InstCombineAddSub.cpp revision 204642
1//===- InstCombineAddSub.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for add, fadd, sub, and fsub.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Support/GetElementPtrTypeIterator.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22/// AddOne - Add one to a ConstantInt.
23static Constant *AddOne(Constant *C) {
24  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
25}
26/// SubOne - Subtract one from a ConstantInt.
27static Constant *SubOne(ConstantInt *C) {
28  return ConstantInt::get(C->getContext(), C->getValue()-1);
29}
30
31
32// dyn_castFoldableMul - If this value is a multiply that can be folded into
33// other computations (because it has a constant operand), return the
34// non-constant operand of the multiply, and set CST to point to the multiplier.
35// Otherwise, return null.
36//
37static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
38  if (!V->hasOneUse() || !V->getType()->isIntegerTy())
39    return 0;
40
41  Instruction *I = dyn_cast<Instruction>(V);
42  if (I == 0) return 0;
43
44  if (I->getOpcode() == Instruction::Mul)
45    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
46      return I->getOperand(0);
47  if (I->getOpcode() == Instruction::Shl)
48    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
49      // The multiplier is really 1 << CST.
50      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
51      uint32_t CSTVal = CST->getLimitedValue(BitWidth);
52      CST = ConstantInt::get(V->getType()->getContext(),
53                             APInt(BitWidth, 1).shl(CSTVal));
54      return I->getOperand(0);
55    }
56  return 0;
57}
58
59
60/// WillNotOverflowSignedAdd - Return true if we can prove that:
61///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
62/// This basically requires proving that the add in the original type would not
63/// overflow to change the sign bit or have a carry out.
64bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
65  // There are different heuristics we can use for this.  Here are some simple
66  // ones.
67
68  // Add has the property that adding any two 2's complement numbers can only
69  // have one carry bit which can change a sign.  As such, if LHS and RHS each
70  // have at least two sign bits, we know that the addition of the two values
71  // will sign extend fine.
72  if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
73    return true;
74
75
76  // If one of the operands only has one non-zero bit, and if the other operand
77  // has a known-zero bit in a more significant place than it (not including the
78  // sign bit) the ripple may go up to and fill the zero, but won't change the
79  // sign.  For example, (X & ~4) + 1.
80
81  // TODO: Implement.
82
83  return false;
84}
85
86Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
87  bool Changed = SimplifyCommutative(I);
88  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
89
90  if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
91                                 I.hasNoUnsignedWrap(), TD))
92    return ReplaceInstUsesWith(I, V);
93
94
95  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
96    if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
97      // X + (signbit) --> X ^ signbit
98      const APInt& Val = CI->getValue();
99      uint32_t BitWidth = Val.getBitWidth();
100      if (Val == APInt::getSignBit(BitWidth))
101        return BinaryOperator::CreateXor(LHS, RHS);
102
103      // See if SimplifyDemandedBits can simplify this.  This handles stuff like
104      // (X & 254)+1 -> (X&254)|1
105      if (SimplifyDemandedInstructionBits(I))
106        return &I;
107
108      // zext(bool) + C -> bool ? C + 1 : C
109      if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
110        if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
111          return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
112    }
113
114    if (isa<PHINode>(LHS))
115      if (Instruction *NV = FoldOpIntoPhi(I))
116        return NV;
117
118    ConstantInt *XorRHS = 0;
119    Value *XorLHS = 0;
120    if (isa<ConstantInt>(RHSC) &&
121        match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
122      uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
123      const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
124      unsigned ExtendAmt = 0;
125      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
126      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
127      if (XorRHS->getValue() == -RHSVal) {
128        if (RHSVal.isPowerOf2())
129          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
130        else if (XorRHS->getValue().isPowerOf2())
131          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
132      }
133
134      if (ExtendAmt) {
135        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
136        if (!MaskedValueIsZero(XorLHS, Mask))
137          ExtendAmt = 0;
138      }
139
140      if (ExtendAmt) {
141        Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
142        Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
143        return BinaryOperator::CreateAShr(NewShl, ShAmt);
144      }
145    }
146  }
147
148  if (I.getType()->isIntegerTy(1))
