InstCombineCasts.cpp revision 243830
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/DataLayout.h"
17#include "llvm/Target/TargetLibraryInfo.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
23/// expression.  If so, decompose it, returning some value X, such that Val is
24/// X*Scale+Offset.
25///
26static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
27                                        uint64_t &Offset) {
28  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
29    Offset = CI->getZExtValue();
30    Scale  = 0;
31    return ConstantInt::get(Val->getType(), 0);
32  }
33
34  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
35    // Cannot look past anything that might overflow.
36    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
37    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
38      Scale = 1;
39      Offset = 0;
40      return Val;
41    }
42
43    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
44      if (I->getOpcode() == Instruction::Shl) {
45        // This is a value scaled by '1 << the shift amt'.
46        Scale = UINT64_C(1) << RHS->getZExtValue();
47        Offset = 0;
48        return I->getOperand(0);
49      }
50
51      if (I->getOpcode() == Instruction::Mul) {
52        // This value is scaled by 'RHS'.
53        Scale = RHS->getZExtValue();
54        Offset = 0;
55        return I->getOperand(0);
56      }
57
58      if (I->getOpcode() == Instruction::Add) {
59        // We have X+C.  Check to see if we really have (X*C2)+C1,
60        // where C1 is divisible by C2.
61        unsigned SubScale;
62        Value *SubVal =
63          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
64        Offset += RHS->getZExtValue();
65        Scale = SubScale;
66        return SubVal;
67      }
68    }
69  }
70
71  // Otherwise, we can't look past this.
72  Scale = 1;
73  Offset = 0;
74  return Val;
75}
76
77/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
78/// try to eliminate the cast by moving the type information into the alloc.
79Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
80                                                   AllocaInst &AI) {
81  // This requires DataLayout to get the alloca alignment and size information.
82  if (!TD) return 0;
83
84  PointerType *PTy = cast<PointerType>(CI.getType());
85
86  BuilderTy AllocaBuilder(*Builder);
87  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
88
89  // Get the type really allocated and the type casted to.
90  Type *AllocElTy = AI.getAllocatedType();
91  Type *CastElTy = PTy->getElementType();
92  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
93
94  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
95  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
96  if (CastElTyAlign < AllocElTyAlign) return 0;
97
98  // If the allocation has multiple uses, only promote it if we are strictly
99  // increasing the alignment of the resultant allocation.  If we keep it the
100  // same, we open the door to infinite loops of various kinds.
101  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
102
103  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
104  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
105  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
106
107  // See if we can satisfy the modulus by pulling a scale out of the array
108  // size argument.
109  unsigned ArraySizeScale;
110  uint64_t ArrayOffset;
111  Value *NumElements = // See if the array size is a decomposable linear expr.
112    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
113
114  // If we can now satisfy the modulus, by using a non-1 scale, we really can
115  // do the xform.
116  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
117      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
118
119  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
120  Value *Amt = 0;
121  if (Scale == 1) {
122    Amt = NumElements;
123  } else {
124    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
125    // Insert before the alloca, not before the cast.
126    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
127  }
128
129  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
130    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
131                                  Offset, true);
132    Amt = AllocaBuilder.CreateAdd(Amt, Off);
133  }
134
135  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
136  New->setAlignment(AI.getAlignment());
137  New->takeName(&AI);
138
139  // If the allocation has multiple real uses, insert a cast and change all
140  // things that used it to use the new cast.  This will also hack on CI, but it
141  // will die soon.
142  if (!AI.hasOneUse()) {
143    // New is the allocation instruction, pointer typed. AI is the original
144    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
145    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
146    ReplaceInstUsesWith(AI, NewCast);
147  }
148  return ReplaceInstUsesWith(CI, New);
149}
150
151/// EvaluateInDifferentType - Given an expression that
152/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
153/// insert the code to evaluate the expression.
154Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
155                                             bool isSigned) {
156  if (Constant *C = dyn_cast<Constant>(V)) {
157    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
158    // If we got a constantexpr back, try to simplify it with TD info.
159    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
160      C = ConstantFoldConstantExpression(CE, TD, TLI);
161    return C;
162  }
163
164  // Otherwise, it must be an instruction.
165  Instruction *I = cast<Instruction>(V);
166  Instruction *Res = 0;
167  unsigned Opc = I->getOpcode();
168  switch (Opc) {
169  case Instruction::Add:
170  case Instruction::Sub:
171  case Instruction::Mul:
172  case Instruction::And:
173  case Instruction::Or:
174  case Instruction::Xor:
175  case Instruction::AShr:
176  case Instruction::LShr:
177  case Instruction::Shl:
178  case Instruction::UDiv:
179  case Instruction::URem: {
180    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
181    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
182    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
183    break;
184  }
185  case Instruction::Trunc:
186  case Instruction::ZExt:
187  case Instruction::SExt:
188    // If the source type of the cast is the type we're trying for then we can
189    // just return the source.  There's no need to insert it because it is not
190    // new.
191    if (I->getOperand(0)->getType() == Ty)
192      return I->getOperand(0);
193
194    // Otherwise, must be the same type of cast, so just reinsert a new one.
195    // This also handles the case of zext(trunc(x)) -> zext(x).
196    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
197                                      Opc == Instruction::SExt);
198    break;
199  case Instruction::Select: {
200    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
201    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
202    Res = SelectInst::Create(I->getOperand(0), True, False);
203    break;
204  }
205  case Instruction::PHI: {
206    PHINode *OPN = cast<PHINode>(I);
207    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
208    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
209      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
210      NPN->addIncoming(V, OPN->getIncomingBlock(i));
211    }
212    Res = NPN;
213    break;
214  }
215  default:
216    // TODO: Can handle more cases here.
217    llvm_unreachable("Unreachable!");
218  }
219
220  Res->takeName(I);
221  return InsertNewInstWith(Res, *I);
222}
223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229  const CastInst *CI, ///< The first cast instruction
230  unsigned opcode,       ///< The opcode of the second cast instruction
231  Type *DstTy,     ///< The target type for the second cast instruction
232  DataLayout *TD         ///< The target data for pointer size
233) {
234
235  Type *SrcTy = CI->getOperand(0)->getType();   // A from above
236  Type *MidTy = CI->getType();                  // B from above
237
238  // Get the opcodes of the two Cast instructions
239  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241  Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ?
242    TD->getIntPtrType(SrcTy) : 0;
243  Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ?
244    TD->getIntPtrType(MidTy) : 0;
245  Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ?
246    TD->getIntPtrType(DstTy) : 0;
247  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
248                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
249                                                DstIntPtrTy);
250
251  // We don't want to form an inttoptr or ptrtoint that converts to an integer
252  // type that differs from the pointer size.
