1218885Sdim//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2218885Sdim//
3218885Sdim//                     The LLVM Compiler Infrastructure
4218885Sdim//
5218885Sdim// This file is distributed under the University of Illinois Open Source
6218885Sdim// License. See LICENSE.TXT for details.
7218885Sdim//
8218885Sdim//===----------------------------------------------------------------------===//
9218885Sdim//
10218885Sdim// This pass implements an idiom recognizer that transforms simple loops into a
11218885Sdim// non-loop form.  In cases that this kicks in, it can be a significant
12218885Sdim// performance win.
13218885Sdim//
14218885Sdim//===----------------------------------------------------------------------===//
15218885Sdim//
16218885Sdim// TODO List:
17218885Sdim//
18218885Sdim// Future loop memory idioms to recognize:
19218885Sdim//   memcmp, memmove, strlen, etc.
20218885Sdim// Future floating point idioms to recognize in -ffast-math mode:
21218885Sdim//   fpowi
22218885Sdim// Future integer operation idioms to recognize:
23218885Sdim//   ctpop, ctlz, cttz
24218885Sdim//
25218885Sdim// Beware that isel's default lowering for ctpop is highly inefficient for
26218885Sdim// i64 and larger types when i64 is legal and the value has few bits set.  It
27218885Sdim// would be good to enhance isel to emit a loop for ctpop in this case.
28218885Sdim//
29218885Sdim// We should enhance the memset/memcpy recognition to handle multiple stores in
30218885Sdim// the loop.  This would handle things like:
31218885Sdim//   void foo(_Complex float *P)
32218885Sdim//     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
33218885Sdim//
34219077Sdim// We should enhance this to handle negative strides through memory.
35219077Sdim// Alternatively (and perhaps better) we could rely on an earlier pass to force
36219077Sdim// forward iteration through memory, which is generally better for cache
37219077Sdim// behavior.  Negative strides *do* happen for memset/memcpy loops.
38219077Sdim//
39218885Sdim// This could recognize common matrix multiplies and dot product idioms and
40218885Sdim// replace them with calls to BLAS (if linked in??).
41218885Sdim//
42218885Sdim//===----------------------------------------------------------------------===//
43218885Sdim
44218885Sdim#define DEBUG_TYPE "loop-idiom"
45218885Sdim#include "llvm/Transforms/Scalar.h"
46239462Sdim#include "llvm/ADT/Statistic.h"
47218885Sdim#include "llvm/Analysis/AliasAnalysis.h"
48218885Sdim#include "llvm/Analysis/LoopPass.h"
49239462Sdim#include "llvm/Analysis/ScalarEvolutionExpander.h"
50218885Sdim#include "llvm/Analysis/ScalarEvolutionExpressions.h"
51249423Sdim#include "llvm/Analysis/TargetTransformInfo.h"
52218885Sdim#include "llvm/Analysis/ValueTracking.h"
53249423Sdim#include "llvm/IR/DataLayout.h"
54249423Sdim#include "llvm/IR/IRBuilder.h"
55249423Sdim#include "llvm/IR/IntrinsicInst.h"
56249423Sdim#include "llvm/IR/Module.h"
57239462Sdim#include "llvm/Support/Debug.h"
58239462Sdim#include "llvm/Support/raw_ostream.h"
59218885Sdim#include "llvm/Target/TargetLibraryInfo.h"
60218885Sdim#include "llvm/Transforms/Utils/Local.h"
61218885Sdimusing namespace llvm;
62218885Sdim
63218885SdimSTATISTIC(NumMemSet, "Number of memset's formed from loop stores");
64218885SdimSTATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
65218885Sdim
66218885Sdimnamespace {
67249423Sdim
68249423Sdim  class LoopIdiomRecognize;
69249423Sdim
70249423Sdim  /// This class defines some utility functions for loop idiom recognization.
71249423Sdim  class LIRUtil {
72249423Sdim  public:
73249423Sdim    /// Return true iff the block contains nothing but an uncondition branch
74249423Sdim    /// (aka goto instruction).
75249423Sdim    static bool isAlmostEmpty(BasicBlock *);
76249423Sdim
77249423Sdim    static BranchInst *getBranch(BasicBlock *BB) {
78249423Sdim      return dyn_cast<BranchInst>(BB->getTerminator());
79249423Sdim    }
80249423Sdim
81249423Sdim    /// Return the condition of the branch terminating the given basic block.
82249423Sdim    static Value *getBrCondtion(BasicBlock *);
83249423Sdim
84249423Sdim    /// Derive the precondition block (i.e the block that guards the loop
85249423Sdim    /// preheader) from the given preheader.
86249423Sdim    static BasicBlock *getPrecondBb(BasicBlock *PreHead);
87249423Sdim  };
88249423Sdim
89249423Sdim  /// This class is to recoginize idioms of population-count conducted in
90249423Sdim  /// a noncountable loop. Currently it only recognizes this pattern:
91249423Sdim  /// \code
92249423Sdim  ///   while(x) {cnt++; ...; x &= x - 1; ...}
93249423Sdim  /// \endcode
94249423Sdim  class NclPopcountRecognize {
95249423Sdim    LoopIdiomRecognize &LIR;
96249423Sdim    Loop *CurLoop;
97249423Sdim    BasicBlock *PreCondBB;
98249423Sdim
99249423Sdim    typedef IRBuilder<> IRBuilderTy;
100249423Sdim
101249423Sdim  public:
102249423Sdim    explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
103249423Sdim    bool recognize();
104249423Sdim
105249423Sdim  private:
106249423Sdim    /// Take a glimpse of the loop to see if we need to go ahead recoginizing
107249423Sdim    /// the idiom.
108249423Sdim    bool preliminaryScreen();
109249423Sdim
110249423Sdim    /// Check if the given conditional branch is based on the comparison
111249423Sdim    /// beween a variable and zero, and if the variable is non-zero, the
112249423Sdim    /// control yeilds to the loop entry. If the branch matches the behavior,
113249423Sdim    /// the variable involved in the comparion is returned. This function will
114249423Sdim    /// be called to see if the precondition and postcondition of the loop
115249423Sdim    /// are in desirable form.
116249423Sdim    Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
117249423Sdim
118249423Sdim    /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
119249423Sdim    /// is set to the instruction counting the pupulation bit. 2) \p CntPhi
120249423Sdim    /// is set to the corresponding phi node. 3) \p Var is set to the value
121249423Sdim    /// whose population bits are being counted.
122249423Sdim    bool detectIdiom
123249423Sdim      (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
124249423Sdim
125249423Sdim    /// Insert ctpop intrinsic function and some obviously dead instructions.
126249423Sdim    void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
127249423Sdim
128249423Sdim    /// Create llvm.ctpop.* intrinsic function.
