value)) {
2355      this->opaqueValue = 0;
2356      return;
2357    }
2358  }
2359
2360  bool hasError() const { return opaqueValue == 0; }
2361
2362  ~OpaqueValueEvaluation() {
2363    // FIXME: For a recursive constexpr call, an outer stack frame might have
2364    // been using this opaque value too, and will now have to re-evaluate the
2365    // source expression.
2366    if (opaqueValue) info.OpaqueValues.erase(opaqueValue);
2367  }
2368};
2369
2370} // end anonymous namespace
2371
2372//===----------------------------------------------------------------------===//
2373// Generic Evaluation
2374//===----------------------------------------------------------------------===//
2375namespace {
2376
2377// FIXME: RetTy is always bool. Remove it.
2378template <class Derived, typename RetTy=bool>
2379class ExprEvaluatorBase
2380  : public ConstStmtVisitor<Derived, RetTy> {
2381private:
2382  RetTy DerivedSuccess(const APValue &V, const Expr *E) {
2383    return static_cast<Derived*>(this)->Success(V, E);
2384  }
2385  RetTy DerivedZeroInitialization(const Expr *E) {
2386    return static_cast<Derived*>(this)->ZeroInitialization(E);
2387  }
2388
2389  // Check whether a conditional operator with a non-constant condition is a
2390  // potential constant expression. If neither arm is a potential constant
2391  // expression, then the conditional operator is not either.
2392  template<typename ConditionalOperator>
2393  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
2394    assert(Info.CheckingPotentialConstantExpression);
2395
2396    // Speculatively evaluate both arms.
2397    {
2398      llvm::SmallVector<PartialDiagnosticAt, 8> Diag;
2399      SpeculativeEvaluationRAII Speculate(Info, &Diag);
2400
2401      StmtVisitorTy::Visit(E->getFalseExpr());
2402      if (Diag.empty())
2403        return;
2404
2405      Diag.clear();
2406      StmtVisitorTy::Visit(E->getTrueExpr());
2407      if (Diag.empty())
2408        return;
2409    }
2410
2411    Error(E, diag::note_constexpr_conditional_never_const);
2412  }
2413
2414
2415  template<typename ConditionalOperator>
2416  bool HandleConditionalOperator(const ConditionalOperator *E) {
2417    bool BoolResult;
2418    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
2419      if (Info.CheckingPotentialConstantExpression)
2420        CheckPotentialConstantConditional(E);
2421      return false;
2422    }
2423
2424    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
2425    return StmtVisitorTy::Visit(EvalExpr);
2426  }
2427
2428protected:
2429  EvalInfo &Info;
2430  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
2431  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
2432
2433  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
2434    return Info.CCEDiag(E, D);
2435  }
2436
2437  RetTy ZeroInitialization(const Expr *E) { return Error(E); }
2438
2439public:
2440  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
2441
2442  EvalInfo &getEvalInfo() { return Info; }
2443
2444  /// Report an evaluation error. This should only be called when an error is
2445  /// first discovered. When propagating an error, just return false.
2446  bool Error(const Expr *E, diag::kind D) {
2447    Info.Diag(E, D);
2448    return false;
2449  }
2450  bool Error(const Expr *E) {
2451    return Error(E, diag::note_invalid_subexpr_in_const_expr);
2452  }
2453
2454  RetTy VisitStmt(const Stmt *) {
2455    llvm_unreachable("Expression evaluator should not be called on stmts");
2456  }
2457  RetTy VisitExpr(const Expr *E) {
2458    return Error(E);
2459  }
2460
2461  RetTy VisitParenExpr(const ParenExpr *E)
2462    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2463  RetTy VisitUnaryExtension(const UnaryOperator *E)
2464    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2465  RetTy VisitUnaryPlus(const UnaryOperator *E)
2466    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2467  RetTy VisitChooseExpr(const ChooseExpr *E)
2468    { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
2469  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
2470    { return StmtVisitorTy::Visit(E->getResultExpr()); }
2471  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
2472    { return StmtVisitorTy::Visit(E->getReplacement()); }
2473  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
2474    { return StmtVisitorTy::Visit(E->getExpr()); }
2475  // We cannot create any objects for which cleanups are required, so there is
2476  // nothing to do here; all cleanups must come from unevaluated subexpressions.
2477  RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
2478    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2479
2480  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
2481    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
2482    return static_cast<Derived*>(this)->VisitCastExpr(E);
2483  }
2484  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
2485    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
2486    return static_cast<Derived*>(this)->VisitCastExpr(E);
2487  }
2488
2489  RetTy VisitBinaryOperator(const BinaryOperator *E) {
2490    switch (E->getOpcode()) {
2491    default:
2492      return Error(E);
2493
2494    case BO_Comma:
2495      VisitIgnoredValue(E->getLHS());
2496      return StmtVisitorTy::Visit(E->getRHS());
2497
2498    case BO_PtrMemD:
2499    case BO_PtrMemI: {
2500      LValue Obj;
2501      if (!HandleMemberPointerAccess(Info, E, Obj))
2502        return false;
2503      APValue Result;
2504      if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
2505        return false;
2506      return DerivedSuccess(Result, E);
2507    }
2508    }
2509  }
2510
2511  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
2512    // Cache the value of the common expression.
2513    OpaqueValueEvaluation opaque(Info, E->getOpaqueValue(), E->getCommon());
2514    if (opaque.hasError())
2515      return false;
2516
2517    return HandleConditionalOperator(E);
2518  }
2519
2520  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
2521    bool IsBcpCall = false;
2522    // If the condition (ignoring parens) is a __builtin_constant_p call,
2523    // the result is a constant expression if it can be folded without
2524    // side-effects. This is an important GNU extension. See GCC PR38377
2525    // for discussion.
2526    if (const CallExpr *CallCE =
2527          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
2528      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
2529        IsBcpCall = true;
2530
2531    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
2532    // constant expression; we can't check whether it's potentially foldable.
2533    if (Info.CheckingPotentialConstantExpression && IsBcpCall)
2534      return false;
2535
2536    FoldConstant Fold(Info);
2537
2538    if (!HandleConditionalOperator(E))
2539      return false;
2540
2541    if (IsBcpCall)
2542      Fold.Fold(Info);
2543
2544    return true;
2545  }
2546
2547  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2548    const APValue *Value = Info.getOpaqueValue(E);
2549    if (!Value) {
2550      const Expr *Source = E->getSourceExpr();
2551      if (!Source)
2552        return Error(E);
2553      if (Source == E) { // sanity checking.
2554        assert(0 && "OpaqueValueExpr recursively refers to itself");
2555        return Error(E);
2556      }
2557      return StmtVisitorTy::Visit(Source);
2558    }
2559    return DerivedSuccess(*Value, E);
2560  }
2561
2562  RetTy VisitCallExpr(const CallExpr *E) {
2563    const Expr *Callee = E->getCallee()->IgnoreParens();
2564    QualType CalleeType = Callee->getType();
2565
2566    const FunctionDecl *FD = 0;
2567    LValue *This = 0, ThisVal;
2568    llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
2569    bool HasQualifier = false;
2570
2571    // Extract function decl and 'this' pointer from the callee.
2572    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
2573      const ValueDecl *Member = 0;
2574      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
2575        // Explicit bound member calls, such as x.f() or p->g();
2576        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
2577          return false;
2578        Member = ME->getMemberDecl();
2579        This = &ThisVal;
2580        HasQualifier = ME->hasQualifier();
2581      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
2582        // Indirect bound member calls ('.*' or '->*').
2583        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
2584        if (!Member) return false;
2585        This = &ThisVal;
2586      } else
2587        return Error(Callee);
2588
2589      FD = dyn_cast<FunctionDecl>(Member);
2590      if (!FD)
2591        return Error(Callee);
2592    } else if (CalleeType->isFunctionPointerType()) {
2593      LValue Call;
2594      if (!EvaluatePointer(Callee, Call, Info))
2595        return false;
2596
2597      if (!Call.getLValueOffset().isZero())
2598        return Error(Callee);
2599      FD = dyn_cast_or_null<FunctionDecl>(
2600                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
2601      if (!FD)
2602        return Error(Callee);
2603
2604      // Overloaded operator calls to member functions are represented as normal
2605      // calls with '*this' as the first argument.
2606      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
2607      if (MD && !MD->isStatic()) {
2608        // FIXME: When selecting an implicit conversion for an overloaded
2609        // operator delete, we sometimes try to evaluate calls to conversion
2610        // operators without a 'this' parameter!
2611        if (Args.empty())
2612          return Error(E);
2613
2614        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
2615          return false;
2616        This = &ThisVal;
2617        Args = Args.slice(1);
2618      }
2619
2620      // Don't call function pointers which have been cast to some other type.
2621      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
2622        return Error(E);
2623    } else
2624      return Error(E);
2625
2626    if (This && !This->checkSubobject(Info, E, CSK_This))
2627      return false;
2628
2629    // DR1358 allows virtual constexpr functions in some cases. Don't allow
2630    // calls to such functions in constant expressions.
2631    if (This && !HasQualifier &&
2632        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
2633      return Error(E, diag::note_constexpr_virtual_call);
2634
2635    const FunctionDecl *Definition = 0;
2636    Stmt *Body = FD->getBody(Definition);
2637    APValue Result;
2638
2639    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
2640        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
2641                            Info, Result))
2642      return false;
2643
2644    return DerivedSuccess(Result, E);
2645  }
2646
2647  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2648    return StmtVisitorTy::Visit(E->getInitializer());
2649  }
2650  RetTy VisitInitListExpr(const InitListExpr *E) {
2651    if (E->getNumInits() == 0)
2652      return DerivedZeroInitialization(E);
2653    if (E->getNumInits() == 1)
2654      return StmtVisitorTy::Visit(E->getInit(0));
2655    return Error(E);
2656  }
2657  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
2658    return DerivedZeroInitialization(E);
2659  }
2660  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
2661    return DerivedZeroInitialization(E);
2662  }
2663  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
2664    return DerivedZeroInitialization(E);
2665  }
2666
2667  /// A member expression where the object is a prvalue is itself a prvalue.
2668  RetTy VisitMemberExpr(const MemberExpr *E) {
2669    assert(!E->isArrow() && "missing call to bound member function?");
2670
2671    APValue Val;
2672    if (!Evaluate(Val, Info, E->getBase()))
2673      return false;
2674
2675    QualType BaseTy = E->getBase()->getType();
2676
2677    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
2678    if (!FD) return Error(E);
2679    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
2680    assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2681           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2682
2683    SubobjectDesignator Designator(BaseTy);
2684    Designator.addDeclUnchecked(FD);
2685
2686    return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
2687           DerivedSuccess(Val, E);
2688  }
2689
2690  RetTy VisitCastExpr(const CastExpr *E) {
2691    switch (E->getCastKind()) {
2692    default:
2693      break;
2694
2695    case CK_AtomicToNonAtomic:
2696    case CK_NonAtomicToAtomic:
2697    case CK_NoOp:
2698    case CK_UserDefinedConversion:
2699      return StmtVisitorTy::Visit(E->getSubExpr());
2700
2701    case CK_LValueToRValue: {
2702      LValue LVal;
2703      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
2704        return false;
2705      APValue RVal;
2706      // Note, we use the subexpression's type in order to retain cv-qualifiers.
2707      if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
2708                                          LVal, RVal))
2709        return false;
2710      return DerivedSuccess(RVal, E);
2711    }
2712    }
2713
2714    return Error(E);
2715  }
2716
2717  /// Visit a value which is evaluated, but whose value is ignored.
2718  void VisitIgnoredValue(const Expr *E) {
2719    APValue Scratch;
2720    if (!Evaluate(Scratch, Info, E))
2721      Info.EvalStatus.HasSideEffects = true;
2722  }
2723};
2724
2725}
2726
2727//===----------------------------------------------------------------------===//
2728// Common base class for lvalue and temporary evaluation.
2729//===----------------------------------------------------------------------===//
2730namespace {
2731template<class Derived>
2732class LValueExprEvaluatorBase
2733  : public ExprEvaluatorBase<Derived, bool> {
2734protected:
2735  LValue &Result;
2736  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
2737  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
2738
2739  bool Success(APValue::LValueBase B) {
2740    Result.set(B);
2741    return true;
2742  }
2743
2744public:
2745  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
2746    ExprEvaluatorBaseTy(Info), Result(Result) {}
2747
2748  bool Success(const APValue &V, const Expr *E) {
2749    Result.setFrom(this->Info.Ctx, V);
2750    return true;
2751  }
2752
2753  bool VisitMemberExpr(const MemberExpr *E) {
2754    // Handle non-static data members.
2755    QualType BaseTy;
2756    if (E->isArrow()) {
2757      if (!EvaluatePointer(E->getBase(), Result, this->Info))
2758        return false;
2759      BaseTy = E->getBase()->getType()->getAs<PointerType>()->getPointeeType();
2760    } else if (E->getBase()->isRValue()) {
2761      assert(E->getBase()->getType()->isRecordType());
2762      if (!EvaluateTemporary(E->getBase(), Result, this->Info))
2763        return false;
2764      BaseTy = E->getBase()->getType();
2765    } else {
2766      if (!this->Visit(E->getBase()))
2767        return false;
2768      BaseTy = E->getBase()->getType();
2769    }
2770
2771    const ValueDecl *MD = E->getMemberDecl();
2772    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
2773      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2774             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2775      (void)BaseTy;
2776      HandleLValueMember(this->Info, E, Result, FD);
2777    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
2778      HandleLValueIndirectMember(this->Info, E, Result, IFD);
2779    } else
2780      return this->Error(E);
2781
2782    if (MD->getType()->isReferenceType()) {
2783      APValue RefValue;
2784      if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
2785                                          RefValue))
2786        return false;
2787      return Success(RefValue, E);
2788    }
2789    return true;
2790  }
2791
2792  bool VisitBinaryOperator(const BinaryOperator *E) {
2793    switch (E->getOpcode()) {
2794    default:
2795      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
2796
2797    case BO_PtrMemD:
2798    case BO_PtrMemI:
2799      return HandleMemberPointerAccess(this->Info, E, Result);
2800    }
2801  }
2802
2803  bool VisitCastExpr(const CastExpr *E) {
2804    switch (E->getCastKind()) {
2805    default:
2806      return ExprEvaluatorBaseTy::VisitCastExpr(E);
2807
2808    case CK_DerivedToBase:
2809    case CK_UncheckedDerivedToBase: {
2810      if (!this->Visit(E->getSubExpr()))
2811        return false;
2812
2813      // Now figure out the necessary offset to add to the base LV to get from
2814      // the derived class to the base class.
2815      QualType Type = E->getSubExpr()->getType();
2816
2817      for (CastExpr::path_const_iterator PathI = E->path_begin(),
2818           PathE = E->path_end(); PathI != PathE; ++PathI) {
2819        if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
2820                              *PathI))
2821          return false;
2822        Type = (*PathI)->getType();
2823      }
2824
2825      return true;
2826    }
2827    }
2828  }
2829};
2830}
2831
2832//===----------------------------------------------------------------------===//
2833// LValue Evaluation
2834//
2835// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
2836// function designators (in C), decl references to void objects (in C), and
2837// temporaries (if building with -Wno-address-of-temporary).
2838//
2839// LValue evaluation produces values comprising a base expression of one of the
2840// following types:
2841// - Declarations
2842//  * VarDecl
2843//  * FunctionDecl
2844// - Literals
2845//  * CompoundLiteralExpr in C
2846//  * StringLiteral
2847//  * CXXTypeidExpr
2848//  * PredefinedExpr
2849//  * ObjCStringLiteralExpr
2850//  * ObjCEncodeExpr
2851//  * AddrLabelExpr
2852//  * BlockExpr
2853//  * CallExpr for a MakeStringConstant builtin
2854// - Locals and temporaries
2855//  * Any Expr, with a CallIndex indicating the function in which the temporary
2856//    was evaluated.
2857// plus an offset in bytes.
2858//===----------------------------------------------------------------------===//
2859namespace {
2860class LValueExprEvaluator
2861  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
2862public:
2863  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
2864    LValueExprEvaluatorBaseTy(Info, Result) {}
2865
2866  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
2867
2868  bool VisitDeclRefExpr(const DeclRefExpr *E);
2869  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
2870  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2871  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2872  bool VisitMemberExpr(const MemberExpr *E);
2873  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
2874  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
2875  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2876  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
2877  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
2878  bool VisitUnaryDeref(const UnaryOperator *E);
2879  bool VisitUnaryReal(const UnaryOperator *E);
2880  bool VisitUnaryImag(const UnaryOperator *E);
2881
2882  bool VisitCastExpr(const CastExpr *E) {
2883    switch (E->getCastKind()) {
2884    default:
2885      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
2886
2887    case CK_LValueBitCast:
2888      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
2889      if (!Visit(E->getSubExpr()))
2890        return false;
2891      Result.Designator.setInvalid();
2892      return true;
2893
2894    case CK_BaseToDerived:
2895      if (!Visit(E->getSubExpr()))
2896        return false;
2897      return HandleBaseToDerivedCast(Info, E, Result);
2898    }
2899  }
2900};
2901} // end anonymous namespace
2902
2903/// Evaluate an expression as an lvalue. This can be legitimately called on
2904/// expressions which are not glvalues, in a few cases:
2905///  * function designators in C,
2906///  * "extern void" objects,
2907///  * temporaries, if building with -Wno-address-of-temporary.
2908static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
2909  assert((E->isGLValue() || E->getType()->isFunctionType() ||
2910          E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
2911         "can't evaluate expression as an lvalue");
2912  return LValueExprEvaluator(Info, Result).Visit(E);
2913}
2914
2915bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
2916  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
2917    return Success(FD);
2918  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2919    return VisitVarDecl(E, VD);
2920  return Error(E);
2921}
2922
2923bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
2924  if (!VD->getType()->isReferenceType()) {
2925    if (isa<ParmVarDecl>(VD)) {
2926      Result.set(VD, Info.CurrentCall->Index);
2927      return true;
2928    }
2929    return Success(VD);
2930  }
2931
2932  APValue V;
2933  if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
2934    return false;
2935  return Success(V, E);
2936}
2937
2938bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
2939    const MaterializeTemporaryExpr *E) {
2940  if (E->GetTemporaryExpr()->isRValue()) {
2941    if (E->getType()->isRecordType())
2942      return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
2943
2944    Result.set(E, Info.CurrentCall->Index);
2945    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
2946                           Result, E->GetTemporaryExpr());
2947  }
2948
2949  // Materialization of an lvalue temporary occurs when we need to force a copy
2950  // (for instance, if it's a bitfield).