253  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
254      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
255    Res = 0;
256
257  return Instruction::CastOps(Res);
258}
259
260/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
261/// results in any code being generated and is interesting to optimize out. If
262/// the cast can be eliminated by some other simple transformation, we prefer
263/// to do the simplification first.
264bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
265                                      Type *Ty) {
266  // Noop casts and casts of constants should be eliminated trivially.
267  if (V->getType() == Ty || isa<Constant>(V)) return false;
268
269  // If this is another cast that can be eliminated, we prefer to have it
270  // eliminated.
271  if (const CastInst *CI = dyn_cast<CastInst>(V))
272    if (isEliminableCastPair(CI, opc, Ty, TD))
273      return false;
274
275  // If this is a vector sext from a compare, then we don't want to break the
276  // idiom where each element of the extended vector is either zero or all ones.
277  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
278    return false;
279
280  return true;
281}
282
283
284/// @brief Implement the transforms common to all CastInst visitors.
285Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
286  Value *Src = CI.getOperand(0);
287
288  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
289  // eliminate it now.
290  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
291    if (Instruction::CastOps opc =
292        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
293      // The first cast (CSrc) is eliminable so we need to fix up or replace
294      // the second cast (CI). CSrc will then have a good chance of being dead.
295      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
296    }
297  }
298
299  // If we are casting a select then fold the cast into the select
300  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
301    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
302      return NV;
303
304  // If we are casting a PHI then fold the cast into the PHI
305  if (isa<PHINode>(Src)) {
306    // We don't do this if this would create a PHI node with an illegal type if
307    // it is currently legal.
308    if (!Src->getType()->isIntegerTy() ||
309        !CI.getType()->isIntegerTy() ||
310        ShouldChangeType(CI.getType(), Src->getType()))
311      if (Instruction *NV = FoldOpIntoPhi(CI))
312        return NV;
313  }
314
315  return 0;
316}
317
318/// CanEvaluateTruncated - Return true if we can evaluate the specified
319/// expression tree as type Ty instead of its larger type, and arrive with the
320/// same value.  This is used by code that tries to eliminate truncates.
321///
322/// Ty will always be a type smaller than V.  We should return true if trunc(V)
323/// can be computed by computing V in the smaller type.  If V is an instruction,
324/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
325/// makes sense if x and y can be efficiently truncated.
326///
327/// This function works on both vectors and scalars.
328///
329static bool CanEvaluateTruncated(Value *V, Type *Ty) {
330  // We can always evaluate constants in another type.
331  if (isa<Constant>(V))
332    return true;
333
334  Instruction *I = dyn_cast<Instruction>(V);
335  if (!I) return false;
336
337  Type *OrigTy = V->getType();
338
339  // If this is an extension from the dest type, we can eliminate it, even if it
340  // has multiple uses.
341  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
342      I->getOperand(0)->getType() == Ty)
343    return true;
344
345  // We can't extend or shrink something that has multiple uses: doing so would
346  // require duplicating the instruction in general, which isn't profitable.
347  if (!I->hasOneUse()) return false;
348
349  unsigned Opc = I->getOpcode();
350  switch (Opc) {
351  case Instruction::Add:
352  case Instruction::Sub:
353  case Instruction::Mul:
354  case Instruction::And:
355  case Instruction::Or:
356  case Instruction::Xor:
357    // These operators can all arbitrarily be extended or truncated.
358    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
359           CanEvaluateTruncated(I->getOperand(1), Ty);
360
361  case Instruction::UDiv:
362  case Instruction::URem: {
363    // UDiv and URem can be truncated if all the truncated bits are zero.
364    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
365    uint32_t BitWidth = Ty->getScalarSizeInBits();
366    if (BitWidth < OrigBitWidth) {
367      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
368      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
369          MaskedValueIsZero(I->getOperand(1), Mask)) {
370        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
371               CanEvaluateTruncated(I->getOperand(1), Ty);
372      }
373    }
374    break;
375  }
376  case Instruction::Shl:
377    // If we are truncating the result of this SHL, and if it's a shift of a
378    // constant amount, we can always perform a SHL in a smaller type.
379    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
380      uint32_t BitWidth = Ty->getScalarSizeInBits();
381      if (CI->getLimitedValue(BitWidth) < BitWidth)
382        return CanEvaluateTruncated(I->getOperand(0), Ty);
383    }
384    break;
385  case Instruction::LShr:
386    // If this is a truncate of a logical shr, we can truncate it to a smaller
387    // lshr iff we know that the bits we would otherwise be shifting in are
388    // already zeros.
389    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
390      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
391      uint32_t BitWidth = Ty->getScalarSizeInBits();
392      if (MaskedValueIsZero(I->getOperand(0),
393            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
394          CI->getLimitedValue(BitWidth) < BitWidth) {
395        return CanEvaluateTruncated(I->getOperand(0), Ty);
396      }
397    }
398    break;
399  case Instruction::Trunc:
400    // trunc(trunc(x)) -> trunc(x)
401    return true;
402  case Instruction::ZExt:
403  case Instruction::SExt:
404    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
405    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
406    return true;
407  case Instruction::Select: {
408    SelectInst *SI = cast<SelectInst>(I);
409    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
410           CanEvaluateTruncated(SI->getFalseValue(), Ty);
411  }
412  case Instruction::PHI: {
413    // We can change a phi if we can change all operands.  Note that we never
414    // get into trouble with cyclic PHIs here because we only consider
415    // instructions with a single use.
416    PHINode *PN = cast<PHINode>(I);
417    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
418      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
419        return false;
420    return true;
421  }
422  default:
423    // TODO: Can handle more cases here.
424    break;
425  }
426
427  return false;
428}
429
430Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
431  if (Instruction *Result = commonCastTransforms(CI))
432    return Result;
433
434  // See if we can simplify any instructions used by the input whose sole
435  // purpose is to compute bits we don't care about.
436  if (SimplifyDemandedInstructionBits(CI))
437    return &CI;
438
439  Value *Src = CI.getOperand(0);
440  Type *DestTy = CI.getType(), *SrcTy = Src->getType();
441
442  // Attempt to truncate the entire input expression tree to the destination
443  // type.   Only do this if the dest type is a simple type, don't convert the
444  // expression tree to something weird like i93 unless the source is also
445  // strange.
446  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
447      CanEvaluateTruncated(Src, DestTy)) {
448
449    // If this cast is a truncate, evaluting in a different type always
450    // eliminates the cast, so it is always a win.