129249423Sdim    CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
130249423Sdim  };
131249423Sdim
132218885Sdim  class LoopIdiomRecognize : public LoopPass {
133218885Sdim    Loop *CurLoop;
134243830Sdim    const DataLayout *TD;
135218885Sdim    DominatorTree *DT;
136218885Sdim    ScalarEvolution *SE;
137218885Sdim    TargetLibraryInfo *TLI;
138249423Sdim    const TargetTransformInfo *TTI;
139218885Sdim  public:
140218885Sdim    static char ID;
141218885Sdim    explicit LoopIdiomRecognize() : LoopPass(ID) {
142218885Sdim      initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
143249423Sdim      TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
144218885Sdim    }
145218885Sdim
146218885Sdim    bool runOnLoop(Loop *L, LPPassManager &LPM);
147218885Sdim    bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
148218885Sdim                        SmallVectorImpl<BasicBlock*> &ExitBlocks);
149218885Sdim
150218885Sdim    bool processLoopStore(StoreInst *SI, const SCEV *BECount);
151218885Sdim    bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
152221345Sdim
153218885Sdim    bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
154218885Sdim                                 unsigned StoreAlignment,
155218885Sdim                                 Value *SplatValue, Instruction *TheStore,
156218885Sdim                                 const SCEVAddRecExpr *Ev,
157218885Sdim                                 const SCEV *BECount);
158218885Sdim    bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
159218885Sdim                                    const SCEVAddRecExpr *StoreEv,
160218885Sdim                                    const SCEVAddRecExpr *LoadEv,
161218885Sdim                                    const SCEV *BECount);
162221345Sdim
163218885Sdim    /// This transformation requires natural loop information & requires that
164218885Sdim    /// loop preheaders be inserted into the CFG.
165218885Sdim    ///
166218885Sdim    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167218885Sdim      AU.addRequired<LoopInfo>();
168218885Sdim      AU.addPreserved<LoopInfo>();
169218885Sdim      AU.addRequiredID(LoopSimplifyID);
170218885Sdim      AU.addPreservedID(LoopSimplifyID);
171218885Sdim      AU.addRequiredID(LCSSAID);
172218885Sdim      AU.addPreservedID(LCSSAID);
173218885Sdim      AU.addRequired<AliasAnalysis>();
174218885Sdim      AU.addPreserved<AliasAnalysis>();
175218885Sdim      AU.addRequired<ScalarEvolution>();
176218885Sdim      AU.addPreserved<ScalarEvolution>();
177218885Sdim      AU.addPreserved<DominatorTree>();
178218885Sdim      AU.addRequired<DominatorTree>();
179218885Sdim      AU.addRequired<TargetLibraryInfo>();
180249423Sdim      AU.addRequired<TargetTransformInfo>();
181218885Sdim    }
182249423Sdim
183249423Sdim    const DataLayout *getDataLayout() {
184249423Sdim      return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
185249423Sdim    }
186249423Sdim
187249423Sdim    DominatorTree *getDominatorTree() {
188249423Sdim      return DT ? DT : (DT=&getAnalysis<DominatorTree>());
189249423Sdim    }
190249423Sdim
191249423Sdim    ScalarEvolution *getScalarEvolution() {
192249423Sdim      return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
193249423Sdim    }
194249423Sdim
195249423Sdim    TargetLibraryInfo *getTargetLibraryInfo() {
196249423Sdim      return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
197249423Sdim    }
198249423Sdim
199249423Sdim    const TargetTransformInfo *getTargetTransformInfo() {
200249423Sdim      return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
201249423Sdim    }
202249423Sdim
203249423Sdim    Loop *getLoop() const { return CurLoop; }
204249423Sdim
205249423Sdim  private:
206249423Sdim    bool runOnNoncountableLoop();
207249423Sdim    bool runOnCountableLoop();
208218885Sdim  };
209218885Sdim}
210218885Sdim
211218885Sdimchar LoopIdiomRecognize::ID = 0;
212218885SdimINITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
213218885Sdim                      false, false)
214218885SdimINITIALIZE_PASS_DEPENDENCY(LoopInfo)
215218885SdimINITIALIZE_PASS_DEPENDENCY(DominatorTree)
216218885SdimINITIALIZE_PASS_DEPENDENCY(LoopSimplify)
217218885SdimINITIALIZE_PASS_DEPENDENCY(LCSSA)
218218885SdimINITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
219218885SdimINITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
220218885SdimINITIALIZE_AG_DEPENDENCY(AliasAnalysis)
221249423SdimINITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
222218885SdimINITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
223218885Sdim                    false, false)
224218885Sdim
225218885SdimPass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
226218885Sdim
227223017Sdim/// deleteDeadInstruction - Delete this instruction.  Before we do, go through
228218885Sdim/// and zero out all the operands of this instruction.  If any of them become
229218885Sdim/// dead, delete them and the computation tree that feeds them.
230218885Sdim///
231243830Sdimstatic void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
232243830Sdim                                  const TargetLibraryInfo *TLI) {
233218885Sdim  SmallVector<Instruction*, 32> NowDeadInsts;
234221345Sdim
235218885Sdim  NowDeadInsts.push_back(I);
236221345Sdim
237218885Sdim  // Before we touch this instruction, remove it from SE!
238218885Sdim  do {
239218885Sdim    Instruction *DeadInst = NowDeadInsts.pop_back_val();
240221345Sdim
241218885Sdim    // This instruction is dead, zap it, in stages.  Start by removing it from
242218885Sdim    // SCEV.
243218885Sdim    SE.forgetValue(DeadInst);
244221345Sdim
245218885Sdim    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
246218885Sdim      Value *Op = DeadInst->getOperand(op);
247218885Sdim      DeadInst->setOperand(op, 0);
248221345Sdim
249218885Sdim      // If this operand just became dead, add it to the NowDeadInsts list.
250218885Sdim      if (!Op->use_empty()) continue;
251221345Sdim
252218885Sdim      if (Instruction *OpI = dyn_cast<Instruction>(Op))
253243830Sdim        if (isInstructionTriviallyDead(OpI, TLI))
254218885Sdim          NowDeadInsts.push_back(OpI);
255218885Sdim    }
256221345Sdim
257218885Sdim    DeadInst->eraseFromParent();
258221345Sdim
259218885Sdim  } while (!NowDeadInsts.empty());
260218885Sdim}
261218885Sdim
262223017Sdim/// deleteIfDeadInstruction - If the specified value is a dead instruction,
263223017Sdim/// delete it and any recursively used instructions.
