InlineFunction.cpp revision 218893
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/Attributes.h"
23#include "llvm/Analysis/CallGraph.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Transforms/Utils/Local.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/CallSite.h"
31using namespace llvm;
32
33bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
34  return InlineFunction(CallSite(CI), IFI);
35}
36bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
37  return InlineFunction(CallSite(II), IFI);
38}
39
40
41/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
42/// an invoke, we have to turn all of the calls that can throw into
43/// invokes.  This function analyze BB to see if there are any calls, and if so,
44/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
45/// nodes in that block with the values specified in InvokeDestPHIValues.
46///
47static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
48                                                   BasicBlock *InvokeDest,
49                           const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
50  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
51    Instruction *I = BBI++;
52
53    // We only need to check for function calls: inlined invoke
54    // instructions require no special handling.
55    CallInst *CI = dyn_cast<CallInst>(I);
56    if (CI == 0) continue;
57
58    // If this call cannot unwind, don't convert it to an invoke.
59    if (CI->doesNotThrow())
60      continue;
61
62    // Convert this function call into an invoke instruction.
63    // First, split the basic block.
64    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
65
66    // Next, create the new invoke instruction, inserting it at the end
67    // of the old basic block.
68    ImmutableCallSite CS(CI);
69    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
70    InvokeInst *II =
71      InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
72                         InvokeArgs.begin(), InvokeArgs.end(),
73                         CI->getName(), BB->getTerminator());
74    II->setCallingConv(CI->getCallingConv());
75    II->setAttributes(CI->getAttributes());
76
77    // Make sure that anything using the call now uses the invoke!  This also
78    // updates the CallGraph if present, because it uses a WeakVH.
79    CI->replaceAllUsesWith(II);
80
81    // Delete the unconditional branch inserted by splitBasicBlock
82    BB->getInstList().pop_back();
83    Split->getInstList().pop_front();  // Delete the original call
84
85    // Update any PHI nodes in the exceptional block to indicate that
86    // there is now a new entry in them.
87    unsigned i = 0;
88    for (BasicBlock::iterator I = InvokeDest->begin();
89         isa<PHINode>(I); ++I, ++i)
90      cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
91
92    // This basic block is now complete, the caller will continue scanning the
93    // next one.
94    return;
95  }
96}
97
98
99/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
100/// in the body of the inlined function into invokes and turn unwind
101/// instructions into branches to the invoke unwind dest.
102///
103/// II is the invoke instruction being inlined.  FirstNewBlock is the first
104/// block of the inlined code (the last block is the end of the function),
105/// and InlineCodeInfo is information about the code that got inlined.
106static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
107                                ClonedCodeInfo &InlinedCodeInfo) {
108  BasicBlock *InvokeDest = II->getUnwindDest();
109  SmallVector<Value*, 8> InvokeDestPHIValues;
110
111  // If there are PHI nodes in the unwind destination block, we need to
112  // keep track of which values came into them from this invoke, then remove
113  // the entry for this block.
114  BasicBlock *InvokeBlock = II->getParent();
115  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
116    PHINode *PN = cast<PHINode>(I);
117    // Save the value to use for this edge.
118    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
119  }
120
121  Function *Caller = FirstNewBlock->getParent();
122
123  // The inlined code is currently at the end of the function, scan from the
124  // start of the inlined code to its end, checking for stuff we need to
125  // rewrite.  If the code doesn't have calls or unwinds, we know there is
126  // nothing to rewrite.
127  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
128    // Now that everything is happy, we have one final detail.  The PHI nodes in
129    // the exception destination block still have entries due to the original
130    // invoke instruction.  Eliminate these entries (which might even delete the
131    // PHI node) now.
132    InvokeDest->removePredecessor(II->getParent());
133    return;
134  }
135
136  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
137    if (InlinedCodeInfo.ContainsCalls)
138      HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
139                                             InvokeDestPHIValues);
140
141    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
142      // An UnwindInst requires special handling when it gets inlined into an
143      // invoke site.  Once this happens, we know that the unwind would cause
144      // a control transfer to the invoke exception destination, so we can
145      // transform it into a direct branch to the exception destination.
