InlineFunction.cpp revision 251662
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Analysis/CallGraph.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/DebugInfo.h"
21#include "llvm/IR/Attributes.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Module.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Transforms/Utils/Local.h"
32using namespace llvm;
33
34bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
35                          bool InsertLifetime) {
36  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
37}
38bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
39                          bool InsertLifetime) {
40  return InlineFunction(CallSite(II), IFI, InsertLifetime);
41}
42
43namespace {
44  /// A class for recording information about inlining through an invoke.
45  class InvokeInliningInfo {
46    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
47    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
48    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
49    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
50    SmallVector<Value*, 8> UnwindDestPHIValues;
51
52  public:
53    InvokeInliningInfo(InvokeInst *II)
54      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
55        CallerLPad(0), InnerEHValuesPHI(0) {
56      // If there are PHI nodes in the unwind destination block, we need to keep
57      // track of which values came into them from the invoke before removing
58      // the edge from this block.
59      llvm::BasicBlock *InvokeBB = II->getParent();
60      BasicBlock::iterator I = OuterResumeDest->begin();
61      for (; isa<PHINode>(I); ++I) {
62        // Save the value to use for this edge.
63        PHINode *PHI = cast<PHINode>(I);
64        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
65      }
66
67      CallerLPad = cast<LandingPadInst>(I);
68    }
69
70    /// getOuterResumeDest - The outer unwind destination is the target of
71    /// unwind edges introduced for calls within the inlined function.
72    BasicBlock *getOuterResumeDest() const {
73      return OuterResumeDest;
74    }
75
76    BasicBlock *getInnerResumeDest();
77
78    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
79
80    /// forwardResume - Forward the 'resume' instruction to the caller's landing
81    /// pad block. When the landing pad block has only one predecessor, this is
82    /// a simple branch. When there is more than one predecessor, we need to
83    /// split the landing pad block after the landingpad instruction and jump
84    /// to there.
85    void forwardResume(ResumeInst *RI,
86                       SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
87
88    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
89    /// destination block for the given basic block, using the values for the
90    /// original invoke's source block.
91    void addIncomingPHIValuesFor(BasicBlock *BB) const {
92      addIncomingPHIValuesForInto(BB, OuterResumeDest);
93    }
94
95    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
96      BasicBlock::iterator I = dest->begin();
97      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
98        PHINode *phi = cast<PHINode>(I);
99        phi->addIncoming(UnwindDestPHIValues[i], src);
100      }
101    }
102  };
103}
104
105/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
106BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
107  if (InnerResumeDest) return InnerResumeDest;
108
109  // Split the landing pad.
110  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
111  InnerResumeDest =
112    OuterResumeDest->splitBasicBlock(SplitPoint,
113                                     OuterResumeDest->getName() + ".body");
114
115  // The number of incoming edges we expect to the inner landing pad.
116  const unsigned PHICapacity = 2;
117
118  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
119  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
120  BasicBlock::iterator I = OuterResumeDest->begin();
121  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
122    PHINode *OuterPHI = cast<PHINode>(I);
123    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
124                                        OuterPHI->getName() + ".lpad-body",
125                                        InsertPoint);
126    OuterPHI->replaceAllUsesWith(InnerPHI);
127    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
128  }
129
130  // Create a PHI for the exception values.
131  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
132                                     "eh.lpad-body", InsertPoint);
133  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
134  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
135
136  // All done.
137  return InnerResumeDest;
138}
139
140/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
141/// block. When the landing pad block has only one predecessor, this is a simple
142/// branch. When there is more than one predecessor, we need to split the
143/// landing pad block after the landingpad instruction and jump to there.
144void InvokeInliningInfo::forwardResume(ResumeInst *RI,
145                               SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
146  BasicBlock *Dest = getInnerResumeDest();
147  LandingPadInst *OuterLPad = getLandingPadInst();
148  BasicBlock *Src = RI->getParent();
149
150  BranchInst::Create(Dest, Src);
151
152  // Update the PHIs in the destination. They were inserted in an order which
153  // makes this work.
154  addIncomingPHIValuesForInto(Src, Dest);
155
156  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
157  RI->eraseFromParent();
158
159  // Append the clauses from the outer landing pad instruction into the inlined
160  // landing pad instructions.