264243830Sdimstatic void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
265243830Sdim                                    const TargetLibraryInfo *TLI) {
266223017Sdim  if (Instruction *I = dyn_cast<Instruction>(V))
267243830Sdim    if (isInstructionTriviallyDead(I, TLI))
268243830Sdim      deleteDeadInstruction(I, SE, TLI);
269223017Sdim}
270223017Sdim
271249423Sdim//===----------------------------------------------------------------------===//
272249423Sdim//
273249423Sdim//          Implementation of LIRUtil
274249423Sdim//
275249423Sdim//===----------------------------------------------------------------------===//
276221345Sdim
277249423Sdim// This fucntion will return true iff the given block contains nothing but goto.
278249423Sdim// A typical usage of this function is to check if the preheader fucntion is
279249423Sdim// "almost" empty such that generated intrinsic function can be moved across
280249423Sdim// preheader and to be placed at the end of the preconditiona block without
281249423Sdim// concerning of breaking data dependence.
282249423Sdimbool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
283249423Sdim  if (BranchInst *Br = getBranch(BB)) {
284249423Sdim    return Br->isUnconditional() && BB->size() == 1;
285249423Sdim  }
286249423Sdim  return false;
287249423Sdim}
288249423Sdim
289249423SdimValue *LIRUtil::getBrCondtion(BasicBlock *BB) {
290249423Sdim  BranchInst *Br = getBranch(BB);
291249423Sdim  return Br ? Br->getCondition() : 0;
292249423Sdim}
293249423Sdim
294249423SdimBasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
295249423Sdim  if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
296249423Sdim    BranchInst *Br = getBranch(BB);
297249423Sdim    return Br && Br->isConditional() ? BB : 0;
298249423Sdim  }
299249423Sdim  return 0;
300249423Sdim}
301249423Sdim
302249423Sdim//===----------------------------------------------------------------------===//
303249423Sdim//
304249423Sdim//          Implementation of NclPopcountRecognize
305249423Sdim//
306249423Sdim//===----------------------------------------------------------------------===//
307249423Sdim
308249423SdimNclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
309249423Sdim  LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
310249423Sdim}
311249423Sdim
312249423Sdimbool NclPopcountRecognize::preliminaryScreen() {
313249423Sdim  const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
314249423Sdim  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
315243830Sdim    return false;
316243830Sdim
317249423Sdim  // Counting population are usually conducted by few arithmetic instrutions.
318249423Sdim  // Such instructions can be easilly "absorbed" by vacant slots in a
319249423Sdim  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
320249423Sdim  // in a compact loop.
321249423Sdim
322249423Sdim  // Give up if the loop has multiple blocks or multiple backedges.
323249423Sdim  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
324224145Sdim    return false;
325224145Sdim
326249423Sdim  BasicBlock *LoopBody = *(CurLoop->block_begin());
327249423Sdim  if (LoopBody->size() >= 20) {
328249423Sdim    // The loop is too big, bail out.
329218885Sdim    return false;
330249423Sdim  }
331249423Sdim
332249423Sdim  // It should have a preheader containing nothing but a goto instruction.
333249423Sdim  BasicBlock *PreHead = CurLoop->getLoopPreheader();
334249423Sdim  if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
335249423Sdim    return false;
336249423Sdim
337249423Sdim  // It should have a precondition block where the generated popcount instrinsic
338249423Sdim  // function will be inserted.
339249423Sdim  PreCondBB = LIRUtil::getPrecondBb(PreHead);
340249423Sdim  if (!PreCondBB)
341249423Sdim    return false;
342249423Sdim
343249423Sdim  return true;
344249423Sdim}
345249423Sdim
346249423SdimValue *NclPopcountRecognize::matchCondition (BranchInst *Br,
347249423Sdim                                             BasicBlock *LoopEntry) const {
348249423Sdim  if (!Br || !Br->isConditional())
349249423Sdim    return 0;
350249423Sdim
351249423Sdim  ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
352249423Sdim  if (!Cond)
353249423Sdim    return 0;
354249423Sdim
355249423Sdim  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
356249423Sdim  if (!CmpZero || !CmpZero->isZero())
357249423Sdim    return 0;
358249423Sdim
359249423Sdim  ICmpInst::Predicate Pred = Cond->getPredicate();
360249423Sdim  if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
361249423Sdim      (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
362249423Sdim    return Cond->getOperand(0);
363249423Sdim
364249423Sdim  return 0;
365249423Sdim}
366249423Sdim
367249423Sdimbool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
368249423Sdim                                       PHINode *&CntPhi,
369249423Sdim                                       Value *&Var) const {
370249423Sdim  // Following code tries to detect this idiom:
371249423Sdim  //
372249423Sdim  //    if (x0 != 0)
373249423Sdim  //      goto loop-exit // the precondition of the loop
374249423Sdim  //    cnt0 = init-val;
375249423Sdim  //    do {
376249423Sdim  //       x1 = phi (x0, x2);
377249423Sdim  //       cnt1 = phi(cnt0, cnt2);
378249423Sdim  //
379249423Sdim  //       cnt2 = cnt1 + 1;
380249423Sdim  //        ...
381249423Sdim  //       x2 = x1 & (x1 - 1);
382249423Sdim  //        ...
383249423Sdim  //    } while(x != 0);
384249423Sdim  //
385249423Sdim  // loop-exit:
386249423Sdim  //
387249423Sdim
388249423Sdim  // step 1: Check to see if the look-back branch match this pattern:
389249423Sdim  //    "if (a!=0) goto loop-entry".
390249423Sdim  BasicBlock *LoopEntry;
391249423Sdim  Instruction *DefX2, *CountInst;
392249423Sdim  Value *VarX1, *VarX0;
393249423Sdim  PHINode *PhiX, *CountPhi;
394249423Sdim
395249423Sdim  DefX2 = CountInst = 0;
396249423Sdim  VarX1 = VarX0 = 0;
397249423Sdim  PhiX = CountPhi = 0;
398249423Sdim  LoopEntry = *(CurLoop->block_begin());
399249423Sdim
400249423Sdim  // step 1: Check if the loop-back branch is in desirable form.