2951  // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
2952  if (!Visit(E->GetTemporaryExpr()))
2953    return false;
2954  if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
2955                                      Info.CurrentCall->Temporaries[E]))
2956    return false;
2957  Result.set(E, Info.CurrentCall->Index);
2958  return true;
2959}
2960
2961bool
2962LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2963  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2964  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
2965  // only see this when folding in C, so there's no standard to follow here.
2966  return Success(E);
2967}
2968
2969bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2970  if (E->isTypeOperand())
2971    return Success(E);
2972  CXXRecordDecl *RD = E->getExprOperand()->getType()->getAsCXXRecordDecl();
2973  if (RD && RD->isPolymorphic()) {
2974    Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
2975      << E->getExprOperand()->getType()
2976      << E->getExprOperand()->getSourceRange();
2977    return false;
2978  }
2979  return Success(E);
2980}
2981
2982bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
2983  return Success(E);
2984}
2985
2986bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
2987  // Handle static data members.
2988  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
2989    VisitIgnoredValue(E->getBase());
2990    return VisitVarDecl(E, VD);
2991  }
2992
2993  // Handle static member functions.
2994  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
2995    if (MD->isStatic()) {
2996      VisitIgnoredValue(E->getBase());
2997      return Success(MD);
2998    }
2999  }
3000
3001  // Handle non-static data members.
3002  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
3003}
3004
3005bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
3006  // FIXME: Deal with vectors as array subscript bases.
3007  if (E->getBase()->getType()->isVectorType())
3008    return Error(E);
3009
3010  if (!EvaluatePointer(E->getBase(), Result, Info))
3011    return false;
3012
3013  APSInt Index;
3014  if (!EvaluateInteger(E->getIdx(), Index, Info))
3015    return false;
3016  int64_t IndexValue
3017    = Index.isSigned() ? Index.getSExtValue()
3018                       : static_cast<int64_t>(Index.getZExtValue());
3019
3020  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
3021}
3022
3023bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
3024  return EvaluatePointer(E->getSubExpr(), Result, Info);
3025}
3026
3027bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
3028  if (!Visit(E->getSubExpr()))
3029    return false;
3030  // __real is a no-op on scalar lvalues.
3031  if (E->getSubExpr()->getType()->isAnyComplexType())
3032    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
3033  return true;
3034}
3035
3036bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3037  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
3038         "lvalue __imag__ on scalar?");
3039  if (!Visit(E->getSubExpr()))
3040    return false;
3041  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
3042  return true;
3043}
3044
3045//===----------------------------------------------------------------------===//
3046// Pointer Evaluation
3047//===----------------------------------------------------------------------===//
3048
3049namespace {
3050class PointerExprEvaluator
3051  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
3052  LValue &Result;
3053
3054  bool Success(const Expr *E) {
3055    Result.set(E);
3056    return true;
3057  }
3058public:
3059
3060  PointerExprEvaluator(EvalInfo &info, LValue &Result)
3061    : ExprEvaluatorBaseTy(info), Result(Result) {}
3062
3063  bool Success(const APValue &V, const Expr *E) {
3064    Result.setFrom(Info.Ctx, V);
3065    return true;
3066  }
3067  bool ZeroInitialization(const Expr *E) {
3068    return Success((Expr*)0);
3069  }
3070
3071  bool VisitBinaryOperator(const BinaryOperator *E);
3072  bool VisitCastExpr(const CastExpr* E);
3073  bool VisitUnaryAddrOf(const UnaryOperator *E);
3074  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
3075      { return Success(E); }
3076  bool VisitObjCNumericLiteral(const ObjCNumericLiteral *E)
3077      { return Success(E); }
3078  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
3079      { return Success(E); }
3080  bool VisitCallExpr(const CallExpr *E);
3081  bool VisitBlockExpr(const BlockExpr *E) {
3082    if (!E->getBlockDecl()->hasCaptures())
3083      return Success(E);
3084    return Error(E);
3085  }
3086  bool VisitCXXThisExpr(const CXXThisExpr *E) {
3087    if (!Info.CurrentCall->This)
3088      return Error(E);
3089    Result = *Info.CurrentCall->This;
3090    return true;
3091  }
3092
3093  // FIXME: Missing: @protocol, @selector
3094};
3095} // end anonymous namespace
3096
3097static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
3098  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
3099  return PointerExprEvaluator(Info, Result).Visit(E);
3100}
3101
3102bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
3103  if (E->getOpcode() != BO_Add &&
3104      E->getOpcode() != BO_Sub)
3105    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
3106
3107  const Expr *PExp = E->getLHS();
3108  const Expr *IExp = E->getRHS();
3109  if (IExp->getType()->isPointerType())
3110    std::swap(PExp, IExp);
3111
3112  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
3113  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
3114    return false;
3115
3116  llvm::APSInt Offset;
3117  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
3118    return false;
3119  int64_t AdditionalOffset
3120    = Offset.isSigned() ? Offset.getSExtValue()
3121                        : static_cast<int64_t>(Offset.getZExtValue());
3122  if (E->getOpcode() == BO_Sub)
3123    AdditionalOffset = -AdditionalOffset;
3124
3125  QualType Pointee = PExp->getType()->getAs<PointerType>()->getPointeeType();
3126  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
3127                                     AdditionalOffset);
3128}
3129
3130bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3131  return EvaluateLValue(E->getSubExpr(), Result, Info);
3132}
3133
3134bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
3135  const Expr* SubExpr = E->getSubExpr();
3136
3137  switch (E->getCastKind()) {
3138  default:
3139    break;
3140
3141  case CK_BitCast:
3142  case CK_CPointerToObjCPointerCast:
3143  case CK_BlockPointerToObjCPointerCast:
3144  case CK_AnyPointerToBlockPointerCast:
3145    if (!Visit(SubExpr))
3146      return false;
3147    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
3148    // permitted in constant expressions in C++11. Bitcasts from cv void* are
3149    // also static_casts, but we disallow them as a resolution to DR1312.
3150    if (!E->getType()->isVoidPointerType()) {
3151      Result.Designator.setInvalid();
3152      if (SubExpr->getType()->isVoidPointerType())
3153        CCEDiag(E, diag::note_constexpr_invalid_cast)
3154          << 3 << SubExpr->getType();
3155      else
3156        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3157    }
3158    return true;
3159
3160  case CK_DerivedToBase:
3161  case CK_UncheckedDerivedToBase: {
3162    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
3163      return false;
3164    if (!Result.Base && Result.Offset.isZero())
3165      return true;
3166
3167    // Now figure out the necessary offset to add to the base LV to get from
3168    // the derived class to the base class.
3169    QualType Type =
3170        E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3171
3172    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3173         PathE = E->path_end(); PathI != PathE; ++PathI) {
3174      if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3175                            *PathI))
3176        return false;
3177      Type = (*PathI)->getType();
3178    }
3179
3180    return true;
3181  }
3182
3183  case CK_BaseToDerived:
3184    if (!Visit(E->getSubExpr()))
3185      return false;
3186    if (!Result.Base && Result.Offset.isZero())
3187      return true;
3188    return HandleBaseToDerivedCast(Info, E, Result);
3189
3190  case CK_NullToPointer:
3191    VisitIgnoredValue(E->getSubExpr());
3192    return ZeroInitialization(E);
3193
3194  case CK_IntegralToPointer: {
3195    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3196
3197    APValue Value;
3198    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
3199      break;
3200
3201    if (Value.isInt()) {
3202      unsigned Size = Info.Ctx.getTypeSize(E->getType());
3203      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
3204      Result.Base = (Expr*)0;
3205      Result.Offset = CharUnits::fromQuantity(N);
3206      Result.CallIndex = 0;
3207      Result.Designator.setInvalid();
3208      return true;
3209    } else {
3210      // Cast is of an lvalue, no need to change value.
3211      Result.setFrom(Info.Ctx, Value);
3212      return true;
3213    }
3214  }
3215  case CK_ArrayToPointerDecay:
3216    if (SubExpr->isGLValue()) {
3217      if (!EvaluateLValue(SubExpr, Result, Info))
3218        return false;
3219    } else {
3220      Result.set(SubExpr, Info.CurrentCall->Index);
3221      if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
3222                           Info, Result, SubExpr))
3223        return false;
3224    }
3225    // The result is a pointer to the first element of the array.
3226    if (const ConstantArrayType *CAT
3227          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
3228      Result.addArray(Info, E, CAT);
3229    else
3230      Result.Designator.setInvalid();
3231    return true;
3232
3233  case CK_FunctionToPointerDecay:
3234    return EvaluateLValue(SubExpr, Result, Info);
3235  }
3236
3237  return ExprEvaluatorBaseTy::VisitCastExpr(E);
3238}
3239
3240bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
3241  if (IsStringLiteralCall(E))
3242    return Success(E);
3243
3244  return ExprEvaluatorBaseTy::VisitCallExpr(E);
3245}
3246
3247//===----------------------------------------------------------------------===//
3248// Member Pointer Evaluation
3249//===----------------------------------------------------------------------===//
3250
3251namespace {
3252class MemberPointerExprEvaluator
3253  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
3254  MemberPtr &Result;
3255
3256  bool Success(const ValueDecl *D) {
3257    Result = MemberPtr(D);
3258    return true;
3259  }
3260public:
3261
3262  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
3263    : ExprEvaluatorBaseTy(Info), Result(Result) {}
3264
3265  bool Success(const APValue &V, const Expr *E) {
3266    Result.setFrom(V);
3267    return true;
3268  }
3269  bool ZeroInitialization(const Expr *E) {
3270    return Success((const ValueDecl*)0);
3271  }
3272
3273  bool VisitCastExpr(const CastExpr *E);
3274  bool VisitUnaryAddrOf(const UnaryOperator *E);
3275};
3276} // end anonymous namespace
3277
3278static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
3279                                  EvalInfo &Info) {
3280  assert(E->isRValue() && E->getType()->isMemberPointerType());
3281  return MemberPointerExprEvaluator(Info, Result).Visit(E);
3282}
3283
3284bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
3285  switch (E->getCastKind()) {
3286  default:
3287    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3288
3289  case CK_NullToMemberPointer:
3290    VisitIgnoredValue(E->getSubExpr());
3291    return ZeroInitialization(E);
3292
3293  case CK_BaseToDerivedMemberPointer: {
3294    if (!Visit(E->getSubExpr()))
3295      return false;
3296    if (E->path_empty())
3297      return true;
3298    // Base-to-derived member pointer casts store the path in derived-to-base
3299    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
3300    // the wrong end of the derived->base arc, so stagger the path by one class.
3301    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
3302    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
3303         PathI != PathE; ++PathI) {
3304      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3305      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
3306      if (!Result.castToDerived(Derived))
3307        return Error(E);
3308    }
3309    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
3310    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
3311      return Error(E);
3312    return true;
3313  }
3314
3315  case CK_DerivedToBaseMemberPointer:
3316    if (!Visit(E->getSubExpr()))
3317      return false;
3318    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3319         PathE = E->path_end(); PathI != PathE; ++PathI) {
3320      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3321      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3322      if (!Result.castToBase(Base))
3323        return Error(E);
3324    }
3325    return true;
3326  }
3327}
3328
3329bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3330  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
3331  // member can be formed.
3332  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
3333}
3334
3335//===----------------------------------------------------------------------===//
3336// Record Evaluation
3337//===----------------------------------------------------------------------===//
3338
3339namespace {
3340  class RecordExprEvaluator
3341  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
3342    const LValue &This;
3343    APValue &Result;
3344  public:
3345
3346    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
3347      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
3348
3349    bool Success(const APValue &V, const Expr *E) {
3350      Result = V;
3351      return true;
3352    }
3353    bool ZeroInitialization(const Expr *E);
3354
3355    bool VisitCastExpr(const CastExpr *E);
3356    bool VisitInitListExpr(const InitListExpr *E);
3357    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3358  };
3359}
3360
3361/// Perform zero-initialization on an object of non-union class type.
3362/// C++11 [dcl.init]p5:
3363///  To zero-initialize an object or reference of type T means:
3364///    [...]
3365///    -- if T is a (possibly cv-qualified) non-union class type,
3366///       each non-static data member and each base-class subobject is
3367///       zero-initialized
3368static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
3369                                          const RecordDecl *RD,
3370                                          const LValue &This, APValue &Result) {
3371  assert(!RD->isUnion() && "Expected non-union class type");
3372  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
3373  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
3374                   std::distance(RD->field_begin(), RD->field_end()));
3375
3376  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3377
3378  if (CD) {
3379    unsigned Index = 0;
3380    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
3381           End = CD->bases_end(); I != End; ++I, ++Index) {
3382      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
3383      LValue Subobject = This;
3384      HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout);
3385      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
3386                                         Result.getStructBase(Index)))
3387        return false;
3388    }
3389  }
3390
3391  for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
3392       I != End; ++I) {
3393    // -- if T is a reference type, no initialization is performed.
3394    if ((*I)->getType()->isReferenceType())
3395      continue;
3396
3397    LValue Subobject = This;
3398    HandleLValueMember(Info, E, Subobject, *I, &Layout);
3399
3400    ImplicitValueInitExpr VIE((*I)->getType());
3401    if (!EvaluateInPlace(
3402          Result.getStructField((*I)->getFieldIndex()), Info, Subobject, &VIE))
3403      return false;
3404  }
3405
3406  return true;
3407}
3408
3409bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
3410  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3411  if (RD->isUnion()) {
3412    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3413    // object's first non-static named data member is zero-initialized
3414    RecordDecl::field_iterator I = RD->field_begin();
3415    if (I == RD->field_end()) {
3416      Result = APValue((const FieldDecl*)0);
3417      return true;
3418    }
3419
3420    LValue Subobject = This;
3421    HandleLValueMember(Info, E, Subobject, *I);
3422    Result = APValue(*I);
3423    ImplicitValueInitExpr VIE((*I)->getType());
3424    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
3425  }
3426
3427  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
3428    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
3429    return false;
3430  }
3431
3432  return HandleClassZeroInitialization(Info, E, RD, This, Result);
3433}
3434
3435bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
3436  switch (E->getCastKind()) {
3437  default:
3438    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3439
3440  case CK_ConstructorConversion:
3441    return Visit(E->getSubExpr());
3442
3443  case CK_DerivedToBase:
3444  case CK_UncheckedDerivedToBase: {
3445    APValue DerivedObject;
3446    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
3447      return false;
3448    if (!DerivedObject.isStruct())
3449      return Error(E->getSubExpr());
3450
3451    // Derived-to-base rvalue conversion: just slice off the derived part.
3452    APValue *Value = &DerivedObject;
3453    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
3454    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3455         PathE = E->path_end(); PathI != PathE; ++PathI) {
3456      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
3457      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3458      Value = &Value->getStructBase(getBaseIndex(RD, Base));
3459      RD = Base;
3460    }
3461    Result = *Value;
3462    return true;
3463  }
3464  }
3465}
3466
3467bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3468  // Cannot constant-evaluate std::initializer_list inits.
3469  if (E->initializesStdInitializerList())
3470    return false;
3471
3472  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3473  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3474
3475  if (RD->isUnion()) {
3476    const FieldDecl *Field = E->getInitializedFieldInUnion();
3477    Result = APValue(Field);
3478    if (!Field)
3479      return true;
3480
3481    // If the initializer list for a union does not contain any elements, the
3482    // first element of the union is value-initialized.
3483    ImplicitValueInitExpr VIE(Field->getType());
3484    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
3485
3486    LValue Subobject = This;
3487    HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout);
3488    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
3489  }
3490
3491  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
3492         "initializer list for class with base classes");
3493  Result = APValue(APValue::UninitStruct(), 0,
3494                   std::distance(RD->field_begin(), RD->field_end()));
3495  unsigned ElementNo = 0;
3496  bool Success = true;
3497  for (RecordDecl::field_iterator Field = RD->field_begin(),
3498       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
3499    // Anonymous bit-fields are not considered members of the class for
3500    // purposes of aggregate initialization.
3501    if (Field->isUnnamedBitfield())
3502      continue;
3503
3504    LValue Subobject = This;
3505
3506    bool HaveInit = ElementNo < E->getNumInits();
3507
3508    // FIXME: Diagnostics here should point to the end of the initializer
3509    // list, not the start.
3510    HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, Subobject,
3511                       *Field, &Layout);
3512
3513    // Perform an implicit value-initialization for members beyond the end of
3514    // the initializer list.
3515    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
3516
3517    if (!EvaluateInPlace(
3518          Result.getStructField((*Field)->getFieldIndex()),
3519          Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
3520      if (!Info.keepEvaluatingAfterFailure())
3521        return false;
3522      Success = false;
3523    }
3524  }
3525
3526  return Success;
3527}
3528
3529bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3530  const CXXConstructorDecl *FD = E->getConstructor();
3531  bool ZeroInit = E->requiresZeroInitialization();
3532  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3533    // If we've already performed zero-initialization, we're already done.
3534    if (!Result.isUninit())
3535      return true;
3536
3537    if (ZeroInit)
3538      return ZeroInitialization(E);
3539
3540    const CXXRecordDecl *RD = FD->getParent();
3541    if (RD->isUnion())
3542      Result = APValue((FieldDecl*)0);
3543    else
3544      Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3545                       std::distance(RD->field_begin(), RD->field_end()));
3546    return true;
3547  }
3548
3549  const FunctionDecl *Definition = 0;
3550  FD->getBody(Definition);
3551
3552  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3553    return false;
3554
3555  // Avoid materializing a temporary for an elidable copy/move constructor.