161  for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
162         E = InlinedLPads.end(); I != E; ++I) {
163    LandingPadInst *InlinedLPad = *I;
164    for (unsigned OuterIdx = 0, OuterNum = OuterLPad->getNumClauses();
165         OuterIdx != OuterNum; ++OuterIdx)
166      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
167  }
168}
169
170/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
171/// an invoke, we have to turn all of the calls that can throw into
172/// invokes.  This function analyze BB to see if there are any calls, and if so,
173/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
174/// nodes in that block with the values specified in InvokeDestPHIValues.
175///
176/// Returns true to indicate that the next block should be skipped.
177static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
178                                                   InvokeInliningInfo &Invoke) {
179  LandingPadInst *LPI = Invoke.getLandingPadInst();
180
181  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
182    Instruction *I = BBI++;
183
184    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
185      unsigned NumClauses = LPI->getNumClauses();
186      L->reserveClauses(NumClauses);
187      for (unsigned i = 0; i != NumClauses; ++i)
188        L->addClause(LPI->getClause(i));
189    }
190
191    // We only need to check for function calls: inlined invoke
192    // instructions require no special handling.
193    CallInst *CI = dyn_cast<CallInst>(I);
194
195    // If this call cannot unwind, don't convert it to an invoke.
196    if (!CI || CI->doesNotThrow())
197      continue;
198
199    // Convert this function call into an invoke instruction.  First, split the
200    // basic block.
201    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
202
203    // Delete the unconditional branch inserted by splitBasicBlock
204    BB->getInstList().pop_back();
205
206    // Create the new invoke instruction.
207    ImmutableCallSite CS(CI);
208    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
209    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
210                                        Invoke.getOuterResumeDest(),
211                                        InvokeArgs, CI->getName(), BB);
212    II->setCallingConv(CI->getCallingConv());
213    II->setAttributes(CI->getAttributes());
214
215    // Make sure that anything using the call now uses the invoke!  This also
216    // updates the CallGraph if present, because it uses a WeakVH.
217    CI->replaceAllUsesWith(II);
218
219    // Delete the original call
220    Split->getInstList().pop_front();
221
222    // Update any PHI nodes in the exceptional block to indicate that there is
223    // now a new entry in them.
224    Invoke.addIncomingPHIValuesFor(BB);
225    return false;
226  }
227
228  return false;
229}
230
231/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
232/// in the body of the inlined function into invokes.
233///
234/// II is the invoke instruction being inlined.  FirstNewBlock is the first
235/// block of the inlined code (the last block is the end of the function),
236/// and InlineCodeInfo is information about the code that got inlined.
237static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
238                                ClonedCodeInfo &InlinedCodeInfo) {
239  BasicBlock *InvokeDest = II->getUnwindDest();
240
241  Function *Caller = FirstNewBlock->getParent();
242
243  // The inlined code is currently at the end of the function, scan from the
244  // start of the inlined code to its end, checking for stuff we need to
245  // rewrite.
246  InvokeInliningInfo Invoke(II);
247
248  // Get all of the inlined landing pad instructions.
249  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
250  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
251    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
252      InlinedLPads.insert(II->getLandingPadInst());
253
254  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
255    if (InlinedCodeInfo.ContainsCalls)
256      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
257        // Honor a request to skip the next block.
258        ++BB;
259        continue;
260      }
261
262    // Forward any resumes that are remaining here.
263    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
264      Invoke.forwardResume(RI, InlinedLPads);
265  }
266
267  // Now that everything is happy, we have one final detail.  The PHI nodes in
268  // the exception destination block still have entries due to the original
269  // invoke instruction. Eliminate these entries (which might even delete the
270  // PHI node) now.
271  InvokeDest->removePredecessor(II->getParent());
272}
273
274/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
275/// into the caller, update the specified callgraph to reflect the changes we
276/// made.  Note that it's possible that not all code was copied over, so only
277/// some edges of the callgraph may remain.
278static void UpdateCallGraphAfterInlining(CallSite CS,
279                                         Function::iterator FirstNewBlock,
280                                         ValueToValueMapTy &VMap,
281                                         InlineFunctionInfo &IFI) {
282  CallGraph &CG = *IFI.CG;
283  const Function *Caller = CS.getInstruction()->getParent()->getParent();
284  const Function *Callee = CS.getCalledFunction();
285  CallGraphNode *CalleeNode = CG[Callee];
286  CallGraphNode *CallerNode = CG[Caller];
287
288  // Since we inlined some uninlined call sites in the callee into the caller,
289  // add edges from the caller to all of the callees of the callee.