149    return BinaryOperator::CreateXor(LHS, RHS);
150
151  if (I.getType()->isIntegerTy()) {
152    // X + X --> X << 1
153    if (LHS == RHS)
154      return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
155
156    if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
157      if (RHSI->getOpcode() == Instruction::Sub)
158        if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B
159          return ReplaceInstUsesWith(I, RHSI->getOperand(0));
160    }
161    if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
162      if (LHSI->getOpcode() == Instruction::Sub)
163        if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B
164          return ReplaceInstUsesWith(I, LHSI->getOperand(0));
165    }
166  }
167
168  // -A + B  -->  B - A
169  // -A + -B  -->  -(A + B)
170  if (Value *LHSV = dyn_castNegVal(LHS)) {
171    if (LHS->getType()->isIntOrIntVectorTy()) {
172      if (Value *RHSV = dyn_castNegVal(RHS)) {
173        Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
174        return BinaryOperator::CreateNeg(NewAdd);
175      }
176    }
177
178    return BinaryOperator::CreateSub(RHS, LHSV);
179  }
180
181  // A + -B  -->  A - B
182  if (!isa<Constant>(RHS))
183    if (Value *V = dyn_castNegVal(RHS))
184      return BinaryOperator::CreateSub(LHS, V);
185
186
187  ConstantInt *C2;
188  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
189    if (X == RHS)   // X*C + X --> X * (C+1)
190      return BinaryOperator::CreateMul(RHS, AddOne(C2));
191
192    // X*C1 + X*C2 --> X * (C1+C2)
193    ConstantInt *C1;
194    if (X == dyn_castFoldableMul(RHS, C1))
195      return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
196  }
197
198  // X + X*C --> X * (C+1)
199  if (dyn_castFoldableMul(RHS, C2) == LHS)
200    return BinaryOperator::CreateMul(LHS, AddOne(C2));
201
202  // X + ~X --> -1   since   ~X = -X-1
203  if (match(LHS, m_Not(m_Specific(RHS))) ||
204      match(RHS, m_Not(m_Specific(LHS))))
205    return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
206
207  // A+B --> A|B iff A and B have no bits set in common.
208  if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
209    APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
210    APInt LHSKnownOne(IT->getBitWidth(), 0);
211    APInt LHSKnownZero(IT->getBitWidth(), 0);
212    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
213    if (LHSKnownZero != 0) {
214      APInt RHSKnownOne(IT->getBitWidth(), 0);
215      APInt RHSKnownZero(IT->getBitWidth(), 0);
216      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
217
218      // No bits in common -> bitwise or.
219      if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
220        return BinaryOperator::CreateOr(LHS, RHS);
221    }
222  }
223
224  // W*X + Y*Z --> W * (X+Z)  iff W == Y
225  if (I.getType()->isIntOrIntVectorTy()) {
226    Value *W, *X, *Y, *Z;
227    if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
228        match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
229      if (W != Y) {
230        if (W == Z) {
231          std::swap(Y, Z);
232        } else if (Y == X) {
233          std::swap(W, X);
234        } else if (X == Z) {
235          std::swap(Y, Z);
236          std::swap(W, X);
237        }
238      }
239
240      if (W == Y) {
241        Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
242        return BinaryOperator::CreateMul(W, NewAdd);
243      }
244    }
245  }
246
247  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
248    Value *X = 0;
249    if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
250      return BinaryOperator::CreateSub(SubOne(CRHS), X);
251
252    // (X & FF00) + xx00  -> (X+xx00) & FF00
253    if (LHS->hasOneUse() &&
254        match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
255      Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
256      if (Anded == CRHS) {
257        // See if all bits from the first bit set in the Add RHS up are included
258        // in the mask.  First, get the rightmost bit.
259        const APInt &AddRHSV = CRHS->getValue();
260
261        // Form a mask of all bits from the lowest bit added through the top.
262        APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
263
264        // See if the and mask includes all of these bits.
265        APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
266
267        if (AddRHSHighBits == AddRHSHighBitsAnd) {
268          // Okay, the xform is safe.  Insert the new add pronto.
269          Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
270          return BinaryOperator::CreateAnd(NewAdd, C2);
271        }
272      }
273    }
274
275    // Try to fold constant add into select arguments.
276    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
277      if (Instruction *R = FoldOpIntoSelect(I, SI))
278        return R;
279  }
280
281  // add (select X 0 (sub n A)) A  -->  select X A n
282  {
283    SelectInst *SI = dyn_cast<SelectInst>(LHS);
284    Value *A = RHS;
285    if (!SI) {
286      SI = dyn_cast<SelectInst>(RHS);
287      A = LHS;
288    }
289    if (SI && SI->hasOneUse()) {
290      Value *TV = SI->getTrueValue();
291      Value *FV = SI->getFalseValue();
292      Value *N;
293
294      // Can we fold the add into the argument of the select?
