InlineFunction.cpp revision 198892
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Attributes.h"
24#include "llvm/Analysis/CallGraph.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/CallSite.h"
30using namespace llvm;
31
32bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD,
33                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
34  return InlineFunction(CallSite(CI), CG, TD, StaticAllocas);
35}
36bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD,
37                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
38  return InlineFunction(CallSite(II), CG, TD, StaticAllocas);
39}
40
41
42/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
43/// an invoke, we have to turn all of the calls that can throw into
44/// invokes.  This function analyze BB to see if there are any calls, and if so,
45/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
46/// nodes in that block with the values specified in InvokeDestPHIValues.
47///
48static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
49                                                   BasicBlock *InvokeDest,
50                           const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
51  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
52    Instruction *I = BBI++;
53
54    // We only need to check for function calls: inlined invoke
55    // instructions require no special handling.
56    CallInst *CI = dyn_cast<CallInst>(I);
57    if (CI == 0) continue;
58
59    // If this call cannot unwind, don't convert it to an invoke.
60    if (CI->doesNotThrow())
61      continue;
62
63    // Convert this function call into an invoke instruction.
64    // First, split the basic block.
65    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
66
67    // Next, create the new invoke instruction, inserting it at the end
68    // of the old basic block.
69    SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
70    InvokeInst *II =
71      InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
72                         InvokeArgs.begin(), InvokeArgs.end(),
73                         CI->getName(), BB->getTerminator());
74    II->setCallingConv(CI->getCallingConv());
75    II->setAttributes(CI->getAttributes());
76
77    // Make sure that anything using the call now uses the invoke!  This also
78    // updates the CallGraph if present.
79    CI->replaceAllUsesWith(II);
80
81    // Delete the unconditional branch inserted by splitBasicBlock
82    BB->getInstList().pop_back();
83    Split->getInstList().pop_front();  // Delete the original call
84
85    // Update any PHI nodes in the exceptional block to indicate that
86    // there is now a new entry in them.
87    unsigned i = 0;
88    for (BasicBlock::iterator I = InvokeDest->begin();
89         isa<PHINode>(I); ++I, ++i)
90      cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
91
92    // This basic block is now complete, the caller will continue scanning the
93    // next one.
94    return;
95  }
96}
97
98
99/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
100/// in the body of the inlined function into invokes and turn unwind
101/// instructions into branches to the invoke unwind dest.
102///
103/// II is the invoke instruction being inlined.  FirstNewBlock is the first
104/// block of the inlined code (the last block is the end of the function),
105/// and InlineCodeInfo is information about the code that got inlined.
106static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
107                                ClonedCodeInfo &InlinedCodeInfo) {
108  BasicBlock *InvokeDest = II->getUnwindDest();
109  SmallVector<Value*, 8> InvokeDestPHIValues;
110
111  // If there are PHI nodes in the unwind destination block, we need to
112  // keep track of which values came into them from this invoke, then remove
113  // the entry for this block.
114  BasicBlock *InvokeBlock = II->getParent();
115  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
116    PHINode *PN = cast<PHINode>(I);
117    // Save the value to use for this edge.
118    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
119  }
120
121  Function *Caller = FirstNewBlock->getParent();
122
123  // The inlined code is currently at the end of the function, scan from the
124  // start of the inlined code to its end, checking for stuff we need to
125  // rewrite.  If the code doesn't have calls or unwinds, we know there is
126  // nothing to rewrite.
127  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
128    // Now that everything is happy, we have one final detail.  The PHI nodes in
129    // the exception destination block still have entries due to the original
130    // invoke instruction.  Eliminate these entries (which might even delete the
131    // PHI node) now.
132    InvokeDest->removePredecessor(II->getParent());
133    return;
134  }
135
136  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
137    if (InlinedCodeInfo.ContainsCalls)
138      HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
139                                             InvokeDestPHIValues);
140
141    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
142      // An UnwindInst requires special handling when it gets inlined into an
143      // invoke site.  Once this happens, we know that the unwind would cause
144      // a control transfer to the invoke exception destination, so we can
145      // transform it into a direct branch to the exception destination.
146      BranchInst::Create(InvokeDest, UI);
147
148      // Delete the unwind instruction!
149      UI->eraseFromParent();
150
151      // Update any PHI nodes in the exceptional block to indicate that
152      // there is now a new entry in them.