3556  if (E->isElidable() && !ZeroInit)
3557    if (const MaterializeTemporaryExpr *ME
3558          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
3559      return Visit(ME->GetTemporaryExpr());
3560
3561  if (ZeroInit && !ZeroInitialization(E))
3562    return false;
3563
3564  llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
3565  return HandleConstructorCall(E->getExprLoc(), This, Args,
3566                               cast<CXXConstructorDecl>(Definition), Info,
3567                               Result);
3568}
3569
3570static bool EvaluateRecord(const Expr *E, const LValue &This,
3571                           APValue &Result, EvalInfo &Info) {
3572  assert(E->isRValue() && E->getType()->isRecordType() &&
3573         "can't evaluate expression as a record rvalue");
3574  return RecordExprEvaluator(Info, This, Result).Visit(E);
3575}
3576
3577//===----------------------------------------------------------------------===//
3578// Temporary Evaluation
3579//
3580// Temporaries are represented in the AST as rvalues, but generally behave like
3581// lvalues. The full-object of which the temporary is a subobject is implicitly
3582// materialized so that a reference can bind to it.
3583//===----------------------------------------------------------------------===//
3584namespace {
3585class TemporaryExprEvaluator
3586  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
3587public:
3588  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
3589    LValueExprEvaluatorBaseTy(Info, Result) {}
3590
3591  /// Visit an expression which constructs the value of this temporary.
3592  bool VisitConstructExpr(const Expr *E) {
3593    Result.set(E, Info.CurrentCall->Index);
3594    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
3595  }
3596
3597  bool VisitCastExpr(const CastExpr *E) {
3598    switch (E->getCastKind()) {
3599    default:
3600      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
3601
3602    case CK_ConstructorConversion:
3603      return VisitConstructExpr(E->getSubExpr());
3604    }
3605  }
3606  bool VisitInitListExpr(const InitListExpr *E) {
3607    return VisitConstructExpr(E);
3608  }
3609  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
3610    return VisitConstructExpr(E);
3611  }
3612  bool VisitCallExpr(const CallExpr *E) {
3613    return VisitConstructExpr(E);
3614  }
3615};
3616} // end anonymous namespace
3617
3618/// Evaluate an expression of record type as a temporary.
3619static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
3620  assert(E->isRValue() && E->getType()->isRecordType());
3621  return TemporaryExprEvaluator(Info, Result).Visit(E);
3622}
3623
3624//===----------------------------------------------------------------------===//
3625// Vector Evaluation
3626//===----------------------------------------------------------------------===//
3627
3628namespace {
3629  class VectorExprEvaluator
3630  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
3631    APValue &Result;
3632  public:
3633
3634    VectorExprEvaluator(EvalInfo &info, APValue &Result)
3635      : ExprEvaluatorBaseTy(info), Result(Result) {}
3636
3637    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
3638      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
3639      // FIXME: remove this APValue copy.
3640      Result = APValue(V.data(), V.size());
3641      return true;
3642    }
3643    bool Success(const APValue &V, const Expr *E) {
3644      assert(V.isVector());
3645      Result = V;
3646      return true;
3647    }
3648    bool ZeroInitialization(const Expr *E);
3649
3650    bool VisitUnaryReal(const UnaryOperator *E)
3651      { return Visit(E->getSubExpr()); }
3652    bool VisitCastExpr(const CastExpr* E);
3653    bool VisitInitListExpr(const InitListExpr *E);
3654    bool VisitUnaryImag(const UnaryOperator *E);
3655    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
3656    //                 binary comparisons, binary and/or/xor,
3657    //                 shufflevector, ExtVectorElementExpr
3658  };
3659} // end anonymous namespace
3660
3661static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
3662  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
3663  return VectorExprEvaluator(Info, Result).Visit(E);
3664}
3665
3666bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
3667  const VectorType *VTy = E->getType()->castAs<VectorType>();
3668  unsigned NElts = VTy->getNumElements();
3669
3670  const Expr *SE = E->getSubExpr();
3671  QualType SETy = SE->getType();
3672
3673  switch (E->getCastKind()) {
3674  case CK_VectorSplat: {
3675    APValue Val = APValue();
3676    if (SETy->isIntegerType()) {
3677      APSInt IntResult;
3678      if (!EvaluateInteger(SE, IntResult, Info))
3679         return false;
3680      Val = APValue(IntResult);
3681    } else if (SETy->isRealFloatingType()) {
3682       APFloat F(0.0);
3683       if (!EvaluateFloat(SE, F, Info))
3684         return false;
3685       Val = APValue(F);
3686    } else {
3687      return Error(E);
3688    }
3689
3690    // Splat and create vector APValue.
3691    SmallVector<APValue, 4> Elts(NElts, Val);
3692    return Success(Elts, E);
3693  }
3694  case CK_BitCast: {
3695    // Evaluate the operand into an APInt we can extract from.
3696    llvm::APInt SValInt;
3697    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
3698      return false;
3699    // Extract the elements
3700    QualType EltTy = VTy->getElementType();
3701    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
3702    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
3703    SmallVector<APValue, 4> Elts;
3704    if (EltTy->isRealFloatingType()) {
3705      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
3706      bool isIEESem = &Sem != &APFloat::PPCDoubleDouble;
3707      unsigned FloatEltSize = EltSize;
3708      if (&Sem == &APFloat::x87DoubleExtended)
3709        FloatEltSize = 80;
3710      for (unsigned i = 0; i < NElts; i++) {
3711        llvm::APInt Elt;
3712        if (BigEndian)
3713          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
3714        else
3715          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
3716        Elts.push_back(APValue(APFloat(Elt, isIEESem)));
3717      }
3718    } else if (EltTy->isIntegerType()) {
3719      for (unsigned i = 0; i < NElts; i++) {
3720        llvm::APInt Elt;
3721        if (BigEndian)
3722          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
3723        else
3724          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
3725        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
3726      }
3727    } else {
3728      return Error(E);
3729    }
3730    return Success(Elts, E);
3731  }
3732  default:
3733    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3734  }
3735}
3736
3737bool
3738VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3739  const VectorType *VT = E->getType()->castAs<VectorType>();
3740  unsigned NumInits = E->getNumInits();
3741  unsigned NumElements = VT->getNumElements();
3742
3743  QualType EltTy = VT->getElementType();
3744  SmallVector<APValue, 4> Elements;
3745
3746  // The number of initializers can be less than the number of
3747  // vector elements. For OpenCL, this can be due to nested vector
3748  // initialization. For GCC compatibility, missing trailing elements
3749  // should be initialized with zeroes.
3750  unsigned CountInits = 0, CountElts = 0;
3751  while (CountElts < NumElements) {
3752    // Handle nested vector initialization.
3753    if (CountInits < NumInits
3754        && E->getInit(CountInits)->getType()->isExtVectorType()) {
3755      APValue v;
3756      if (!EvaluateVector(E->getInit(CountInits), v, Info))
3757        return Error(E);
3758      unsigned vlen = v.getVectorLength();
3759      for (unsigned j = 0; j < vlen; j++)
3760        Elements.push_back(v.getVectorElt(j));
3761      CountElts += vlen;
3762    } else if (EltTy->isIntegerType()) {
3763      llvm::APSInt sInt(32);
3764      if (CountInits < NumInits) {
3765        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
3766          return false;
3767      } else // trailing integer zero.
3768        sInt = Info.Ctx.MakeIntValue(0, EltTy);
3769      Elements.push_back(APValue(sInt));
3770      CountElts++;
3771    } else {
3772      llvm::APFloat f(0.0);
3773      if (CountInits < NumInits) {
3774        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
3775          return false;
3776      } else // trailing float zero.
3777        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
3778      Elements.push_back(APValue(f));
3779      CountElts++;
3780    }
3781    CountInits++;
3782  }
3783  return Success(Elements, E);
3784}
3785
3786bool
3787VectorExprEvaluator::ZeroInitialization(const Expr *E) {
3788  const VectorType *VT = E->getType()->getAs<VectorType>();
3789  QualType EltTy = VT->getElementType();
3790  APValue ZeroElement;
3791  if (EltTy->isIntegerType())
3792    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
3793  else
3794    ZeroElement =
3795        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
3796
3797  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
3798  return Success(Elements, E);
3799}
3800
3801bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3802  VisitIgnoredValue(E->getSubExpr());
3803  return ZeroInitialization(E);
3804}
3805
3806//===----------------------------------------------------------------------===//
3807// Array Evaluation
3808//===----------------------------------------------------------------------===//
3809
3810namespace {
3811  class ArrayExprEvaluator
3812  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
3813    const LValue &This;
3814    APValue &Result;
3815  public:
3816
3817    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
3818      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
3819
3820    bool Success(const APValue &V, const Expr *E) {
3821      assert((V.isArray() || V.isLValue()) &&
3822             "expected array or string literal");
3823      Result = V;
3824      return true;
3825    }
3826
3827    bool ZeroInitialization(const Expr *E) {
3828      const ConstantArrayType *CAT =
3829          Info.Ctx.getAsConstantArrayType(E->getType());
3830      if (!CAT)
3831        return Error(E);
3832
3833      Result = APValue(APValue::UninitArray(), 0,
3834                       CAT->getSize().getZExtValue());
3835      if (!Result.hasArrayFiller()) return true;
3836
3837      // Zero-initialize all elements.
3838      LValue Subobject = This;
3839      Subobject.addArray(Info, E, CAT);
3840      ImplicitValueInitExpr VIE(CAT->getElementType());
3841      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3842    }
3843
3844    bool VisitInitListExpr(const InitListExpr *E);
3845    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3846  };
3847} // end anonymous namespace
3848
3849static bool EvaluateArray(const Expr *E, const LValue &This,
3850                          APValue &Result, EvalInfo &Info) {
3851  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
3852  return ArrayExprEvaluator(Info, This, Result).Visit(E);
3853}
3854
3855bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3856  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3857  if (!CAT)
3858    return Error(E);
3859
3860  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
3861  // an appropriately-typed string literal enclosed in braces.
3862  if (E->isStringLiteralInit()) {
3863    LValue LV;
3864    if (!EvaluateLValue(E->getInit(0), LV, Info))
3865      return false;
3866    APValue Val;
3867    LV.moveInto(Val);
3868    return Success(Val, E);
3869  }
3870
3871  bool Success = true;
3872
3873  Result = APValue(APValue::UninitArray(), E->getNumInits(),
3874                   CAT->getSize().getZExtValue());
3875  LValue Subobject = This;
3876  Subobject.addArray(Info, E, CAT);
3877  unsigned Index = 0;
3878  for (InitListExpr::const_iterator I = E->begin(), End = E->end();
3879       I != End; ++I, ++Index) {
3880    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
3881                         Info, Subobject, cast<Expr>(*I)) ||
3882        !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
3883                                     CAT->getElementType(), 1)) {
3884      if (!Info.keepEvaluatingAfterFailure())
3885        return false;
3886      Success = false;
3887    }
3888  }
3889
3890  if (!Result.hasArrayFiller()) return Success;
3891  assert(E->hasArrayFiller() && "no array filler for incomplete init list");
3892  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3893  // but sometimes does:
3894  //   struct S { constexpr S() : p(&p) {} void *p; };
3895  //   S s[10] = {};
3896  return EvaluateInPlace(Result.getArrayFiller(), Info,
3897                         Subobject, E->getArrayFiller()) && Success;
3898}
3899
3900bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3901  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3902  if (!CAT)
3903    return Error(E);
3904
3905  bool HadZeroInit = !Result.isUninit();
3906  if (!HadZeroInit)
3907    Result = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
3908  if (!Result.hasArrayFiller())
3909    return true;
3910
3911  const CXXConstructorDecl *FD = E->getConstructor();
3912
3913  bool ZeroInit = E->requiresZeroInitialization();
3914  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3915    if (HadZeroInit)
3916      return true;
3917
3918    if (ZeroInit) {
3919      LValue Subobject = This;
3920      Subobject.addArray(Info, E, CAT);
3921      ImplicitValueInitExpr VIE(CAT->getElementType());
3922      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3923    }
3924
3925    const CXXRecordDecl *RD = FD->getParent();
3926    if (RD->isUnion())
3927      Result.getArrayFiller() = APValue((FieldDecl*)0);
3928    else
3929      Result.getArrayFiller() =
3930          APValue(APValue::UninitStruct(), RD->getNumBases(),
3931                  std::distance(RD->field_begin(), RD->field_end()));
3932    return true;
3933  }
3934
3935  const FunctionDecl *Definition = 0;
3936  FD->getBody(Definition);
3937
3938  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3939    return false;
3940
3941  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3942  // but sometimes does:
3943  //   struct S { constexpr S() : p(&p) {} void *p; };
3944  //   S s[10];
3945  LValue Subobject = This;
3946  Subobject.addArray(Info, E, CAT);
3947
3948  if (ZeroInit && !HadZeroInit) {
3949    ImplicitValueInitExpr VIE(CAT->getElementType());
3950    if (!EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE))
3951      return false;
3952  }
3953
3954  llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
3955  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
3956                               cast<CXXConstructorDecl>(Definition),
3957                               Info, Result.getArrayFiller());
3958}
3959
3960//===----------------------------------------------------------------------===//
3961// Integer Evaluation
3962//
3963// As a GNU extension, we support casting pointers to sufficiently-wide integer
3964// types and back in constant folding. Integer values are thus represented
3965// either as an integer-valued APValue, or as an lvalue-valued APValue.
3966//===----------------------------------------------------------------------===//
3967
3968namespace {
3969class IntExprEvaluator
3970  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
3971  APValue &Result;
3972public:
3973  IntExprEvaluator(EvalInfo &info, APValue &result)
3974    : ExprEvaluatorBaseTy(info), Result(result) {}
3975
3976  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
3977    assert(E->getType()->isIntegralOrEnumerationType() &&
3978           "Invalid evaluation result.");
3979    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
3980           "Invalid evaluation result.");
3981    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3982           "Invalid evaluation result.");
3983    Result = APValue(SI);
3984    return true;
3985  }
3986  bool Success(const llvm::APSInt &SI, const Expr *E) {
3987    return Success(SI, E, Result);
3988  }
3989
3990  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
3991    assert(E->getType()->isIntegralOrEnumerationType() &&
3992           "Invalid evaluation result.");
3993    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3994           "Invalid evaluation result.");
3995    Result = APValue(APSInt(I));
3996    Result.getInt().setIsUnsigned(
3997                            E->getType()->isUnsignedIntegerOrEnumerationType());
3998    return true;
3999  }
4000  bool Success(const llvm::APInt &I, const Expr *E) {
4001    return Success(I, E, Result);
4002  }
4003
4004  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
4005    assert(E->getType()->isIntegralOrEnumerationType() &&
4006           "Invalid evaluation result.");
4007    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
4008    return true;
4009  }
4010  bool Success(uint64_t Value, const Expr *E) {
4011    return Success(Value, E, Result);
4012  }
4013
4014  bool Success(CharUnits Size, const Expr *E) {
4015    return Success(Size.getQuantity(), E);
4016  }
4017
4018  bool Success(const APValue &V, const Expr *E) {
4019    if (V.isLValue() || V.isAddrLabelDiff()) {
4020      Result = V;
4021      return true;
4022    }
4023    return Success(V.getInt(), E);
4024  }
4025
4026  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
4027
4028  //===--------------------------------------------------------------------===//
4029  //                            Visitor Methods
4030  //===--------------------------------------------------------------------===//
4031
4032  bool VisitIntegerLiteral(const IntegerLiteral *E) {
4033    return Success(E->getValue(), E);
4034  }
4035  bool VisitCharacterLiteral(const CharacterLiteral *E) {
4036    return Success(E->getValue(), E);
4037  }
4038
4039  bool CheckReferencedDecl(const Expr *E, const Decl *D);
4040  bool VisitDeclRefExpr(const DeclRefExpr *E) {
4041    if (CheckReferencedDecl(E, E->getDecl()))
4042      return true;
4043
4044    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
4045  }
4046  bool VisitMemberExpr(const MemberExpr *E) {
4047    if (CheckReferencedDecl(E, E->getMemberDecl())) {
4048      VisitIgnoredValue(E->getBase());
4049      return true;
4050    }
4051
4052    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
4053  }
4054
4055  bool VisitCallExpr(const CallExpr *E);
4056  bool VisitBinaryOperator(const BinaryOperator *E);
4057  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
4058  bool VisitUnaryOperator(const UnaryOperator *E);
4059
4060  bool VisitCastExpr(const CastExpr* E);
4061  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
4062
4063  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4064    return Success(E->getValue(), E);
4065  }
4066
4067  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
4068    return Success(E->getValue(), E);
4069  }
4070
4071  // Note, GNU defines __null as an integer, not a pointer.
4072  bool VisitGNUNullExpr(const GNUNullExpr *E) {
4073    return ZeroInitialization(E);
4074  }
4075
4076  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
4077    return Success(E->getValue(), E);
4078  }
4079
4080  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
4081    return Success(E->getValue(), E);
4082  }
4083
4084  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
4085    return Success(E->getValue(), E);
4086  }
4087
4088  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
4089    return Success(E->getValue(), E);
4090  }
4091
4092  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
4093    return Success(E->getValue(), E);
4094  }
4095
4096  bool VisitUnaryReal(const UnaryOperator *E);
4097  bool VisitUnaryImag(const UnaryOperator *E);
4098
4099  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
4100  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
4101
4102private:
4103  CharUnits GetAlignOfExpr(const Expr *E);
4104  CharUnits GetAlignOfType(QualType T);
4105  static QualType GetObjectType(APValue::LValueBase B);
4106  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
4107  // FIXME: Missing: array subscript of vector, member of vector
4108};
4109} // end anonymous namespace
4110
4111/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
4112/// produce either the integer value or a pointer.
4113///
4114/// GCC has a heinous extension which folds casts between pointer types and
4115/// pointer-sized integral types. We support this by allowing the evaluation of
4116/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
4117/// Some simple arithmetic on such values is supported (they are treated much
4118/// like char*).
4119static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
4120                                    EvalInfo &Info) {
4121  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
4122  return IntExprEvaluator(Info, Result).Visit(E);
4123}
4124
4125static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
4126  APValue Val;
4127  if (!EvaluateIntegerOrLValue(E, Val, Info))
4128    return false;
4129  if (!Val.isInt()) {
4130    // FIXME: It would be better to produce the diagnostic for casting
4131    //        a pointer to an integer.
4132    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
4133    return false;
4134  }
4135  Result = Val.getInt();
4136  return true;
4137}
4138
4139/// Check whether the given declaration can be directly converted to an integral
4140/// rvalue. If not, no diagnostic is produced; there are other things we can
4141/// try.