146      BranchInst::Create(InvokeDest, UI);
147
148      // Delete the unwind instruction!
149      UI->eraseFromParent();
150
151      // Update any PHI nodes in the exceptional block to indicate that
152      // there is now a new entry in them.
153      unsigned i = 0;
154      for (BasicBlock::iterator I = InvokeDest->begin();
155           isa<PHINode>(I); ++I, ++i) {
156        PHINode *PN = cast<PHINode>(I);
157        PN->addIncoming(InvokeDestPHIValues[i], BB);
158      }
159    }
160  }
161
162  // Now that everything is happy, we have one final detail.  The PHI nodes in
163  // the exception destination block still have entries due to the original
164  // invoke instruction.  Eliminate these entries (which might even delete the
165  // PHI node) now.
166  InvokeDest->removePredecessor(II->getParent());
167}
168
169/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
170/// into the caller, update the specified callgraph to reflect the changes we
171/// made.  Note that it's possible that not all code was copied over, so only
172/// some edges of the callgraph may remain.
173static void UpdateCallGraphAfterInlining(CallSite CS,
174                                         Function::iterator FirstNewBlock,
175                                         ValueToValueMapTy &VMap,
176                                         InlineFunctionInfo &IFI) {
177  CallGraph &CG = *IFI.CG;
178  const Function *Caller = CS.getInstruction()->getParent()->getParent();
179  const Function *Callee = CS.getCalledFunction();
180  CallGraphNode *CalleeNode = CG[Callee];
181  CallGraphNode *CallerNode = CG[Caller];
182
183  // Since we inlined some uninlined call sites in the callee into the caller,
184  // add edges from the caller to all of the callees of the callee.
185  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
186
187  // Consider the case where CalleeNode == CallerNode.
188  CallGraphNode::CalledFunctionsVector CallCache;
189  if (CalleeNode == CallerNode) {
190    CallCache.assign(I, E);
191    I = CallCache.begin();
192    E = CallCache.end();
193  }
194
195  for (; I != E; ++I) {
196    const Value *OrigCall = I->first;
197
198    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
199    // Only copy the edge if the call was inlined!
200    if (VMI == VMap.end() || VMI->second == 0)
201      continue;
202
203    // If the call was inlined, but then constant folded, there is no edge to
204    // add.  Check for this case.
205    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
206    if (NewCall == 0) continue;
207
208    // Remember that this call site got inlined for the client of
209    // InlineFunction.
210    IFI.InlinedCalls.push_back(NewCall);
211
212    // It's possible that inlining the callsite will cause it to go from an
213    // indirect to a direct call by resolving a function pointer.  If this
214    // happens, set the callee of the new call site to a more precise
215    // destination.  This can also happen if the call graph node of the caller
216    // was just unnecessarily imprecise.
217    if (I->second->getFunction() == 0)
218      if (Function *F = CallSite(NewCall).getCalledFunction()) {
219        // Indirect call site resolved to direct call.
220        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
221
222        continue;
223      }
224
225    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
226  }
227
228  // Update the call graph by deleting the edge from Callee to Caller.  We must
229  // do this after the loop above in case Caller and Callee are the same.
230  CallerNode->removeCallEdgeFor(CS);
231}
232
233/// HandleByValArgument - When inlining a call site that has a byval argument,
234/// we have to make the implicit memcpy explicit by adding it.
235static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
236                                  const Function *CalledFunc,
237                                  InlineFunctionInfo &IFI,
238                                  unsigned ByValAlignment) {
239  const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
240
241  // If the called function is readonly, then it could not mutate the caller's
242  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
243  // temporary.
