X86ISelLowering.cpp revision 226633
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt();
173  X86ScalarSSEf32 = Subtarget->hasXMM();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187  // For 64-bit since we have so many registers use the ILP scheduler, for
188  // 32-bit code use the register pressure specific scheduling.
189  if (Subtarget->is64Bit())
190    setSchedulingPreference(Sched::ILP);
191  else
192    setSchedulingPreference(Sched::RegPressure);
193  setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196    // Setup Windows compiler runtime calls.
197    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199    setLibcallName(RTLIB::SREM_I64, "_allrem");
200    setLibcallName(RTLIB::UREM_I64, "_aullrem");
201    setLibcallName(RTLIB::MUL_I64, "_allmul");
202    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211  }
212
213  if (Subtarget->isTargetDarwin()) {
214    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215    setUseUnderscoreSetJmp(false);
216    setUseUnderscoreLongJmp(false);
217  } else if (Subtarget->isTargetMingw()) {
218    // MS runtime is weird: it exports _setjmp, but longjmp!
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(false);
221  } else {
222    setUseUnderscoreSetJmp(true);
223    setUseUnderscoreLongJmp(true);
224  }
225
226  // Set up the register classes.
227  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230  if (Subtarget->is64Bit())
231    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235  // We don't accept any truncstore of integer registers.
236  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242
243  // SETOEQ and SETUNE require checking two conditions.
244  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252  // operation.
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260  } else if (!UseSoftFloat) {
261    // We have an algorithm for SSE2->double, and we turn this into a
262    // 64-bit FILD followed by conditional FADD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264    // We have an algorithm for SSE2, and we turn this into a 64-bit
265    // FILD for other targets.
266    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267  }
268
269  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270  // this operation.
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273
274  if (!UseSoftFloat) {
275    // SSE has no i16 to fp conversion, only i32
276    if (X86ScalarSSEf32) {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278      // f32 and f64 cases are Legal, f80 case is not
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    } else {
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283    }
284  } else {
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287  }
288
289  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290  // are Legal, f80 is custom lowered.
291  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293
294  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295  // this operation.
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298
299  if (X86ScalarSSEf32) {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301    // f32 and f64 cases are Legal, f80 case is not
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  } else {
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306  }
307
308  // Handle FP_TO_UINT by promoting the destination to a larger signed
309  // conversion.
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317  } else if (!UseSoftFloat) {
318    // Since AVX is a superset of SSE3, only check for SSE here.
319    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320      // Expand FP_TO_UINT into a select.
321      // FIXME: We would like to use a Custom expander here eventually to do
322      // the optimal thing for SSE vs. the default expansion in the legalizer.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
324    else
325      // With SSE3 we can use fisttpll to convert to a signed i64; without
326      // SSE, we're stuck with a fistpll.
327      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
328  }
329
330  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331  if (!X86ScalarSSEf64) {
332    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
333    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
334    if (Subtarget->is64Bit()) {
335      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
336      // Without SSE, i64->f64 goes through memory.
337      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
338    }
339  }
340
341  // Scalar integer divide and remainder are lowered to use operations that
342  // produce two results, to match the available instructions. This exposes
343  // the two-result form to trivial CSE, which is able to combine x/y and x%y
344  // into a single instruction.
345  //
346  // Scalar integer multiply-high is also lowered to use two-result
347  // operations, to match the available instructions. However, plain multiply
348  // (low) operations are left as Legal, as there are single-result
349  // instructions for this in x86. Using the two-result multiply instructions
350  // when both high and low results are needed must be arranged by dagcombine.
351  for (unsigned i = 0, e = 4; i != e; ++i) {
352    MVT VT = IntVTs[i];
353    setOperationAction(ISD::MULHS, VT, Expand);
354    setOperationAction(ISD::MULHU, VT, Expand);
355    setOperationAction(ISD::SDIV, VT, Expand);
356    setOperationAction(ISD::UDIV, VT, Expand);
357    setOperationAction(ISD::SREM, VT, Expand);
358    setOperationAction(ISD::UREM, VT, Expand);
359
360    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361    setOperationAction(ISD::ADDC, VT, Custom);
362    setOperationAction(ISD::ADDE, VT, Custom);
363    setOperationAction(ISD::SUBC, VT, Custom);
364    setOperationAction(ISD::SUBE, VT, Custom);
365  }
366
367  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
368  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
369  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
370  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
371  if (Subtarget->is64Bit())
372    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
376  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
380  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
381
382  if (Subtarget->hasBMI()) {
383    setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
384  } else {
385    setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
386    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
387    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
390  }
391
392  if (Subtarget->hasLZCNT()) {
393    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
394  } else {
395    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
396    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
397    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
398    if (Subtarget->is64Bit())
399      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
400  }
401
402  if (Subtarget->hasPOPCNT()) {
403    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
404  } else {
405    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
406    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
407    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
408    if (Subtarget->is64Bit())
409      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
410  }
411
412  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
413  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
414
415  // These should be promoted to a larger select which is supported.
416  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
417  // X86 wants to expand cmov itself.
418  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
419  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
420  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
421  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
422  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
423  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
424  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
425  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
426  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
427  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
428  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
429  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
430  if (Subtarget->is64Bit()) {
431    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
432    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
433  }
434  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
435
436  // Darwin ABI issue.
437  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
438  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
439  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
440  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
441  if (Subtarget->is64Bit())
442    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
443  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
444  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
445  if (Subtarget->is64Bit()) {
446    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
447    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
448    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
449    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
450    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
451  }
452  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
453  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
454  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
455  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
456  if (Subtarget->is64Bit()) {
457    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
458    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
459    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
460  }
461
462  if (Subtarget->hasXMM())
463    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
464
465  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
466  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
467
468  // On X86 and X86-64, atomic operations are lowered to locked instructions.
469  // Locked instructions, in turn, have implicit fence semantics (all memory
470  // operations are flushed before issuing the locked instruction, and they
471  // are not buffered), so we can fold away the common pattern of
472  // fence-atomic-fence.
473  setShouldFoldAtomicFences(true);
474
475  // Expand certain atomics
476  for (unsigned i = 0, e = 4; i != e; ++i) {
477    MVT VT = IntVTs[i];
478    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
479    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
480    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
481  }
482
483  if (!Subtarget->is64Bit()) {
484    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
485    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
486    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
487    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
488    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
489    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
490    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
491    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
492  }
493
494  if (Subtarget->hasCmpxchg16b()) {
495    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
496  }
497
498  // FIXME - use subtarget debug flags
499  if (!Subtarget->isTargetDarwin() &&
500      !Subtarget->isTargetELF() &&
501      !Subtarget->isTargetCygMing()) {
502    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
503  }
504
505  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
506  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
507  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
508  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
509  if (Subtarget->is64Bit()) {
510    setExceptionPointerRegister(X86::RAX);
511    setExceptionSelectorRegister(X86::RDX);
512  } else {
513    setExceptionPointerRegister(X86::EAX);
514    setExceptionSelectorRegister(X86::EDX);
515  }
516  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
517  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
518
519  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
520  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
521
522  setOperationAction(ISD::TRAP, MVT::Other, Legal);
523
524  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
525  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
526  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
527  if (Subtarget->is64Bit()) {
528    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
529    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
530  } else {
531    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
532    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
533  }
534
535  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
536  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
537
538  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
539    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
540                       MVT::i64 : MVT::i32, Custom);
541  else if (EnableSegmentedStacks)
542    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
543                       MVT::i64 : MVT::i32, Custom);
544  else
545    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
546                       MVT::i64 : MVT::i32, Expand);
547
548  if (!UseSoftFloat && X86ScalarSSEf64) {
549    // f32 and f64 use SSE.
550    // Set up the FP register classes.
551    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
552    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
553
554    // Use ANDPD to simulate FABS.
555    setOperationAction(ISD::FABS , MVT::f64, Custom);
556    setOperationAction(ISD::FABS , MVT::f32, Custom);
557
558    // Use XORP to simulate FNEG.
559    setOperationAction(ISD::FNEG , MVT::f64, Custom);
560    setOperationAction(ISD::FNEG , MVT::f32, Custom);
561
562    // Use ANDPD and ORPD to simulate FCOPYSIGN.
563    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
564    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
565
566    // Lower this to FGETSIGNx86 plus an AND.
567    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
568    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
569
570    // We don't support sin/cos/fmod
571    setOperationAction(ISD::FSIN , MVT::f64, Expand);
572    setOperationAction(ISD::FCOS , MVT::f64, Expand);
573    setOperationAction(ISD::FSIN , MVT::f32, Expand);
574    setOperationAction(ISD::FCOS , MVT::f32, Expand);
575
576    // Expand FP immediates into loads from the stack, except for the special
577    // cases we handle.
578    addLegalFPImmediate(APFloat(+0.0)); // xorpd
579    addLegalFPImmediate(APFloat(+0.0f)); // xorps
580  } else if (!UseSoftFloat && X86ScalarSSEf32) {
581    // Use SSE for f32, x87 for f64.
582    // Set up the FP register classes.
583    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
584    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
585
586    // Use ANDPS to simulate FABS.
587    setOperationAction(ISD::FABS , MVT::f32, Custom);
588
589    // Use XORP to simulate FNEG.
590    setOperationAction(ISD::FNEG , MVT::f32, Custom);
591
592    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
593
594    // Use ANDPS and ORPS to simulate FCOPYSIGN.
595    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
597
598    // We don't support sin/cos/fmod
599    setOperationAction(ISD::FSIN , MVT::f32, Expand);
600    setOperationAction(ISD::FCOS , MVT::f32, Expand);
601
602    // Special cases we handle for FP constants.
603    addLegalFPImmediate(APFloat(+0.0f)); // xorps
604    addLegalFPImmediate(APFloat(+0.0)); // FLD0
605    addLegalFPImmediate(APFloat(+1.0)); // FLD1
606    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
607    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
608
609    if (!UnsafeFPMath) {
610      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
611      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
612    }
613  } else if (!UseSoftFloat) {
614    // f32 and f64 in x87.
615    // Set up the FP register classes.
616    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
617    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
618
619    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
620    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
622    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
623
624    if (!UnsafeFPMath) {
625      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627    }
628    addLegalFPImmediate(APFloat(+0.0)); // FLD0
629    addLegalFPImmediate(APFloat(+1.0)); // FLD1
630    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
631    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
632    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
633    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
634    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
635    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
636  }
637
638  // We don't support FMA.
639  setOperationAction(ISD::FMA, MVT::f64, Expand);
640  setOperationAction(ISD::FMA, MVT::f32, Expand);
641
642  // Long double always uses X87.
643  if (!UseSoftFloat) {
644    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
645    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
646    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
647    {
648      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
649      addLegalFPImmediate(TmpFlt);  // FLD0
650      TmpFlt.changeSign();
651      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
652
653      bool ignored;
654      APFloat TmpFlt2(+1.0);
655      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
656                      &ignored);
657      addLegalFPImmediate(TmpFlt2);  // FLD1
658      TmpFlt2.changeSign();
659      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
660    }
661
662    if (!UnsafeFPMath) {
663      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
664      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
665    }
666
667    setOperationAction(ISD::FMA, MVT::f80, Expand);
668  }
669
670  // Always use a library call for pow.
671  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
672  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
673  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
674
675  setOperationAction(ISD::FLOG, MVT::f80, Expand);
676  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
677  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
678  setOperationAction(ISD::FEXP, MVT::f80, Expand);
679  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
680
681  // First set operation action for all vector types to either promote
682  // (for widening) or expand (for scalarization). Then we will selectively
683  // turn on ones that can be effectively codegen'd.
684  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
685       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
686    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
701    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
703    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
704    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
736    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
741    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
742         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
743      setTruncStoreAction((MVT::SimpleValueType)VT,
744                          (MVT::SimpleValueType)InnerVT, Expand);
745    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
747    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
748  }
749
750  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
751  // with -msoft-float, disable use of MMX as well.
752  if (!UseSoftFloat && Subtarget->hasMMX()) {
753    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
754    // No operations on x86mmx supported, everything uses intrinsics.
755  }
756
757  // MMX-sized vectors (other than x86mmx) are expected to be expanded
758  // into smaller operations.
759  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
760  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
761  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
762  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
763  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
764  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
765  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
766  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
767  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
768  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
769  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
770  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
771  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
772  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
773  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
774  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
775  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
778  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
779  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
780  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
781  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
782  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
783  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
784  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
787  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
788
789  if (!UseSoftFloat && Subtarget->hasXMM()) {
790    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
791
792    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
793    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
796    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
797    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
798    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
799    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
800    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
801    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
802    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
803    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
804  }
805
806  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
807    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
808
809    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
810    // registers cannot be used even for integer operations.
811    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
812    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
814    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
815
816    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
817    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
818    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
819    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
820    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
821    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
822    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
823    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
824    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
825    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
826    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
827    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
830    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
831    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
832
833    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
834    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
835    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
836    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
837
838    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
839    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843
844    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
848    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
849
850    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
852      EVT VT = (MVT::SimpleValueType)i;
853      // Do not attempt to custom lower non-power-of-2 vectors
854      if (!isPowerOf2_32(VT.getVectorNumElements()))
855        continue;
856      // Do not attempt to custom lower non-128-bit vectors
857      if (!VT.is128BitVector())
858        continue;
859      setOperationAction(ISD::BUILD_VECTOR,
860                         VT.getSimpleVT().SimpleTy, Custom);
861      setOperationAction(ISD::VECTOR_SHUFFLE,
862                         VT.getSimpleVT().SimpleTy, Custom);
863      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
864                         VT.getSimpleVT().SimpleTy, Custom);
865    }
866
867    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
868    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
869    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
870    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
871    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
872    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
873
874    if (Subtarget->is64Bit()) {
875      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
876      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
877    }
878
879    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
880    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
881      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
882      EVT VT = SVT;
883
884      // Do not attempt to promote non-128-bit vectors
885      if (!VT.is128BitVector())
886        continue;
887
888      setOperationAction(ISD::AND,    SVT, Promote);
889      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
890      setOperationAction(ISD::OR,     SVT, Promote);
891      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
892      setOperationAction(ISD::XOR,    SVT, Promote);
893      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
894      setOperationAction(ISD::LOAD,   SVT, Promote);
895      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
896      setOperationAction(ISD::SELECT, SVT, Promote);
897      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
898    }
899
900    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
901
902    // Custom lower v2i64 and v2f64 selects.
903    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
904    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
905    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
906    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
907
908    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
909    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
910  }
911
912  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
913    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
914    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
915    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
916    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
917    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
918    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
919    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
920    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
921    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
922    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
923
924    // FIXME: Do we need to handle scalar-to-vector here?
925    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
926
927    // Can turn SHL into an integer multiply.
928    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
929    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
930
931    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
932    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
933    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
934    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
935    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
936
937    // i8 and i16 vectors are custom , because the source register and source
938    // source memory operand types are not the same width.  f32 vectors are
939    // custom since the immediate controlling the insert encodes additional
940    // information.
941    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
942    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
943    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
944    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
945
946    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
947    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
948    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
949    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
950
951    if (Subtarget->is64Bit()) {
952      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
953      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
954    }
955  }
956
957  if (Subtarget->hasXMMInt()) {
958    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
959    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
960    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
961    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
962
963    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
964    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
965    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
966
967    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
968    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
969  }
970
971  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
972    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
973
974  if (!UseSoftFloat && Subtarget->hasAVX()) {
975    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
976    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
977    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
978    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
979    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
980    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
981
982    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
983    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
984    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
985
986    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
987    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
988    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
989    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
990    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
991    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
992
993    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
994    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
995    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
996    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
997    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
998    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
999
1000    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1001    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1002    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1003
1004    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1005    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1006    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1007    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1008    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1009    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1010
1011    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1012    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1013    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1014    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1015
1016    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1017    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1018    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1019    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1020
1021    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1022    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1023
1024    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1025    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1026    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1027    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1028
1029    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1030    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1031    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1032
1033    setOperationAction(ISD::VSELECT,            MVT::v4f64, Legal);
1034    setOperationAction(ISD::VSELECT,            MVT::v4i64, Legal);
1035    setOperationAction(ISD::VSELECT,            MVT::v8i32, Legal);
1036    setOperationAction(ISD::VSELECT,            MVT::v8f32, Legal);
1037
1038    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1039    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1040    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1041    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1042
1043    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1044    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1045    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1046    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1047
1048    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1049    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1050    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1051    // Don't lower v32i8 because there is no 128-bit byte mul
1052
1053    // Custom lower several nodes for 256-bit types.
1054    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1055                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1056      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1057      EVT VT = SVT;
1058
1059      // Extract subvector is special because the value type
1060      // (result) is 128-bit but the source is 256-bit wide.
1061      if (VT.is128BitVector())
1062        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1063
1064      // Do not attempt to custom lower other non-256-bit vectors
1065      if (!VT.is256BitVector())
1066        continue;
1067
1068      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1069      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1070      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1071      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1072      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1073      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1074    }
1075
1076    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1077    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1078      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1079      EVT VT = SVT;
1080
1081      // Do not attempt to promote non-256-bit vectors
1082      if (!VT.is256BitVector())
1083        continue;
1084
1085      setOperationAction(ISD::AND,    SVT, Promote);
1086      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1087      setOperationAction(ISD::OR,     SVT, Promote);
1088      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1089      setOperationAction(ISD::XOR,    SVT, Promote);
1090      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1091      setOperationAction(ISD::LOAD,   SVT, Promote);
1092      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1093      setOperationAction(ISD::SELECT, SVT, Promote);
1094      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1095    }
1096  }
1097
1098  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1099  // of this type with custom code.
1100  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1101         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1102    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1103  }
1104
1105  // We want to custom lower some of our intrinsics.
1106  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1107
1108
1109  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1110  // handle type legalization for these operations here.
1111  //
1112  // FIXME: We really should do custom legalization for addition and
1113  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1114  // than generic legalization for 64-bit multiplication-with-overflow, though.
1115  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1116    // Add/Sub/Mul with overflow operations are custom lowered.
1117    MVT VT = IntVTs[i];
1118    setOperationAction(ISD::SADDO, VT, Custom);
1119    setOperationAction(ISD::UADDO, VT, Custom);
1120    setOperationAction(ISD::SSUBO, VT, Custom);
1121    setOperationAction(ISD::USUBO, VT, Custom);
1122    setOperationAction(ISD::SMULO, VT, Custom);
1123    setOperationAction(ISD::UMULO, VT, Custom);
1124  }
1125
1126  // There are no 8-bit 3-address imul/mul instructions
1127  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1128  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1129
1130  if (!Subtarget->is64Bit()) {
1131    // These libcalls are not available in 32-bit.
1132    setLibcallName(RTLIB::SHL_I128, 0);
1133    setLibcallName(RTLIB::SRL_I128, 0);
1134    setLibcallName(RTLIB::SRA_I128, 0);
1135  }
1136
1137  // We have target-specific dag combine patterns for the following nodes:
1138  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1139  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1140  setTargetDAGCombine(ISD::BUILD_VECTOR);
1141  setTargetDAGCombine(ISD::VSELECT);
1142  setTargetDAGCombine(ISD::SELECT);
1143  setTargetDAGCombine(ISD::SHL);
1144  setTargetDAGCombine(ISD::SRA);
1145  setTargetDAGCombine(ISD::SRL);
1146  setTargetDAGCombine(ISD::OR);
1147  setTargetDAGCombine(ISD::AND);
1148  setTargetDAGCombine(ISD::ADD);
1149  setTargetDAGCombine(ISD::FADD);
1150  setTargetDAGCombine(ISD::FSUB);
1151  setTargetDAGCombine(ISD::SUB);
1152  setTargetDAGCombine(ISD::LOAD);
1153  setTargetDAGCombine(ISD::STORE);
1154  setTargetDAGCombine(ISD::ZERO_EXTEND);
1155  setTargetDAGCombine(ISD::SINT_TO_FP);
1156  if (Subtarget->is64Bit())
1157    setTargetDAGCombine(ISD::MUL);
1158
1159  computeRegisterProperties();
1160
1161  // On Darwin, -Os means optimize for size without hurting performance,
1162  // do not reduce the limit.
1163  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1164  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1165  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1166  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1167  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1168  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1169  setPrefLoopAlignment(16);
1170  benefitFromCodePlacementOpt = true;
1171
1172  setPrefFunctionAlignment(4);
1173}
1174
1175
1176EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1177  if (!VT.isVector()) return MVT::i8;
1178  return VT.changeVectorElementTypeToInteger();
1179}
1180
1181
1182/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1183/// the desired ByVal argument alignment.
1184static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1185  if (MaxAlign == 16)
1186    return;
1187  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1188    if (VTy->getBitWidth() == 128)
1189      MaxAlign = 16;
1190  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1191    unsigned EltAlign = 0;
1192    getMaxByValAlign(ATy->getElementType(), EltAlign);
1193    if (EltAlign > MaxAlign)
1194      MaxAlign = EltAlign;
1195  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1196    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1197      unsigned EltAlign = 0;
1198      getMaxByValAlign(STy->getElementType(i), EltAlign);
1199      if (EltAlign > MaxAlign)
1200        MaxAlign = EltAlign;
1201      if (MaxAlign == 16)
1202        break;
1203    }
1204  }
1205  return;
1206}
1207
1208/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1209/// function arguments in the caller parameter area. For X86, aggregates
1210/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1211/// are at 4-byte boundaries.
1212unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1213  if (Subtarget->is64Bit()) {
1214    // Max of 8 and alignment of type.
1215    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1216    if (TyAlign > 8)
1217      return TyAlign;
1218    return 8;
1219  }
1220
1221  unsigned Align = 4;
1222  if (Subtarget->hasXMM())
1223    getMaxByValAlign(Ty, Align);
1224  return Align;
1225}
1226
1227/// getOptimalMemOpType - Returns the target specific optimal type for load
1228/// and store operations as a result of memset, memcpy, and memmove
1229/// lowering. If DstAlign is zero that means it's safe to destination
1230/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1231/// means there isn't a need to check it against alignment requirement,
1232/// probably because the source does not need to be loaded. If
1233/// 'NonScalarIntSafe' is true, that means it's safe to return a
1234/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1235/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1236/// constant so it does not need to be loaded.
1237/// It returns EVT::Other if the type should be determined using generic
1238/// target-independent logic.
1239EVT
1240X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1241                                       unsigned DstAlign, unsigned SrcAlign,
1242                                       bool NonScalarIntSafe,
1243                                       bool MemcpyStrSrc,
1244                                       MachineFunction &MF) const {
1245  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1246  // linux.  This is because the stack realignment code can't handle certain
1247  // cases like PR2962.  This should be removed when PR2962 is fixed.
1248  const Function *F = MF.getFunction();
1249  if (NonScalarIntSafe &&
1250      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1251    if (Size >= 16 &&
1252        (Subtarget->isUnalignedMemAccessFast() ||
1253         ((DstAlign == 0 || DstAlign >= 16) &&
1254          (SrcAlign == 0 || SrcAlign >= 16))) &&
1255        Subtarget->getStackAlignment() >= 16) {
1256      if (Subtarget->hasAVX() &&
1257          Subtarget->getStackAlignment() >= 32)
1258        return MVT::v8f32;
1259      if (Subtarget->hasXMMInt())
1260        return MVT::v4i32;
1261      if (Subtarget->hasXMM())
1262        return MVT::v4f32;
1263    } else if (!MemcpyStrSrc && Size >= 8 &&
1264               !Subtarget->is64Bit() &&
1265               Subtarget->getStackAlignment() >= 8 &&
1266               Subtarget->hasXMMInt()) {
1267      // Do not use f64 to lower memcpy if source is string constant. It's
1268      // better to use i32 to avoid the loads.
1269      return MVT::f64;
1270    }
1271  }
1272  if (Subtarget->is64Bit() && Size >= 8)
1273    return MVT::i64;
1274  return MVT::i32;
1275}
1276
1277/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1278/// current function.  The returned value is a member of the
1279/// MachineJumpTableInfo::JTEntryKind enum.
1280unsigned X86TargetLowering::getJumpTableEncoding() const {
1281  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1282  // symbol.
1283  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1284      Subtarget->isPICStyleGOT())
1285    return MachineJumpTableInfo::EK_Custom32;
1286
1287  // Otherwise, use the normal jump table encoding heuristics.
1288  return TargetLowering::getJumpTableEncoding();
1289}
1290
1291const MCExpr *
1292X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1293                                             const MachineBasicBlock *MBB,
1294                                             unsigned uid,MCContext &Ctx) const{
1295  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1296         Subtarget->isPICStyleGOT());
1297  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1298  // entries.
1299  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1300                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1301}
1302
1303/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1304/// jumptable.
1305SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1306                                                    SelectionDAG &DAG) const {
1307  if (!Subtarget->is64Bit())
1308    // This doesn't have DebugLoc associated with it, but is not really the
1309    // same as a Register.
1310    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1311  return Table;
1312}
1313
1314/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1315/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1316/// MCExpr.
1317const MCExpr *X86TargetLowering::
1318getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1319                             MCContext &Ctx) const {
1320  // X86-64 uses RIP relative addressing based on the jump table label.
1321  if (Subtarget->isPICStyleRIPRel())
1322    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1323
1324  // Otherwise, the reference is relative to the PIC base.
1325  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1326}
1327
1328// FIXME: Why this routine is here? Move to RegInfo!
1329std::pair<const TargetRegisterClass*, uint8_t>
1330X86TargetLowering::findRepresentativeClass(EVT VT) const{
1331  const TargetRegisterClass *RRC = 0;
1332  uint8_t Cost = 1;
1333  switch (VT.getSimpleVT().SimpleTy) {
1334  default:
1335    return TargetLowering::findRepresentativeClass(VT);
1336  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1337    RRC = (Subtarget->is64Bit()
1338           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1339    break;
1340  case MVT::x86mmx:
1341    RRC = X86::VR64RegisterClass;
1342    break;
1343  case MVT::f32: case MVT::f64:
1344  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1345  case MVT::v4f32: case MVT::v2f64:
1346  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1347  case MVT::v4f64:
1348    RRC = X86::VR128RegisterClass;
1349    break;
1350  }
1351  return std::make_pair(RRC, Cost);
1352}
1353
1354bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1355                                               unsigned &Offset) const {
1356  if (!Subtarget->isTargetLinux())
1357    return false;
1358
1359  if (Subtarget->is64Bit()) {
1360    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1361    Offset = 0x28;
1362    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1363      AddressSpace = 256;
1364    else
1365      AddressSpace = 257;
1366  } else {
1367    // %gs:0x14 on i386
1368    Offset = 0x14;
1369    AddressSpace = 256;
1370  }
1371  return true;
1372}
1373
1374
1375//===----------------------------------------------------------------------===//
1376//               Return Value Calling Convention Implementation
1377//===----------------------------------------------------------------------===//
1378
1379#include "X86GenCallingConv.inc"
1380
1381bool
1382X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1383				  MachineFunction &MF, bool isVarArg,
1384                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1385                        LLVMContext &Context) const {
1386  SmallVector<CCValAssign, 16> RVLocs;
1387  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1388                 RVLocs, Context);
1389  return CCInfo.CheckReturn(Outs, RetCC_X86);
1390}
1391
1392SDValue
1393X86TargetLowering::LowerReturn(SDValue Chain,
1394                               CallingConv::ID CallConv, bool isVarArg,
1395                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1396                               const SmallVectorImpl<SDValue> &OutVals,
1397                               DebugLoc dl, SelectionDAG &DAG) const {
1398  MachineFunction &MF = DAG.getMachineFunction();
1399  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1400
1401  SmallVector<CCValAssign, 16> RVLocs;
1402  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1403                 RVLocs, *DAG.getContext());
1404  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1405
1406  // Add the regs to the liveout set for the function.
1407  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1408  for (unsigned i = 0; i != RVLocs.size(); ++i)
1409    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1410      MRI.addLiveOut(RVLocs[i].getLocReg());
1411
1412  SDValue Flag;
1413
1414  SmallVector<SDValue, 6> RetOps;
1415  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1416  // Operand #1 = Bytes To Pop
1417  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1418                   MVT::i16));
1419
1420  // Copy the result values into the output registers.
1421  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1422    CCValAssign &VA = RVLocs[i];
1423    assert(VA.isRegLoc() && "Can only return in registers!");
1424    SDValue ValToCopy = OutVals[i];
1425    EVT ValVT = ValToCopy.getValueType();
1426
1427    // If this is x86-64, and we disabled SSE, we can't return FP values,
1428    // or SSE or MMX vectors.
1429    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1430         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1431          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1432      report_fatal_error("SSE register return with SSE disabled");
1433    }
1434    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1435    // llvm-gcc has never done it right and no one has noticed, so this
1436    // should be OK for now.
1437    if (ValVT == MVT::f64 &&
1438        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1439      report_fatal_error("SSE2 register return with SSE2 disabled");
1440
1441    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1442    // the RET instruction and handled by the FP Stackifier.
1443    if (VA.getLocReg() == X86::ST0 ||
1444        VA.getLocReg() == X86::ST1) {
1445      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1446      // change the value to the FP stack register class.
1447      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1448        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1449      RetOps.push_back(ValToCopy);
1450      // Don't emit a copytoreg.
1451      continue;
1452    }
1453
1454    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1455    // which is returned in RAX / RDX.
1456    if (Subtarget->is64Bit()) {
1457      if (ValVT == MVT::x86mmx) {
1458        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1459          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1460          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1461                                  ValToCopy);
1462          // If we don't have SSE2 available, convert to v4f32 so the generated
1463          // register is legal.
1464          if (!Subtarget->hasXMMInt())
1465            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1466        }
1467      }
1468    }
1469
1470    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1471    Flag = Chain.getValue(1);
1472  }
1473
1474  // The x86-64 ABI for returning structs by value requires that we copy
1475  // the sret argument into %rax for the return. We saved the argument into
1476  // a virtual register in the entry block, so now we copy the value out
1477  // and into %rax.
1478  if (Subtarget->is64Bit() &&
1479      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1480    MachineFunction &MF = DAG.getMachineFunction();
1481    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1482    unsigned Reg = FuncInfo->getSRetReturnReg();
1483    assert(Reg &&
1484           "SRetReturnReg should have been set in LowerFormalArguments().");
1485    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1486
1487    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1488    Flag = Chain.getValue(1);
1489
1490    // RAX now acts like a return value.
1491    MRI.addLiveOut(X86::RAX);
1492  }
1493
1494  RetOps[0] = Chain;  // Update chain.
1495
1496  // Add the flag if we have it.
1497  if (Flag.getNode())
1498    RetOps.push_back(Flag);
1499
1500  return DAG.getNode(X86ISD::RET_FLAG, dl,
1501                     MVT::Other, &RetOps[0], RetOps.size());
1502}
1503
1504bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1505  if (N->getNumValues() != 1)
1506    return false;
1507  if (!N->hasNUsesOfValue(1, 0))
1508    return false;
1509
1510  SDNode *Copy = *N->use_begin();
1511  if (Copy->getOpcode() != ISD::CopyToReg &&
1512      Copy->getOpcode() != ISD::FP_EXTEND)
1513    return false;
1514
1515  bool HasRet = false;
1516  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1517       UI != UE; ++UI) {
1518    if (UI->getOpcode() != X86ISD::RET_FLAG)
1519      return false;
1520    HasRet = true;
1521  }
1522
1523  return HasRet;
1524}
1525
1526EVT
1527X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1528                                            ISD::NodeType ExtendKind) const {
1529  MVT ReturnMVT;
1530  // TODO: Is this also valid on 32-bit?
1531  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1532    ReturnMVT = MVT::i8;
1533  else
1534    ReturnMVT = MVT::i32;
1535
1536  EVT MinVT = getRegisterType(Context, ReturnMVT);
1537  return VT.bitsLT(MinVT) ? MinVT : VT;
1538}
1539
1540/// LowerCallResult - Lower the result values of a call into the
1541/// appropriate copies out of appropriate physical registers.
1542///
1543SDValue
1544X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1545                                   CallingConv::ID CallConv, bool isVarArg,
1546                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1547                                   DebugLoc dl, SelectionDAG &DAG,
1548                                   SmallVectorImpl<SDValue> &InVals) const {
1549
1550  // Assign locations to each value returned by this call.