153      unsigned i = 0;
154      for (BasicBlock::iterator I = InvokeDest->begin();
155           isa<PHINode>(I); ++I, ++i) {
156        PHINode *PN = cast<PHINode>(I);
157        PN->addIncoming(InvokeDestPHIValues[i], BB);
158      }
159    }
160  }
161
162  // Now that everything is happy, we have one final detail.  The PHI nodes in
163  // the exception destination block still have entries due to the original
164  // invoke instruction.  Eliminate these entries (which might even delete the
165  // PHI node) now.
166  InvokeDest->removePredecessor(II->getParent());
167}
168
169/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
170/// into the caller, update the specified callgraph to reflect the changes we
171/// made.  Note that it's possible that not all code was copied over, so only
172/// some edges of the callgraph may remain.
173static void UpdateCallGraphAfterInlining(CallSite CS,
174                                         Function::iterator FirstNewBlock,
175                                       DenseMap<const Value*, Value*> &ValueMap,
176                                         CallGraph &CG) {
177  const Function *Caller = CS.getInstruction()->getParent()->getParent();
178  const Function *Callee = CS.getCalledFunction();
179  CallGraphNode *CalleeNode = CG[Callee];
180  CallGraphNode *CallerNode = CG[Caller];
181
182  // Since we inlined some uninlined call sites in the callee into the caller,
183  // add edges from the caller to all of the callees of the callee.
184  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
185
186  // Consider the case where CalleeNode == CallerNode.
187  CallGraphNode::CalledFunctionsVector CallCache;
188  if (CalleeNode == CallerNode) {
189    CallCache.assign(I, E);
190    I = CallCache.begin();
191    E = CallCache.end();
192  }
193
194  for (; I != E; ++I) {
195    const Value *OrigCall = I->first;
196
197    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
198    // Only copy the edge if the call was inlined!
199    if (VMI == ValueMap.end() || VMI->second == 0)
200      continue;
201
202    // If the call was inlined, but then constant folded, there is no edge to
203    // add.  Check for this case.
204    if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
205      CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
206  }
207
208  // Update the call graph by deleting the edge from Callee to Caller.  We must
209  // do this after the loop above in case Caller and Callee are the same.
210  CallerNode->removeCallEdgeFor(CS);
211}
212
213/// findFnRegionEndMarker - This is a utility routine that is used by
214/// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
215/// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
216///
217static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
218
219  MDNode *FnStart = NULL;
220  const DbgRegionEndInst *FnEnd = NULL;
221  for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
222    for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
223         ++BI) {
224      if (FnStart == NULL)  {
225        if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
226          DISubprogram SP(FSI->getSubprogram());
227          assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
228          if (SP.describes(F))
229            FnStart = SP.getNode();
230        }
231        continue;
232      }
233
234      if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
235        if (REI->getContext() == FnStart)
236          FnEnd = REI;
237    }
238  return FnEnd;
239}
240
241// InlineFunction - This function inlines the called function into the basic
242// block of the caller.  This returns false if it is not possible to inline this
243// call.  The program is still in a well defined state if this occurs though.
244//
245// Note that this only does one level of inlining.  For example, if the
246// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
247// exists in the instruction stream.  Similiarly this will inline a recursive
248// function by one level.
249//
250bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD,
251                          SmallVectorImpl<AllocaInst*> *StaticAllocas) {
252  Instruction *TheCall = CS.getInstruction();
253  LLVMContext &Context = TheCall->getContext();
254  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
255         "Instruction not in function!");
256
257  const Function *CalledFunc = CS.getCalledFunction();
258  if (CalledFunc == 0 ||          // Can't inline external function or indirect
259      CalledFunc->isDeclaration() || // call, or call to a vararg function!
260      CalledFunc->getFunctionType()->isVarArg()) return false;
261
262
263  // If the call to the callee is not a tail call, we must clear the 'tail'
264  // flags on any calls that we inline.
265  bool MustClearTailCallFlags =
266    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
267
268  // If the call to the callee cannot throw, set the 'nounwind' flag on any
269  // calls that we inline.
270  bool MarkNoUnwind = CS.doesNotThrow();
271
272  BasicBlock *OrigBB = TheCall->getParent();
273  Function *Caller = OrigBB->getParent();
274
275  // GC poses two hazards to inlining, which only occur when the callee has GC:
276  //  1. If the caller has no GC, then the callee's GC must be propagated to the
277  //     caller.
278  //  2. If the caller has a differing GC, it is invalid to inline.