244  if (CalledFunc->onlyReadsMemory()) {
245    // If the byval argument has a specified alignment that is greater than the
246    // passed in pointer, then we either have to round up the input pointer or
247    // give up on this transformation.
248    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
249      return Arg;
250
251    // If the pointer is already known to be sufficiently aligned, or if we can
252    // round it up to a larger alignment, then we don't need a temporary.
253    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
254                                   IFI.TD) >= ByValAlignment)
255      return Arg;
256
257    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
258    // for code quality, but rarely happens and is required for correctness.
259  }
260
261  LLVMContext &Context = Arg->getContext();
262
263  const Type *VoidPtrTy = Type::getInt8PtrTy(Context);
264
265  // Create the alloca.  If we have TargetData, use nice alignment.
266  unsigned Align = 1;
267  if (IFI.TD)
268    Align = IFI.TD->getPrefTypeAlignment(AggTy);
269
270  // If the byval had an alignment specified, we *must* use at least that
271  // alignment, as it is required by the byval argument (and uses of the
272  // pointer inside the callee).
273  Align = std::max(Align, ByValAlignment);
274
275  Function *Caller = TheCall->getParent()->getParent();
276
277  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
278                                    &*Caller->begin()->begin());
279  // Emit a memcpy.
280  const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
281  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
282                                                 Intrinsic::memcpy,
283                                                 Tys, 3);
284  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
285  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
286
287  Value *Size;
288  if (IFI.TD == 0)
289    Size = ConstantExpr::getSizeOf(AggTy);
290  else
291    Size = ConstantInt::get(Type::getInt64Ty(Context),
292                            IFI.TD->getTypeStoreSize(AggTy));
293
294  // Always generate a memcpy of alignment 1 here because we don't know
295  // the alignment of the src pointer.  Other optimizations can infer
296  // better alignment.
297  Value *CallArgs[] = {
298    DestCast, SrcCast, Size,
299    ConstantInt::get(Type::getInt32Ty(Context), 1),
300    ConstantInt::getFalse(Context) // isVolatile
301  };
302  CallInst *TheMemCpy =
303    CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
304
305  // If we have a call graph, update it.
306  if (CallGraph *CG = IFI.CG) {
307    CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
308    CallGraphNode *CallerNode = (*CG)[Caller];
309    CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
310  }
311
312  // Uses of the argument in the function should use our new alloca
313  // instead.
314  return NewAlloca;
315}
316
317// InlineFunction - This function inlines the called function into the basic
318// block of the caller.  This returns false if it is not possible to inline this
319// call.  The program is still in a well defined state if this occurs though.
320//
321// Note that this only does one level of inlining.  For example, if the
322// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
323// exists in the instruction stream.  Similiarly this will inline a recursive
324// function by one level.
325//
326bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
327  Instruction *TheCall = CS.getInstruction();
328  LLVMContext &Context = TheCall->getContext();
329  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
330         "Instruction not in function!");
331
332  // If IFI has any state in it, zap it before we fill it in.
333  IFI.reset();
334
335  const Function *CalledFunc = CS.getCalledFunction();
336  if (CalledFunc == 0 ||          // Can't inline external function or indirect
337      CalledFunc->isDeclaration() || // call, or call to a vararg function!
338      CalledFunc->getFunctionType()->isVarArg()) return false;
339
340  // If the call to the callee is not a tail call, we must clear the 'tail'
341  // flags on any calls that we inline.
342  bool MustClearTailCallFlags =
343    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
344
345  // If the call to the callee cannot throw, set the 'nounwind' flag on any
346  // calls that we inline.
347  bool MarkNoUnwind = CS.doesNotThrow();
348
349  BasicBlock *OrigBB = TheCall->getParent();
350  Function *Caller = OrigBB->getParent();
351
352  // GC poses two hazards to inlining, which only occur when the callee has GC:
353  //  1. If the caller has no GC, then the callee's GC must be propagated to the
354  //     caller.
355  //  2. If the caller has a differing GC, it is invalid to inline.