1551  SmallVector<CCValAssign, 16> RVLocs;
1552  bool Is64Bit = Subtarget->is64Bit();
1553  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1554		 getTargetMachine(), RVLocs, *DAG.getContext());
1555  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1556
1557  // Copy all of the result registers out of their specified physreg.
1558  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1559    CCValAssign &VA = RVLocs[i];
1560    EVT CopyVT = VA.getValVT();
1561
1562    // If this is x86-64, and we disabled SSE, we can't return FP values
1563    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1564        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1565      report_fatal_error("SSE register return with SSE disabled");
1566    }
1567
1568    SDValue Val;
1569
1570    // If this is a call to a function that returns an fp value on the floating
1571    // point stack, we must guarantee the the value is popped from the stack, so
1572    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1573    // if the return value is not used. We use the FpPOP_RETVAL instruction
1574    // instead.
1575    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1576      // If we prefer to use the value in xmm registers, copy it out as f80 and
1577      // use a truncate to move it from fp stack reg to xmm reg.
1578      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1579      SDValue Ops[] = { Chain, InFlag };
1580      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1581                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1582      Val = Chain.getValue(0);
1583
1584      // Round the f80 to the right size, which also moves it to the appropriate
1585      // xmm register.
1586      if (CopyVT != VA.getValVT())
1587        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1588                          // This truncation won't change the value.
1589                          DAG.getIntPtrConstant(1));
1590    } else {
1591      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1592                                 CopyVT, InFlag).getValue(1);
1593      Val = Chain.getValue(0);
1594    }
1595    InFlag = Chain.getValue(2);
1596    InVals.push_back(Val);
1597  }
1598
1599  return Chain;
1600}
1601
1602
1603//===----------------------------------------------------------------------===//
1604//                C & StdCall & Fast Calling Convention implementation
1605//===----------------------------------------------------------------------===//
1606//  StdCall calling convention seems to be standard for many Windows' API
1607//  routines and around. It differs from C calling convention just a little:
1608//  callee should clean up the stack, not caller. Symbols should be also
1609//  decorated in some fancy way :) It doesn't support any vector arguments.
1610//  For info on fast calling convention see Fast Calling Convention (tail call)
1611//  implementation LowerX86_32FastCCCallTo.
1612
1613/// CallIsStructReturn - Determines whether a call uses struct return
1614/// semantics.
1615static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1616  if (Outs.empty())
1617    return false;
1618
1619  return Outs[0].Flags.isSRet();
1620}
1621
1622/// ArgsAreStructReturn - Determines whether a function uses struct
1623/// return semantics.
1624static bool
1625ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1626  if (Ins.empty())
1627    return false;
1628
1629  return Ins[0].Flags.isSRet();
1630}
1631
1632/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1633/// by "Src" to address "Dst" with size and alignment information specified by
1634/// the specific parameter attribute. The copy will be passed as a byval
1635/// function parameter.
1636static SDValue
1637CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1638                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1639                          DebugLoc dl) {
1640  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1641
1642  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1643                       /*isVolatile*/false, /*AlwaysInline=*/true,
1644                       MachinePointerInfo(), MachinePointerInfo());
1645}
1646
1647/// IsTailCallConvention - Return true if the calling convention is one that
1648/// supports tail call optimization.
1649static bool IsTailCallConvention(CallingConv::ID CC) {
1650  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1651}
1652
1653bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1654  if (!CI->isTailCall())
1655    return false;
1656
1657  CallSite CS(CI);
1658  CallingConv::ID CalleeCC = CS.getCallingConv();
1659  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1660    return false;
1661
1662  return true;
1663}
1664
1665/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1666/// a tailcall target by changing its ABI.
1667static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1668  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1669}
1670
1671SDValue
1672X86TargetLowering::LowerMemArgument(SDValue Chain,
1673                                    CallingConv::ID CallConv,
1674                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1675                                    DebugLoc dl, SelectionDAG &DAG,
1676                                    const CCValAssign &VA,
1677                                    MachineFrameInfo *MFI,
1678                                    unsigned i) const {
1679  // Create the nodes corresponding to a load from this parameter slot.
1680  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1681  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1682  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1683  EVT ValVT;
1684
1685  // If value is passed by pointer we have address passed instead of the value
1686  // itself.
1687  if (VA.getLocInfo() == CCValAssign::Indirect)
1688    ValVT = VA.getLocVT();
1689  else
1690    ValVT = VA.getValVT();
1691
1692  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1693  // changed with more analysis.
1694  // In case of tail call optimization mark all arguments mutable. Since they
1695  // could be overwritten by lowering of arguments in case of a tail call.
1696  if (Flags.isByVal()) {
1697    unsigned Bytes = Flags.getByValSize();
1698    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1699    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1700    return DAG.getFrameIndex(FI, getPointerTy());
1701  } else {
1702    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1703                                    VA.getLocMemOffset(), isImmutable);
1704    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1705    return DAG.getLoad(ValVT, dl, Chain, FIN,
1706                       MachinePointerInfo::getFixedStack(FI),
1707                       false, false, 0);
1708  }
1709}
1710
1711SDValue
1712X86TargetLowering::LowerFormalArguments(SDValue Chain,
1713                                        CallingConv::ID CallConv,
1714                                        bool isVarArg,
1715                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1716                                        DebugLoc dl,
1717                                        SelectionDAG &DAG,
1718                                        SmallVectorImpl<SDValue> &InVals)
1719                                          const {
1720  MachineFunction &MF = DAG.getMachineFunction();
1721  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1722
1723  const Function* Fn = MF.getFunction();
1724  if (Fn->hasExternalLinkage() &&
1725      Subtarget->isTargetCygMing() &&
1726      Fn->getName() == "main")
1727    FuncInfo->setForceFramePointer(true);
1728
1729  MachineFrameInfo *MFI = MF.getFrameInfo();
1730  bool Is64Bit = Subtarget->is64Bit();
1731  bool IsWin64 = Subtarget->isTargetWin64();
1732
1733  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1734         "Var args not supported with calling convention fastcc or ghc");
1735
1736  // Assign locations to all of the incoming arguments.
1737  SmallVector<CCValAssign, 16> ArgLocs;
1738  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1739                 ArgLocs, *DAG.getContext());
1740
1741  // Allocate shadow area for Win64
1742  if (IsWin64) {
1743    CCInfo.AllocateStack(32, 8);
1744  }
1745
1746  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1747
1748  unsigned LastVal = ~0U;
1749  SDValue ArgValue;
1750  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1751    CCValAssign &VA = ArgLocs[i];
1752    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1753    // places.
1754    assert(VA.getValNo() != LastVal &&
1755           "Don't support value assigned to multiple locs yet");
1756    (void)LastVal;
1757    LastVal = VA.getValNo();
1758
1759    if (VA.isRegLoc()) {
1760      EVT RegVT = VA.getLocVT();
1761      TargetRegisterClass *RC = NULL;
1762      if (RegVT == MVT::i32)
1763        RC = X86::GR32RegisterClass;
1764      else if (Is64Bit && RegVT == MVT::i64)
1765        RC = X86::GR64RegisterClass;
1766      else if (RegVT == MVT::f32)
1767        RC = X86::FR32RegisterClass;
1768      else if (RegVT == MVT::f64)
1769        RC = X86::FR64RegisterClass;
1770      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1771        RC = X86::VR256RegisterClass;
1772      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1773        RC = X86::VR128RegisterClass;
1774      else if (RegVT == MVT::x86mmx)
1775        RC = X86::VR64RegisterClass;
1776      else
1777        llvm_unreachable("Unknown argument type!");
1778
1779      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1780      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1781
1782      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1783      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1784      // right size.
1785      if (VA.getLocInfo() == CCValAssign::SExt)
1786        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1787                               DAG.getValueType(VA.getValVT()));
1788      else if (VA.getLocInfo() == CCValAssign::ZExt)
1789        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1790                               DAG.getValueType(VA.getValVT()));
1791      else if (VA.getLocInfo() == CCValAssign::BCvt)
1792        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1793
1794      if (VA.isExtInLoc()) {
1795        // Handle MMX values passed in XMM regs.
1796        if (RegVT.isVector()) {
1797          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1798                                 ArgValue);
1799        } else
1800          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1801      }
1802    } else {
1803      assert(VA.isMemLoc());
1804      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1805    }
1806
1807    // If value is passed via pointer - do a load.
1808    if (VA.getLocInfo() == CCValAssign::Indirect)
1809      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1810                             MachinePointerInfo(), false, false, 0);
1811
1812    InVals.push_back(ArgValue);
1813  }
1814
1815  // The x86-64 ABI for returning structs by value requires that we copy
1816  // the sret argument into %rax for the return. Save the argument into
1817  // a virtual register so that we can access it from the return points.
1818  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1819    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1820    unsigned Reg = FuncInfo->getSRetReturnReg();
1821    if (!Reg) {
1822      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1823      FuncInfo->setSRetReturnReg(Reg);
1824    }
1825    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1826    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1827  }
1828
1829  unsigned StackSize = CCInfo.getNextStackOffset();
1830  // Align stack specially for tail calls.
1831  if (FuncIsMadeTailCallSafe(CallConv))
1832    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1833
1834  // If the function takes variable number of arguments, make a frame index for
1835  // the start of the first vararg value... for expansion of llvm.va_start.
1836  if (isVarArg) {
1837    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1838                    CallConv != CallingConv::X86_ThisCall)) {
1839      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1840    }
1841    if (Is64Bit) {
1842      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1843
1844      // FIXME: We should really autogenerate these arrays
1845      static const unsigned GPR64ArgRegsWin64[] = {
1846        X86::RCX, X86::RDX, X86::R8,  X86::R9
1847      };
1848      static const unsigned GPR64ArgRegs64Bit[] = {
1849        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1850      };
1851      static const unsigned XMMArgRegs64Bit[] = {
1852        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1853        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1854      };
1855      const unsigned *GPR64ArgRegs;
1856      unsigned NumXMMRegs = 0;
1857
1858      if (IsWin64) {
1859        // The XMM registers which might contain var arg parameters are shadowed
1860        // in their paired GPR.  So we only need to save the GPR to their home
1861        // slots.
1862        TotalNumIntRegs = 4;
1863        GPR64ArgRegs = GPR64ArgRegsWin64;
1864      } else {
1865        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1866        GPR64ArgRegs = GPR64ArgRegs64Bit;
1867
1868        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1869      }
1870      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1871                                                       TotalNumIntRegs);
1872
1873      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1874      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1875             "SSE register cannot be used when SSE is disabled!");
1876      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1877             "SSE register cannot be used when SSE is disabled!");
1878      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1879        // Kernel mode asks for SSE to be disabled, so don't push them
1880        // on the stack.
1881        TotalNumXMMRegs = 0;
1882
1883      if (IsWin64) {
1884        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1885        // Get to the caller-allocated home save location.  Add 8 to account
1886        // for the return address.
1887        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1888        FuncInfo->setRegSaveFrameIndex(
1889          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1890        // Fixup to set vararg frame on shadow area (4 x i64).
1891        if (NumIntRegs < 4)
1892          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1893      } else {
1894        // For X86-64, if there are vararg parameters that are passed via
1895        // registers, then we must store them to their spots on the stack so they
1896        // may be loaded by deferencing the result of va_next.
1897        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1898        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1899        FuncInfo->setRegSaveFrameIndex(
1900          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1901                               false));
1902      }
1903
1904      // Store the integer parameter registers.
1905      SmallVector<SDValue, 8> MemOps;
1906      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1907                                        getPointerTy());
1908      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1909      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1910        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1911                                  DAG.getIntPtrConstant(Offset));
1912        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1913                                     X86::GR64RegisterClass);
1914        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1915        SDValue Store =
1916          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1917                       MachinePointerInfo::getFixedStack(
1918                         FuncInfo->getRegSaveFrameIndex(), Offset),
1919                       false, false, 0);
1920        MemOps.push_back(Store);
1921        Offset += 8;
1922      }
1923
1924      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1925        // Now store the XMM (fp + vector) parameter registers.
1926        SmallVector<SDValue, 11> SaveXMMOps;
1927        SaveXMMOps.push_back(Chain);
1928
1929        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1930        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1931        SaveXMMOps.push_back(ALVal);
1932
1933        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1934                               FuncInfo->getRegSaveFrameIndex()));
1935        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1936                               FuncInfo->getVarArgsFPOffset()));
1937
1938        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1939          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1940                                       X86::VR128RegisterClass);
1941          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1942          SaveXMMOps.push_back(Val);
1943        }
1944        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1945                                     MVT::Other,
1946                                     &SaveXMMOps[0], SaveXMMOps.size()));
1947      }
1948
1949      if (!MemOps.empty())
1950        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1951                            &MemOps[0], MemOps.size());
1952    }
1953  }
1954
1955  // Some CCs need callee pop.
1956  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1957    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1958  } else {
1959    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1960    // If this is an sret function, the return should pop the hidden pointer.
1961    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1962      FuncInfo->setBytesToPopOnReturn(4);
1963  }
1964
1965  if (!Is64Bit) {
1966    // RegSaveFrameIndex is X86-64 only.
1967    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1968    if (CallConv == CallingConv::X86_FastCall ||
1969        CallConv == CallingConv::X86_ThisCall)
1970      // fastcc functions can't have varargs.
1971      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1972  }
1973
1974  FuncInfo->setArgumentStackSize(StackSize);
1975
1976  return Chain;
1977}
1978
1979SDValue
1980X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1981                                    SDValue StackPtr, SDValue Arg,
1982                                    DebugLoc dl, SelectionDAG &DAG,
1983                                    const CCValAssign &VA,
1984                                    ISD::ArgFlagsTy Flags) const {
1985  unsigned LocMemOffset = VA.getLocMemOffset();
1986  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1987  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1988  if (Flags.isByVal())
1989    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1990
1991  return DAG.getStore(Chain, dl, Arg, PtrOff,
1992                      MachinePointerInfo::getStack(LocMemOffset),
1993                      false, false, 0);
1994}
1995
1996/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1997/// optimization is performed and it is required.
1998SDValue
1999X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2000                                           SDValue &OutRetAddr, SDValue Chain,
2001                                           bool IsTailCall, bool Is64Bit,
2002                                           int FPDiff, DebugLoc dl) const {
2003  // Adjust the Return address stack slot.
2004  EVT VT = getPointerTy();
2005  OutRetAddr = getReturnAddressFrameIndex(DAG);
2006
2007  // Load the "old" Return address.
2008  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2009                           false, false, 0);
2010  return SDValue(OutRetAddr.getNode(), 1);
2011}
2012
2013/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2014/// optimization is performed and it is required (FPDiff!=0).
2015static SDValue
2016EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2017                         SDValue Chain, SDValue RetAddrFrIdx,
2018                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2019  // Store the return address to the appropriate stack slot.
2020  if (!FPDiff) return Chain;
2021  // Calculate the new stack slot for the return address.
2022  int SlotSize = Is64Bit ? 8 : 4;
2023  int NewReturnAddrFI =
2024    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2025  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2026  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2027  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2028                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2029                       false, false, 0);
2030  return Chain;
2031}
2032
2033SDValue
2034X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2035                             CallingConv::ID CallConv, bool isVarArg,
2036                             bool &isTailCall,
2037                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2038                             const SmallVectorImpl<SDValue> &OutVals,
2039                             const SmallVectorImpl<ISD::InputArg> &Ins,
2040                             DebugLoc dl, SelectionDAG &DAG,
2041                             SmallVectorImpl<SDValue> &InVals) const {
2042  MachineFunction &MF = DAG.getMachineFunction();
2043  bool Is64Bit        = Subtarget->is64Bit();
2044  bool IsWin64        = Subtarget->isTargetWin64();
2045  bool IsStructRet    = CallIsStructReturn(Outs);
2046  bool IsSibcall      = false;
2047
2048  if (isTailCall) {
2049    // Check if it's really possible to do a tail call.
2050    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2051                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2052                                                   Outs, OutVals, Ins, DAG);
2053
2054    // Sibcalls are automatically detected tailcalls which do not require
2055    // ABI changes.
2056    if (!GuaranteedTailCallOpt && isTailCall)
2057      IsSibcall = true;
2058
2059    if (isTailCall)
2060      ++NumTailCalls;
2061  }
2062
2063  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2064         "Var args not supported with calling convention fastcc or ghc");
2065
2066  // Analyze operands of the call, assigning locations to each operand.
2067  SmallVector<CCValAssign, 16> ArgLocs;
2068  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2069                 ArgLocs, *DAG.getContext());
2070
2071  // Allocate shadow area for Win64
2072  if (IsWin64) {
2073    CCInfo.AllocateStack(32, 8);
2074  }
2075
2076  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2077
2078  // Get a count of how many bytes are to be pushed on the stack.
2079  unsigned NumBytes = CCInfo.getNextStackOffset();
2080  if (IsSibcall)
2081    // This is a sibcall. The memory operands are available in caller's
2082    // own caller's stack.
2083    NumBytes = 0;
2084  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2085    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2086
2087  int FPDiff = 0;
2088  if (isTailCall && !IsSibcall) {
2089    // Lower arguments at fp - stackoffset + fpdiff.
2090    unsigned NumBytesCallerPushed =
2091      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2092    FPDiff = NumBytesCallerPushed - NumBytes;
2093
2094    // Set the delta of movement of the returnaddr stackslot.
2095    // But only set if delta is greater than previous delta.
2096    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2097      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2098  }
2099
2100  if (!IsSibcall)
2101    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2102
2103  SDValue RetAddrFrIdx;
2104  // Load return address for tail calls.
2105  if (isTailCall && FPDiff)
2106    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2107                                    Is64Bit, FPDiff, dl);
2108
2109  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2110  SmallVector<SDValue, 8> MemOpChains;
2111  SDValue StackPtr;
2112
2113  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2114  // of tail call optimization arguments are handle later.
2115  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2116    CCValAssign &VA = ArgLocs[i];
2117    EVT RegVT = VA.getLocVT();
2118    SDValue Arg = OutVals[i];
2119    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2120    bool isByVal = Flags.isByVal();
2121
2122    // Promote the value if needed.
2123    switch (VA.getLocInfo()) {
2124    default: llvm_unreachable("Unknown loc info!");
2125    case CCValAssign::Full: break;
2126    case CCValAssign::SExt:
2127      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2128      break;
2129    case CCValAssign::ZExt:
2130      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2131      break;
2132    case CCValAssign::AExt:
2133      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2134        // Special case: passing MMX values in XMM registers.
2135        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2136        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2137        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2138      } else
2139        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2140      break;
2141    case CCValAssign::BCvt:
2142      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2143      break;
2144    case CCValAssign::Indirect: {
2145      // Store the argument.
2146      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2147      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2148      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2149                           MachinePointerInfo::getFixedStack(FI),
2150                           false, false, 0);
2151      Arg = SpillSlot;
2152      break;
2153    }
2154    }
2155
2156    if (VA.isRegLoc()) {
2157      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2158      if (isVarArg && IsWin64) {
2159        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2160        // shadow reg if callee is a varargs function.
2161        unsigned ShadowReg = 0;
2162        switch (VA.getLocReg()) {
2163        case X86::XMM0: ShadowReg = X86::RCX; break;
2164        case X86::XMM1: ShadowReg = X86::RDX; break;
2165        case X86::XMM2: ShadowReg = X86::R8; break;
2166        case X86::XMM3: ShadowReg = X86::R9; break;
2167        }
2168        if (ShadowReg)
2169          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2170      }
2171    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2172      assert(VA.isMemLoc());
2173      if (StackPtr.getNode() == 0)
2174        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2175      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2176                                             dl, DAG, VA, Flags));
2177    }
2178  }
2179
2180  if (!MemOpChains.empty())
2181    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2182                        &MemOpChains[0], MemOpChains.size());
2183
2184  // Build a sequence of copy-to-reg nodes chained together with token chain
2185  // and flag operands which copy the outgoing args into registers.
2186  SDValue InFlag;
2187  // Tail call byval lowering might overwrite argument registers so in case of
2188  // tail call optimization the copies to registers are lowered later.
2189  if (!isTailCall)
2190    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2191      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2192                               RegsToPass[i].second, InFlag);
2193      InFlag = Chain.getValue(1);
2194    }
2195
2196  if (Subtarget->isPICStyleGOT()) {
2197    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2198    // GOT pointer.
2199    if (!isTailCall) {
2200      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2201                               DAG.getNode(X86ISD::GlobalBaseReg,
2202                                           DebugLoc(), getPointerTy()),
2203                               InFlag);
2204      InFlag = Chain.getValue(1);
2205    } else {
2206      // If we are tail calling and generating PIC/GOT style code load the
2207      // address of the callee into ECX. The value in ecx is used as target of
2208      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2209      // for tail calls on PIC/GOT architectures. Normally we would just put the
2210      // address of GOT into ebx and then call target@PLT. But for tail calls
2211      // ebx would be restored (since ebx is callee saved) before jumping to the
2212      // target@PLT.
2213
2214      // Note: The actual moving to ECX is done further down.
2215      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2216      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2217          !G->getGlobal()->hasProtectedVisibility())
2218        Callee = LowerGlobalAddress(Callee, DAG);
2219      else if (isa<ExternalSymbolSDNode>(Callee))
2220        Callee = LowerExternalSymbol(Callee, DAG);
2221    }
2222  }
2223
2224  if (Is64Bit && isVarArg && !IsWin64) {
2225    // From AMD64 ABI document:
2226    // For calls that may call functions that use varargs or stdargs
2227    // (prototype-less calls or calls to functions containing ellipsis (...) in
2228    // the declaration) %al is used as hidden argument to specify the number
2229    // of SSE registers used. The contents of %al do not need to match exactly
2230    // the number of registers, but must be an ubound on the number of SSE
2231    // registers used and is in the range 0 - 8 inclusive.
2232
2233    // Count the number of XMM registers allocated.
2234    static const unsigned XMMArgRegs[] = {
2235      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2236      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2237    };
2238    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2239    assert((Subtarget->hasXMM() || !NumXMMRegs)
2240           && "SSE registers cannot be used when SSE is disabled");
2241
2242    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2243                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2244    InFlag = Chain.getValue(1);
2245  }
2246
2247
2248  // For tail calls lower the arguments to the 'real' stack slot.
2249  if (isTailCall) {
2250    // Force all the incoming stack arguments to be loaded from the stack
2251    // before any new outgoing arguments are stored to the stack, because the
2252    // outgoing stack slots may alias the incoming argument stack slots, and
2253    // the alias isn't otherwise explicit. This is slightly more conservative
2254    // than necessary, because it means that each store effectively depends
2255    // on every argument instead of just those arguments it would clobber.
2256    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2257
2258    SmallVector<SDValue, 8> MemOpChains2;
2259    SDValue FIN;
2260    int FI = 0;
2261    // Do not flag preceding copytoreg stuff together with the following stuff.
2262    InFlag = SDValue();
2263    if (GuaranteedTailCallOpt) {
2264      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2265        CCValAssign &VA = ArgLocs[i];
2266        if (VA.isRegLoc())
2267          continue;
2268        assert(VA.isMemLoc());
2269        SDValue Arg = OutVals[i];
2270        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2271        // Create frame index.
2272        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2273        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2274        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2275        FIN = DAG.getFrameIndex(FI, getPointerTy());
2276
2277        if (Flags.isByVal()) {
2278          // Copy relative to framepointer.
2279          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2280          if (StackPtr.getNode() == 0)
2281            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2282                                          getPointerTy());
2283          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2284
2285          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2286                                                           ArgChain,
2287                                                           Flags, DAG, dl));
2288        } else {
2289          // Store relative to framepointer.
2290          MemOpChains2.push_back(
2291            DAG.getStore(ArgChain, dl, Arg, FIN,
2292                         MachinePointerInfo::getFixedStack(FI),
2293                         false, false, 0));
2294        }
2295      }
2296    }
2297
2298    if (!MemOpChains2.empty())
2299      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2300                          &MemOpChains2[0], MemOpChains2.size());
2301
2302    // Copy arguments to their registers.
2303    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2304      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2305                               RegsToPass[i].second, InFlag);
2306      InFlag = Chain.getValue(1);
2307    }
2308    InFlag =SDValue();
2309
2310    // Store the return address to the appropriate stack slot.
2311    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2312                                     FPDiff, dl);
2313  }
2314
2315  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2316    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2317    // In the 64-bit large code model, we have to make all calls
2318    // through a register, since the call instruction's 32-bit
2319    // pc-relative offset may not be large enough to hold the whole
2320    // address.
2321  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2322    // If the callee is a GlobalAddress node (quite common, every direct call
2323    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2324    // it.
2325
2326    // We should use extra load for direct calls to dllimported functions in
2327    // non-JIT mode.
2328    const GlobalValue *GV = G->getGlobal();
2329    if (!GV->hasDLLImportLinkage()) {
2330      unsigned char OpFlags = 0;
2331      bool ExtraLoad = false;
2332      unsigned WrapperKind = ISD::DELETED_NODE;
2333
2334      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2335      // external symbols most go through the PLT in PIC mode.  If the symbol
2336      // has hidden or protected visibility, or if it is static or local, then
2337      // we don't need to use the PLT - we can directly call it.
2338      if (Subtarget->isTargetELF() &&
2339          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2340          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2341        OpFlags = X86II::MO_PLT;
2342      } else if (Subtarget->isPICStyleStubAny() &&
2343                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2344                 (!Subtarget->getTargetTriple().isMacOSX() ||
2345                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2346        // PC-relative references to external symbols should go through $stub,
2347        // unless we're building with the leopard linker or later, which
2348        // automatically synthesizes these stubs.
2349        OpFlags = X86II::MO_DARWIN_STUB;
2350      } else if (Subtarget->isPICStyleRIPRel() &&
2351                 isa<Function>(GV) &&
2352                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2353        // If the function is marked as non-lazy, generate an indirect call
2354        // which loads from the GOT directly. This avoids runtime overhead
2355        // at the cost of eager binding (and one extra byte of encoding).
2356        OpFlags = X86II::MO_GOTPCREL;
2357        WrapperKind = X86ISD::WrapperRIP;
2358        ExtraLoad = true;
2359      }
2360
2361      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2362                                          G->getOffset(), OpFlags);
2363
2364      // Add a wrapper if needed.
2365      if (WrapperKind != ISD::DELETED_NODE)
2366        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2367      // Add extra indirection if needed.
2368      if (ExtraLoad)
2369        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2370                             MachinePointerInfo::getGOT(),
2371                             false, false, 0);
2372    }
2373  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2374    unsigned char OpFlags = 0;
2375
2376    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2377    // external symbols should go through the PLT.
2378    if (Subtarget->isTargetELF() &&
2379        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2380      OpFlags = X86II::MO_PLT;
2381    } else if (Subtarget->isPICStyleStubAny() &&
2382               (!Subtarget->getTargetTriple().isMacOSX() ||
2383                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2384      // PC-relative references to external symbols should go through $stub,
2385      // unless we're building with the leopard linker or later, which
2386      // automatically synthesizes these stubs.
2387      OpFlags = X86II::MO_DARWIN_STUB;
2388    }
2389
2390    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2391                                         OpFlags);
2392  }
2393
2394  // Returns a chain & a flag for retval copy to use.
2395  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2396  SmallVector<SDValue, 8> Ops;
2397
2398  if (!IsSibcall && isTailCall) {
2399    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2400                           DAG.getIntPtrConstant(0, true), InFlag);
2401    InFlag = Chain.getValue(1);
2402  }
2403
2404  Ops.push_back(Chain);
2405  Ops.push_back(Callee);
2406
2407  if (isTailCall)
2408    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2409
2410  // Add argument registers to the end of the list so that they are known live
2411  // into the call.
2412  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2413    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2414                                  RegsToPass[i].second.getValueType()));
2415
2416  // Add an implicit use GOT pointer in EBX.
2417  if (!isTailCall && Subtarget->isPICStyleGOT())
2418    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2419
2420  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2421  if (Is64Bit && isVarArg && !IsWin64)
2422    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2423
2424  if (InFlag.getNode())
2425    Ops.push_back(InFlag);
2426
2427  if (isTailCall) {
2428    // We used to do:
2429    //// If this is the first return lowered for this function, add the regs
2430    //// to the liveout set for the function.
2431    // This isn't right, although it's probably harmless on x86; liveouts
2432    // should be computed from returns not tail calls.  Consider a void
2433    // function making a tail call to a function returning int.
2434    return DAG.getNode(X86ISD::TC_RETURN, dl,
2435                       NodeTys, &Ops[0], Ops.size());
2436  }
2437
2438  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2439  InFlag = Chain.getValue(1);
2440
2441  // Create the CALLSEQ_END node.
2442  unsigned NumBytesForCalleeToPush;
2443  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2444    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2445  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2446    // If this is a call to a struct-return function, the callee
2447    // pops the hidden struct pointer, so we have to push it back.
2448    // This is common for Darwin/X86, Linux & Mingw32 targets.
2449    NumBytesForCalleeToPush = 4;
2450  else
2451    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2452
2453  // Returns a flag for retval copy to use.
2454  if (!IsSibcall) {
2455    Chain = DAG.getCALLSEQ_END(Chain,
2456                               DAG.getIntPtrConstant(NumBytes, true),
2457                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2458                                                     true),
2459                               InFlag);
2460    InFlag = Chain.getValue(1);
2461  }
2462
2463  // Handle result values, copying them out of physregs into vregs that we
2464  // return.
2465  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2466                         Ins, dl, DAG, InVals);
2467}
2468
2469
2470//===----------------------------------------------------------------------===//
2471//                Fast Calling Convention (tail call) implementation
2472//===----------------------------------------------------------------------===//
2473
2474//  Like std call, callee cleans arguments, convention except that ECX is
2475//  reserved for storing the tail called function address. Only 2 registers are
2476//  free for argument passing (inreg). Tail call optimization is performed
2477//  provided:
2478//                * tailcallopt is enabled
2479//                * caller/callee are fastcc
2480//  On X86_64 architecture with GOT-style position independent code only local
2481//  (within module) calls are supported at the moment.
2482//  To keep the stack aligned according to platform abi the function
2483//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2484//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2485//  If a tail called function callee has more arguments than the caller the
2486//  caller needs to make sure that there is room to move the RETADDR to. This is
2487//  achieved by reserving an area the size of the argument delta right after the
2488//  original REtADDR, but before the saved framepointer or the spilled registers
2489//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2490//  stack layout:
2491//    arg1
2492//    arg2
2493//    RETADDR
2494//    [ new RETADDR
2495//      move area ]
2496//    (possible EBP)
2497//    ESI
2498//    EDI
2499//    local1 ..
2500
2501/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2502/// for a 16 byte align requirement.
2503unsigned
2504X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2505                                               SelectionDAG& DAG) const {
2506  MachineFunction &MF = DAG.getMachineFunction();
2507  const TargetMachine &TM = MF.getTarget();
2508  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2509  unsigned StackAlignment = TFI.getStackAlignment();
2510  uint64_t AlignMask = StackAlignment - 1;
2511  int64_t Offset = StackSize;
2512  uint64_t SlotSize = TD->getPointerSize();
2513  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2514    // Number smaller than 12 so just add the difference.
2515    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2516  } else {
2517    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2518    Offset = ((~AlignMask) & Offset) + StackAlignment +
2519      (StackAlignment-SlotSize);
2520  }
2521  return Offset;
2522}
2523
2524/// MatchingStackOffset - Return true if the given stack call argument is
2525/// already available in the same position (relatively) of the caller's
2526/// incoming argument stack.
2527static
2528bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2529                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2530                         const X86InstrInfo *TII) {
2531  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2532  int FI = INT_MAX;
2533  if (Arg.getOpcode() == ISD::CopyFromReg) {
2534    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2535    if (!TargetRegisterInfo::isVirtualRegister(VR))
2536      return false;
2537    MachineInstr *Def = MRI->getVRegDef(VR);
2538    if (!Def)
2539      return false;
2540    if (!Flags.isByVal()) {
2541      if (!TII->isLoadFromStackSlot(Def, FI))
2542        return false;
2543    } else {
2544      unsigned Opcode = Def->getOpcode();
2545      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2546          Def->getOperand(1).isFI()) {
2547        FI = Def->getOperand(1).getIndex();
2548        Bytes = Flags.getByValSize();
2549      } else
2550        return false;
2551    }
2552  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2553    if (Flags.isByVal())
2554      // ByVal argument is passed in as a pointer but it's now being
2555      // dereferenced. e.g.