295      // We check both true and false select arguments for a matching subtract.
296      if (match(FV, m_Zero()) &&
297          match(TV, m_Sub(m_Value(N), m_Specific(A))))
298        // Fold the add into the true select value.
299        return SelectInst::Create(SI->getCondition(), N, A);
300      if (match(TV, m_Zero()) &&
301          match(FV, m_Sub(m_Value(N), m_Specific(A))))
302        // Fold the add into the false select value.
303        return SelectInst::Create(SI->getCondition(), A, N);
304    }
305  }
306
307  // Check for (add (sext x), y), see if we can merge this into an
308  // integer add followed by a sext.
309  if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
310    // (add (sext x), cst) --> (sext (add x, cst'))
311    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
312      Constant *CI =
313        ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
314      if (LHSConv->hasOneUse() &&
315          ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
316          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
317        // Insert the new, smaller add.
318        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
319                                              CI, "addconv");
320        return new SExtInst(NewAdd, I.getType());
321      }
322    }
323
324    // (add (sext x), (sext y)) --> (sext (add int x, y))
325    if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
326      // Only do this if x/y have the same type, if at last one of them has a
327      // single use (so we don't increase the number of sexts), and if the
328      // integer add will not overflow.
329      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
330          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
331          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
332                                   RHSConv->getOperand(0))) {
333        // Insert the new integer add.
334        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
335                                             RHSConv->getOperand(0), "addconv");
336        return new SExtInst(NewAdd, I.getType());
337      }
338    }
339  }
340
341  return Changed ? &I : 0;
342}
343
344Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
345  bool Changed = SimplifyCommutative(I);
346  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
347
348  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
349    // X + 0 --> X
350    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
351      if (CFP->isExactlyValue(ConstantFP::getNegativeZero
352                              (I.getType())->getValueAPF()))
353        return ReplaceInstUsesWith(I, LHS);
354    }
355
356    if (isa<PHINode>(LHS))
357      if (Instruction *NV = FoldOpIntoPhi(I))
358        return NV;
359  }
360
361  // -A + B  -->  B - A
362  // -A + -B  -->  -(A + B)
363  if (Value *LHSV = dyn_castFNegVal(LHS))
364    return BinaryOperator::CreateFSub(RHS, LHSV);
365
366  // A + -B  -->  A - B
367  if (!isa<Constant>(RHS))
368    if (Value *V = dyn_castFNegVal(RHS))
369      return BinaryOperator::CreateFSub(LHS, V);
370
371  // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
372  if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
373    if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
374      return ReplaceInstUsesWith(I, LHS);
375
376  // Check for (fadd double (sitofp x), y), see if we can merge this into an
377  // integer add followed by a promotion.
378  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
379    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
380    // ... if the constant fits in the integer value.  This is useful for things
381    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
382    // requires a constant pool load, and generally allows the add to be better
383    // instcombined.
384    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
385      Constant *CI =
386      ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
387      if (LHSConv->hasOneUse() &&
388          ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
389          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
390        // Insert the new integer add.
391        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
392                                              CI, "addconv");
393        return new SIToFPInst(NewAdd, I.getType());
394      }
395    }
396
397    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
398    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
399      // Only do this if x/y have the same type, if at last one of them has a
400      // single use (so we don't increase the number of int->fp conversions),
401      // and if the integer add will not overflow.
402      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
403          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
404          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
405                                   RHSConv->getOperand(0))) {
406        // Insert the new integer add.
407        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
408                                              RHSConv->getOperand(0),"addconv");
409        return new SIToFPInst(NewAdd, I.getType());
410      }
411    }
412  }
413
414  return Changed ? &I : 0;
415}
416
417
418/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
419/// code necessary to compute the offset from the base pointer (without adding
420/// in the base pointer).  Return the result as a signed integer of intptr size.
421Value *InstCombiner::EmitGEPOffset(User *GEP) {
422  TargetData &TD = *getTargetData();
423  gep_type_iterator GTI = gep_type_begin(GEP);
424  const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
425  Value *Result = Constant::getNullValue(IntPtrTy);
426
427  // Build a mask for high order bits.
428  unsigned IntPtrWidth = TD.getPointerSizeInBits();
429  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
430
431  for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
432       ++i, ++GTI) {
433    Value *Op = *i;
434    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
435    if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
436      if (OpC->isZero()) continue;
437
438      // Handle a struct index, which adds its field offset to the pointer.