451    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
452          " to avoid cast: " << CI << '\n');
453    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
454    assert(Res->getType() == DestTy);
455    return ReplaceInstUsesWith(CI, Res);
456  }
457
458  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
459  if (DestTy->getScalarSizeInBits() == 1) {
460    Constant *One = ConstantInt::get(Src->getType(), 1);
461    Src = Builder->CreateAnd(Src, One);
462    Value *Zero = Constant::getNullValue(Src->getType());
463    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
464  }
465
466  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
467  Value *A = 0; ConstantInt *Cst = 0;
468  if (Src->hasOneUse() &&
469      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
470    // We have three types to worry about here, the type of A, the source of
471    // the truncate (MidSize), and the destination of the truncate. We know that
472    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
473    // between ASize and ResultSize.
474    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
475
476    // If the shift amount is larger than the size of A, then the result is
477    // known to be zero because all the input bits got shifted out.
478    if (Cst->getZExtValue() >= ASize)
479      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
480
481    // Since we're doing an lshr and a zero extend, and know that the shift
482    // amount is smaller than ASize, it is always safe to do the shift in A's
483    // type, then zero extend or truncate to the result.
484    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
485    Shift->takeName(Src);
486    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
487  }
488
489  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
490  // type isn't non-native.
491  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
492      ShouldChangeType(Src->getType(), CI.getType()) &&
493      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
494    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
495    return BinaryOperator::CreateAnd(NewTrunc,
496                                     ConstantExpr::getTrunc(Cst, CI.getType()));
497  }
498
499  return 0;
500}
501
502/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
503/// in order to eliminate the icmp.
504Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
505                                             bool DoXform) {
506  // If we are just checking for a icmp eq of a single bit and zext'ing it
507  // to an integer, then shift the bit to the appropriate place and then
508  // cast to integer to avoid the comparison.
509  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
510    const APInt &Op1CV = Op1C->getValue();
511
512    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
513    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
514    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
515        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
516      if (!DoXform) return ICI;
517
518      Value *In = ICI->getOperand(0);
519      Value *Sh = ConstantInt::get(In->getType(),
520                                   In->getType()->getScalarSizeInBits()-1);
521      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
522      if (In->getType() != CI.getType())
523        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
524
525      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
526        Constant *One = ConstantInt::get(In->getType(), 1);
527        In = Builder->CreateXor(In, One, In->getName()+".not");
528      }
529
530      return ReplaceInstUsesWith(CI, In);
531    }
532
533    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
534    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
535    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
536    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
537    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
538    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
539    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
540    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
541    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
542        // This only works for EQ and NE
543        ICI->isEquality()) {
544      // If Op1C some other power of two, convert:
545      uint32_t BitWidth = Op1C->getType()->getBitWidth();
546      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
547      ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
548
549      APInt KnownZeroMask(~KnownZero);
550      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
551        if (!DoXform) return ICI;
552
553        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
554        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
555          // (X&4) == 2 --> false
556          // (X&4) != 2 --> true
557          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
558                                           isNE);
559          Res = ConstantExpr::getZExt(Res, CI.getType());
560          return ReplaceInstUsesWith(CI, Res);
561        }
562
563        uint32_t ShiftAmt = KnownZeroMask.logBase2();
564        Value *In = ICI->getOperand(0);
565        if (ShiftAmt) {
566          // Perform a logical shr by shiftamt.
567          // Insert the shift to put the result in the low bit.
568          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
569                                   In->getName()+".lobit");
570        }
571
572        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
573          Constant *One = ConstantInt::get(In->getType(), 1);
574          In = Builder->CreateXor(In, One);
575        }
576
577        if (CI.getType() == In->getType())
578          return ReplaceInstUsesWith(CI, In);
579        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
580      }
581    }
582  }
583
584  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
585  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
586  // may lead to additional simplifications.
587  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
588    if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
589      uint32_t BitWidth = ITy->getBitWidth();
590      Value *LHS = ICI->getOperand(0);
591      Value *RHS = ICI->getOperand(1);
592
593      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
594      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
595      ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
596      ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
597
598      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
599        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
600        APInt UnknownBit = ~KnownBits;
601        if (UnknownBit.countPopulation() == 1) {
602          if (!DoXform) return ICI;
603
604          Value *Result = Builder->CreateXor(LHS, RHS);
605
606          // Mask off any bits that are set and won't be shifted away.
607          if (KnownOneLHS.uge(UnknownBit))
608            Result = Builder->CreateAnd(Result,
609                                        ConstantInt::get(ITy, UnknownBit));
610
611          // Shift the bit we're testing down to the lsb.
612          Result = Builder->CreateLShr(
613               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
614
615          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
616            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
617          Result->takeName(ICI);
618          return ReplaceInstUsesWith(CI, Result);
619        }
620      }
621    }
622  }
623
624  return 0;
625}
626
627/// CanEvaluateZExtd - Determine if the specified value can be computed in the
628/// specified wider type and produce the same low bits.  If not, return false.
629///
630/// If this function returns true, it can also return a non-zero number of bits
631/// (in BitsToClear) which indicates that the value it computes is correct for
632/// the zero extend, but that the additional BitsToClear bits need to be zero'd
633/// out.  For example, to promote something like:
634///
635///   %B = trunc i64 %A to i32
636///   %C = lshr i32 %B, 8
637///   %E = zext i32 %C to i64
638///
639/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
640/// set to 8 to indicate that the promoted value needs to have bits 24-31
641/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
642/// clear the top bits anyway, doing this has no extra cost.
643///
644/// This function works on both vectors and scalars.
645static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
646  BitsToClear = 0;
647  if (isa<Constant>(V))
648    return true;
649
650  Instruction *I = dyn_cast<Instruction>(V);
651  if (!I) return false;
652
653  // If the input is a truncate from the destination type, we can trivially
654  // eliminate it.
655  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
656    return true;
657
658  // We can't extend or shrink something that has multiple uses: doing so would
659  // require duplicating the instruction in general, which isn't profitable.
660  if (!I->hasOneUse()) return false;
661
662  unsigned Opc = I->getOpcode(), Tmp;
663  switch (Opc) {
664  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
665  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
666  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
667    return true;
668  case Instruction::And:
669  case Instruction::Or:
670  case Instruction::Xor:
671  case Instruction::Add:
672  case Instruction::Sub:
673  case Instruction::Mul:
674  case Instruction::Shl:
675    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
676        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
677      return false;
678    // These can all be promoted if neither operand has 'bits to clear'.
679    if (BitsToClear == 0 && Tmp == 0)
680      return true;
681
682    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
683    // other side, BitsToClear is ok.
684    if (Tmp == 0 &&
685        (Opc == Instruction::And || Opc == Instruction::Or ||
686         Opc == Instruction::Xor)) {
687      // We use MaskedValueIsZero here for generality, but the case we care
688      // about the most is constant RHS.
