InstCombineCompares.cpp revision 251662
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/Support/ConstantRange.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/PatternMatch.h"
23#include "llvm/Target/TargetLibraryInfo.h"
24using namespace llvm;
25using namespace PatternMatch;
26
27static ConstantInt *getOne(Constant *C) {
28  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
29}
30
31/// AddOne - Add one to a ConstantInt
32static Constant *AddOne(Constant *C) {
33  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
34}
35/// SubOne - Subtract one from a ConstantInt
36static Constant *SubOne(Constant *C) {
37  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
38}
39
40static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
41  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42}
43
44static bool HasAddOverflow(ConstantInt *Result,
45                           ConstantInt *In1, ConstantInt *In2,
46                           bool IsSigned) {
47  if (!IsSigned)
48    return Result->getValue().ult(In1->getValue());
49
50  if (In2->isNegative())
51    return Result->getValue().sgt(In1->getValue());
52  return Result->getValue().slt(In1->getValue());
53}
54
55/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
56/// overflowed for this type.
57static bool AddWithOverflow(Constant *&Result, Constant *In1,
58                            Constant *In2, bool IsSigned = false) {
59  Result = ConstantExpr::getAdd(In1, In2);
60
61  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
62    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
63      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
64      if (HasAddOverflow(ExtractElement(Result, Idx),
65                         ExtractElement(In1, Idx),
66                         ExtractElement(In2, Idx),
67                         IsSigned))
68        return true;
69    }
70    return false;
71  }
72
73  return HasAddOverflow(cast<ConstantInt>(Result),
74                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
75                        IsSigned);
76}
77
78static bool HasSubOverflow(ConstantInt *Result,
79                           ConstantInt *In1, ConstantInt *In2,
80                           bool IsSigned) {
81  if (!IsSigned)
82    return Result->getValue().ugt(In1->getValue());
83
84  if (In2->isNegative())
85    return Result->getValue().slt(In1->getValue());
86
87  return Result->getValue().sgt(In1->getValue());
88}
89
90/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
91/// overflowed for this type.
92static bool SubWithOverflow(Constant *&Result, Constant *In1,
93                            Constant *In2, bool IsSigned = false) {
94  Result = ConstantExpr::getSub(In1, In2);
95
96  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
97    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
98      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
99      if (HasSubOverflow(ExtractElement(Result, Idx),
100                         ExtractElement(In1, Idx),
101                         ExtractElement(In2, Idx),
102                         IsSigned))
103        return true;
104    }
105    return false;
106  }
107
108  return HasSubOverflow(cast<ConstantInt>(Result),
109                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
110                        IsSigned);
111}
112
113/// isSignBitCheck - Given an exploded icmp instruction, return true if the
114/// comparison only checks the sign bit.  If it only checks the sign bit, set
115/// TrueIfSigned if the result of the comparison is true when the input value is
116/// signed.
117static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
118                           bool &TrueIfSigned) {
119  switch (pred) {
120  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
121    TrueIfSigned = true;
122    return RHS->isZero();
123  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
124    TrueIfSigned = true;
125    return RHS->isAllOnesValue();
126  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
127    TrueIfSigned = false;
128    return RHS->isAllOnesValue();
129  case ICmpInst::ICMP_UGT:
130    // True if LHS u> RHS and RHS == high-bit-mask - 1
131    TrueIfSigned = true;
132    return RHS->isMaxValue(true);
133  case ICmpInst::ICMP_UGE:
134    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135    TrueIfSigned = true;
136    return RHS->getValue().isSignBit();
137  default:
138    return false;
139  }
140}
141
142/// Returns true if the exploded icmp can be expressed as a signed comparison
143/// to zero and updates the predicate accordingly.
144/// The signedness of the comparison is preserved.
145static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
146  if (!ICmpInst::isSigned(pred))
147    return false;
148
149  if (RHS->isZero())
150    return ICmpInst::isRelational(pred);
151
152  if (RHS->isOne()) {
153    if (pred == ICmpInst::ICMP_SLT) {
154      pred = ICmpInst::ICMP_SLE;
155      return true;
156    }
157  } else if (RHS->isAllOnesValue()) {
158    if (pred == ICmpInst::ICMP_SGT) {
159      pred = ICmpInst::ICMP_SGE;
160      return true;
161    }
162  }
163
164  return false;
165}
166
167// isHighOnes - Return true if the constant is of the form 1+0+.
168// This is the same as lowones(~X).
169static bool isHighOnes(const ConstantInt *CI) {
170  return (~CI->getValue() + 1).isPowerOf2();
171}
172
173/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
174/// set of known zero and one bits, compute the maximum and minimum values that
175/// could have the specified known zero and known one bits, returning them in
176/// min/max.
177static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
178                                                   const APInt& KnownOne,
179                                                   APInt& Min, APInt& Max) {
180  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
181         KnownZero.getBitWidth() == Min.getBitWidth() &&
182         KnownZero.getBitWidth() == Max.getBitWidth() &&
183         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
184  APInt UnknownBits = ~(KnownZero|KnownOne);
185
186  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
187  // bit if it is unknown.
188  Min = KnownOne;
189  Max = KnownOne|UnknownBits;
190
191  if (UnknownBits.isNegative()) { // Sign bit is unknown
192    Min.setBit(Min.getBitWidth()-1);
193    Max.clearBit(Max.getBitWidth()-1);
194  }
195}
196
197// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
198// a set of known zero and one bits, compute the maximum and minimum values that
199// could have the specified known zero and known one bits, returning them in
200// min/max.
201static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202                                                     const APInt &KnownOne,
203                                                     APInt &Min, APInt &Max) {
204  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205         KnownZero.getBitWidth() == Min.getBitWidth() &&
206         KnownZero.getBitWidth() == Max.getBitWidth() &&
207         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208  APInt UnknownBits = ~(KnownZero|KnownOne);
209
210  // The minimum value is when the unknown bits are all zeros.
211  Min = KnownOne;
212  // The maximum value is when the unknown bits are all ones.
213  Max = KnownOne|UnknownBits;
214}
215
216
217
218/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
219///   cmp pred (load (gep GV, ...)), cmpcst
220/// where GV is a global variable with a constant initializer.  Try to simplify
221/// this into some simple computation that does not need the load.  For example
222/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
223///
224/// If AndCst is non-null, then the loaded value is masked with that constant
225/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
226Instruction *InstCombiner::
227FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
228                             CmpInst &ICI, ConstantInt *AndCst) {
229  // We need TD information to know the pointer size unless this is inbounds.
230  if (!GEP->isInBounds() && TD == 0) return 0;
231
232  Constant *Init = GV->getInitializer();
233  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
234    return 0;
235
236  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
237  if (ArrayElementCount > 1024) return 0;  // Don't blow up on huge arrays.
238
239  // There are many forms of this optimization we can handle, for now, just do
240  // the simple index into a single-dimensional array.
241  //
242  // Require: GEP GV, 0, i {{, constant indices}}
243  if (GEP->getNumOperands() < 3 ||
244      !isa<ConstantInt>(GEP->getOperand(1)) ||
245      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
246      isa<Constant>(GEP->getOperand(2)))
247    return 0;
248
249  // Check that indices after the variable are constants and in-range for the
250  // type they index.  Collect the indices.  This is typically for arrays of
251  // structs.
252  SmallVector<unsigned, 4> LaterIndices;
253
254  Type *EltTy = Init->getType()->getArrayElementType();
255  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
256    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
257    if (Idx == 0) return 0;  // Variable index.
258
259    uint64_t IdxVal = Idx->getZExtValue();
260    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
261
262    if (StructType *STy = dyn_cast<StructType>(EltTy))
263      EltTy = STy->getElementType(IdxVal);
264    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
265      if (IdxVal >= ATy->getNumElements()) return 0;
266      EltTy = ATy->getElementType();
267    } else {
268      return 0; // Unknown type.
269    }
270
271    LaterIndices.push_back(IdxVal);
272  }
273
274  enum { Overdefined = -3, Undefined = -2 };
275
276  // Variables for our state machines.
277
278  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
279  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
280  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
281  // undefined, otherwise set to the first true element.  SecondTrueElement is
282  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
283  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
284
285  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
286  // form "i != 47 & i != 87".  Same state transitions as for true elements.
287  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
288
289  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
290  /// define a state machine that triggers for ranges of values that the index
291  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
292  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
293  /// index in the range (inclusive).  We use -2 for undefined here because we
294  /// use relative comparisons and don't want 0-1 to match -1.
295  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
296
297  // MagicBitvector - This is a magic bitvector where we set a bit if the
298  // comparison is true for element 'i'.  If there are 64 elements or less in
299  // the array, this will fully represent all the comparison results.
300  uint64_t MagicBitvector = 0;
301
302
303  // Scan the array and see if one of our patterns matches.
304  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
305  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
306    Constant *Elt = Init->getAggregateElement(i);
307    if (Elt == 0) return 0;
308
309    // If this is indexing an array of structures, get the structure element.
310    if (!LaterIndices.empty())
311      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
312
313    // If the element is masked, handle it.
314    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
315
316    // Find out if the comparison would be true or false for the i'th element.
317    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
318                                                  CompareRHS, TD, TLI);
319    // If the result is undef for this element, ignore it.
320    if (isa<UndefValue>(C)) {
321      // Extend range state machines to cover this element in case there is an
322      // undef in the middle of the range.
323      if (TrueRangeEnd == (int)i-1)
324        TrueRangeEnd = i;
325      if (FalseRangeEnd == (int)i-1)
326        FalseRangeEnd = i;
327      continue;
328    }
329
330    // If we can't compute the result for any of the elements, we have to give
331    // up evaluating the entire conditional.
332    if (!isa<ConstantInt>(C)) return 0;
333
334    // Otherwise, we know if the comparison is true or false for this element,
335    // update our state machines.
336    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
337
338    // State machine for single/double/range index comparison.
339    if (IsTrueForElt) {
340      // Update the TrueElement state machine.
341      if (FirstTrueElement == Undefined)
342        FirstTrueElement = TrueRangeEnd = i;  // First true element.
343      else {
344        // Update double-compare state machine.
345        if (SecondTrueElement == Undefined)
346          SecondTrueElement = i;
347        else
348          SecondTrueElement = Overdefined;
349
350        // Update range state machine.
351        if (TrueRangeEnd == (int)i-1)
352          TrueRangeEnd = i;
353        else
354          TrueRangeEnd = Overdefined;
355      }
356    } else {
357      // Update the FalseElement state machine.
358      if (FirstFalseElement == Undefined)
359        FirstFalseElement = FalseRangeEnd = i; // First false element.
360      else {
361        // Update double-compare state machine.
362        if (SecondFalseElement == Undefined)
363          SecondFalseElement = i;
364        else
365          SecondFalseElement = Overdefined;
366
367        // Update range state machine.
368        if (FalseRangeEnd == (int)i-1)
369          FalseRangeEnd = i;
370        else
371          FalseRangeEnd = Overdefined;
372      }
373    }
374
375
376    // If this element is in range, update our magic bitvector.
377    if (i < 64 && IsTrueForElt)
378      MagicBitvector |= 1ULL << i;
379
380    // If all of our states become overdefined, bail out early.  Since the
381    // predicate is expensive, only check it every 8 elements.  This is only
382    // really useful for really huge arrays.
383    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
384        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
385        FalseRangeEnd == Overdefined)
386      return 0;
387  }
388
389  // Now that we've scanned the entire array, emit our new comparison(s).  We
390  // order the state machines in complexity of the generated code.
391  Value *Idx = GEP->getOperand(2);
392
393  // If the index is larger than the pointer size of the target, truncate the
394  // index down like the GEP would do implicitly.  We don't have to do this for
395  // an inbounds GEP because the index can't be out of range.
396  if (!GEP->isInBounds() &&
397      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
398    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
399
400  // If the comparison is only true for one or two elements, emit direct
401  // comparisons.
402  if (SecondTrueElement != Overdefined) {
403    // None true -> false.