356  if (CalledFunc->hasGC()) {
357    if (!Caller->hasGC())
358      Caller->setGC(CalledFunc->getGC());
359    else if (CalledFunc->getGC() != Caller->getGC())
360      return false;
361  }
362
363  // Get an iterator to the last basic block in the function, which will have
364  // the new function inlined after it.
365  //
366  Function::iterator LastBlock = &Caller->back();
367
368  // Make sure to capture all of the return instructions from the cloned
369  // function.
370  SmallVector<ReturnInst*, 8> Returns;
371  ClonedCodeInfo InlinedFunctionInfo;
372  Function::iterator FirstNewBlock;
373
374  { // Scope to destroy VMap after cloning.
375    ValueToValueMapTy VMap;
376
377    assert(CalledFunc->arg_size() == CS.arg_size() &&
378           "No varargs calls can be inlined!");
379
380    // Calculate the vector of arguments to pass into the function cloner, which
381    // matches up the formal to the actual argument values.
382    CallSite::arg_iterator AI = CS.arg_begin();
383    unsigned ArgNo = 0;
384    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
385         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
386      Value *ActualArg = *AI;
387
388      // When byval arguments actually inlined, we need to make the copy implied
389      // by them explicit.  However, we don't do this if the callee is readonly
390      // or readnone, because the copy would be unneeded: the callee doesn't
391      // modify the struct.
392      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
393        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
394                                        CalledFunc->getParamAlignment(ArgNo+1));
395
396        // Calls that we inline may use the new alloca, so we need to clear
397        // their 'tail' flags if HandleByValArgument introduced a new alloca and
398        // the callee has calls.
399        MustClearTailCallFlags |= ActualArg != *AI;
400      }
401
402      VMap[I] = ActualArg;
403    }
404
405    // We want the inliner to prune the code as it copies.  We would LOVE to
406    // have no dead or constant instructions leftover after inlining occurs
407    // (which can happen, e.g., because an argument was constant), but we'll be
408    // happy with whatever the cloner can do.
409    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
410                              /*ModuleLevelChanges=*/false, Returns, ".i",
411                              &InlinedFunctionInfo, IFI.TD, TheCall);
412
413    // Remember the first block that is newly cloned over.
414    FirstNewBlock = LastBlock; ++FirstNewBlock;
415
416    // Update the callgraph if requested.
417    if (IFI.CG)
418      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
419  }
420
421  // If there are any alloca instructions in the block that used to be the entry
422  // block for the callee, move them to the entry block of the caller.  First
423  // calculate which instruction they should be inserted before.  We insert the
424  // instructions at the end of the current alloca list.
425  //
426  {
427    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
428    for (BasicBlock::iterator I = FirstNewBlock->begin(),
429         E = FirstNewBlock->end(); I != E; ) {
430      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
431      if (AI == 0) continue;
432
433      // If the alloca is now dead, remove it.  This often occurs due to code
434      // specialization.
435      if (AI->use_empty()) {
436        AI->eraseFromParent();
437        continue;
438      }
439
440      if (!isa<Constant>(AI->getArraySize()))
441        continue;
442
443      // Keep track of the static allocas that we inline into the caller.
444      IFI.StaticAllocas.push_back(AI);
445
446      // Scan for the block of allocas that we can move over, and move them
447      // all at once.
448      while (isa<AllocaInst>(I) &&
449             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
450        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
451        ++I;
452      }
453
454      // Transfer all of the allocas over in a block.  Using splice means
455      // that the instructions aren't removed from the symbol table, then
456      // reinserted.
457      Caller->getEntryBlock().getInstList().splice(InsertPoint,
458                                                   FirstNewBlock->getInstList(),
459                                                   AI, I);
460    }
461  }
462
463  // If the inlined code contained dynamic alloca instructions, wrap the inlined
464  // code with llvm.stacksave/llvm.stackrestore intrinsics.