279  if (CalledFunc->hasGC()) {
280    if (!Caller->hasGC())
281      Caller->setGC(CalledFunc->getGC());
282    else if (CalledFunc->getGC() != Caller->getGC())
283      return false;
284  }
285
286  // Get an iterator to the last basic block in the function, which will have
287  // the new function inlined after it.
288  //
289  Function::iterator LastBlock = &Caller->back();
290
291  // Make sure to capture all of the return instructions from the cloned
292  // function.
293  SmallVector<ReturnInst*, 8> Returns;
294  ClonedCodeInfo InlinedFunctionInfo;
295  Function::iterator FirstNewBlock;
296
297  { // Scope to destroy ValueMap after cloning.
298    DenseMap<const Value*, Value*> ValueMap;
299
300    assert(CalledFunc->arg_size() == CS.arg_size() &&
301           "No varargs calls can be inlined!");
302
303    // Calculate the vector of arguments to pass into the function cloner, which
304    // matches up the formal to the actual argument values.
305    CallSite::arg_iterator AI = CS.arg_begin();
306    unsigned ArgNo = 0;
307    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
308         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
309      Value *ActualArg = *AI;
310
311      // When byval arguments actually inlined, we need to make the copy implied
312      // by them explicit.  However, we don't do this if the callee is readonly
313      // or readnone, because the copy would be unneeded: the callee doesn't
314      // modify the struct.
315      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
316          !CalledFunc->onlyReadsMemory()) {
317        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
318        const Type *VoidPtrTy =
319            Type::getInt8PtrTy(Context);
320
321        // Create the alloca.  If we have TargetData, use nice alignment.
322        unsigned Align = 1;
323        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
324        Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
325                                          I->getName(),
326                                          &*Caller->begin()->begin());
327        // Emit a memcpy.
328        const Type *Tys[] = { Type::getInt64Ty(Context) };
329        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
330                                                       Intrinsic::memcpy,
331                                                       Tys, 1);
332        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
333        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
334
335        Value *Size;
336        if (TD == 0)
337          Size = ConstantExpr::getSizeOf(AggTy);
338        else
339          Size = ConstantInt::get(Type::getInt64Ty(Context),
340                                         TD->getTypeStoreSize(AggTy));
341
342        // Always generate a memcpy of alignment 1 here because we don't know
343        // the alignment of the src pointer.  Other optimizations can infer
344        // better alignment.
345        Value *CallArgs[] = {
346          DestCast, SrcCast, Size,
347          ConstantInt::get(Type::getInt32Ty(Context), 1)
348        };
349        CallInst *TheMemCpy =
350          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
351
352        // If we have a call graph, update it.
353        if (CG) {
354          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
355          CallGraphNode *CallerNode = (*CG)[Caller];
356          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
357        }
358
359        // Uses of the argument in the function should use our new alloca
360        // instead.
361        ActualArg = NewAlloca;
362      }
363
364      ValueMap[I] = ActualArg;
365    }
366
367    // Adjust llvm.dbg.region.end. If the CalledFunc has region end
368    // marker then clone that marker after next stop point at the
369    // call site. The function body cloner does not clone original
370    // region end marker from the CalledFunc. This will ensure that
371    // inlined function's scope ends at the right place.
372    if (const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc)) {
373      for (BasicBlock::iterator BI = TheCall, BE = TheCall->getParent()->end();
374           BI != BE; ++BI) {
375        if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
376          if (DbgRegionEndInst *NewDREI =
377                dyn_cast<DbgRegionEndInst>(DREI->clone()))
378            NewDREI->insertAfter(DSPI);
379          break;
380        }
381      }
382    }
383
384    // We want the inliner to prune the code as it copies.  We would LOVE to
385    // have no dead or constant instructions leftover after inlining occurs
386    // (which can happen, e.g., because an argument was constant), but we'll be
387    // happy with whatever the cloner can do.
388    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
389                              &InlinedFunctionInfo, TD);
390
391    // Remember the first block that is newly cloned over.
392    FirstNewBlock = LastBlock; ++FirstNewBlock;
393
394    // Update the callgraph if requested.
395    if (CG)
396      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
397  }
398
399  // If there are any alloca instructions in the block that used to be the entry
400  // block for the callee, move them to the entry block of the caller.  First
401  // calculate which instruction they should be inserted before.  We insert the
402  // instructions at the end of the current alloca list.
403  //
404  {
405    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
406    for (BasicBlock::iterator I = FirstNewBlock->begin(),
407         E = FirstNewBlock->end(); I != E; ) {
408      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
409      if (AI == 0) continue;
410
411      // If the alloca is now dead, remove it.  This often occurs due to code
412      // specialization.