404    if (FirstTrueElement == Undefined)
405      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
406
407    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
408
409    // True for one element -> 'i == 47'.
410    if (SecondTrueElement == Undefined)
411      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
412
413    // True for two elements -> 'i == 47 | i == 72'.
414    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
415    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
416    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
417    return BinaryOperator::CreateOr(C1, C2);
418  }
419
420  // If the comparison is only false for one or two elements, emit direct
421  // comparisons.
422  if (SecondFalseElement != Overdefined) {
423    // None false -> true.
424    if (FirstFalseElement == Undefined)
425      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
426
427    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
428
429    // False for one element -> 'i != 47'.
430    if (SecondFalseElement == Undefined)
431      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
432
433    // False for two elements -> 'i != 47 & i != 72'.
434    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
435    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
436    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
437    return BinaryOperator::CreateAnd(C1, C2);
438  }
439
440  // If the comparison can be replaced with a range comparison for the elements
441  // where it is true, emit the range check.
442  if (TrueRangeEnd != Overdefined) {
443    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
444
445    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
446    if (FirstTrueElement) {
447      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
448      Idx = Builder->CreateAdd(Idx, Offs);
449    }
450
451    Value *End = ConstantInt::get(Idx->getType(),
452                                  TrueRangeEnd-FirstTrueElement+1);
453    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
454  }
455
456  // False range check.
457  if (FalseRangeEnd != Overdefined) {
458    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
459    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
460    if (FirstFalseElement) {
461      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
462      Idx = Builder->CreateAdd(Idx, Offs);
463    }
464
465    Value *End = ConstantInt::get(Idx->getType(),
466                                  FalseRangeEnd-FirstFalseElement);
467    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
468  }
469
470
471  // If a magic bitvector captures the entire comparison state
472  // of this load, replace it with computation that does:
473  //   ((magic_cst >> i) & 1) != 0
474  {
475    Type *Ty = 0;
476
477    // Look for an appropriate type:
478    // - The type of Idx if the magic fits
479    // - The smallest fitting legal type if we have a DataLayout
480    // - Default to i32
481    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
482      Ty = Idx->getType();
483    else if (TD)
484      Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
485    else if (ArrayElementCount <= 32)
486      Ty = Type::getInt32Ty(Init->getContext());
487
488    if (Ty != 0) {
489      Value *V = Builder->CreateIntCast(Idx, Ty, false);
490      V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
491      V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
492      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
493    }
494  }
495
496  return 0;
497}
498
499
500/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
501/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
502/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
503/// be complex, and scales are involved.  The above expression would also be
504/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
505/// This later form is less amenable to optimization though, and we are allowed
506/// to generate the first by knowing that pointer arithmetic doesn't overflow.
507///
508/// If we can't emit an optimized form for this expression, this returns null.
509///
510static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
511  DataLayout &TD = *IC.getDataLayout();
512  gep_type_iterator GTI = gep_type_begin(GEP);
513
514  // Check to see if this gep only has a single variable index.  If so, and if
515  // any constant indices are a multiple of its scale, then we can compute this
516  // in terms of the scale of the variable index.  For example, if the GEP
517  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
518  // because the expression will cross zero at the same point.
519  unsigned i, e = GEP->getNumOperands();
520  int64_t Offset = 0;
521  for (i = 1; i != e; ++i, ++GTI) {
522    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
523      // Compute the aggregate offset of constant indices.
524      if (CI->isZero()) continue;
525
526      // Handle a struct index, which adds its field offset to the pointer.
527      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
528        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
529      } else {
530        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
531        Offset += Size*CI->getSExtValue();
532      }
533    } else {
534      // Found our variable index.
535      break;
536    }
537  }
538
539  // If there are no variable indices, we must have a constant offset, just
540  // evaluate it the general way.
541  if (i == e) return 0;
542
543  Value *VariableIdx = GEP->getOperand(i);
544  // Determine the scale factor of the variable element.  For example, this is
545  // 4 if the variable index is into an array of i32.
546  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
547
548  // Verify that there are no other variable indices.  If so, emit the hard way.
549  for (++i, ++GTI; i != e; ++i, ++GTI) {
550    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
551    if (!CI) return 0;
552
553    // Compute the aggregate offset of constant indices.
554    if (CI->isZero()) continue;
555
556    // Handle a struct index, which adds its field offset to the pointer.
557    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
558      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
559    } else {
560      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
561      Offset += Size*CI->getSExtValue();
562    }
563  }
564
565  // Okay, we know we have a single variable index, which must be a
566  // pointer/array/vector index.  If there is no offset, life is simple, return
567  // the index.
568  unsigned IntPtrWidth = TD.getPointerSizeInBits();
569  if (Offset == 0) {
570    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
571    // we don't need to bother extending: the extension won't affect where the
572    // computation crosses zero.
573    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
574      Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
575      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
576    }
577    return VariableIdx;
578  }
579
580  // Otherwise, there is an index.  The computation we will do will be modulo
581  // the pointer size, so get it.
582  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
583
584  Offset &= PtrSizeMask;
585  VariableScale &= PtrSizeMask;
586
587  // To do this transformation, any constant index must be a multiple of the
588  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
589  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
590  // multiple of the variable scale.
591  int64_t NewOffs = Offset / (int64_t)VariableScale;
592  if (Offset != NewOffs*(int64_t)VariableScale)
593    return 0;
594
595  // Okay, we can do this evaluation.  Start by converting the index to intptr.
596  Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
597  if (VariableIdx->getType() != IntPtrTy)
598    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
599                                            true /*Signed*/);
600  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
601  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
602}
603
604/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
605/// else.  At this point we know that the GEP is on the LHS of the comparison.
606Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
607                                       ICmpInst::Predicate Cond,
608                                       Instruction &I) {
609  // Don't transform signed compares of GEPs into index compares. Even if the
610  // GEP is inbounds, the final add of the base pointer can have signed overflow
611  // and would change the result of the icmp.
612  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
613  // the maximum signed value for the pointer type.
614  if (ICmpInst::isSigned(Cond))
615    return 0;
616
617  // Look through bitcasts.
618  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
619    RHS = BCI->getOperand(0);
620
621  Value *PtrBase = GEPLHS->getOperand(0);
622  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
623    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
624    // This transformation (ignoring the base and scales) is valid because we
625    // know pointers can't overflow since the gep is inbounds.  See if we can
626    // output an optimized form.
627    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
628
629    // If not, synthesize the offset the hard way.
630    if (Offset == 0)
631      Offset = EmitGEPOffset(GEPLHS);
632    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
633                        Constant::getNullValue(Offset->getType()));
634  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
635    // If the base pointers are different, but the indices are the same, just
636    // compare the base pointer.
637    if (PtrBase != GEPRHS->getOperand(0)) {
638      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
639      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
640                        GEPRHS->getOperand(0)->getType();
641      if (IndicesTheSame)
642        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
643          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
644            IndicesTheSame = false;
645            break;
646          }
647
648      // If all indices are the same, just compare the base pointers.
649      if (IndicesTheSame)
650        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
651                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
652
653      // If we're comparing GEPs with two base pointers that only differ in type
654      // and both GEPs have only constant indices or just one use, then fold
655      // the compare with the adjusted indices.
656      if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
657          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
658          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
659          PtrBase->stripPointerCasts() ==
660            GEPRHS->getOperand(0)->stripPointerCasts()) {
661        Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
662                                         EmitGEPOffset(GEPLHS),
663                                         EmitGEPOffset(GEPRHS));
664        return ReplaceInstUsesWith(I, Cmp);
665      }
666
667      // Otherwise, the base pointers are different and the indices are
668      // different, bail out.
669      return 0;
670    }
671
672    // If one of the GEPs has all zero indices, recurse.
673    bool AllZeros = true;
674    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
675      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
676          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
677        AllZeros = false;
678        break;
679      }
680    if (AllZeros)
681      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
682                          ICmpInst::getSwappedPredicate(Cond), I);
683
684    // If the other GEP has all zero indices, recurse.
685    AllZeros = true;
686    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
687      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
688          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
689        AllZeros = false;
690        break;
691      }
692    if (AllZeros)
693      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
694
695    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
696    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
697      // If the GEPs only differ by one index, compare it.
698      unsigned NumDifferences = 0;  // Keep track of # differences.
699      unsigned DiffOperand = 0;     // The operand that differs.
700      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
701        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
702          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
703                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
704            // Irreconcilable differences.
705            NumDifferences = 2;
706            break;
707          } else {
708            if (NumDifferences++) break;
709            DiffOperand = i;
710          }
711        }
712
713      if (NumDifferences == 0)   // SAME GEP?
714        return ReplaceInstUsesWith(I, // No comparison is needed here.
715                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
716                                             ICmpInst::isTrueWhenEqual(Cond)));
717
718      else if (NumDifferences == 1 && GEPsInBounds) {
719        Value *LHSV = GEPLHS->getOperand(DiffOperand);
720        Value *RHSV = GEPRHS->getOperand(DiffOperand);
721        // Make sure we do a signed comparison here.
722        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
723      }
724    }
725
726    // Only lower this if the icmp is the only user of the GEP or if we expect
727    // the result to fold to a constant!
728    if (TD &&
729        GEPsInBounds &&
730        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
731        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
732      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
733      Value *L = EmitGEPOffset(GEPLHS);
734      Value *R = EmitGEPOffset(GEPRHS);
735      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
736    }
737  }
738  return 0;
739}
740
741/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
742Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
743                                            Value *X, ConstantInt *CI,
744                                            ICmpInst::Predicate Pred,
745                                            Value *TheAdd) {
746  // If we have X+0, exit early (simplifying logic below) and let it get folded
747  // elsewhere.   icmp X+0, X  -> icmp X, X
748  if (CI->isZero()) {
749    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
750    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
751  }
752
753  // (X+4) == X -> false.
754  if (Pred == ICmpInst::ICMP_EQ)
755    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
756
757  // (X+4) != X -> true.
758  if (Pred == ICmpInst::ICMP_NE)
759    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
760
761  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
762  // so the values can never be equal.  Similarly for all other "or equals"
763  // operators.
764
765  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
766  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
767  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
768  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
769    Value *R =
770      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
771    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
772  }
773
774  // (X+1) >u X        --> X <u (0-1)        --> X != 255
775  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
776  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
777  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
778    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
779
780  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
781  ConstantInt *SMax = ConstantInt::get(X->getContext(),
782                                       APInt::getSignedMaxValue(BitWidth));
783
784  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
785  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
786  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
787  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
788  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
789  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
790  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
791    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
792
793  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
794  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
795  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
796  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
797  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
798  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
799
800  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
801  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
802  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
803}
804
805/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
806/// and CmpRHS are both known to be integer constants.
807Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
808                                          ConstantInt *DivRHS) {
809  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
810  const APInt &CmpRHSV = CmpRHS->getValue();
811
812  // FIXME: If the operand types don't match the type of the divide
813  // then don't attempt this transform. The code below doesn't have the
814  // logic to deal with a signed divide and an unsigned compare (and
815  // vice versa). This is because (x /s C1) <s C2  produces different
816  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
817  // (x /u C1) <u C2.  Simply casting the operands and result won't
818  // work. :(  The if statement below tests that condition and bails
819  // if it finds it.
820  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
821  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
822    return 0;
823  if (DivRHS->isZero())
824    return 0; // The ProdOV computation fails on divide by zero.
825  if (DivIsSigned && DivRHS->isAllOnesValue())
826    return 0; // The overflow computation also screws up here
827  if (DivRHS->isOne()) {
828    // This eliminates some funny cases with INT_MIN.
829    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
830    return &ICI;
831  }
832
833  // Compute Prod = CI * DivRHS. We are essentially solving an equation
834  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
835  // C2 (CI). By solving for X we can turn this into a range check
836  // instead of computing a divide.
837  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
838
839  // Determine if the product overflows by seeing if the product is
840  // not equal to the divide. Make sure we do the same kind of divide
841  // as in the LHS instruction that we're folding.