401249423Sdim  {
402249423Sdim    if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
403249423Sdim      DefX2 = dyn_cast<Instruction>(T);
404249423Sdim    else
405249423Sdim      return false;
406249423Sdim  }
407249423Sdim
408249423Sdim  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
409249423Sdim  {
410249423Sdim    if (!DefX2 || DefX2->getOpcode() != Instruction::And)
411249423Sdim      return false;
412249423Sdim
413249423Sdim    BinaryOperator *SubOneOp;
414249423Sdim
415249423Sdim    if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
416249423Sdim      VarX1 = DefX2->getOperand(1);
417249423Sdim    else {
418249423Sdim      VarX1 = DefX2->getOperand(0);
419249423Sdim      SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
420249423Sdim    }
421249423Sdim    if (!SubOneOp)
422249423Sdim      return false;
423249423Sdim
424249423Sdim    Instruction *SubInst = cast<Instruction>(SubOneOp);
425249423Sdim    ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
426249423Sdim    if (!Dec ||
427249423Sdim        !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
428249423Sdim          (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
429249423Sdim      return false;
430249423Sdim    }
431249423Sdim  }
432249423Sdim
433249423Sdim  // step 3: Check the recurrence of variable X
434249423Sdim  {
435249423Sdim    PhiX = dyn_cast<PHINode>(VarX1);
436249423Sdim    if (!PhiX ||
437249423Sdim        (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
438249423Sdim      return false;
439249423Sdim    }
440249423Sdim  }
441249423Sdim
442249423Sdim  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
443249423Sdim  {
444249423Sdim    CountInst = NULL;
445249423Sdim    for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
446249423Sdim           IterE = LoopEntry->end(); Iter != IterE; Iter++) {
447249423Sdim      Instruction *Inst = Iter;
448249423Sdim      if (Inst->getOpcode() != Instruction::Add)
449249423Sdim        continue;
450249423Sdim
451249423Sdim      ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
452249423Sdim      if (!Inc || !Inc->isOne())
453249423Sdim        continue;
454249423Sdim
455249423Sdim      PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
456249423Sdim      if (!Phi || Phi->getParent() != LoopEntry)
457249423Sdim        continue;
458249423Sdim
459249423Sdim      // Check if the result of the instruction is live of the loop.
460249423Sdim      bool LiveOutLoop = false;
461249423Sdim      for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
462249423Sdim             I != E;  I++) {
463249423Sdim        if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
464249423Sdim          LiveOutLoop = true; break;
465249423Sdim        }
466249423Sdim      }
467249423Sdim
468249423Sdim      if (LiveOutLoop) {
469249423Sdim        CountInst = Inst;
470249423Sdim        CountPhi = Phi;
471249423Sdim        break;
472249423Sdim      }
473249423Sdim    }
474249423Sdim
475249423Sdim    if (!CountInst)
476249423Sdim      return false;
477249423Sdim  }
478249423Sdim
479249423Sdim  // step 5: check if the precondition is in this form:
480249423Sdim  //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
481249423Sdim  {
482249423Sdim    BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
483249423Sdim    Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
484249423Sdim    if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
485249423Sdim      return false;
486249423Sdim
487249423Sdim    CntInst = CountInst;
488249423Sdim    CntPhi = CountPhi;
489249423Sdim    Var = T;
490249423Sdim  }
491249423Sdim
492249423Sdim  return true;
493249423Sdim}
494249423Sdim
495249423Sdimvoid NclPopcountRecognize::transform(Instruction *CntInst,
496249423Sdim                                     PHINode *CntPhi, Value *Var) {
497249423Sdim
498249423Sdim  ScalarEvolution *SE = LIR.getScalarEvolution();
499249423Sdim  TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
500249423Sdim  BasicBlock *PreHead = CurLoop->getLoopPreheader();
501249423Sdim  BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
502249423Sdim  const DebugLoc DL = CntInst->getDebugLoc();
503249423Sdim
504249423Sdim  // Assuming before transformation, the loop is following:
505249423Sdim  //  if (x) // the precondition
506249423Sdim  //     do { cnt++; x &= x - 1; } while(x);
507249423Sdim
508249423Sdim  // Step 1: Insert the ctpop instruction at the end of the precondition block
509249423Sdim  IRBuilderTy Builder(PreCondBr);
510249423Sdim  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
511249423Sdim  {
512249423Sdim    PopCnt = createPopcntIntrinsic(Builder, Var, DL);
513249423Sdim    NewCount = PopCntZext =
514249423Sdim      Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
515249423Sdim
516249423Sdim    if (NewCount != PopCnt)
517249423Sdim      (cast<Instruction>(NewCount))->setDebugLoc(DL);
518249423Sdim
519249423Sdim    // TripCnt is exactly the number of iterations the loop has
520249423Sdim    TripCnt = NewCount;
521249423Sdim
522249423Sdim    // If the popoulation counter's initial value is not zero, insert Add Inst.
523249423Sdim    Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
524249423Sdim    ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
525249423Sdim    if (!InitConst || !InitConst->isZero()) {
526249423Sdim      NewCount = Builder.CreateAdd(NewCount, CntInitVal);
527249423Sdim      (cast<Instruction>(NewCount))->setDebugLoc(DL);
528249423Sdim    }
529249423Sdim  }
530249423Sdim
531249423Sdim  // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
532249423Sdim  //   "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
533249423Sdim  //   function would be partial dead code, and downstream passes will drag
534249423Sdim  //   it back from the precondition block to the preheader.
535249423Sdim  {
536249423Sdim    ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
537249423Sdim
538249423Sdim    Value *Opnd0 = PopCntZext;
539249423Sdim    Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
540249423Sdim    if (PreCond->getOperand(0) != Var)
541249423Sdim      std::swap(Opnd0, Opnd1);
542249423Sdim
543249423Sdim    ICmpInst *NewPreCond =
544249423Sdim      cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
545249423Sdim    PreCond->replaceAllUsesWith(NewPreCond);
546249423Sdim
547249423Sdim    deleteDeadInstruction(PreCond, *SE, TLI);
548249423Sdim  }
549249423Sdim
550249423Sdim  // Step 3: Note that the population count is exactly the trip count of the
551249423Sdim  // loop in question, which enble us to to convert the loop from noncountable
552249423Sdim  // loop into a countable one. The benefit is twofold:
553249423Sdim  //
554249423Sdim  //  - If the loop only counts population, the entire loop become dead after
555249423Sdim  //    the transformation. It is lots easier to prove a countable loop dead
556249423Sdim  //    than to prove a noncountable one. (In some C dialects, a infite loop
557249423Sdim  //    isn't dead even if it computes nothing useful. In general, DCE needs
558249423Sdim  //    to prove a noncountable loop finite before safely delete it.)
559249423Sdim  //
560249423Sdim  //  - If the loop also performs something else, it remains alive.
561249423Sdim  //    Since it is transformed to countable form, it can be aggressively
562249423Sdim  //    optimized by some optimizations which are in general not applicable
563249423Sdim  //    to a noncountable loop.