2556      // define @foo(%struct.X* %A) {
2557      //   tail call @bar(%struct.X* byval %A)
2558      // }
2559      return false;
2560    SDValue Ptr = Ld->getBasePtr();
2561    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2562    if (!FINode)
2563      return false;
2564    FI = FINode->getIndex();
2565  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2566    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2567    FI = FINode->getIndex();
2568    Bytes = Flags.getByValSize();
2569  } else
2570    return false;
2571
2572  assert(FI != INT_MAX);
2573  if (!MFI->isFixedObjectIndex(FI))
2574    return false;
2575  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2576}
2577
2578/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2579/// for tail call optimization. Targets which want to do tail call
2580/// optimization should implement this function.
2581bool
2582X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2583                                                     CallingConv::ID CalleeCC,
2584                                                     bool isVarArg,
2585                                                     bool isCalleeStructRet,
2586                                                     bool isCallerStructRet,
2587                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2588                                    const SmallVectorImpl<SDValue> &OutVals,
2589                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2590                                                     SelectionDAG& DAG) const {
2591  if (!IsTailCallConvention(CalleeCC) &&
2592      CalleeCC != CallingConv::C)
2593    return false;
2594
2595  // If -tailcallopt is specified, make fastcc functions tail-callable.
2596  const MachineFunction &MF = DAG.getMachineFunction();
2597  const Function *CallerF = DAG.getMachineFunction().getFunction();
2598  CallingConv::ID CallerCC = CallerF->getCallingConv();
2599  bool CCMatch = CallerCC == CalleeCC;
2600
2601  if (GuaranteedTailCallOpt) {
2602    if (IsTailCallConvention(CalleeCC) && CCMatch)
2603      return true;
2604    return false;
2605  }
2606
2607  // Look for obvious safe cases to perform tail call optimization that do not
2608  // require ABI changes. This is what gcc calls sibcall.
2609
2610  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2611  // emit a special epilogue.
2612  if (RegInfo->needsStackRealignment(MF))
2613    return false;
2614
2615  // Also avoid sibcall optimization if either caller or callee uses struct
2616  // return semantics.
2617  if (isCalleeStructRet || isCallerStructRet)
2618    return false;
2619
2620  // An stdcall caller is expected to clean up its arguments; the callee
2621  // isn't going to do that.
2622  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2623    return false;
2624
2625  // Do not sibcall optimize vararg calls unless all arguments are passed via
2626  // registers.
2627  if (isVarArg && !Outs.empty()) {
2628
2629    // Optimizing for varargs on Win64 is unlikely to be safe without
2630    // additional testing.
2631    if (Subtarget->isTargetWin64())
2632      return false;
2633
2634    SmallVector<CCValAssign, 16> ArgLocs;
2635    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2636		   getTargetMachine(), ArgLocs, *DAG.getContext());
2637
2638    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2639    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2640      if (!ArgLocs[i].isRegLoc())
2641        return false;
2642  }
2643
2644  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2645  // Therefore if it's not used by the call it is not safe to optimize this into
2646  // a sibcall.
2647  bool Unused = false;
2648  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2649    if (!Ins[i].Used) {
2650      Unused = true;
2651      break;
2652    }
2653  }
2654  if (Unused) {
2655    SmallVector<CCValAssign, 16> RVLocs;
2656    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2657		   getTargetMachine(), RVLocs, *DAG.getContext());
2658    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2659    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2660      CCValAssign &VA = RVLocs[i];
2661      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2662        return false;
2663    }
2664  }
2665
2666  // If the calling conventions do not match, then we'd better make sure the
2667  // results are returned in the same way as what the caller expects.
2668  if (!CCMatch) {
2669    SmallVector<CCValAssign, 16> RVLocs1;
2670    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2671		    getTargetMachine(), RVLocs1, *DAG.getContext());
2672    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2673
2674    SmallVector<CCValAssign, 16> RVLocs2;
2675    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2676		    getTargetMachine(), RVLocs2, *DAG.getContext());
2677    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2678
2679    if (RVLocs1.size() != RVLocs2.size())
2680      return false;
2681    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2682      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2683        return false;
2684      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2685        return false;
2686      if (RVLocs1[i].isRegLoc()) {
2687        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2688          return false;
2689      } else {
2690        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2691          return false;
2692      }
2693    }
2694  }
2695
2696  // If the callee takes no arguments then go on to check the results of the
2697  // call.
2698  if (!Outs.empty()) {
2699    // Check if stack adjustment is needed. For now, do not do this if any
2700    // argument is passed on the stack.
2701    SmallVector<CCValAssign, 16> ArgLocs;
2702    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2703		   getTargetMachine(), ArgLocs, *DAG.getContext());
2704
2705    // Allocate shadow area for Win64
2706    if (Subtarget->isTargetWin64()) {
2707      CCInfo.AllocateStack(32, 8);
2708    }
2709
2710    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2711    if (CCInfo.getNextStackOffset()) {
2712      MachineFunction &MF = DAG.getMachineFunction();
2713      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2714        return false;
2715
2716      // Check if the arguments are already laid out in the right way as
2717      // the caller's fixed stack objects.
2718      MachineFrameInfo *MFI = MF.getFrameInfo();
2719      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2720      const X86InstrInfo *TII =
2721        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2722      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2723        CCValAssign &VA = ArgLocs[i];
2724        SDValue Arg = OutVals[i];
2725        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2726        if (VA.getLocInfo() == CCValAssign::Indirect)
2727          return false;
2728        if (!VA.isRegLoc()) {
2729          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2730                                   MFI, MRI, TII))
2731            return false;
2732        }
2733      }
2734    }
2735
2736    // If the tailcall address may be in a register, then make sure it's
2737    // possible to register allocate for it. In 32-bit, the call address can
2738    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2739    // callee-saved registers are restored. These happen to be the same
2740    // registers used to pass 'inreg' arguments so watch out for those.
2741    if (!Subtarget->is64Bit() &&
2742        !isa<GlobalAddressSDNode>(Callee) &&
2743        !isa<ExternalSymbolSDNode>(Callee)) {
2744      unsigned NumInRegs = 0;
2745      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2746        CCValAssign &VA = ArgLocs[i];
2747        if (!VA.isRegLoc())
2748          continue;
2749        unsigned Reg = VA.getLocReg();
2750        switch (Reg) {
2751        default: break;
2752        case X86::EAX: case X86::EDX: case X86::ECX:
2753          if (++NumInRegs == 3)
2754            return false;
2755          break;
2756        }
2757      }
2758    }
2759  }
2760
2761  return true;
2762}
2763
2764FastISel *
2765X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2766  return X86::createFastISel(funcInfo);
2767}
2768
2769
2770//===----------------------------------------------------------------------===//
2771//                           Other Lowering Hooks
2772//===----------------------------------------------------------------------===//
2773
2774static bool MayFoldLoad(SDValue Op) {
2775  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2776}
2777
2778static bool MayFoldIntoStore(SDValue Op) {
2779  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2780}
2781
2782static bool isTargetShuffle(unsigned Opcode) {
2783  switch(Opcode) {
2784  default: return false;
2785  case X86ISD::PSHUFD:
2786  case X86ISD::PSHUFHW:
2787  case X86ISD::PSHUFLW:
2788  case X86ISD::SHUFPD:
2789  case X86ISD::PALIGN:
2790  case X86ISD::SHUFPS:
2791  case X86ISD::MOVLHPS:
2792  case X86ISD::MOVLHPD:
2793  case X86ISD::MOVHLPS:
2794  case X86ISD::MOVLPS:
2795  case X86ISD::MOVLPD:
2796  case X86ISD::MOVSHDUP:
2797  case X86ISD::MOVSLDUP:
2798  case X86ISD::MOVDDUP:
2799  case X86ISD::MOVSS:
2800  case X86ISD::MOVSD:
2801  case X86ISD::UNPCKLPS:
2802  case X86ISD::UNPCKLPD:
2803  case X86ISD::VUNPCKLPSY:
2804  case X86ISD::VUNPCKLPDY:
2805  case X86ISD::PUNPCKLWD:
2806  case X86ISD::PUNPCKLBW:
2807  case X86ISD::PUNPCKLDQ:
2808  case X86ISD::PUNPCKLQDQ:
2809  case X86ISD::UNPCKHPS:
2810  case X86ISD::UNPCKHPD:
2811  case X86ISD::VUNPCKHPSY:
2812  case X86ISD::VUNPCKHPDY:
2813  case X86ISD::PUNPCKHWD:
2814  case X86ISD::PUNPCKHBW:
2815  case X86ISD::PUNPCKHDQ:
2816  case X86ISD::PUNPCKHQDQ:
2817  case X86ISD::VPERMILPS:
2818  case X86ISD::VPERMILPSY:
2819  case X86ISD::VPERMILPD:
2820  case X86ISD::VPERMILPDY:
2821  case X86ISD::VPERM2F128:
2822    return true;
2823  }
2824  return false;
2825}
2826
2827static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2828                                               SDValue V1, SelectionDAG &DAG) {
2829  switch(Opc) {
2830  default: llvm_unreachable("Unknown x86 shuffle node");
2831  case X86ISD::MOVSHDUP:
2832  case X86ISD::MOVSLDUP:
2833  case X86ISD::MOVDDUP:
2834    return DAG.getNode(Opc, dl, VT, V1);
2835  }
2836
2837  return SDValue();
2838}
2839
2840static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2841                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2842  switch(Opc) {
2843  default: llvm_unreachable("Unknown x86 shuffle node");
2844  case X86ISD::PSHUFD:
2845  case X86ISD::PSHUFHW:
2846  case X86ISD::PSHUFLW:
2847  case X86ISD::VPERMILPS:
2848  case X86ISD::VPERMILPSY:
2849  case X86ISD::VPERMILPD:
2850  case X86ISD::VPERMILPDY:
2851    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2852  }
2853
2854  return SDValue();
2855}
2856
2857static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2858               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2859  switch(Opc) {
2860  default: llvm_unreachable("Unknown x86 shuffle node");
2861  case X86ISD::PALIGN:
2862  case X86ISD::SHUFPD:
2863  case X86ISD::SHUFPS:
2864  case X86ISD::VPERM2F128:
2865    return DAG.getNode(Opc, dl, VT, V1, V2,
2866                       DAG.getConstant(TargetMask, MVT::i8));
2867  }
2868  return SDValue();
2869}
2870
2871static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2872                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2873  switch(Opc) {
2874  default: llvm_unreachable("Unknown x86 shuffle node");
2875  case X86ISD::MOVLHPS:
2876  case X86ISD::MOVLHPD:
2877  case X86ISD::MOVHLPS:
2878  case X86ISD::MOVLPS:
2879  case X86ISD::MOVLPD:
2880  case X86ISD::MOVSS:
2881  case X86ISD::MOVSD:
2882  case X86ISD::UNPCKLPS:
2883  case X86ISD::UNPCKLPD:
2884  case X86ISD::VUNPCKLPSY:
2885  case X86ISD::VUNPCKLPDY:
2886  case X86ISD::PUNPCKLWD:
2887  case X86ISD::PUNPCKLBW:
2888  case X86ISD::PUNPCKLDQ:
2889  case X86ISD::PUNPCKLQDQ:
2890  case X86ISD::UNPCKHPS:
2891  case X86ISD::UNPCKHPD:
2892  case X86ISD::VUNPCKHPSY:
2893  case X86ISD::VUNPCKHPDY:
2894  case X86ISD::PUNPCKHWD:
2895  case X86ISD::PUNPCKHBW:
2896  case X86ISD::PUNPCKHDQ:
2897  case X86ISD::PUNPCKHQDQ:
2898    return DAG.getNode(Opc, dl, VT, V1, V2);
2899  }
2900  return SDValue();
2901}
2902
2903SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2904  MachineFunction &MF = DAG.getMachineFunction();
2905  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2906  int ReturnAddrIndex = FuncInfo->getRAIndex();
2907
2908  if (ReturnAddrIndex == 0) {
2909    // Set up a frame object for the return address.
2910    uint64_t SlotSize = TD->getPointerSize();
2911    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2912                                                           false);
2913    FuncInfo->setRAIndex(ReturnAddrIndex);
2914  }
2915
2916  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2917}
2918
2919
2920bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2921                                       bool hasSymbolicDisplacement) {
2922  // Offset should fit into 32 bit immediate field.
2923  if (!isInt<32>(Offset))
2924    return false;
2925
2926  // If we don't have a symbolic displacement - we don't have any extra
2927  // restrictions.
2928  if (!hasSymbolicDisplacement)
2929    return true;
2930
2931  // FIXME: Some tweaks might be needed for medium code model.
2932  if (M != CodeModel::Small && M != CodeModel::Kernel)
2933    return false;
2934
2935  // For small code model we assume that latest object is 16MB before end of 31
2936  // bits boundary. We may also accept pretty large negative constants knowing
2937  // that all objects are in the positive half of address space.
2938  if (M == CodeModel::Small && Offset < 16*1024*1024)
2939    return true;
2940
2941  // For kernel code model we know that all object resist in the negative half
2942  // of 32bits address space. We may not accept negative offsets, since they may
2943  // be just off and we may accept pretty large positive ones.
2944  if (M == CodeModel::Kernel && Offset > 0)
2945    return true;
2946
2947  return false;
2948}
2949
2950/// isCalleePop - Determines whether the callee is required to pop its
2951/// own arguments. Callee pop is necessary to support tail calls.
2952bool X86::isCalleePop(CallingConv::ID CallingConv,
2953                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2954  if (IsVarArg)
2955    return false;
2956
2957  switch (CallingConv) {
2958  default:
2959    return false;
2960  case CallingConv::X86_StdCall:
2961    return !is64Bit;
2962  case CallingConv::X86_FastCall:
2963    return !is64Bit;
2964  case CallingConv::X86_ThisCall:
2965    return !is64Bit;
2966  case CallingConv::Fast:
2967    return TailCallOpt;
2968  case CallingConv::GHC:
2969    return TailCallOpt;
2970  }
2971}
2972
2973/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2974/// specific condition code, returning the condition code and the LHS/RHS of the
2975/// comparison to make.
2976static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2977                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2978  if (!isFP) {
2979    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2980      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2981        // X > -1   -> X == 0, jump !sign.
2982        RHS = DAG.getConstant(0, RHS.getValueType());
2983        return X86::COND_NS;
2984      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2985        // X < 0   -> X == 0, jump on sign.
2986        return X86::COND_S;
2987      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2988        // X < 1   -> X <= 0
2989        RHS = DAG.getConstant(0, RHS.getValueType());
2990        return X86::COND_LE;
2991      }
2992    }
2993
2994    switch (SetCCOpcode) {
2995    default: llvm_unreachable("Invalid integer condition!");
2996    case ISD::SETEQ:  return X86::COND_E;
2997    case ISD::SETGT:  return X86::COND_G;
2998    case ISD::SETGE:  return X86::COND_GE;
2999    case ISD::SETLT:  return X86::COND_L;
3000    case ISD::SETLE:  return X86::COND_LE;
3001    case ISD::SETNE:  return X86::COND_NE;
3002    case ISD::SETULT: return X86::COND_B;
3003    case ISD::SETUGT: return X86::COND_A;
3004    case ISD::SETULE: return X86::COND_BE;
3005    case ISD::SETUGE: return X86::COND_AE;
3006    }
3007  }
3008
3009  // First determine if it is required or is profitable to flip the operands.
3010
3011  // If LHS is a foldable load, but RHS is not, flip the condition.
3012  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3013      !ISD::isNON_EXTLoad(RHS.getNode())) {
3014    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3015    std::swap(LHS, RHS);
3016  }
3017
3018  switch (SetCCOpcode) {
3019  default: break;
3020  case ISD::SETOLT:
3021  case ISD::SETOLE:
3022  case ISD::SETUGT:
3023  case ISD::SETUGE:
3024    std::swap(LHS, RHS);
3025    break;
3026  }
3027
3028  // On a floating point condition, the flags are set as follows:
3029  // ZF  PF  CF   op
3030  //  0 | 0 | 0 | X > Y
3031  //  0 | 0 | 1 | X < Y
3032  //  1 | 0 | 0 | X == Y
3033  //  1 | 1 | 1 | unordered
3034  switch (SetCCOpcode) {
3035  default: llvm_unreachable("Condcode should be pre-legalized away");
3036  case ISD::SETUEQ:
3037  case ISD::SETEQ:   return X86::COND_E;
3038  case ISD::SETOLT:              // flipped
3039  case ISD::SETOGT:
3040  case ISD::SETGT:   return X86::COND_A;
3041  case ISD::SETOLE:              // flipped
3042  case ISD::SETOGE:
3043  case ISD::SETGE:   return X86::COND_AE;
3044  case ISD::SETUGT:              // flipped
3045  case ISD::SETULT:
3046  case ISD::SETLT:   return X86::COND_B;
3047  case ISD::SETUGE:              // flipped
3048  case ISD::SETULE:
3049  case ISD::SETLE:   return X86::COND_BE;
3050  case ISD::SETONE:
3051  case ISD::SETNE:   return X86::COND_NE;
3052  case ISD::SETUO:   return X86::COND_P;
3053  case ISD::SETO:    return X86::COND_NP;
3054  case ISD::SETOEQ:
3055  case ISD::SETUNE:  return X86::COND_INVALID;
3056  }
3057}
3058
3059/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3060/// code. Current x86 isa includes the following FP cmov instructions:
3061/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3062static bool hasFPCMov(unsigned X86CC) {
3063  switch (X86CC) {
3064  default:
3065    return false;
3066  case X86::COND_B:
3067  case X86::COND_BE:
3068  case X86::COND_E:
3069  case X86::COND_P:
3070  case X86::COND_A:
3071  case X86::COND_AE:
3072  case X86::COND_NE:
3073  case X86::COND_NP:
3074    return true;
3075  }
3076}
3077
3078/// isFPImmLegal - Returns true if the target can instruction select the
3079/// specified FP immediate natively. If false, the legalizer will
3080/// materialize the FP immediate as a load from a constant pool.
3081bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3082  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3083    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3084      return true;
3085  }
3086  return false;
3087}
3088
3089/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3090/// the specified range (L, H].
3091static bool isUndefOrInRange(int Val, int Low, int Hi) {
3092  return (Val < 0) || (Val >= Low && Val < Hi);
3093}
3094
3095/// isUndefOrInRange - Return true if every element in Mask, begining
3096/// from position Pos and ending in Pos+Size, falls within the specified
3097/// range (L, L+Pos]. or is undef.
3098static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3099                             int Pos, int Size, int Low, int Hi) {
3100  for (int i = Pos, e = Pos+Size; i != e; ++i)
3101    if (!isUndefOrInRange(Mask[i], Low, Hi))
3102      return false;
3103  return true;
3104}
3105
3106/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3107/// specified value.
3108static bool isUndefOrEqual(int Val, int CmpVal) {
3109  if (Val < 0 || Val == CmpVal)
3110    return true;
3111  return false;
3112}
3113
3114/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3115/// from position Pos and ending in Pos+Size, falls within the specified
3116/// sequential range (L, L+Pos]. or is undef.
3117static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3118                                       int Pos, int Size, int Low) {
3119  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3120    if (!isUndefOrEqual(Mask[i], Low))
3121      return false;
3122  return true;
3123}
3124
3125/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3126/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3127/// the second operand.
3128static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3129  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3130    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3131  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3132    return (Mask[0] < 2 && Mask[1] < 2);
3133  return false;
3134}
3135
3136bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3137  SmallVector<int, 8> M;
3138  N->getMask(M);
3139  return ::isPSHUFDMask(M, N->getValueType(0));
3140}
3141
3142/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3143/// is suitable for input to PSHUFHW.
3144static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3145  if (VT != MVT::v8i16)
3146    return false;
3147
3148  // Lower quadword copied in order or undef.
3149  for (int i = 0; i != 4; ++i)
3150    if (Mask[i] >= 0 && Mask[i] != i)
3151      return false;
3152
3153  // Upper quadword shuffled.
3154  for (int i = 4; i != 8; ++i)
3155    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3156      return false;
3157
3158  return true;
3159}
3160
3161bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3162  SmallVector<int, 8> M;
3163  N->getMask(M);
3164  return ::isPSHUFHWMask(M, N->getValueType(0));
3165}
3166
3167/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3168/// is suitable for input to PSHUFLW.
3169static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3170  if (VT != MVT::v8i16)
3171    return false;
3172
3173  // Upper quadword copied in order.
3174  for (int i = 4; i != 8; ++i)
3175    if (Mask[i] >= 0 && Mask[i] != i)
3176      return false;
3177
3178  // Lower quadword shuffled.
3179  for (int i = 0; i != 4; ++i)
3180    if (Mask[i] >= 4)
3181      return false;
3182
3183  return true;
3184}
3185
3186bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3187  SmallVector<int, 8> M;
3188  N->getMask(M);
3189  return ::isPSHUFLWMask(M, N->getValueType(0));
3190}
3191
3192/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3193/// is suitable for input to PALIGNR.
3194static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3195                          bool hasSSSE3OrAVX) {
3196  int i, e = VT.getVectorNumElements();
3197  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3198    return false;
3199
3200  // Do not handle v2i64 / v2f64 shuffles with palignr.
3201  if (e < 4 || !hasSSSE3OrAVX)
3202    return false;
3203
3204  for (i = 0; i != e; ++i)
3205    if (Mask[i] >= 0)
3206      break;
3207
3208  // All undef, not a palignr.
3209  if (i == e)
3210    return false;
3211
3212  // Make sure we're shifting in the right direction.
3213  if (Mask[i] <= i)
3214    return false;
3215
3216  int s = Mask[i] - i;
3217
3218  // Check the rest of the elements to see if they are consecutive.
3219  for (++i; i != e; ++i) {
3220    int m = Mask[i];
3221    if (m >= 0 && m != s+i)
3222      return false;
3223  }
3224  return true;
3225}
3226
3227/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3228/// specifies a shuffle of elements that is suitable for input to 256-bit
3229/// VSHUFPSY.
3230static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3231                          const X86Subtarget *Subtarget) {
3232  int NumElems = VT.getVectorNumElements();
3233
3234  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3235    return false;
3236
3237  if (NumElems != 8)
3238    return false;
3239
3240  // VSHUFPSY divides the resulting vector into 4 chunks.
3241  // The sources are also splitted into 4 chunks, and each destination
3242  // chunk must come from a different source chunk.
3243  //
3244  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3245  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3246  //
3247  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3248  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3249  //
3250  int QuarterSize = NumElems/4;
3251  int HalfSize = QuarterSize*2;
3252  for (int i = 0; i < QuarterSize; ++i)
3253    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3254      return false;
3255  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3256    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3257      return false;
3258
3259  // The mask of the second half must be the same as the first but with
3260  // the appropriate offsets. This works in the same way as VPERMILPS
3261  // works with masks.
3262  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3263    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3264      return false;
3265    int FstHalfIdx = i-HalfSize;
3266    if (Mask[FstHalfIdx] < 0)
3267      continue;
3268    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3269      return false;
3270  }
3271  for (int i = QuarterSize*3; i < NumElems; ++i) {
3272    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3273      return false;
3274    int FstHalfIdx = i-HalfSize;
3275    if (Mask[FstHalfIdx] < 0)
3276      continue;
3277    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3278      return false;
3279
3280  }
3281
3282  return true;
3283}
3284
3285/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3286/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3287static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3288  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3289  EVT VT = SVOp->getValueType(0);
3290  int NumElems = VT.getVectorNumElements();
3291
3292  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3293         "Only supports v8i32 and v8f32 types");
3294
3295  int HalfSize = NumElems/2;
3296  unsigned Mask = 0;
3297  for (int i = 0; i != NumElems ; ++i) {
3298    if (SVOp->getMaskElt(i) < 0)
3299      continue;
3300    // The mask of the first half must be equal to the second one.
3301    unsigned Shamt = (i%HalfSize)*2;
3302    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3303    Mask |= Elt << Shamt;
3304  }
3305
3306  return Mask;
3307}
3308
3309/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3310/// specifies a shuffle of elements that is suitable for input to 256-bit
3311/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3312/// version and the mask of the second half isn't binded with the first
3313/// one.
3314static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3315                           const X86Subtarget *Subtarget) {
3316  int NumElems = VT.getVectorNumElements();
3317
3318  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3319    return false;
3320
3321  if (NumElems != 4)
3322    return false;
3323
3324  // VSHUFPSY divides the resulting vector into 4 chunks.
3325  // The sources are also splitted into 4 chunks, and each destination
3326  // chunk must come from a different source chunk.
3327  //
3328  //  SRC1 =>      X3       X2       X1       X0
3329  //  SRC2 =>      Y3       Y2       Y1       Y0
3330  //
3331  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3332  //
3333  int QuarterSize = NumElems/4;
3334  int HalfSize = QuarterSize*2;
3335  for (int i = 0; i < QuarterSize; ++i)
3336    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3337      return false;
3338  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3339    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3340      return false;
3341  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3342    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3343      return false;
3344  for (int i = QuarterSize*3; i < NumElems; ++i)
3345    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3346      return false;
3347
3348  return true;
3349}
3350
3351/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3352/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3353static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3354  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3355  EVT VT = SVOp->getValueType(0);
3356  int NumElems = VT.getVectorNumElements();
3357
3358  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3359         "Only supports v4i64 and v4f64 types");
3360
3361  int HalfSize = NumElems/2;
3362  unsigned Mask = 0;
3363  for (int i = 0; i != NumElems ; ++i) {
3364    if (SVOp->getMaskElt(i) < 0)
3365      continue;
3366    int Elt = SVOp->getMaskElt(i) % HalfSize;
3367    Mask |= Elt << i;
3368  }
3369
3370  return Mask;
3371}
3372
3373/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3374/// specifies a shuffle of elements that is suitable for input to 128-bit
3375/// SHUFPS and SHUFPD.
3376static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3377  int NumElems = VT.getVectorNumElements();
3378
3379  if (VT.getSizeInBits() != 128)
3380    return false;
3381
3382  if (NumElems != 2 && NumElems != 4)
3383    return false;
3384
3385  int Half = NumElems / 2;
3386  for (int i = 0; i < Half; ++i)
3387    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3388      return false;
3389  for (int i = Half; i < NumElems; ++i)
3390    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3391      return false;
3392
3393  return true;
3394}
3395
3396bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3397  SmallVector<int, 8> M;
3398  N->getMask(M);
3399  return ::isSHUFPMask(M, N->getValueType(0));
3400}
3401
3402/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3403/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3404/// half elements to come from vector 1 (which would equal the dest.) and
3405/// the upper half to come from vector 2.
3406static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3407  int NumElems = VT.getVectorNumElements();
3408
3409  if (NumElems != 2 && NumElems != 4)
3410    return false;
3411
3412  int Half = NumElems / 2;
3413  for (int i = 0; i < Half; ++i)
3414    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3415      return false;
3416  for (int i = Half; i < NumElems; ++i)
3417    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3418      return false;
3419  return true;
3420}
3421
3422static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3423  SmallVector<int, 8> M;
3424  N->getMask(M);
3425  return isCommutedSHUFPMask(M, N->getValueType(0));
3426}
3427
3428/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3429/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3430bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3431  EVT VT = N->getValueType(0);
3432  unsigned NumElems = VT.getVectorNumElements();
3433
3434  if (VT.getSizeInBits() != 128)
3435    return false;
3436
3437  if (NumElems != 4)
3438    return false;
3439
3440  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3441  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3442         isUndefOrEqual(N->getMaskElt(1), 7) &&
3443         isUndefOrEqual(N->getMaskElt(2), 2) &&
3444         isUndefOrEqual(N->getMaskElt(3), 3);
3445}
3446
3447/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3448/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3449/// <2, 3, 2, 3>
3450bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3451  EVT VT = N->getValueType(0);
3452  unsigned NumElems = VT.getVectorNumElements();
3453
3454  if (VT.getSizeInBits() != 128)
3455    return false;
3456
3457  if (NumElems != 4)
3458    return false;
3459
3460  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3461         isUndefOrEqual(N->getMaskElt(1), 3) &&
3462         isUndefOrEqual(N->getMaskElt(2), 2) &&
3463         isUndefOrEqual(N->getMaskElt(3), 3);
3464}
3465
3466/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3467/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3468bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3469  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3470
3471  if (NumElems != 2 && NumElems != 4)
3472    return false;
3473
3474  for (unsigned i = 0; i < NumElems/2; ++i)
3475    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3476      return false;
3477
3478  for (unsigned i = NumElems/2; i < NumElems; ++i)
3479    if (!isUndefOrEqual(N->getMaskElt(i), i))
3480      return false;
3481
3482  return true;
3483}
3484
3485/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3486/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3487bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3488  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3489
3490  if ((NumElems != 2 && NumElems != 4)
3491      || N->getValueType(0).getSizeInBits() > 128)
3492    return false;
3493
3494  for (unsigned i = 0; i < NumElems/2; ++i)
3495    if (!isUndefOrEqual(N->getMaskElt(i), i))
3496      return false;
3497
3498  for (unsigned i = 0; i < NumElems/2; ++i)
3499    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3500      return false;
3501
3502  return true;
3503}
3504
3505/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3506/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3507static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3508                         bool V2IsSplat = false) {
3509  int NumElts = VT.getVectorNumElements();
3510
3511  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3512         "Unsupported vector type for unpckh");
3513
3514  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3515    return false;
3516
3517  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3518  // independently on 128-bit lanes.
3519  unsigned NumLanes = VT.getSizeInBits()/128;
3520  unsigned NumLaneElts = NumElts/NumLanes;
3521
3522  unsigned Start = 0;
3523  unsigned End = NumLaneElts;
3524  for (unsigned s = 0; s < NumLanes; ++s) {
3525    for (unsigned i = Start, j = s * NumLaneElts;
3526         i != End;
3527         i += 2, ++j) {
3528      int BitI  = Mask[i];
3529      int BitI1 = Mask[i+1];
3530      if (!isUndefOrEqual(BitI, j))
3531        return false;
3532      if (V2IsSplat) {
3533        if (!isUndefOrEqual(BitI1, NumElts))
3534          return false;
3535      } else {
3536        if (!isUndefOrEqual(BitI1, j + NumElts))
3537          return false;
3538      }
3539    }
3540    // Process the next 128 bits.
3541    Start += NumLaneElts;
3542    End += NumLaneElts;
3543  }
3544
3545  return true;
3546}
3547
3548bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3549  SmallVector<int, 8> M;
3550  N->getMask(M);
3551  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3552}
3553
3554/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3555/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3556static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3557                         bool V2IsSplat = false) {
3558  int NumElts = VT.getVectorNumElements();
3559
3560  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3561         "Unsupported vector type for unpckh");
3562
3563  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3564    return false;
3565
3566  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3567  // independently on 128-bit lanes.
3568  unsigned NumLanes = VT.getSizeInBits()/128;
3569  unsigned NumLaneElts = NumElts/NumLanes;
3570
3571  unsigned Start = 0;
3572  unsigned End = NumLaneElts;
3573  for (unsigned l = 0; l != NumLanes; ++l) {
3574    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3575                             i != End; i += 2, ++j) {
3576      int BitI  = Mask[i];
3577      int BitI1 = Mask[i+1];
3578      if (!isUndefOrEqual(BitI, j))
3579        return false;
3580      if (V2IsSplat) {
3581        if (isUndefOrEqual(BitI1, NumElts))
3582          return false;
3583      } else {
3584        if (!isUndefOrEqual(BitI1, j+NumElts))
3585          return false;
3586      }
3587    }
3588    // Process the next 128 bits.
3589    Start += NumLaneElts;
3590    End += NumLaneElts;
3591  }
3592  return true;
3593}
3594
3595bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3596  SmallVector<int, 8> M;
3597  N->getMask(M);
3598  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3599}
3600
3601/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3602/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3603/// <0, 0, 1, 1>
3604static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3605  int NumElems = VT.getVectorNumElements();
3606  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3607    return false;
3608
3609  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3610  // FIXME: Need a better way to get rid of this, there's no latency difference
3611  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3612  // the former later. We should also remove the "_undef" special mask.
3613  if (NumElems == 4 && VT.getSizeInBits() == 256)
3614    return false;
3615
3616  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3617  // independently on 128-bit lanes.