4142bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
4143  // Enums are integer constant exprs.
4144  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
4145    // Check for signedness/width mismatches between E type and ECD value.
4146    bool SameSign = (ECD->getInitVal().isSigned()
4147                     == E->getType()->isSignedIntegerOrEnumerationType());
4148    bool SameWidth = (ECD->getInitVal().getBitWidth()
4149                      == Info.Ctx.getIntWidth(E->getType()));
4150    if (SameSign && SameWidth)
4151      return Success(ECD->getInitVal(), E);
4152    else {
4153      // Get rid of mismatch (otherwise Success assertions will fail)
4154      // by computing a new value matching the type of E.
4155      llvm::APSInt Val = ECD->getInitVal();
4156      if (!SameSign)
4157        Val.setIsSigned(!ECD->getInitVal().isSigned());
4158      if (!SameWidth)
4159        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
4160      return Success(Val, E);
4161    }
4162  }
4163  return false;
4164}
4165
4166/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
4167/// as GCC.
4168static int EvaluateBuiltinClassifyType(const CallExpr *E) {
4169  // The following enum mimics the values returned by GCC.
4170  // FIXME: Does GCC differ between lvalue and rvalue references here?
4171  enum gcc_type_class {
4172    no_type_class = -1,
4173    void_type_class, integer_type_class, char_type_class,
4174    enumeral_type_class, boolean_type_class,
4175    pointer_type_class, reference_type_class, offset_type_class,
4176    real_type_class, complex_type_class,
4177    function_type_class, method_type_class,
4178    record_type_class, union_type_class,
4179    array_type_class, string_type_class,
4180    lang_type_class
4181  };
4182
4183  // If no argument was supplied, default to "no_type_class". This isn't
4184  // ideal, however it is what gcc does.
4185  if (E->getNumArgs() == 0)
4186    return no_type_class;
4187
4188  QualType ArgTy = E->getArg(0)->getType();
4189  if (ArgTy->isVoidType())
4190    return void_type_class;
4191  else if (ArgTy->isEnumeralType())
4192    return enumeral_type_class;
4193  else if (ArgTy->isBooleanType())
4194    return boolean_type_class;
4195  else if (ArgTy->isCharType())
4196    return string_type_class; // gcc doesn't appear to use char_type_class
4197  else if (ArgTy->isIntegerType())
4198    return integer_type_class;
4199  else if (ArgTy->isPointerType())
4200    return pointer_type_class;
4201  else if (ArgTy->isReferenceType())
4202    return reference_type_class;
4203  else if (ArgTy->isRealType())
4204    return real_type_class;
4205  else if (ArgTy->isComplexType())
4206    return complex_type_class;
4207  else if (ArgTy->isFunctionType())
4208    return function_type_class;
4209  else if (ArgTy->isStructureOrClassType())
4210    return record_type_class;
4211  else if (ArgTy->isUnionType())
4212    return union_type_class;
4213  else if (ArgTy->isArrayType())
4214    return array_type_class;
4215  else if (ArgTy->isUnionType())
4216    return union_type_class;
4217  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
4218    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
4219}
4220
4221/// EvaluateBuiltinConstantPForLValue - Determine the result of
4222/// __builtin_constant_p when applied to the given lvalue.
4223///
4224/// An lvalue is only "constant" if it is a pointer or reference to the first
4225/// character of a string literal.
4226template<typename LValue>
4227static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
4228  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
4229  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
4230}
4231
4232/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
4233/// GCC as we can manage.
4234static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
4235  QualType ArgType = Arg->getType();
4236
4237  // __builtin_constant_p always has one operand. The rules which gcc follows
4238  // are not precisely documented, but are as follows:
4239  //
4240  //  - If the operand is of integral, floating, complex or enumeration type,
4241  //    and can be folded to a known value of that type, it returns 1.
4242  //  - If the operand and can be folded to a pointer to the first character
4243  //    of a string literal (or such a pointer cast to an integral type), it
4244  //    returns 1.
4245  //
4246  // Otherwise, it returns 0.
4247  //
4248  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
4249  // its support for this does not currently work.
4250  if (ArgType->isIntegralOrEnumerationType()) {
4251    Expr::EvalResult Result;
4252    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
4253      return false;
4254
4255    APValue &V = Result.Val;
4256    if (V.getKind() == APValue::Int)
4257      return true;
4258
4259    return EvaluateBuiltinConstantPForLValue(V);
4260  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
4261    return Arg->isEvaluatable(Ctx);
4262  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
4263    LValue LV;
4264    Expr::EvalStatus Status;
4265    EvalInfo Info(Ctx, Status);
4266    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
4267                          : EvaluatePointer(Arg, LV, Info)) &&
4268        !Status.HasSideEffects)
4269      return EvaluateBuiltinConstantPForLValue(LV);
4270  }
4271
4272  // Anything else isn't considered to be sufficiently constant.
4273  return false;
4274}
4275
4276/// Retrieves the "underlying object type" of the given expression,
4277/// as used by __builtin_object_size.
4278QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
4279  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
4280    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4281      return VD->getType();
4282  } else if (const Expr *E = B.get<const Expr*>()) {
4283    if (isa<CompoundLiteralExpr>(E))
4284      return E->getType();
4285  }
4286
4287  return QualType();
4288}
4289
4290bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
4291  // TODO: Perhaps we should let LLVM lower this?
4292  LValue Base;
4293  if (!EvaluatePointer(E->getArg(0), Base, Info))
4294    return false;
4295
4296  // If we can prove the base is null, lower to zero now.
4297  if (!Base.getLValueBase()) return Success(0, E);
4298
4299  QualType T = GetObjectType(Base.getLValueBase());
4300  if (T.isNull() ||
4301      T->isIncompleteType() ||
4302      T->isFunctionType() ||
4303      T->isVariablyModifiedType() ||
4304      T->isDependentType())
4305    return Error(E);
4306
4307  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
4308  CharUnits Offset = Base.getLValueOffset();
4309
4310  if (!Offset.isNegative() && Offset <= Size)
4311    Size -= Offset;
4312  else
4313    Size = CharUnits::Zero();
4314  return Success(Size, E);
4315}
4316
4317bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
4318  switch (unsigned BuiltinOp = E->isBuiltinCall()) {
4319  default:
4320    return ExprEvaluatorBaseTy::VisitCallExpr(E);
4321
4322  case Builtin::BI__builtin_object_size: {
4323    if (TryEvaluateBuiltinObjectSize(E))
4324      return true;
4325
4326    // If evaluating the argument has side-effects we can't determine
4327    // the size of the object and lower it to unknown now.
4328    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
4329      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
4330        return Success(-1ULL, E);
4331      return Success(0, E);
4332    }
4333
4334    return Error(E);
4335  }
4336
4337  case Builtin::BI__builtin_classify_type:
4338    return Success(EvaluateBuiltinClassifyType(E), E);
4339
4340  case Builtin::BI__builtin_constant_p:
4341    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
4342
4343  case Builtin::BI__builtin_eh_return_data_regno: {
4344    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
4345    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
4346    return Success(Operand, E);
4347  }
4348
4349  case Builtin::BI__builtin_expect:
4350    return Visit(E->getArg(0));
4351
4352  case Builtin::BIstrlen:
4353    // A call to strlen is not a constant expression.
4354    if (Info.getLangOpts().CPlusPlus0x)
4355      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
4356        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
4357    else
4358      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
4359    // Fall through.
4360  case Builtin::BI__builtin_strlen:
4361    // As an extension, we support strlen() and __builtin_strlen() as constant
4362    // expressions when the argument is a string literal.
4363    if (const StringLiteral *S
4364               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
4365      // The string literal may have embedded null characters. Find the first
4366      // one and truncate there.
4367      StringRef Str = S->getString();
4368      StringRef::size_type Pos = Str.find(0);
4369      if (Pos != StringRef::npos)
4370        Str = Str.substr(0, Pos);
4371
4372      return Success(Str.size(), E);
4373    }
4374
4375    return Error(E);
4376
4377  case Builtin::BI__atomic_always_lock_free:
4378  case Builtin::BI__atomic_is_lock_free:
4379  case Builtin::BI__c11_atomic_is_lock_free: {
4380    APSInt SizeVal;
4381    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
4382      return false;
4383
4384    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
4385    // of two less than the maximum inline atomic width, we know it is
4386    // lock-free.  If the size isn't a power of two, or greater than the
4387    // maximum alignment where we promote atomics, we know it is not lock-free
4388    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
4389    // the answer can only be determined at runtime; for example, 16-byte
4390    // atomics have lock-free implementations on some, but not all,
4391    // x86-64 processors.
4392
4393    // Check power-of-two.
4394    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
4395    if (Size.isPowerOfTwo()) {
4396      // Check against inlining width.
4397      unsigned InlineWidthBits =
4398          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
4399      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
4400        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
4401            Size == CharUnits::One() ||
4402            E->getArg(1)->isNullPointerConstant(Info.Ctx,
4403                                                Expr::NPC_NeverValueDependent))
4404          // OK, we will inline appropriately-aligned operations of this size,
4405          // and _Atomic(T) is appropriately-aligned.
4406          return Success(1, E);
4407
4408        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
4409          castAs<PointerType>()->getPointeeType();
4410        if (!PointeeType->isIncompleteType() &&
4411            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
4412          // OK, we will inline operations on this object.
4413          return Success(1, E);
4414        }
4415      }
4416    }
4417
4418    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
4419        Success(0, E) : Error(E);
4420  }
4421  }
4422}
4423
4424static bool HasSameBase(const LValue &A, const LValue &B) {
4425  if (!A.getLValueBase())
4426    return !B.getLValueBase();
4427  if (!B.getLValueBase())
4428    return false;
4429
4430  if (A.getLValueBase().getOpaqueValue() !=
4431      B.getLValueBase().getOpaqueValue()) {
4432    const Decl *ADecl = GetLValueBaseDecl(A);
4433    if (!ADecl)
4434      return false;
4435    const Decl *BDecl = GetLValueBaseDecl(B);
4436    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
4437      return false;
4438  }
4439
4440  return IsGlobalLValue(A.getLValueBase()) ||
4441         A.getLValueCallIndex() == B.getLValueCallIndex();
4442}
4443
4444/// Perform the given integer operation, which is known to need at most BitWidth
4445/// bits, and check for overflow in the original type (if that type was not an
4446/// unsigned type).
4447template<typename Operation>
4448static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
4449                                   const APSInt &LHS, const APSInt &RHS,
4450                                   unsigned BitWidth, Operation Op) {
4451  if (LHS.isUnsigned())
4452    return Op(LHS, RHS);
4453
4454  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
4455  APSInt Result = Value.trunc(LHS.getBitWidth());
4456  if (Result.extend(BitWidth) != Value)
4457    HandleOverflow(Info, E, Value, E->getType());
4458  return Result;
4459}
4460
4461namespace {
4462
4463/// \brief Data recursive integer evaluator of certain binary operators.
4464///
4465/// We use a data recursive algorithm for binary operators so that we are able
4466/// to handle extreme cases of chained binary operators without causing stack
4467/// overflow.
4468class DataRecursiveIntBinOpEvaluator {
4469  struct EvalResult {
4470    APValue Val;
4471    bool Failed;
4472
4473    EvalResult() : Failed(false) { }
4474
4475    void swap(EvalResult &RHS) {
4476      Val.swap(RHS.Val);
4477      Failed = RHS.Failed;
4478      RHS.Failed = false;
4479    }
4480  };
4481
4482  struct Job {
4483    const Expr *E;
4484    EvalResult LHSResult; // meaningful only for binary operator expression.
4485    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
4486
4487    Job() : StoredInfo(0) { }
4488    void startSpeculativeEval(EvalInfo &Info) {
4489      OldEvalStatus = Info.EvalStatus;
4490      Info.EvalStatus.Diag = 0;
4491      StoredInfo = &Info;
4492    }
4493    ~Job() {
4494      if (StoredInfo) {
4495        StoredInfo->EvalStatus = OldEvalStatus;
4496      }
4497    }
4498  private:
4499    EvalInfo *StoredInfo; // non-null if status changed.
4500    Expr::EvalStatus OldEvalStatus;
4501  };
4502
4503  SmallVector<Job, 16> Queue;
4504
4505  IntExprEvaluator &IntEval;
4506  EvalInfo &Info;
4507  APValue &FinalResult;
4508
4509public:
4510  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
4511    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
4512
4513  /// \brief True if \param E is a binary operator that we are going to handle
4514  /// data recursively.
4515  /// We handle binary operators that are comma, logical, or that have operands
4516  /// with integral or enumeration type.
4517  static bool shouldEnqueue(const BinaryOperator *E) {
4518    return E->getOpcode() == BO_Comma ||
4519           E->isLogicalOp() ||
4520           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4521            E->getRHS()->getType()->isIntegralOrEnumerationType());
4522  }
4523
4524  bool Traverse(const BinaryOperator *E) {
4525    enqueue(E);
4526    EvalResult PrevResult;
4527    while (!Queue.empty())
4528      process(PrevResult);
4529
4530    if (PrevResult.Failed) return false;
4531
4532    FinalResult.swap(PrevResult.Val);
4533    return true;
4534  }
4535
4536private:
4537  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
4538    return IntEval.Success(Value, E, Result);
4539  }
4540  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
4541    return IntEval.Success(Value, E, Result);
4542  }
4543  bool Error(const Expr *E) {
4544    return IntEval.Error(E);
4545  }
4546  bool Error(const Expr *E, diag::kind D) {
4547    return IntEval.Error(E, D);
4548  }
4549
4550  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4551    return Info.CCEDiag(E, D);
4552  }
4553
4554  // \brief Returns true if visiting the RHS is necessary, false otherwise.
4555  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4556                         bool &SuppressRHSDiags);
4557
4558  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4559                  const BinaryOperator *E, APValue &Result);
4560
4561  void EvaluateExpr(const Expr *E, EvalResult &Result) {
4562    Result.Failed = !Evaluate(Result.Val, Info, E);
4563    if (Result.Failed)
4564      Result.Val = APValue();
4565  }
4566
4567  void process(EvalResult &Result);
4568
4569  void enqueue(const Expr *E) {
4570    E = E->IgnoreParens();
4571    Queue.resize(Queue.size()+1);
4572    Queue.back().E = E;
4573    Queue.back().Kind = Job::AnyExprKind;
4574  }
4575};
4576
4577}
4578
4579bool DataRecursiveIntBinOpEvaluator::
4580       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4581                         bool &SuppressRHSDiags) {
4582  if (E->getOpcode() == BO_Comma) {
4583    // Ignore LHS but note if we could not evaluate it.
4584    if (LHSResult.Failed)
4585      Info.EvalStatus.HasSideEffects = true;
4586    return true;
4587  }
4588
4589  if (E->isLogicalOp()) {
4590    bool lhsResult;
4591    if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
4592      // We were able to evaluate the LHS, see if we can get away with not
4593      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
4594      if (lhsResult == (E->getOpcode() == BO_LOr)) {
4595        Success(lhsResult, E, LHSResult.Val);
4596        return false; // Ignore RHS
4597      }
4598    } else {
4599      // Since we weren't able to evaluate the left hand side, it
4600      // must have had side effects.
4601      Info.EvalStatus.HasSideEffects = true;
4602
4603      // We can't evaluate the LHS; however, sometimes the result
4604      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4605      // Don't ignore RHS and suppress diagnostics from this arm.
4606      SuppressRHSDiags = true;
4607    }
4608
4609    return true;
4610  }
4611
4612  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4613         E->getRHS()->getType()->isIntegralOrEnumerationType());
4614
4615  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
4616    return false; // Ignore RHS;
4617
4618  return true;
4619}
4620
4621bool DataRecursiveIntBinOpEvaluator::
4622       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4623                  const BinaryOperator *E, APValue &Result) {
4624  if (E->getOpcode() == BO_Comma) {
4625    if (RHSResult.Failed)
4626      return false;
4627    Result = RHSResult.Val;
4628    return true;
4629  }
4630
4631  if (E->isLogicalOp()) {
4632    bool lhsResult, rhsResult;
4633    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
4634    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
4635
4636    if (LHSIsOK) {
4637      if (RHSIsOK) {
4638        if (E->getOpcode() == BO_LOr)
4639          return Success(lhsResult || rhsResult, E, Result);
4640        else
4641          return Success(lhsResult && rhsResult, E, Result);
4642      }
4643    } else {
4644      if (RHSIsOK) {
4645        // We can't evaluate the LHS; however, sometimes the result
4646        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4647        if (rhsResult == (E->getOpcode() == BO_LOr))
4648          return Success(rhsResult, E, Result);
4649      }
4650    }
4651
4652    return false;
4653  }
4654
4655  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4656         E->getRHS()->getType()->isIntegralOrEnumerationType());
4657
4658  if (LHSResult.Failed || RHSResult.Failed)
4659    return false;
4660
4661  const APValue &LHSVal = LHSResult.Val;
4662  const APValue &RHSVal = RHSResult.Val;
4663
4664  // Handle cases like (unsigned long)&a + 4.
4665  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
4666    Result = LHSVal;
4667    CharUnits AdditionalOffset = CharUnits::fromQuantity(
4668                                                         RHSVal.getInt().getZExtValue());
4669    if (E->getOpcode() == BO_Add)
4670      Result.getLValueOffset() += AdditionalOffset;
4671    else
4672      Result.getLValueOffset() -= AdditionalOffset;
4673    return true;
4674  }
4675
4676  // Handle cases like 4 + (unsigned long)&a
4677  if (E->getOpcode() == BO_Add &&
4678      RHSVal.isLValue() && LHSVal.isInt()) {
4679    Result = RHSVal;
4680    Result.getLValueOffset() += CharUnits::fromQuantity(
4681                                                        LHSVal.getInt().getZExtValue());
4682    return true;
4683  }
4684
4685  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
4686    // Handle (intptr_t)&&A - (intptr_t)&&B.
4687    if (!LHSVal.getLValueOffset().isZero() ||
4688        !RHSVal.getLValueOffset().isZero())
4689      return false;
4690    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
4691    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
4692    if (!LHSExpr || !RHSExpr)
4693      return false;
4694    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4695    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4696    if (!LHSAddrExpr || !RHSAddrExpr)
4697      return false;
4698    // Make sure both labels come from the same function.