842  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
843                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
844
845  // Get the ICmp opcode
846  ICmpInst::Predicate Pred = ICI.getPredicate();
847
848  /// If the division is known to be exact, then there is no remainder from the
849  /// divide, so the covered range size is unit, otherwise it is the divisor.
850  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
851
852  // Figure out the interval that is being checked.  For example, a comparison
853  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
854  // Compute this interval based on the constants involved and the signedness of
855  // the compare/divide.  This computes a half-open interval, keeping track of
856  // whether either value in the interval overflows.  After analysis each
857  // overflow variable is set to 0 if it's corresponding bound variable is valid
858  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
859  int LoOverflow = 0, HiOverflow = 0;
860  Constant *LoBound = 0, *HiBound = 0;
861
862  if (!DivIsSigned) {  // udiv
863    // e.g. X/5 op 3  --> [15, 20)
864    LoBound = Prod;
865    HiOverflow = LoOverflow = ProdOV;
866    if (!HiOverflow) {
867      // If this is not an exact divide, then many values in the range collapse
868      // to the same result value.
869      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
870    }
871
872  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
873    if (CmpRHSV == 0) {       // (X / pos) op 0
874      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
875      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
876      HiBound = RangeSize;
877    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
878      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
879      HiOverflow = LoOverflow = ProdOV;
880      if (!HiOverflow)
881        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
882    } else {                       // (X / pos) op neg
883      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
884      HiBound = AddOne(Prod);
885      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
886      if (!LoOverflow) {
887        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
888        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
889      }
890    }
891  } else if (DivRHS->isNegative()) { // Divisor is < 0.
892    if (DivI->isExact())
893      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
894    if (CmpRHSV == 0) {       // (X / neg) op 0
895      // e.g. X/-5 op 0  --> [-4, 5)
896      LoBound = AddOne(RangeSize);
897      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
898      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
899        HiOverflow = 1;            // [INTMIN+1, overflow)
900        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
901      }
902    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
903      // e.g. X/-5 op 3  --> [-19, -14)
904      HiBound = AddOne(Prod);
905      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
906      if (!LoOverflow)
907        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
908    } else {                       // (X / neg) op neg
909      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
910      LoOverflow = HiOverflow = ProdOV;
911      if (!HiOverflow)
912        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
913    }
914
915    // Dividing by a negative swaps the condition.  LT <-> GT
916    Pred = ICmpInst::getSwappedPredicate(Pred);
917  }
918
919  Value *X = DivI->getOperand(0);
920  switch (Pred) {
921  default: llvm_unreachable("Unhandled icmp opcode!");
922  case ICmpInst::ICMP_EQ:
923    if (LoOverflow && HiOverflow)
924      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
925    if (HiOverflow)
926      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
927                          ICmpInst::ICMP_UGE, X, LoBound);
928    if (LoOverflow)
929      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
930                          ICmpInst::ICMP_ULT, X, HiBound);
931    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
932                                                    DivIsSigned, true));
933  case ICmpInst::ICMP_NE:
934    if (LoOverflow && HiOverflow)
935      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
936    if (HiOverflow)
937      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
938                          ICmpInst::ICMP_ULT, X, LoBound);
939    if (LoOverflow)
940      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
941                          ICmpInst::ICMP_UGE, X, HiBound);
942    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
943                                                    DivIsSigned, false));
944  case ICmpInst::ICMP_ULT:
945  case ICmpInst::ICMP_SLT:
946    if (LoOverflow == +1)   // Low bound is greater than input range.
947      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
948    if (LoOverflow == -1)   // Low bound is less than input range.
949      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
950    return new ICmpInst(Pred, X, LoBound);
951  case ICmpInst::ICMP_UGT:
952  case ICmpInst::ICMP_SGT:
953    if (HiOverflow == +1)       // High bound greater than input range.
954      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
955    if (HiOverflow == -1)       // High bound less than input range.
956      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
957    if (Pred == ICmpInst::ICMP_UGT)
958      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
959    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
960  }
961}
962
963/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
964Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
965                                          ConstantInt *ShAmt) {
966  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
967
968  // Check that the shift amount is in range.  If not, don't perform
969  // undefined shifts.  When the shift is visited it will be
970  // simplified.
971  uint32_t TypeBits = CmpRHSV.getBitWidth();
972  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
973  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
974    return 0;
975
976  if (!ICI.isEquality()) {
977    // If we have an unsigned comparison and an ashr, we can't simplify this.
978    // Similarly for signed comparisons with lshr.
979    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
980      return 0;
981
982    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
983    // by a power of 2.  Since we already have logic to simplify these,
984    // transform to div and then simplify the resultant comparison.
985    if (Shr->getOpcode() == Instruction::AShr &&
986        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
987      return 0;
988
989    // Revisit the shift (to delete it).
990    Worklist.Add(Shr);
991
992    Constant *DivCst =
993      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
994
995    Value *Tmp =
996      Shr->getOpcode() == Instruction::AShr ?
997      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
998      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
999
1000    ICI.setOperand(0, Tmp);
1001
1002    // If the builder folded the binop, just return it.
1003    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1004    if (TheDiv == 0)
1005      return &ICI;
1006
1007    // Otherwise, fold this div/compare.
1008    assert(TheDiv->getOpcode() == Instruction::SDiv ||
1009           TheDiv->getOpcode() == Instruction::UDiv);
1010
1011    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1012    assert(Res && "This div/cst should have folded!");
1013    return Res;
1014  }
1015
1016
1017  // If we are comparing against bits always shifted out, the
1018  // comparison cannot succeed.
1019  APInt Comp = CmpRHSV << ShAmtVal;
1020  ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
1021  if (Shr->getOpcode() == Instruction::LShr)
1022    Comp = Comp.lshr(ShAmtVal);
1023  else
1024    Comp = Comp.ashr(ShAmtVal);
1025
1026  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1027    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1028    Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1029                                     IsICMP_NE);
1030    return ReplaceInstUsesWith(ICI, Cst);
1031  }
1032
1033  // Otherwise, check to see if the bits shifted out are known to be zero.
1034  // If so, we can compare against the unshifted value:
1035  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1036  if (Shr->hasOneUse() && Shr->isExact())
1037    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1038
1039  if (Shr->hasOneUse()) {
1040    // Otherwise strength reduce the shift into an and.
1041    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1042    Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1043
1044    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1045                                    Mask, Shr->getName()+".mask");
1046    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1047  }
1048  return 0;
1049}
1050
1051
1052/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1053///
1054Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1055                                                          Instruction *LHSI,
1056                                                          ConstantInt *RHS) {
1057  const APInt &RHSV = RHS->getValue();
1058
1059  switch (LHSI->getOpcode()) {
1060  case Instruction::Trunc:
1061    if (ICI.isEquality() && LHSI->hasOneUse()) {
1062      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1063      // of the high bits truncated out of x are known.
1064      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1065             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1066      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1067      ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
1068
1069      // If all the high bits are known, we can do this xform.
1070      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1071        // Pull in the high bits from known-ones set.
1072        APInt NewRHS = RHS->getValue().zext(SrcBits);
1073        NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1074        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1075                            ConstantInt::get(ICI.getContext(), NewRHS));
1076      }
1077    }
1078    break;
1079
1080  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
1081    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1082      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1083      // fold the xor.
1084      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1085          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1086        Value *CompareVal = LHSI->getOperand(0);
1087
1088        // If the sign bit of the XorCST is not set, there is no change to
1089        // the operation, just stop using the Xor.
1090        if (!XorCST->isNegative()) {
1091          ICI.setOperand(0, CompareVal);
1092          Worklist.Add(LHSI);
1093          return &ICI;
1094        }
1095
1096        // Was the old condition true if the operand is positive?
1097        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1098
1099        // If so, the new one isn't.
1100        isTrueIfPositive ^= true;
1101
1102        if (isTrueIfPositive)
1103          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1104                              SubOne(RHS));
1105        else
1106          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1107                              AddOne(RHS));
1108      }
1109
1110      if (LHSI->hasOneUse()) {
1111        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1112        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1113          const APInt &SignBit = XorCST->getValue();
1114          ICmpInst::Predicate Pred = ICI.isSigned()
1115                                         ? ICI.getUnsignedPredicate()
1116                                         : ICI.getSignedPredicate();
1117          return new ICmpInst(Pred, LHSI->getOperand(0),
1118                              ConstantInt::get(ICI.getContext(),
1119                                               RHSV ^ SignBit));
1120        }
1121
1122        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1123        if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
1124          const APInt &NotSignBit = XorCST->getValue();
1125          ICmpInst::Predicate Pred = ICI.isSigned()
1126                                         ? ICI.getUnsignedPredicate()
1127                                         : ICI.getSignedPredicate();
1128          Pred = ICI.getSwappedPredicate(Pred);
1129          return new ICmpInst(Pred, LHSI->getOperand(0),
1130                              ConstantInt::get(ICI.getContext(),
1131                                               RHSV ^ NotSignBit));
1132        }
1133      }
1134    }
1135    break;
1136  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1137    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1138        LHSI->getOperand(0)->hasOneUse()) {
1139      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1140
1141      // If the LHS is an AND of a truncating cast, we can widen the
1142      // and/compare to be the input width without changing the value
1143      // produced, eliminating a cast.
1144      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1145        // We can do this transformation if either the AND constant does not
1146        // have its sign bit set or if it is an equality comparison.
1147        // Extending a relational comparison when we're checking the sign
1148        // bit would not work.
1149        if (ICI.isEquality() ||
1150            (!AndCST->isNegative() && RHSV.isNonNegative())) {
1151          Value *NewAnd =
1152            Builder->CreateAnd(Cast->getOperand(0),
1153                               ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1154          NewAnd->takeName(LHSI);
1155          return new ICmpInst(ICI.getPredicate(), NewAnd,
1156                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1157        }
1158      }
1159
1160      // If the LHS is an AND of a zext, and we have an equality compare, we can
1161      // shrink the and/compare to the smaller type, eliminating the cast.
1162      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1163        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1164        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1165        // should fold the icmp to true/false in that case.
1166        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1167          Value *NewAnd =
1168            Builder->CreateAnd(Cast->getOperand(0),
1169                               ConstantExpr::getTrunc(AndCST, Ty));
1170          NewAnd->takeName(LHSI);
1171          return new ICmpInst(ICI.getPredicate(), NewAnd,
1172                              ConstantExpr::getTrunc(RHS, Ty));
1173        }
1174      }
1175
1176      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1177      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1178      // happens a LOT in code produced by the C front-end, for bitfield
1179      // access.
1180      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1181      if (Shift && !Shift->isShift())
1182        Shift = 0;
1183
1184      ConstantInt *ShAmt;
1185      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1186      Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1187      Type *AndTy = AndCST->getType();          // Type of the and.
1188
1189      // We can fold this as long as we can't shift unknown bits
1190      // into the mask.  This can only happen with signed shift
1191      // rights, as they sign-extend.
1192      if (ShAmt) {
1193        bool CanFold = Shift->isLogicalShift();
1194        if (!CanFold) {
1195          // To test for the bad case of the signed shr, see if any
1196          // of the bits shifted in could be tested after the mask.
1197          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1198          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1199
1200          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1201          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1202               AndCST->getValue()) == 0)
1203            CanFold = true;
1204        }
1205
1206        if (CanFold) {
1207          Constant *NewCst;
1208          if (Shift->getOpcode() == Instruction::Shl)
1209            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1210          else
1211            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1212
1213          // Check to see if we are shifting out any of the bits being
1214          // compared.
1215          if (ConstantExpr::get(Shift->getOpcode(),
1216                                       NewCst, ShAmt) != RHS) {
1217            // If we shifted bits out, the fold is not going to work out.
1218            // As a special case, check to see if this means that the
1219            // result is always true or false now.