3618  unsigned NumLanes = VT.getSizeInBits() / 128;
3619  unsigned NumLaneElts = NumElems / NumLanes;
3620
3621  for (unsigned s = 0; s < NumLanes; ++s) {
3622    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3623         i != NumLaneElts * (s + 1);
3624         i += 2, ++j) {
3625      int BitI  = Mask[i];
3626      int BitI1 = Mask[i+1];
3627
3628      if (!isUndefOrEqual(BitI, j))
3629        return false;
3630      if (!isUndefOrEqual(BitI1, j))
3631        return false;
3632    }
3633  }
3634
3635  return true;
3636}
3637
3638bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3639  SmallVector<int, 8> M;
3640  N->getMask(M);
3641  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3642}
3643
3644/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3645/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3646/// <2, 2, 3, 3>
3647static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3648  int NumElems = VT.getVectorNumElements();
3649  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3650    return false;
3651
3652  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3653    int BitI  = Mask[i];
3654    int BitI1 = Mask[i+1];
3655    if (!isUndefOrEqual(BitI, j))
3656      return false;
3657    if (!isUndefOrEqual(BitI1, j))
3658      return false;
3659  }
3660  return true;
3661}
3662
3663bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3664  SmallVector<int, 8> M;
3665  N->getMask(M);
3666  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3667}
3668
3669/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3670/// specifies a shuffle of elements that is suitable for input to MOVSS,
3671/// MOVSD, and MOVD, i.e. setting the lowest element.
3672static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3673  if (VT.getVectorElementType().getSizeInBits() < 32)
3674    return false;
3675
3676  int NumElts = VT.getVectorNumElements();
3677
3678  if (!isUndefOrEqual(Mask[0], NumElts))
3679    return false;
3680
3681  for (int i = 1; i < NumElts; ++i)
3682    if (!isUndefOrEqual(Mask[i], i))
3683      return false;
3684
3685  return true;
3686}
3687
3688bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3689  SmallVector<int, 8> M;
3690  N->getMask(M);
3691  return ::isMOVLMask(M, N->getValueType(0));
3692}
3693
3694/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3695/// as permutations between 128-bit chunks or halves. As an example: this
3696/// shuffle bellow:
3697///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3698/// The first half comes from the second half of V1 and the second half from the
3699/// the second half of V2.
3700static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3701                             const X86Subtarget *Subtarget) {
3702  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3703    return false;
3704
3705  // The shuffle result is divided into half A and half B. In total the two
3706  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3707  // B must come from C, D, E or F.
3708  int HalfSize = VT.getVectorNumElements()/2;
3709  bool MatchA = false, MatchB = false;
3710
3711  // Check if A comes from one of C, D, E, F.
3712  for (int Half = 0; Half < 4; ++Half) {
3713    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3714      MatchA = true;
3715      break;
3716    }
3717  }
3718
3719  // Check if B comes from one of C, D, E, F.
3720  for (int Half = 0; Half < 4; ++Half) {
3721    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3722      MatchB = true;
3723      break;
3724    }
3725  }
3726
3727  return MatchA && MatchB;
3728}
3729
3730/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3731/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3732static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3733  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3734  EVT VT = SVOp->getValueType(0);
3735
3736  int HalfSize = VT.getVectorNumElements()/2;
3737
3738  int FstHalf = 0, SndHalf = 0;
3739  for (int i = 0; i < HalfSize; ++i) {
3740    if (SVOp->getMaskElt(i) > 0) {
3741      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3742      break;
3743    }
3744  }
3745  for (int i = HalfSize; i < HalfSize*2; ++i) {
3746    if (SVOp->getMaskElt(i) > 0) {
3747      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3748      break;
3749    }
3750  }
3751
3752  return (FstHalf | (SndHalf << 4));
3753}
3754
3755/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3756/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3757/// Note that VPERMIL mask matching is different depending whether theunderlying
3758/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3759/// to the same elements of the low, but to the higher half of the source.
3760/// In VPERMILPD the two lanes could be shuffled independently of each other
3761/// with the same restriction that lanes can't be crossed.
3762static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3763                            const X86Subtarget *Subtarget) {
3764  int NumElts = VT.getVectorNumElements();
3765  int NumLanes = VT.getSizeInBits()/128;
3766
3767  if (!Subtarget->hasAVX())
3768    return false;
3769
3770  // Only match 256-bit with 64-bit types
3771  if (VT.getSizeInBits() != 256 || NumElts != 4)
3772    return false;
3773
3774  // The mask on the high lane is independent of the low. Both can match
3775  // any element in inside its own lane, but can't cross.
3776  int LaneSize = NumElts/NumLanes;
3777  for (int l = 0; l < NumLanes; ++l)
3778    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3779      int LaneStart = l*LaneSize;
3780      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3781        return false;
3782    }
3783
3784  return true;
3785}
3786
3787/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3788/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3789/// Note that VPERMIL mask matching is different depending whether theunderlying
3790/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3791/// to the same elements of the low, but to the higher half of the source.
3792/// In VPERMILPD the two lanes could be shuffled independently of each other
3793/// with the same restriction that lanes can't be crossed.
3794static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3795                            const X86Subtarget *Subtarget) {
3796  unsigned NumElts = VT.getVectorNumElements();
3797  unsigned NumLanes = VT.getSizeInBits()/128;
3798
3799  if (!Subtarget->hasAVX())
3800    return false;
3801
3802  // Only match 256-bit with 32-bit types
3803  if (VT.getSizeInBits() != 256 || NumElts != 8)
3804    return false;
3805
3806  // The mask on the high lane should be the same as the low. Actually,
3807  // they can differ if any of the corresponding index in a lane is undef
3808  // and the other stays in range.
3809  int LaneSize = NumElts/NumLanes;
3810  for (int i = 0; i < LaneSize; ++i) {
3811    int HighElt = i+LaneSize;
3812    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3813    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3814
3815    if (!HighValid || !LowValid)
3816      return false;
3817    if (Mask[i] < 0 || Mask[HighElt] < 0)
3818      continue;
3819    if (Mask[HighElt]-Mask[i] != LaneSize)
3820      return false;
3821  }
3822
3823  return true;
3824}
3825
3826/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3827/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3828static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3829  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3830  EVT VT = SVOp->getValueType(0);
3831
3832  int NumElts = VT.getVectorNumElements();
3833  int NumLanes = VT.getSizeInBits()/128;
3834  int LaneSize = NumElts/NumLanes;
3835
3836  // Although the mask is equal for both lanes do it twice to get the cases
3837  // where a mask will match because the same mask element is undef on the
3838  // first half but valid on the second. This would get pathological cases
3839  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3840  unsigned Mask = 0;
3841  for (int l = 0; l < NumLanes; ++l) {
3842    for (int i = 0; i < LaneSize; ++i) {
3843      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3844      if (MaskElt < 0)
3845        continue;
3846      if (MaskElt >= LaneSize)
3847        MaskElt -= LaneSize;
3848      Mask |= MaskElt << (i*2);
3849    }
3850  }
3851
3852  return Mask;
3853}
3854
3855/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3856/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3857static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3858  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3859  EVT VT = SVOp->getValueType(0);
3860
3861  int NumElts = VT.getVectorNumElements();
3862  int NumLanes = VT.getSizeInBits()/128;
3863
3864  unsigned Mask = 0;
3865  int LaneSize = NumElts/NumLanes;
3866  for (int l = 0; l < NumLanes; ++l)
3867    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3868      int MaskElt = SVOp->getMaskElt(i);
3869      if (MaskElt < 0)
3870        continue;
3871      Mask |= (MaskElt-l*LaneSize) << i;
3872    }
3873
3874  return Mask;
3875}
3876
3877/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3878/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3879/// element of vector 2 and the other elements to come from vector 1 in order.
3880static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3881                               bool V2IsSplat = false, bool V2IsUndef = false) {
3882  int NumOps = VT.getVectorNumElements();
3883  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3884    return false;
3885
3886  if (!isUndefOrEqual(Mask[0], 0))
3887    return false;
3888
3889  for (int i = 1; i < NumOps; ++i)
3890    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3891          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3892          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3893      return false;
3894
3895  return true;
3896}
3897
3898static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3899                           bool V2IsUndef = false) {
3900  SmallVector<int, 8> M;
3901  N->getMask(M);
3902  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3903}
3904
3905/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3906/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3907/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3908bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3909                         const X86Subtarget *Subtarget) {
3910  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3911    return false;
3912
3913  // The second vector must be undef
3914  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3915    return false;
3916
3917  EVT VT = N->getValueType(0);
3918  unsigned NumElems = VT.getVectorNumElements();
3919
3920  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3921      (VT.getSizeInBits() == 256 && NumElems != 8))
3922    return false;
3923
3924  // "i+1" is the value the indexed mask element must have
3925  for (unsigned i = 0; i < NumElems; i += 2)
3926    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3927        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3928      return false;
3929
3930  return true;
3931}
3932
3933/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3934/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3935/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3936bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3937                         const X86Subtarget *Subtarget) {
3938  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3939    return false;
3940
3941  // The second vector must be undef
3942  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3943    return false;
3944
3945  EVT VT = N->getValueType(0);
3946  unsigned NumElems = VT.getVectorNumElements();
3947
3948  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3949      (VT.getSizeInBits() == 256 && NumElems != 8))
3950    return false;
3951
3952  // "i" is the value the indexed mask element must have
3953  for (unsigned i = 0; i < NumElems; i += 2)
3954    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3955        !isUndefOrEqual(N->getMaskElt(i+1), i))
3956      return false;
3957
3958  return true;
3959}
3960
3961/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3962/// specifies a shuffle of elements that is suitable for input to 256-bit
3963/// version of MOVDDUP.
3964static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3965                           const X86Subtarget *Subtarget) {
3966  EVT VT = N->getValueType(0);
3967  int NumElts = VT.getVectorNumElements();
3968  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3969
3970  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3971      !V2IsUndef || NumElts != 4)
3972    return false;
3973
3974  for (int i = 0; i != NumElts/2; ++i)
3975    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3976      return false;
3977  for (int i = NumElts/2; i != NumElts; ++i)
3978    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3979      return false;
3980  return true;
3981}
3982
3983/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3984/// specifies a shuffle of elements that is suitable for input to 128-bit
3985/// version of MOVDDUP.
3986bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3987  EVT VT = N->getValueType(0);
3988
3989  if (VT.getSizeInBits() != 128)
3990    return false;
3991
3992  int e = VT.getVectorNumElements() / 2;
3993  for (int i = 0; i < e; ++i)
3994    if (!isUndefOrEqual(N->getMaskElt(i), i))
3995      return false;
3996  for (int i = 0; i < e; ++i)
3997    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3998      return false;
3999  return true;
4000}
4001
4002/// isVEXTRACTF128Index - Return true if the specified
4003/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4004/// suitable for input to VEXTRACTF128.
4005bool X86::isVEXTRACTF128Index(SDNode *N) {
4006  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4007    return false;
4008
4009  // The index should be aligned on a 128-bit boundary.
4010  uint64_t Index =
4011    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4012
4013  unsigned VL = N->getValueType(0).getVectorNumElements();
4014  unsigned VBits = N->getValueType(0).getSizeInBits();
4015  unsigned ElSize = VBits / VL;
4016  bool Result = (Index * ElSize) % 128 == 0;
4017
4018  return Result;
4019}
4020
4021/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4022/// operand specifies a subvector insert that is suitable for input to
4023/// VINSERTF128.
4024bool X86::isVINSERTF128Index(SDNode *N) {
4025  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4026    return false;
4027
4028  // The index should be aligned on a 128-bit boundary.
4029  uint64_t Index =
4030    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4031
4032  unsigned VL = N->getValueType(0).getVectorNumElements();
4033  unsigned VBits = N->getValueType(0).getSizeInBits();
4034  unsigned ElSize = VBits / VL;
4035  bool Result = (Index * ElSize) % 128 == 0;
4036
4037  return Result;
4038}
4039
4040/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4041/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4042unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4043  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4044  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4045
4046  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4047  unsigned Mask = 0;
4048  for (int i = 0; i < NumOperands; ++i) {
4049    int Val = SVOp->getMaskElt(NumOperands-i-1);
4050    if (Val < 0) Val = 0;
4051    if (Val >= NumOperands) Val -= NumOperands;
4052    Mask |= Val;
4053    if (i != NumOperands - 1)
4054      Mask <<= Shift;
4055  }
4056  return Mask;
4057}
4058
4059/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4060/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4061unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4062  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4063  unsigned Mask = 0;
4064  // 8 nodes, but we only care about the last 4.
4065  for (unsigned i = 7; i >= 4; --i) {
4066    int Val = SVOp->getMaskElt(i);
4067    if (Val >= 0)
4068      Mask |= (Val - 4);
4069    if (i != 4)
4070      Mask <<= 2;
4071  }
4072  return Mask;
4073}
4074
4075/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4076/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4077unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4078  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4079  unsigned Mask = 0;
4080  // 8 nodes, but we only care about the first 4.
4081  for (int i = 3; i >= 0; --i) {
4082    int Val = SVOp->getMaskElt(i);
4083    if (Val >= 0)
4084      Mask |= Val;
4085    if (i != 0)
4086      Mask <<= 2;
4087  }
4088  return Mask;
4089}
4090
4091/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4092/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4093unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4094  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4095  EVT VVT = N->getValueType(0);
4096  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4097  int Val = 0;
4098
4099  unsigned i, e;
4100  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4101    Val = SVOp->getMaskElt(i);
4102    if (Val >= 0)
4103      break;
4104  }
4105  assert(Val - i > 0 && "PALIGNR imm should be positive");
4106  return (Val - i) * EltSize;
4107}
4108
4109/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4110/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4111/// instructions.
4112unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4113  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4114    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4115
4116  uint64_t Index =
4117    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4118
4119  EVT VecVT = N->getOperand(0).getValueType();
4120  EVT ElVT = VecVT.getVectorElementType();
4121
4122  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4123  return Index / NumElemsPerChunk;
4124}
4125
4126/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4127/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4128/// instructions.
4129unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4130  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4131    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4132
4133  uint64_t Index =
4134    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4135
4136  EVT VecVT = N->getValueType(0);
4137  EVT ElVT = VecVT.getVectorElementType();
4138
4139  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4140  return Index / NumElemsPerChunk;
4141}
4142
4143/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4144/// constant +0.0.
4145bool X86::isZeroNode(SDValue Elt) {
4146  return ((isa<ConstantSDNode>(Elt) &&
4147           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4148          (isa<ConstantFPSDNode>(Elt) &&
4149           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4150}
4151
4152/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4153/// their permute mask.
4154static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4155                                    SelectionDAG &DAG) {
4156  EVT VT = SVOp->getValueType(0);
4157  unsigned NumElems = VT.getVectorNumElements();
4158  SmallVector<int, 8> MaskVec;
4159
4160  for (unsigned i = 0; i != NumElems; ++i) {
4161    int idx = SVOp->getMaskElt(i);
4162    if (idx < 0)
4163      MaskVec.push_back(idx);
4164    else if (idx < (int)NumElems)
4165      MaskVec.push_back(idx + NumElems);
4166    else
4167      MaskVec.push_back(idx - NumElems);
4168  }
4169  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4170                              SVOp->getOperand(0), &MaskVec[0]);
4171}
4172
4173/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4174/// the two vector operands have swapped position.
4175static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4176  unsigned NumElems = VT.getVectorNumElements();
4177  for (unsigned i = 0; i != NumElems; ++i) {
4178    int idx = Mask[i];
4179    if (idx < 0)
4180      continue;
4181    else if (idx < (int)NumElems)
4182      Mask[i] = idx + NumElems;
4183    else
4184      Mask[i] = idx - NumElems;
4185  }
4186}
4187
4188/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4189/// match movhlps. The lower half elements should come from upper half of
4190/// V1 (and in order), and the upper half elements should come from the upper
4191/// half of V2 (and in order).
4192static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4193  EVT VT = Op->getValueType(0);
4194  if (VT.getSizeInBits() != 128)
4195    return false;
4196  if (VT.getVectorNumElements() != 4)
4197    return false;
4198  for (unsigned i = 0, e = 2; i != e; ++i)
4199    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4200      return false;
4201  for (unsigned i = 2; i != 4; ++i)
4202    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4203      return false;
4204  return true;
4205}
4206
4207/// isScalarLoadToVector - Returns true if the node is a scalar load that
4208/// is promoted to a vector. It also returns the LoadSDNode by reference if
4209/// required.
4210static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4211  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4212    return false;
4213  N = N->getOperand(0).getNode();
4214  if (!ISD::isNON_EXTLoad(N))
4215    return false;
4216  if (LD)
4217    *LD = cast<LoadSDNode>(N);
4218  return true;
4219}
4220
4221/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4222/// match movlp{s|d}. The lower half elements should come from lower half of
4223/// V1 (and in order), and the upper half elements should come from the upper
4224/// half of V2 (and in order). And since V1 will become the source of the
4225/// MOVLP, it must be either a vector load or a scalar load to vector.
4226static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4227                               ShuffleVectorSDNode *Op) {
4228  EVT VT = Op->getValueType(0);
4229  if (VT.getSizeInBits() != 128)
4230    return false;
4231
4232  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4233    return false;
4234  // Is V2 is a vector load, don't do this transformation. We will try to use
4235  // load folding shufps op.
4236  if (ISD::isNON_EXTLoad(V2))
4237    return false;
4238
4239  unsigned NumElems = VT.getVectorNumElements();
4240
4241  if (NumElems != 2 && NumElems != 4)
4242    return false;
4243  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4244    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4245      return false;
4246  for (unsigned i = NumElems/2; i != NumElems; ++i)
4247    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4248      return false;
4249  return true;
4250}
4251
4252/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4253/// all the same.
4254static bool isSplatVector(SDNode *N) {
4255  if (N->getOpcode() != ISD::BUILD_VECTOR)
4256    return false;
4257
4258  SDValue SplatValue = N->getOperand(0);
4259  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4260    if (N->getOperand(i) != SplatValue)
4261      return false;
4262  return true;
4263}
4264
4265/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4266/// to an zero vector.
4267/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4268static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4269  SDValue V1 = N->getOperand(0);
4270  SDValue V2 = N->getOperand(1);
4271  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4272  for (unsigned i = 0; i != NumElems; ++i) {
4273    int Idx = N->getMaskElt(i);
4274    if (Idx >= (int)NumElems) {
4275      unsigned Opc = V2.getOpcode();
4276      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4277        continue;
4278      if (Opc != ISD::BUILD_VECTOR ||
4279          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4280        return false;
4281    } else if (Idx >= 0) {
4282      unsigned Opc = V1.getOpcode();
4283      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4284        continue;
4285      if (Opc != ISD::BUILD_VECTOR ||
4286          !X86::isZeroNode(V1.getOperand(Idx)))
4287        return false;
4288    }
4289  }
4290  return true;
4291}
4292
4293/// getZeroVector - Returns a vector of specified type with all zero elements.
4294///
4295static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4296                             DebugLoc dl) {
4297  assert(VT.isVector() && "Expected a vector type");
4298
4299  // Always build SSE zero vectors as <4 x i32> bitcasted
4300  // to their dest type. This ensures they get CSE'd.
4301  SDValue Vec;
4302  if (VT.getSizeInBits() == 128) {  // SSE
4303    if (HasXMMInt) {  // SSE2
4304      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4305      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4306    } else { // SSE1
4307      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4308      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4309    }
4310  } else if (VT.getSizeInBits() == 256) { // AVX
4311    // 256-bit logic and arithmetic instructions in AVX are
4312    // all floating-point, no support for integer ops. Default
4313    // to emitting fp zeroed vectors then.
4314    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4315    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4316    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4317  }
4318  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4319}
4320
4321/// getOnesVector - Returns a vector of specified type with all bits set.
4322/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4323/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4324/// original type, ensuring they get CSE'd.
4325static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4326  assert(VT.isVector() && "Expected a vector type");
4327  assert((VT.is128BitVector() || VT.is256BitVector())
4328         && "Expected a 128-bit or 256-bit vector type");
4329
4330  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4331  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4332                            Cst, Cst, Cst, Cst);
4333
4334  if (VT.is256BitVector()) {
4335    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4336                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4337    Vec = Insert128BitVector(InsV, Vec,
4338                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4339  }
4340
4341  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4342}
4343
4344/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4345/// that point to V2 points to its first element.
4346static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4347  EVT VT = SVOp->getValueType(0);
4348  unsigned NumElems = VT.getVectorNumElements();
4349
4350  bool Changed = false;
4351  SmallVector<int, 8> MaskVec;
4352  SVOp->getMask(MaskVec);
4353
4354  for (unsigned i = 0; i != NumElems; ++i) {
4355    if (MaskVec[i] > (int)NumElems) {
4356      MaskVec[i] = NumElems;
4357      Changed = true;
4358    }
4359  }
4360  if (Changed)
4361    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4362                                SVOp->getOperand(1), &MaskVec[0]);
4363  return SDValue(SVOp, 0);
4364}
4365
4366/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4367/// operation of specified width.
4368static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4369                       SDValue V2) {
4370  unsigned NumElems = VT.getVectorNumElements();
4371  SmallVector<int, 8> Mask;
4372  Mask.push_back(NumElems);
4373  for (unsigned i = 1; i != NumElems; ++i)
4374    Mask.push_back(i);
4375  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4376}
4377
4378/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4379static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4380                          SDValue V2) {
4381  unsigned NumElems = VT.getVectorNumElements();
4382  SmallVector<int, 8> Mask;
4383  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4384    Mask.push_back(i);
4385    Mask.push_back(i + NumElems);
4386  }
4387  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4388}
4389
4390/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4391static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4392                          SDValue V2) {
4393  unsigned NumElems = VT.getVectorNumElements();
4394  unsigned Half = NumElems/2;
4395  SmallVector<int, 8> Mask;
4396  for (unsigned i = 0; i != Half; ++i) {
4397    Mask.push_back(i + Half);
4398    Mask.push_back(i + NumElems + Half);
4399  }
4400  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4401}
4402
4403// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4404// a generic shuffle instruction because the target has no such instructions.
4405// Generate shuffles which repeat i16 and i8 several times until they can be
4406// represented by v4f32 and then be manipulated by target suported shuffles.
4407static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4408  EVT VT = V.getValueType();
4409  int NumElems = VT.getVectorNumElements();
4410  DebugLoc dl = V.getDebugLoc();
4411
4412  while (NumElems > 4) {
4413    if (EltNo < NumElems/2) {
4414      V = getUnpackl(DAG, dl, VT, V, V);
4415    } else {
4416      V = getUnpackh(DAG, dl, VT, V, V);
4417      EltNo -= NumElems/2;
4418    }
4419    NumElems >>= 1;
4420  }
4421  return V;
4422}
4423
4424/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4425static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4426  EVT VT = V.getValueType();
4427  DebugLoc dl = V.getDebugLoc();
4428  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4429         && "Vector size not supported");
4430
4431  if (VT.getSizeInBits() == 128) {
4432    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4433    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4434    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4435                             &SplatMask[0]);
4436  } else {
4437    // To use VPERMILPS to splat scalars, the second half of indicies must
4438    // refer to the higher part, which is a duplication of the lower one,
4439    // because VPERMILPS can only handle in-lane permutations.
4440    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4441                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4442
4443    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4444    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4445                             &SplatMask[0]);
4446  }
4447
4448  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4449}
4450
4451/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4452static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4453  EVT SrcVT = SV->getValueType(0);
4454  SDValue V1 = SV->getOperand(0);
4455  DebugLoc dl = SV->getDebugLoc();
4456
4457  int EltNo = SV->getSplatIndex();
4458  int NumElems = SrcVT.getVectorNumElements();
4459  unsigned Size = SrcVT.getSizeInBits();
4460
4461  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4462          "Unknown how to promote splat for type");
4463
4464  // Extract the 128-bit part containing the splat element and update
4465  // the splat element index when it refers to the higher register.
4466  if (Size == 256) {
4467    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4468    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4469    if (Idx > 0)
4470      EltNo -= NumElems/2;
4471  }
4472
4473  // All i16 and i8 vector types can't be used directly by a generic shuffle
4474  // instruction because the target has no such instruction. Generate shuffles
4475  // which repeat i16 and i8 several times until they fit in i32, and then can
4476  // be manipulated by target suported shuffles.
4477  EVT EltVT = SrcVT.getVectorElementType();
4478  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4479    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4480
4481  // Recreate the 256-bit vector and place the same 128-bit vector
4482  // into the low and high part. This is necessary because we want
4483  // to use VPERM* to shuffle the vectors
4484  if (Size == 256) {
4485    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4486                         DAG.getConstant(0, MVT::i32), DAG, dl);
4487    V1 = Insert128BitVector(InsV, V1,
4488               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4489  }
4490
4491  return getLegalSplat(DAG, V1, EltNo);
4492}
4493
4494/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4495/// vector of zero or undef vector.  This produces a shuffle where the low
4496/// element of V2 is swizzled into the zero/undef vector, landing at element
4497/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4498static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4499                                           bool isZero, bool HasXMMInt,
4500                                           SelectionDAG &DAG) {
4501  EVT VT = V2.getValueType();
4502  SDValue V1 = isZero
4503    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4504  unsigned NumElems = VT.getVectorNumElements();
4505  SmallVector<int, 16> MaskVec;
4506  for (unsigned i = 0; i != NumElems; ++i)
4507    // If this is the insertion idx, put the low elt of V2 here.
4508    MaskVec.push_back(i == Idx ? NumElems : i);
4509  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4510}
4511
4512/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4513/// element of the result of the vector shuffle.
4514static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4515                                   unsigned Depth) {
4516  if (Depth == 6)
4517    return SDValue();  // Limit search depth.
4518
4519  SDValue V = SDValue(N, 0);
4520  EVT VT = V.getValueType();
4521  unsigned Opcode = V.getOpcode();
4522
4523  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4524  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4525    Index = SV->getMaskElt(Index);
4526
4527    if (Index < 0)
4528      return DAG.getUNDEF(VT.getVectorElementType());
4529
4530    int NumElems = VT.getVectorNumElements();
4531    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4532    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4533  }
4534
4535  // Recurse into target specific vector shuffles to find scalars.
4536  if (isTargetShuffle(Opcode)) {
4537    int NumElems = VT.getVectorNumElements();
4538    SmallVector<unsigned, 16> ShuffleMask;
4539    SDValue ImmN;
4540
4541    switch(Opcode) {
4542    case X86ISD::SHUFPS:
4543    case X86ISD::SHUFPD:
4544      ImmN = N->getOperand(N->getNumOperands()-1);
4545      DecodeSHUFPSMask(NumElems,
4546                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4547                       ShuffleMask);
4548      break;
4549    case X86ISD::PUNPCKHBW:
4550    case X86ISD::PUNPCKHWD:
4551    case X86ISD::PUNPCKHDQ:
4552    case X86ISD::PUNPCKHQDQ:
4553      DecodePUNPCKHMask(NumElems, ShuffleMask);
4554      break;
4555    case X86ISD::UNPCKHPS:
4556    case X86ISD::UNPCKHPD:
4557    case X86ISD::VUNPCKHPSY:
4558    case X86ISD::VUNPCKHPDY:
4559      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4560      break;
4561    case X86ISD::PUNPCKLBW:
4562    case X86ISD::PUNPCKLWD:
4563    case X86ISD::PUNPCKLDQ:
4564    case X86ISD::PUNPCKLQDQ:
4565      DecodePUNPCKLMask(VT, ShuffleMask);
4566      break;
4567    case X86ISD::UNPCKLPS:
4568    case X86ISD::UNPCKLPD:
4569    case X86ISD::VUNPCKLPSY:
4570    case X86ISD::VUNPCKLPDY:
4571      DecodeUNPCKLPMask(VT, ShuffleMask);
4572      break;
4573    case X86ISD::MOVHLPS:
4574      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4575      break;
4576    case X86ISD::MOVLHPS:
4577      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4578      break;
4579    case X86ISD::PSHUFD:
4580      ImmN = N->getOperand(N->getNumOperands()-1);
4581      DecodePSHUFMask(NumElems,
4582                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4583                      ShuffleMask);
4584      break;
4585    case X86ISD::PSHUFHW:
4586      ImmN = N->getOperand(N->getNumOperands()-1);
4587      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4588                        ShuffleMask);
4589      break;
4590    case X86ISD::PSHUFLW:
4591      ImmN = N->getOperand(N->getNumOperands()-1);
4592      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4593                        ShuffleMask);
4594      break;
4595    case X86ISD::MOVSS:
4596    case X86ISD::MOVSD: {
4597      // The index 0 always comes from the first element of the second source,
4598      // this is why MOVSS and MOVSD are used in the first place. The other
4599      // elements come from the other positions of the first source vector.
4600      unsigned OpNum = (Index == 0) ? 1 : 0;
4601      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4602                                 Depth+1);
4603    }
4604    case X86ISD::VPERMILPS:
4605      ImmN = N->getOperand(N->getNumOperands()-1);
4606      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4607                        ShuffleMask);
4608      break;
4609    case X86ISD::VPERMILPSY:
4610      ImmN = N->getOperand(N->getNumOperands()-1);
4611      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4612                        ShuffleMask);
4613      break;
4614    case X86ISD::VPERMILPD:
4615      ImmN = N->getOperand(N->getNumOperands()-1);
4616      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4617                        ShuffleMask);
4618      break;
4619    case X86ISD::VPERMILPDY:
4620      ImmN = N->getOperand(N->getNumOperands()-1);
4621      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4622                        ShuffleMask);
4623      break;
4624    case X86ISD::VPERM2F128:
4625      ImmN = N->getOperand(N->getNumOperands()-1);
4626      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4627                           ShuffleMask);
4628      break;
4629    case X86ISD::MOVDDUP:
4630    case X86ISD::MOVLHPD:
4631    case X86ISD::MOVLPD:
4632    case X86ISD::MOVLPS:
4633    case X86ISD::MOVSHDUP:
4634    case X86ISD::MOVSLDUP:
4635    case X86ISD::PALIGN:
4636      return SDValue(); // Not yet implemented.
4637    default:
4638      assert(0 && "unknown target shuffle node");
4639      return SDValue();
4640    }
4641
4642    Index = ShuffleMask[Index];
4643    if (Index < 0)
4644      return DAG.getUNDEF(VT.getVectorElementType());
4645
4646    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4647    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4648                               Depth+1);
4649  }
4650
4651  // Actual nodes that may contain scalar elements
4652  if (Opcode == ISD::BITCAST) {
4653    V = V.getOperand(0);
4654    EVT SrcVT = V.getValueType();
4655    unsigned NumElems = VT.getVectorNumElements();
4656
4657    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4658      return SDValue();
4659  }
4660
4661  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4662    return (Index == 0) ? V.getOperand(0)
4663                          : DAG.getUNDEF(VT.getVectorElementType());
4664
4665  if (V.getOpcode() == ISD::BUILD_VECTOR)
4666    return V.getOperand(Index);
4667
4668  return SDValue();
4669}
4670
4671/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4672/// shuffle operation which come from a consecutively from a zero. The
4673/// search can start in two different directions, from left or right.
4674static
4675unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4676                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4677  int i = 0;
4678
4679  while (i < NumElems) {
4680    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4681    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4682    if (!(Elt.getNode() &&
4683         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4684      break;
4685    ++i;
4686  }
4687
4688  return i;
4689}
4690
4691/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4692/// MaskE correspond consecutively to elements from one of the vector operands,
4693/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4694static
4695bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4696                              int OpIdx, int NumElems, unsigned &OpNum) {
4697  bool SeenV1 = false;
4698  bool SeenV2 = false;
4699
4700  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4701    int Idx = SVOp->getMaskElt(i);
4702    // Ignore undef indicies
4703    if (Idx < 0)
4704      continue;
4705
4706    if (Idx < NumElems)
4707      SeenV1 = true;
4708    else
4709      SeenV2 = true;
4710
4711    // Only accept consecutive elements from the same vector
4712    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4713      return false;
4714  }
4715
4716  OpNum = SeenV1 ? 0 : 1;
4717  return true;
4718}
4719
4720/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4721/// logical left shift of a vector.
4722static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4723                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4724  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4725  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4726              false /* check zeros from right */, DAG);
4727  unsigned OpSrc;
4728
4729  if (!NumZeros)
4730    return false;
4731
4732  // Considering the elements in the mask that are not consecutive zeros,
4733  // check if they consecutively come from only one of the source vectors.