290  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
291
292  // Consider the case where CalleeNode == CallerNode.
293  CallGraphNode::CalledFunctionsVector CallCache;
294  if (CalleeNode == CallerNode) {
295    CallCache.assign(I, E);
296    I = CallCache.begin();
297    E = CallCache.end();
298  }
299
300  for (; I != E; ++I) {
301    const Value *OrigCall = I->first;
302
303    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
304    // Only copy the edge if the call was inlined!
305    if (VMI == VMap.end() || VMI->second == 0)
306      continue;
307
308    // If the call was inlined, but then constant folded, there is no edge to
309    // add.  Check for this case.
310    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
311    if (NewCall == 0) continue;
312
313    // Remember that this call site got inlined for the client of
314    // InlineFunction.
315    IFI.InlinedCalls.push_back(NewCall);
316
317    // It's possible that inlining the callsite will cause it to go from an
318    // indirect to a direct call by resolving a function pointer.  If this
319    // happens, set the callee of the new call site to a more precise
320    // destination.  This can also happen if the call graph node of the caller
321    // was just unnecessarily imprecise.
322    if (I->second->getFunction() == 0)
323      if (Function *F = CallSite(NewCall).getCalledFunction()) {
324        // Indirect call site resolved to direct call.
325        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
326
327        continue;
328      }
329
330    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
331  }
332
333  // Update the call graph by deleting the edge from Callee to Caller.  We must
334  // do this after the loop above in case Caller and Callee are the same.
335  CallerNode->removeCallEdgeFor(CS);
336}
337
338/// HandleByValArgument - When inlining a call site that has a byval argument,
339/// we have to make the implicit memcpy explicit by adding it.
340static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
341                                  const Function *CalledFunc,
342                                  InlineFunctionInfo &IFI,
343                                  unsigned ByValAlignment) {
344  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
345
346  // If the called function is readonly, then it could not mutate the caller's
347  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
348  // temporary.
349  if (CalledFunc->onlyReadsMemory()) {
350    // If the byval argument has a specified alignment that is greater than the
351    // passed in pointer, then we either have to round up the input pointer or
352    // give up on this transformation.
353    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
354      return Arg;
355
356    // If the pointer is already known to be sufficiently aligned, or if we can
357    // round it up to a larger alignment, then we don't need a temporary.
358    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
359                                   IFI.TD) >= ByValAlignment)
360      return Arg;
361
362    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
363    // for code quality, but rarely happens and is required for correctness.
364  }
365
366  LLVMContext &Context = Arg->getContext();
367
368  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
369
370  // Create the alloca.  If we have DataLayout, use nice alignment.
371  unsigned Align = 1;
372  if (IFI.TD)
373    Align = IFI.TD->getPrefTypeAlignment(AggTy);
374
375  // If the byval had an alignment specified, we *must* use at least that
376  // alignment, as it is required by the byval argument (and uses of the
377  // pointer inside the callee).
378  Align = std::max(Align, ByValAlignment);
379
380  Function *Caller = TheCall->getParent()->getParent();
381
382  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
383                                    &*Caller->begin()->begin());
384  // Emit a memcpy.
385  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
386  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
387                                                 Intrinsic::memcpy,
388                                                 Tys);
389  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
390  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
391
392  Value *Size;
393  if (IFI.TD == 0)
394    Size = ConstantExpr::getSizeOf(AggTy);
395  else
396    Size = ConstantInt::get(Type::getInt64Ty(Context),
397                            IFI.TD->getTypeStoreSize(AggTy));
398
399  // Always generate a memcpy of alignment 1 here because we don't know
400  // the alignment of the src pointer.  Other optimizations can infer
401  // better alignment.
402  Value *CallArgs[] = {
403    DestCast, SrcCast, Size,
404    ConstantInt::get(Type::getInt32Ty(Context), 1),
405    ConstantInt::getFalse(Context) // isVolatile
406  };
407  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
408
409  // Uses of the argument in the function should use our new alloca
410  // instead.
411  return NewAlloca;
412}
413
414// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
415// intrinsic.