1220            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1221              return ReplaceInstUsesWith(ICI,
1222                                       ConstantInt::getFalse(ICI.getContext()));
1223            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1224              return ReplaceInstUsesWith(ICI,
1225                                       ConstantInt::getTrue(ICI.getContext()));
1226          } else {
1227            ICI.setOperand(1, NewCst);
1228            Constant *NewAndCST;
1229            if (Shift->getOpcode() == Instruction::Shl)
1230              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1231            else
1232              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1233            LHSI->setOperand(1, NewAndCST);
1234            LHSI->setOperand(0, Shift->getOperand(0));
1235            Worklist.Add(Shift); // Shift is dead.
1236            return &ICI;
1237          }
1238        }
1239      }
1240
1241      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1242      // preferable because it allows the C<<Y expression to be hoisted out
1243      // of a loop if Y is invariant and X is not.
1244      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1245          ICI.isEquality() && !Shift->isArithmeticShift() &&
1246          !isa<Constant>(Shift->getOperand(0))) {
1247        // Compute C << Y.
1248        Value *NS;
1249        if (Shift->getOpcode() == Instruction::LShr) {
1250          NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
1251        } else {
1252          // Insert a logical shift.
1253          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
1254        }
1255
1256        // Compute X & (C << Y).
1257        Value *NewAnd =
1258          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1259
1260        ICI.setOperand(0, NewAnd);
1261        return &ICI;
1262      }
1263
1264      // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
1265      // bit set in (X & AndCST) will produce a result greater than RHSV.
1266      if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1267        unsigned NTZ = AndCST->getValue().countTrailingZeros();
1268        if ((NTZ < AndCST->getBitWidth()) &&
1269            APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
1270          return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1271                              Constant::getNullValue(RHS->getType()));
1272      }
1273    }
1274
1275    // Try to optimize things like "A[i]&42 == 0" to index computations.
1276    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1277      if (GetElementPtrInst *GEP =
1278          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1279        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1280          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1281              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1282            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1283            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1284              return Res;
1285          }
1286    }
1287    break;
1288
1289  case Instruction::Or: {
1290    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1291      break;
1292    Value *P, *Q;
1293    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1294      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1295      // -> and (icmp eq P, null), (icmp eq Q, null).
1296      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1297                                        Constant::getNullValue(P->getType()));
1298      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1299                                        Constant::getNullValue(Q->getType()));
1300      Instruction *Op;
1301      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1302        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1303      else
1304        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1305      return Op;
1306    }
1307    break;
1308  }
1309
1310  case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1311    ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1312    if (!Val) break;
1313
1314    // If this is a signed comparison to 0 and the mul is sign preserving,
1315    // use the mul LHS operand instead.
1316    ICmpInst::Predicate pred = ICI.getPredicate();
1317    if (isSignTest(pred, RHS) && !Val->isZero() &&
1318        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1319      return new ICmpInst(Val->isNegative() ?
1320                          ICmpInst::getSwappedPredicate(pred) : pred,
1321                          LHSI->getOperand(0),
1322                          Constant::getNullValue(RHS->getType()));
1323
1324    break;
1325  }
1326
1327  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1328    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1329    if (!ShAmt) break;
1330
1331    uint32_t TypeBits = RHSV.getBitWidth();
1332
1333    // Check that the shift amount is in range.  If not, don't perform
1334    // undefined shifts.  When the shift is visited it will be
1335    // simplified.
1336    if (ShAmt->uge(TypeBits))
1337      break;
1338
1339    if (ICI.isEquality()) {
1340      // If we are comparing against bits always shifted out, the
1341      // comparison cannot succeed.
1342      Constant *Comp =
1343        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1344                                                                 ShAmt);
1345      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1346        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1347        Constant *Cst =
1348          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1349        return ReplaceInstUsesWith(ICI, Cst);
1350      }
1351
1352      // If the shift is NUW, then it is just shifting out zeros, no need for an
1353      // AND.
1354      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1355        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1356                            ConstantExpr::getLShr(RHS, ShAmt));
1357
1358      // If the shift is NSW and we compare to 0, then it is just shifting out
1359      // sign bits, no need for an AND either.
1360      if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1361        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1362                            ConstantExpr::getLShr(RHS, ShAmt));
1363
1364      if (LHSI->hasOneUse()) {
1365        // Otherwise strength reduce the shift into an and.
1366        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1367        Constant *Mask =
1368          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1369                                                       TypeBits-ShAmtVal));
1370
1371        Value *And =
1372          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1373        return new ICmpInst(ICI.getPredicate(), And,
1374                            ConstantExpr::getLShr(RHS, ShAmt));
1375      }
1376    }
1377
1378    // If this is a signed comparison to 0 and the shift is sign preserving,
1379    // use the shift LHS operand instead.
1380    ICmpInst::Predicate pred = ICI.getPredicate();
1381    if (isSignTest(pred, RHS) &&
1382        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1383      return new ICmpInst(pred,
1384                          LHSI->getOperand(0),
1385                          Constant::getNullValue(RHS->getType()));
1386
1387    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1388    bool TrueIfSigned = false;
1389    if (LHSI->hasOneUse() &&
1390        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1391      // (X << 31) <s 0  --> (X&1) != 0
1392      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1393                                        APInt::getOneBitSet(TypeBits,
1394                                            TypeBits-ShAmt->getZExtValue()-1));
1395      Value *And =
1396        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1397      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1398                          And, Constant::getNullValue(And->getType()));
1399    }
1400
1401    // Transform (icmp pred iM (shl iM %v, N), CI)
1402    // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1403    // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1404    // This enables to get rid of the shift in favor of a trunc which can be
1405    // free on the target. It has the additional benefit of comparing to a
1406    // smaller constant, which will be target friendly.
1407    unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1408    if (LHSI->hasOneUse() &&
1409        Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1410      Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1411      Constant *NCI = ConstantExpr::getTrunc(
1412                        ConstantExpr::getAShr(RHS,
1413                          ConstantInt::get(RHS->getType(), Amt)),
1414                        NTy);
1415      return new ICmpInst(ICI.getPredicate(),
1416                          Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1417                          NCI);
1418    }
1419
1420    break;
1421  }
1422
1423  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1424  case Instruction::AShr: {
1425    // Handle equality comparisons of shift-by-constant.
1426    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1427    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1428      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1429        return Res;
1430    }
1431
1432    // Handle exact shr's.
1433    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1434      if (RHSV.isMinValue())
1435        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1436    }
1437    break;
1438  }
1439
1440  case Instruction::SDiv:
1441  case Instruction::UDiv:
1442    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1443    // Fold this div into the comparison, producing a range check.
1444    // Determine, based on the divide type, what the range is being
1445    // checked.  If there is an overflow on the low or high side, remember
1446    // it, otherwise compute the range [low, hi) bounding the new value.
1447    // See: InsertRangeTest above for the kinds of replacements possible.
1448    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1449      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1450                                          DivRHS))
1451        return R;
1452    break;
1453
1454  case Instruction::Add:
1455    // Fold: icmp pred (add X, C1), C2
1456    if (!ICI.isEquality()) {
1457      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1458      if (!LHSC) break;
1459      const APInt &LHSV = LHSC->getValue();
1460
1461      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1462                            .subtract(LHSV);
1463
1464      if (ICI.isSigned()) {
1465        if (CR.getLower().isSignBit()) {
1466          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1467                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1468        } else if (CR.getUpper().isSignBit()) {
1469          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1470                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1471        }
1472      } else {
1473        if (CR.getLower().isMinValue()) {
1474          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1475                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1476        } else if (CR.getUpper().isMinValue()) {
1477          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1478                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1479        }
1480      }
1481    }
1482    break;
1483  }
1484
1485  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1486  if (ICI.isEquality()) {
1487    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1488
1489    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1490    // the second operand is a constant, simplify a bit.
1491    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1492      switch (BO->getOpcode()) {
1493      case Instruction::SRem:
1494        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1495        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1496          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1497          if (V.sgt(1) && V.isPowerOf2()) {
1498            Value *NewRem =
1499              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1500                                  BO->getName());
1501            return new ICmpInst(ICI.getPredicate(), NewRem,
1502                                Constant::getNullValue(BO->getType()));
1503          }
1504        }
1505        break;
1506      case Instruction::Add:
1507        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1508        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1509          if (BO->hasOneUse())
1510            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1511                                ConstantExpr::getSub(RHS, BOp1C));
1512        } else if (RHSV == 0) {
1513          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1514          // efficiently invertible, or if the add has just this one use.
1515          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1516
1517          if (Value *NegVal = dyn_castNegVal(BOp1))
1518            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1519          if (Value *NegVal = dyn_castNegVal(BOp0))
1520            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1521          if (BO->hasOneUse()) {
1522            Value *Neg = Builder->CreateNeg(BOp1);
1523            Neg->takeName(BO);
1524            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1525          }
1526        }
1527        break;
1528      case Instruction::Xor:
1529        // For the xor case, we can xor two constants together, eliminating
1530        // the explicit xor.
1531        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1532          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1533                              ConstantExpr::getXor(RHS, BOC));
1534        } else if (RHSV == 0) {
1535          // Replace ((xor A, B) != 0) with (A != B)
1536          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1537                              BO->getOperand(1));
1538        }
1539        break;
1540      case Instruction::Sub:
1541        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1542        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1543          if (BO->hasOneUse())
1544            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1545                                ConstantExpr::getSub(BOp0C, RHS));
1546        } else if (RHSV == 0) {
1547          // Replace ((sub A, B) != 0) with (A != B)
1548          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1549                              BO->getOperand(1));
1550        }
1551        break;
1552      case Instruction::Or:
1553        // If bits are being or'd in that are not present in the constant we
1554        // are comparing against, then the comparison could never succeed!
1555        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1556          Constant *NotCI = ConstantExpr::getNot(RHS);
1557          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1558            return ReplaceInstUsesWith(ICI,
1559                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1560                                       isICMP_NE));
1561        }
1562        break;
1563
1564      case Instruction::And:
1565        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1566          // If bits are being compared against that are and'd out, then the
1567          // comparison can never succeed!
1568          if ((RHSV & ~BOC->getValue()) != 0)
1569            return ReplaceInstUsesWith(ICI,
1570                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1571                                       isICMP_NE));
1572
1573          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1574          if (RHS == BOC && RHSV.isPowerOf2())
1575            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1576                                ICmpInst::ICMP_NE, LHSI,
1577                                Constant::getNullValue(RHS->getType()));
1578
1579          // Don't perform the following transforms if the AND has multiple uses
1580          if (!BO->hasOneUse())
1581            break;
1582
1583          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1584          if (BOC->getValue().isSignBit()) {
1585            Value *X = BO->getOperand(0);
1586            Constant *Zero = Constant::getNullValue(X->getType());
1587            ICmpInst::Predicate pred = isICMP_NE ?
1588              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1589            return new ICmpInst(pred, X, Zero);
1590          }
1591
1592          // ((X & ~7) == 0) --> X < 8
1593          if (RHSV == 0 && isHighOnes(BOC)) {
1594            Value *X = BO->getOperand(0);
1595            Constant *NegX = ConstantExpr::getNeg(BOC);
1596            ICmpInst::Predicate pred = isICMP_NE ?
1597              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1598            return new ICmpInst(pred, X, NegX);
1599          }
1600        }
1601        break;
1602      case Instruction::Mul:
1603        if (RHSV == 0 && BO->hasNoSignedWrap()) {
1604          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1605            // The trivial case (mul X, 0) is handled by InstSimplify
1606            // General case : (mul X, C) != 0 iff X != 0
1607            //                (mul X, C) == 0 iff X == 0
1608            if (!BOC->isZero())
1609              return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1610                                  Constant::getNullValue(RHS->getType()));
1611          }
1612        }
1613        break;
1614      default: break;
1615      }
1616    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1617      // Handle icmp {eq|ne} <intrinsic>, intcst.