4734  //
4735  //               V1 = {X, A, B, C}     0
4736  //                         \  \  \    /
4737  //   vector_shuffle V1, V2 <1, 2, 3, X>
4738  //
4739  if (!isShuffleMaskConsecutive(SVOp,
4740            0,                   // Mask Start Index
4741            NumElems-NumZeros-1, // Mask End Index
4742            NumZeros,            // Where to start looking in the src vector
4743            NumElems,            // Number of elements in vector
4744            OpSrc))              // Which source operand ?
4745    return false;
4746
4747  isLeft = false;
4748  ShAmt = NumZeros;
4749  ShVal = SVOp->getOperand(OpSrc);
4750  return true;
4751}
4752
4753/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4754/// logical left shift of a vector.
4755static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4756                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4757  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4758  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4759              true /* check zeros from left */, DAG);
4760  unsigned OpSrc;
4761
4762  if (!NumZeros)
4763    return false;
4764
4765  // Considering the elements in the mask that are not consecutive zeros,
4766  // check if they consecutively come from only one of the source vectors.
4767  //
4768  //                           0    { A, B, X, X } = V2
4769  //                          / \    /  /
4770  //   vector_shuffle V1, V2 <X, X, 4, 5>
4771  //
4772  if (!isShuffleMaskConsecutive(SVOp,
4773            NumZeros,     // Mask Start Index
4774            NumElems-1,   // Mask End Index
4775            0,            // Where to start looking in the src vector
4776            NumElems,     // Number of elements in vector
4777            OpSrc))       // Which source operand ?
4778    return false;
4779
4780  isLeft = true;
4781  ShAmt = NumZeros;
4782  ShVal = SVOp->getOperand(OpSrc);
4783  return true;
4784}
4785
4786/// isVectorShift - Returns true if the shuffle can be implemented as a
4787/// logical left or right shift of a vector.
4788static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4789                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4790  // Although the logic below support any bitwidth size, there are no
4791  // shift instructions which handle more than 128-bit vectors.
4792  if (SVOp->getValueType(0).getSizeInBits() > 128)
4793    return false;
4794
4795  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4796      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4797    return true;
4798
4799  return false;
4800}
4801
4802/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4803///
4804static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4805                                       unsigned NumNonZero, unsigned NumZero,
4806                                       SelectionDAG &DAG,
4807                                       const TargetLowering &TLI) {
4808  if (NumNonZero > 8)
4809    return SDValue();
4810
4811  DebugLoc dl = Op.getDebugLoc();
4812  SDValue V(0, 0);
4813  bool First = true;
4814  for (unsigned i = 0; i < 16; ++i) {
4815    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4816    if (ThisIsNonZero && First) {
4817      if (NumZero)
4818        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4819      else
4820        V = DAG.getUNDEF(MVT::v8i16);
4821      First = false;
4822    }
4823
4824    if ((i & 1) != 0) {
4825      SDValue ThisElt(0, 0), LastElt(0, 0);
4826      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4827      if (LastIsNonZero) {
4828        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4829                              MVT::i16, Op.getOperand(i-1));
4830      }
4831      if (ThisIsNonZero) {
4832        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4833        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4834                              ThisElt, DAG.getConstant(8, MVT::i8));
4835        if (LastIsNonZero)
4836          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4837      } else
4838        ThisElt = LastElt;
4839
4840      if (ThisElt.getNode())
4841        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4842                        DAG.getIntPtrConstant(i/2));
4843    }
4844  }
4845
4846  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4847}
4848
4849/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4850///
4851static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4852                                     unsigned NumNonZero, unsigned NumZero,
4853                                     SelectionDAG &DAG,
4854                                     const TargetLowering &TLI) {
4855  if (NumNonZero > 4)
4856    return SDValue();
4857
4858  DebugLoc dl = Op.getDebugLoc();
4859  SDValue V(0, 0);
4860  bool First = true;
4861  for (unsigned i = 0; i < 8; ++i) {
4862    bool isNonZero = (NonZeros & (1 << i)) != 0;
4863    if (isNonZero) {
4864      if (First) {
4865        if (NumZero)
4866          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4867        else
4868          V = DAG.getUNDEF(MVT::v8i16);
4869        First = false;
4870      }
4871      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4872                      MVT::v8i16, V, Op.getOperand(i),
4873                      DAG.getIntPtrConstant(i));
4874    }
4875  }
4876
4877  return V;
4878}
4879
4880/// getVShift - Return a vector logical shift node.
4881///
4882static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4883                         unsigned NumBits, SelectionDAG &DAG,
4884                         const TargetLowering &TLI, DebugLoc dl) {
4885  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4886  EVT ShVT = MVT::v2i64;
4887  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4888  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4889  return DAG.getNode(ISD::BITCAST, dl, VT,
4890                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4891                             DAG.getConstant(NumBits,
4892                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4893}
4894
4895SDValue
4896X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4897                                          SelectionDAG &DAG) const {
4898
4899  // Check if the scalar load can be widened into a vector load. And if
4900  // the address is "base + cst" see if the cst can be "absorbed" into
4901  // the shuffle mask.
4902  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4903    SDValue Ptr = LD->getBasePtr();
4904    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4905      return SDValue();
4906    EVT PVT = LD->getValueType(0);
4907    if (PVT != MVT::i32 && PVT != MVT::f32)
4908      return SDValue();
4909
4910    int FI = -1;
4911    int64_t Offset = 0;
4912    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4913      FI = FINode->getIndex();
4914      Offset = 0;
4915    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4916               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4917      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4918      Offset = Ptr.getConstantOperandVal(1);
4919      Ptr = Ptr.getOperand(0);
4920    } else {
4921      return SDValue();
4922    }
4923
4924    // FIXME: 256-bit vector instructions don't require a strict alignment,
4925    // improve this code to support it better.
4926    unsigned RequiredAlign = VT.getSizeInBits()/8;
4927    SDValue Chain = LD->getChain();
4928    // Make sure the stack object alignment is at least 16 or 32.
4929    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4930    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4931      if (MFI->isFixedObjectIndex(FI)) {
4932        // Can't change the alignment. FIXME: It's possible to compute
4933        // the exact stack offset and reference FI + adjust offset instead.
4934        // If someone *really* cares about this. That's the way to implement it.
4935        return SDValue();
4936      } else {
4937        MFI->setObjectAlignment(FI, RequiredAlign);
4938      }
4939    }
4940
4941    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4942    // Ptr + (Offset & ~15).
4943    if (Offset < 0)
4944      return SDValue();
4945    if ((Offset % RequiredAlign) & 3)
4946      return SDValue();
4947    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4948    if (StartOffset)
4949      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4950                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4951
4952    int EltNo = (Offset - StartOffset) >> 2;
4953    int NumElems = VT.getVectorNumElements();
4954
4955    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4956    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4957    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4958                             LD->getPointerInfo().getWithOffset(StartOffset),
4959                             false, false, 0);
4960
4961    // Canonicalize it to a v4i32 or v8i32 shuffle.
4962    SmallVector<int, 8> Mask;
4963    for (int i = 0; i < NumElems; ++i)
4964      Mask.push_back(EltNo);
4965
4966    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4967    return DAG.getNode(ISD::BITCAST, dl, NVT,
4968                       DAG.getVectorShuffle(CanonVT, dl, V1,
4969                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4970  }
4971
4972  return SDValue();
4973}
4974
4975/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4976/// vector of type 'VT', see if the elements can be replaced by a single large
4977/// load which has the same value as a build_vector whose operands are 'elts'.
4978///
4979/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4980///
4981/// FIXME: we'd also like to handle the case where the last elements are zero
4982/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4983/// There's even a handy isZeroNode for that purpose.
4984static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4985                                        DebugLoc &DL, SelectionDAG &DAG) {
4986  EVT EltVT = VT.getVectorElementType();
4987  unsigned NumElems = Elts.size();
4988
4989  LoadSDNode *LDBase = NULL;
4990  unsigned LastLoadedElt = -1U;
4991
4992  // For each element in the initializer, see if we've found a load or an undef.
4993  // If we don't find an initial load element, or later load elements are
4994  // non-consecutive, bail out.
4995  for (unsigned i = 0; i < NumElems; ++i) {
4996    SDValue Elt = Elts[i];
4997
4998    if (!Elt.getNode() ||
4999        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5000      return SDValue();
5001    if (!LDBase) {
5002      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5003        return SDValue();
5004      LDBase = cast<LoadSDNode>(Elt.getNode());
5005      LastLoadedElt = i;
5006      continue;
5007    }
5008    if (Elt.getOpcode() == ISD::UNDEF)
5009      continue;
5010
5011    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5012    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5013      return SDValue();
5014    LastLoadedElt = i;
5015  }
5016
5017  // If we have found an entire vector of loads and undefs, then return a large
5018  // load of the entire vector width starting at the base pointer.  If we found
5019  // consecutive loads for the low half, generate a vzext_load node.
5020  if (LastLoadedElt == NumElems - 1) {
5021    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5022      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5023                         LDBase->getPointerInfo(),
5024                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
5025    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5026                       LDBase->getPointerInfo(),
5027                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5028                       LDBase->getAlignment());
5029  } else if (NumElems == 4 && LastLoadedElt == 1 &&
5030             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5031    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5032    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5033    SDValue ResNode =
5034        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5035                                LDBase->getPointerInfo(),
5036                                LDBase->getAlignment(),
5037                                false/*isVolatile*/, true/*ReadMem*/,
5038                                false/*WriteMem*/);
5039    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5040  }
5041  return SDValue();
5042}
5043
5044SDValue
5045X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5046  DebugLoc dl = Op.getDebugLoc();
5047
5048  EVT VT = Op.getValueType();
5049  EVT ExtVT = VT.getVectorElementType();
5050  unsigned NumElems = Op.getNumOperands();
5051
5052  // Vectors containing all zeros can be matched by pxor and xorps later
5053  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5054    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5055    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5056    if (Op.getValueType() == MVT::v4i32 ||
5057        Op.getValueType() == MVT::v8i32)
5058      return Op;
5059
5060    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5061  }
5062
5063  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5064  // vectors or broken into v4i32 operations on 256-bit vectors.
5065  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5066    if (Op.getValueType() == MVT::v4i32)
5067      return Op;
5068
5069    return getOnesVector(Op.getValueType(), DAG, dl);
5070  }
5071
5072  unsigned EVTBits = ExtVT.getSizeInBits();
5073
5074  unsigned NumZero  = 0;
5075  unsigned NumNonZero = 0;
5076  unsigned NonZeros = 0;
5077  bool IsAllConstants = true;
5078  SmallSet<SDValue, 8> Values;
5079  for (unsigned i = 0; i < NumElems; ++i) {
5080    SDValue Elt = Op.getOperand(i);
5081    if (Elt.getOpcode() == ISD::UNDEF)
5082      continue;
5083    Values.insert(Elt);
5084    if (Elt.getOpcode() != ISD::Constant &&
5085        Elt.getOpcode() != ISD::ConstantFP)
5086      IsAllConstants = false;
5087    if (X86::isZeroNode(Elt))
5088      NumZero++;
5089    else {
5090      NonZeros |= (1 << i);
5091      NumNonZero++;
5092    }
5093  }
5094
5095  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5096  if (NumNonZero == 0)
5097    return DAG.getUNDEF(VT);
5098
5099  // Special case for single non-zero, non-undef, element.
5100  if (NumNonZero == 1) {
5101    unsigned Idx = CountTrailingZeros_32(NonZeros);
5102    SDValue Item = Op.getOperand(Idx);
5103
5104    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5105    // the value are obviously zero, truncate the value to i32 and do the
5106    // insertion that way.  Only do this if the value is non-constant or if the
5107    // value is a constant being inserted into element 0.  It is cheaper to do
5108    // a constant pool load than it is to do a movd + shuffle.
5109    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5110        (!IsAllConstants || Idx == 0)) {
5111      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5112        // Handle SSE only.
5113        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5114        EVT VecVT = MVT::v4i32;
5115        unsigned VecElts = 4;
5116
5117        // Truncate the value (which may itself be a constant) to i32, and
5118        // convert it to a vector with movd (S2V+shuffle to zero extend).
5119        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5120        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5121        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5122                                           Subtarget->hasXMMInt(), DAG);
5123
5124        // Now we have our 32-bit value zero extended in the low element of
5125        // a vector.  If Idx != 0, swizzle it into place.
5126        if (Idx != 0) {
5127          SmallVector<int, 4> Mask;
5128          Mask.push_back(Idx);
5129          for (unsigned i = 1; i != VecElts; ++i)
5130            Mask.push_back(i);
5131          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5132                                      DAG.getUNDEF(Item.getValueType()),
5133                                      &Mask[0]);
5134        }
5135        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5136      }
5137    }
5138
5139    // If we have a constant or non-constant insertion into the low element of
5140    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5141    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5142    // depending on what the source datatype is.
5143    if (Idx == 0) {
5144      if (NumZero == 0) {
5145        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5146      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5147          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5148        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5149        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5150        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5151                                           DAG);
5152      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5153        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5154        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5155        EVT MiddleVT = MVT::v4i32;
5156        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5157        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5158                                           Subtarget->hasXMMInt(), DAG);
5159        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5160      }
5161    }
5162
5163    // Is it a vector logical left shift?
5164    if (NumElems == 2 && Idx == 1 &&
5165        X86::isZeroNode(Op.getOperand(0)) &&
5166        !X86::isZeroNode(Op.getOperand(1))) {
5167      unsigned NumBits = VT.getSizeInBits();
5168      return getVShift(true, VT,
5169                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5170                                   VT, Op.getOperand(1)),
5171                       NumBits/2, DAG, *this, dl);
5172    }
5173
5174    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5175      return SDValue();
5176
5177    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5178    // is a non-constant being inserted into an element other than the low one,
5179    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5180    // movd/movss) to move this into the low element, then shuffle it into
5181    // place.
5182    if (EVTBits == 32) {
5183      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5184
5185      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5186      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5187                                         Subtarget->hasXMMInt(), DAG);
5188      SmallVector<int, 8> MaskVec;
5189      for (unsigned i = 0; i < NumElems; i++)
5190        MaskVec.push_back(i == Idx ? 0 : 1);
5191      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5192    }
5193  }
5194
5195  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5196  if (Values.size() == 1) {
5197    if (EVTBits == 32) {
5198      // Instead of a shuffle like this:
5199      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5200      // Check if it's possible to issue this instead.
5201      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5202      unsigned Idx = CountTrailingZeros_32(NonZeros);
5203      SDValue Item = Op.getOperand(Idx);
5204      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5205        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5206    }
5207    return SDValue();
5208  }
5209
5210  // A vector full of immediates; various special cases are already
5211  // handled, so this is best done with a single constant-pool load.
5212  if (IsAllConstants)
5213    return SDValue();
5214
5215  // For AVX-length vectors, build the individual 128-bit pieces and use
5216  // shuffles to put them in place.
5217  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5218    SmallVector<SDValue, 32> V;
5219    for (unsigned i = 0; i < NumElems; ++i)
5220      V.push_back(Op.getOperand(i));
5221
5222    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5223
5224    // Build both the lower and upper subvector.
5225    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5226    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5227                                NumElems/2);
5228
5229    // Recreate the wider vector with the lower and upper part.
5230    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5231                                DAG.getConstant(0, MVT::i32), DAG, dl);
5232    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5233                              DAG, dl);
5234  }
5235
5236  // Let legalizer expand 2-wide build_vectors.
5237  if (EVTBits == 64) {
5238    if (NumNonZero == 1) {
5239      // One half is zero or undef.
5240      unsigned Idx = CountTrailingZeros_32(NonZeros);
5241      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5242                                 Op.getOperand(Idx));
5243      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5244                                         Subtarget->hasXMMInt(), DAG);
5245    }
5246    return SDValue();
5247  }
5248
5249  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5250  if (EVTBits == 8 && NumElems == 16) {
5251    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5252                                        *this);
5253    if (V.getNode()) return V;
5254  }
5255
5256  if (EVTBits == 16 && NumElems == 8) {
5257    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5258                                      *this);
5259    if (V.getNode()) return V;
5260  }
5261
5262  // If element VT is == 32 bits, turn it into a number of shuffles.
5263  SmallVector<SDValue, 8> V;
5264  V.resize(NumElems);
5265  if (NumElems == 4 && NumZero > 0) {
5266    for (unsigned i = 0; i < 4; ++i) {
5267      bool isZero = !(NonZeros & (1 << i));
5268      if (isZero)
5269        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5270      else
5271        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5272    }
5273
5274    for (unsigned i = 0; i < 2; ++i) {
5275      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5276        default: break;
5277        case 0:
5278          V[i] = V[i*2];  // Must be a zero vector.
5279          break;
5280        case 1:
5281          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5282          break;
5283        case 2:
5284          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5285          break;
5286        case 3:
5287          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5288          break;
5289      }
5290    }
5291
5292    SmallVector<int, 8> MaskVec;
5293    bool Reverse = (NonZeros & 0x3) == 2;
5294    for (unsigned i = 0; i < 2; ++i)
5295      MaskVec.push_back(Reverse ? 1-i : i);
5296    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5297    for (unsigned i = 0; i < 2; ++i)
5298      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5299    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5300  }
5301
5302  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5303    // Check for a build vector of consecutive loads.
5304    for (unsigned i = 0; i < NumElems; ++i)
5305      V[i] = Op.getOperand(i);
5306
5307    // Check for elements which are consecutive loads.
5308    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5309    if (LD.getNode())
5310      return LD;
5311
5312    // For SSE 4.1, use insertps to put the high elements into the low element.
5313    if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
5314      SDValue Result;
5315      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5316        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5317      else
5318        Result = DAG.getUNDEF(VT);
5319
5320      for (unsigned i = 1; i < NumElems; ++i) {
5321        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5322        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5323                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5324      }
5325      return Result;
5326    }
5327
5328    // Otherwise, expand into a number of unpckl*, start by extending each of
5329    // our (non-undef) elements to the full vector width with the element in the
5330    // bottom slot of the vector (which generates no code for SSE).
5331    for (unsigned i = 0; i < NumElems; ++i) {
5332      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5333        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5334      else
5335        V[i] = DAG.getUNDEF(VT);
5336    }
5337
5338    // Next, we iteratively mix elements, e.g. for v4f32:
5339    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5340    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5341    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5342    unsigned EltStride = NumElems >> 1;
5343    while (EltStride != 0) {
5344      for (unsigned i = 0; i < EltStride; ++i) {
5345        // If V[i+EltStride] is undef and this is the first round of mixing,
5346        // then it is safe to just drop this shuffle: V[i] is already in the
5347        // right place, the one element (since it's the first round) being
5348        // inserted as undef can be dropped.  This isn't safe for successive
5349        // rounds because they will permute elements within both vectors.
5350        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5351            EltStride == NumElems/2)
5352          continue;
5353
5354        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5355      }
5356      EltStride >>= 1;
5357    }
5358    return V[0];
5359  }
5360  return SDValue();
5361}
5362
5363// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5364// them in a MMX register.  This is better than doing a stack convert.
5365static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5366  DebugLoc dl = Op.getDebugLoc();
5367  EVT ResVT = Op.getValueType();
5368
5369  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5370         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5371  int Mask[2];
5372  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5373  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5374  InVec = Op.getOperand(1);
5375  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5376    unsigned NumElts = ResVT.getVectorNumElements();
5377    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5378    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5379                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5380  } else {
5381    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5382    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5383    Mask[0] = 0; Mask[1] = 2;
5384    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5385  }
5386  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5387}
5388
5389// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5390// to create 256-bit vectors from two other 128-bit ones.
5391static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5392  DebugLoc dl = Op.getDebugLoc();
5393  EVT ResVT = Op.getValueType();
5394
5395  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5396
5397  SDValue V1 = Op.getOperand(0);
5398  SDValue V2 = Op.getOperand(1);
5399  unsigned NumElems = ResVT.getVectorNumElements();
5400
5401  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5402                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5403  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5404                            DAG, dl);
5405}
5406
5407SDValue
5408X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5409  EVT ResVT = Op.getValueType();
5410
5411  assert(Op.getNumOperands() == 2);
5412  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5413         "Unsupported CONCAT_VECTORS for value type");
5414
5415  // We support concatenate two MMX registers and place them in a MMX register.
5416  // This is better than doing a stack convert.
5417  if (ResVT.is128BitVector())
5418    return LowerMMXCONCAT_VECTORS(Op, DAG);
5419
5420  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5421  // from two other 128-bit ones.
5422  return LowerAVXCONCAT_VECTORS(Op, DAG);
5423}
5424
5425// v8i16 shuffles - Prefer shuffles in the following order:
5426// 1. [all]   pshuflw, pshufhw, optional move
5427// 2. [ssse3] 1 x pshufb
5428// 3. [ssse3] 2 x pshufb + 1 x por
5429// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5430SDValue
5431X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5432                                            SelectionDAG &DAG) const {
5433  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5434  SDValue V1 = SVOp->getOperand(0);
5435  SDValue V2 = SVOp->getOperand(1);
5436  DebugLoc dl = SVOp->getDebugLoc();
5437  SmallVector<int, 8> MaskVals;
5438
5439  // Determine if more than 1 of the words in each of the low and high quadwords
5440  // of the result come from the same quadword of one of the two inputs.  Undef
5441  // mask values count as coming from any quadword, for better codegen.
5442  SmallVector<unsigned, 4> LoQuad(4);
5443  SmallVector<unsigned, 4> HiQuad(4);
5444  BitVector InputQuads(4);
5445  for (unsigned i = 0; i < 8; ++i) {
5446    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5447    int EltIdx = SVOp->getMaskElt(i);
5448    MaskVals.push_back(EltIdx);
5449    if (EltIdx < 0) {
5450      ++Quad[0];
5451      ++Quad[1];
5452      ++Quad[2];
5453      ++Quad[3];
5454      continue;
5455    }
5456    ++Quad[EltIdx / 4];
5457    InputQuads.set(EltIdx / 4);
5458  }
5459
5460  int BestLoQuad = -1;
5461  unsigned MaxQuad = 1;
5462  for (unsigned i = 0; i < 4; ++i) {
5463    if (LoQuad[i] > MaxQuad) {
5464      BestLoQuad = i;
5465      MaxQuad = LoQuad[i];
5466    }
5467  }
5468
5469  int BestHiQuad = -1;
5470  MaxQuad = 1;
5471  for (unsigned i = 0; i < 4; ++i) {
5472    if (HiQuad[i] > MaxQuad) {
5473      BestHiQuad = i;
5474      MaxQuad = HiQuad[i];
5475    }
5476  }
5477
5478  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5479  // of the two input vectors, shuffle them into one input vector so only a
5480  // single pshufb instruction is necessary. If There are more than 2 input
5481  // quads, disable the next transformation since it does not help SSSE3.
5482  bool V1Used = InputQuads[0] || InputQuads[1];
5483  bool V2Used = InputQuads[2] || InputQuads[3];
5484  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5485    if (InputQuads.count() == 2 && V1Used && V2Used) {
5486      BestLoQuad = InputQuads.find_first();
5487      BestHiQuad = InputQuads.find_next(BestLoQuad);
5488    }
5489    if (InputQuads.count() > 2) {
5490      BestLoQuad = -1;
5491      BestHiQuad = -1;
5492    }
5493  }
5494
5495  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5496  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5497  // words from all 4 input quadwords.
5498  SDValue NewV;
5499  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5500    SmallVector<int, 8> MaskV;
5501    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5502    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5503    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5504                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5505                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5506    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5507
5508    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5509    // source words for the shuffle, to aid later transformations.
5510    bool AllWordsInNewV = true;
5511    bool InOrder[2] = { true, true };
5512    for (unsigned i = 0; i != 8; ++i) {
5513      int idx = MaskVals[i];
5514      if (idx != (int)i)
5515        InOrder[i/4] = false;
5516      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5517        continue;
5518      AllWordsInNewV = false;
5519      break;
5520    }
5521
5522    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5523    if (AllWordsInNewV) {
5524      for (int i = 0; i != 8; ++i) {
5525        int idx = MaskVals[i];
5526        if (idx < 0)
5527          continue;
5528        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5529        if ((idx != i) && idx < 4)
5530          pshufhw = false;
5531        if ((idx != i) && idx > 3)
5532          pshuflw = false;
5533      }
5534      V1 = NewV;
5535      V2Used = false;
5536      BestLoQuad = 0;
5537      BestHiQuad = 1;
5538    }
5539
5540    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5541    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5542    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5543      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5544      unsigned TargetMask = 0;
5545      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5546                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5547      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5548                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5549      V1 = NewV.getOperand(0);
5550      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5551    }
5552  }
5553
5554  // If we have SSSE3, and all words of the result are from 1 input vector,
5555  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5556  // is present, fall back to case 4.
5557  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5558    SmallVector<SDValue,16> pshufbMask;
5559
5560    // If we have elements from both input vectors, set the high bit of the
5561    // shuffle mask element to zero out elements that come from V2 in the V1
5562    // mask, and elements that come from V1 in the V2 mask, so that the two
5563    // results can be OR'd together.
5564    bool TwoInputs = V1Used && V2Used;
5565    for (unsigned i = 0; i != 8; ++i) {
5566      int EltIdx = MaskVals[i] * 2;
5567      if (TwoInputs && (EltIdx >= 16)) {
5568        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5569        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5570        continue;
5571      }
5572      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5573      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5574    }
5575    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5576    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5577                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5578                                 MVT::v16i8, &pshufbMask[0], 16));
5579    if (!TwoInputs)
5580      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5581
5582    // Calculate the shuffle mask for the second input, shuffle it, and
5583    // OR it with the first shuffled input.
5584    pshufbMask.clear();
5585    for (unsigned i = 0; i != 8; ++i) {
5586      int EltIdx = MaskVals[i] * 2;
5587      if (EltIdx < 16) {
5588        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5589        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5590        continue;
5591      }
5592      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5593      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5594    }
5595    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5596    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5597                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5598                                 MVT::v16i8, &pshufbMask[0], 16));
5599    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5600    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5601  }
5602
5603  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5604  // and update MaskVals with new element order.
5605  BitVector InOrder(8);
5606  if (BestLoQuad >= 0) {
5607    SmallVector<int, 8> MaskV;
5608    for (int i = 0; i != 4; ++i) {
5609      int idx = MaskVals[i];
5610      if (idx < 0) {
5611        MaskV.push_back(-1);
5612        InOrder.set(i);
5613      } else if ((idx / 4) == BestLoQuad) {
5614        MaskV.push_back(idx & 3);
5615        InOrder.set(i);
5616      } else {
5617        MaskV.push_back(-1);
5618      }
5619    }
5620    for (unsigned i = 4; i != 8; ++i)
5621      MaskV.push_back(i);
5622    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5623                                &MaskV[0]);
5624
5625    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5626        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5627      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5628                               NewV.getOperand(0),
5629                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5630                               DAG);
5631  }
5632
5633  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5634  // and update MaskVals with the new element order.
5635  if (BestHiQuad >= 0) {
5636    SmallVector<int, 8> MaskV;
5637    for (unsigned i = 0; i != 4; ++i)
5638      MaskV.push_back(i);
5639    for (unsigned i = 4; i != 8; ++i) {
5640      int idx = MaskVals[i];
5641      if (idx < 0) {
5642        MaskV.push_back(-1);
5643        InOrder.set(i);
5644      } else if ((idx / 4) == BestHiQuad) {
5645        MaskV.push_back((idx & 3) + 4);
5646        InOrder.set(i);
5647      } else {
5648        MaskV.push_back(-1);
5649      }
5650    }
5651    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5652                                &MaskV[0]);
5653
5654    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5655        (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5656      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5657                              NewV.getOperand(0),
5658                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5659                              DAG);
5660  }
5661
5662  // In case BestHi & BestLo were both -1, which means each quadword has a word
5663  // from each of the four input quadwords, calculate the InOrder bitvector now
5664  // before falling through to the insert/extract cleanup.
5665  if (BestLoQuad == -1 && BestHiQuad == -1) {
5666    NewV = V1;
5667    for (int i = 0; i != 8; ++i)
5668      if (MaskVals[i] < 0 || MaskVals[i] == i)
5669        InOrder.set(i);
5670  }
5671
5672  // The other elements are put in the right place using pextrw and pinsrw.
5673  for (unsigned i = 0; i != 8; ++i) {
5674    if (InOrder[i])
5675      continue;
5676    int EltIdx = MaskVals[i];
5677    if (EltIdx < 0)
5678      continue;
5679    SDValue ExtOp = (EltIdx < 8)
5680    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5681                  DAG.getIntPtrConstant(EltIdx))
5682    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5683                  DAG.getIntPtrConstant(EltIdx - 8));
5684    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5685                       DAG.getIntPtrConstant(i));
5686  }
5687  return NewV;
5688}
5689
5690// v16i8 shuffles - Prefer shuffles in the following order:
5691// 1. [ssse3] 1 x pshufb
5692// 2. [ssse3] 2 x pshufb + 1 x por
5693// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5694static
5695SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5696                                 SelectionDAG &DAG,
5697                                 const X86TargetLowering &TLI) {
5698  SDValue V1 = SVOp->getOperand(0);
5699  SDValue V2 = SVOp->getOperand(1);
5700  DebugLoc dl = SVOp->getDebugLoc();
5701  SmallVector<int, 16> MaskVals;
5702  SVOp->getMask(MaskVals);
5703
5704  // If we have SSSE3, case 1 is generated when all result bytes come from
5705  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5706  // present, fall back to case 3.
5707  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5708  bool V1Only = true;
5709  bool V2Only = true;
5710  for (unsigned i = 0; i < 16; ++i) {
5711    int EltIdx = MaskVals[i];
5712    if (EltIdx < 0)
5713      continue;
5714    if (EltIdx < 16)
5715      V2Only = false;
5716    else
5717      V1Only = false;
5718  }
5719
5720  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5721  if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
5722    SmallVector<SDValue,16> pshufbMask;
5723
5724    // If all result elements are from one input vector, then only translate
5725    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5726    //
5727    // Otherwise, we have elements from both input vectors, and must zero out
5728    // elements that come from V2 in the first mask, and V1 in the second mask
5729    // so that we can OR them together.
5730    bool TwoInputs = !(V1Only || V2Only);
5731    for (unsigned i = 0; i != 16; ++i) {
5732      int EltIdx = MaskVals[i];
5733      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5734        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5735        continue;
5736      }
5737      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5738    }
5739    // If all the elements are from V2, assign it to V1 and return after
5740    // building the first pshufb.
5741    if (V2Only)
5742      V1 = V2;
5743    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5744                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5745                                 MVT::v16i8, &pshufbMask[0], 16));
5746    if (!TwoInputs)
5747      return V1;
5748
5749    // Calculate the shuffle mask for the second input, shuffle it, and
5750    // OR it with the first shuffled input.
5751    pshufbMask.clear();
5752    for (unsigned i = 0; i != 16; ++i) {
5753      int EltIdx = MaskVals[i];
5754      if (EltIdx < 16) {
5755        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5756        continue;
5757      }
5758      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5759    }
5760    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5761                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5762                                 MVT::v16i8, &pshufbMask[0], 16));
5763    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5764  }
5765
5766  // No SSSE3 - Calculate in place words and then fix all out of place words
5767  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5768  // the 16 different words that comprise the two doublequadword input vectors.
5769  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5770  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5771  SDValue NewV = V2Only ? V2 : V1;
5772  for (int i = 0; i != 8; ++i) {
5773    int Elt0 = MaskVals[i*2];
5774    int Elt1 = MaskVals[i*2+1];
5775
5776    // This word of the result is all undef, skip it.
5777    if (Elt0 < 0 && Elt1 < 0)
5778      continue;
5779
5780    // This word of the result is already in the correct place, skip it.
5781    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5782      continue;
5783    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5784      continue;
5785
5786    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5787    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5788    SDValue InsElt;
5789
5790    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5791    // using a single extract together, load it and store it.
5792    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5793      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5794                           DAG.getIntPtrConstant(Elt1 / 2));
5795      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5796                        DAG.getIntPtrConstant(i));
5797      continue;
5798    }
5799
5800    // If Elt1 is defined, extract it from the appropriate source.  If the
5801    // source byte is not also odd, shift the extracted word left 8 bits
5802    // otherwise clear the bottom 8 bits if we need to do an or.