439      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
440        Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
441
442        Result = Builder->CreateAdd(Result,
443                                    ConstantInt::get(IntPtrTy, Size),
444                                    GEP->getName()+".offs");
445        continue;
446      }
447
448      Constant *Scale = ConstantInt::get(IntPtrTy, Size);
449      Constant *OC =
450              ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
451      Scale = ConstantExpr::getMul(OC, Scale);
452      // Emit an add instruction.
453      Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
454      continue;
455    }
456    // Convert to correct type.
457    if (Op->getType() != IntPtrTy)
458      Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
459    if (Size != 1) {
460      Constant *Scale = ConstantInt::get(IntPtrTy, Size);
461      // We'll let instcombine(mul) convert this to a shl if possible.
462      Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
463    }
464
465    // Emit an add instruction.
466    Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
467  }
468  return Result;
469}
470
471
472
473
474/// Optimize pointer differences into the same array into a size.  Consider:
475///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
476/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
477///
478Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
479                                               const Type *Ty) {
480  assert(TD && "Must have target data info for this");
481
482  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
483  // this.
484  bool Swapped = false;
485  GetElementPtrInst *GEP = 0;
486  ConstantExpr *CstGEP = 0;
487
488  // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
489  // For now we require one side to be the base pointer "A" or a constant
490  // expression derived from it.
491  if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) {
492    // (gep X, ...) - X
493    if (LHSGEP->getOperand(0) == RHS) {
494      GEP = LHSGEP;
495      Swapped = false;
496    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) {
497      // (gep X, ...) - (ce_gep X, ...)
498      if (CE->getOpcode() == Instruction::GetElementPtr &&
499          LHSGEP->getOperand(0) == CE->getOperand(0)) {
500        CstGEP = CE;
501        GEP = LHSGEP;
502        Swapped = false;
503      }
504    }
505  }
506
507  if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) {
508    // X - (gep X, ...)
509    if (RHSGEP->getOperand(0) == LHS) {
510      GEP = RHSGEP;
511      Swapped = true;
512    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) {
513      // (ce_gep X, ...) - (gep X, ...)
514      if (CE->getOpcode() == Instruction::GetElementPtr &&
515          RHSGEP->getOperand(0) == CE->getOperand(0)) {
516        CstGEP = CE;
517        GEP = RHSGEP;
518        Swapped = true;
519      }
520    }
521  }
522
523  if (GEP == 0)
524    return 0;
525
526  // Emit the offset of the GEP and an intptr_t.
527  Value *Result = EmitGEPOffset(GEP);
528
529  // If we had a constant expression GEP on the other side offsetting the
530  // pointer, subtract it from the offset we have.
531  if (CstGEP) {
532    Value *CstOffset = EmitGEPOffset(CstGEP);
533    Result = Builder->CreateSub(Result, CstOffset);
534  }
535
536
537  // If we have p - gep(p, ...)  then we have to negate the result.
538  if (Swapped)
539    Result = Builder->CreateNeg(Result, "diff.neg");
540
541  return Builder->CreateIntCast(Result, Ty, true);
542}
543
544
545Instruction *InstCombiner::visitSub(BinaryOperator &I) {
546  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
547
548  if (Op0 == Op1)                        // sub X, X  -> 0
549    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
550
551  // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
552  if (Value *V = dyn_castNegVal(Op1)) {
553    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
554    Res->setHasNoSignedWrap(I.hasNoSignedWrap());
555    Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
556    return Res;
557  }
558
559  if (isa<UndefValue>(Op0))
560    return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef
561  if (isa<UndefValue>(Op1))
562    return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef
563  if (I.getType()->isIntegerTy(1))
564    return BinaryOperator::CreateXor(Op0, Op1);
565
566  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
567    // Replace (-1 - A) with (~A).
568    if (C->isAllOnesValue())
569      return BinaryOperator::CreateNot(Op1);
570
571    // C - ~X == X + (1+C)
572    Value *X = 0;
573    if (match(Op1, m_Not(m_Value(X))))
574      return BinaryOperator::CreateAdd(X, AddOne(C));
575
576    // -(X >>u 31) -> (X >>s 31)
577    // -(X >>s 31) -> (X >>u 31)
578    if (C->isZero()) {
579      if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
580        if (SI->getOpcode() == Instruction::LShr) {
581          if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
582            // Check to see if we are shifting out everything but the sign bit.
583            if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
584                SI->getType()->getPrimitiveSizeInBits()-1) {
585              // Ok, the transformation is safe.  Insert AShr.