1618      switch (II->getIntrinsicID()) {
1619      case Intrinsic::bswap:
1620        Worklist.Add(II);
1621        ICI.setOperand(0, II->getArgOperand(0));
1622        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1623        return &ICI;
1624      case Intrinsic::ctlz:
1625      case Intrinsic::cttz:
1626        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1627        if (RHSV == RHS->getType()->getBitWidth()) {
1628          Worklist.Add(II);
1629          ICI.setOperand(0, II->getArgOperand(0));
1630          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1631          return &ICI;
1632        }
1633        break;
1634      case Intrinsic::ctpop:
1635        // popcount(A) == 0  ->  A == 0 and likewise for !=
1636        if (RHS->isZero()) {
1637          Worklist.Add(II);
1638          ICI.setOperand(0, II->getArgOperand(0));
1639          ICI.setOperand(1, RHS);
1640          return &ICI;
1641        }
1642        break;
1643      default:
1644        break;
1645      }
1646    }
1647  }
1648  return 0;
1649}
1650
1651/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1652/// We only handle extending casts so far.
1653///
1654Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1655  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1656  Value *LHSCIOp        = LHSCI->getOperand(0);
1657  Type *SrcTy     = LHSCIOp->getType();
1658  Type *DestTy    = LHSCI->getType();
1659  Value *RHSCIOp;
1660
1661  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1662  // integer type is the same size as the pointer type.
1663  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1664      TD->getPointerSizeInBits() ==
1665         cast<IntegerType>(DestTy)->getBitWidth()) {
1666    Value *RHSOp = 0;
1667    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1668      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1669    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1670      RHSOp = RHSC->getOperand(0);
1671      // If the pointer types don't match, insert a bitcast.
1672      if (LHSCIOp->getType() != RHSOp->getType())
1673        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1674    }
1675
1676    if (RHSOp)
1677      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1678  }
1679
1680  // The code below only handles extension cast instructions, so far.
1681  // Enforce this.
1682  if (LHSCI->getOpcode() != Instruction::ZExt &&
1683      LHSCI->getOpcode() != Instruction::SExt)
1684    return 0;
1685
1686  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1687  bool isSignedCmp = ICI.isSigned();
1688
1689  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1690    // Not an extension from the same type?
1691    RHSCIOp = CI->getOperand(0);
1692    if (RHSCIOp->getType() != LHSCIOp->getType())
1693      return 0;
1694
1695    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1696    // and the other is a zext), then we can't handle this.
1697    if (CI->getOpcode() != LHSCI->getOpcode())
1698      return 0;
1699
1700    // Deal with equality cases early.
1701    if (ICI.isEquality())
1702      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1703
1704    // A signed comparison of sign extended values simplifies into a
1705    // signed comparison.
1706    if (isSignedCmp && isSignedExt)
1707      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1708
1709    // The other three cases all fold into an unsigned comparison.
1710    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1711  }
1712
1713  // If we aren't dealing with a constant on the RHS, exit early
1714  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1715  if (!CI)
1716    return 0;
1717
1718  // Compute the constant that would happen if we truncated to SrcTy then
1719  // reextended to DestTy.
1720  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1721  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1722                                                Res1, DestTy);
1723
1724  // If the re-extended constant didn't change...
1725  if (Res2 == CI) {
1726    // Deal with equality cases early.
1727    if (ICI.isEquality())
1728      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1729
1730    // A signed comparison of sign extended values simplifies into a
1731    // signed comparison.
1732    if (isSignedExt && isSignedCmp)
1733      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1734
1735    // The other three cases all fold into an unsigned comparison.
1736    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1737  }
1738
1739  // The re-extended constant changed so the constant cannot be represented
1740  // in the shorter type. Consequently, we cannot emit a simple comparison.
1741  // All the cases that fold to true or false will have already been handled
1742  // by SimplifyICmpInst, so only deal with the tricky case.
1743
1744  if (isSignedCmp || !isSignedExt)
1745    return 0;
1746
1747  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1748  // should have been folded away previously and not enter in here.
1749
1750  // We're performing an unsigned comp with a sign extended value.
1751  // This is true if the input is >= 0. [aka >s -1]
1752  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1753  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1754
1755  // Finally, return the value computed.
1756  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1757    return ReplaceInstUsesWith(ICI, Result);
1758
1759  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1760  return BinaryOperator::CreateNot(Result);
1761}
1762
1763/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1764///   I = icmp ugt (add (add A, B), CI2), CI1
1765/// If this is of the form:
1766///   sum = a + b
1767///   if (sum+128 >u 255)
1768/// Then replace it with llvm.sadd.with.overflow.i8.
1769///
1770static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1771                                          ConstantInt *CI2, ConstantInt *CI1,
1772                                          InstCombiner &IC) {
1773  // The transformation we're trying to do here is to transform this into an
1774  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1775  // with a narrower add, and discard the add-with-constant that is part of the
1776  // range check (if we can't eliminate it, this isn't profitable).
1777
1778  // In order to eliminate the add-with-constant, the compare can be its only
1779  // use.
1780  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1781  if (!AddWithCst->hasOneUse()) return 0;
1782
1783  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1784  if (!CI2->getValue().isPowerOf2()) return 0;
1785  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1786  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1787
1788  // The width of the new add formed is 1 more than the bias.
1789  ++NewWidth;
1790
1791  // Check to see that CI1 is an all-ones value with NewWidth bits.
1792  if (CI1->getBitWidth() == NewWidth ||
1793      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1794    return 0;
1795
1796  // This is only really a signed overflow check if the inputs have been
1797  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1798  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1799  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1800  if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1801      IC.ComputeNumSignBits(B) < NeededSignBits)
1802    return 0;
1803
1804  // In order to replace the original add with a narrower
1805  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1806  // and truncates that discard the high bits of the add.  Verify that this is
1807  // the case.
1808  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1809  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1810       UI != E; ++UI) {
1811    if (*UI == AddWithCst) continue;
1812
1813    // Only accept truncates for now.  We would really like a nice recursive
1814    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1815    // chain to see which bits of a value are actually demanded.  If the
1816    // original add had another add which was then immediately truncated, we
1817    // could still do the transformation.
1818    TruncInst *TI = dyn_cast<TruncInst>(*UI);
1819    if (TI == 0 ||
1820        TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1821  }
1822
1823  // If the pattern matches, truncate the inputs to the narrower type and
1824  // use the sadd_with_overflow intrinsic to efficiently compute both the
1825  // result and the overflow bit.
1826  Module *M = I.getParent()->getParent()->getParent();
1827
1828  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1829  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1830                                       NewType);
1831
1832  InstCombiner::BuilderTy *Builder = IC.Builder;
1833
1834  // Put the new code above the original add, in case there are any uses of the
1835  // add between the add and the compare.
1836  Builder->SetInsertPoint(OrigAdd);
1837
1838  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1839  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1840  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1841  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1842  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1843
1844  // The inner add was the result of the narrow add, zero extended to the
1845  // wider type.  Replace it with the result computed by the intrinsic.
1846  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1847
1848  // The original icmp gets replaced with the overflow value.
1849  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1850}
1851
1852static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1853                                     InstCombiner &IC) {
1854  // Don't bother doing this transformation for pointers, don't do it for
1855  // vectors.
1856  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1857
1858  // If the add is a constant expr, then we don't bother transforming it.
1859  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1860  if (OrigAdd == 0) return 0;
1861
1862  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1863
1864  // Put the new code above the original add, in case there are any uses of the
1865  // add between the add and the compare.
1866  InstCombiner::BuilderTy *Builder = IC.Builder;
1867  Builder->SetInsertPoint(OrigAdd);
1868
1869  Module *M = I.getParent()->getParent()->getParent();
1870  Type *Ty = LHS->getType();
1871  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1872  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1873  Value *Add = Builder->CreateExtractValue(Call, 0);
1874
1875  IC.ReplaceInstUsesWith(*OrigAdd, Add);
1876
1877  // The original icmp gets replaced with the overflow value.
1878  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1879}
1880
1881// DemandedBitsLHSMask - When performing a comparison against a constant,
1882// it is possible that not all the bits in the LHS are demanded.  This helper
1883// method computes the mask that IS demanded.
1884static APInt DemandedBitsLHSMask(ICmpInst &I,
1885                                 unsigned BitWidth, bool isSignCheck) {
1886  if (isSignCheck)
1887    return APInt::getSignBit(BitWidth);
1888
1889  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1890  if (!CI) return APInt::getAllOnesValue(BitWidth);
1891  const APInt &RHS = CI->getValue();
1892
1893  switch (I.getPredicate()) {
1894  // For a UGT comparison, we don't care about any bits that
1895  // correspond to the trailing ones of the comparand.  The value of these
1896  // bits doesn't impact the outcome of the comparison, because any value
1897  // greater than the RHS must differ in a bit higher than these due to carry.
1898  case ICmpInst::ICMP_UGT: {
1899    unsigned trailingOnes = RHS.countTrailingOnes();
1900    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1901    return ~lowBitsSet;
1902  }
1903
1904  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1905  // Any value less than the RHS must differ in a higher bit because of carries.
1906  case ICmpInst::ICMP_ULT: {
1907    unsigned trailingZeros = RHS.countTrailingZeros();
1908    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1909    return ~lowBitsSet;
1910  }
1911
1912  default:
1913    return APInt::getAllOnesValue(BitWidth);
1914  }
1915
1916}
1917
1918Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1919  bool Changed = false;
1920  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1921
1922  /// Orders the operands of the compare so that they are listed from most
1923  /// complex to least complex.  This puts constants before unary operators,
1924  /// before binary operators.
1925  if (getComplexity(Op0) < getComplexity(Op1)) {
1926    I.swapOperands();
1927    std::swap(Op0, Op1);
1928    Changed = true;
1929  }
1930
1931  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1932    return ReplaceInstUsesWith(I, V);
1933
1934  // comparing -val or val with non-zero is the same as just comparing val
1935  // ie, abs(val) != 0 -> val != 0
1936  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
1937  {
1938    Value *Cond, *SelectTrue, *SelectFalse;
1939    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
1940                            m_Value(SelectFalse)))) {
1941      if (Value *V = dyn_castNegVal(SelectTrue)) {
1942        if (V == SelectFalse)
1943          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
1944      }
1945      else if (Value *V = dyn_castNegVal(SelectFalse)) {
1946        if (V == SelectTrue)
1947          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
1948      }
1949    }
1950  }
1951
1952  Type *Ty = Op0->getType();
1953
1954  // icmp's with boolean values can always be turned into bitwise operations
1955  if (Ty->isIntegerTy(1)) {
1956    switch (I.getPredicate()) {
1957    default: llvm_unreachable("Invalid icmp instruction!");
1958    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1959      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1960      return BinaryOperator::CreateNot(Xor);
1961    }
1962    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1963      return BinaryOperator::CreateXor(Op0, Op1);
1964
1965    case ICmpInst::ICMP_UGT:
1966      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1967      // FALL THROUGH
1968    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1969      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1970      return BinaryOperator::CreateAnd(Not, Op1);
1971    }
1972    case ICmpInst::ICMP_SGT:
1973      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1974      // FALL THROUGH
1975    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1976      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1977      return BinaryOperator::CreateAnd(Not, Op0);
1978    }
1979    case ICmpInst::ICMP_UGE:
1980      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1981      // FALL THROUGH
1982    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1983      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1984      return BinaryOperator::CreateOr(Not, Op1);
1985    }
1986    case ICmpInst::ICMP_SGE:
1987      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1988      // FALL THROUGH
1989    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1990      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1991      return BinaryOperator::CreateOr(Not, Op0);
1992    }
1993    }
1994  }
1995
1996  unsigned BitWidth = 0;
1997  if (Ty->isIntOrIntVectorTy())
1998    BitWidth = Ty->getScalarSizeInBits();
1999  else if (TD)  // Pointers require TD info to get their size.
2000    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
2001
2002  bool isSignBit = false;
2003
2004  // See if we are doing a comparison with a constant.
2005  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2006    Value *A = 0, *B = 0;
2007
2008    // Match the following pattern, which is a common idiom when writing
2009    // overflow-safe integer arithmetic function.  The source performs an
2010    // addition in wider type, and explicitly checks for overflow using
2011    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2012    // sadd_with_overflow intrinsic.
2013    //
2014    // TODO: This could probably be generalized to handle other overflow-safe
2015    // operations if we worked out the formulas to compute the appropriate
2016    // magic constants.