564249423Sdim  //
565249423Sdim  // After this step, this loop (conceptually) would look like following:
566249423Sdim  //   newcnt = __builtin_ctpop(x);
567249423Sdim  //   t = newcnt;
568249423Sdim  //   if (x)
569249423Sdim  //     do { cnt++; x &= x-1; t--) } while (t > 0);
570249423Sdim  BasicBlock *Body = *(CurLoop->block_begin());
571249423Sdim  {
572249423Sdim    BranchInst *LbBr = LIRUtil::getBranch(Body);
573249423Sdim    ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
574249423Sdim    Type *Ty = TripCnt->getType();
575249423Sdim
576249423Sdim    PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
577249423Sdim
578249423Sdim    Builder.SetInsertPoint(LbCond);
579249423Sdim    Value *Opnd1 = cast<Value>(TcPhi);
580249423Sdim    Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
581249423Sdim    Instruction *TcDec =
582249423Sdim      cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
583249423Sdim
584249423Sdim    TcPhi->addIncoming(TripCnt, PreHead);
585249423Sdim    TcPhi->addIncoming(TcDec, Body);
586249423Sdim
587249423Sdim    CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
588249423Sdim      CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
589249423Sdim    LbCond->setPredicate(Pred);
590249423Sdim    LbCond->setOperand(0, TcDec);
591249423Sdim    LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
592249423Sdim  }
593249423Sdim
594249423Sdim  // Step 4: All the references to the original population counter outside
595249423Sdim  //  the loop are replaced with the NewCount -- the value returned from
596249423Sdim  //  __builtin_ctpop().
597249423Sdim  {
598249423Sdim    SmallVector<Value *, 4> CntUses;
599249423Sdim    for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
600249423Sdim         I != E; I++) {
601249423Sdim      if (cast<Instruction>(*I)->getParent() != Body)
602249423Sdim        CntUses.push_back(*I);
603249423Sdim    }
604249423Sdim    for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
605249423Sdim      (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
606249423Sdim    }
607249423Sdim  }
608249423Sdim
609249423Sdim  // step 5: Forget the "non-computable" trip-count SCEV associated with the
610249423Sdim  //   loop. The loop would otherwise not be deleted even if it becomes empty.
611249423Sdim  SE->forgetLoop(CurLoop);
612249423Sdim}
613249423Sdim
614249423SdimCallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
615249423Sdim                                                      Value *Val, DebugLoc DL) {
616249423Sdim  Value *Ops[] = { Val };
617249423Sdim  Type *Tys[] = { Val->getType() };
618249423Sdim
619249423Sdim  Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
620249423Sdim  Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
621249423Sdim  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
622249423Sdim  CI->setDebugLoc(DL);
623249423Sdim
624249423Sdim  return CI;
625249423Sdim}
626249423Sdim
627249423Sdim/// recognize - detect population count idiom in a non-countable loop. If
628249423Sdim///   detected, transform the relevant code to popcount intrinsic function
629249423Sdim///   call, and return true; otherwise, return false.
630249423Sdimbool NclPopcountRecognize::recognize() {
631249423Sdim
632249423Sdim  if (!LIR.getTargetTransformInfo())
633249423Sdim    return false;
634249423Sdim
635249423Sdim  LIR.getScalarEvolution();
636249423Sdim
637249423Sdim  if (!preliminaryScreen())
638249423Sdim    return false;
639249423Sdim
640249423Sdim  Instruction *CntInst;
641249423Sdim  PHINode *CntPhi;
642249423Sdim  Value *Val;
643249423Sdim  if (!detectIdiom(CntInst, CntPhi, Val))
644249423Sdim    return false;
645249423Sdim
646249423Sdim  transform(CntInst, CntPhi, Val);
647249423Sdim  return true;
648249423Sdim}
649249423Sdim
650249423Sdim//===----------------------------------------------------------------------===//
651249423Sdim//
652249423Sdim//          Implementation of LoopIdiomRecognize
653249423Sdim//
654249423Sdim//===----------------------------------------------------------------------===//
655249423Sdim
656249423Sdimbool LoopIdiomRecognize::runOnCountableLoop() {
657249423Sdim  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
658218885Sdim  if (isa<SCEVCouldNotCompute>(BECount)) return false;
659221345Sdim
660218885Sdim  // If this loop executes exactly one time, then it should be peeled, not
661218885Sdim  // optimized by this pass.
662218885Sdim  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
663218885Sdim    if (BECst->getValue()->getValue() == 0)
664218885Sdim      return false;
665221345Sdim
666218885Sdim  // We require target data for now.
667249423Sdim  if (!getDataLayout())
668249423Sdim    return false;
669218885Sdim
670249423Sdim  // set DT
671249423Sdim  (void)getDominatorTree();
672249423Sdim
673218885Sdim  LoopInfo &LI = getAnalysis<LoopInfo>();
674218885Sdim  TLI = &getAnalysis<TargetLibraryInfo>();
675221345Sdim
676249423Sdim  // set TLI
677249423Sdim  (void)getTargetLibraryInfo();
678249423Sdim
679218885Sdim  SmallVector<BasicBlock*, 8> ExitBlocks;
680218885Sdim  CurLoop->getUniqueExitBlocks(ExitBlocks);
681218885Sdim
682218885Sdim  DEBUG(dbgs() << "loop-idiom Scanning: F["
683249423Sdim               << CurLoop->getHeader()->getParent()->getName()
684249423Sdim               << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
685221345Sdim
686218885Sdim  bool MadeChange = false;
687218885Sdim  // Scan all the blocks in the loop that are not in subloops.
688249423Sdim  for (Loop::block_iterator BI = CurLoop->block_begin(),
689249423Sdim         E = CurLoop->block_end(); BI != E; ++BI) {
690218885Sdim    // Ignore blocks in subloops.
691218885Sdim    if (LI.getLoopFor(*BI) != CurLoop)
692218885Sdim      continue;
693221345Sdim
694218885Sdim    MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
695218885Sdim  }
696218885Sdim  return MadeChange;
697218885Sdim}
698218885Sdim
699249423Sdimbool LoopIdiomRecognize::runOnNoncountableLoop() {
700249423Sdim  NclPopcountRecognize Popcount(*this);
701249423Sdim  if (Popcount.recognize())
702249423Sdim    return true;
703249423Sdim
704249423Sdim  return false;
705249423Sdim}
706249423Sdim
707249423Sdimbool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
708249423Sdim  CurLoop = L;
709249423Sdim
710249423Sdim  // If the loop could not be converted to canonical form, it must have an
711249423Sdim  // indirectbr in it, just give up.
712249423Sdim  if (!L->getLoopPreheader())
713249423Sdim    return false;
714249423Sdim
715249423Sdim  // Disable loop idiom recognition if the function's name is a common idiom.