416static bool isUsedByLifetimeMarker(Value *V) {
417  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
418       ++UI) {
419    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
420      switch (II->getIntrinsicID()) {
421      default: break;
422      case Intrinsic::lifetime_start:
423      case Intrinsic::lifetime_end:
424        return true;
425      }
426    }
427  }
428  return false;
429}
430
431// hasLifetimeMarkers - Check whether the given alloca already has
432// lifetime.start or lifetime.end intrinsics.
433static bool hasLifetimeMarkers(AllocaInst *AI) {
434  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
435  if (AI->getType() == Int8PtrTy)
436    return isUsedByLifetimeMarker(AI);
437
438  // Do a scan to find all the casts to i8*.
439  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
440       ++I) {
441    if (I->getType() != Int8PtrTy) continue;
442    if (I->stripPointerCasts() != AI) continue;
443    if (isUsedByLifetimeMarker(*I))
444      return true;
445  }
446  return false;
447}
448
449/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
450/// recursively update InlinedAtEntry of a DebugLoc.
451static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
452                                    const DebugLoc &InlinedAtDL,
453                                    LLVMContext &Ctx) {
454  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
455    DebugLoc NewInlinedAtDL
456      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
457    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
458                         NewInlinedAtDL.getAsMDNode(Ctx));
459  }
460
461  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
462                       InlinedAtDL.getAsMDNode(Ctx));
463}
464
465/// fixupLineNumbers - Update inlined instructions' line numbers to
466/// to encode location where these instructions are inlined.
467static void fixupLineNumbers(Function *Fn, Function::iterator FI,
468                             Instruction *TheCall) {
469  DebugLoc TheCallDL = TheCall->getDebugLoc();
470  if (TheCallDL.isUnknown())
471    return;
472
473  for (; FI != Fn->end(); ++FI) {
474    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
475         BI != BE; ++BI) {
476      DebugLoc DL = BI->getDebugLoc();
477      if (!DL.isUnknown()) {
478        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
479        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
480          LLVMContext &Ctx = BI->getContext();
481          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
482          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
483                                                   InlinedAt, Ctx));
484        }
485      }
486    }
487  }
488}
489
490/// InlineFunction - This function inlines the called function into the basic
491/// block of the caller.  This returns false if it is not possible to inline
492/// this call.  The program is still in a well defined state if this occurs
493/// though.
494///
495/// Note that this only does one level of inlining.  For example, if the
496/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
497/// exists in the instruction stream.  Similarly this will inline a recursive
498/// function by one level.
499bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
500                          bool InsertLifetime) {
501  Instruction *TheCall = CS.getInstruction();
502  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
503         "Instruction not in function!");
504
505  // If IFI has any state in it, zap it before we fill it in.
506  IFI.reset();
507
508  const Function *CalledFunc = CS.getCalledFunction();
509  if (CalledFunc == 0 ||          // Can't inline external function or indirect
510      CalledFunc->isDeclaration() || // call, or call to a vararg function!
511      CalledFunc->getFunctionType()->isVarArg()) return false;
512
513  // If the call to the callee is not a tail call, we must clear the 'tail'
514  // flags on any calls that we inline.
515  bool MustClearTailCallFlags =
516    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
517
518  // If the call to the callee cannot throw, set the 'nounwind' flag on any
519  // calls that we inline.
520  bool MarkNoUnwind = CS.doesNotThrow();
521
522  BasicBlock *OrigBB = TheCall->getParent();
523  Function *Caller = OrigBB->getParent();
524
525  // GC poses two hazards to inlining, which only occur when the callee has GC:
526  //  1. If the caller has no GC, then the callee's GC must be propagated to the
527  //     caller.
528  //  2. If the caller has a differing GC, it is invalid to inline.
529  if (CalledFunc->hasGC()) {
530    if (!Caller->hasGC())
531      Caller->setGC(CalledFunc->getGC());
532    else if (CalledFunc->getGC() != Caller->getGC())
533      return false;
534  }
535
536  // Get the personality function from the callee if it contains a landing pad.
537  Value *CalleePersonality = 0;
538  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
539       I != E; ++I)
540    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
541      const BasicBlock *BB = II->getUnwindDest();
542      const LandingPadInst *LP = BB->getLandingPadInst();
543      CalleePersonality = LP->getPersonalityFn();
544      break;
545    }
546
547  // Find the personality function used by the landing pads of the caller. If it
548  // exists, then check to see that it matches the personality function used in
549  // the callee.