5803    if (Elt1 >= 0) {
5804      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5805                           DAG.getIntPtrConstant(Elt1 / 2));
5806      if ((Elt1 & 1) == 0)
5807        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5808                             DAG.getConstant(8,
5809                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5810      else if (Elt0 >= 0)
5811        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5812                             DAG.getConstant(0xFF00, MVT::i16));
5813    }
5814    // If Elt0 is defined, extract it from the appropriate source.  If the
5815    // source byte is not also even, shift the extracted word right 8 bits. If
5816    // Elt1 was also defined, OR the extracted values together before
5817    // inserting them in the result.
5818    if (Elt0 >= 0) {
5819      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5820                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5821      if ((Elt0 & 1) != 0)
5822        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5823                              DAG.getConstant(8,
5824                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5825      else if (Elt1 >= 0)
5826        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5827                             DAG.getConstant(0x00FF, MVT::i16));
5828      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5829                         : InsElt0;
5830    }
5831    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5832                       DAG.getIntPtrConstant(i));
5833  }
5834  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5835}
5836
5837/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5838/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5839/// done when every pair / quad of shuffle mask elements point to elements in
5840/// the right sequence. e.g.
5841/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5842static
5843SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5844                                 SelectionDAG &DAG, DebugLoc dl) {
5845  EVT VT = SVOp->getValueType(0);
5846  SDValue V1 = SVOp->getOperand(0);
5847  SDValue V2 = SVOp->getOperand(1);
5848  unsigned NumElems = VT.getVectorNumElements();
5849  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5850  EVT NewVT;
5851  switch (VT.getSimpleVT().SimpleTy) {
5852  default: assert(false && "Unexpected!");
5853  case MVT::v4f32: NewVT = MVT::v2f64; break;
5854  case MVT::v4i32: NewVT = MVT::v2i64; break;
5855  case MVT::v8i16: NewVT = MVT::v4i32; break;
5856  case MVT::v16i8: NewVT = MVT::v4i32; break;
5857  }
5858
5859  int Scale = NumElems / NewWidth;
5860  SmallVector<int, 8> MaskVec;
5861  for (unsigned i = 0; i < NumElems; i += Scale) {
5862    int StartIdx = -1;
5863    for (int j = 0; j < Scale; ++j) {
5864      int EltIdx = SVOp->getMaskElt(i+j);
5865      if (EltIdx < 0)
5866        continue;
5867      if (StartIdx == -1)
5868        StartIdx = EltIdx - (EltIdx % Scale);
5869      if (EltIdx != StartIdx + j)
5870        return SDValue();
5871    }
5872    if (StartIdx == -1)
5873      MaskVec.push_back(-1);
5874    else
5875      MaskVec.push_back(StartIdx / Scale);
5876  }
5877
5878  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5879  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5880  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5881}
5882
5883/// getVZextMovL - Return a zero-extending vector move low node.
5884///
5885static SDValue getVZextMovL(EVT VT, EVT OpVT,
5886                            SDValue SrcOp, SelectionDAG &DAG,
5887                            const X86Subtarget *Subtarget, DebugLoc dl) {
5888  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5889    LoadSDNode *LD = NULL;
5890    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5891      LD = dyn_cast<LoadSDNode>(SrcOp);
5892    if (!LD) {
5893      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5894      // instead.
5895      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5896      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5897          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5898          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5899          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5900        // PR2108
5901        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5902        return DAG.getNode(ISD::BITCAST, dl, VT,
5903                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5904                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5905                                                   OpVT,
5906                                                   SrcOp.getOperand(0)
5907                                                          .getOperand(0))));
5908      }
5909    }
5910  }
5911
5912  return DAG.getNode(ISD::BITCAST, dl, VT,
5913                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5914                                 DAG.getNode(ISD::BITCAST, dl,
5915                                             OpVT, SrcOp)));
5916}
5917
5918/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5919/// shuffle node referes to only one lane in the sources.
5920static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5921  EVT VT = SVOp->getValueType(0);
5922  int NumElems = VT.getVectorNumElements();
5923  int HalfSize = NumElems/2;
5924  SmallVector<int, 16> M;
5925  SVOp->getMask(M);
5926  bool MatchA = false, MatchB = false;
5927
5928  for (int l = 0; l < NumElems*2; l += HalfSize) {
5929    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5930      MatchA = true;
5931      break;
5932    }
5933  }
5934
5935  for (int l = 0; l < NumElems*2; l += HalfSize) {
5936    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5937      MatchB = true;
5938      break;
5939    }
5940  }
5941
5942  return MatchA && MatchB;
5943}
5944
5945/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5946/// which could not be matched by any known target speficic shuffle
5947static SDValue
5948LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5949  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5950    // If each half of a vector shuffle node referes to only one lane in the
5951    // source vectors, extract each used 128-bit lane and shuffle them using
5952    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5953    // the work to the legalizer.
5954    DebugLoc dl = SVOp->getDebugLoc();
5955    EVT VT = SVOp->getValueType(0);
5956    int NumElems = VT.getVectorNumElements();
5957    int HalfSize = NumElems/2;
5958
5959    // Extract the reference for each half
5960    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5961    int FstVecOpNum = 0, SndVecOpNum = 0;
5962    for (int i = 0; i < HalfSize; ++i) {
5963      int Elt = SVOp->getMaskElt(i);
5964      if (SVOp->getMaskElt(i) < 0)
5965        continue;
5966      FstVecOpNum = Elt/NumElems;
5967      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5968      break;
5969    }
5970    for (int i = HalfSize; i < NumElems; ++i) {
5971      int Elt = SVOp->getMaskElt(i);
5972      if (SVOp->getMaskElt(i) < 0)
5973        continue;
5974      SndVecOpNum = Elt/NumElems;
5975      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5976      break;
5977    }
5978
5979    // Extract the subvectors
5980    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5981                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5982    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5983                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5984
5985    // Generate 128-bit shuffles
5986    SmallVector<int, 16> MaskV1, MaskV2;
5987    for (int i = 0; i < HalfSize; ++i) {
5988      int Elt = SVOp->getMaskElt(i);
5989      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5990    }
5991    for (int i = HalfSize; i < NumElems; ++i) {
5992      int Elt = SVOp->getMaskElt(i);
5993      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5994    }
5995
5996    EVT NVT = V1.getValueType();
5997    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5998    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5999
6000    // Concatenate the result back
6001    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6002                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6003    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6004                              DAG, dl);
6005  }
6006
6007  return SDValue();
6008}
6009
6010/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6011/// 4 elements, and match them with several different shuffle types.
6012static SDValue
6013LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6014  SDValue V1 = SVOp->getOperand(0);
6015  SDValue V2 = SVOp->getOperand(1);
6016  DebugLoc dl = SVOp->getDebugLoc();
6017  EVT VT = SVOp->getValueType(0);
6018
6019  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6020
6021  SmallVector<std::pair<int, int>, 8> Locs;
6022  Locs.resize(4);
6023  SmallVector<int, 8> Mask1(4U, -1);
6024  SmallVector<int, 8> PermMask;
6025  SVOp->getMask(PermMask);
6026
6027  unsigned NumHi = 0;
6028  unsigned NumLo = 0;
6029  for (unsigned i = 0; i != 4; ++i) {
6030    int Idx = PermMask[i];
6031    if (Idx < 0) {
6032      Locs[i] = std::make_pair(-1, -1);
6033    } else {
6034      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6035      if (Idx < 4) {
6036        Locs[i] = std::make_pair(0, NumLo);
6037        Mask1[NumLo] = Idx;
6038        NumLo++;
6039      } else {
6040        Locs[i] = std::make_pair(1, NumHi);
6041        if (2+NumHi < 4)
6042          Mask1[2+NumHi] = Idx;
6043        NumHi++;
6044      }
6045    }
6046  }
6047
6048  if (NumLo <= 2 && NumHi <= 2) {
6049    // If no more than two elements come from either vector. This can be
6050    // implemented with two shuffles. First shuffle gather the elements.
6051    // The second shuffle, which takes the first shuffle as both of its
6052    // vector operands, put the elements into the right order.
6053    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6054
6055    SmallVector<int, 8> Mask2(4U, -1);
6056
6057    for (unsigned i = 0; i != 4; ++i) {
6058      if (Locs[i].first == -1)
6059        continue;
6060      else {
6061        unsigned Idx = (i < 2) ? 0 : 4;
6062        Idx += Locs[i].first * 2 + Locs[i].second;
6063        Mask2[i] = Idx;
6064      }
6065    }
6066
6067    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6068  } else if (NumLo == 3 || NumHi == 3) {
6069    // Otherwise, we must have three elements from one vector, call it X, and
6070    // one element from the other, call it Y.  First, use a shufps to build an
6071    // intermediate vector with the one element from Y and the element from X
6072    // that will be in the same half in the final destination (the indexes don't
6073    // matter). Then, use a shufps to build the final vector, taking the half
6074    // containing the element from Y from the intermediate, and the other half
6075    // from X.
6076    if (NumHi == 3) {
6077      // Normalize it so the 3 elements come from V1.
6078      CommuteVectorShuffleMask(PermMask, VT);
6079      std::swap(V1, V2);
6080    }
6081
6082    // Find the element from V2.
6083    unsigned HiIndex;
6084    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6085      int Val = PermMask[HiIndex];
6086      if (Val < 0)
6087        continue;
6088      if (Val >= 4)
6089        break;
6090    }
6091
6092    Mask1[0] = PermMask[HiIndex];
6093    Mask1[1] = -1;
6094    Mask1[2] = PermMask[HiIndex^1];
6095    Mask1[3] = -1;
6096    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6097
6098    if (HiIndex >= 2) {
6099      Mask1[0] = PermMask[0];
6100      Mask1[1] = PermMask[1];
6101      Mask1[2] = HiIndex & 1 ? 6 : 4;
6102      Mask1[3] = HiIndex & 1 ? 4 : 6;
6103      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6104    } else {
6105      Mask1[0] = HiIndex & 1 ? 2 : 0;
6106      Mask1[1] = HiIndex & 1 ? 0 : 2;
6107      Mask1[2] = PermMask[2];
6108      Mask1[3] = PermMask[3];
6109      if (Mask1[2] >= 0)
6110        Mask1[2] += 4;
6111      if (Mask1[3] >= 0)
6112        Mask1[3] += 4;
6113      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6114    }
6115  }
6116
6117  // Break it into (shuffle shuffle_hi, shuffle_lo).
6118  Locs.clear();
6119  Locs.resize(4);
6120  SmallVector<int,8> LoMask(4U, -1);
6121  SmallVector<int,8> HiMask(4U, -1);
6122
6123  SmallVector<int,8> *MaskPtr = &LoMask;
6124  unsigned MaskIdx = 0;
6125  unsigned LoIdx = 0;
6126  unsigned HiIdx = 2;
6127  for (unsigned i = 0; i != 4; ++i) {
6128    if (i == 2) {
6129      MaskPtr = &HiMask;
6130      MaskIdx = 1;
6131      LoIdx = 0;
6132      HiIdx = 2;
6133    }
6134    int Idx = PermMask[i];
6135    if (Idx < 0) {
6136      Locs[i] = std::make_pair(-1, -1);
6137    } else if (Idx < 4) {
6138      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6139      (*MaskPtr)[LoIdx] = Idx;
6140      LoIdx++;
6141    } else {
6142      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6143      (*MaskPtr)[HiIdx] = Idx;
6144      HiIdx++;
6145    }
6146  }
6147
6148  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6149  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6150  SmallVector<int, 8> MaskOps;
6151  for (unsigned i = 0; i != 4; ++i) {
6152    if (Locs[i].first == -1) {
6153      MaskOps.push_back(-1);
6154    } else {
6155      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6156      MaskOps.push_back(Idx);
6157    }
6158  }
6159  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6160}
6161
6162static bool MayFoldVectorLoad(SDValue V) {
6163  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6164    V = V.getOperand(0);
6165  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6166    V = V.getOperand(0);
6167  if (MayFoldLoad(V))
6168    return true;
6169  return false;
6170}
6171
6172// FIXME: the version above should always be used. Since there's
6173// a bug where several vector shuffles can't be folded because the
6174// DAG is not updated during lowering and a node claims to have two
6175// uses while it only has one, use this version, and let isel match
6176// another instruction if the load really happens to have more than
6177// one use. Remove this version after this bug get fixed.
6178// rdar://8434668, PR8156
6179static bool RelaxedMayFoldVectorLoad(SDValue V) {
6180  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6181    V = V.getOperand(0);
6182  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6183    V = V.getOperand(0);
6184  if (ISD::isNormalLoad(V.getNode()))
6185    return true;
6186  return false;
6187}
6188
6189/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6190/// a vector extract, and if both can be later optimized into a single load.
6191/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6192/// here because otherwise a target specific shuffle node is going to be
6193/// emitted for this shuffle, and the optimization not done.
6194/// FIXME: This is probably not the best approach, but fix the problem
6195/// until the right path is decided.
6196static
6197bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6198                                         const TargetLowering &TLI) {
6199  EVT VT = V.getValueType();
6200  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6201
6202  // Be sure that the vector shuffle is present in a pattern like this:
6203  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6204  if (!V.hasOneUse())
6205    return false;
6206
6207  SDNode *N = *V.getNode()->use_begin();
6208  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6209    return false;
6210
6211  SDValue EltNo = N->getOperand(1);
6212  if (!isa<ConstantSDNode>(EltNo))
6213    return false;
6214
6215  // If the bit convert changed the number of elements, it is unsafe
6216  // to examine the mask.
6217  bool HasShuffleIntoBitcast = false;
6218  if (V.getOpcode() == ISD::BITCAST) {
6219    EVT SrcVT = V.getOperand(0).getValueType();
6220    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6221      return false;
6222    V = V.getOperand(0);
6223    HasShuffleIntoBitcast = true;
6224  }
6225
6226  // Select the input vector, guarding against out of range extract vector.
6227  unsigned NumElems = VT.getVectorNumElements();
6228  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6229  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6230  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6231
6232  // Skip one more bit_convert if necessary
6233  if (V.getOpcode() == ISD::BITCAST)
6234    V = V.getOperand(0);
6235
6236  if (ISD::isNormalLoad(V.getNode())) {
6237    // Is the original load suitable?
6238    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6239
6240    // FIXME: avoid the multi-use bug that is preventing lots of
6241    // of foldings to be detected, this is still wrong of course, but
6242    // give the temporary desired behavior, and if it happens that
6243    // the load has real more uses, during isel it will not fold, and
6244    // will generate poor code.
6245    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6246      return false;
6247
6248    if (!HasShuffleIntoBitcast)
6249      return true;
6250
6251    // If there's a bitcast before the shuffle, check if the load type and
6252    // alignment is valid.
6253    unsigned Align = LN0->getAlignment();
6254    unsigned NewAlign =
6255      TLI.getTargetData()->getABITypeAlignment(
6256                                    VT.getTypeForEVT(*DAG.getContext()));
6257
6258    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6259      return false;
6260  }
6261
6262  return true;
6263}
6264
6265static
6266SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6267  EVT VT = Op.getValueType();
6268
6269  // Canonizalize to v2f64.
6270  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6271  return DAG.getNode(ISD::BITCAST, dl, VT,
6272                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6273                                          V1, DAG));
6274}
6275
6276static
6277SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6278                        bool HasXMMInt) {
6279  SDValue V1 = Op.getOperand(0);
6280  SDValue V2 = Op.getOperand(1);
6281  EVT VT = Op.getValueType();
6282
6283  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6284
6285  if (HasXMMInt && VT == MVT::v2f64)
6286    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6287
6288  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6289  return DAG.getNode(ISD::BITCAST, dl, VT,
6290                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6291                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6292                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6293}
6294
6295static
6296SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6297  SDValue V1 = Op.getOperand(0);
6298  SDValue V2 = Op.getOperand(1);
6299  EVT VT = Op.getValueType();
6300
6301  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6302         "unsupported shuffle type");
6303
6304  if (V2.getOpcode() == ISD::UNDEF)
6305    V2 = V1;
6306
6307  // v4i32 or v4f32
6308  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6309}
6310
6311static inline unsigned getSHUFPOpcode(EVT VT) {
6312  switch(VT.getSimpleVT().SimpleTy) {
6313  case MVT::v8i32: // Use fp unit for int unpack.
6314  case MVT::v8f32:
6315  case MVT::v4i32: // Use fp unit for int unpack.
6316  case MVT::v4f32: return X86ISD::SHUFPS;
6317  case MVT::v4i64: // Use fp unit for int unpack.
6318  case MVT::v4f64:
6319  case MVT::v2i64: // Use fp unit for int unpack.
6320  case MVT::v2f64: return X86ISD::SHUFPD;
6321  default:
6322    llvm_unreachable("Unknown type for shufp*");
6323  }
6324  return 0;
6325}
6326
6327static
6328SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6329  SDValue V1 = Op.getOperand(0);
6330  SDValue V2 = Op.getOperand(1);
6331  EVT VT = Op.getValueType();
6332  unsigned NumElems = VT.getVectorNumElements();
6333
6334  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6335  // operand of these instructions is only memory, so check if there's a
6336  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6337  // same masks.
6338  bool CanFoldLoad = false;
6339
6340  // Trivial case, when V2 comes from a load.
6341  if (MayFoldVectorLoad(V2))
6342    CanFoldLoad = true;
6343
6344  // When V1 is a load, it can be folded later into a store in isel, example:
6345  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6346  //    turns into:
6347  //  (MOVLPSmr addr:$src1, VR128:$src2)
6348  // So, recognize this potential and also use MOVLPS or MOVLPD
6349  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6350    CanFoldLoad = true;
6351
6352  // Both of them can't be memory operations though.
6353  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6354    CanFoldLoad = false;
6355
6356  if (CanFoldLoad) {
6357    if (HasXMMInt && NumElems == 2)
6358      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6359
6360    if (NumElems == 4)
6361      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6362  }
6363
6364  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6365  // movl and movlp will both match v2i64, but v2i64 is never matched by
6366  // movl earlier because we make it strict to avoid messing with the movlp load
6367  // folding logic (see the code above getMOVLP call). Match it here then,
6368  // this is horrible, but will stay like this until we move all shuffle
6369  // matching to x86 specific nodes. Note that for the 1st condition all
6370  // types are matched with movsd.
6371  if (HasXMMInt) {
6372    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6373    // as to remove this logic from here, as much as possible
6374    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6375      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6376    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6377  }
6378
6379  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6380
6381  // Invert the operand order and use SHUFPS to match it.
6382  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6383                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6384}
6385
6386static inline unsigned getUNPCKLOpcode(EVT VT) {
6387  switch(VT.getSimpleVT().SimpleTy) {
6388  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6389  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6390  case MVT::v4f32: return X86ISD::UNPCKLPS;
6391  case MVT::v2f64: return X86ISD::UNPCKLPD;
6392  case MVT::v8i32: // Use fp unit for int unpack.
6393  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6394  case MVT::v4i64: // Use fp unit for int unpack.
6395  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6396  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6397  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6398  default:
6399    llvm_unreachable("Unknown type for unpckl");
6400  }
6401  return 0;
6402}
6403
6404static inline unsigned getUNPCKHOpcode(EVT VT) {
6405  switch(VT.getSimpleVT().SimpleTy) {
6406  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6407  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6408  case MVT::v4f32: return X86ISD::UNPCKHPS;
6409  case MVT::v2f64: return X86ISD::UNPCKHPD;
6410  case MVT::v8i32: // Use fp unit for int unpack.
6411  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6412  case MVT::v4i64: // Use fp unit for int unpack.
6413  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6414  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6415  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6416  default:
6417    llvm_unreachable("Unknown type for unpckh");
6418  }
6419  return 0;
6420}
6421
6422static inline unsigned getVPERMILOpcode(EVT VT) {
6423  switch(VT.getSimpleVT().SimpleTy) {
6424  case MVT::v4i32:
6425  case MVT::v4f32: return X86ISD::VPERMILPS;
6426  case MVT::v2i64:
6427  case MVT::v2f64: return X86ISD::VPERMILPD;
6428  case MVT::v8i32:
6429  case MVT::v8f32: return X86ISD::VPERMILPSY;
6430  case MVT::v4i64:
6431  case MVT::v4f64: return X86ISD::VPERMILPDY;
6432  default:
6433    llvm_unreachable("Unknown type for vpermil");
6434  }
6435  return 0;
6436}
6437
6438/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6439/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6440/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6441static bool isVectorBroadcast(SDValue &Op) {
6442  EVT VT = Op.getValueType();
6443  bool Is256 = VT.getSizeInBits() == 256;
6444
6445  assert((VT.getSizeInBits() == 128 || Is256) &&
6446         "Unsupported type for vbroadcast node");
6447
6448  SDValue V = Op;
6449  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6450    V = V.getOperand(0);
6451
6452  if (Is256 && !(V.hasOneUse() &&
6453                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6454                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6455    return false;
6456
6457  if (Is256)
6458    V = V.getOperand(1);
6459
6460  if (!V.hasOneUse())
6461    return false;
6462
6463  // Check the source scalar_to_vector type. 256-bit broadcasts are
6464  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6465  // for 32-bit scalars.
6466  if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6467    return false;
6468
6469  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6470  if (ScalarSize != 32 && ScalarSize != 64)
6471    return false;
6472  if (!Is256 && ScalarSize == 64)
6473    return false;
6474
6475  V = V.getOperand(0);
6476  if (!MayFoldLoad(V))
6477    return false;
6478
6479  // Return the load node
6480  Op = V;
6481  return true;
6482}
6483
6484static
6485SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6486                               const TargetLowering &TLI,
6487                               const X86Subtarget *Subtarget) {
6488  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6489  EVT VT = Op.getValueType();
6490  DebugLoc dl = Op.getDebugLoc();
6491  SDValue V1 = Op.getOperand(0);
6492  SDValue V2 = Op.getOperand(1);
6493
6494  if (isZeroShuffle(SVOp))
6495    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6496
6497  // Handle splat operations
6498  if (SVOp->isSplat()) {
6499    unsigned NumElem = VT.getVectorNumElements();
6500    int Size = VT.getSizeInBits();
6501    // Special case, this is the only place now where it's allowed to return
6502    // a vector_shuffle operation without using a target specific node, because
6503    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6504    // this be moved to DAGCombine instead?
6505    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6506      return Op;
6507
6508    // Use vbroadcast whenever the splat comes from a foldable load
6509    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6510      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6511
6512    // Handle splats by matching through known shuffle masks
6513    if ((Size == 128 && NumElem <= 4) ||
6514        (Size == 256 && NumElem < 8))
6515      return SDValue();
6516
6517    // All remaning splats are promoted to target supported vector shuffles.
6518    return PromoteSplat(SVOp, DAG);
6519  }
6520
6521  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6522  // do it!
6523  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6524    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6525    if (NewOp.getNode())
6526      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6527  } else if ((VT == MVT::v4i32 ||
6528             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6529    // FIXME: Figure out a cleaner way to do this.
6530    // Try to make use of movq to zero out the top part.
6531    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6532      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6533      if (NewOp.getNode()) {
6534        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6535          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6536                              DAG, Subtarget, dl);
6537      }
6538    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6539      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6540      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6541        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6542                            DAG, Subtarget, dl);
6543    }
6544  }
6545  return SDValue();
6546}
6547
6548SDValue
6549X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6550  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6551  SDValue V1 = Op.getOperand(0);
6552  SDValue V2 = Op.getOperand(1);
6553  EVT VT = Op.getValueType();
6554  DebugLoc dl = Op.getDebugLoc();
6555  unsigned NumElems = VT.getVectorNumElements();
6556  bool isMMX = VT.getSizeInBits() == 64;
6557  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6558  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6559  bool V1IsSplat = false;
6560  bool V2IsSplat = false;
6561  bool HasXMMInt = Subtarget->hasXMMInt();
6562  MachineFunction &MF = DAG.getMachineFunction();
6563  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6564
6565  // Shuffle operations on MMX not supported.
6566  if (isMMX)
6567    return Op;
6568
6569  // Vector shuffle lowering takes 3 steps:
6570  //
6571  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6572  //    narrowing and commutation of operands should be handled.
6573  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6574  //    shuffle nodes.
6575  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6576  //    so the shuffle can be broken into other shuffles and the legalizer can
6577  //    try the lowering again.
6578  //
6579  // The general ideia is that no vector_shuffle operation should be left to
6580  // be matched during isel, all of them must be converted to a target specific
6581  // node here.
6582
6583  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6584  // narrowing and commutation of operands should be handled. The actual code
6585  // doesn't include all of those, work in progress...
6586  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6587  if (NewOp.getNode())
6588    return NewOp;
6589
6590  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6591  // unpckh_undef). Only use pshufd if speed is more important than size.
6592  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6593    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6594  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6595    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6596
6597  if (X86::isMOVDDUPMask(SVOp) &&
6598      (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
6599      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6600    return getMOVDDup(Op, dl, V1, DAG);
6601
6602  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6603    return getMOVHighToLow(Op, dl, DAG);
6604
6605  // Use to match splats
6606  if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6607      (VT == MVT::v2f64 || VT == MVT::v2i64))
6608    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6609
6610  if (X86::isPSHUFDMask(SVOp)) {
6611    // The actual implementation will match the mask in the if above and then
6612    // during isel it can match several different instructions, not only pshufd
6613    // as its name says, sad but true, emulate the behavior for now...
6614    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6615        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6616
6617    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6618
6619    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6620      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6621
6622    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6623                                TargetMask, DAG);
6624  }
6625
6626  // Check if this can be converted into a logical shift.
6627  bool isLeft = false;
6628  unsigned ShAmt = 0;
6629  SDValue ShVal;
6630  bool isShift = getSubtarget()->hasXMMInt() &&
6631                 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6632  if (isShift && ShVal.hasOneUse()) {
6633    // If the shifted value has multiple uses, it may be cheaper to use
6634    // v_set0 + movlhps or movhlps, etc.
6635    EVT EltVT = VT.getVectorElementType();
6636    ShAmt *= EltVT.getSizeInBits();
6637    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6638  }
6639
6640  if (X86::isMOVLMask(SVOp)) {
6641    if (V1IsUndef)
6642      return V2;
6643    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6644      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6645    if (!X86::isMOVLPMask(SVOp)) {
6646      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6647        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6648
6649      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6650        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6651    }
6652  }
6653
6654  // FIXME: fold these into legal mask.
6655  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6656    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6657
6658  if (X86::isMOVHLPSMask(SVOp))
6659    return getMOVHighToLow(Op, dl, DAG);
6660
6661  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6662    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6663
6664  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6665    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6666
6667  if (X86::isMOVLPMask(SVOp))
6668    return getMOVLP(Op, dl, DAG, HasXMMInt);
6669
6670  if (ShouldXformToMOVHLPS(SVOp) ||
6671      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6672    return CommuteVectorShuffle(SVOp, DAG);
6673
6674  if (isShift) {
6675    // No better options. Use a vshl / vsrl.
6676    EVT EltVT = VT.getVectorElementType();
6677    ShAmt *= EltVT.getSizeInBits();
6678    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6679  }
6680
6681  bool Commuted = false;
6682  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6683  // 1,1,1,1 -> v8i16 though.
6684  V1IsSplat = isSplatVector(V1.getNode());
6685  V2IsSplat = isSplatVector(V2.getNode());
6686
6687  // Canonicalize the splat or undef, if present, to be on the RHS.
6688  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6689    Op = CommuteVectorShuffle(SVOp, DAG);
6690    SVOp = cast<ShuffleVectorSDNode>(Op);
6691    V1 = SVOp->getOperand(0);
6692    V2 = SVOp->getOperand(1);
6693    std::swap(V1IsSplat, V2IsSplat);
6694    std::swap(V1IsUndef, V2IsUndef);
6695    Commuted = true;
6696  }
6697
6698  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6699    // Shuffling low element of v1 into undef, just return v1.
6700    if (V2IsUndef)
6701      return V1;
6702    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6703    // the instruction selector will not match, so get a canonical MOVL with
6704    // swapped operands to undo the commute.
6705    return getMOVL(DAG, dl, VT, V2, V1);
6706  }
6707
6708  if (X86::isUNPCKLMask(SVOp))
6709    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6710
6711  if (X86::isUNPCKHMask(SVOp))
6712    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6713
6714  if (V2IsSplat) {
6715    // Normalize mask so all entries that point to V2 points to its first
6716    // element then try to match unpck{h|l} again. If match, return a
6717    // new vector_shuffle with the corrected mask.
6718    SDValue NewMask = NormalizeMask(SVOp, DAG);
6719    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6720    if (NSVOp != SVOp) {
6721      if (X86::isUNPCKLMask(NSVOp, true)) {
6722        return NewMask;
6723      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6724        return NewMask;
6725      }
6726    }
6727  }
6728
6729  if (Commuted) {
6730    // Commute is back and try unpck* again.
6731    // FIXME: this seems wrong.
6732    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6733    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6734
6735    if (X86::isUNPCKLMask(NewSVOp))
6736      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6737
6738    if (X86::isUNPCKHMask(NewSVOp))
6739      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6740  }
6741
6742  // Normalize the node to match x86 shuffle ops if needed
6743  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6744    return CommuteVectorShuffle(SVOp, DAG);
6745
6746  // The checks below are all present in isShuffleMaskLegal, but they are
6747  // inlined here right now to enable us to directly emit target specific
6748  // nodes, and remove one by one until they don't return Op anymore.
6749  SmallVector<int, 16> M;
6750  SVOp->getMask(M);
6751
6752  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
6753    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6754                                X86::getShufflePALIGNRImmediate(SVOp),
6755                                DAG);
6756
6757  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6758      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6759    if (VT == MVT::v2f64)
6760      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6761    if (VT == MVT::v2i64)
6762      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6763  }
6764
6765  if (isPSHUFHWMask(M, VT))
6766    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6767                                X86::getShufflePSHUFHWImmediate(SVOp),
6768                                DAG);
6769
6770  if (isPSHUFLWMask(M, VT))
6771    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6772                                X86::getShufflePSHUFLWImmediate(SVOp),
6773                                DAG);
6774
6775  if (isSHUFPMask(M, VT))
6776    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6777                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6778
6779  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6780    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6781  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6782    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6783
6784  //===--------------------------------------------------------------------===//
6785  // Generate target specific nodes for 128 or 256-bit shuffles only
6786  // supported in the AVX instruction set.
6787  //
6788
6789  // Handle VMOVDDUPY permutations
6790  if (isMOVDDUPYMask(SVOp, Subtarget))
6791    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6792
6793  // Handle VPERMILPS* permutations
6794  if (isVPERMILPSMask(M, VT, Subtarget))
6795    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6796                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6797
6798  // Handle VPERMILPD* permutations
6799  if (isVPERMILPDMask(M, VT, Subtarget))
6800    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6801                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6802
6803  // Handle VPERM2F128 permutations
6804  if (isVPERM2F128Mask(M, VT, Subtarget))
6805    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6806                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6807
6808  // Handle VSHUFPSY permutations
6809  if (isVSHUFPSYMask(M, VT, Subtarget))
6810    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6811                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6812
6813  // Handle VSHUFPDY permutations
6814  if (isVSHUFPDYMask(M, VT, Subtarget))
6815    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6816                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6817
6818  //===--------------------------------------------------------------------===//
6819  // Since no target specific shuffle was selected for this generic one,
6820  // lower it into other known shuffles. FIXME: this isn't true yet, but
6821  // this is the plan.
6822  //
6823
6824  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6825  if (VT == MVT::v8i16) {
6826    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6827    if (NewOp.getNode())
6828      return NewOp;
6829  }
6830
6831  if (VT == MVT::v16i8) {
6832    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6833    if (NewOp.getNode())
6834      return NewOp;
6835  }
6836
6837  // Handle all 128-bit wide vectors with 4 elements, and match them with
6838  // several different shuffle types.