716249423Sdim  StringRef Name = L->getHeader()->getParent()->getName();
717249423Sdim  if (Name == "memset" || Name == "memcpy")
718249423Sdim    return false;
719249423Sdim
720249423Sdim  SE = &getAnalysis<ScalarEvolution>();
721249423Sdim  if (SE->hasLoopInvariantBackedgeTakenCount(L))
722249423Sdim    return runOnCountableLoop();
723249423Sdim  return runOnNoncountableLoop();
724249423Sdim}
725249423Sdim
726218885Sdim/// runOnLoopBlock - Process the specified block, which lives in a counted loop
727218885Sdim/// with the specified backedge count.  This block is known to be in the current
728218885Sdim/// loop and not in any subloops.
729218885Sdimbool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
730218885Sdim                                     SmallVectorImpl<BasicBlock*> &ExitBlocks) {
731218885Sdim  // We can only promote stores in this block if they are unconditionally
732218885Sdim  // executed in the loop.  For a block to be unconditionally executed, it has
733218885Sdim  // to dominate all the exit blocks of the loop.  Verify this now.
734218885Sdim  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
735218885Sdim    if (!DT->dominates(BB, ExitBlocks[i]))
736218885Sdim      return false;
737221345Sdim
738218885Sdim  bool MadeChange = false;
739218885Sdim  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
740218885Sdim    Instruction *Inst = I++;
741218885Sdim    // Look for store instructions, which may be optimized to memset/memcpy.
742218885Sdim    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
743218885Sdim      WeakVH InstPtr(I);
744218885Sdim      if (!processLoopStore(SI, BECount)) continue;
745218885Sdim      MadeChange = true;
746221345Sdim
747218885Sdim      // If processing the store invalidated our iterator, start over from the
748218885Sdim      // top of the block.
749218885Sdim      if (InstPtr == 0)
750218885Sdim        I = BB->begin();
751218885Sdim      continue;
752218885Sdim    }
753221345Sdim
754218885Sdim    // Look for memset instructions, which may be optimized to a larger memset.
755218885Sdim    if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
756218885Sdim      WeakVH InstPtr(I);
757218885Sdim      if (!processLoopMemSet(MSI, BECount)) continue;
758218885Sdim      MadeChange = true;
759221345Sdim
760218885Sdim      // If processing the memset invalidated our iterator, start over from the
761218885Sdim      // top of the block.
762218885Sdim      if (InstPtr == 0)
763218885Sdim        I = BB->begin();
764218885Sdim      continue;
765218885Sdim    }
766218885Sdim  }
767221345Sdim
768218885Sdim  return MadeChange;
769218885Sdim}
770218885Sdim
771218885Sdim
772218885Sdim/// processLoopStore - See if this store can be promoted to a memset or memcpy.
773218885Sdimbool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
774226633Sdim  if (!SI->isSimple()) return false;
775218885Sdim
776218885Sdim  Value *StoredVal = SI->getValueOperand();
777218885Sdim  Value *StorePtr = SI->getPointerOperand();
778221345Sdim
779218885Sdim  // Reject stores that are so large that they overflow an unsigned.
780218885Sdim  uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
781218885Sdim  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
782218885Sdim    return false;
783221345Sdim
784218885Sdim  // See if the pointer expression is an AddRec like {base,+,1} on the current
785218885Sdim  // loop, which indicates a strided store.  If we have something else, it's a
786218885Sdim  // random store we can't handle.
787218885Sdim  const SCEVAddRecExpr *StoreEv =
788218885Sdim    dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
789218885Sdim  if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
790218885Sdim    return false;
791218885Sdim
792218885Sdim  // Check to see if the stride matches the size of the store.  If so, then we
793218885Sdim  // know that every byte is touched in the loop.
794221345Sdim  unsigned StoreSize = (unsigned)SizeInBits >> 3;
795218885Sdim  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
796221345Sdim
797219077Sdim  if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
798219077Sdim    // TODO: Could also handle negative stride here someday, that will require
799219077Sdim    // the validity check in mayLoopAccessLocation to be updated though.
800219077Sdim    // Enable this to print exact negative strides.
801219077Sdim    if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
802219077Sdim      dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
803219077Sdim      dbgs() << "BB: " << *SI->getParent();
804219077Sdim    }
805221345Sdim
806218885Sdim    return false;
807219077Sdim  }
808218885Sdim
809218885Sdim  // See if we can optimize just this store in isolation.
810218885Sdim  if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
811218885Sdim                              StoredVal, SI, StoreEv, BECount))
812218885Sdim    return true;
813218885Sdim
814218885Sdim  // If the stored value is a strided load in the same loop with the same stride
815218885Sdim  // this this may be transformable into a memcpy.  This kicks in for stuff like
816218885Sdim  //   for (i) A[i] = B[i];
817218885Sdim  if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
818218885Sdim    const SCEVAddRecExpr *LoadEv =
819218885Sdim      dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
820218885Sdim    if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
821226633Sdim        StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
822218885Sdim      if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
823218885Sdim        return true;
824218885Sdim  }
825218885Sdim  //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
826218885Sdim
827218885Sdim  return false;
828218885Sdim}
829218885Sdim
830218885Sdim/// processLoopMemSet - See if this memset can be promoted to a large memset.
831218885Sdimbool LoopIdiomRecognize::
832218885SdimprocessLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
833218885Sdim  // We can only handle non-volatile memsets with a constant size.
834218885Sdim  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
835218885Sdim
836218885Sdim  // If we're not allowed to hack on memset, we fail.
837218885Sdim  if (!TLI->has(LibFunc::memset))
838218885Sdim    return false;
839221345Sdim
840218885Sdim  Value *Pointer = MSI->getDest();
841221345Sdim
842218885Sdim  // See if the pointer expression is an AddRec like {base,+,1} on the current
843218885Sdim  // loop, which indicates a strided store.  If we have something else, it's a
844218885Sdim  // random store we can't handle.
845218885Sdim  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
846218885Sdim  if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
847218885Sdim    return false;
848218885Sdim
849218885Sdim  // Reject memsets that are so large that they overflow an unsigned.
850218885Sdim  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
851218885Sdim  if ((SizeInBytes >> 32) != 0)
852218885Sdim    return false;
853221345Sdim
854218885Sdim  // Check to see if the stride matches the size of the memset.  If so, then we
855218885Sdim  // know that every byte is touched in the loop.
856218885Sdim  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
857221345Sdim
858218885Sdim  // TODO: Could also handle negative stride here someday, that will require the
859218885Sdim  // validity check in mayLoopAccessLocation to be updated though.
860218885Sdim  if (Stride == 0 || MSI->getLength() != Stride->getValue())
861218885Sdim    return false;
862221345Sdim
863218885Sdim  return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
864218885Sdim                                 MSI->getAlignment(), MSI->getValue(),
865218885Sdim                                 MSI, Ev, BECount);
866218885Sdim}
867218885Sdim
868218885Sdim
869218885Sdim/// mayLoopAccessLocation - Return true if the specified loop might access the
870218885Sdim/// specified pointer location, which is a loop-strided access.  The 'Access'
871218885Sdim/// argument specifies what the verboten forms of access are (read or write).