689      unsigned VSize = V->getType()->getScalarSizeInBits();
690      if (MaskedValueIsZero(I->getOperand(1),
691                            APInt::getHighBitsSet(VSize, BitsToClear)))
692        return true;
693    }
694
695    // Otherwise, we don't know how to analyze this BitsToClear case yet.
696    return false;
697
698  case Instruction::LShr:
699    // We can promote lshr(x, cst) if we can promote x.  This requires the
700    // ultimate 'and' to clear out the high zero bits we're clearing out though.
701    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
702      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
703        return false;
704      BitsToClear += Amt->getZExtValue();
705      if (BitsToClear > V->getType()->getScalarSizeInBits())
706        BitsToClear = V->getType()->getScalarSizeInBits();
707      return true;
708    }
709    // Cannot promote variable LSHR.
710    return false;
711  case Instruction::Select:
712    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
713        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
714        // TODO: If important, we could handle the case when the BitsToClear are
715        // known zero in the disagreeing side.
716        Tmp != BitsToClear)
717      return false;
718    return true;
719
720  case Instruction::PHI: {
721    // We can change a phi if we can change all operands.  Note that we never
722    // get into trouble with cyclic PHIs here because we only consider
723    // instructions with a single use.
724    PHINode *PN = cast<PHINode>(I);
725    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
726      return false;
727    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
728      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
729          // TODO: If important, we could handle the case when the BitsToClear
730          // are known zero in the disagreeing input.
731          Tmp != BitsToClear)
732        return false;
733    return true;
734  }
735  default:
736    // TODO: Can handle more cases here.
737    return false;
738  }
739}
740
741Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
742  // If this zero extend is only used by a truncate, let the truncate by
743  // eliminated before we try to optimize this zext.
744  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
745    return 0;
746
747  // If one of the common conversion will work, do it.
748  if (Instruction *Result = commonCastTransforms(CI))
749    return Result;
750
751  // See if we can simplify any instructions used by the input whose sole
752  // purpose is to compute bits we don't care about.
753  if (SimplifyDemandedInstructionBits(CI))
754    return &CI;
755
756  Value *Src = CI.getOperand(0);
757  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
758
759  // Attempt to extend the entire input expression tree to the destination
760  // type.   Only do this if the dest type is a simple type, don't convert the
761  // expression tree to something weird like i93 unless the source is also
762  // strange.
763  unsigned BitsToClear;
764  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
765      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
766    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
767           "Unreasonable BitsToClear");
768
769    // Okay, we can transform this!  Insert the new expression now.
770    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
771          " to avoid zero extend: " << CI);
772    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
773    assert(Res->getType() == DestTy);
774
775    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
776    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
777
778    // If the high bits are already filled with zeros, just replace this
779    // cast with the result.
780    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
781                                                     DestBitSize-SrcBitsKept)))
782      return ReplaceInstUsesWith(CI, Res);
783
784    // We need to emit an AND to clear the high bits.
785    Constant *C = ConstantInt::get(Res->getType(),
786                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
787    return BinaryOperator::CreateAnd(Res, C);
788  }
789
790  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
791  // types and if the sizes are just right we can convert this into a logical
792  // 'and' which will be much cheaper than the pair of casts.
793  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
794    // TODO: Subsume this into EvaluateInDifferentType.
795
796    // Get the sizes of the types involved.  We know that the intermediate type
797    // will be smaller than A or C, but don't know the relation between A and C.
798    Value *A = CSrc->getOperand(0);
799    unsigned SrcSize = A->getType()->getScalarSizeInBits();
800    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
801    unsigned DstSize = CI.getType()->getScalarSizeInBits();
802    // If we're actually extending zero bits, then if
803    // SrcSize <  DstSize: zext(a & mask)
804    // SrcSize == DstSize: a & mask
805    // SrcSize  > DstSize: trunc(a) & mask
806    if (SrcSize < DstSize) {
807      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
808      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
809      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
810      return new ZExtInst(And, CI.getType());
811    }
812
813    if (SrcSize == DstSize) {
814      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
815      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
816                                                           AndValue));
817    }
818    if (SrcSize > DstSize) {
819      Value *Trunc = Builder->CreateTrunc(A, CI.getType());
820      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
821      return BinaryOperator::CreateAnd(Trunc,
822                                       ConstantInt::get(Trunc->getType(),
823                                                        AndValue));
824    }
825  }
826
827  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
828    return transformZExtICmp(ICI, CI);
829
830  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
831  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
832    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
833    // of the (zext icmp) will be transformed.
834    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
835    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
836    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
837        (transformZExtICmp(LHS, CI, false) ||
838         transformZExtICmp(RHS, CI, false))) {
839      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
840      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
841      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
842    }
843  }
844
845  // zext(trunc(t) & C) -> (t & zext(C)).
846  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
847    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
848      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
849        Value *TI0 = TI->getOperand(0);
850        if (TI0->getType() == CI.getType())
851          return
852            BinaryOperator::CreateAnd(TI0,
853                                ConstantExpr::getZExt(C, CI.getType()));
854      }
855
856  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
857  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
858    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
859      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
860        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
861            And->getOperand(1) == C)
862          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
863            Value *TI0 = TI->getOperand(0);
864            if (TI0->getType() == CI.getType()) {
865              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
866              Value *NewAnd = Builder->CreateAnd(TI0, ZC);
867              return BinaryOperator::CreateXor(NewAnd, ZC);
868            }
869          }
870
871  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
872  Value *X;
873  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
874      match(SrcI, m_Not(m_Value(X))) &&
875      (!X->hasOneUse() || !isa<CmpInst>(X))) {
876    Value *New = Builder->CreateZExt(X, CI.getType());
877    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
878  }
879
880  return 0;
881}
882
883/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
884/// in order to eliminate the icmp.
885Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
886  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
887  ICmpInst::Predicate Pred = ICI->getPredicate();
888
889  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
890    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
891    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
892    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
893        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
894
895      Value *Sh = ConstantInt::get(Op0->getType(),
896                                   Op0->getType()->getScalarSizeInBits()-1);
897      Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
898      if (In->getType() != CI.getType())
899        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
900
901      if (Pred == ICmpInst::ICMP_SGT)
902        In = Builder->CreateNot(In, In->getName()+".not");
903      return ReplaceInstUsesWith(CI, In);
904    }
905
906    // If we know that only one bit of the LHS of the icmp can be set and we
907    // have an equality comparison with zero or a power of 2, we can transform
908    // the icmp and sext into bitwise/integer operations.