4699    if (LHSAddrExpr->getLabel()->getDeclContext() !=
4700        RHSAddrExpr->getLabel()->getDeclContext())
4701      return false;
4702    Result = APValue(LHSAddrExpr, RHSAddrExpr);
4703    return true;
4704  }
4705
4706  // All the following cases expect both operands to be an integer
4707  if (!LHSVal.isInt() || !RHSVal.isInt())
4708    return Error(E);
4709
4710  const APSInt &LHS = LHSVal.getInt();
4711  APSInt RHS = RHSVal.getInt();
4712
4713  switch (E->getOpcode()) {
4714    default:
4715      return Error(E);
4716    case BO_Mul:
4717      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4718                                          LHS.getBitWidth() * 2,
4719                                          std::multiplies<APSInt>()), E,
4720                     Result);
4721    case BO_Add:
4722      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4723                                          LHS.getBitWidth() + 1,
4724                                          std::plus<APSInt>()), E, Result);
4725    case BO_Sub:
4726      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4727                                          LHS.getBitWidth() + 1,
4728                                          std::minus<APSInt>()), E, Result);
4729    case BO_And: return Success(LHS & RHS, E, Result);
4730    case BO_Xor: return Success(LHS ^ RHS, E, Result);
4731    case BO_Or:  return Success(LHS | RHS, E, Result);
4732    case BO_Div:
4733    case BO_Rem:
4734      if (RHS == 0)
4735        return Error(E, diag::note_expr_divide_by_zero);
4736      // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
4737      // not actually undefined behavior in C++11 due to a language defect.
4738      if (RHS.isNegative() && RHS.isAllOnesValue() &&
4739          LHS.isSigned() && LHS.isMinSignedValue())
4740        HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
4741      return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
4742                     Result);
4743    case BO_Shl: {
4744      // During constant-folding, a negative shift is an opposite shift. Such
4745      // a shift is not a constant expression.
4746      if (RHS.isSigned() && RHS.isNegative()) {
4747        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4748        RHS = -RHS;
4749        goto shift_right;
4750      }
4751
4752    shift_left:
4753      // C++11 [expr.shift]p1: Shift width must be less than the bit width of
4754      // the shifted type.
4755      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4756      if (SA != RHS) {
4757        CCEDiag(E, diag::note_constexpr_large_shift)
4758        << RHS << E->getType() << LHS.getBitWidth();
4759      } else if (LHS.isSigned()) {
4760        // C++11 [expr.shift]p2: A signed left shift must have a non-negative
4761        // operand, and must not overflow the corresponding unsigned type.
4762        if (LHS.isNegative())
4763          CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
4764        else if (LHS.countLeadingZeros() < SA)
4765          CCEDiag(E, diag::note_constexpr_lshift_discards);
4766      }
4767
4768      return Success(LHS << SA, E, Result);
4769    }
4770    case BO_Shr: {
4771      // During constant-folding, a negative shift is an opposite shift. Such a
4772      // shift is not a constant expression.
4773      if (RHS.isSigned() && RHS.isNegative()) {
4774        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4775        RHS = -RHS;
4776        goto shift_left;
4777      }
4778
4779    shift_right:
4780      // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
4781      // shifted type.
4782      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4783      if (SA != RHS)
4784        CCEDiag(E, diag::note_constexpr_large_shift)
4785        << RHS << E->getType() << LHS.getBitWidth();
4786
4787      return Success(LHS >> SA, E, Result);
4788    }
4789
4790    case BO_LT: return Success(LHS < RHS, E, Result);
4791    case BO_GT: return Success(LHS > RHS, E, Result);
4792    case BO_LE: return Success(LHS <= RHS, E, Result);
4793    case BO_GE: return Success(LHS >= RHS, E, Result);
4794    case BO_EQ: return Success(LHS == RHS, E, Result);
4795    case BO_NE: return Success(LHS != RHS, E, Result);
4796  }
4797}
4798
4799void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
4800  Job &job = Queue.back();
4801
4802  switch (job.Kind) {
4803    case Job::AnyExprKind: {
4804      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
4805        if (shouldEnqueue(Bop)) {
4806          job.Kind = Job::BinOpKind;
4807          enqueue(Bop->getLHS());
4808          return;
4809        }
4810      }
4811
4812      EvaluateExpr(job.E, Result);
4813      Queue.pop_back();
4814      return;
4815    }
4816
4817    case Job::BinOpKind: {
4818      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4819      bool SuppressRHSDiags = false;
4820      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
4821        Queue.pop_back();
4822        return;
4823      }
4824      if (SuppressRHSDiags)
4825        job.startSpeculativeEval(Info);
4826      job.LHSResult.swap(Result);
4827      job.Kind = Job::BinOpVisitedLHSKind;
4828      enqueue(Bop->getRHS());
4829      return;
4830    }
4831
4832    case Job::BinOpVisitedLHSKind: {
4833      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4834      EvalResult RHS;
4835      RHS.swap(Result);
4836      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
4837      Queue.pop_back();
4838      return;
4839    }
4840  }
4841
4842  llvm_unreachable("Invalid Job::Kind!");
4843}
4844
4845bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4846  if (E->isAssignmentOp())
4847    return Error(E);
4848
4849  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
4850    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
4851
4852  QualType LHSTy = E->getLHS()->getType();
4853  QualType RHSTy = E->getRHS()->getType();
4854
4855  if (LHSTy->isAnyComplexType()) {
4856    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
4857    ComplexValue LHS, RHS;
4858
4859    bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
4860    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4861      return false;
4862
4863    if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
4864      return false;
4865
4866    if (LHS.isComplexFloat()) {
4867      APFloat::cmpResult CR_r =
4868        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
4869      APFloat::cmpResult CR_i =
4870        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
4871
4872      if (E->getOpcode() == BO_EQ)
4873        return Success((CR_r == APFloat::cmpEqual &&
4874                        CR_i == APFloat::cmpEqual), E);
4875      else {
4876        assert(E->getOpcode() == BO_NE &&
4877               "Invalid complex comparison.");
4878        return Success(((CR_r == APFloat::cmpGreaterThan ||
4879                         CR_r == APFloat::cmpLessThan ||
4880                         CR_r == APFloat::cmpUnordered) ||
4881                        (CR_i == APFloat::cmpGreaterThan ||
4882                         CR_i == APFloat::cmpLessThan ||
4883                         CR_i == APFloat::cmpUnordered)), E);
4884      }
4885    } else {
4886      if (E->getOpcode() == BO_EQ)
4887        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
4888                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
4889      else {
4890        assert(E->getOpcode() == BO_NE &&
4891               "Invalid compex comparison.");
4892        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
4893                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
4894      }
4895    }
4896  }
4897
4898  if (LHSTy->isRealFloatingType() &&
4899      RHSTy->isRealFloatingType()) {
4900    APFloat RHS(0.0), LHS(0.0);
4901
4902    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
4903    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4904      return false;
4905
4906    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
4907      return false;
4908
4909    APFloat::cmpResult CR = LHS.compare(RHS);
4910
4911    switch (E->getOpcode()) {
4912    default:
4913      llvm_unreachable("Invalid binary operator!");
4914    case BO_LT:
4915      return Success(CR == APFloat::cmpLessThan, E);
4916    case BO_GT:
4917      return Success(CR == APFloat::cmpGreaterThan, E);
4918    case BO_LE:
4919      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
4920    case BO_GE:
4921      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
4922                     E);
4923    case BO_EQ:
4924      return Success(CR == APFloat::cmpEqual, E);
4925    case BO_NE:
4926      return Success(CR == APFloat::cmpGreaterThan
4927                     || CR == APFloat::cmpLessThan
4928                     || CR == APFloat::cmpUnordered, E);
4929    }
4930  }
4931
4932  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4933    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
4934      LValue LHSValue, RHSValue;
4935
4936      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
4937      if (!LHSOK && Info.keepEvaluatingAfterFailure())
4938        return false;
4939
4940      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
4941        return false;
4942
4943      // Reject differing bases from the normal codepath; we special-case
4944      // comparisons to null.
4945      if (!HasSameBase(LHSValue, RHSValue)) {
4946        if (E->getOpcode() == BO_Sub) {
4947          // Handle &&A - &&B.
4948          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
4949            return false;
4950          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4951          const Expr *RHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4952          if (!LHSExpr || !RHSExpr)
4953            return false;
4954          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4955          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4956          if (!LHSAddrExpr || !RHSAddrExpr)
4957            return false;
4958          // Make sure both labels come from the same function.
4959          if (LHSAddrExpr->getLabel()->getDeclContext() !=
4960              RHSAddrExpr->getLabel()->getDeclContext())
4961            return false;
4962          Result = APValue(LHSAddrExpr, RHSAddrExpr);
4963          return true;
4964        }
4965        // Inequalities and subtractions between unrelated pointers have
4966        // unspecified or undefined behavior.
4967        if (!E->isEqualityOp())
4968          return Error(E);
4969        // A constant address may compare equal to the address of a symbol.
4970        // The one exception is that address of an object cannot compare equal
4971        // to a null pointer constant.
4972        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
4973            (!RHSValue.Base && !RHSValue.Offset.isZero()))
4974          return Error(E);
4975        // It's implementation-defined whether distinct literals will have
4976        // distinct addresses. In clang, the result of such a comparison is
4977        // unspecified, so it is not a constant expression. However, we do know
4978        // that the address of a literal will be non-null.
4979        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
4980            LHSValue.Base && RHSValue.Base)
4981          return Error(E);
4982        // We can't tell whether weak symbols will end up pointing to the same
4983        // object.
4984        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
4985          return Error(E);
4986        // Pointers with different bases cannot represent the same object.
4987        // (Note that clang defaults to -fmerge-all-constants, which can
4988        // lead to inconsistent results for comparisons involving the address
4989        // of a constant; this generally doesn't matter in practice.)
4990        return Success(E->getOpcode() == BO_NE, E);
4991      }
4992
4993      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
4994      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
4995
4996      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
4997      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
4998
4999      if (E->getOpcode() == BO_Sub) {
5000        // C++11 [expr.add]p6:
5001        //   Unless both pointers point to elements of the same array object, or
5002        //   one past the last element of the array object, the behavior is
5003        //   undefined.
5004        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
5005            !AreElementsOfSameArray(getType(LHSValue.Base),
5006                                    LHSDesignator, RHSDesignator))
5007          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
5008
5009        QualType Type = E->getLHS()->getType();
5010        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
5011
5012        CharUnits ElementSize;
5013        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
5014          return false;
5015
5016        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
5017        // and produce incorrect results when it overflows. Such behavior
5018        // appears to be non-conforming, but is common, so perhaps we should
5019        // assume the standard intended for such cases to be undefined behavior
5020        // and check for them.
5021
5022        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
5023        // overflow in the final conversion to ptrdiff_t.
5024        APSInt LHS(
5025          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
5026        APSInt RHS(
5027          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
5028        APSInt ElemSize(
5029          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
5030        APSInt TrueResult = (LHS - RHS) / ElemSize;
5031        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
5032
5033        if (Result.extend(65) != TrueResult)
5034          HandleOverflow(Info, E, TrueResult, E->getType());
5035        return Success(Result, E);
5036      }
5037
5038      // C++11 [expr.rel]p3:
5039      //   Pointers to void (after pointer conversions) can be compared, with a
5040      //   result defined as follows: If both pointers represent the same
5041      //   address or are both the null pointer value, the result is true if the
5042      //   operator is <= or >= and false otherwise; otherwise the result is
5043      //   unspecified.
5044      // We interpret this as applying to pointers to *cv* void.
5045      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
5046          E->isRelationalOp())
5047        CCEDiag(E, diag::note_constexpr_void_comparison);
5048
5049      // C++11 [expr.rel]p2:
5050      // - If two pointers point to non-static data members of the same object,
5051      //   or to subobjects or array elements fo such members, recursively, the
5052      //   pointer to the later declared member compares greater provided the
5053      //   two members have the same access control and provided their class is
5054      //   not a union.
5055      //   [...]
5056      // - Otherwise pointer comparisons are unspecified.
5057      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
5058          E->isRelationalOp()) {
5059        bool WasArrayIndex;
5060        unsigned Mismatch =
5061          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
5062                                 RHSDesignator, WasArrayIndex);
5063        // At the point where the designators diverge, the comparison has a
5064        // specified value if:
5065        //  - we are comparing array indices
5066        //  - we are comparing fields of a union, or fields with the same access
5067        // Otherwise, the result is unspecified and thus the comparison is not a
5068        // constant expression.
5069        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
5070            Mismatch < RHSDesignator.Entries.size()) {
5071          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
5072          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
5073          if (!LF && !RF)
5074            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
5075          else if (!LF)
5076            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5077              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
5078              << RF->getParent() << RF;
5079          else if (!RF)
5080            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5081              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
5082              << LF->getParent() << LF;
5083          else if (!LF->getParent()->isUnion() &&
5084                   LF->getAccess() != RF->getAccess())
5085            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
5086              << LF << LF->getAccess() << RF << RF->getAccess()
5087              << LF->getParent();
5088        }
5089      }
5090
5091      // The comparison here must be unsigned, and performed with the same
5092      // width as the pointer.
5093      unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
5094      uint64_t CompareLHS = LHSOffset.getQuantity();
5095      uint64_t CompareRHS = RHSOffset.getQuantity();
5096      assert(PtrSize <= 64 && "Unexpected pointer width");
5097      uint64_t Mask = ~0ULL >> (64 - PtrSize);
5098      CompareLHS &= Mask;
5099      CompareRHS &= Mask;
5100
5101      // If there is a base and this is a relational operator, we can only
5102      // compare pointers within the object in question; otherwise, the result
5103      // depends on where the object is located in memory.
5104      if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
5105        QualType BaseTy = getType(LHSValue.Base);
5106        if (BaseTy->isIncompleteType())
5107          return Error(E);
5108        CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
5109        uint64_t OffsetLimit = Size.getQuantity();
5110        if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
5111          return Error(E);
5112      }
5113
5114      switch (E->getOpcode()) {
5115      default: llvm_unreachable("missing comparison operator");
5116      case BO_LT: return Success(CompareLHS < CompareRHS, E);
5117      case BO_GT: return Success(CompareLHS > CompareRHS, E);
5118      case BO_LE: return Success(CompareLHS <= CompareRHS, E);
5119      case BO_GE: return Success(CompareLHS >= CompareRHS, E);
5120      case BO_EQ: return Success(CompareLHS == CompareRHS, E);
5121      case BO_NE: return Success(CompareLHS != CompareRHS, E);
5122      }
5123    }
5124  }
5125
5126  if (LHSTy->isMemberPointerType()) {
5127    assert(E->isEqualityOp() && "unexpected member pointer operation");
5128    assert(RHSTy->isMemberPointerType() && "invalid comparison");
5129
5130    MemberPtr LHSValue, RHSValue;
5131
5132    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
5133    if (!LHSOK && Info.keepEvaluatingAfterFailure())
5134      return false;
5135
5136    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
5137      return false;
5138
5139    // C++11 [expr.eq]p2:
5140    //   If both operands are null, they compare equal. Otherwise if only one is
5141    //   null, they compare unequal.
5142    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
5143      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
5144      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5145    }
5146
5147    //   Otherwise if either is a pointer to a virtual member function, the
5148    //   result is unspecified.
5149    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
5150      if (MD->isVirtual())
5151        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5152    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
5153      if (MD->isVirtual())
5154        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5155
5156    //   Otherwise they compare equal if and only if they would refer to the
5157    //   same member of the same most derived object or the same subobject if
5158    //   they were dereferenced with a hypothetical object of the associated
5159    //   class type.
5160    bool Equal = LHSValue == RHSValue;
5161    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5162  }
5163
5164  if (LHSTy->isNullPtrType()) {
5165    assert(E->isComparisonOp() && "unexpected nullptr operation");
5166    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
5167    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
5168    // are compared, the result is true of the operator is <=, >= or ==, and
5169    // false otherwise.
5170    BinaryOperator::Opcode Opcode = E->getOpcode();
5171    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
5172  }
5173
5174  assert((!LHSTy->isIntegralOrEnumerationType() ||
5175          !RHSTy->isIntegralOrEnumerationType()) &&
5176         "DataRecursiveIntBinOpEvaluator should have handled integral types");
5177  // We can't continue from here for non-integral types.
5178  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5179}
5180
5181CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
5182  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
5183  //   result shall be the alignment of the referenced type."
5184  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5185    T = Ref->getPointeeType();
5186
5187  // __alignof is defined to return the preferred alignment.
5188  return Info.Ctx.toCharUnitsFromBits(
5189    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5190}
5191
5192CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
5193  E = E->IgnoreParens();
5194
5195  // alignof decl is always accepted, even if it doesn't make sense: we default
5196  // to 1 in those cases.
5197  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5198    return Info.Ctx.getDeclAlign(DRE->getDecl(),
5199                                 /*RefAsPointee*/true);
5200
5201  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5202    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5203                                 /*RefAsPointee*/true);
5204
5205  return GetAlignOfType(E->getType());
5206}
5207
5208
5209/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
5210/// a result as the expression's type.
5211bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
5212                                    const UnaryExprOrTypeTraitExpr *E) {
5213  switch(E->getKind()) {
5214  case UETT_AlignOf: {
5215    if (E->isArgumentType())
5216      return Success(GetAlignOfType(E->getArgumentType()), E);
5217    else
5218      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
5219  }
5220
5221  case UETT_VecStep: {
5222    QualType Ty = E->getTypeOfArgument();
5223
5224    if (Ty->isVectorType()) {
5225      unsigned n = Ty->getAs<VectorType>()->getNumElements();
5226
5227      // The vec_step built-in functions that take a 3-component
5228      // vector return 4. (OpenCL 1.1 spec 6.11.12)
5229      if (n == 3)
5230        n = 4;
5231
5232      return Success(n, E);
5233    } else
5234      return Success(1, E);
5235  }
5236
5237  case UETT_SizeOf: {
5238    QualType SrcTy = E->getTypeOfArgument();
5239    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
5240    //   the result is the size of the referenced type."