6839  if (NumElems == 4 && VT.getSizeInBits() == 128)
6840    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6841
6842  // Handle general 256-bit shuffles
6843  if (VT.is256BitVector())
6844    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6845
6846  return SDValue();
6847}
6848
6849SDValue
6850X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6851                                                SelectionDAG &DAG) const {
6852  EVT VT = Op.getValueType();
6853  DebugLoc dl = Op.getDebugLoc();
6854
6855  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6856    return SDValue();
6857
6858  if (VT.getSizeInBits() == 8) {
6859    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6860                                    Op.getOperand(0), Op.getOperand(1));
6861    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6862                                    DAG.getValueType(VT));
6863    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6864  } else if (VT.getSizeInBits() == 16) {
6865    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6866    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6867    if (Idx == 0)
6868      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6869                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6870                                     DAG.getNode(ISD::BITCAST, dl,
6871                                                 MVT::v4i32,
6872                                                 Op.getOperand(0)),
6873                                     Op.getOperand(1)));
6874    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6875                                    Op.getOperand(0), Op.getOperand(1));
6876    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6877                                    DAG.getValueType(VT));
6878    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6879  } else if (VT == MVT::f32) {
6880    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6881    // the result back to FR32 register. It's only worth matching if the
6882    // result has a single use which is a store or a bitcast to i32.  And in
6883    // the case of a store, it's not worth it if the index is a constant 0,
6884    // because a MOVSSmr can be used instead, which is smaller and faster.
6885    if (!Op.hasOneUse())
6886      return SDValue();
6887    SDNode *User = *Op.getNode()->use_begin();
6888    if ((User->getOpcode() != ISD::STORE ||
6889         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6890          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6891        (User->getOpcode() != ISD::BITCAST ||
6892         User->getValueType(0) != MVT::i32))
6893      return SDValue();
6894    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6895                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6896                                              Op.getOperand(0)),
6897                                              Op.getOperand(1));
6898    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6899  } else if (VT == MVT::i32) {
6900    // ExtractPS works with constant index.
6901    if (isa<ConstantSDNode>(Op.getOperand(1)))
6902      return Op;
6903  }
6904  return SDValue();
6905}
6906
6907
6908SDValue
6909X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6910                                           SelectionDAG &DAG) const {
6911  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6912    return SDValue();
6913
6914  SDValue Vec = Op.getOperand(0);
6915  EVT VecVT = Vec.getValueType();
6916
6917  // If this is a 256-bit vector result, first extract the 128-bit vector and
6918  // then extract the element from the 128-bit vector.
6919  if (VecVT.getSizeInBits() == 256) {
6920    DebugLoc dl = Op.getNode()->getDebugLoc();
6921    unsigned NumElems = VecVT.getVectorNumElements();
6922    SDValue Idx = Op.getOperand(1);
6923    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6924
6925    // Get the 128-bit vector.
6926    bool Upper = IdxVal >= NumElems/2;
6927    Vec = Extract128BitVector(Vec,
6928                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6929
6930    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6931                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6932  }
6933
6934  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6935
6936  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6937    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6938    if (Res.getNode())
6939      return Res;
6940  }
6941
6942  EVT VT = Op.getValueType();
6943  DebugLoc dl = Op.getDebugLoc();
6944  // TODO: handle v16i8.
6945  if (VT.getSizeInBits() == 16) {
6946    SDValue Vec = Op.getOperand(0);
6947    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6948    if (Idx == 0)
6949      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6950                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6951                                     DAG.getNode(ISD::BITCAST, dl,
6952                                                 MVT::v4i32, Vec),
6953                                     Op.getOperand(1)));
6954    // Transform it so it match pextrw which produces a 32-bit result.
6955    EVT EltVT = MVT::i32;
6956    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6957                                    Op.getOperand(0), Op.getOperand(1));
6958    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6959                                    DAG.getValueType(VT));
6960    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6961  } else if (VT.getSizeInBits() == 32) {
6962    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6963    if (Idx == 0)
6964      return Op;
6965
6966    // SHUFPS the element to the lowest double word, then movss.
6967    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6968    EVT VVT = Op.getOperand(0).getValueType();
6969    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6970                                       DAG.getUNDEF(VVT), Mask);
6971    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6972                       DAG.getIntPtrConstant(0));
6973  } else if (VT.getSizeInBits() == 64) {
6974    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6975    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6976    //        to match extract_elt for f64.
6977    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6978    if (Idx == 0)
6979      return Op;
6980
6981    // UNPCKHPD the element to the lowest double word, then movsd.
6982    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6983    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6984    int Mask[2] = { 1, -1 };
6985    EVT VVT = Op.getOperand(0).getValueType();
6986    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6987                                       DAG.getUNDEF(VVT), Mask);
6988    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6989                       DAG.getIntPtrConstant(0));
6990  }
6991
6992  return SDValue();
6993}
6994
6995SDValue
6996X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6997                                               SelectionDAG &DAG) const {
6998  EVT VT = Op.getValueType();
6999  EVT EltVT = VT.getVectorElementType();
7000  DebugLoc dl = Op.getDebugLoc();
7001
7002  SDValue N0 = Op.getOperand(0);
7003  SDValue N1 = Op.getOperand(1);
7004  SDValue N2 = Op.getOperand(2);
7005
7006  if (VT.getSizeInBits() == 256)
7007    return SDValue();
7008
7009  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7010      isa<ConstantSDNode>(N2)) {
7011    unsigned Opc;
7012    if (VT == MVT::v8i16)
7013      Opc = X86ISD::PINSRW;
7014    else if (VT == MVT::v16i8)
7015      Opc = X86ISD::PINSRB;
7016    else
7017      Opc = X86ISD::PINSRB;
7018
7019    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7020    // argument.
7021    if (N1.getValueType() != MVT::i32)
7022      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7023    if (N2.getValueType() != MVT::i32)
7024      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7025    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7026  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7027    // Bits [7:6] of the constant are the source select.  This will always be
7028    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7029    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7030    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7031    // Bits [5:4] of the constant are the destination select.  This is the
7032    //  value of the incoming immediate.
7033    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7034    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7035    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7036    // Create this as a scalar to vector..
7037    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7038    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7039  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
7040    // PINSR* works with constant index.
7041    return Op;
7042  }
7043  return SDValue();
7044}
7045
7046SDValue
7047X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7048  EVT VT = Op.getValueType();
7049  EVT EltVT = VT.getVectorElementType();
7050
7051  DebugLoc dl = Op.getDebugLoc();
7052  SDValue N0 = Op.getOperand(0);
7053  SDValue N1 = Op.getOperand(1);
7054  SDValue N2 = Op.getOperand(2);
7055
7056  // If this is a 256-bit vector result, first extract the 128-bit vector,
7057  // insert the element into the extracted half and then place it back.
7058  if (VT.getSizeInBits() == 256) {
7059    if (!isa<ConstantSDNode>(N2))
7060      return SDValue();
7061
7062    // Get the desired 128-bit vector half.
7063    unsigned NumElems = VT.getVectorNumElements();
7064    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7065    bool Upper = IdxVal >= NumElems/2;
7066    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7067    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7068
7069    // Insert the element into the desired half.
7070    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7071                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7072
7073    // Insert the changed part back to the 256-bit vector
7074    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7075  }
7076
7077  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7078    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7079
7080  if (EltVT == MVT::i8)
7081    return SDValue();
7082
7083  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7084    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7085    // as its second argument.
7086    if (N1.getValueType() != MVT::i32)
7087      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7088    if (N2.getValueType() != MVT::i32)
7089      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7090    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7091  }
7092  return SDValue();
7093}
7094
7095SDValue
7096X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7097  LLVMContext *Context = DAG.getContext();
7098  DebugLoc dl = Op.getDebugLoc();
7099  EVT OpVT = Op.getValueType();
7100
7101  // If this is a 256-bit vector result, first insert into a 128-bit
7102  // vector and then insert into the 256-bit vector.
7103  if (OpVT.getSizeInBits() > 128) {
7104    // Insert into a 128-bit vector.
7105    EVT VT128 = EVT::getVectorVT(*Context,
7106                                 OpVT.getVectorElementType(),
7107                                 OpVT.getVectorNumElements() / 2);
7108
7109    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7110
7111    // Insert the 128-bit vector.
7112    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7113                              DAG.getConstant(0, MVT::i32),
7114                              DAG, dl);
7115  }
7116
7117  if (Op.getValueType() == MVT::v1i64 &&
7118      Op.getOperand(0).getValueType() == MVT::i64)
7119    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7120
7121  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7122  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7123         "Expected an SSE type!");
7124  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7125                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7126}
7127
7128// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7129// a simple subregister reference or explicit instructions to grab
7130// upper bits of a vector.
7131SDValue
7132X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7133  if (Subtarget->hasAVX()) {
7134    DebugLoc dl = Op.getNode()->getDebugLoc();
7135    SDValue Vec = Op.getNode()->getOperand(0);
7136    SDValue Idx = Op.getNode()->getOperand(1);
7137
7138    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7139        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7140        return Extract128BitVector(Vec, Idx, DAG, dl);
7141    }
7142  }
7143  return SDValue();
7144}
7145
7146// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7147// simple superregister reference or explicit instructions to insert
7148// the upper bits of a vector.
7149SDValue
7150X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7151  if (Subtarget->hasAVX()) {
7152    DebugLoc dl = Op.getNode()->getDebugLoc();
7153    SDValue Vec = Op.getNode()->getOperand(0);
7154    SDValue SubVec = Op.getNode()->getOperand(1);
7155    SDValue Idx = Op.getNode()->getOperand(2);
7156
7157    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7158        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7159      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7160    }
7161  }
7162  return SDValue();
7163}
7164
7165// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7166// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7167// one of the above mentioned nodes. It has to be wrapped because otherwise
7168// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7169// be used to form addressing mode. These wrapped nodes will be selected
7170// into MOV32ri.
7171SDValue
7172X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7173  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7174
7175  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7176  // global base reg.
7177  unsigned char OpFlag = 0;
7178  unsigned WrapperKind = X86ISD::Wrapper;
7179  CodeModel::Model M = getTargetMachine().getCodeModel();
7180
7181  if (Subtarget->isPICStyleRIPRel() &&
7182      (M == CodeModel::Small || M == CodeModel::Kernel))
7183    WrapperKind = X86ISD::WrapperRIP;
7184  else if (Subtarget->isPICStyleGOT())
7185    OpFlag = X86II::MO_GOTOFF;
7186  else if (Subtarget->isPICStyleStubPIC())
7187    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7188
7189  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7190                                             CP->getAlignment(),
7191                                             CP->getOffset(), OpFlag);
7192  DebugLoc DL = CP->getDebugLoc();
7193  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7194  // With PIC, the address is actually $g + Offset.
7195  if (OpFlag) {
7196    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7197                         DAG.getNode(X86ISD::GlobalBaseReg,
7198                                     DebugLoc(), getPointerTy()),
7199                         Result);
7200  }
7201
7202  return Result;
7203}
7204
7205SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7206  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7207
7208  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7209  // global base reg.
7210  unsigned char OpFlag = 0;
7211  unsigned WrapperKind = X86ISD::Wrapper;
7212  CodeModel::Model M = getTargetMachine().getCodeModel();
7213
7214  if (Subtarget->isPICStyleRIPRel() &&
7215      (M == CodeModel::Small || M == CodeModel::Kernel))
7216    WrapperKind = X86ISD::WrapperRIP;
7217  else if (Subtarget->isPICStyleGOT())
7218    OpFlag = X86II::MO_GOTOFF;
7219  else if (Subtarget->isPICStyleStubPIC())
7220    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7221
7222  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7223                                          OpFlag);
7224  DebugLoc DL = JT->getDebugLoc();
7225  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7226
7227  // With PIC, the address is actually $g + Offset.
7228  if (OpFlag)
7229    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7230                         DAG.getNode(X86ISD::GlobalBaseReg,
7231                                     DebugLoc(), getPointerTy()),
7232                         Result);
7233
7234  return Result;
7235}
7236
7237SDValue
7238X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7239  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7240
7241  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7242  // global base reg.
7243  unsigned char OpFlag = 0;
7244  unsigned WrapperKind = X86ISD::Wrapper;
7245  CodeModel::Model M = getTargetMachine().getCodeModel();
7246
7247  if (Subtarget->isPICStyleRIPRel() &&
7248      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7249    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7250      OpFlag = X86II::MO_GOTPCREL;
7251    WrapperKind = X86ISD::WrapperRIP;
7252  } else if (Subtarget->isPICStyleGOT()) {
7253    OpFlag = X86II::MO_GOT;
7254  } else if (Subtarget->isPICStyleStubPIC()) {
7255    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7256  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7257    OpFlag = X86II::MO_DARWIN_NONLAZY;
7258  }
7259
7260  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7261
7262  DebugLoc DL = Op.getDebugLoc();
7263  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7264
7265
7266  // With PIC, the address is actually $g + Offset.
7267  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7268      !Subtarget->is64Bit()) {
7269    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7270                         DAG.getNode(X86ISD::GlobalBaseReg,
7271                                     DebugLoc(), getPointerTy()),
7272                         Result);
7273  }
7274
7275  // For symbols that require a load from a stub to get the address, emit the
7276  // load.
7277  if (isGlobalStubReference(OpFlag))
7278    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7279                         MachinePointerInfo::getGOT(), false, false, 0);
7280
7281  return Result;
7282}
7283
7284SDValue
7285X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7286  // Create the TargetBlockAddressAddress node.
7287  unsigned char OpFlags =
7288    Subtarget->ClassifyBlockAddressReference();
7289  CodeModel::Model M = getTargetMachine().getCodeModel();
7290  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7291  DebugLoc dl = Op.getDebugLoc();
7292  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7293                                       /*isTarget=*/true, OpFlags);
7294
7295  if (Subtarget->isPICStyleRIPRel() &&
7296      (M == CodeModel::Small || M == CodeModel::Kernel))
7297    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7298  else
7299    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7300
7301  // With PIC, the address is actually $g + Offset.
7302  if (isGlobalRelativeToPICBase(OpFlags)) {
7303    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7304                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7305                         Result);
7306  }
7307
7308  return Result;
7309}
7310
7311SDValue
7312X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7313                                      int64_t Offset,
7314                                      SelectionDAG &DAG) const {
7315  // Create the TargetGlobalAddress node, folding in the constant
7316  // offset if it is legal.
7317  unsigned char OpFlags =
7318    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7319  CodeModel::Model M = getTargetMachine().getCodeModel();
7320  SDValue Result;
7321  if (OpFlags == X86II::MO_NO_FLAG &&
7322      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7323    // A direct static reference to a global.
7324    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7325    Offset = 0;
7326  } else {
7327    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7328  }
7329
7330  if (Subtarget->isPICStyleRIPRel() &&
7331      (M == CodeModel::Small || M == CodeModel::Kernel))
7332    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7333  else
7334    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7335
7336  // With PIC, the address is actually $g + Offset.
7337  if (isGlobalRelativeToPICBase(OpFlags)) {
7338    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7339                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7340                         Result);
7341  }
7342
7343  // For globals that require a load from a stub to get the address, emit the
7344  // load.
7345  if (isGlobalStubReference(OpFlags))
7346    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7347                         MachinePointerInfo::getGOT(), false, false, 0);
7348
7349  // If there was a non-zero offset that we didn't fold, create an explicit
7350  // addition for it.
7351  if (Offset != 0)
7352    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7353                         DAG.getConstant(Offset, getPointerTy()));
7354
7355  return Result;
7356}
7357
7358SDValue
7359X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7360  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7361  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7362  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7363}
7364
7365static SDValue
7366GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7367           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7368           unsigned char OperandFlags) {
7369  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7370  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7371  DebugLoc dl = GA->getDebugLoc();
7372  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7373                                           GA->getValueType(0),
7374                                           GA->getOffset(),
7375                                           OperandFlags);
7376  if (InFlag) {
7377    SDValue Ops[] = { Chain,  TGA, *InFlag };
7378    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7379  } else {
7380    SDValue Ops[]  = { Chain, TGA };
7381    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7382  }
7383
7384  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7385  MFI->setAdjustsStack(true);
7386
7387  SDValue Flag = Chain.getValue(1);
7388  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7389}
7390
7391// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7392static SDValue
7393LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7394                                const EVT PtrVT) {
7395  SDValue InFlag;
7396  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7397  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7398                                     DAG.getNode(X86ISD::GlobalBaseReg,
7399                                                 DebugLoc(), PtrVT), InFlag);
7400  InFlag = Chain.getValue(1);
7401
7402  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7403}
7404
7405// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7406static SDValue
7407LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7408                                const EVT PtrVT) {
7409  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7410                    X86::RAX, X86II::MO_TLSGD);
7411}
7412
7413// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7414// "local exec" model.
7415static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7416                                   const EVT PtrVT, TLSModel::Model model,
7417                                   bool is64Bit) {
7418  DebugLoc dl = GA->getDebugLoc();
7419
7420  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7421  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7422                                                         is64Bit ? 257 : 256));
7423
7424  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7425                                      DAG.getIntPtrConstant(0),
7426                                      MachinePointerInfo(Ptr), false, false, 0);
7427
7428  unsigned char OperandFlags = 0;
7429  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7430  // initialexec.
7431  unsigned WrapperKind = X86ISD::Wrapper;
7432  if (model == TLSModel::LocalExec) {
7433    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7434  } else if (is64Bit) {
7435    assert(model == TLSModel::InitialExec);
7436    OperandFlags = X86II::MO_GOTTPOFF;
7437    WrapperKind = X86ISD::WrapperRIP;
7438  } else {
7439    assert(model == TLSModel::InitialExec);
7440    OperandFlags = X86II::MO_INDNTPOFF;
7441  }
7442
7443  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7444  // exec)
7445  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7446                                           GA->getValueType(0),
7447                                           GA->getOffset(), OperandFlags);
7448  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7449
7450  if (model == TLSModel::InitialExec)
7451    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7452                         MachinePointerInfo::getGOT(), false, false, 0);
7453
7454  // The address of the thread local variable is the add of the thread
7455  // pointer with the offset of the variable.
7456  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7457}
7458
7459SDValue
7460X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7461
7462  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7463  const GlobalValue *GV = GA->getGlobal();
7464
7465  if (Subtarget->isTargetELF()) {
7466    // TODO: implement the "local dynamic" model
7467    // TODO: implement the "initial exec"model for pic executables
7468
7469    // If GV is an alias then use the aliasee for determining
7470    // thread-localness.
7471    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7472      GV = GA->resolveAliasedGlobal(false);
7473
7474    TLSModel::Model model
7475      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7476
7477    switch (model) {
7478      case TLSModel::GeneralDynamic:
7479      case TLSModel::LocalDynamic: // not implemented
7480        if (Subtarget->is64Bit())
7481          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7482        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7483
7484      case TLSModel::InitialExec:
7485      case TLSModel::LocalExec:
7486        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7487                                   Subtarget->is64Bit());
7488    }
7489  } else if (Subtarget->isTargetDarwin()) {
7490    // Darwin only has one model of TLS.  Lower to that.
7491    unsigned char OpFlag = 0;
7492    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7493                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7494
7495    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7496    // global base reg.
7497    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7498                  !Subtarget->is64Bit();
7499    if (PIC32)
7500      OpFlag = X86II::MO_TLVP_PIC_BASE;
7501    else
7502      OpFlag = X86II::MO_TLVP;
7503    DebugLoc DL = Op.getDebugLoc();
7504    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7505                                                GA->getValueType(0),
7506                                                GA->getOffset(), OpFlag);
7507    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7508
7509    // With PIC32, the address is actually $g + Offset.
7510    if (PIC32)
7511      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7512                           DAG.getNode(X86ISD::GlobalBaseReg,
7513                                       DebugLoc(), getPointerTy()),
7514                           Offset);
7515
7516    // Lowering the machine isd will make sure everything is in the right
7517    // location.
7518    SDValue Chain = DAG.getEntryNode();
7519    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7520    SDValue Args[] = { Chain, Offset };
7521    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7522
7523    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7524    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7525    MFI->setAdjustsStack(true);
7526
7527    // And our return value (tls address) is in the standard call return value
7528    // location.
7529    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7530    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7531                              Chain.getValue(1));
7532  }
7533
7534  assert(false &&
7535         "TLS not implemented for this target.");
7536
7537  llvm_unreachable("Unreachable");
7538  return SDValue();
7539}
7540
7541
7542/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7543/// take a 2 x i32 value to shift plus a shift amount.
7544SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7545  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7546  EVT VT = Op.getValueType();
7547  unsigned VTBits = VT.getSizeInBits();
7548  DebugLoc dl = Op.getDebugLoc();
7549  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7550  SDValue ShOpLo = Op.getOperand(0);
7551  SDValue ShOpHi = Op.getOperand(1);
7552  SDValue ShAmt  = Op.getOperand(2);
7553  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7554                                     DAG.getConstant(VTBits - 1, MVT::i8))
7555                       : DAG.getConstant(0, VT);
7556
7557  SDValue Tmp2, Tmp3;
7558  if (Op.getOpcode() == ISD::SHL_PARTS) {
7559    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7560    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7561  } else {
7562    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7563    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7564  }
7565
7566  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7567                                DAG.getConstant(VTBits, MVT::i8));
7568  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7569                             AndNode, DAG.getConstant(0, MVT::i8));
7570
7571  SDValue Hi, Lo;
7572  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7573  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7574  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7575
7576  if (Op.getOpcode() == ISD::SHL_PARTS) {
7577    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7578    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7579  } else {
7580    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7581    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7582  }
7583
7584  SDValue Ops[2] = { Lo, Hi };
7585  return DAG.getMergeValues(Ops, 2, dl);
7586}
7587
7588SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7589                                           SelectionDAG &DAG) const {
7590  EVT SrcVT = Op.getOperand(0).getValueType();
7591
7592  if (SrcVT.isVector())
7593    return SDValue();
7594
7595  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7596         "Unknown SINT_TO_FP to lower!");
7597
7598  // These are really Legal; return the operand so the caller accepts it as
7599  // Legal.
7600  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7601    return Op;
7602  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7603      Subtarget->is64Bit()) {
7604    return Op;
7605  }
7606
7607  DebugLoc dl = Op.getDebugLoc();
7608  unsigned Size = SrcVT.getSizeInBits()/8;
7609  MachineFunction &MF = DAG.getMachineFunction();
7610  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7611  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7612  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7613                               StackSlot,
7614                               MachinePointerInfo::getFixedStack(SSFI),
7615                               false, false, 0);
7616  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7617}
7618
7619SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7620                                     SDValue StackSlot,
7621                                     SelectionDAG &DAG) const {
7622  // Build the FILD
7623  DebugLoc DL = Op.getDebugLoc();
7624  SDVTList Tys;
7625  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7626  if (useSSE)
7627    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7628  else
7629    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7630
7631  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7632
7633  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7634  MachineMemOperand *MMO;
7635  if (FI) {
7636    int SSFI = FI->getIndex();
7637    MMO =
7638      DAG.getMachineFunction()
7639      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7640                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7641  } else {
7642    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7643    StackSlot = StackSlot.getOperand(1);
7644  }
7645  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7646  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7647                                           X86ISD::FILD, DL,
7648                                           Tys, Ops, array_lengthof(Ops),
7649                                           SrcVT, MMO);
7650
7651  if (useSSE) {
7652    Chain = Result.getValue(1);
7653    SDValue InFlag = Result.getValue(2);
7654
7655    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7656    // shouldn't be necessary except that RFP cannot be live across
7657    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7658    MachineFunction &MF = DAG.getMachineFunction();
7659    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7660    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7661    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7662    Tys = DAG.getVTList(MVT::Other);
7663    SDValue Ops[] = {
7664      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7665    };
7666    MachineMemOperand *MMO =
7667      DAG.getMachineFunction()
7668      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7669                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7670
7671    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7672                                    Ops, array_lengthof(Ops),
7673                                    Op.getValueType(), MMO);
7674    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7675                         MachinePointerInfo::getFixedStack(SSFI),
7676                         false, false, 0);
7677  }
7678
7679  return Result;
7680}
7681
7682// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7683SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7684                                               SelectionDAG &DAG) const {
7685  // This algorithm is not obvious. Here it is in C code, more or less:
7686  /*
7687    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7688      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7689      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7690
7691      // Copy ints to xmm registers.
7692      __m128i xh = _mm_cvtsi32_si128( hi );
7693      __m128i xl = _mm_cvtsi32_si128( lo );
7694
7695      // Combine into low half of a single xmm register.
7696      __m128i x = _mm_unpacklo_epi32( xh, xl );
7697      __m128d d;
7698      double sd;
7699
7700      // Merge in appropriate exponents to give the integer bits the right
7701      // magnitude.
7702      x = _mm_unpacklo_epi32( x, exp );
7703
7704      // Subtract away the biases to deal with the IEEE-754 double precision
7705      // implicit 1.
7706      d = _mm_sub_pd( (__m128d) x, bias );
7707
7708      // All conversions up to here are exact. The correctly rounded result is
7709      // calculated using the current rounding mode using the following
7710      // horizontal add.
7711      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7712      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7713                                // store doesn't really need to be here (except
7714                                // maybe to zero the other double)
7715      return sd;
7716    }
7717  */
7718
7719  DebugLoc dl = Op.getDebugLoc();
7720  LLVMContext *Context = DAG.getContext();
7721
7722  // Build some magic constants.
7723  std::vector<Constant*> CV0;
7724  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7725  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7726  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7727  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7728  Constant *C0 = ConstantVector::get(CV0);
7729  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7730
7731  std::vector<Constant*> CV1;
7732  CV1.push_back(
7733    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7734  CV1.push_back(
7735    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7736  Constant *C1 = ConstantVector::get(CV1);
7737  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7738
7739  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7740                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7741                                        Op.getOperand(0),
7742                                        DAG.getIntPtrConstant(1)));
7743  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7744                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7745                                        Op.getOperand(0),
7746                                        DAG.getIntPtrConstant(0)));
7747  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7748  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7749                              MachinePointerInfo::getConstantPool(),
7750                              false, false, 16);
7751  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7752  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7753  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7754                              MachinePointerInfo::getConstantPool(),
7755                              false, false, 16);
7756  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7757
7758  // Add the halves; easiest way is to swap them into another reg first.
7759  int ShufMask[2] = { 1, -1 };
7760  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7761                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7762  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7763  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7764                     DAG.getIntPtrConstant(0));
7765}
7766
7767// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7768SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7769                                               SelectionDAG &DAG) const {
7770  DebugLoc dl = Op.getDebugLoc();
7771  // FP constant to bias correct the final result.
7772  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7773                                   MVT::f64);
7774
7775  // Load the 32-bit value into an XMM register.
7776  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7777                             Op.getOperand(0));
7778
7779  // Zero out the upper parts of the register.
7780  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7781                                     DAG);
7782
7783  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7784                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7785                     DAG.getIntPtrConstant(0));
7786
7787  // Or the load with the bias.
7788  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7789                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7790                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7791                                                   MVT::v2f64, Load)),
7792                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7793                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7794                                                   MVT::v2f64, Bias)));
7795  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7796                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7797                   DAG.getIntPtrConstant(0));
7798
7799  // Subtract the bias.
7800  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7801
7802  // Handle final rounding.
7803  EVT DestVT = Op.getValueType();
7804
7805  if (DestVT.bitsLT(MVT::f64)) {
7806    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7807                       DAG.getIntPtrConstant(0));
7808  } else if (DestVT.bitsGT(MVT::f64)) {
7809    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7810  }
7811
7812  // Handle final rounding.
7813  return Sub;
7814}
7815
7816SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7817                                           SelectionDAG &DAG) const {
7818  SDValue N0 = Op.getOperand(0);
7819  DebugLoc dl = Op.getDebugLoc();
7820
7821  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7822  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7823  // the optimization here.
7824  if (DAG.SignBitIsZero(N0))
7825    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7826
7827  EVT SrcVT = N0.getValueType();
7828  EVT DstVT = Op.getValueType();
7829  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7830    return LowerUINT_TO_FP_i64(Op, DAG);
7831  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7832    return LowerUINT_TO_FP_i32(Op, DAG);
7833
7834  // Make a 64-bit buffer, and use it to build an FILD.
7835  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7836  if (SrcVT == MVT::i32) {
7837    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7838    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7839                                     getPointerTy(), StackSlot, WordOff);
7840    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7841                                  StackSlot, MachinePointerInfo(),
7842                                  false, false, 0);
7843    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7844                                  OffsetSlot, MachinePointerInfo(),
7845                                  false, false, 0);
7846    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7847    return Fild;
7848  }
7849
7850  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7851  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7852                                StackSlot, MachinePointerInfo(),
7853                               false, false, 0);
7854  // For i64 source, we need to add the appropriate power of 2 if the input
7855  // was negative.  This is the same as the optimization in
7856  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7857  // we must be careful to do the computation in x87 extended precision, not
7858  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7859  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7860  MachineMemOperand *MMO =
7861    DAG.getMachineFunction()
7862    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7863                          MachineMemOperand::MOLoad, 8, 8);
7864
7865  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7866  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7867  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7868                                         MVT::i64, MMO);
7869
7870  APInt FF(32, 0x5F800000ULL);
7871
7872  // Check whether the sign bit is set.
7873  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7874                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7875                                 ISD::SETLT);
7876
7877  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7878  SDValue FudgePtr = DAG.getConstantPool(
7879                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7880                                         getPointerTy());
7881
7882  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7883  SDValue Zero = DAG.getIntPtrConstant(0);
7884  SDValue Four = DAG.getIntPtrConstant(4);
7885  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7886                               Zero, Four);
7887  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7888
7889  // Load the value out, extending it from f32 to f80.
7890  // FIXME: Avoid the extend by constructing the right constant pool?
7891  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7892                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7893                                 MVT::f32, false, false, 4);
7894  // Extend everything to 80 bits to force it to be done on x87.
7895  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7896  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7897}
7898
7899std::pair<SDValue,SDValue> X86TargetLowering::
7900FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7901  DebugLoc DL = Op.getDebugLoc();
7902
7903  EVT DstTy = Op.getValueType();
7904
7905  if (!IsSigned) {
7906    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7907    DstTy = MVT::i64;
7908  }
7909
7910  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7911         DstTy.getSimpleVT() >= MVT::i16 &&
7912         "Unknown FP_TO_SINT to lower!");
7913
7914  // These are really Legal.
7915  if (DstTy == MVT::i32 &&
7916      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7917    return std::make_pair(SDValue(), SDValue());
7918  if (Subtarget->is64Bit() &&
7919      DstTy == MVT::i64 &&
7920      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7921    return std::make_pair(SDValue(), SDValue());
7922
7923  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7924  // stack slot.
7925  MachineFunction &MF = DAG.getMachineFunction();
7926  unsigned MemSize = DstTy.getSizeInBits()/8;
7927  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7928  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7929
7930
7931
7932  unsigned Opc;
7933  switch (DstTy.getSimpleVT().SimpleTy) {
7934  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7935  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7936  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7937  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7938  }
7939
7940  SDValue Chain = DAG.getEntryNode();
7941  SDValue Value = Op.getOperand(0);
7942  EVT TheVT = Op.getOperand(0).getValueType();
7943  if (isScalarFPTypeInSSEReg(TheVT)) {
7944    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7945    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7946                         MachinePointerInfo::getFixedStack(SSFI),
7947                         false, false, 0);
7948    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7949    SDValue Ops[] = {
7950      Chain, StackSlot, DAG.getValueType(TheVT)
7951    };
7952
7953    MachineMemOperand *MMO =
7954      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7955                              MachineMemOperand::MOLoad, MemSize, MemSize);
7956    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7957                                    DstTy, MMO);
7958    Chain = Value.getValue(1);
7959    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7960    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7961  }
7962
7963  MachineMemOperand *MMO =
7964    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7965                            MachineMemOperand::MOStore, MemSize, MemSize);
7966
7967  // Build the FP_TO_INT*_IN_MEM
7968  SDValue Ops[] = { Chain, Value, StackSlot };
7969  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7970                                         Ops, 3, DstTy, MMO);
7971
7972  return std::make_pair(FIST, StackSlot);
7973}
7974
7975SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7976                                           SelectionDAG &DAG) const {
7977  if (Op.getValueType().isVector())
7978    return SDValue();
7979
7980  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7981  SDValue FIST = Vals.first, StackSlot = Vals.second;
7982  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7983  if (FIST.getNode() == 0) return Op;
7984
7985  // Load the result.
7986  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7987                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7988}
7989
7990SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7991                                           SelectionDAG &DAG) const {
7992  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7993  SDValue FIST = Vals.first, StackSlot = Vals.second;
7994  assert(FIST.getNode() && "Unexpected failure");
7995
7996  // Load the result.