909    if (ICI->hasOneUse() &&
910        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
911      unsigned BitWidth = Op1C->getType()->getBitWidth();
912      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
913      ComputeMaskedBits(Op0, KnownZero, KnownOne);
914
915      APInt KnownZeroMask(~KnownZero);
916      if (KnownZeroMask.isPowerOf2()) {
917        Value *In = ICI->getOperand(0);
918
919        // If the icmp tests for a known zero bit we can constant fold it.
920        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
921          Value *V = Pred == ICmpInst::ICMP_NE ?
922                       ConstantInt::getAllOnesValue(CI.getType()) :
923                       ConstantInt::getNullValue(CI.getType());
924          return ReplaceInstUsesWith(CI, V);
925        }
926
927        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
928          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
929          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
930          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
931          // Perform a right shift to place the desired bit in the LSB.
932          if (ShiftAmt)
933            In = Builder->CreateLShr(In,
934                                     ConstantInt::get(In->getType(), ShiftAmt));
935
936          // At this point "In" is either 1 or 0. Subtract 1 to turn
937          // {1, 0} -> {0, -1}.
938          In = Builder->CreateAdd(In,
939                                  ConstantInt::getAllOnesValue(In->getType()),
940                                  "sext");
941        } else {
942          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
943          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
944          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
945          // Perform a left shift to place the desired bit in the MSB.
946          if (ShiftAmt)
947            In = Builder->CreateShl(In,
948                                    ConstantInt::get(In->getType(), ShiftAmt));
949
950          // Distribute the bit over the whole bit width.
951          In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
952                                                        BitWidth - 1), "sext");
953        }
954
955        if (CI.getType() == In->getType())
956          return ReplaceInstUsesWith(CI, In);
957        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
958      }
959    }
960  }
961
962  // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
963  if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
964    if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
965        Op0->getType() == CI.getType()) {
966      Type *EltTy = VTy->getElementType();
967
968      // splat the shift constant to a constant vector.
969      Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
970      Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
971      return ReplaceInstUsesWith(CI, In);
972    }
973  }
974
975  return 0;
976}
977
978/// CanEvaluateSExtd - Return true if we can take the specified value
979/// and return it as type Ty without inserting any new casts and without
980/// changing the value of the common low bits.  This is used by code that tries
981/// to promote integer operations to a wider types will allow us to eliminate
982/// the extension.
983///
984/// This function works on both vectors and scalars.
985///
986static bool CanEvaluateSExtd(Value *V, Type *Ty) {
987  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
988         "Can't sign extend type to a smaller type");
989  // If this is a constant, it can be trivially promoted.
990  if (isa<Constant>(V))
991    return true;
992
993  Instruction *I = dyn_cast<Instruction>(V);
994  if (!I) return false;
995
996  // If this is a truncate from the dest type, we can trivially eliminate it.
997  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
998    return true;
999
1000  // We can't extend or shrink something that has multiple uses: doing so would
1001  // require duplicating the instruction in general, which isn't profitable.
1002  if (!I->hasOneUse()) return false;
1003
1004  switch (I->getOpcode()) {
1005  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1006  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1007  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1008    return true;
1009  case Instruction::And:
1010  case Instruction::Or:
1011  case Instruction::Xor:
1012  case Instruction::Add:
1013  case Instruction::Sub:
1014  case Instruction::Mul:
1015    // These operators can all arbitrarily be extended if their inputs can.
1016    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1017           CanEvaluateSExtd(I->getOperand(1), Ty);
1018
1019  //case Instruction::Shl:   TODO
1020  //case Instruction::LShr:  TODO
1021
1022  case Instruction::Select:
1023    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1024           CanEvaluateSExtd(I->getOperand(2), Ty);
1025
1026  case Instruction::PHI: {
1027    // We can change a phi if we can change all operands.  Note that we never
1028    // get into trouble with cyclic PHIs here because we only consider
1029    // instructions with a single use.
1030    PHINode *PN = cast<PHINode>(I);
1031    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1032      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1033    return true;
1034  }
1035  default:
1036    // TODO: Can handle more cases here.
1037    break;
1038  }
1039
1040  return false;
1041}
1042
1043Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1044  // If this sign extend is only used by a truncate, let the truncate by
1045  // eliminated before we try to optimize this zext.
1046  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
1047    return 0;
1048
1049  if (Instruction *I = commonCastTransforms(CI))
1050    return I;
1051
1052  // See if we can simplify any instructions used by the input whose sole
1053  // purpose is to compute bits we don't care about.
1054  if (SimplifyDemandedInstructionBits(CI))
1055    return &CI;
1056
1057  Value *Src = CI.getOperand(0);
1058  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1059
1060  // Attempt to extend the entire input expression tree to the destination
1061  // type.   Only do this if the dest type is a simple type, don't convert the
1062  // expression tree to something weird like i93 unless the source is also
1063  // strange.
1064  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1065      CanEvaluateSExtd(Src, DestTy)) {
1066    // Okay, we can transform this!  Insert the new expression now.
1067    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1068          " to avoid sign extend: " << CI);
1069    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1070    assert(Res->getType() == DestTy);
1071
1072    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1073    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1074
1075    // If the high bits are already filled with sign bit, just replace this
1076    // cast with the result.
1077    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
1078      return ReplaceInstUsesWith(CI, Res);
1079
1080    // We need to emit a shl + ashr to do the sign extend.
1081    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1082    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1083                                      ShAmt);
1084  }
1085
1086  // If this input is a trunc from our destination, then turn sext(trunc(x))
1087  // into shifts.
1088  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1089    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1090      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1091      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1092
1093      // We need to emit a shl + ashr to do the sign extend.
1094      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1095      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1096      return BinaryOperator::CreateAShr(Res, ShAmt);
1097    }
1098
1099  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1100    return transformSExtICmp(ICI, CI);
1101
1102  // If the input is a shl/ashr pair of a same constant, then this is a sign
1103  // extension from a smaller value.  If we could trust arbitrary bitwidth
1104  // integers, we could turn this into a truncate to the smaller bit and then
1105  // use a sext for the whole extension.  Since we don't, look deeper and check
1106  // for a truncate.  If the source and dest are the same type, eliminate the
1107  // trunc and extend and just do shifts.  For example, turn:
1108  //   %a = trunc i32 %i to i8
1109  //   %b = shl i8 %a, 6
1110  //   %c = ashr i8 %b, 6
1111  //   %d = sext i8 %c to i32
1112  // into:
1113  //   %a = shl i32 %i, 30
1114  //   %d = ashr i32 %a, 30
1115  Value *A = 0;
1116  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1117  ConstantInt *BA = 0, *CA = 0;
1118  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1119                        m_ConstantInt(CA))) &&
1120      BA == CA && A->getType() == CI.getType()) {
1121    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1122    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1123    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1124    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1125    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1126    return BinaryOperator::CreateAShr(A, ShAmtV);
1127  }
1128
1129  return 0;
1130}
1131
1132
1133/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1134/// in the specified FP type without changing its value.