872218885Sdimstatic bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
873218885Sdim                                  Loop *L, const SCEV *BECount,
874218885Sdim                                  unsigned StoreSize, AliasAnalysis &AA,
875218885Sdim                                  Instruction *IgnoredStore) {
876218885Sdim  // Get the location that may be stored across the loop.  Since the access is
877218885Sdim  // strided positively through memory, we say that the modified location starts
878218885Sdim  // at the pointer and has infinite size.
879218885Sdim  uint64_t AccessSize = AliasAnalysis::UnknownSize;
880218885Sdim
881218885Sdim  // If the loop iterates a fixed number of times, we can refine the access size
882218885Sdim  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
883218885Sdim  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
884218885Sdim    AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
885221345Sdim
886218885Sdim  // TODO: For this to be really effective, we have to dive into the pointer
887218885Sdim  // operand in the store.  Store to &A[i] of 100 will always return may alias
888218885Sdim  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
889218885Sdim  // which will then no-alias a store to &A[100].
890218885Sdim  AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
891218885Sdim
892218885Sdim  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
893218885Sdim       ++BI)
894218885Sdim    for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
895218885Sdim      if (&*I != IgnoredStore &&
896218885Sdim          (AA.getModRefInfo(I, StoreLoc) & Access))
897218885Sdim        return true;
898218885Sdim
899218885Sdim  return false;
900218885Sdim}
901218885Sdim
902218885Sdim/// getMemSetPatternValue - If a strided store of the specified value is safe to
903218885Sdim/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
904218885Sdim/// be passed in.  Otherwise, return null.
905218885Sdim///
906218885Sdim/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
907218885Sdim/// just replicate their input array and then pass on to memset_pattern16.
908243830Sdimstatic Constant *getMemSetPatternValue(Value *V, const DataLayout &TD) {
909218885Sdim  // If the value isn't a constant, we can't promote it to being in a constant
910218885Sdim  // array.  We could theoretically do a store to an alloca or something, but
911218885Sdim  // that doesn't seem worthwhile.
912218885Sdim  Constant *C = dyn_cast<Constant>(V);
913218885Sdim  if (C == 0) return 0;
914221345Sdim
915218885Sdim  // Only handle simple values that are a power of two bytes in size.
916218885Sdim  uint64_t Size = TD.getTypeSizeInBits(V->getType());
917218885Sdim  if (Size == 0 || (Size & 7) || (Size & (Size-1)))
918218885Sdim    return 0;
919221345Sdim
920218885Sdim  // Don't care enough about darwin/ppc to implement this.
921218885Sdim  if (TD.isBigEndian())
922218885Sdim    return 0;
923218885Sdim
924218885Sdim  // Convert to size in bytes.
925218885Sdim  Size /= 8;
926218885Sdim
927218885Sdim  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
928218885Sdim  // if the top and bottom are the same (e.g. for vectors and large integers).
929218885Sdim  if (Size > 16) return 0;
930221345Sdim
931218885Sdim  // If the constant is exactly 16 bytes, just use it.
932218885Sdim  if (Size == 16) return C;
933218885Sdim
934218885Sdim  // Otherwise, we'll use an array of the constants.
935218885Sdim  unsigned ArraySize = 16/Size;
936218885Sdim  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
937218885Sdim  return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
938218885Sdim}
939218885Sdim
940218885Sdim
941218885Sdim/// processLoopStridedStore - We see a strided store of some value.  If we can
942218885Sdim/// transform this into a memset or memset_pattern in the loop preheader, do so.
943218885Sdimbool LoopIdiomRecognize::
944218885SdimprocessLoopStridedStore(Value *DestPtr, unsigned StoreSize,
945218885Sdim                        unsigned StoreAlignment, Value *StoredVal,
946218885Sdim                        Instruction *TheStore, const SCEVAddRecExpr *Ev,
947218885Sdim                        const SCEV *BECount) {
948221345Sdim
949218885Sdim  // If the stored value is a byte-wise value (like i32 -1), then it may be
950218885Sdim  // turned into a memset of i8 -1, assuming that all the consecutive bytes
951218885Sdim  // are stored.  A store of i32 0x01020304 can never be turned into a memset,
952218885Sdim  // but it can be turned into memset_pattern if the target supports it.
953218885Sdim  Value *SplatValue = isBytewiseValue(StoredVal);
954218885Sdim  Constant *PatternValue = 0;
955221345Sdim
956218885Sdim  // If we're allowed to form a memset, and the stored value would be acceptable
957218885Sdim  // for memset, use it.
958218885Sdim  if (SplatValue && TLI->has(LibFunc::memset) &&
959218885Sdim      // Verify that the stored value is loop invariant.  If not, we can't
960218885Sdim      // promote the memset.
961218885Sdim      CurLoop->isLoopInvariant(SplatValue)) {
962218885Sdim    // Keep and use SplatValue.
963218885Sdim    PatternValue = 0;
964218885Sdim  } else if (TLI->has(LibFunc::memset_pattern16) &&
965218885Sdim             (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
966218885Sdim    // It looks like we can use PatternValue!
967218885Sdim    SplatValue = 0;
968218885Sdim  } else {
969218885Sdim    // Otherwise, this isn't an idiom we can transform.  For example, we can't
970226633Sdim    // do anything with a 3-byte store.
971218885Sdim    return false;
972218885Sdim  }
973221345Sdim
974223017Sdim  // The trip count of the loop and the base pointer of the addrec SCEV is
975223017Sdim  // guaranteed to be loop invariant, which means that it should dominate the
976223017Sdim  // header.  This allows us to insert code for it in the preheader.
977223017Sdim  BasicBlock *Preheader = CurLoop->getLoopPreheader();
978223017Sdim  IRBuilder<> Builder(Preheader->getTerminator());
979224145Sdim  SCEVExpander Expander(*SE, "loop-idiom");
980224145Sdim
981218885Sdim  // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
982218885Sdim  // this into a memset in the loop preheader now if we want.  However, this
983218885Sdim  // would be unsafe to do if there is anything else in the loop that may read
984223017Sdim  // or write to the aliased location.  Check for any overlap by generating the
985223017Sdim  // base pointer and checking the region.
986218885Sdim  unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
987221345Sdim  Value *BasePtr =
988218885Sdim    Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
989218885Sdim                           Preheader->getTerminator());
990221345Sdim
991223017Sdim
992223017Sdim  if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
993223017Sdim                            CurLoop, BECount,
994223017Sdim                            StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
995223017Sdim    Expander.clear();
996223017Sdim    // If we generated new code for the base pointer, clean up.