2017    //
2018    // sum = a + b
2019    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2020    {
2021    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2022    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2023        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2024      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2025        return Res;
2026    }
2027
2028    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2029    if (I.isEquality() && CI->isZero() &&
2030        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2031      // (icmp cond A B) if cond is equality
2032      return new ICmpInst(I.getPredicate(), A, B);
2033    }
2034
2035    // If we have an icmp le or icmp ge instruction, turn it into the
2036    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2037    // them being folded in the code below.  The SimplifyICmpInst code has
2038    // already handled the edge cases for us, so we just assert on them.
2039    switch (I.getPredicate()) {
2040    default: break;
2041    case ICmpInst::ICMP_ULE:
2042      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2043      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2044                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2045    case ICmpInst::ICMP_SLE:
2046      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2047      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2048                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2049    case ICmpInst::ICMP_UGE:
2050      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2051      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2052                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2053    case ICmpInst::ICMP_SGE:
2054      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2055      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2056                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2057    }
2058
2059    // If this comparison is a normal comparison, it demands all
2060    // bits, if it is a sign bit comparison, it only demands the sign bit.
2061    bool UnusedBit;
2062    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2063  }
2064
2065  // See if we can fold the comparison based on range information we can get
2066  // by checking whether bits are known to be zero or one in the input.
2067  if (BitWidth != 0) {
2068    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2069    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2070
2071    if (SimplifyDemandedBits(I.getOperandUse(0),
2072                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
2073                             Op0KnownZero, Op0KnownOne, 0))
2074      return &I;
2075    if (SimplifyDemandedBits(I.getOperandUse(1),
2076                             APInt::getAllOnesValue(BitWidth),
2077                             Op1KnownZero, Op1KnownOne, 0))
2078      return &I;
2079
2080    // Given the known and unknown bits, compute a range that the LHS could be
2081    // in.  Compute the Min, Max and RHS values based on the known bits. For the
2082    // EQ and NE we use unsigned values.
2083    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2084    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2085    if (I.isSigned()) {
2086      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2087                                             Op0Min, Op0Max);
2088      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2089                                             Op1Min, Op1Max);
2090    } else {
2091      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2092                                               Op0Min, Op0Max);
2093      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2094                                               Op1Min, Op1Max);
2095    }
2096
2097    // If Min and Max are known to be the same, then SimplifyDemandedBits
2098    // figured out that the LHS is a constant.  Just constant fold this now so
2099    // that code below can assume that Min != Max.
2100    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2101      return new ICmpInst(I.getPredicate(),
2102                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
2103    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2104      return new ICmpInst(I.getPredicate(), Op0,
2105                          ConstantInt::get(Op1->getType(), Op1Min));
2106
2107    // Based on the range information we know about the LHS, see if we can
2108    // simplify this comparison.  For example, (x&4) < 8 is always true.
2109    switch (I.getPredicate()) {
2110    default: llvm_unreachable("Unknown icmp opcode!");
2111    case ICmpInst::ICMP_EQ: {
2112      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2113        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2114
2115      // If all bits are known zero except for one, then we know at most one
2116      // bit is set.   If the comparison is against zero, then this is a check
2117      // to see if *that* bit is set.
2118      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2119      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2120        // If the LHS is an AND with the same constant, look through it.
2121        Value *LHS = 0;
2122        ConstantInt *LHSC = 0;
2123        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2124            LHSC->getValue() != Op0KnownZeroInverted)
2125          LHS = Op0;
2126
2127        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2128        // then turn "((1 << x)&8) == 0" into "x != 3".
2129        Value *X = 0;
2130        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2131          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2132          return new ICmpInst(ICmpInst::ICMP_NE, X,
2133                              ConstantInt::get(X->getType(), CmpVal));
2134        }
2135
2136        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2137        // then turn "((8 >>u x)&1) == 0" into "x != 3".
2138        const APInt *CI;
2139        if (Op0KnownZeroInverted == 1 &&
2140            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2141          return new ICmpInst(ICmpInst::ICMP_NE, X,
2142                              ConstantInt::get(X->getType(),
2143                                               CI->countTrailingZeros()));
2144      }
2145
2146      break;
2147    }
2148    case ICmpInst::ICMP_NE: {
2149      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2150        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2151
2152      // If all bits are known zero except for one, then we know at most one
2153      // bit is set.   If the comparison is against zero, then this is a check
2154      // to see if *that* bit is set.
2155      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2156      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2157        // If the LHS is an AND with the same constant, look through it.
2158        Value *LHS = 0;
2159        ConstantInt *LHSC = 0;
2160        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2161            LHSC->getValue() != Op0KnownZeroInverted)
2162          LHS = Op0;
2163
2164        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2165        // then turn "((1 << x)&8) != 0" into "x == 3".
2166        Value *X = 0;
2167        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2168          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2169          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2170                              ConstantInt::get(X->getType(), CmpVal));
2171        }
2172
2173        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2174        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2175        const APInt *CI;
2176        if (Op0KnownZeroInverted == 1 &&
2177            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2178          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2179                              ConstantInt::get(X->getType(),
2180                                               CI->countTrailingZeros()));
2181      }
2182
2183      break;
2184    }
2185    case ICmpInst::ICMP_ULT:
2186      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2187        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2188      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2189        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2190      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2191        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2192      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2193        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2194          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2195                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2196
2197        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2198        if (CI->isMinValue(true))
2199          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2200                           Constant::getAllOnesValue(Op0->getType()));
2201      }
2202      break;
2203    case ICmpInst::ICMP_UGT:
2204      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2205        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2206      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2207        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2208
2209      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2210        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2211      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2212        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2213          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2214                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2215
2216        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2217        if (CI->isMaxValue(true))
2218          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2219                              Constant::getNullValue(Op0->getType()));
2220      }
2221      break;
2222    case ICmpInst::ICMP_SLT:
2223      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2224        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2225      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2226        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2227      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2228        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2229      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2230        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2231          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2232                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2233      }
2234      break;
2235    case ICmpInst::ICMP_SGT:
2236      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2237        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2238      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2239        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2240
2241      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2242        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2243      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2244        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2245          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2246                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2247      }
2248      break;
2249    case ICmpInst::ICMP_SGE:
2250      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2251      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2252        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2253      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2254        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2255      break;
2256    case ICmpInst::ICMP_SLE:
2257      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2258      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2259        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2260      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2261        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2262      break;
2263    case ICmpInst::ICMP_UGE:
2264      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2265      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2266        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2267      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2268        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2269      break;
2270    case ICmpInst::ICMP_ULE:
2271      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2272      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2273        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2274      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2275        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2276      break;
2277    }
2278
2279    // Turn a signed comparison into an unsigned one if both operands
2280    // are known to have the same sign.
2281    if (I.isSigned() &&
2282        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2283         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2284      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2285  }
2286
2287  // Test if the ICmpInst instruction is used exclusively by a select as
2288  // part of a minimum or maximum operation. If so, refrain from doing
2289  // any other folding. This helps out other analyses which understand
2290  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2291  // and CodeGen. And in this case, at least one of the comparison
2292  // operands has at least one user besides the compare (the select),
2293  // which would often largely negate the benefit of folding anyway.
2294  if (I.hasOneUse())
2295    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2296      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2297          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2298        return 0;
2299
2300  // See if we are doing a comparison between a constant and an instruction that
2301  // can be folded into the comparison.
2302  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2303    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2304    // instruction, see if that instruction also has constants so that the
2305    // instruction can be folded into the icmp
2306    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2307      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2308        return Res;
2309  }
2310
2311  // Handle icmp with constant (but not simple integer constant) RHS
2312  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2313    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2314      switch (LHSI->getOpcode()) {
2315      case Instruction::GetElementPtr:
2316          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2317        if (RHSC->isNullValue() &&
2318            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2319          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2320                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2321        break;
2322      case Instruction::PHI:
2323        // Only fold icmp into the PHI if the phi and icmp are in the same
2324        // block.  If in the same block, we're encouraging jump threading.  If
2325        // not, we are just pessimizing the code by making an i1 phi.
2326        if (LHSI->getParent() == I.getParent())
2327          if (Instruction *NV = FoldOpIntoPhi(I))
2328            return NV;
2329        break;
2330      case Instruction::Select: {
2331        // If either operand of the select is a constant, we can fold the
2332        // comparison into the select arms, which will cause one to be
2333        // constant folded and the select turned into a bitwise or.
2334        Value *Op1 = 0, *Op2 = 0;
2335        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2336          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2337        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2338          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2339
2340        // We only want to perform this transformation if it will not lead to
2341        // additional code. This is true if either both sides of the select
2342        // fold to a constant (in which case the icmp is replaced with a select
2343        // which will usually simplify) or this is the only user of the
2344        // select (in which case we are trading a select+icmp for a simpler
2345        // select+icmp).
2346        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2347          if (!Op1)
2348            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2349                                      RHSC, I.getName());
2350          if (!Op2)
2351            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2352                                      RHSC, I.getName());
2353          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2354        }
2355        break;
2356      }
2357      case Instruction::IntToPtr:
2358        // icmp pred inttoptr(X), null -> icmp pred X, 0
2359        if (RHSC->isNullValue() && TD &&
2360            TD->getIntPtrType(RHSC->getContext()) ==
2361               LHSI->getOperand(0)->getType())
2362          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2363                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2364        break;
2365
2366      case Instruction::Load:
2367        // Try to optimize things like "A[i] > 4" to index computations.
2368        if (GetElementPtrInst *GEP =
2369              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2370          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2371            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2372                !cast<LoadInst>(LHSI)->isVolatile())
2373              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2374                return Res;
2375        }
2376        break;
2377      }
2378  }
2379
2380  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2381  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2382    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2383      return NI;
2384  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2385    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2386                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2387      return NI;
2388
2389  // Test to see if the operands of the icmp are casted versions of other
2390  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2391  // now.
2392  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2393    if (Op0->getType()->isPointerTy() &&
2394        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2395      // We keep moving the cast from the left operand over to the right
2396      // operand, where it can often be eliminated completely.
2397      Op0 = CI->getOperand(0);
2398
2399      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2400      // so eliminate it as well.
2401      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2402        Op1 = CI2->getOperand(0);
2403
2404      // If Op1 is a constant, we can fold the cast into the constant.
2405      if (Op0->getType() != Op1->getType()) {
2406        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2407          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2408        } else {
2409          // Otherwise, cast the RHS right before the icmp
2410          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2411        }
2412      }
2413      return new ICmpInst(I.getPredicate(), Op0, Op1);
2414    }
2415  }
2416
2417  if (isa<CastInst>(Op0)) {
2418    // Handle the special case of: icmp (cast bool to X), <cst>
2419    // This comes up when you have code like
2420    //   int X = A < B;
2421    //   if (X) ...
2422    // For generality, we handle any zero-extension of any operand comparison
2423    // with a constant or another cast from the same type.
2424    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2425      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2426        return R;
2427  }
2428
2429  // Special logic for binary operators.
2430  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2431  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2432  if (BO0 || BO1) {
2433    CmpInst::Predicate Pred = I.getPredicate();
2434    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2435    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2436      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2437        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2438        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2439    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2440      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2441        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2442        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2443
2444    // Analyze the case when either Op0 or Op1 is an add instruction.
2445    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2446    Value *A = 0, *B = 0, *C = 0, *D = 0;
2447    if (BO0 && BO0->getOpcode() == Instruction::Add)
2448      A = BO0->getOperand(0), B = BO0->getOperand(1);
2449    if (BO1 && BO1->getOpcode() == Instruction::Add)
2450      C = BO1->getOperand(0), D = BO1->getOperand(1);
2451
2452    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2453    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2454      return new ICmpInst(Pred, A == Op1 ? B : A,
2455                          Constant::getNullValue(Op1->getType()));
2456
2457    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2458    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2459      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2460                          C == Op0 ? D : C);
2461
2462    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2463    if (A && C && (A == C || A == D || B == C || B == D) &&
2464        NoOp0WrapProblem && NoOp1WrapProblem &&
2465        // Try not to increase register pressure.