1135static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1136  bool losesInfo;
1137  APFloat F = CFP->getValueAPF();
1138  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1139  if (!losesInfo)
1140    return ConstantFP::get(CFP->getContext(), F);
1141  return 0;
1142}
1143
1144/// LookThroughFPExtensions - If this is an fp extension instruction, look
1145/// through it until we get the source value.
1146static Value *LookThroughFPExtensions(Value *V) {
1147  if (Instruction *I = dyn_cast<Instruction>(V))
1148    if (I->getOpcode() == Instruction::FPExt)
1149      return LookThroughFPExtensions(I->getOperand(0));
1150
1151  // If this value is a constant, return the constant in the smallest FP type
1152  // that can accurately represent it.  This allows us to turn
1153  // (float)((double)X+2.0) into x+2.0f.
1154  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1155    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1156      return V;  // No constant folding of this.
1157    // See if the value can be truncated to half and then reextended.
1158    if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1159      return V;
1160    // See if the value can be truncated to float and then reextended.
1161    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1162      return V;
1163    if (CFP->getType()->isDoubleTy())
1164      return V;  // Won't shrink.
1165    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1166      return V;
1167    // Don't try to shrink to various long double types.
1168  }
1169
1170  return V;
1171}
1172
1173Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1174  if (Instruction *I = commonCastTransforms(CI))
1175    return I;
1176
1177  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1178  // smaller than the destination type, we can eliminate the truncate by doing
1179  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1180  // as many builtins (sqrt, etc).
1181  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1182  if (OpI && OpI->hasOneUse()) {
1183    switch (OpI->getOpcode()) {
1184    default: break;
1185    case Instruction::FAdd:
1186    case Instruction::FSub:
1187    case Instruction::FMul:
1188    case Instruction::FDiv:
1189    case Instruction::FRem:
1190      Type *SrcTy = OpI->getType();
1191      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1192      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1193      if (LHSTrunc->getType() != SrcTy &&
1194          RHSTrunc->getType() != SrcTy) {
1195        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1196        // If the source types were both smaller than the destination type of
1197        // the cast, do this xform.
1198        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1199            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1200          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1201          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1202          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1203        }
1204      }
1205      break;
1206    }
1207  }
1208
1209  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1210  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1211  if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
1212      Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
1213      Call->getNumArgOperands() == 1 &&
1214      Call->hasOneUse()) {
1215    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1216    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1217        CI.getType()->isFloatTy() &&
1218        Call->getType()->isDoubleTy() &&
1219        Arg->getType()->isDoubleTy() &&
1220        Arg->getOperand(0)->getType()->isFloatTy()) {
1221      Function *Callee = Call->getCalledFunction();
1222      Module *M = CI.getParent()->getParent()->getParent();
1223      Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
1224                                                   Callee->getAttributes(),
1225                                                   Builder->getFloatTy(),
1226                                                   Builder->getFloatTy(),
1227                                                   NULL);
1228      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1229                                       "sqrtfcall");
1230      ret->setAttributes(Callee->getAttributes());
1231
1232
1233      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1234      ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
1235      EraseInstFromFunction(*Call);
1236      return ret;
1237    }
1238  }
1239
1240  return 0;
1241}
1242
1243Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1244  return commonCastTransforms(CI);
1245}
1246
1247Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1248  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1249  if (OpI == 0)
1250    return commonCastTransforms(FI);
1251
1252  // fptoui(uitofp(X)) --> X
1253  // fptoui(sitofp(X)) --> X
1254  // This is safe if the intermediate type has enough bits in its mantissa to
1255  // accurately represent all values of X.  For example, do not do this with
1256  // i64->float->i64.  This is also safe for sitofp case, because any negative
1257  // 'X' value would cause an undefined result for the fptoui.
1258  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1259      OpI->getOperand(0)->getType() == FI.getType() &&
1260      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1261                    OpI->getType()->getFPMantissaWidth())
1262    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1263
1264  return commonCastTransforms(FI);
1265}
1266
1267Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1268  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1269  if (OpI == 0)
1270    return commonCastTransforms(FI);
1271
1272  // fptosi(sitofp(X)) --> X
1273  // fptosi(uitofp(X)) --> X
1274  // This is safe if the intermediate type has enough bits in its mantissa to
1275  // accurately represent all values of X.  For example, do not do this with
1276  // i64->float->i64.  This is also safe for sitofp case, because any negative
1277  // 'X' value would cause an undefined result for the fptoui.
1278  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1279      OpI->getOperand(0)->getType() == FI.getType() &&
1280      (int)FI.getType()->getScalarSizeInBits() <=
1281                    OpI->getType()->getFPMantissaWidth())
1282    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1283
1284  return commonCastTransforms(FI);
1285}
1286
1287Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1288  return commonCastTransforms(CI);
1289}
1290
1291Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1292  return commonCastTransforms(CI);
1293}
1294
1295Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1296  // If the source integer type is not the intptr_t type for this target, do a
1297  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1298  // cast to be exposed to other transforms.
1299  if (TD) {
1300    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1301        TD->getPointerSizeInBits()) {
1302      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1303                                      TD->getIntPtrType(CI.getContext()));
1304      return new IntToPtrInst(P, CI.getType());
1305    }
1306    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1307        TD->getPointerSizeInBits()) {
1308      Value *P = Builder->CreateZExt(CI.getOperand(0),
1309                                     TD->getIntPtrType(CI.getContext()));
1310      return new IntToPtrInst(P, CI.getType());
1311    }
1312  }
1313
1314  if (Instruction *I = commonCastTransforms(CI))
1315    return I;
1316
1317  return 0;
1318}
1319
1320/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1321Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1322  Value *Src = CI.getOperand(0);
1323
1324  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1325    // If casting the result of a getelementptr instruction with no offset, turn
1326    // this into a cast of the original pointer!
1327    if (GEP->hasAllZeroIndices()) {
1328      // Changing the cast operand is usually not a good idea but it is safe
1329      // here because the pointer operand is being replaced with another
1330      // pointer operand so the opcode doesn't need to change.
1331      Worklist.Add(GEP);
1332      CI.setOperand(0, GEP->getOperand(0));
1333      return &CI;
1334    }
1335
1336    // If the GEP has a single use, and the base pointer is a bitcast, and the
1337    // GEP computes a constant offset, see if we can convert these three
1338    // instructions into fewer.  This typically happens with unions and other
1339    // non-type-safe code.
1340    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1341        GEP->hasAllConstantIndices()) {
1342      SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
1343      int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
1344
1345      // Get the base pointer input of the bitcast, and the type it points to.