5241    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
5242      SrcTy = Ref->getPointeeType();
5243
5244    CharUnits Sizeof;
5245    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
5246      return false;
5247    return Success(Sizeof, E);
5248  }
5249  }
5250
5251  llvm_unreachable("unknown expr/type trait");
5252}
5253
5254bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
5255  CharUnits Result;
5256  unsigned n = OOE->getNumComponents();
5257  if (n == 0)
5258    return Error(OOE);
5259  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
5260  for (unsigned i = 0; i != n; ++i) {
5261    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
5262    switch (ON.getKind()) {
5263    case OffsetOfExpr::OffsetOfNode::Array: {
5264      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
5265      APSInt IdxResult;
5266      if (!EvaluateInteger(Idx, IdxResult, Info))
5267        return false;
5268      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
5269      if (!AT)
5270        return Error(OOE);
5271      CurrentType = AT->getElementType();
5272      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
5273      Result += IdxResult.getSExtValue() * ElementSize;
5274        break;
5275    }
5276
5277    case OffsetOfExpr::OffsetOfNode::Field: {
5278      FieldDecl *MemberDecl = ON.getField();
5279      const RecordType *RT = CurrentType->getAs<RecordType>();
5280      if (!RT)
5281        return Error(OOE);
5282      RecordDecl *RD = RT->getDecl();
5283      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5284      unsigned i = MemberDecl->getFieldIndex();
5285      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
5286      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
5287      CurrentType = MemberDecl->getType().getNonReferenceType();
5288      break;
5289    }
5290
5291    case OffsetOfExpr::OffsetOfNode::Identifier:
5292      llvm_unreachable("dependent __builtin_offsetof");
5293
5294    case OffsetOfExpr::OffsetOfNode::Base: {
5295      CXXBaseSpecifier *BaseSpec = ON.getBase();
5296      if (BaseSpec->isVirtual())
5297        return Error(OOE);
5298
5299      // Find the layout of the class whose base we are looking into.
5300      const RecordType *RT = CurrentType->getAs<RecordType>();
5301      if (!RT)
5302        return Error(OOE);
5303      RecordDecl *RD = RT->getDecl();
5304      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5305
5306      // Find the base class itself.
5307      CurrentType = BaseSpec->getType();
5308      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
5309      if (!BaseRT)
5310        return Error(OOE);
5311
5312      // Add the offset to the base.
5313      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
5314      break;
5315    }
5316    }
5317  }
5318  return Success(Result, OOE);
5319}
5320
5321bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5322  switch (E->getOpcode()) {
5323  default:
5324    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
5325    // See C99 6.6p3.
5326    return Error(E);
5327  case UO_Extension:
5328    // FIXME: Should extension allow i-c-e extension expressions in its scope?
5329    // If so, we could clear the diagnostic ID.
5330    return Visit(E->getSubExpr());
5331  case UO_Plus:
5332    // The result is just the value.
5333    return Visit(E->getSubExpr());
5334  case UO_Minus: {
5335    if (!Visit(E->getSubExpr()))
5336      return false;
5337    if (!Result.isInt()) return Error(E);
5338    const APSInt &Value = Result.getInt();
5339    if (Value.isSigned() && Value.isMinSignedValue())
5340      HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
5341                     E->getType());
5342    return Success(-Value, E);
5343  }
5344  case UO_Not: {
5345    if (!Visit(E->getSubExpr()))
5346      return false;
5347    if (!Result.isInt()) return Error(E);
5348    return Success(~Result.getInt(), E);
5349  }
5350  case UO_LNot: {
5351    bool bres;
5352    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
5353      return false;
5354    return Success(!bres, E);
5355  }
5356  }
5357}
5358
5359/// HandleCast - This is used to evaluate implicit or explicit casts where the
5360/// result type is integer.
5361bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
5362  const Expr *SubExpr = E->getSubExpr();
5363  QualType DestType = E->getType();
5364  QualType SrcType = SubExpr->getType();
5365
5366  switch (E->getCastKind()) {
5367  case CK_BaseToDerived:
5368  case CK_DerivedToBase:
5369  case CK_UncheckedDerivedToBase:
5370  case CK_Dynamic:
5371  case CK_ToUnion:
5372  case CK_ArrayToPointerDecay:
5373  case CK_FunctionToPointerDecay:
5374  case CK_NullToPointer:
5375  case CK_NullToMemberPointer:
5376  case CK_BaseToDerivedMemberPointer:
5377  case CK_DerivedToBaseMemberPointer:
5378  case CK_ReinterpretMemberPointer:
5379  case CK_ConstructorConversion:
5380  case CK_IntegralToPointer:
5381  case CK_ToVoid:
5382  case CK_VectorSplat:
5383  case CK_IntegralToFloating:
5384  case CK_FloatingCast:
5385  case CK_CPointerToObjCPointerCast:
5386  case CK_BlockPointerToObjCPointerCast:
5387  case CK_AnyPointerToBlockPointerCast:
5388  case CK_ObjCObjectLValueCast:
5389  case CK_FloatingRealToComplex:
5390  case CK_FloatingComplexToReal:
5391  case CK_FloatingComplexCast:
5392  case CK_FloatingComplexToIntegralComplex:
5393  case CK_IntegralRealToComplex:
5394  case CK_IntegralComplexCast:
5395  case CK_IntegralComplexToFloatingComplex:
5396    llvm_unreachable("invalid cast kind for integral value");
5397
5398  case CK_BitCast:
5399  case CK_Dependent:
5400  case CK_LValueBitCast:
5401  case CK_ARCProduceObject:
5402  case CK_ARCConsumeObject:
5403  case CK_ARCReclaimReturnedObject:
5404  case CK_ARCExtendBlockObject:
5405  case CK_CopyAndAutoreleaseBlockObject:
5406    return Error(E);
5407
5408  case CK_UserDefinedConversion:
5409  case CK_LValueToRValue:
5410  case CK_AtomicToNonAtomic:
5411  case CK_NonAtomicToAtomic:
5412  case CK_NoOp:
5413    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5414
5415  case CK_MemberPointerToBoolean:
5416  case CK_PointerToBoolean:
5417  case CK_IntegralToBoolean:
5418  case CK_FloatingToBoolean:
5419  case CK_FloatingComplexToBoolean:
5420  case CK_IntegralComplexToBoolean: {
5421    bool BoolResult;
5422    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
5423      return false;
5424    return Success(BoolResult, E);
5425  }
5426
5427  case CK_IntegralCast: {
5428    if (!Visit(SubExpr))
5429      return false;
5430
5431    if (!Result.isInt()) {
5432      // Allow casts of address-of-label differences if they are no-ops
5433      // or narrowing.  (The narrowing case isn't actually guaranteed to
5434      // be constant-evaluatable except in some narrow cases which are hard
5435      // to detect here.  We let it through on the assumption the user knows
5436      // what they are doing.)
5437      if (Result.isAddrLabelDiff())
5438        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
5439      // Only allow casts of lvalues if they are lossless.
5440      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
5441    }
5442
5443    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
5444                                      Result.getInt()), E);
5445  }
5446
5447  case CK_PointerToIntegral: {
5448    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5449
5450    LValue LV;
5451    if (!EvaluatePointer(SubExpr, LV, Info))
5452      return false;
5453
5454    if (LV.getLValueBase()) {
5455      // Only allow based lvalue casts if they are lossless.
5456      // FIXME: Allow a larger integer size than the pointer size, and allow
5457      // narrowing back down to pointer width in subsequent integral casts.
5458      // FIXME: Check integer type's active bits, not its type size.
5459      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
5460        return Error(E);
5461
5462      LV.Designator.setInvalid();
5463      LV.moveInto(Result);
5464      return true;
5465    }
5466
5467    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
5468                                         SrcType);
5469    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
5470  }
5471
5472  case CK_IntegralComplexToReal: {
5473    ComplexValue C;
5474    if (!EvaluateComplex(SubExpr, C, Info))
5475      return false;
5476    return Success(C.getComplexIntReal(), E);
5477  }
5478
5479  case CK_FloatingToIntegral: {
5480    APFloat F(0.0);
5481    if (!EvaluateFloat(SubExpr, F, Info))
5482      return false;
5483
5484    APSInt Value;
5485    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
5486      return false;
5487    return Success(Value, E);
5488  }
5489  }
5490
5491  llvm_unreachable("unknown cast resulting in integral value");
5492}
5493
5494bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5495  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5496    ComplexValue LV;
5497    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5498      return false;
5499    if (!LV.isComplexInt())
5500      return Error(E);
5501    return Success(LV.getComplexIntReal(), E);
5502  }
5503
5504  return Visit(E->getSubExpr());
5505}
5506
5507bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5508  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
5509    ComplexValue LV;
5510    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5511      return false;
5512    if (!LV.isComplexInt())
5513      return Error(E);
5514    return Success(LV.getComplexIntImag(), E);
5515  }
5516
5517  VisitIgnoredValue(E->getSubExpr());
5518  return Success(0, E);
5519}
5520
5521bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
5522  return Success(E->getPackLength(), E);
5523}
5524
5525bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
5526  return Success(E->getValue(), E);
5527}
5528
5529//===----------------------------------------------------------------------===//
5530// Float Evaluation
5531//===----------------------------------------------------------------------===//
5532
5533namespace {
5534class FloatExprEvaluator
5535  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
5536  APFloat &Result;
5537public:
5538  FloatExprEvaluator(EvalInfo &info, APFloat &result)
5539    : ExprEvaluatorBaseTy(info), Result(result) {}
5540
5541  bool Success(const APValue &V, const Expr *e) {
5542    Result = V.getFloat();
5543    return true;
5544  }
5545
5546  bool ZeroInitialization(const Expr *E) {
5547    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
5548    return true;
5549  }
5550
5551  bool VisitCallExpr(const CallExpr *E);
5552
5553  bool VisitUnaryOperator(const UnaryOperator *E);
5554  bool VisitBinaryOperator(const BinaryOperator *E);
5555  bool VisitFloatingLiteral(const FloatingLiteral *E);
5556  bool VisitCastExpr(const CastExpr *E);
5557
5558  bool VisitUnaryReal(const UnaryOperator *E);
5559  bool VisitUnaryImag(const UnaryOperator *E);
5560
5561  // FIXME: Missing: array subscript of vector, member of vector
5562};
5563} // end anonymous namespace
5564
5565static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
5566  assert(E->isRValue() && E->getType()->isRealFloatingType());
5567  return FloatExprEvaluator(Info, Result).Visit(E);
5568}
5569
5570static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
5571                                  QualType ResultTy,
5572                                  const Expr *Arg,
5573                                  bool SNaN,
5574                                  llvm::APFloat &Result) {
5575  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
5576  if (!S) return false;
5577
5578  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
5579
5580  llvm::APInt fill;
5581
5582  // Treat empty strings as if they were zero.
5583  if (S->getString().empty())
5584    fill = llvm::APInt(32, 0);
5585  else if (S->getString().getAsInteger(0, fill))
5586    return false;
5587
5588  if (SNaN)
5589    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
5590  else
5591    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
5592  return true;
5593}
5594
5595bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
5596  switch (E->isBuiltinCall()) {
5597  default:
5598    return ExprEvaluatorBaseTy::VisitCallExpr(E);
5599
5600  case Builtin::BI__builtin_huge_val:
5601  case Builtin::BI__builtin_huge_valf:
5602  case Builtin::BI__builtin_huge_vall:
5603  case Builtin::BI__builtin_inf:
5604  case Builtin::BI__builtin_inff:
5605  case Builtin::BI__builtin_infl: {
5606    const llvm::fltSemantics &Sem =
5607      Info.Ctx.getFloatTypeSemantics(E->getType());
5608    Result = llvm::APFloat::getInf(Sem);
5609    return true;
5610  }
5611
5612  case Builtin::BI__builtin_nans:
5613  case Builtin::BI__builtin_nansf:
5614  case Builtin::BI__builtin_nansl:
5615    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5616                               true, Result))
5617      return Error(E);
5618    return true;
5619
5620  case Builtin::BI__builtin_nan:
5621  case Builtin::BI__builtin_nanf:
5622  case Builtin::BI__builtin_nanl:
5623    // If this is __builtin_nan() turn this into a nan, otherwise we
5624    // can't constant fold it.
5625    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5626                               false, Result))
5627      return Error(E);
5628    return true;
5629
5630  case Builtin::BI__builtin_fabs:
5631  case Builtin::BI__builtin_fabsf:
5632  case Builtin::BI__builtin_fabsl:
5633    if (!EvaluateFloat(E->getArg(0), Result, Info))
5634      return false;
5635
5636    if (Result.isNegative())
5637      Result.changeSign();
5638    return true;
5639
5640  case Builtin::BI__builtin_copysign:
5641  case Builtin::BI__builtin_copysignf:
5642  case Builtin::BI__builtin_copysignl: {
5643    APFloat RHS(0.);
5644    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
5645        !EvaluateFloat(E->getArg(1), RHS, Info))
5646      return false;
5647    Result.copySign(RHS);
5648    return true;
5649  }
5650  }
5651}
5652
5653bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5654  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5655    ComplexValue CV;
5656    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5657      return false;
5658    Result = CV.FloatReal;
5659    return true;
5660  }
5661
5662  return Visit(E->getSubExpr());
5663}
5664
5665bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5666  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5667    ComplexValue CV;
5668    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5669      return false;
5670    Result = CV.FloatImag;
5671    return true;
5672  }
5673
5674  VisitIgnoredValue(E->getSubExpr());
5675  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
5676  Result = llvm::APFloat::getZero(Sem);
5677  return true;
5678}
5679
5680bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5681  switch (E->getOpcode()) {
5682  default: return Error(E);
5683  case UO_Plus:
5684    return EvaluateFloat(E->getSubExpr(), Result, Info);
5685  case UO_Minus:
5686    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
5687      return false;
5688    Result.changeSign();
5689    return true;
5690  }
5691}
5692
5693bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5694  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5695    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5696
5697  APFloat RHS(0.0);
5698  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
5699  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5700    return false;
5701  if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
5702    return false;
5703
5704  switch (E->getOpcode()) {
5705  default: return Error(E);
5706  case BO_Mul:
5707    Result.multiply(RHS, APFloat::rmNearestTiesToEven);
5708    break;
5709  case BO_Add:
5710    Result.add(RHS, APFloat::rmNearestTiesToEven);
5711    break;
5712  case BO_Sub:
5713    Result.subtract(RHS, APFloat::rmNearestTiesToEven);
5714    break;
5715  case BO_Div:
5716    Result.divide(RHS, APFloat::rmNearestTiesToEven);
5717    break;
5718  }
5719
5720  if (Result.isInfinity() || Result.isNaN())
5721    CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
5722  return true;
5723}
5724
5725bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
5726  Result = E->getValue();
5727  return true;
5728}
5729
5730bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
5731  const Expr* SubExpr = E->getSubExpr();
5732
5733  switch (E->getCastKind()) {
5734  default:
5735    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5736
5737  case CK_IntegralToFloating: {
5738    APSInt IntResult;
5739    return EvaluateInteger(SubExpr, IntResult, Info) &&
5740           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
5741                                E->getType(), Result);
5742  }
5743
5744  case CK_FloatingCast: {
5745    if (!Visit(SubExpr))
5746      return false;
5747    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
5748                                  Result);
5749  }
5750
5751  case CK_FloatingComplexToReal: {
5752    ComplexValue V;
5753    if (!EvaluateComplex(SubExpr, V, Info))
5754      return false;
5755    Result = V.getComplexFloatReal();
5756    return true;
5757  }
5758  }
5759}
5760
5761//===----------------------------------------------------------------------===//
5762// Complex Evaluation (for float and integer)
5763//===----------------------------------------------------------------------===//
5764
5765namespace {
5766class ComplexExprEvaluator
5767  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
5768  ComplexValue &Result;
5769
5770public:
5771  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
5772    : ExprEvaluatorBaseTy(info), Result(Result) {}
5773
5774  bool Success(const APValue &V, const Expr *e) {
5775    Result.setFrom(V);
5776    return true;
5777  }
5778
5779  bool ZeroInitialization(const Expr *E);
5780
5781  //===--------------------------------------------------------------------===//
5782  //                            Visitor Methods
5783  //===--------------------------------------------------------------------===//
5784
5785  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
5786  bool VisitCastExpr(const CastExpr *E);
5787  bool VisitBinaryOperator(const BinaryOperator *E);
5788  bool VisitUnaryOperator(const UnaryOperator *E);
5789  bool VisitInitListExpr(const InitListExpr *E);
5790};
5791} // end anonymous namespace
5792
5793static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
5794                            EvalInfo &Info) {
5795  assert(E->isRValue() && E->getType()->isAnyComplexType());
5796  return ComplexExprEvaluator(Info, Result).Visit(E);
5797}
5798
5799bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
5800  QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
5801  if (ElemTy->isRealFloatingType()) {
5802    Result.makeComplexFloat();
5803    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
5804    Result.FloatReal = Zero;
5805    Result.FloatImag = Zero;
5806  } else {
5807    Result.makeComplexInt();
5808    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
5809    Result.IntReal = Zero;
5810    Result.IntImag = Zero;
5811  }
5812  return true;
5813}
5814
5815bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
5816  const Expr* SubExpr = E->getSubExpr();
5817
5818  if (SubExpr->getType()->isRealFloatingType()) {
5819    Result.makeComplexFloat();
5820    APFloat &Imag = Result.FloatImag;
5821    if (!EvaluateFloat(SubExpr, Imag, Info))
5822      return false;
5823
5824    Result.FloatReal = APFloat(Imag.getSemantics());
5825    return true;
5826  } else {
5827    assert(SubExpr->getType()->isIntegerType() &&
5828           "Unexpected imaginary literal.");
5829
5830    Result.makeComplexInt();
5831    APSInt &Imag = Result.IntImag;
5832    if (!EvaluateInteger(SubExpr, Imag, Info))
5833      return false;
5834
5835    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
5836    return true;
5837  }
5838}
5839
5840bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
5841
5842  switch (E->getCastKind()) {
5843  case CK_BitCast:
5844  case CK_BaseToDerived:
5845  case CK_DerivedToBase:
5846  case CK_UncheckedDerivedToBase:
5847  case CK_Dynamic:
5848  case CK_ToUnion:
5849  case CK_ArrayToPointerDecay:
5850  case CK_FunctionToPointerDecay:
5851  case CK_NullToPointer:
5852  case CK_NullToMemberPointer:
5853  case CK_BaseToDerivedMemberPointer:
5854  case CK_DerivedToBaseMemberPointer:
5855  case CK_MemberPointerToBoolean:
5856  case CK_ReinterpretMemberPointer:
5857  case CK_ConstructorConversion:
5858  case CK_IntegralToPointer:
5859  case CK_PointerToIntegral:
5860  case CK_PointerToBoolean:
5861  case CK_ToVoid:
5862  case CK_VectorSplat:
5863  case CK_IntegralCast:
5864  case CK_IntegralToBoolean:
5865  case CK_IntegralToFloating:
5866  case CK_FloatingToIntegral:
5867  case CK_FloatingToBoolean:
5868  case CK_FloatingCast:
5869  case CK_CPointerToObjCPointerCast:
5870  case CK_BlockPointerToObjCPointerCast:
5871  case CK_AnyPointerToBlockPointerCast:
5872  case CK_ObjCObjectLValueCast:
5873  case CK_FloatingComplexToReal:
5874  case CK_FloatingComplexToBoolean:
5875  case CK_IntegralComplexToReal:
5876  case CK_IntegralComplexToBoolean:
5877  case CK_ARCProduceObject:
5878  case CK_ARCConsumeObject:
5879  case CK_ARCReclaimReturnedObject:
5880  case CK_ARCExtendBlockObject:
5881  case CK_CopyAndAutoreleaseBlockObject:
5882    llvm_unreachable("invalid cast kind for complex value");
5883
5884  case CK_LValueToRValue:
5885  case CK_AtomicToNonAtomic:
5886  case CK_NonAtomicToAtomic:
5887  case CK_NoOp:
5888    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5889
5890  case CK_Dependent:
5891  case CK_LValueBitCast:
5892  case CK_UserDefinedConversion:
5893    return Error(E);
5894
5895  case CK_FloatingRealToComplex: {
5896    APFloat &Real = Result.FloatReal;
5897    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
5898      return false;
5899
5900    Result.makeComplexFloat();
5901    Result.FloatImag = APFloat(Real.getSemantics());
5902    return true;
5903  }
5904
5905  case CK_FloatingComplexCast: {
5906    if (!Visit(E->getSubExpr()))
5907      return false;
5908
5909    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5910    QualType From
5911      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5912
5913    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
5914           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
5915  }
5916
5917  case CK_FloatingComplexToIntegralComplex: {
5918    if (!Visit(E->getSubExpr()))
5919      return false;
5920
5921    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5922    QualType From
5923      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5924    Result.makeComplexInt();
5925    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
5926                                To, Result.IntReal) &&
5927           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
5928                                To, Result.IntImag);
5929  }
5930
5931  case CK_IntegralRealToComplex: {
5932    APSInt &Real = Result.IntReal;
5933    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
5934      return false;
5935
5936    Result.makeComplexInt();
5937    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
5938    return true;
5939  }
5940
5941  case CK_IntegralComplexCast: {
5942    if (!Visit(E->getSubExpr()))
5943      return false;
5944
5945    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5946    QualType From
5947      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5948
5949    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
5950    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
5951    return true;
5952  }
5953
5954  case CK_IntegralComplexToFloatingComplex: {
5955    if (!Visit(E->getSubExpr()))
5956      return false;
5957
5958    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5959    QualType From
5960      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5961    Result.makeComplexFloat();
5962    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
5963                                To, Result.FloatReal) &&
5964           HandleIntToFloatCast(Info, E, From, Result.IntImag,
5965                                To, Result.FloatImag);
5966  }
5967  }
5968
5969  llvm_unreachable("unknown cast resulting in complex value");
5970}
5971
5972bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5973  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5974    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5975
5976  bool LHSOK = Visit(E->getLHS());
5977  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5978    return false;
5979
5980  ComplexValue RHS;
5981  if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
5982    return false;
5983
5984  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
5985         "Invalid operands to binary operator.");
5986  switch (E->getOpcode()) {
5987  default: return Error(E);
5988  case BO_Add:
5989    if (Result.isComplexFloat()) {
5990      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
5991                                       APFloat::rmNearestTiesToEven);
5992      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
5993                                       APFloat::rmNearestTiesToEven);
5994    } else {
5995      Result.getComplexIntReal() += RHS.getComplexIntReal();
5996      Result.getComplexIntImag() += RHS.getComplexIntImag();
5997    }
5998    break;
5999  case BO_Sub:
6000    if (Result.isComplexFloat()) {
6001      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
6002                                            APFloat::rmNearestTiesToEven);
6003      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
6004                                            APFloat::rmNearestTiesToEven);
6005    } else {
6006      Result.getComplexIntReal() -= RHS.getComplexIntReal();
6007      Result.getComplexIntImag() -= RHS.getComplexIntImag();
6008    }
6009    break;
6010  case BO_Mul:
6011    if (Result.isComplexFloat()) {
6012      ComplexValue LHS = Result;
6013      APFloat &LHS_r = LHS.getComplexFloatReal();
6014      APFloat &LHS_i = LHS.getComplexFloatImag();
6015      APFloat &RHS_r = RHS.getComplexFloatReal();
6016      APFloat &RHS_i = RHS.getComplexFloatImag();
6017
6018      APFloat Tmp = LHS_r;
6019      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6020      Result.getComplexFloatReal() = Tmp;
6021      Tmp = LHS_i;
6022      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6023      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
6024
6025      Tmp = LHS_r;
6026      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6027      Result.getComplexFloatImag() = Tmp;
6028      Tmp = LHS_i;
6029      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6030      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
6031    } else {
6032      ComplexValue LHS = Result;
6033      Result.getComplexIntReal() =
6034        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
6035         LHS.getComplexIntImag() * RHS.getComplexIntImag());
6036      Result.getComplexIntImag() =
6037        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
6038         LHS.getComplexIntImag() * RHS.getComplexIntReal());
6039    }
6040    break;
6041  case BO_Div:
6042    if (Result.isComplexFloat()) {
6043      ComplexValue LHS = Result;
6044      APFloat &LHS_r = LHS.getComplexFloatReal();
6045      APFloat &LHS_i = LHS.getComplexFloatImag();
6046      APFloat &RHS_r = RHS.getComplexFloatReal();
6047      APFloat &RHS_i = RHS.getComplexFloatImag();
6048      APFloat &Res_r = Result.getComplexFloatReal();
6049      APFloat &Res_i = Result.getComplexFloatImag();
6050
6051      APFloat Den = RHS_r;
6052      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6053      APFloat Tmp = RHS_i;
6054      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6055      Den.add(Tmp, APFloat::rmNearestTiesToEven);
6056
6057      Res_r = LHS_r;
6058      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6059      Tmp = LHS_i;
6060      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6061      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
6062      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
6063
6064      Res_i = LHS_i;
6065      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6066      Tmp = LHS_r;
6067      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6068      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
6069      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
6070    } else {
6071      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
6072        return Error(E, diag::note_expr_divide_by_zero);
6073
6074      ComplexValue LHS = Result;
6075      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
6076        RHS.getComplexIntImag() * RHS.getComplexIntImag();
6077      Result.getComplexIntReal() =
6078        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
6079         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
6080      Result.getComplexIntImag() =
6081        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
6082         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
6083    }
6084    break;
6085  }
6086
6087  return true;
6088}
6089
6090bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6091  // Get the operand value into 'Result'.
6092  if (!Visit(E->getSubExpr()))
6093    return false;
6094
6095  switch (E->getOpcode()) {
6096  default:
6097    return Error(E);
6098  case UO_Extension:
6099    return true;
6100  case UO_Plus:
6101    // The result is always just the subexpr.
6102    return true;
6103  case UO_Minus:
6104    if (Result.isComplexFloat()) {
6105      Result.getComplexFloatReal().changeSign();
6106      Result.getComplexFloatImag().changeSign();
6107    }
6108    else {
6109      Result.getComplexIntReal() = -Result.getComplexIntReal();
6110      Result.getComplexIntImag() = -Result.getComplexIntImag();
6111    }
6112    return true;
6113  case UO_Not:
6114    if (Result.isComplexFloat())
6115      Result.getComplexFloatImag().changeSign();
6116    else
6117      Result.getComplexIntImag() = -Result.getComplexIntImag();
6118    return true;
6119  }
6120}
6121
6122bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6123  if (E->getNumInits() == 2) {
6124    if (E->getType()->isComplexType()) {
6125      Result.makeComplexFloat();
6126      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
6127        return false;
6128      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
6129        return false;
6130    } else {
6131      Result.makeComplexInt();
6132      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
6133        return false;
6134      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
6135        return false;
6136    }
6137    return true;
6138  }
6139  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
6140}
6141
6142//===----------------------------------------------------------------------===//
6143// Void expression evaluation, primarily for a cast to void on the LHS of a
6144// comma operator
6145//===----------------------------------------------------------------------===//
6146
6147namespace {
6148class VoidExprEvaluator
6149  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
6150public:
6151  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
6152
6153  bool Success(const APValue &V, const Expr *e) { return true; }
6154
6155  bool VisitCastExpr(const CastExpr *E) {
6156    switch (E->getCastKind()) {
6157    default:
6158      return ExprEvaluatorBaseTy::VisitCastExpr(E);
6159    case CK_ToVoid:
6160      VisitIgnoredValue(E->getSubExpr());
6161      return true;
6162    }
6163  }
6164};
6165} // end anonymous namespace
6166
6167static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
6168  assert(E->isRValue() && E->getType()->isVoidType());
6169  return VoidExprEvaluator(Info).Visit(E);
6170}
6171
6172//===----------------------------------------------------------------------===//
6173// Top level Expr::EvaluateAsRValue method.
6174//===----------------------------------------------------------------------===//
6175
6176static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
6177  // In C, function designators are not lvalues, but we evaluate them as if they
6178  // are.
6179  if (E->isGLValue() || E->getType()->isFunctionType()) {
6180    LValue LV;
6181    if (!EvaluateLValue(E, LV, Info))
6182      return false;
6183    LV.moveInto(Result);
6184  } else if (E->getType()->isVectorType()) {
6185    if (!EvaluateVector(E, Result, Info))
6186      return false;
6187  } else if (E->getType()->isIntegralOrEnumerationType()) {
6188    if (!IntExprEvaluator(Info, Result).Visit(E))
6189      return false;
6190  } else if (E->getType()->hasPointerRepresentation()) {
6191    LValue LV;
6192    if (!EvaluatePointer(E, LV, Info))
6193      return false;
6194    LV.moveInto(Result);
6195  } else if (E->getType()->isRealFloatingType()) {
6196    llvm::APFloat F(0.0);
6197    if (!EvaluateFloat(E, F, Info))
6198      return false;
6199    Result = APValue(F);
6200  } else if (E->getType()->isAnyComplexType()) {
6201    ComplexValue C;
6202    if (!EvaluateComplex(E, C, Info))
6203      return false;
6204    C.moveInto(Result);
6205  } else if (E->getType()->isMemberPointerType()) {
6206    MemberPtr P;
6207    if (!EvaluateMemberPointer(E, P, Info))
6208      return false;
6209    P.moveInto(Result);
6210    return true;
6211  } else if (E->getType()->isArrayType()) {
6212    LValue LV;
6213    LV.set(E, Info.CurrentCall->Index);
6214    if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
6215      return false;
6216    Result = Info.CurrentCall->Temporaries[E];
6217  } else if (E->getType()->isRecordType()) {
6218    LValue LV;
6219    LV.set(E, Info.CurrentCall->Index);
6220    if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
6221      return false;
6222    Result = Info.CurrentCall->Temporaries[E];
6223  } else if (E->getType()->isVoidType()) {
6224    if (Info.getLangOpts().CPlusPlus0x)
6225      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
6226        << E->getType();
6227    else
6228      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6229    if (!EvaluateVoid(E, Info))
6230      return false;
6231  } else if (Info.getLangOpts().CPlusPlus0x) {
6232    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
6233    return false;
6234  } else {
6235    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6236    return false;
6237  }
6238
6239  return true;
6240}
6241
6242/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
6243/// cases, the in-place evaluation is essential, since later initializers for
6244/// an object can indirectly refer to subobjects which were initialized earlier.
6245static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
6246                            const Expr *E, CheckConstantExpressionKind CCEK,
6247                            bool AllowNonLiteralTypes) {
6248  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
6249    return false;
6250
6251  if (E->isRValue()) {
6252    // Evaluate arrays and record types in-place, so that later initializers can
6253    // refer to earlier-initialized members of the object.
6254    if (E->getType()->isArrayType())
6255      return EvaluateArray(E, This, Result, Info);
6256    else if (E->getType()->isRecordType())
6257      return EvaluateRecord(E, This, Result, Info);
6258  }
6259
6260  // For any other type, in-place evaluation is unimportant.
6261  return Evaluate(Result, Info, E);
6262}
6263
6264/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
6265/// lvalue-to-rvalue cast if it is an lvalue.
6266static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
6267  if (!CheckLiteralType(Info, E))
6268    return false;
6269
6270  if (!::Evaluate(Result, Info, E))
6271    return false;
6272
6273  if (E->isGLValue()) {
6274    LValue LV;
6275    LV.setFrom(Info.Ctx, Result);
6276    if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
6277      return false;
6278  }
6279
6280  // Check this core constant expression is a constant expression.
6281  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
6282}
6283
6284/// EvaluateAsRValue - Return true if this is a constant which we can fold using
6285/// any crazy technique (that has nothing to do with language standards) that
6286/// we want to.  If this function returns true, it returns the folded constant
6287/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
6288/// will be applied to the result.
6289bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
6290  // Fast-path evaluations of integer literals, since we sometimes see files
6291  // containing vast quantities of these.
6292  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(this)) {
6293    Result.Val = APValue(APSInt(L->getValue(),
6294                                L->getType()->isUnsignedIntegerType()));
6295    return true;
6296  }
6297
6298  // FIXME: Evaluating values of large array and record types can cause
6299  // performance problems. Only do so in C++11 for now.
6300  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6301      !Ctx.getLangOpts().CPlusPlus0x)
6302    return false;
6303
6304  EvalInfo Info(Ctx, Result);
6305  return ::EvaluateAsRValue(Info, this, Result.Val);
6306}
6307
6308bool Expr::EvaluateAsBooleanCondition(bool &Result,
6309                                      const ASTContext &Ctx) const {
6310  EvalResult Scratch;
6311  return EvaluateAsRValue(Scratch, Ctx) &&
6312         HandleConversionToBool(Scratch.Val, Result);
6313}
6314
6315bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
6316                         SideEffectsKind AllowSideEffects) const {
6317  if (!getType()->isIntegralOrEnumerationType())
6318    return false;
6319
6320  EvalResult ExprResult;
6321  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
6322      (!AllowSideEffects && ExprResult.HasSideEffects))
6323    return false;
6324
6325  Result = ExprResult.Val.getInt();
6326  return true;
6327}
6328
6329bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
6330  EvalInfo Info(Ctx, Result);
6331
6332  LValue LV;
6333  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
6334      !CheckLValueConstantExpression(Info, getExprLoc(),
6335                                     Ctx.getLValueReferenceType(getType()), LV))
6336    return false;
6337
6338  LV.moveInto(Result.Val);
6339  return true;
6340}
6341
6342bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
6343                                 const VarDecl *VD,
6344                      llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
6345  // FIXME: Evaluating initializers for large array and record types can cause
6346  // performance problems. Only do so in C++11 for now.
6347  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6348      !Ctx.getLangOpts().CPlusPlus0x)
6349    return false;
6350
6351  Expr::EvalStatus EStatus;
6352  EStatus.Diag = &Notes;
6353
6354  EvalInfo InitInfo(Ctx, EStatus);
6355  InitInfo.setEvaluatingDecl(VD, Value);
6356
6357  LValue LVal;
6358  LVal.set(VD);
6359
6360  // C++11 [basic.start.init]p2:
6361  //  Variables with static storage duration or thread storage duration shall be
6362  //  zero-initialized before any other initialization takes place.
6363  // This behavior is not present in C.
6364  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
6365      !VD->getType()->isReferenceType()) {
6366    ImplicitValueInitExpr VIE(VD->getType());
6367    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
6368                         /*AllowNonLiteralTypes=*/true))
6369      return false;
6370  }
6371
6372  if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
6373                         /*AllowNonLiteralTypes=*/true) ||
6374      EStatus.HasSideEffects)
6375    return false;
6376
6377  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
6378                                 Value);
6379}
6380
6381/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
6382/// constant folded, but discard the result.
6383bool Expr::isEvaluatable(const ASTContext &Ctx) const {
6384  EvalResult Result;
6385  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
6386}
6387
6388bool Expr::HasSideEffects(const ASTContext &Ctx) const {
6389  return HasSideEffect(Ctx).Visit(this);
6390}
6391
6392APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const {
6393  EvalResult EvalResult;
6394  bool Result = EvaluateAsRValue(EvalResult, Ctx);
6395  (void)Result;
6396  assert(Result && "Could not evaluate expression");
6397  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
6398
6399  return EvalResult.Val.getInt();
6400}
6401
6402 bool Expr::EvalResult::isGlobalLValue() const {
6403   assert(Val.isLValue());
6404   return IsGlobalLValue(Val.getLValueBase());
6405 }
6406
6407
6408/// isIntegerConstantExpr - this recursive routine will test if an expression is
6409/// an integer constant expression.
6410
6411/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
6412/// comma, etc
6413///
6414/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
6415/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
6416/// cast+dereference.
6417
6418// CheckICE - This function does the fundamental ICE checking: the returned
6419// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
6420// Note that to reduce code duplication, this helper does no evaluation
6421// itself; the caller checks whether the expression is evaluatable, and
6422// in the rare cases where CheckICE actually cares about the evaluated
6423// value, it calls into Evalute.
6424//
6425// Meanings of Val:
6426// 0: This expression is an ICE.
6427// 1: This expression is not an ICE, but if it isn't evaluated, it's
6428//    a legal subexpression for an ICE. This return value is used to handle
6429//    the comma operator in C99 mode.
6430// 2: This expression is not an ICE, and is not a legal subexpression for one.