550  if (CalleePersonality) {
551    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
552         I != E; ++I)
553      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
554        const BasicBlock *BB = II->getUnwindDest();
555        const LandingPadInst *LP = BB->getLandingPadInst();
556
557        // If the personality functions match, then we can perform the
558        // inlining. Otherwise, we can't inline.
559        // TODO: This isn't 100% true. Some personality functions are proper
560        //       supersets of others and can be used in place of the other.
561        if (LP->getPersonalityFn() != CalleePersonality)
562          return false;
563
564        break;
565      }
566  }
567
568  // Get an iterator to the last basic block in the function, which will have
569  // the new function inlined after it.
570  Function::iterator LastBlock = &Caller->back();
571
572  // Make sure to capture all of the return instructions from the cloned
573  // function.
574  SmallVector<ReturnInst*, 8> Returns;
575  ClonedCodeInfo InlinedFunctionInfo;
576  Function::iterator FirstNewBlock;
577
578  { // Scope to destroy VMap after cloning.
579    ValueToValueMapTy VMap;
580
581    assert(CalledFunc->arg_size() == CS.arg_size() &&
582           "No varargs calls can be inlined!");
583
584    // Calculate the vector of arguments to pass into the function cloner, which
585    // matches up the formal to the actual argument values.
586    CallSite::arg_iterator AI = CS.arg_begin();
587    unsigned ArgNo = 0;
588    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
589         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
590      Value *ActualArg = *AI;
591
592      // When byval arguments actually inlined, we need to make the copy implied
593      // by them explicit.  However, we don't do this if the callee is readonly
594      // or readnone, because the copy would be unneeded: the callee doesn't
595      // modify the struct.
596      if (CS.isByValArgument(ArgNo)) {
597        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
598                                        CalledFunc->getParamAlignment(ArgNo+1));
599
600        // Calls that we inline may use the new alloca, so we need to clear
601        // their 'tail' flags if HandleByValArgument introduced a new alloca and
602        // the callee has calls.
603        MustClearTailCallFlags |= ActualArg != *AI;
604      }
605
606      VMap[I] = ActualArg;
607    }
608
609    // We want the inliner to prune the code as it copies.  We would LOVE to
610    // have no dead or constant instructions leftover after inlining occurs
611    // (which can happen, e.g., because an argument was constant), but we'll be
612    // happy with whatever the cloner can do.
613    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
614                              /*ModuleLevelChanges=*/false, Returns, ".i",
615                              &InlinedFunctionInfo, IFI.TD, TheCall);
616
617    // Remember the first block that is newly cloned over.
618    FirstNewBlock = LastBlock; ++FirstNewBlock;
619
620    // Update the callgraph if requested.
621    if (IFI.CG)
622      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
623
624    // Update inlined instructions' line number information.
625    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
626  }
627
628  // If there are any alloca instructions in the block that used to be the entry
629  // block for the callee, move them to the entry block of the caller.  First
630  // calculate which instruction they should be inserted before.  We insert the
631  // instructions at the end of the current alloca list.
632  {
633    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
634    for (BasicBlock::iterator I = FirstNewBlock->begin(),
635         E = FirstNewBlock->end(); I != E; ) {
636      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
637      if (AI == 0) continue;
638
639      // If the alloca is now dead, remove it.  This often occurs due to code
640      // specialization.
641      if (AI->use_empty()) {
642        AI->eraseFromParent();
643        continue;
644      }
645
646      if (!isa<Constant>(AI->getArraySize()))
647        continue;
648
649      // Keep track of the static allocas that we inline into the caller.
650      IFI.StaticAllocas.push_back(AI);
651
652      // Scan for the block of allocas that we can move over, and move them
653      // all at once.
654      while (isa<AllocaInst>(I) &&
655             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
656        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
657        ++I;
658      }
659
660      // Transfer all of the allocas over in a block.  Using splice means
661      // that the instructions aren't removed from the symbol table, then
662      // reinserted.
663      Caller->getEntryBlock().getInstList().splice(InsertPoint,
664                                                   FirstNewBlock->getInstList(),
665                                                   AI, I);
666    }
667  }
668
669  // Leave lifetime markers for the static alloca's, scoping them to the
670  // function we just inlined.