1346      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1347      Type *GEPIdxTy =
1348      cast<PointerType>(OrigBase->getType())->getElementType();
1349      SmallVector<Value*, 8> NewIndices;
1350      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1351        // If we were able to index down into an element, create the GEP
1352        // and bitcast the result.  This eliminates one bitcast, potentially
1353        // two.
1354        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1355        Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1356        Builder->CreateGEP(OrigBase, NewIndices);
1357        NGEP->takeName(GEP);
1358
1359        if (isa<BitCastInst>(CI))
1360          return new BitCastInst(NGEP, CI.getType());
1361        assert(isa<PtrToIntInst>(CI));
1362        return new PtrToIntInst(NGEP, CI.getType());
1363      }
1364    }
1365  }
1366
1367  return commonCastTransforms(CI);
1368}
1369
1370Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1371  // If the destination integer type is not the intptr_t type for this target,
1372  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1373  // to be exposed to other transforms.
1374  if (TD) {
1375    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1376      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1377                                         TD->getIntPtrType(CI.getContext()));
1378      return new TruncInst(P, CI.getType());
1379    }
1380    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1381      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1382                                         TD->getIntPtrType(CI.getContext()));
1383      return new ZExtInst(P, CI.getType());
1384    }
1385  }
1386
1387  return commonPointerCastTransforms(CI);
1388}
1389
1390/// OptimizeVectorResize - This input value (which is known to have vector type)
1391/// is being zero extended or truncated to the specified vector type.  Try to
1392/// replace it with a shuffle (and vector/vector bitcast) if possible.
1393///
1394/// The source and destination vector types may have different element types.
1395static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1396                                         InstCombiner &IC) {
1397  // We can only do this optimization if the output is a multiple of the input
1398  // element size, or the input is a multiple of the output element size.
1399  // Convert the input type to have the same element type as the output.
1400  VectorType *SrcTy = cast<VectorType>(InVal->getType());
1401
1402  if (SrcTy->getElementType() != DestTy->getElementType()) {
1403    // The input types don't need to be identical, but for now they must be the
1404    // same size.  There is no specific reason we couldn't handle things like
1405    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1406    // there yet.
1407    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1408        DestTy->getElementType()->getPrimitiveSizeInBits())
1409      return 0;
1410
1411    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1412    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1413  }
1414
1415  // Now that the element types match, get the shuffle mask and RHS of the
1416  // shuffle to use, which depends on whether we're increasing or decreasing the
1417  // size of the input.
1418  SmallVector<uint32_t, 16> ShuffleMask;
1419  Value *V2;
1420
1421  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1422    // If we're shrinking the number of elements, just shuffle in the low
1423    // elements from the input and use undef as the second shuffle input.
1424    V2 = UndefValue::get(SrcTy);
1425    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1426      ShuffleMask.push_back(i);
1427
1428  } else {
1429    // If we're increasing the number of elements, shuffle in all of the
1430    // elements from InVal and fill the rest of the result elements with zeros
1431    // from a constant zero.
1432    V2 = Constant::getNullValue(SrcTy);
1433    unsigned SrcElts = SrcTy->getNumElements();
1434    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1435      ShuffleMask.push_back(i);
1436
1437    // The excess elements reference the first element of the zero input.
1438    for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1439      ShuffleMask.push_back(SrcElts);
1440  }
1441
1442  return new ShuffleVectorInst(InVal, V2,
1443                               ConstantDataVector::get(V2->getContext(),
1444                                                       ShuffleMask));
1445}
1446
1447static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1448  return Value % Ty->getPrimitiveSizeInBits() == 0;
1449}
1450
1451static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1452  return Value / Ty->getPrimitiveSizeInBits();
1453}
1454
1455/// CollectInsertionElements - V is a value which is inserted into a vector of
1456/// VecEltTy.  Look through the value to see if we can decompose it into
1457/// insertions into the vector.  See the example in the comment for
1458/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1459/// The type of V is always a non-zero multiple of VecEltTy's size.
1460///
1461/// This returns false if the pattern can't be matched or true if it can,
1462/// filling in Elements with the elements found here.
1463static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1464                                     SmallVectorImpl<Value*> &Elements,
1465                                     Type *VecEltTy) {
1466  // Undef values never contribute useful bits to the result.
1467  if (isa<UndefValue>(V)) return true;
1468
1469  // If we got down to a value of the right type, we win, try inserting into the
1470  // right element.
1471  if (V->getType() == VecEltTy) {
1472    // Inserting null doesn't actually insert any elements.
1473    if (Constant *C = dyn_cast<Constant>(V))
1474      if (C->isNullValue())
1475        return true;
1476
1477    // Fail if multiple elements are inserted into this slot.
1478    if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1479      return false;
1480
1481    Elements[ElementIndex] = V;
1482    return true;
1483  }
1484
1485  if (Constant *C = dyn_cast<Constant>(V)) {
1486    // Figure out the # elements this provides, and bitcast it or slice it up
1487    // as required.
1488    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1489                                        VecEltTy);
1490    // If the constant is the size of a vector element, we just need to bitcast
1491    // it to the right type so it gets properly inserted.
1492    if (NumElts == 1)
1493      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1494                                      ElementIndex, Elements, VecEltTy);
1495
1496    // Okay, this is a constant that covers multiple elements.  Slice it up into
1497    // pieces and insert each element-sized piece into the vector.
1498    if (!isa<IntegerType>(C->getType()))
1499      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1500                                       C->getType()->getPrimitiveSizeInBits()));
1501    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1502    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1503
1504    for (unsigned i = 0; i != NumElts; ++i) {
1505      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1506                                                               i*ElementSize));
1507      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1508      if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1509        return false;
1510    }
1511    return true;
1512  }
1513
1514  if (!V->hasOneUse()) return false;
1515
1516  Instruction *I = dyn_cast<Instruction>(V);
1517  if (I == 0) return false;
1518  switch (I->getOpcode()) {
1519  default: return false; // Unhandled case.
1520  case Instruction::BitCast:
1521    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1522                                    Elements, VecEltTy);
1523  case Instruction::ZExt:
1524    if (!isMultipleOfTypeSize(
1525                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1526                              VecEltTy))
1527      return false;
1528    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1529                                    Elements, VecEltTy);
1530  case Instruction::Or:
1531    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1532                                    Elements, VecEltTy) &&
1533           CollectInsertionElements(I->getOperand(1), ElementIndex,
1534                                    Elements, VecEltTy);
1535  case Instruction::Shl: {
1536    // Must be shifting by a constant that is a multiple of the element size.
