MaximumSpanningTree.h revision 221345
1198090Srdivacky//===- llvm/Analysis/MaximumSpanningTree.h - Interface ----------*- C++ -*-===//
2198090Srdivacky//
3198090Srdivacky//                     The LLVM Compiler Infrastructure
4198090Srdivacky//
5198090Srdivacky// This file is distributed under the University of Illinois Open Source
6198090Srdivacky// License. See LICENSE.TXT for details.
7198090Srdivacky//
8198090Srdivacky//===----------------------------------------------------------------------===//
9198090Srdivacky//
10221345Sdim// This module provides means for calculating a maximum spanning tree for a
11198090Srdivacky// given set of weighted edges. The type parameter T is the type of a node.
12198090Srdivacky//
13198090Srdivacky//===----------------------------------------------------------------------===//
14198090Srdivacky
15198090Srdivacky#ifndef LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
16198090Srdivacky#define LLVM_ANALYSIS_MAXIMUMSPANNINGTREE_H
17198090Srdivacky
18200581Srdivacky#include "llvm/BasicBlock.h"
19198090Srdivacky#include "llvm/ADT/EquivalenceClasses.h"
20198090Srdivacky#include <vector>
21198090Srdivacky#include <algorithm>
22198090Srdivacky
23198090Srdivackynamespace llvm {
24198090Srdivacky
25198090Srdivacky  /// MaximumSpanningTree - A MST implementation.
26198090Srdivacky  /// The type parameter T determines the type of the nodes of the graph.
27198090Srdivacky  template <typename T>
28198090Srdivacky  class MaximumSpanningTree {
29198090Srdivacky
30198090Srdivacky    // A comparing class for comparing weighted edges.
31198090Srdivacky    template <typename CT>
32198090Srdivacky    struct EdgeWeightCompare {
33198090Srdivacky      bool operator()(typename MaximumSpanningTree<CT>::EdgeWeight X,
34198090Srdivacky                      typename MaximumSpanningTree<CT>::EdgeWeight Y) const {
35198090Srdivacky        if (X.second > Y.second) return true;
36198090Srdivacky        if (X.second < Y.second) return false;
37200581Srdivacky        if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.first)) {
38200581Srdivacky          if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.first)) {
39200581Srdivacky            if (BBX->size() > BBY->size()) return true;
40200581Srdivacky            if (BBX->size() < BBY->size()) return false;
41200581Srdivacky          }
42200581Srdivacky        }
43200581Srdivacky        if (const BasicBlock *BBX = dyn_cast<BasicBlock>(X.first.second)) {
44200581Srdivacky          if (const BasicBlock *BBY = dyn_cast<BasicBlock>(Y.first.second)) {
45200581Srdivacky            if (BBX->size() > BBY->size()) return true;
46200581Srdivacky            if (BBX->size() < BBY->size()) return false;
47200581Srdivacky          }
48200581Srdivacky        }
49198090Srdivacky        return false;
50198090Srdivacky      }
51198090Srdivacky    };
52198090Srdivacky
53198090Srdivacky  public:
54198090Srdivacky    typedef std::pair<const T*, const T*> Edge;
55198090Srdivacky    typedef std::pair<Edge, double> EdgeWeight;
56198090Srdivacky    typedef std::vector<EdgeWeight> EdgeWeights;
57198090Srdivacky  protected:
58198090Srdivacky    typedef std::vector<Edge> MaxSpanTree;
59198090Srdivacky
60198090Srdivacky    MaxSpanTree MST;
61198090Srdivacky
62198090Srdivacky  public:
63198090Srdivacky    static char ID; // Class identification, replacement for typeinfo
64198090Srdivacky
65198090Srdivacky    /// MaximumSpanningTree() - Takes a vector of weighted edges and returns a
66198090Srdivacky    /// spanning tree.
67198090Srdivacky    MaximumSpanningTree(EdgeWeights &EdgeVector) {
68198090Srdivacky
69198090Srdivacky      std::stable_sort(EdgeVector.begin(), EdgeVector.end(), EdgeWeightCompare<T>());
70198090Srdivacky
71198090Srdivacky      // Create spanning tree, Forest contains a special data structure
72198090Srdivacky      // that makes checking if two nodes are already in a common (sub-)tree
73198090Srdivacky      // fast and cheap.
74198090Srdivacky      EquivalenceClasses<const T*> Forest;
75198090Srdivacky      for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
76198090Srdivacky           EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
77198090Srdivacky        Edge e = (*EWi).first;
78198090Srdivacky
79198090Srdivacky        Forest.insert(e.first);
80198090Srdivacky        Forest.insert(e.second);
81198090Srdivacky      }
82198090Srdivacky
83198090Srdivacky      // Iterate over the sorted edges, biggest first.
84198090Srdivacky      for (typename EdgeWeights::iterator EWi = EdgeVector.begin(),
85198090Srdivacky           EWe = EdgeVector.end(); EWi != EWe; ++EWi) {
86198090Srdivacky        Edge e = (*EWi).first;
87198090Srdivacky
88198090Srdivacky        if (Forest.findLeader(e.first) != Forest.findLeader(e.second)) {
89198090Srdivacky          Forest.unionSets(e.first, e.second);
90198090Srdivacky          // So we know now that the edge is not already in a subtree, so we push
91198090Srdivacky          // the edge to the MST.
92198090Srdivacky          MST.push_back(e);
93198090Srdivacky        }
94198090Srdivacky      }
95198090Srdivacky    }
96198090Srdivacky
97198090Srdivacky    typename MaxSpanTree::iterator begin() {
98198090Srdivacky      return MST.begin();
99198090Srdivacky    }
100198090Srdivacky
101198090Srdivacky    typename MaxSpanTree::iterator end() {
102198090Srdivacky      return MST.end();
103198090Srdivacky    }
104198090Srdivacky  };
105198090Srdivacky
106198090Srdivacky} // End llvm namespace
107198090Srdivacky
108198090Srdivacky#endif
109