465  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
466    Module *M = Caller->getParent();
467    // Get the two intrinsics we care about.
468    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
469    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
470
471    // If we are preserving the callgraph, add edges to the stacksave/restore
472    // functions for the calls we insert.
473    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
474    if (CallGraph *CG = IFI.CG) {
475      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
476      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
477      CallerNode = (*CG)[Caller];
478    }
479
480    // Insert the llvm.stacksave.
481    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
482                                          FirstNewBlock->begin());
483    if (IFI.CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
484
485    // Insert a call to llvm.stackrestore before any return instructions in the
486    // inlined function.
487    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
488      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
489      if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
490    }
491
492    // Count the number of StackRestore calls we insert.
493    unsigned NumStackRestores = Returns.size();
494
495    // If we are inlining an invoke instruction, insert restores before each
496    // unwind.  These unwinds will be rewritten into branches later.
497    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
498      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
499           BB != E; ++BB)
500        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
501          CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
502          if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
503          ++NumStackRestores;
504        }
505    }
506  }
507
508  // If we are inlining tail call instruction through a call site that isn't
509  // marked 'tail', we must remove the tail marker for any calls in the inlined
510  // code.  Also, calls inlined through a 'nounwind' call site should be marked
511  // 'nounwind'.
512  if (InlinedFunctionInfo.ContainsCalls &&
513      (MustClearTailCallFlags || MarkNoUnwind)) {
514    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
515         BB != E; ++BB)
516      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
517        if (CallInst *CI = dyn_cast<CallInst>(I)) {
518          if (MustClearTailCallFlags)
519            CI->setTailCall(false);
520          if (MarkNoUnwind)
521            CI->setDoesNotThrow();
522        }
523  }
524
525  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
526  // instructions are unreachable.
527  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
528    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
529         BB != E; ++BB) {
530      TerminatorInst *Term = BB->getTerminator();
531      if (isa<UnwindInst>(Term)) {
532        new UnreachableInst(Context, Term);
533        BB->getInstList().erase(Term);
534      }
535    }
536
537  // If we are inlining for an invoke instruction, we must make sure to rewrite
538  // any inlined 'unwind' instructions into branches to the invoke exception
539  // destination, and call instructions into invoke instructions.
540  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
541    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
542
543  // If we cloned in _exactly one_ basic block, and if that block ends in a
544  // return instruction, we splice the body of the inlined callee directly into
545  // the calling basic block.
546  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
547    // Move all of the instructions right before the call.
548    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
549                                 FirstNewBlock->begin(), FirstNewBlock->end());
550    // Remove the cloned basic block.
551    Caller->getBasicBlockList().pop_back();
552
553    // If the call site was an invoke instruction, add a branch to the normal
554    // destination.
555    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
556      BranchInst::Create(II->getNormalDest(), TheCall);
557
558    // If the return instruction returned a value, replace uses of the call with
559    // uses of the returned value.
560    if (!TheCall->use_empty()) {
561      ReturnInst *R = Returns[0];
562      if (TheCall == R->getReturnValue())
563        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
564      else
565        TheCall->replaceAllUsesWith(R->getReturnValue());
566    }
567    // Since we are now done with the Call/Invoke, we can delete it.
568    TheCall->eraseFromParent();
569
570    // Since we are now done with the return instruction, delete it also.
571    Returns[0]->eraseFromParent();
572
573    // We are now done with the inlining.
574    return true;
575  }
576
577  // Otherwise, we have the normal case, of more than one block to inline or
578  // multiple return sites.
579
580  // We want to clone the entire callee function into the hole between the
581  // "starter" and "ender" blocks.  How we accomplish this depends on whether
582  // this is an invoke instruction or a call instruction.
583  BasicBlock *AfterCallBB;
584  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
585
586    // Add an unconditional branch to make this look like the CallInst case...
587    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
588
589    // Split the basic block.  This guarantees that no PHI nodes will have to be
590    // updated due to new incoming edges, and make the invoke case more
591    // symmetric to the call case.