2466        BO0->hasOneUse() && BO1->hasOneUse()) {
2467      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2468      Value *Y, *Z;
2469      if (A == C) {
2470        // C + B == C + D  ->  B == D
2471        Y = B;
2472        Z = D;
2473      } else if (A == D) {
2474        // D + B == C + D  ->  B == C
2475        Y = B;
2476        Z = C;
2477      } else if (B == C) {
2478        // A + C == C + D  ->  A == D
2479        Y = A;
2480        Z = D;
2481      } else {
2482        assert(B == D);
2483        // A + D == C + D  ->  A == C
2484        Y = A;
2485        Z = C;
2486      }
2487      return new ICmpInst(Pred, Y, Z);
2488    }
2489
2490    // icmp slt (X + -1), Y -> icmp sle X, Y
2491    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2492        match(B, m_AllOnes()))
2493      return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2494
2495    // icmp sge (X + -1), Y -> icmp sgt X, Y
2496    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2497        match(B, m_AllOnes()))
2498      return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2499
2500    // icmp sle (X + 1), Y -> icmp slt X, Y
2501    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
2502        match(B, m_One()))
2503      return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2504
2505    // icmp sgt (X + 1), Y -> icmp sge X, Y
2506    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
2507        match(B, m_One()))
2508      return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2509
2510    // if C1 has greater magnitude than C2:
2511    //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2512    //  s.t. C3 = C1 - C2
2513    //
2514    // if C2 has greater magnitude than C1:
2515    //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2516    //  s.t. C3 = C2 - C1
2517    if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2518        (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2519      if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2520        if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2521          const APInt &AP1 = C1->getValue();
2522          const APInt &AP2 = C2->getValue();
2523          if (AP1.isNegative() == AP2.isNegative()) {
2524            APInt AP1Abs = C1->getValue().abs();
2525            APInt AP2Abs = C2->getValue().abs();
2526            if (AP1Abs.uge(AP2Abs)) {
2527              ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2528              Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2529              return new ICmpInst(Pred, NewAdd, C);
2530            } else {
2531              ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2532              Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2533              return new ICmpInst(Pred, A, NewAdd);
2534            }
2535          }
2536        }
2537
2538
2539    // Analyze the case when either Op0 or Op1 is a sub instruction.
2540    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2541    A = 0; B = 0; C = 0; D = 0;
2542    if (BO0 && BO0->getOpcode() == Instruction::Sub)
2543      A = BO0->getOperand(0), B = BO0->getOperand(1);
2544    if (BO1 && BO1->getOpcode() == Instruction::Sub)
2545      C = BO1->getOperand(0), D = BO1->getOperand(1);
2546
2547    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2548    if (A == Op1 && NoOp0WrapProblem)
2549      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2550
2551    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2552    if (C == Op0 && NoOp1WrapProblem)
2553      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2554
2555    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2556    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2557        // Try not to increase register pressure.
2558        BO0->hasOneUse() && BO1->hasOneUse())
2559      return new ICmpInst(Pred, A, C);
2560
2561    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2562    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2563        // Try not to increase register pressure.
2564        BO0->hasOneUse() && BO1->hasOneUse())
2565      return new ICmpInst(Pred, D, B);
2566
2567    BinaryOperator *SRem = NULL;
2568    // icmp (srem X, Y), Y
2569    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2570        Op1 == BO0->getOperand(1))
2571      SRem = BO0;
2572    // icmp Y, (srem X, Y)
2573    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2574             Op0 == BO1->getOperand(1))
2575      SRem = BO1;
2576    if (SRem) {
2577      // We don't check hasOneUse to avoid increasing register pressure because
2578      // the value we use is the same value this instruction was already using.
2579      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2580        default: break;
2581        case ICmpInst::ICMP_EQ:
2582          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2583        case ICmpInst::ICMP_NE:
2584          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2585        case ICmpInst::ICMP_SGT:
2586        case ICmpInst::ICMP_SGE:
2587          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2588                              Constant::getAllOnesValue(SRem->getType()));
2589        case ICmpInst::ICMP_SLT:
2590        case ICmpInst::ICMP_SLE:
2591          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2592                              Constant::getNullValue(SRem->getType()));
2593      }
2594    }
2595
2596    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2597        BO0->hasOneUse() && BO1->hasOneUse() &&
2598        BO0->getOperand(1) == BO1->getOperand(1)) {
2599      switch (BO0->getOpcode()) {
2600      default: break;
2601      case Instruction::Add:
2602      case Instruction::Sub:
2603      case Instruction::Xor:
2604        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2605          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2606                              BO1->getOperand(0));
2607        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2608        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2609          if (CI->getValue().isSignBit()) {
2610            ICmpInst::Predicate Pred = I.isSigned()
2611                                           ? I.getUnsignedPredicate()
2612                                           : I.getSignedPredicate();
2613            return new ICmpInst(Pred, BO0->getOperand(0),
2614                                BO1->getOperand(0));
2615          }
2616
2617          if (CI->isMaxValue(true)) {
2618            ICmpInst::Predicate Pred = I.isSigned()
2619                                           ? I.getUnsignedPredicate()
2620                                           : I.getSignedPredicate();
2621            Pred = I.getSwappedPredicate(Pred);
2622            return new ICmpInst(Pred, BO0->getOperand(0),
2623                                BO1->getOperand(0));
2624          }
2625        }
2626        break;
2627      case Instruction::Mul:
2628        if (!I.isEquality())
2629          break;
2630
2631        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2632          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2633          // Mask = -1 >> count-trailing-zeros(Cst).
2634          if (!CI->isZero() && !CI->isOne()) {
2635            const APInt &AP = CI->getValue();
2636            ConstantInt *Mask = ConstantInt::get(I.getContext(),
2637                                    APInt::getLowBitsSet(AP.getBitWidth(),
2638                                                         AP.getBitWidth() -
2639                                                    AP.countTrailingZeros()));
2640            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2641            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2642            return new ICmpInst(I.getPredicate(), And1, And2);
2643          }
2644        }
2645        break;
2646      case Instruction::UDiv:
2647      case Instruction::LShr:
2648        if (I.isSigned())
2649          break;
2650        // fall-through
2651      case Instruction::SDiv:
2652      case Instruction::AShr:
2653        if (!BO0->isExact() || !BO1->isExact())
2654          break;
2655        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2656                            BO1->getOperand(0));
2657      case Instruction::Shl: {
2658        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2659        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2660        if (!NUW && !NSW)
2661          break;
2662        if (!NSW && I.isSigned())
2663          break;
2664        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2665                            BO1->getOperand(0));
2666      }
2667      }
2668    }
2669  }
2670
2671  { Value *A, *B;
2672    // Transform (A & ~B) == 0 --> (A & B) != 0
2673    // and       (A & ~B) != 0 --> (A & B) == 0
2674    // if A is a power of 2.
2675    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2676        match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
2677      return new ICmpInst(I.getInversePredicate(),
2678                          Builder->CreateAnd(A, B),
2679                          Op1);
2680
2681    // ~x < ~y --> y < x
2682    // ~x < cst --> ~cst < x
2683    if (match(Op0, m_Not(m_Value(A)))) {
2684      if (match(Op1, m_Not(m_Value(B))))
2685        return new ICmpInst(I.getPredicate(), B, A);
2686      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2687        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2688    }
2689
2690    // (a+b) <u a  --> llvm.uadd.with.overflow.
2691    // (a+b) <u b  --> llvm.uadd.with.overflow.
2692    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2693        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2694        (Op1 == A || Op1 == B))
2695      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2696        return R;
2697
2698    // a >u (a+b)  --> llvm.uadd.with.overflow.
2699    // b >u (a+b)  --> llvm.uadd.with.overflow.
2700    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2701        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2702        (Op0 == A || Op0 == B))
2703      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2704        return R;
2705  }
2706
2707  if (I.isEquality()) {
2708    Value *A, *B, *C, *D;
2709
2710    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2711      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2712        Value *OtherVal = A == Op1 ? B : A;
2713        return new ICmpInst(I.getPredicate(), OtherVal,
2714                            Constant::getNullValue(A->getType()));
2715      }
2716
2717      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2718        // A^c1 == C^c2 --> A == C^(c1^c2)
2719        ConstantInt *C1, *C2;
2720        if (match(B, m_ConstantInt(C1)) &&
2721            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2722          Constant *NC = ConstantInt::get(I.getContext(),
2723                                          C1->getValue() ^ C2->getValue());
2724          Value *Xor = Builder->CreateXor(C, NC);
2725          return new ICmpInst(I.getPredicate(), A, Xor);
2726        }
2727
2728        // A^B == A^D -> B == D
2729        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2730        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2731        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2732        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2733      }
2734    }
2735
2736    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2737        (A == Op0 || B == Op0)) {
2738      // A == (A^B)  ->  B == 0
2739      Value *OtherVal = A == Op0 ? B : A;
2740      return new ICmpInst(I.getPredicate(), OtherVal,
2741                          Constant::getNullValue(A->getType()));
2742    }
2743
2744    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2745    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
2746        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
2747      Value *X = 0, *Y = 0, *Z = 0;
2748
2749      if (A == C) {
2750        X = B; Y = D; Z = A;
2751      } else if (A == D) {
2752        X = B; Y = C; Z = A;
2753      } else if (B == C) {
2754        X = A; Y = D; Z = B;
2755      } else if (B == D) {
2756        X = A; Y = C; Z = B;
2757      }
2758
2759      if (X) {   // Build (X^Y) & Z
2760        Op1 = Builder->CreateXor(X, Y);
2761        Op1 = Builder->CreateAnd(Op1, Z);
2762        I.setOperand(0, Op1);
2763        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2764        return &I;
2765      }
2766    }
2767
2768    // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
2769    // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
2770    ConstantInt *Cst1;
2771    if ((Op0->hasOneUse() &&
2772         match(Op0, m_ZExt(m_Value(A))) &&
2773         match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
2774        (Op1->hasOneUse() &&
2775         match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
2776         match(Op1, m_ZExt(m_Value(A))))) {
2777      APInt Pow2 = Cst1->getValue() + 1;
2778      if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
2779          Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
2780        return new ICmpInst(I.getPredicate(), A,
2781                            Builder->CreateTrunc(B, A->getType()));
2782    }
2783
2784    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2785    // "icmp (and X, mask), cst"
2786    uint64_t ShAmt = 0;
2787    if (Op0->hasOneUse() &&
2788        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2789                                           m_ConstantInt(ShAmt))))) &&
2790        match(Op1, m_ConstantInt(Cst1)) &&
2791        // Only do this when A has multiple uses.  This is most important to do
2792        // when it exposes other optimizations.
2793        !A->hasOneUse()) {
2794      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
2795
2796      if (ShAmt < ASize) {
2797        APInt MaskV =
2798          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2799        MaskV <<= ShAmt;
2800
2801        APInt CmpV = Cst1->getValue().zext(ASize);
2802        CmpV <<= ShAmt;
2803
2804        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2805        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2806      }
2807    }
2808  }
2809
2810  {
2811    Value *X; ConstantInt *Cst;
2812    // icmp X+Cst, X
2813    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2814      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2815
2816    // icmp X, X+Cst
2817    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2818      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2819  }
2820  return Changed ? &I : 0;
2821}
2822
2823
2824
2825
2826
2827
2828/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2829///
2830Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2831                                                Instruction *LHSI,
2832                                                Constant *RHSC) {
2833  if (!isa<ConstantFP>(RHSC)) return 0;
2834  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2835
2836  // Get the width of the mantissa.  We don't want to hack on conversions that
2837  // might lose information from the integer, e.g. "i64 -> float"
2838  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2839  if (MantissaWidth == -1) return 0;  // Unknown.
2840
2841  // Check to see that the input is converted from an integer type that is small
2842  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2843  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2844  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2845
2846  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2847  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2848  if (LHSUnsigned)
2849    ++InputSize;
2850
2851  // If the conversion would lose info, don't hack on this.