413      if (AI->use_empty()) {
414        AI->eraseFromParent();
415        continue;
416      }
417
418      if (!isa<Constant>(AI->getArraySize()))
419        continue;
420
421      // Keep track of the static allocas that we inline into the caller if the
422      // StaticAllocas pointer is non-null.
423      if (StaticAllocas) StaticAllocas->push_back(AI);
424
425      // Scan for the block of allocas that we can move over, and move them
426      // all at once.
427      while (isa<AllocaInst>(I) &&
428             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
429        if (StaticAllocas) StaticAllocas->push_back(cast<AllocaInst>(I));
430        ++I;
431      }
432
433      // Transfer all of the allocas over in a block.  Using splice means
434      // that the instructions aren't removed from the symbol table, then
435      // reinserted.
436      Caller->getEntryBlock().getInstList().splice(InsertPoint,
437                                                   FirstNewBlock->getInstList(),
438                                                   AI, I);
439    }
440  }
441
442  // If the inlined code contained dynamic alloca instructions, wrap the inlined
443  // code with llvm.stacksave/llvm.stackrestore intrinsics.
444  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
445    Module *M = Caller->getParent();
446    // Get the two intrinsics we care about.
447    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
448    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
449
450    // If we are preserving the callgraph, add edges to the stacksave/restore
451    // functions for the calls we insert.
452    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
453    if (CG) {
454      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
455      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
456      CallerNode = (*CG)[Caller];
457    }
458
459    // Insert the llvm.stacksave.
460    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
461                                          FirstNewBlock->begin());
462    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
463
464    // Insert a call to llvm.stackrestore before any return instructions in the
465    // inlined function.
466    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
467      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
468      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
469    }
470
471    // Count the number of StackRestore calls we insert.
472    unsigned NumStackRestores = Returns.size();
473
474    // If we are inlining an invoke instruction, insert restores before each
475    // unwind.  These unwinds will be rewritten into branches later.
476    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
477      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
478           BB != E; ++BB)
479        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
480          CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
481          if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
482          ++NumStackRestores;
483        }
484    }
485  }
486
487  // If we are inlining tail call instruction through a call site that isn't
488  // marked 'tail', we must remove the tail marker for any calls in the inlined
489  // code.  Also, calls inlined through a 'nounwind' call site should be marked
490  // 'nounwind'.
491  if (InlinedFunctionInfo.ContainsCalls &&
492      (MustClearTailCallFlags || MarkNoUnwind)) {
493    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
494         BB != E; ++BB)
495      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
496        if (CallInst *CI = dyn_cast<CallInst>(I)) {
497          if (MustClearTailCallFlags)
498            CI->setTailCall(false);
499          if (MarkNoUnwind)
500            CI->setDoesNotThrow();
501        }
502  }
503
504  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
505  // instructions are unreachable.
506  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
507    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
508         BB != E; ++BB) {
509      TerminatorInst *Term = BB->getTerminator();
510      if (isa<UnwindInst>(Term)) {
511        new UnreachableInst(Context, Term);
512        BB->getInstList().erase(Term);
513      }
514    }
515
516  // If we are inlining for an invoke instruction, we must make sure to rewrite
517  // any inlined 'unwind' instructions into branches to the invoke exception
518  // destination, and call instructions into invoke instructions.
519  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
520    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
521
522  // If we cloned in _exactly one_ basic block, and if that block ends in a
523  // return instruction, we splice the body of the inlined callee directly into
524  // the calling basic block.
525  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
526    // Move all of the instructions right before the call.
527    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
528                                 FirstNewBlock->begin(), FirstNewBlock->end());
529    // Remove the cloned basic block.
530    Caller->getBasicBlockList().pop_back();
531
532    // If the call site was an invoke instruction, add a branch to the normal
533    // destination.
534    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
535      BranchInst::Create(II->getNormalDest(), TheCall);
536
537    // If the return instruction returned a value, replace uses of the call with
538    // uses of the returned value.
539    if (!TheCall->use_empty()) {
540      ReturnInst *R = Returns[0];
541      if (TheCall == R->getReturnValue())
542        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
543      else
544        TheCall->replaceAllUsesWith(R->getReturnValue());
545    }
546    // Since we are now done with the Call/Invoke, we can delete it.
547    TheCall->eraseFromParent();
548
549    // Since we are now done with the return instruction, delete it also.
550    Returns[0]->eraseFromParent();
551
552    // We are now done with the inlining.