586              return BinaryOperator::Create(Instruction::AShr,
587                                          SI->getOperand(0), CU, SI->getName());
588            }
589          }
590        } else if (SI->getOpcode() == Instruction::AShr) {
591          if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
592            // Check to see if we are shifting out everything but the sign bit.
593            if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
594                SI->getType()->getPrimitiveSizeInBits()-1) {
595              // Ok, the transformation is safe.  Insert LShr.
596              return BinaryOperator::CreateLShr(
597                                          SI->getOperand(0), CU, SI->getName());
598            }
599          }
600        }
601      }
602    }
603
604    // Try to fold constant sub into select arguments.
605    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
606      if (Instruction *R = FoldOpIntoSelect(I, SI))
607        return R;
608
609    // C - zext(bool) -> bool ? C - 1 : C
610    if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
611      if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
612        return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
613  }
614
615  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
616    if (Op1I->getOpcode() == Instruction::Add) {
617      if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y
618        return BinaryOperator::CreateNeg(Op1I->getOperand(1),
619                                         I.getName());
620      else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y
621        return BinaryOperator::CreateNeg(Op1I->getOperand(0),
622                                         I.getName());
623      else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
624        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
625          // C1-(X+C2) --> (C1-C2)-X
626          return BinaryOperator::CreateSub(
627            ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
628      }
629    }
630
631    if (Op1I->hasOneUse()) {
632      // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
633      // is not used by anyone else...
634      //
635      if (Op1I->getOpcode() == Instruction::Sub) {
636        // Swap the two operands of the subexpr...
637        Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
638        Op1I->setOperand(0, IIOp1);
639        Op1I->setOperand(1, IIOp0);
640
641        // Create the new top level add instruction...
642        return BinaryOperator::CreateAdd(Op0, Op1);
643      }
644
645      // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
646      //
647      if (Op1I->getOpcode() == Instruction::And &&
648          (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
649        Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
650
651        Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
652        return BinaryOperator::CreateAnd(Op0, NewNot);
653      }
654
655      // 0 - (X sdiv C)  -> (X sdiv -C)
656      if (Op1I->getOpcode() == Instruction::SDiv)
657        if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
658          if (CSI->isZero())
659            if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
660              return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
661                                          ConstantExpr::getNeg(DivRHS));
662
663      // 0 - (C << X)  -> (-C << X)
664      if (Op1I->getOpcode() == Instruction::Shl)
665        if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
666          if (CSI->isZero())
667            if (Value *ShlLHSNeg = dyn_castNegVal(Op1I->getOperand(0)))
668              return BinaryOperator::CreateShl(ShlLHSNeg, Op1I->getOperand(1));
669
670      // X - X*C --> X * (1-C)
671      ConstantInt *C2 = 0;
672      if (dyn_castFoldableMul(Op1I, C2) == Op0) {
673        Constant *CP1 =
674          ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
675                                             C2);
676        return BinaryOperator::CreateMul(Op0, CP1);
677      }
678    }
679  }
680
681  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
682    if (Op0I->getOpcode() == Instruction::Add) {
683      if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X
684        return ReplaceInstUsesWith(I, Op0I->getOperand(1));
685      else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X
686        return ReplaceInstUsesWith(I, Op0I->getOperand(0));
687    } else if (Op0I->getOpcode() == Instruction::Sub) {
688      if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y
689        return BinaryOperator::CreateNeg(Op0I->getOperand(1),
690                                         I.getName());
691    }
692  }
693
694  ConstantInt *C1;
695  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
696    if (X == Op1)  // X*C - X --> X * (C-1)
697      return BinaryOperator::CreateMul(Op1, SubOne(C1));
698
699    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
700    if (X == dyn_castFoldableMul(Op1, C2))
701      return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
702  }
703
704  // Optimize pointer differences into the same array into a size.  Consider:
705  //  &A[10] - &A[0]: we should compile this to "10".
706  if (TD) {
707    Value *LHSOp, *RHSOp;
708    if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
709        match(Op1, m_PtrToInt(m_Value(RHSOp))))
710      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
711        return ReplaceInstUsesWith(I, Res);
712
713    // trunc(p)-trunc(q) -> trunc(p-q)
714    if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
715        match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
716      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
717        return ReplaceInstUsesWith(I, Res);
718  }
719
720  return 0;
721}
722
723Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
724  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
725
726  // If this is a 'B = x-(-A)', change to B = x+A...
727  if (Value *V = dyn_castFNegVal(Op1))
728    return BinaryOperator::CreateFAdd(Op0, V);
729
730  return 0;
731}
732