2852  if ((int)InputSize > MantissaWidth)
2853    return 0;
2854
2855  // Otherwise, we can potentially simplify the comparison.  We know that it
2856  // will always come through as an integer value and we know the constant is
2857  // not a NAN (it would have been previously simplified).
2858  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2859
2860  ICmpInst::Predicate Pred;
2861  switch (I.getPredicate()) {
2862  default: llvm_unreachable("Unexpected predicate!");
2863  case FCmpInst::FCMP_UEQ:
2864  case FCmpInst::FCMP_OEQ:
2865    Pred = ICmpInst::ICMP_EQ;
2866    break;
2867  case FCmpInst::FCMP_UGT:
2868  case FCmpInst::FCMP_OGT:
2869    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2870    break;
2871  case FCmpInst::FCMP_UGE:
2872  case FCmpInst::FCMP_OGE:
2873    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2874    break;
2875  case FCmpInst::FCMP_ULT:
2876  case FCmpInst::FCMP_OLT:
2877    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2878    break;
2879  case FCmpInst::FCMP_ULE:
2880  case FCmpInst::FCMP_OLE:
2881    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2882    break;
2883  case FCmpInst::FCMP_UNE:
2884  case FCmpInst::FCMP_ONE:
2885    Pred = ICmpInst::ICMP_NE;
2886    break;
2887  case FCmpInst::FCMP_ORD:
2888    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2889  case FCmpInst::FCMP_UNO:
2890    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2891  }
2892
2893  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2894
2895  // Now we know that the APFloat is a normal number, zero or inf.
2896
2897  // See if the FP constant is too large for the integer.  For example,
2898  // comparing an i8 to 300.0.
2899  unsigned IntWidth = IntTy->getScalarSizeInBits();
2900
2901  if (!LHSUnsigned) {
2902    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2903    // and large values.
2904    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2905    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2906                          APFloat::rmNearestTiesToEven);
2907    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2908      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2909          Pred == ICmpInst::ICMP_SLE)
2910        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2911      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2912    }
2913  } else {
2914    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2915    // +INF and large values.
2916    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2917    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2918                          APFloat::rmNearestTiesToEven);
2919    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2920      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2921          Pred == ICmpInst::ICMP_ULE)
2922        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2923      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2924    }
2925  }
2926
2927  if (!LHSUnsigned) {
2928    // See if the RHS value is < SignedMin.
2929    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2930    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2931                          APFloat::rmNearestTiesToEven);
2932    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2933      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2934          Pred == ICmpInst::ICMP_SGE)
2935        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2936      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2937    }
2938  } else {
2939    // See if the RHS value is < UnsignedMin.
2940    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2941    SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
2942                          APFloat::rmNearestTiesToEven);
2943    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
2944      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
2945          Pred == ICmpInst::ICMP_UGE)
2946        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2947      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2948    }
2949  }
2950
2951  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2952  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2953  // casting the FP value to the integer value and back, checking for equality.
2954  // Don't do this for zero, because -0.0 is not fractional.
2955  Constant *RHSInt = LHSUnsigned
2956    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2957    : ConstantExpr::getFPToSI(RHSC, IntTy);
2958  if (!RHS.isZero()) {
2959    bool Equal = LHSUnsigned
2960      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2961      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2962    if (!Equal) {
2963      // If we had a comparison against a fractional value, we have to adjust
2964      // the compare predicate and sometimes the value.  RHSC is rounded towards
2965      // zero at this point.
2966      switch (Pred) {
2967      default: llvm_unreachable("Unexpected integer comparison!");
2968      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2969        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2970      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2971        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2972      case ICmpInst::ICMP_ULE:
2973        // (float)int <= 4.4   --> int <= 4
2974        // (float)int <= -4.4  --> false
2975        if (RHS.isNegative())
2976          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2977        break;
2978      case ICmpInst::ICMP_SLE:
2979        // (float)int <= 4.4   --> int <= 4
2980        // (float)int <= -4.4  --> int < -4
2981        if (RHS.isNegative())
2982          Pred = ICmpInst::ICMP_SLT;
2983        break;
2984      case ICmpInst::ICMP_ULT:
2985        // (float)int < -4.4   --> false
2986        // (float)int < 4.4    --> int <= 4
2987        if (RHS.isNegative())
2988          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2989        Pred = ICmpInst::ICMP_ULE;
2990        break;
2991      case ICmpInst::ICMP_SLT:
2992        // (float)int < -4.4   --> int < -4
2993        // (float)int < 4.4    --> int <= 4
2994        if (!RHS.isNegative())
2995          Pred = ICmpInst::ICMP_SLE;
2996        break;
2997      case ICmpInst::ICMP_UGT:
2998        // (float)int > 4.4    --> int > 4
2999        // (float)int > -4.4   --> true
3000        if (RHS.isNegative())
3001          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
3002        break;
3003      case ICmpInst::ICMP_SGT:
3004        // (float)int > 4.4    --> int > 4
3005        // (float)int > -4.4   --> int >= -4
3006        if (RHS.isNegative())
3007          Pred = ICmpInst::ICMP_SGE;
3008        break;
3009      case ICmpInst::ICMP_UGE:
3010        // (float)int >= -4.4   --> true
3011        // (float)int >= 4.4    --> int > 4
3012        if (RHS.isNegative())
3013          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
3014        Pred = ICmpInst::ICMP_UGT;
3015        break;
3016      case ICmpInst::ICMP_SGE:
3017        // (float)int >= -4.4   --> int >= -4
3018        // (float)int >= 4.4    --> int > 4
3019        if (!RHS.isNegative())
3020          Pred = ICmpInst::ICMP_SGT;
3021        break;
3022      }
3023    }
3024  }
3025
3026  // Lower this FP comparison into an appropriate integer version of the
3027  // comparison.
3028  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3029}
3030
3031Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3032  bool Changed = false;
3033
3034  /// Orders the operands of the compare so that they are listed from most
3035  /// complex to least complex.  This puts constants before unary operators,
3036  /// before binary operators.
3037  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3038    I.swapOperands();
3039    Changed = true;
3040  }
3041
3042  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3043
3044  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
3045    return ReplaceInstUsesWith(I, V);
3046
3047  // Simplify 'fcmp pred X, X'
3048  if (Op0 == Op1) {
3049    switch (I.getPredicate()) {
3050    default: llvm_unreachable("Unknown predicate!");
3051    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
3052    case FCmpInst::FCMP_ULT:    // True if unordered or less than
3053    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
3054    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
3055      // Canonicalize these to be 'fcmp uno %X, 0.0'.
3056      I.setPredicate(FCmpInst::FCMP_UNO);
3057      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3058      return &I;
3059
3060    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
3061    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
3062    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
3063    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
3064      // Canonicalize these to be 'fcmp ord %X, 0.0'.
3065      I.setPredicate(FCmpInst::FCMP_ORD);
3066      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3067      return &I;
3068    }
3069  }
3070
3071  // Handle fcmp with constant RHS
3072  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3073    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3074      switch (LHSI->getOpcode()) {
3075      case Instruction::FPExt: {
3076        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3077        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3078        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3079        if (!RHSF)
3080          break;
3081
3082        const fltSemantics *Sem;
3083        // FIXME: This shouldn't be here.
3084        if (LHSExt->getSrcTy()->isHalfTy())
3085          Sem = &APFloat::IEEEhalf;
3086        else if (LHSExt->getSrcTy()->isFloatTy())
3087          Sem = &APFloat::IEEEsingle;
3088        else if (LHSExt->getSrcTy()->isDoubleTy())
3089          Sem = &APFloat::IEEEdouble;
3090        else if (LHSExt->getSrcTy()->isFP128Ty())
3091          Sem = &APFloat::IEEEquad;
3092        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3093          Sem = &APFloat::x87DoubleExtended;
3094        else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3095          Sem = &APFloat::PPCDoubleDouble;
3096        else
3097          break;
3098
3099        bool Lossy;
3100        APFloat F = RHSF->getValueAPF();
3101        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3102
3103        // Avoid lossy conversions and denormals. Zero is a special case
3104        // that's OK to convert.
3105        APFloat Fabs = F;
3106        Fabs.clearSign();
3107        if (!Lossy &&
3108            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3109                 APFloat::cmpLessThan) || Fabs.isZero()))
3110
3111          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3112                              ConstantFP::get(RHSC->getContext(), F));
3113        break;
3114      }
3115      case Instruction::PHI:
3116        // Only fold fcmp into the PHI if the phi and fcmp are in the same
3117        // block.  If in the same block, we're encouraging jump threading.  If
3118        // not, we are just pessimizing the code by making an i1 phi.
3119        if (LHSI->getParent() == I.getParent())
3120          if (Instruction *NV = FoldOpIntoPhi(I))
3121            return NV;
3122        break;
3123      case Instruction::SIToFP:
3124      case Instruction::UIToFP:
3125        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3126          return NV;
3127        break;
3128      case Instruction::Select: {
3129        // If either operand of the select is a constant, we can fold the
3130        // comparison into the select arms, which will cause one to be
3131        // constant folded and the select turned into a bitwise or.
3132        Value *Op1 = 0, *Op2 = 0;
3133        if (LHSI->hasOneUse()) {
3134          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3135            // Fold the known value into the constant operand.
3136            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3137            // Insert a new FCmp of the other select operand.
3138            Op2 = Builder->CreateFCmp(I.getPredicate(),
3139                                      LHSI->getOperand(2), RHSC, I.getName());
3140          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3141            // Fold the known value into the constant operand.
3142            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3143            // Insert a new FCmp of the other select operand.
3144            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
3145                                      RHSC, I.getName());
3146          }
3147        }
3148
3149        if (Op1)
3150          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3151        break;
3152      }
3153      case Instruction::FSub: {
3154        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3155        Value *Op;
3156        if (match(LHSI, m_FNeg(m_Value(Op))))
3157          return new FCmpInst(I.getSwappedPredicate(), Op,
3158                              ConstantExpr::getFNeg(RHSC));
3159        break;
3160      }
3161      case Instruction::Load:
3162        if (GetElementPtrInst *GEP =
3163            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3164          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3165            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3166                !cast<LoadInst>(LHSI)->isVolatile())
3167              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3168                return Res;
3169        }
3170        break;
3171      case Instruction::Call: {
3172        CallInst *CI = cast<CallInst>(LHSI);
3173        LibFunc::Func Func;
3174        // Various optimization for fabs compared with zero.
3175        if (RHSC->isNullValue() && CI->getCalledFunction() &&
3176            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3177            TLI->has(Func)) {
3178          if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3179              Func == LibFunc::fabsl) {
3180            switch (I.getPredicate()) {
3181            default: break;
3182            // fabs(x) < 0 --> false
3183            case FCmpInst::FCMP_OLT:
3184              return ReplaceInstUsesWith(I, Builder->getFalse());
3185            // fabs(x) > 0 --> x != 0
3186            case FCmpInst::FCMP_OGT:
3187              return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3188                                  RHSC);
3189            // fabs(x) <= 0 --> x == 0
3190            case FCmpInst::FCMP_OLE:
3191              return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3192                                  RHSC);
3193            // fabs(x) >= 0 --> !isnan(x)
3194            case FCmpInst::FCMP_OGE:
3195              return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3196                                  RHSC);
3197            // fabs(x) == 0 --> x == 0
3198            // fabs(x) != 0 --> x != 0
3199            case FCmpInst::FCMP_OEQ:
3200            case FCmpInst::FCMP_UEQ:
3201            case FCmpInst::FCMP_ONE:
3202            case FCmpInst::FCMP_UNE:
3203              return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3204                                  RHSC);
3205            }
3206          }
3207        }
3208      }
3209      }
3210  }
3211
3212  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
3213  Value *X, *Y;
3214  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
3215    return new FCmpInst(I.getSwappedPredicate(), X, Y);
3216
3217  // fcmp (fpext x), (fpext y) -> fcmp x, y
3218  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3219    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3220      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3221        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3222                            RHSExt->getOperand(0));
3223
3224  return Changed ? &I : 0;
3225}
3226