553    return true;
554  }
555
556  // Otherwise, we have the normal case, of more than one block to inline or
557  // multiple return sites.
558
559  // We want to clone the entire callee function into the hole between the
560  // "starter" and "ender" blocks.  How we accomplish this depends on whether
561  // this is an invoke instruction or a call instruction.
562  BasicBlock *AfterCallBB;
563  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
564
565    // Add an unconditional branch to make this look like the CallInst case...
566    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
567
568    // Split the basic block.  This guarantees that no PHI nodes will have to be
569    // updated due to new incoming edges, and make the invoke case more
570    // symmetric to the call case.
571    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
572                                          CalledFunc->getName()+".exit");
573
574  } else {  // It's a call
575    // If this is a call instruction, we need to split the basic block that
576    // the call lives in.
577    //
578    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
579                                          CalledFunc->getName()+".exit");
580  }
581
582  // Change the branch that used to go to AfterCallBB to branch to the first
583  // basic block of the inlined function.
584  //
585  TerminatorInst *Br = OrigBB->getTerminator();
586  assert(Br && Br->getOpcode() == Instruction::Br &&
587         "splitBasicBlock broken!");
588  Br->setOperand(0, FirstNewBlock);
589
590
591  // Now that the function is correct, make it a little bit nicer.  In
592  // particular, move the basic blocks inserted from the end of the function
593  // into the space made by splitting the source basic block.
594  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
595                                     FirstNewBlock, Caller->end());
596
597  // Handle all of the return instructions that we just cloned in, and eliminate
598  // any users of the original call/invoke instruction.
599  const Type *RTy = CalledFunc->getReturnType();
600
601  if (Returns.size() > 1) {
602    // The PHI node should go at the front of the new basic block to merge all
603    // possible incoming values.
604    PHINode *PHI = 0;
605    if (!TheCall->use_empty()) {
606      PHI = PHINode::Create(RTy, TheCall->getName(),
607                            AfterCallBB->begin());
608      // Anything that used the result of the function call should now use the
609      // PHI node as their operand.
610      TheCall->replaceAllUsesWith(PHI);
611    }
612
613    // Loop over all of the return instructions adding entries to the PHI node
614    // as appropriate.
615    if (PHI) {
616      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
617        ReturnInst *RI = Returns[i];
618        assert(RI->getReturnValue()->getType() == PHI->getType() &&
619               "Ret value not consistent in function!");
620        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
621      }
622
623      // Now that we inserted the PHI, check to see if it has a single value
624      // (e.g. all the entries are the same or undef).  If so, remove the PHI so
625      // it doesn't block other optimizations.
626      if (Value *V = PHI->hasConstantValue()) {
627        PHI->replaceAllUsesWith(V);
628        PHI->eraseFromParent();
629      }
630    }
631
632
633    // Add a branch to the merge points and remove return instructions.
634    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
635      ReturnInst *RI = Returns[i];
636      BranchInst::Create(AfterCallBB, RI);
637      RI->eraseFromParent();
638    }
639  } else if (!Returns.empty()) {
640    // Otherwise, if there is exactly one return value, just replace anything
641    // using the return value of the call with the computed value.
642    if (!TheCall->use_empty()) {
643      if (TheCall == Returns[0]->getReturnValue())
644        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
645      else
646        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
647    }
648
649    // Splice the code from the return block into the block that it will return
650    // to, which contains the code that was after the call.
651    BasicBlock *ReturnBB = Returns[0]->getParent();
652    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
653                                      ReturnBB->getInstList());
654
655    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
656    ReturnBB->replaceAllUsesWith(AfterCallBB);
657
658    // Delete the return instruction now and empty ReturnBB now.
659    Returns[0]->eraseFromParent();
660    ReturnBB->eraseFromParent();
661  } else if (!TheCall->use_empty()) {
662    // No returns, but something is using the return value of the call.  Just
663    // nuke the result.
664    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
665  }
666
667  // Since we are now done with the Call/Invoke, we can delete it.
668  TheCall->eraseFromParent();
669
670  // We should always be able to fold the entry block of the function into the
671  // single predecessor of the block...
672  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
673  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
674
675  // Splice the code entry block into calling block, right before the
676  // unconditional branch.
677  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
678  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
679
680  // Remove the unconditional branch.
681  OrigBB->getInstList().erase(Br);
682
683  // Now we can remove the CalleeEntry block, which is now empty.
684  Caller->getBasicBlockList().erase(CalleeEntry);
685
686  return true;
687}
688