592    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
593                                          CalledFunc->getName()+".exit");
594
595  } else {  // It's a call
596    // If this is a call instruction, we need to split the basic block that
597    // the call lives in.
598    //
599    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
600                                          CalledFunc->getName()+".exit");
601  }
602
603  // Change the branch that used to go to AfterCallBB to branch to the first
604  // basic block of the inlined function.
605  //
606  TerminatorInst *Br = OrigBB->getTerminator();
607  assert(Br && Br->getOpcode() == Instruction::Br &&
608         "splitBasicBlock broken!");
609  Br->setOperand(0, FirstNewBlock);
610
611
612  // Now that the function is correct, make it a little bit nicer.  In
613  // particular, move the basic blocks inserted from the end of the function
614  // into the space made by splitting the source basic block.
615  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
616                                     FirstNewBlock, Caller->end());
617
618  // Handle all of the return instructions that we just cloned in, and eliminate
619  // any users of the original call/invoke instruction.
620  const Type *RTy = CalledFunc->getReturnType();
621
622  PHINode *PHI = 0;
623  if (Returns.size() > 1) {
624    // The PHI node should go at the front of the new basic block to merge all
625    // possible incoming values.
626    if (!TheCall->use_empty()) {
627      PHI = PHINode::Create(RTy, TheCall->getName(),
628                            AfterCallBB->begin());
629      // Anything that used the result of the function call should now use the
630      // PHI node as their operand.
631      TheCall->replaceAllUsesWith(PHI);
632    }
633
634    // Loop over all of the return instructions adding entries to the PHI node
635    // as appropriate.
636    if (PHI) {
637      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
638        ReturnInst *RI = Returns[i];
639        assert(RI->getReturnValue()->getType() == PHI->getType() &&
640               "Ret value not consistent in function!");
641        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
642      }
643    }
644
645
646    // Add a branch to the merge points and remove return instructions.
647    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
648      ReturnInst *RI = Returns[i];
649      BranchInst::Create(AfterCallBB, RI);
650      RI->eraseFromParent();
651    }
652  } else if (!Returns.empty()) {
653    // Otherwise, if there is exactly one return value, just replace anything
654    // using the return value of the call with the computed value.
655    if (!TheCall->use_empty()) {
656      if (TheCall == Returns[0]->getReturnValue())
657        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
658      else
659        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
660    }
661
662    // Splice the code from the return block into the block that it will return
663    // to, which contains the code that was after the call.
664    BasicBlock *ReturnBB = Returns[0]->getParent();
665    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
666                                      ReturnBB->getInstList());
667
668    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
669    ReturnBB->replaceAllUsesWith(AfterCallBB);
670
671    // Delete the return instruction now and empty ReturnBB now.
672    Returns[0]->eraseFromParent();
673    ReturnBB->eraseFromParent();
674  } else if (!TheCall->use_empty()) {
675    // No returns, but something is using the return value of the call.  Just
676    // nuke the result.
677    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
678  }
679
680  // Since we are now done with the Call/Invoke, we can delete it.
681  TheCall->eraseFromParent();
682
683  // We should always be able to fold the entry block of the function into the
684  // single predecessor of the block...
685  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
686  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
687
688  // Splice the code entry block into calling block, right before the
689  // unconditional branch.
690  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
691  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
692
693  // Remove the unconditional branch.
694  OrigBB->getInstList().erase(Br);
695
696  // Now we can remove the CalleeEntry block, which is now empty.
697  Caller->getBasicBlockList().erase(CalleeEntry);
698
699  // If we inserted a phi node, check to see if it has a single value (e.g. all
700  // the entries are the same or undef).  If so, remove the PHI so it doesn't
701  // block other optimizations.
702  if (PHI)
703    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
704      PHI->replaceAllUsesWith(V);
705      PHI->eraseFromParent();
706    }
707
708  return true;
709}
710