671  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
672    IRBuilder<> builder(FirstNewBlock->begin());
673    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
674      AllocaInst *AI = IFI.StaticAllocas[ai];
675
676      // If the alloca is already scoped to something smaller than the whole
677      // function then there's no need to add redundant, less accurate markers.
678      if (hasLifetimeMarkers(AI))
679        continue;
680
681      // Try to determine the size of the allocation.
682      ConstantInt *AllocaSize = 0;
683      if (ConstantInt *AIArraySize =
684          dyn_cast<ConstantInt>(AI->getArraySize())) {
685        if (IFI.TD) {
686          Type *AllocaType = AI->getAllocatedType();
687          uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
688          uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
689          assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
690          // Check that array size doesn't saturate uint64_t and doesn't
691          // overflow when it's multiplied by type size.
692          if (AllocaArraySize != ~0ULL &&
693              UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
694            AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
695                                          AllocaArraySize * AllocaTypeSize);
696          }
697        }
698      }
699
700      builder.CreateLifetimeStart(AI, AllocaSize);
701      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
702        IRBuilder<> builder(Returns[ri]);
703        builder.CreateLifetimeEnd(AI, AllocaSize);
704      }
705    }
706  }
707
708  // If the inlined code contained dynamic alloca instructions, wrap the inlined
709  // code with llvm.stacksave/llvm.stackrestore intrinsics.
710  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
711    Module *M = Caller->getParent();
712    // Get the two intrinsics we care about.
713    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
714    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
715
716    // Insert the llvm.stacksave.
717    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
718      .CreateCall(StackSave, "savedstack");
719
720    // Insert a call to llvm.stackrestore before any return instructions in the
721    // inlined function.
722    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
723      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
724    }
725  }
726
727  // If we are inlining tail call instruction through a call site that isn't
728  // marked 'tail', we must remove the tail marker for any calls in the inlined
729  // code.  Also, calls inlined through a 'nounwind' call site should be marked
730  // 'nounwind'.
731  if (InlinedFunctionInfo.ContainsCalls &&
732      (MustClearTailCallFlags || MarkNoUnwind)) {
733    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
734         BB != E; ++BB)
735      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
736        if (CallInst *CI = dyn_cast<CallInst>(I)) {
737          if (MustClearTailCallFlags)
738            CI->setTailCall(false);
739          if (MarkNoUnwind)
740            CI->setDoesNotThrow();
741        }
742  }
743
744  // If we are inlining for an invoke instruction, we must make sure to rewrite
745  // any call instructions into invoke instructions.
746  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
747    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
748
749  // If we cloned in _exactly one_ basic block, and if that block ends in a
750  // return instruction, we splice the body of the inlined callee directly into
751  // the calling basic block.
752  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
753    // Move all of the instructions right before the call.
754    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
755                                 FirstNewBlock->begin(), FirstNewBlock->end());
756    // Remove the cloned basic block.
757    Caller->getBasicBlockList().pop_back();
758
759    // If the call site was an invoke instruction, add a branch to the normal
760    // destination.
761    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
762      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
763      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
764    }
765
766    // If the return instruction returned a value, replace uses of the call with
767    // uses of the returned value.
768    if (!TheCall->use_empty()) {
769      ReturnInst *R = Returns[0];
770      if (TheCall == R->getReturnValue())
771        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
772      else
773        TheCall->replaceAllUsesWith(R->getReturnValue());
774    }
775    // Since we are now done with the Call/Invoke, we can delete it.
776    TheCall->eraseFromParent();
777
778    // Since we are now done with the return instruction, delete it also.
779    Returns[0]->eraseFromParent();
780
781    // We are now done with the inlining.
782    return true;
783  }
784
785  // Otherwise, we have the normal case, of more than one block to inline or
786  // multiple return sites.
787
788  // We want to clone the entire callee function into the hole between the
789  // "starter" and "ender" blocks.  How we accomplish this depends on whether
790  // this is an invoke instruction or a call instruction.
791  BasicBlock *AfterCallBB;
792  BranchInst *CreatedBranchToNormalDest = NULL;
793  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
794
795    // Add an unconditional branch to make this look like the CallInst case...
796    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
797
798    // Split the basic block.  This guarantees that no PHI nodes will have to be
799    // updated due to new incoming edges, and make the invoke case more
800    // symmetric to the call case.