6431
6432namespace {
6433
6434struct ICEDiag {
6435  unsigned Val;
6436  SourceLocation Loc;
6437
6438  public:
6439  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
6440  ICEDiag() : Val(0) {}
6441};
6442
6443}
6444
6445static ICEDiag NoDiag() { return ICEDiag(); }
6446
6447static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
6448  Expr::EvalResult EVResult;
6449  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
6450      !EVResult.Val.isInt()) {
6451    return ICEDiag(2, E->getLocStart());
6452  }
6453  return NoDiag();
6454}
6455
6456static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
6457  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
6458  if (!E->getType()->isIntegralOrEnumerationType()) {
6459    return ICEDiag(2, E->getLocStart());
6460  }
6461
6462  switch (E->getStmtClass()) {
6463#define ABSTRACT_STMT(Node)
6464#define STMT(Node, Base) case Expr::Node##Class:
6465#define EXPR(Node, Base)
6466#include "clang/AST/StmtNodes.inc"
6467  case Expr::PredefinedExprClass:
6468  case Expr::FloatingLiteralClass:
6469  case Expr::ImaginaryLiteralClass:
6470  case Expr::StringLiteralClass:
6471  case Expr::ArraySubscriptExprClass:
6472  case Expr::MemberExprClass:
6473  case Expr::CompoundAssignOperatorClass:
6474  case Expr::CompoundLiteralExprClass:
6475  case Expr::ExtVectorElementExprClass:
6476  case Expr::DesignatedInitExprClass:
6477  case Expr::ImplicitValueInitExprClass:
6478  case Expr::ParenListExprClass:
6479  case Expr::VAArgExprClass:
6480  case Expr::AddrLabelExprClass:
6481  case Expr::StmtExprClass:
6482  case Expr::CXXMemberCallExprClass:
6483  case Expr::CUDAKernelCallExprClass:
6484  case Expr::CXXDynamicCastExprClass:
6485  case Expr::CXXTypeidExprClass:
6486  case Expr::CXXUuidofExprClass:
6487  case Expr::CXXNullPtrLiteralExprClass:
6488  case Expr::UserDefinedLiteralClass:
6489  case Expr::CXXThisExprClass:
6490  case Expr::CXXThrowExprClass:
6491  case Expr::CXXNewExprClass:
6492  case Expr::CXXDeleteExprClass:
6493  case Expr::CXXPseudoDestructorExprClass:
6494  case Expr::UnresolvedLookupExprClass:
6495  case Expr::DependentScopeDeclRefExprClass:
6496  case Expr::CXXConstructExprClass:
6497  case Expr::CXXBindTemporaryExprClass:
6498  case Expr::ExprWithCleanupsClass:
6499  case Expr::CXXTemporaryObjectExprClass:
6500  case Expr::CXXUnresolvedConstructExprClass:
6501  case Expr::CXXDependentScopeMemberExprClass:
6502  case Expr::UnresolvedMemberExprClass:
6503  case Expr::ObjCStringLiteralClass:
6504  case Expr::ObjCNumericLiteralClass:
6505  case Expr::ObjCArrayLiteralClass:
6506  case Expr::ObjCDictionaryLiteralClass:
6507  case Expr::ObjCEncodeExprClass:
6508  case Expr::ObjCMessageExprClass:
6509  case Expr::ObjCSelectorExprClass:
6510  case Expr::ObjCProtocolExprClass:
6511  case Expr::ObjCIvarRefExprClass:
6512  case Expr::ObjCPropertyRefExprClass:
6513  case Expr::ObjCSubscriptRefExprClass:
6514  case Expr::ObjCIsaExprClass:
6515  case Expr::ShuffleVectorExprClass:
6516  case Expr::BlockExprClass:
6517  case Expr::NoStmtClass:
6518  case Expr::OpaqueValueExprClass:
6519  case Expr::PackExpansionExprClass:
6520  case Expr::SubstNonTypeTemplateParmPackExprClass:
6521  case Expr::AsTypeExprClass:
6522  case Expr::ObjCIndirectCopyRestoreExprClass:
6523  case Expr::MaterializeTemporaryExprClass:
6524  case Expr::PseudoObjectExprClass:
6525  case Expr::AtomicExprClass:
6526  case Expr::InitListExprClass:
6527  case Expr::LambdaExprClass:
6528    return ICEDiag(2, E->getLocStart());
6529
6530  case Expr::SizeOfPackExprClass:
6531  case Expr::GNUNullExprClass:
6532    // GCC considers the GNU __null value to be an integral constant expression.
6533    return NoDiag();
6534
6535  case Expr::SubstNonTypeTemplateParmExprClass:
6536    return
6537      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
6538
6539  case Expr::ParenExprClass:
6540    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
6541  case Expr::GenericSelectionExprClass:
6542    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
6543  case Expr::IntegerLiteralClass:
6544  case Expr::CharacterLiteralClass:
6545  case Expr::ObjCBoolLiteralExprClass:
6546  case Expr::CXXBoolLiteralExprClass:
6547  case Expr::CXXScalarValueInitExprClass:
6548  case Expr::UnaryTypeTraitExprClass:
6549  case Expr::BinaryTypeTraitExprClass:
6550  case Expr::TypeTraitExprClass:
6551  case Expr::ArrayTypeTraitExprClass:
6552  case Expr::ExpressionTraitExprClass:
6553  case Expr::CXXNoexceptExprClass:
6554    return NoDiag();
6555  case Expr::CallExprClass:
6556  case Expr::CXXOperatorCallExprClass: {
6557    // C99 6.6/3 allows function calls within unevaluated subexpressions of
6558    // constant expressions, but they can never be ICEs because an ICE cannot
6559    // contain an operand of (pointer to) function type.
6560    const CallExpr *CE = cast<CallExpr>(E);
6561    if (CE->isBuiltinCall())
6562      return CheckEvalInICE(E, Ctx);
6563    return ICEDiag(2, E->getLocStart());
6564  }
6565  case Expr::DeclRefExprClass: {
6566    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
6567      return NoDiag();
6568    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
6569    if (Ctx.getLangOpts().CPlusPlus &&
6570        D && IsConstNonVolatile(D->getType())) {
6571      // Parameter variables are never constants.  Without this check,
6572      // getAnyInitializer() can find a default argument, which leads
6573      // to chaos.
6574      if (isa<ParmVarDecl>(D))
6575        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6576
6577      // C++ 7.1.5.1p2
6578      //   A variable of non-volatile const-qualified integral or enumeration
6579      //   type initialized by an ICE can be used in ICEs.
6580      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
6581        if (!Dcl->getType()->isIntegralOrEnumerationType())
6582          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6583
6584        const VarDecl *VD;
6585        // Look for a declaration of this variable that has an initializer, and
6586        // check whether it is an ICE.
6587        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
6588          return NoDiag();
6589        else
6590          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
6591      }
6592    }
6593    return ICEDiag(2, E->getLocStart());
6594  }
6595  case Expr::UnaryOperatorClass: {
6596    const UnaryOperator *Exp = cast<UnaryOperator>(E);
6597    switch (Exp->getOpcode()) {
6598    case UO_PostInc:
6599    case UO_PostDec:
6600    case UO_PreInc:
6601    case UO_PreDec:
6602    case UO_AddrOf:
6603    case UO_Deref:
6604      // C99 6.6/3 allows increment and decrement within unevaluated
6605      // subexpressions of constant expressions, but they can never be ICEs
6606      // because an ICE cannot contain an lvalue operand.
6607      return ICEDiag(2, E->getLocStart());
6608    case UO_Extension:
6609    case UO_LNot:
6610    case UO_Plus:
6611    case UO_Minus:
6612    case UO_Not:
6613    case UO_Real:
6614    case UO_Imag:
6615      return CheckICE(Exp->getSubExpr(), Ctx);
6616    }
6617
6618    // OffsetOf falls through here.
6619  }
6620  case Expr::OffsetOfExprClass: {
6621      // Note that per C99, offsetof must be an ICE. And AFAIK, using
6622      // EvaluateAsRValue matches the proposed gcc behavior for cases like
6623      // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
6624      // compliance: we should warn earlier for offsetof expressions with
6625      // array subscripts that aren't ICEs, and if the array subscripts
6626      // are ICEs, the value of the offsetof must be an integer constant.
6627      return CheckEvalInICE(E, Ctx);
6628  }
6629  case Expr::UnaryExprOrTypeTraitExprClass: {
6630    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
6631    if ((Exp->getKind() ==  UETT_SizeOf) &&
6632        Exp->getTypeOfArgument()->isVariableArrayType())
6633      return ICEDiag(2, E->getLocStart());
6634    return NoDiag();
6635  }
6636  case Expr::BinaryOperatorClass: {
6637    const BinaryOperator *Exp = cast<BinaryOperator>(E);
6638    switch (Exp->getOpcode()) {
6639    case BO_PtrMemD:
6640    case BO_PtrMemI:
6641    case BO_Assign:
6642    case BO_MulAssign:
6643    case BO_DivAssign:
6644    case BO_RemAssign:
6645    case BO_AddAssign:
6646    case BO_SubAssign:
6647    case BO_ShlAssign:
6648    case BO_ShrAssign:
6649    case BO_AndAssign:
6650    case BO_XorAssign:
6651    case BO_OrAssign:
6652      // C99 6.6/3 allows assignments within unevaluated subexpressions of
6653      // constant expressions, but they can never be ICEs because an ICE cannot
6654      // contain an lvalue operand.
6655      return ICEDiag(2, E->getLocStart());
6656
6657    case BO_Mul:
6658    case BO_Div:
6659    case BO_Rem:
6660    case BO_Add:
6661    case BO_Sub:
6662    case BO_Shl:
6663    case BO_Shr:
6664    case BO_LT:
6665    case BO_GT:
6666    case BO_LE:
6667    case BO_GE:
6668    case BO_EQ:
6669    case BO_NE:
6670    case BO_And:
6671    case BO_Xor:
6672    case BO_Or:
6673    case BO_Comma: {
6674      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6675      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6676      if (Exp->getOpcode() == BO_Div ||
6677          Exp->getOpcode() == BO_Rem) {
6678        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
6679        // we don't evaluate one.
6680        if (LHSResult.Val == 0 && RHSResult.Val == 0) {
6681          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
6682          if (REval == 0)
6683            return ICEDiag(1, E->getLocStart());
6684          if (REval.isSigned() && REval.isAllOnesValue()) {
6685            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
6686            if (LEval.isMinSignedValue())
6687              return ICEDiag(1, E->getLocStart());
6688          }
6689        }
6690      }
6691      if (Exp->getOpcode() == BO_Comma) {
6692        if (Ctx.getLangOpts().C99) {
6693          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
6694          // if it isn't evaluated.
6695          if (LHSResult.Val == 0 && RHSResult.Val == 0)
6696            return ICEDiag(1, E->getLocStart());
6697        } else {
6698          // In both C89 and C++, commas in ICEs are illegal.
6699          return ICEDiag(2, E->getLocStart());
6700        }
6701      }
6702      if (LHSResult.Val >= RHSResult.Val)
6703        return LHSResult;
6704      return RHSResult;
6705    }
6706    case BO_LAnd:
6707    case BO_LOr: {
6708      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6709      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6710      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
6711        // Rare case where the RHS has a comma "side-effect"; we need
6712        // to actually check the condition to see whether the side
6713        // with the comma is evaluated.
6714        if ((Exp->getOpcode() == BO_LAnd) !=
6715            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
6716          return RHSResult;
6717        return NoDiag();
6718      }
6719
6720      if (LHSResult.Val >= RHSResult.Val)
6721        return LHSResult;
6722      return RHSResult;
6723    }
6724    }
6725  }
6726  case Expr::ImplicitCastExprClass:
6727  case Expr::CStyleCastExprClass:
6728  case Expr::CXXFunctionalCastExprClass:
6729  case Expr::CXXStaticCastExprClass:
6730  case Expr::CXXReinterpretCastExprClass:
6731  case Expr::CXXConstCastExprClass:
6732  case Expr::ObjCBridgedCastExprClass: {
6733    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
6734    if (isa<ExplicitCastExpr>(E)) {
6735      if (const FloatingLiteral *FL
6736            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
6737        unsigned DestWidth = Ctx.getIntWidth(E->getType());
6738        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
6739        APSInt IgnoredVal(DestWidth, !DestSigned);
6740        bool Ignored;
6741        // If the value does not fit in the destination type, the behavior is
6742        // undefined, so we are not required to treat it as a constant
6743        // expression.
6744        if (FL->getValue().convertToInteger(IgnoredVal,
6745                                            llvm::APFloat::rmTowardZero,
6746                                            &Ignored) & APFloat::opInvalidOp)
6747          return ICEDiag(2, E->getLocStart());
6748        return NoDiag();
6749      }
6750    }
6751    switch (cast<CastExpr>(E)->getCastKind()) {
6752    case CK_LValueToRValue:
6753    case CK_AtomicToNonAtomic:
6754    case CK_NonAtomicToAtomic:
6755    case CK_NoOp:
6756    case CK_IntegralToBoolean:
6757    case CK_IntegralCast:
6758      return CheckICE(SubExpr, Ctx);
6759    default:
6760      return ICEDiag(2, E->getLocStart());
6761    }
6762  }
6763  case Expr::BinaryConditionalOperatorClass: {
6764    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
6765    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
6766    if (CommonResult.Val == 2) return CommonResult;
6767    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6768    if (FalseResult.Val == 2) return FalseResult;
6769    if (CommonResult.Val == 1) return CommonResult;
6770    if (FalseResult.Val == 1 &&
6771        Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag();
6772    return FalseResult;
6773  }
6774  case Expr::ConditionalOperatorClass: {
6775    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
6776    // If the condition (ignoring parens) is a __builtin_constant_p call,
6777    // then only the true side is actually considered in an integer constant
6778    // expression, and it is fully evaluated.  This is an important GNU
6779    // extension.  See GCC PR38377 for discussion.
6780    if (const CallExpr *CallCE
6781        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
6782      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
6783        return CheckEvalInICE(E, Ctx);
6784    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
6785    if (CondResult.Val == 2)
6786      return CondResult;
6787
6788    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
6789    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6790
6791    if (TrueResult.Val == 2)
6792      return TrueResult;
6793    if (FalseResult.Val == 2)
6794      return FalseResult;
6795    if (CondResult.Val == 1)
6796      return CondResult;
6797    if (TrueResult.Val == 0 && FalseResult.Val == 0)
6798      return NoDiag();
6799    // Rare case where the diagnostics depend on which side is evaluated
6800    // Note that if we get here, CondResult is 0, and at least one of
6801    // TrueResult and FalseResult is non-zero.
6802    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) {
6803      return FalseResult;
6804    }
6805    return TrueResult;
6806  }
6807  case Expr::CXXDefaultArgExprClass:
6808    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
6809  case Expr::ChooseExprClass: {
6810    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
6811  }
6812  }
6813
6814  llvm_unreachable("Invalid StmtClass!");
6815}
6816
6817/// Evaluate an expression as a C++11 integral constant expression.
6818static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
6819                                                    const Expr *E,
6820                                                    llvm::APSInt *Value,
6821                                                    SourceLocation *Loc) {
6822  if (!E->getType()->isIntegralOrEnumerationType()) {
6823    if (Loc) *Loc = E->getExprLoc();
6824    return false;
6825  }
6826
6827  APValue Result;
6828  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
6829    return false;
6830
6831  assert(Result.isInt() && "pointer cast to int is not an ICE");
6832  if (Value) *Value = Result.getInt();
6833  return true;
6834}
6835
6836bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
6837  if (Ctx.getLangOpts().CPlusPlus0x)
6838    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
6839
6840  ICEDiag d = CheckICE(this, Ctx);
6841  if (d.Val != 0) {
6842    if (Loc) *Loc = d.Loc;
6843    return false;
6844  }
6845  return true;
6846}
6847
6848bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
6849                                 SourceLocation *Loc, bool isEvaluated) const {
6850  if (Ctx.getLangOpts().CPlusPlus0x)
6851    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
6852
6853  if (!isIntegerConstantExpr(Ctx, Loc))
6854    return false;
6855  if (!EvaluateAsInt(Value, Ctx))
6856    llvm_unreachable("ICE cannot be evaluated!");
6857  return true;
6858}
6859
6860bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
6861  return CheckICE(this, Ctx).Val == 0;
6862}
6863
6864bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
6865                               SourceLocation *Loc) const {
6866  // We support this checking in C++98 mode in order to diagnose compatibility
6867  // issues.
6868  assert(Ctx.getLangOpts().CPlusPlus);
6869
6870  // Build evaluation settings.
6871  Expr::EvalStatus Status;
6872  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
6873  Status.Diag = &Diags;
6874  EvalInfo Info(Ctx, Status);
6875
6876  APValue Scratch;
6877  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
6878
6879  if (!Diags.empty()) {
6880    IsConstExpr = false;
6881    if (Loc) *Loc = Diags[0].first;
6882  } else if (!IsConstExpr) {
6883    // FIXME: This shouldn't happen.
6884    if (Loc) *Loc = getExprLoc();
6885  }
6886
6887  return IsConstExpr;
6888}
6889
6890bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
6891                                   llvm::SmallVectorImpl<
6892                                     PartialDiagnosticAt> &Diags) {
6893  // FIXME: It would be useful to check constexpr function templates, but at the
6894  // moment the constant expression evaluator cannot cope with the non-rigorous
6895  // ASTs which we build for dependent expressions.
6896  if (FD->isDependentContext())
6897    return true;
6898
6899  Expr::EvalStatus Status;
6900  Status.Diag = &Diags;
6901
6902  EvalInfo Info(FD->getASTContext(), Status);
6903  Info.CheckingPotentialConstantExpression = true;
6904
6905  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6906  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
6907
6908  // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
6909  // is a temporary being used as the 'this' pointer.
6910  LValue This;
6911  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
6912  This.set(&VIE, Info.CurrentCall->Index);
6913
6914  ArrayRef<const Expr*> Args;
6915
6916  SourceLocation Loc = FD->getLocation();
6917
6918  APValue Scratch;
6919  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
6920    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
6921  else
6922    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
6923                       Args, FD->getBody(), Info, Scratch);
6924
6925  return Diags.empty();
6926}
6927