997243830Sdim    deleteIfDeadInstruction(BasePtr, *SE, TLI);
998223017Sdim    return false;
999223017Sdim  }
1000224145Sdim
1001223017Sdim  // Okay, everything looks good, insert the memset.
1002223017Sdim
1003218885Sdim  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1004218885Sdim  // pointer size if it isn't already.
1005226633Sdim  Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
1006218885Sdim  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1007221345Sdim
1008218885Sdim  const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
1009221345Sdim                                         SCEV::FlagNUW);
1010218885Sdim  if (StoreSize != 1)
1011218885Sdim    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
1012221345Sdim                               SCEV::FlagNUW);
1013221345Sdim
1014221345Sdim  Value *NumBytes =
1015218885Sdim    Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
1016221345Sdim
1017221345Sdim  CallInst *NewCall;
1018218885Sdim  if (SplatValue)
1019218885Sdim    NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
1020218885Sdim  else {
1021218885Sdim    Module *M = TheStore->getParent()->getParent()->getParent();
1022218885Sdim    Value *MSP = M->getOrInsertFunction("memset_pattern16",
1023218885Sdim                                        Builder.getVoidTy(),
1024221345Sdim                                        Builder.getInt8PtrTy(),
1025218885Sdim                                        Builder.getInt8PtrTy(), IntPtr,
1026218885Sdim                                        (void*)0);
1027221345Sdim
1028218885Sdim    // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1029218885Sdim    // an constant array of 16-bytes.  Plop the value into a mergable global.
1030218885Sdim    GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1031218885Sdim                                            GlobalValue::InternalLinkage,
1032218885Sdim                                            PatternValue, ".memset_pattern");
1033218885Sdim    GV->setUnnamedAddr(true); // Ok to merge these.
1034218885Sdim    GV->setAlignment(16);
1035218885Sdim    Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
1036218885Sdim    NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
1037218885Sdim  }
1038221345Sdim
1039218885Sdim  DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1040218885Sdim               << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
1041221345Sdim  NewCall->setDebugLoc(TheStore->getDebugLoc());
1042221345Sdim
1043218885Sdim  // Okay, the memset has been formed.  Zap the original store and anything that
1044218885Sdim  // feeds into it.
1045243830Sdim  deleteDeadInstruction(TheStore, *SE, TLI);
1046218885Sdim  ++NumMemSet;
1047218885Sdim  return true;
1048218885Sdim}
1049218885Sdim
1050218885Sdim/// processLoopStoreOfLoopLoad - We see a strided store whose value is a
1051218885Sdim/// same-strided load.
1052218885Sdimbool LoopIdiomRecognize::
1053218885SdimprocessLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
1054218885Sdim                           const SCEVAddRecExpr *StoreEv,
1055218885Sdim                           const SCEVAddRecExpr *LoadEv,
1056218885Sdim                           const SCEV *BECount) {
1057218885Sdim  // If we're not allowed to form memcpy, we fail.
1058218885Sdim  if (!TLI->has(LibFunc::memcpy))
1059218885Sdim    return false;
1060221345Sdim
1061218885Sdim  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1062221345Sdim
1063223017Sdim  // The trip count of the loop and the base pointer of the addrec SCEV is
1064223017Sdim  // guaranteed to be loop invariant, which means that it should dominate the
1065223017Sdim  // header.  This allows us to insert code for it in the preheader.
1066223017Sdim  BasicBlock *Preheader = CurLoop->getLoopPreheader();
1067223017Sdim  IRBuilder<> Builder(Preheader->getTerminator());
1068224145Sdim  SCEVExpander Expander(*SE, "loop-idiom");
1069224145Sdim
1070218885Sdim  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1071218885Sdim  // this into a memcpy in the loop preheader now if we want.  However, this
1072218885Sdim  // would be unsafe to do if there is anything else in the loop that may read
1073223017Sdim  // or write the memory region we're storing to.  This includes the load that
1074223017Sdim  // feeds the stores.  Check for an alias by generating the base address and
1075223017Sdim  // checking everything.
1076223017Sdim  Value *StoreBasePtr =
1077223017Sdim    Expander.expandCodeFor(StoreEv->getStart(),
1078223017Sdim                           Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
1079223017Sdim                           Preheader->getTerminator());
1080224145Sdim
1081223017Sdim  if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
1082218885Sdim                            CurLoop, BECount, StoreSize,
1083223017Sdim                            getAnalysis<AliasAnalysis>(), SI)) {
1084223017Sdim    Expander.clear();
1085223017Sdim    // If we generated new code for the base pointer, clean up.
1086243830Sdim    deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1087218885Sdim    return false;
1088223017Sdim  }
1089218885Sdim
1090218885Sdim  // For a memcpy, we have to make sure that the input array is not being
1091218885Sdim  // mutated by the loop.
1092221345Sdim  Value *LoadBasePtr =
1093218885Sdim    Expander.expandCodeFor(LoadEv->getStart(),
1094218885Sdim                           Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
1095218885Sdim                           Preheader->getTerminator());
1096221345Sdim
1097223017Sdim  if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
1098223017Sdim                            StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
1099223017Sdim    Expander.clear();
1100223017Sdim    // If we generated new code for the base pointer, clean up.
1101243830Sdim    deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
1102243830Sdim    deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1103223017Sdim    return false;
1104223017Sdim  }
1105224145Sdim
1106223017Sdim  // Okay, everything is safe, we can transform this!
1107223017Sdim
1108224145Sdim
1109218885Sdim  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1110218885Sdim  // pointer size if it isn't already.
1111226633Sdim  Type *IntPtr = TD->getIntPtrType(SI->getContext());
1112218885Sdim  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1113221345Sdim
1114218885Sdim  const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
1115221345Sdim                                         SCEV::FlagNUW);
1116218885Sdim  if (StoreSize != 1)
1117218885Sdim    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
1118221345Sdim                               SCEV::FlagNUW);
1119221345Sdim
1120218885Sdim  Value *NumBytes =
1121218885Sdim    Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
1122221345Sdim
1123223017Sdim  CallInst *NewCall =
1124218885Sdim    Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
1125218885Sdim                         std::min(SI->getAlignment(), LI->getAlignment()));
1126223017Sdim  NewCall->setDebugLoc(SI->getDebugLoc());
1127221345Sdim
1128218885Sdim  DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1129218885Sdim               << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1130218885Sdim               << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
1131221345Sdim
1132224145Sdim
1133218885Sdim  // Okay, the memset has been formed.  Zap the original store and anything that
1134218885Sdim  // feeds into it.
1135243830Sdim  deleteDeadInstruction(SI, *SE, TLI);
1136218885Sdim  ++NumMemCpy;
1137218885Sdim  return true;
1138218885Sdim}
1139