801    AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
802                                          CalledFunc->getName()+".exit");
803
804  } else {  // It's a call
805    // If this is a call instruction, we need to split the basic block that
806    // the call lives in.
807    //
808    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
809                                          CalledFunc->getName()+".exit");
810  }
811
812  // Change the branch that used to go to AfterCallBB to branch to the first
813  // basic block of the inlined function.
814  //
815  TerminatorInst *Br = OrigBB->getTerminator();
816  assert(Br && Br->getOpcode() == Instruction::Br &&
817         "splitBasicBlock broken!");
818  Br->setOperand(0, FirstNewBlock);
819
820
821  // Now that the function is correct, make it a little bit nicer.  In
822  // particular, move the basic blocks inserted from the end of the function
823  // into the space made by splitting the source basic block.
824  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
825                                     FirstNewBlock, Caller->end());
826
827  // Handle all of the return instructions that we just cloned in, and eliminate
828  // any users of the original call/invoke instruction.
829  Type *RTy = CalledFunc->getReturnType();
830
831  PHINode *PHI = 0;
832  if (Returns.size() > 1) {
833    // The PHI node should go at the front of the new basic block to merge all
834    // possible incoming values.
835    if (!TheCall->use_empty()) {
836      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
837                            AfterCallBB->begin());
838      // Anything that used the result of the function call should now use the
839      // PHI node as their operand.
840      TheCall->replaceAllUsesWith(PHI);
841    }
842
843    // Loop over all of the return instructions adding entries to the PHI node
844    // as appropriate.
845    if (PHI) {
846      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
847        ReturnInst *RI = Returns[i];
848        assert(RI->getReturnValue()->getType() == PHI->getType() &&
849               "Ret value not consistent in function!");
850        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
851      }
852    }
853
854
855    // Add a branch to the merge points and remove return instructions.
856    DebugLoc Loc;
857    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
858      ReturnInst *RI = Returns[i];
859      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
860      Loc = RI->getDebugLoc();
861      BI->setDebugLoc(Loc);
862      RI->eraseFromParent();
863    }
864    // We need to set the debug location to *somewhere* inside the
865    // inlined function. The line number may be nonsensical, but the
866    // instruction will at least be associated with the right
867    // function.
868    if (CreatedBranchToNormalDest)
869      CreatedBranchToNormalDest->setDebugLoc(Loc);
870  } else if (!Returns.empty()) {
871    // Otherwise, if there is exactly one return value, just replace anything
872    // using the return value of the call with the computed value.
873    if (!TheCall->use_empty()) {
874      if (TheCall == Returns[0]->getReturnValue())
875        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
876      else
877        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
878    }
879
880    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
881    BasicBlock *ReturnBB = Returns[0]->getParent();
882    ReturnBB->replaceAllUsesWith(AfterCallBB);
883
884    // Splice the code from the return block into the block that it will return
885    // to, which contains the code that was after the call.
886    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
887                                      ReturnBB->getInstList());
888
889    if (CreatedBranchToNormalDest)
890      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
891
892    // Delete the return instruction now and empty ReturnBB now.
893    Returns[0]->eraseFromParent();
894    ReturnBB->eraseFromParent();
895  } else if (!TheCall->use_empty()) {
896    // No returns, but something is using the return value of the call.  Just
897    // nuke the result.
898    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
899  }
900
901  // Since we are now done with the Call/Invoke, we can delete it.
902  TheCall->eraseFromParent();
903
904  // We should always be able to fold the entry block of the function into the
905  // single predecessor of the block...
906  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
907  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
908
909  // Splice the code entry block into calling block, right before the
910  // unconditional branch.
911  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
912  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
913
914  // Remove the unconditional branch.
915  OrigBB->getInstList().erase(Br);
916
917  // Now we can remove the CalleeEntry block, which is now empty.
918  Caller->getBasicBlockList().erase(CalleeEntry);
919
920  // If we inserted a phi node, check to see if it has a single value (e.g. all
921  // the entries are the same or undef).  If so, remove the PHI so it doesn't
922  // block other optimizations.
923  if (PHI) {
924    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
925      PHI->replaceAllUsesWith(V);
926      PHI->eraseFromParent();
927    }
928  }
929
930  return true;
931}
932