1537    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1538    if (CI == 0) return false;
1539    if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1540    unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1541
1542    return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1543                                    Elements, VecEltTy);
1544  }
1545
1546  }
1547}
1548
1549
1550/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1551/// may be doing shifts and ors to assemble the elements of the vector manually.
1552/// Try to rip the code out and replace it with insertelements.  This is to
1553/// optimize code like this:
1554///
1555///    %tmp37 = bitcast float %inc to i32
1556///    %tmp38 = zext i32 %tmp37 to i64
1557///    %tmp31 = bitcast float %inc5 to i32
1558///    %tmp32 = zext i32 %tmp31 to i64
1559///    %tmp33 = shl i64 %tmp32, 32
1560///    %ins35 = or i64 %tmp33, %tmp38
1561///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1562///
1563/// Into two insertelements that do "buildvector{%inc, %inc5}".
1564static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1565                                                InstCombiner &IC) {
1566  VectorType *DestVecTy = cast<VectorType>(CI.getType());
1567  Value *IntInput = CI.getOperand(0);
1568
1569  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1570  if (!CollectInsertionElements(IntInput, 0, Elements,
1571                                DestVecTy->getElementType()))
1572    return 0;
1573
1574  // If we succeeded, we know that all of the element are specified by Elements
1575  // or are zero if Elements has a null entry.  Recast this as a set of
1576  // insertions.
1577  Value *Result = Constant::getNullValue(CI.getType());
1578  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1579    if (Elements[i] == 0) continue;  // Unset element.
1580
1581    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1582                                             IC.Builder->getInt32(i));
1583  }
1584
1585  return Result;
1586}
1587
1588
1589/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1590/// bitcast.  The various long double bitcasts can't get in here.
1591static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1592  Value *Src = CI.getOperand(0);
1593  Type *DestTy = CI.getType();
1594
1595  // If this is a bitcast from int to float, check to see if the int is an
1596  // extraction from a vector.
1597  Value *VecInput = 0;
1598  // bitcast(trunc(bitcast(somevector)))
1599  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1600      isa<VectorType>(VecInput->getType())) {
1601    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1602    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1603
1604    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1605      // If the element type of the vector doesn't match the result type,
1606      // bitcast it to be a vector type we can extract from.
1607      if (VecTy->getElementType() != DestTy) {
1608        VecTy = VectorType::get(DestTy,
1609                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1610        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1611      }
1612
1613      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1614    }
1615  }
1616
1617  // bitcast(trunc(lshr(bitcast(somevector), cst))
1618  ConstantInt *ShAmt = 0;
1619  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1620                                m_ConstantInt(ShAmt)))) &&
1621      isa<VectorType>(VecInput->getType())) {
1622    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1623    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1624    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1625        ShAmt->getZExtValue() % DestWidth == 0) {
1626      // If the element type of the vector doesn't match the result type,
1627      // bitcast it to be a vector type we can extract from.
1628      if (VecTy->getElementType() != DestTy) {
1629        VecTy = VectorType::get(DestTy,
1630                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1631        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1632      }
1633
1634      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1635      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1636    }
1637  }
1638  return 0;
1639}
1640
1641Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1642  // If the operands are integer typed then apply the integer transforms,
1643  // otherwise just apply the common ones.
1644  Value *Src = CI.getOperand(0);
1645  Type *SrcTy = Src->getType();
1646  Type *DestTy = CI.getType();
1647
1648  // Get rid of casts from one type to the same type. These are useless and can
1649  // be replaced by the operand.
1650  if (DestTy == Src->getType())
1651    return ReplaceInstUsesWith(CI, Src);
1652
1653  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1654    PointerType *SrcPTy = cast<PointerType>(SrcTy);
1655    Type *DstElTy = DstPTy->getElementType();
1656    Type *SrcElTy = SrcPTy->getElementType();
1657
1658    // If the address spaces don't match, don't eliminate the bitcast, which is
1659    // required for changing types.
1660    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1661      return 0;
1662
1663    // If we are casting a alloca to a pointer to a type of the same
1664    // size, rewrite the allocation instruction to allocate the "right" type.
1665    // There is no need to modify malloc calls because it is their bitcast that
1666    // needs to be cleaned up.
1667    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1668      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1669        return V;
1670
1671    // If the source and destination are pointers, and this cast is equivalent
1672    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1673    // This can enhance SROA and other transforms that want type-safe pointers.
1674    Constant *ZeroUInt =
1675      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1676    unsigned NumZeros = 0;
1677    while (SrcElTy != DstElTy &&
1678           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1679           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1680      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1681      ++NumZeros;
1682    }
1683
1684    // If we found a path from the src to dest, create the getelementptr now.
1685    if (SrcElTy == DstElTy) {
1686      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1687      return GetElementPtrInst::CreateInBounds(Src, Idxs);
1688    }
1689  }
1690
1691  // Try to optimize int -> float bitcasts.
1692  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1693    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1694      return I;
1695
1696  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1697    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1698      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1699      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1700                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1701      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1702    }
1703
1704    if (isa<IntegerType>(SrcTy)) {
1705      // If this is a cast from an integer to vector, check to see if the input
1706      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1707      // the casts with a shuffle and (potentially) a bitcast.
1708      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1709        CastInst *SrcCast = cast<CastInst>(Src);
1710        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1711          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1712            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1713                                               cast<VectorType>(DestTy), *this))
1714              return I;
1715      }
1716
1717      // If the input is an 'or' instruction, we may be doing shifts and ors to
1718      // assemble the elements of the vector manually.  Try to rip the code out
1719      // and replace it with insertelements.
1720      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1721        return ReplaceInstUsesWith(CI, V);
1722    }
1723  }
1724
1725  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1726    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1727      Value *Elem =
1728        Builder->CreateExtractElement(Src,
1729                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1730      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1731    }
1732  }
1733
1734  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1735    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1736    // a bitcast to a vector with the same # elts.
1737    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1738        cast<VectorType>(DestTy)->getNumElements() ==
1739              SVI->getType()->getNumElements() &&
1740        SVI->getType()->getNumElements() ==
1741          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1742      BitCastInst *Tmp;
1743      // If either of the operands is a cast from CI.getType(), then
1744      // evaluating the shuffle in the casted destination's type will allow
1745      // us to eliminate at least one cast.
1746      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1747           Tmp->getOperand(0)->getType() == DestTy) ||
1748          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1749           Tmp->getOperand(0)->getType() == DestTy)) {
1750        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1751        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1752        // Return a new shuffle vector.  Use the same element ID's, as we
1753        // know the vector types match #elts.
1754        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1755      }
1756    }
1757  }
1758
1759  if (SrcTy->isPointerTy())
1760    return commonPointerCastTransforms(CI);
1761  return commonCastTransforms(CI);
1762}
1763