7997  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7998                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7999}
8000
8001SDValue X86TargetLowering::LowerFABS(SDValue Op,
8002                                     SelectionDAG &DAG) const {
8003  LLVMContext *Context = DAG.getContext();
8004  DebugLoc dl = Op.getDebugLoc();
8005  EVT VT = Op.getValueType();
8006  EVT EltVT = VT;
8007  if (VT.isVector())
8008    EltVT = VT.getVectorElementType();
8009  std::vector<Constant*> CV;
8010  if (EltVT == MVT::f64) {
8011    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8012    CV.push_back(C);
8013    CV.push_back(C);
8014  } else {
8015    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8016    CV.push_back(C);
8017    CV.push_back(C);
8018    CV.push_back(C);
8019    CV.push_back(C);
8020  }
8021  Constant *C = ConstantVector::get(CV);
8022  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8023  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8024                             MachinePointerInfo::getConstantPool(),
8025                             false, false, 16);
8026  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8027}
8028
8029SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8030  LLVMContext *Context = DAG.getContext();
8031  DebugLoc dl = Op.getDebugLoc();
8032  EVT VT = Op.getValueType();
8033  EVT EltVT = VT;
8034  if (VT.isVector())
8035    EltVT = VT.getVectorElementType();
8036  std::vector<Constant*> CV;
8037  if (EltVT == MVT::f64) {
8038    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8039    CV.push_back(C);
8040    CV.push_back(C);
8041  } else {
8042    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8043    CV.push_back(C);
8044    CV.push_back(C);
8045    CV.push_back(C);
8046    CV.push_back(C);
8047  }
8048  Constant *C = ConstantVector::get(CV);
8049  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8050  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8051                             MachinePointerInfo::getConstantPool(),
8052                             false, false, 16);
8053  if (VT.isVector()) {
8054    return DAG.getNode(ISD::BITCAST, dl, VT,
8055                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8056                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8057                                Op.getOperand(0)),
8058                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8059  } else {
8060    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8061  }
8062}
8063
8064SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8065  LLVMContext *Context = DAG.getContext();
8066  SDValue Op0 = Op.getOperand(0);
8067  SDValue Op1 = Op.getOperand(1);
8068  DebugLoc dl = Op.getDebugLoc();
8069  EVT VT = Op.getValueType();
8070  EVT SrcVT = Op1.getValueType();
8071
8072  // If second operand is smaller, extend it first.
8073  if (SrcVT.bitsLT(VT)) {
8074    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8075    SrcVT = VT;
8076  }
8077  // And if it is bigger, shrink it first.
8078  if (SrcVT.bitsGT(VT)) {
8079    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8080    SrcVT = VT;
8081  }
8082
8083  // At this point the operands and the result should have the same
8084  // type, and that won't be f80 since that is not custom lowered.
8085
8086  // First get the sign bit of second operand.
8087  std::vector<Constant*> CV;
8088  if (SrcVT == MVT::f64) {
8089    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8090    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8091  } else {
8092    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8093    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8094    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8095    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8096  }
8097  Constant *C = ConstantVector::get(CV);
8098  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8099  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8100                              MachinePointerInfo::getConstantPool(),
8101                              false, false, 16);
8102  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8103
8104  // Shift sign bit right or left if the two operands have different types.
8105  if (SrcVT.bitsGT(VT)) {
8106    // Op0 is MVT::f32, Op1 is MVT::f64.
8107    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8108    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8109                          DAG.getConstant(32, MVT::i32));
8110    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8111    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8112                          DAG.getIntPtrConstant(0));
8113  }
8114
8115  // Clear first operand sign bit.
8116  CV.clear();
8117  if (VT == MVT::f64) {
8118    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8119    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8120  } else {
8121    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8122    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8123    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8124    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8125  }
8126  C = ConstantVector::get(CV);
8127  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8128  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8129                              MachinePointerInfo::getConstantPool(),
8130                              false, false, 16);
8131  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8132
8133  // Or the value with the sign bit.
8134  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8135}
8136
8137SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8138  SDValue N0 = Op.getOperand(0);
8139  DebugLoc dl = Op.getDebugLoc();
8140  EVT VT = Op.getValueType();
8141
8142  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8143  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8144                                  DAG.getConstant(1, VT));
8145  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8146}
8147
8148/// Emit nodes that will be selected as "test Op0,Op0", or something
8149/// equivalent.
8150SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8151                                    SelectionDAG &DAG) const {
8152  DebugLoc dl = Op.getDebugLoc();
8153
8154  // CF and OF aren't always set the way we want. Determine which
8155  // of these we need.
8156  bool NeedCF = false;
8157  bool NeedOF = false;
8158  switch (X86CC) {
8159  default: break;
8160  case X86::COND_A: case X86::COND_AE:
8161  case X86::COND_B: case X86::COND_BE:
8162    NeedCF = true;
8163    break;
8164  case X86::COND_G: case X86::COND_GE:
8165  case X86::COND_L: case X86::COND_LE:
8166  case X86::COND_O: case X86::COND_NO:
8167    NeedOF = true;
8168    break;
8169  }
8170
8171  // See if we can use the EFLAGS value from the operand instead of
8172  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8173  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8174  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8175    // Emit a CMP with 0, which is the TEST pattern.
8176    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8177                       DAG.getConstant(0, Op.getValueType()));
8178
8179  unsigned Opcode = 0;
8180  unsigned NumOperands = 0;
8181  switch (Op.getNode()->getOpcode()) {
8182  case ISD::ADD:
8183    // Due to an isel shortcoming, be conservative if this add is likely to be
8184    // selected as part of a load-modify-store instruction. When the root node
8185    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8186    // uses of other nodes in the match, such as the ADD in this case. This
8187    // leads to the ADD being left around and reselected, with the result being
8188    // two adds in the output.  Alas, even if none our users are stores, that
8189    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8190    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8191    // climbing the DAG back to the root, and it doesn't seem to be worth the
8192    // effort.
8193    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8194           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8195      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8196        goto default_case;
8197
8198    if (ConstantSDNode *C =
8199        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8200      // An add of one will be selected as an INC.
8201      if (C->getAPIntValue() == 1) {
8202        Opcode = X86ISD::INC;
8203        NumOperands = 1;
8204        break;
8205      }
8206
8207      // An add of negative one (subtract of one) will be selected as a DEC.
8208      if (C->getAPIntValue().isAllOnesValue()) {
8209        Opcode = X86ISD::DEC;
8210        NumOperands = 1;
8211        break;
8212      }
8213    }
8214
8215    // Otherwise use a regular EFLAGS-setting add.
8216    Opcode = X86ISD::ADD;
8217    NumOperands = 2;
8218    break;
8219  case ISD::AND: {
8220    // If the primary and result isn't used, don't bother using X86ISD::AND,
8221    // because a TEST instruction will be better.
8222    bool NonFlagUse = false;
8223    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8224           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8225      SDNode *User = *UI;
8226      unsigned UOpNo = UI.getOperandNo();
8227      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8228        // Look pass truncate.
8229        UOpNo = User->use_begin().getOperandNo();
8230        User = *User->use_begin();
8231      }
8232
8233      if (User->getOpcode() != ISD::BRCOND &&
8234          User->getOpcode() != ISD::SETCC &&
8235          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8236        NonFlagUse = true;
8237        break;
8238      }
8239    }
8240
8241    if (!NonFlagUse)
8242      break;
8243  }
8244    // FALL THROUGH
8245  case ISD::SUB:
8246  case ISD::OR:
8247  case ISD::XOR:
8248    // Due to the ISEL shortcoming noted above, be conservative if this op is
8249    // likely to be selected as part of a load-modify-store instruction.
8250    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8251           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8252      if (UI->getOpcode() == ISD::STORE)
8253        goto default_case;
8254
8255    // Otherwise use a regular EFLAGS-setting instruction.
8256    switch (Op.getNode()->getOpcode()) {
8257    default: llvm_unreachable("unexpected operator!");
8258    case ISD::SUB: Opcode = X86ISD::SUB; break;
8259    case ISD::OR:  Opcode = X86ISD::OR;  break;
8260    case ISD::XOR: Opcode = X86ISD::XOR; break;
8261    case ISD::AND: Opcode = X86ISD::AND; break;
8262    }
8263
8264    NumOperands = 2;
8265    break;
8266  case X86ISD::ADD:
8267  case X86ISD::SUB:
8268  case X86ISD::INC:
8269  case X86ISD::DEC:
8270  case X86ISD::OR:
8271  case X86ISD::XOR:
8272  case X86ISD::AND:
8273    return SDValue(Op.getNode(), 1);
8274  default:
8275  default_case:
8276    break;
8277  }
8278
8279  if (Opcode == 0)
8280    // Emit a CMP with 0, which is the TEST pattern.
8281    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8282                       DAG.getConstant(0, Op.getValueType()));
8283
8284  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8285  SmallVector<SDValue, 4> Ops;
8286  for (unsigned i = 0; i != NumOperands; ++i)
8287    Ops.push_back(Op.getOperand(i));
8288
8289  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8290  DAG.ReplaceAllUsesWith(Op, New);
8291  return SDValue(New.getNode(), 1);
8292}
8293
8294/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8295/// equivalent.
8296SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8297                                   SelectionDAG &DAG) const {
8298  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8299    if (C->getAPIntValue() == 0)
8300      return EmitTest(Op0, X86CC, DAG);
8301
8302  DebugLoc dl = Op0.getDebugLoc();
8303  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8304}
8305
8306/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8307/// if it's possible.
8308SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8309                                     DebugLoc dl, SelectionDAG &DAG) const {
8310  SDValue Op0 = And.getOperand(0);
8311  SDValue Op1 = And.getOperand(1);
8312  if (Op0.getOpcode() == ISD::TRUNCATE)
8313    Op0 = Op0.getOperand(0);
8314  if (Op1.getOpcode() == ISD::TRUNCATE)
8315    Op1 = Op1.getOperand(0);
8316
8317  SDValue LHS, RHS;
8318  if (Op1.getOpcode() == ISD::SHL)
8319    std::swap(Op0, Op1);
8320  if (Op0.getOpcode() == ISD::SHL) {
8321    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8322      if (And00C->getZExtValue() == 1) {
8323        // If we looked past a truncate, check that it's only truncating away
8324        // known zeros.
8325        unsigned BitWidth = Op0.getValueSizeInBits();
8326        unsigned AndBitWidth = And.getValueSizeInBits();
8327        if (BitWidth > AndBitWidth) {
8328          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8329          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8330          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8331            return SDValue();
8332        }
8333        LHS = Op1;
8334        RHS = Op0.getOperand(1);
8335      }
8336  } else if (Op1.getOpcode() == ISD::Constant) {
8337    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8338    SDValue AndLHS = Op0;
8339    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8340      LHS = AndLHS.getOperand(0);
8341      RHS = AndLHS.getOperand(1);
8342    }
8343  }
8344
8345  if (LHS.getNode()) {
8346    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8347    // instruction.  Since the shift amount is in-range-or-undefined, we know
8348    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8349    // the encoding for the i16 version is larger than the i32 version.
8350    // Also promote i16 to i32 for performance / code size reason.
8351    if (LHS.getValueType() == MVT::i8 ||
8352        LHS.getValueType() == MVT::i16)
8353      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8354
8355    // If the operand types disagree, extend the shift amount to match.  Since
8356    // BT ignores high bits (like shifts) we can use anyextend.
8357    if (LHS.getValueType() != RHS.getValueType())
8358      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8359
8360    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8361    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8362    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8363                       DAG.getConstant(Cond, MVT::i8), BT);
8364  }
8365
8366  return SDValue();
8367}
8368
8369SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8370
8371  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8372
8373  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8374  SDValue Op0 = Op.getOperand(0);
8375  SDValue Op1 = Op.getOperand(1);
8376  DebugLoc dl = Op.getDebugLoc();
8377  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8378
8379  // Optimize to BT if possible.
8380  // Lower (X & (1 << N)) == 0 to BT(X, N).
8381  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8382  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8383  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8384      Op1.getOpcode() == ISD::Constant &&
8385      cast<ConstantSDNode>(Op1)->isNullValue() &&
8386      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8387    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8388    if (NewSetCC.getNode())
8389      return NewSetCC;
8390  }
8391
8392  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8393  // these.
8394  if (Op1.getOpcode() == ISD::Constant &&
8395      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8396       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8397      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8398
8399    // If the input is a setcc, then reuse the input setcc or use a new one with
8400    // the inverted condition.
8401    if (Op0.getOpcode() == X86ISD::SETCC) {
8402      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8403      bool Invert = (CC == ISD::SETNE) ^
8404        cast<ConstantSDNode>(Op1)->isNullValue();
8405      if (!Invert) return Op0;
8406
8407      CCode = X86::GetOppositeBranchCondition(CCode);
8408      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8409                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8410    }
8411  }
8412
8413  bool isFP = Op1.getValueType().isFloatingPoint();
8414  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8415  if (X86CC == X86::COND_INVALID)
8416    return SDValue();
8417
8418  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8419  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8420                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8421}
8422
8423// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8424// ones, and then concatenate the result back.
8425static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8426  EVT VT = Op.getValueType();
8427
8428  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8429         "Unsupported value type for operation");
8430
8431  int NumElems = VT.getVectorNumElements();
8432  DebugLoc dl = Op.getDebugLoc();
8433  SDValue CC = Op.getOperand(2);
8434  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8435  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8436
8437  // Extract the LHS vectors
8438  SDValue LHS = Op.getOperand(0);
8439  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8440  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8441
8442  // Extract the RHS vectors
8443  SDValue RHS = Op.getOperand(1);
8444  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8445  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8446
8447  // Issue the operation on the smaller types and concatenate the result back
8448  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8449  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8450  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8451                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8452                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8453}
8454
8455
8456SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8457  SDValue Cond;
8458  SDValue Op0 = Op.getOperand(0);
8459  SDValue Op1 = Op.getOperand(1);
8460  SDValue CC = Op.getOperand(2);
8461  EVT VT = Op.getValueType();
8462  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8463  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8464  DebugLoc dl = Op.getDebugLoc();
8465
8466  if (isFP) {
8467    unsigned SSECC = 8;
8468    EVT EltVT = Op0.getValueType().getVectorElementType();
8469    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8470
8471    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8472    bool Swap = false;
8473
8474    // SSE Condition code mapping:
8475    //  0 - EQ
8476    //  1 - LT
8477    //  2 - LE
8478    //  3 - UNORD
8479    //  4 - NEQ
8480    //  5 - NLT
8481    //  6 - NLE
8482    //  7 - ORD
8483    switch (SetCCOpcode) {
8484    default: break;
8485    case ISD::SETOEQ:
8486    case ISD::SETEQ:  SSECC = 0; break;
8487    case ISD::SETOGT:
8488    case ISD::SETGT: Swap = true; // Fallthrough
8489    case ISD::SETLT:
8490    case ISD::SETOLT: SSECC = 1; break;
8491    case ISD::SETOGE:
8492    case ISD::SETGE: Swap = true; // Fallthrough
8493    case ISD::SETLE:
8494    case ISD::SETOLE: SSECC = 2; break;
8495    case ISD::SETUO:  SSECC = 3; break;
8496    case ISD::SETUNE:
8497    case ISD::SETNE:  SSECC = 4; break;
8498    case ISD::SETULE: Swap = true;
8499    case ISD::SETUGE: SSECC = 5; break;
8500    case ISD::SETULT: Swap = true;
8501    case ISD::SETUGT: SSECC = 6; break;
8502    case ISD::SETO:   SSECC = 7; break;
8503    }
8504    if (Swap)
8505      std::swap(Op0, Op1);
8506
8507    // In the two special cases we can't handle, emit two comparisons.
8508    if (SSECC == 8) {
8509      if (SetCCOpcode == ISD::SETUEQ) {
8510        SDValue UNORD, EQ;
8511        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8512        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8513        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8514      }
8515      else if (SetCCOpcode == ISD::SETONE) {
8516        SDValue ORD, NEQ;
8517        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8518        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8519        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8520      }
8521      llvm_unreachable("Illegal FP comparison");
8522    }
8523    // Handle all other FP comparisons here.
8524    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8525  }
8526
8527  // Break 256-bit integer vector compare into smaller ones.
8528  if (!isFP && VT.getSizeInBits() == 256)
8529    return Lower256IntVSETCC(Op, DAG);
8530
8531  // We are handling one of the integer comparisons here.  Since SSE only has
8532  // GT and EQ comparisons for integer, swapping operands and multiple
8533  // operations may be required for some comparisons.
8534  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8535  bool Swap = false, Invert = false, FlipSigns = false;
8536
8537  switch (VT.getSimpleVT().SimpleTy) {
8538  default: break;
8539  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8540  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8541  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8542  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8543  }
8544
8545  switch (SetCCOpcode) {
8546  default: break;
8547  case ISD::SETNE:  Invert = true;
8548  case ISD::SETEQ:  Opc = EQOpc; break;
8549  case ISD::SETLT:  Swap = true;
8550  case ISD::SETGT:  Opc = GTOpc; break;
8551  case ISD::SETGE:  Swap = true;
8552  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8553  case ISD::SETULT: Swap = true;
8554  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8555  case ISD::SETUGE: Swap = true;
8556  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8557  }
8558  if (Swap)
8559    std::swap(Op0, Op1);
8560
8561  // Check that the operation in question is available (most are plain SSE2,
8562  // but PCMPGTQ and PCMPEQQ have different requirements).
8563  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
8564    return SDValue();
8565  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
8566    return SDValue();
8567
8568  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8569  // bits of the inputs before performing those operations.
8570  if (FlipSigns) {
8571    EVT EltVT = VT.getVectorElementType();
8572    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8573                                      EltVT);
8574    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8575    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8576                                    SignBits.size());
8577    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8578    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8579  }
8580
8581  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8582
8583  // If the logical-not of the result is required, perform that now.
8584  if (Invert)
8585    Result = DAG.getNOT(dl, Result, VT);
8586
8587  return Result;
8588}
8589
8590// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8591static bool isX86LogicalCmp(SDValue Op) {
8592  unsigned Opc = Op.getNode()->getOpcode();
8593  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8594    return true;
8595  if (Op.getResNo() == 1 &&
8596      (Opc == X86ISD::ADD ||
8597       Opc == X86ISD::SUB ||
8598       Opc == X86ISD::ADC ||
8599       Opc == X86ISD::SBB ||
8600       Opc == X86ISD::SMUL ||
8601       Opc == X86ISD::UMUL ||
8602       Opc == X86ISD::INC ||
8603       Opc == X86ISD::DEC ||
8604       Opc == X86ISD::OR ||
8605       Opc == X86ISD::XOR ||
8606       Opc == X86ISD::AND))
8607    return true;
8608
8609  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8610    return true;
8611
8612  return false;
8613}
8614
8615static bool isZero(SDValue V) {
8616  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8617  return C && C->isNullValue();
8618}
8619
8620static bool isAllOnes(SDValue V) {
8621  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8622  return C && C->isAllOnesValue();
8623}
8624
8625SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8626  bool addTest = true;
8627  SDValue Cond  = Op.getOperand(0);
8628  SDValue Op1 = Op.getOperand(1);
8629  SDValue Op2 = Op.getOperand(2);
8630  DebugLoc DL = Op.getDebugLoc();
8631  SDValue CC;
8632
8633  if (Cond.getOpcode() == ISD::SETCC) {
8634    SDValue NewCond = LowerSETCC(Cond, DAG);
8635    if (NewCond.getNode())
8636      Cond = NewCond;
8637  }
8638
8639  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8640  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8641  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8642  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8643  if (Cond.getOpcode() == X86ISD::SETCC &&
8644      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8645      isZero(Cond.getOperand(1).getOperand(1))) {
8646    SDValue Cmp = Cond.getOperand(1);
8647
8648    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8649
8650    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8651        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8652      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8653
8654      SDValue CmpOp0 = Cmp.getOperand(0);
8655      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8656                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8657
8658      SDValue Res =   // Res = 0 or -1.
8659        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8660                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8661
8662      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8663        Res = DAG.getNOT(DL, Res, Res.getValueType());
8664
8665      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8666      if (N2C == 0 || !N2C->isNullValue())
8667        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8668      return Res;
8669    }
8670  }
8671
8672  // Look past (and (setcc_carry (cmp ...)), 1).
8673  if (Cond.getOpcode() == ISD::AND &&
8674      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8675    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8676    if (C && C->getAPIntValue() == 1)
8677      Cond = Cond.getOperand(0);
8678  }
8679
8680  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8681  // setting operand in place of the X86ISD::SETCC.
8682  if (Cond.getOpcode() == X86ISD::SETCC ||
8683      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8684    CC = Cond.getOperand(0);
8685
8686    SDValue Cmp = Cond.getOperand(1);
8687    unsigned Opc = Cmp.getOpcode();
8688    EVT VT = Op.getValueType();
8689
8690    bool IllegalFPCMov = false;
8691    if (VT.isFloatingPoint() && !VT.isVector() &&
8692        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8693      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8694
8695    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8696        Opc == X86ISD::BT) { // FIXME
8697      Cond = Cmp;
8698      addTest = false;
8699    }
8700  }
8701
8702  if (addTest) {
8703    // Look pass the truncate.
8704    if (Cond.getOpcode() == ISD::TRUNCATE)
8705      Cond = Cond.getOperand(0);
8706
8707    // We know the result of AND is compared against zero. Try to match
8708    // it to BT.
8709    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8710      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8711      if (NewSetCC.getNode()) {
8712        CC = NewSetCC.getOperand(0);
8713        Cond = NewSetCC.getOperand(1);
8714        addTest = false;
8715      }
8716    }
8717  }
8718
8719  if (addTest) {
8720    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8721    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8722  }
8723
8724  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8725  // a <  b ?  0 : -1 -> RES = setcc_carry
8726  // a >= b ? -1 :  0 -> RES = setcc_carry
8727  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8728  if (Cond.getOpcode() == X86ISD::CMP) {
8729    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8730
8731    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8732        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8733      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8734                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8735      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8736        return DAG.getNOT(DL, Res, Res.getValueType());
8737      return Res;
8738    }
8739  }
8740
8741  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8742  // condition is true.
8743  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8744  SDValue Ops[] = { Op2, Op1, CC, Cond };
8745  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8746}
8747
8748// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8749// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8750// from the AND / OR.
8751static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8752  Opc = Op.getOpcode();
8753  if (Opc != ISD::OR && Opc != ISD::AND)
8754    return false;
8755  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8756          Op.getOperand(0).hasOneUse() &&
8757          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8758          Op.getOperand(1).hasOneUse());
8759}
8760
8761// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8762// 1 and that the SETCC node has a single use.
8763static bool isXor1OfSetCC(SDValue Op) {
8764  if (Op.getOpcode() != ISD::XOR)
8765    return false;
8766  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8767  if (N1C && N1C->getAPIntValue() == 1) {
8768    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8769      Op.getOperand(0).hasOneUse();
8770  }
8771  return false;
8772}
8773
8774SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8775  bool addTest = true;
8776  SDValue Chain = Op.getOperand(0);
8777  SDValue Cond  = Op.getOperand(1);
8778  SDValue Dest  = Op.getOperand(2);
8779  DebugLoc dl = Op.getDebugLoc();
8780  SDValue CC;
8781
8782  if (Cond.getOpcode() == ISD::SETCC) {
8783    SDValue NewCond = LowerSETCC(Cond, DAG);
8784    if (NewCond.getNode())
8785      Cond = NewCond;
8786  }
8787#if 0
8788  // FIXME: LowerXALUO doesn't handle these!!
8789  else if (Cond.getOpcode() == X86ISD::ADD  ||
8790           Cond.getOpcode() == X86ISD::SUB  ||
8791           Cond.getOpcode() == X86ISD::SMUL ||
8792           Cond.getOpcode() == X86ISD::UMUL)
8793    Cond = LowerXALUO(Cond, DAG);
8794#endif
8795
8796  // Look pass (and (setcc_carry (cmp ...)), 1).
8797  if (Cond.getOpcode() == ISD::AND &&
8798      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8799    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8800    if (C && C->getAPIntValue() == 1)
8801      Cond = Cond.getOperand(0);
8802  }
8803
8804  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8805  // setting operand in place of the X86ISD::SETCC.
8806  if (Cond.getOpcode() == X86ISD::SETCC ||
8807      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8808    CC = Cond.getOperand(0);
8809
8810    SDValue Cmp = Cond.getOperand(1);
8811    unsigned Opc = Cmp.getOpcode();
8812    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8813    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8814      Cond = Cmp;
8815      addTest = false;
8816    } else {
8817      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8818      default: break;
8819      case X86::COND_O:
8820      case X86::COND_B:
8821        // These can only come from an arithmetic instruction with overflow,
8822        // e.g. SADDO, UADDO.
8823        Cond = Cond.getNode()->getOperand(1);
8824        addTest = false;
8825        break;
8826      }
8827    }
8828  } else {
8829    unsigned CondOpc;
8830    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8831      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8832      if (CondOpc == ISD::OR) {
8833        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8834        // two branches instead of an explicit OR instruction with a
8835        // separate test.
8836        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8837            isX86LogicalCmp(Cmp)) {
8838          CC = Cond.getOperand(0).getOperand(0);
8839          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8840                              Chain, Dest, CC, Cmp);
8841          CC = Cond.getOperand(1).getOperand(0);
8842          Cond = Cmp;
8843          addTest = false;
8844        }
8845      } else { // ISD::AND
8846        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8847        // two branches instead of an explicit AND instruction with a
8848        // separate test. However, we only do this if this block doesn't
8849        // have a fall-through edge, because this requires an explicit
8850        // jmp when the condition is false.
8851        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8852            isX86LogicalCmp(Cmp) &&
8853            Op.getNode()->hasOneUse()) {
8854          X86::CondCode CCode =
8855            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8856          CCode = X86::GetOppositeBranchCondition(CCode);
8857          CC = DAG.getConstant(CCode, MVT::i8);
8858          SDNode *User = *Op.getNode()->use_begin();
8859          // Look for an unconditional branch following this conditional branch.
8860          // We need this because we need to reverse the successors in order
8861          // to implement FCMP_OEQ.
8862          if (User->getOpcode() == ISD::BR) {
8863            SDValue FalseBB = User->getOperand(1);
8864            SDNode *NewBR =
8865              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8866            assert(NewBR == User);
8867            (void)NewBR;
8868            Dest = FalseBB;
8869
8870            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8871                                Chain, Dest, CC, Cmp);
8872            X86::CondCode CCode =
8873              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8874            CCode = X86::GetOppositeBranchCondition(CCode);
8875            CC = DAG.getConstant(CCode, MVT::i8);
8876            Cond = Cmp;
8877            addTest = false;
8878          }
8879        }
8880      }
8881    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8882      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8883      // It should be transformed during dag combiner except when the condition
8884      // is set by a arithmetics with overflow node.
8885      X86::CondCode CCode =
8886        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8887      CCode = X86::GetOppositeBranchCondition(CCode);
8888      CC = DAG.getConstant(CCode, MVT::i8);
8889      Cond = Cond.getOperand(0).getOperand(1);
8890      addTest = false;
8891    }
8892  }
8893
8894  if (addTest) {
8895    // Look pass the truncate.
8896    if (Cond.getOpcode() == ISD::TRUNCATE)
8897      Cond = Cond.getOperand(0);
8898
8899    // We know the result of AND is compared against zero. Try to match
8900    // it to BT.
8901    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8902      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8903      if (NewSetCC.getNode()) {
8904        CC = NewSetCC.getOperand(0);
8905        Cond = NewSetCC.getOperand(1);
8906        addTest = false;
8907      }
8908    }
8909  }
8910
8911  if (addTest) {
8912    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8913    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8914  }
8915  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8916                     Chain, Dest, CC, Cond);
8917}
8918
8919
8920// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8921// Calls to _alloca is needed to probe the stack when allocating more than 4k
8922// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8923// that the guard pages used by the OS virtual memory manager are allocated in
8924// correct sequence.
8925SDValue
8926X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8927                                           SelectionDAG &DAG) const {
8928  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8929          EnableSegmentedStacks) &&
8930         "This should be used only on Windows targets or when segmented stacks "
8931         "are being used");
8932  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8933  DebugLoc dl = Op.getDebugLoc();
8934
8935  // Get the inputs.
8936  SDValue Chain = Op.getOperand(0);
8937  SDValue Size  = Op.getOperand(1);
8938  // FIXME: Ensure alignment here
8939
8940  bool Is64Bit = Subtarget->is64Bit();
8941  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8942
8943  if (EnableSegmentedStacks) {
8944    MachineFunction &MF = DAG.getMachineFunction();
8945    MachineRegisterInfo &MRI = MF.getRegInfo();
8946
8947    if (Is64Bit) {
8948      // The 64 bit implementation of segmented stacks needs to clobber both r10
8949      // r11. This makes it impossible to use it along with nested parameters.
8950      const Function *F = MF.getFunction();
8951
8952      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8953           I != E; I++)
8954        if (I->hasNestAttr())
8955          report_fatal_error("Cannot use segmented stacks with functions that "
8956                             "have nested arguments.");
8957    }
8958
8959    const TargetRegisterClass *AddrRegClass =
8960      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8961    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8962    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8963    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8964                                DAG.getRegister(Vreg, SPTy));
8965    SDValue Ops1[2] = { Value, Chain };
8966    return DAG.getMergeValues(Ops1, 2, dl);
8967  } else {
8968    SDValue Flag;
8969    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8970
8971    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8972    Flag = Chain.getValue(1);
8973    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8974
8975    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8976    Flag = Chain.getValue(1);
8977
8978    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8979
8980    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8981    return DAG.getMergeValues(Ops1, 2, dl);
8982  }
8983}
8984
8985SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8986  MachineFunction &MF = DAG.getMachineFunction();
8987  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8988
8989  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8990  DebugLoc DL = Op.getDebugLoc();
8991
8992  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8993    // vastart just stores the address of the VarArgsFrameIndex slot into the
8994    // memory location argument.
8995    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8996                                   getPointerTy());
8997    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8998                        MachinePointerInfo(SV), false, false, 0);
8999  }
9000
9001  // __va_list_tag:
9002  //   gp_offset         (0 - 6 * 8)
9003  //   fp_offset         (48 - 48 + 8 * 16)
9004  //   overflow_arg_area (point to parameters coming in memory).
9005  //   reg_save_area
9006  SmallVector<SDValue, 8> MemOps;
9007  SDValue FIN = Op.getOperand(1);
9008  // Store gp_offset
9009  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9010                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9011                                               MVT::i32),
9012                               FIN, MachinePointerInfo(SV), false, false, 0);
9013  MemOps.push_back(Store);
9014
9015  // Store fp_offset
9016  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9017                    FIN, DAG.getIntPtrConstant(4));
9018  Store = DAG.getStore(Op.getOperand(0), DL,
9019                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9020                                       MVT::i32),
9021                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9022  MemOps.push_back(Store);
9023
9024  // Store ptr to overflow_arg_area
9025  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9026                    FIN, DAG.getIntPtrConstant(4));
9027  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9028                                    getPointerTy());
9029  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9030                       MachinePointerInfo(SV, 8),
9031                       false, false, 0);
9032  MemOps.push_back(Store);
9033
9034  // Store ptr to reg_save_area.
9035  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9036                    FIN, DAG.getIntPtrConstant(8));
9037  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9038                                    getPointerTy());
9039  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9040                       MachinePointerInfo(SV, 16), false, false, 0);
9041  MemOps.push_back(Store);
9042  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9043                     &MemOps[0], MemOps.size());
9044}
9045
9046SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9047  assert(Subtarget->is64Bit() &&
9048         "LowerVAARG only handles 64-bit va_arg!");
9049  assert((Subtarget->isTargetLinux() ||
9050          Subtarget->isTargetDarwin()) &&
9051          "Unhandled target in LowerVAARG");
9052  assert(Op.getNode()->getNumOperands() == 4);
9053  SDValue Chain = Op.getOperand(0);
9054  SDValue SrcPtr = Op.getOperand(1);
9055  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9056  unsigned Align = Op.getConstantOperandVal(3);
9057  DebugLoc dl = Op.getDebugLoc();
9058
9059  EVT ArgVT = Op.getNode()->getValueType(0);
9060  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9061  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9062  uint8_t ArgMode;
9063
9064  // Decide which area this value should be read from.
9065  // TODO: Implement the AMD64 ABI in its entirety. This simple
9066  // selection mechanism works only for the basic types.
9067  if (ArgVT == MVT::f80) {
9068    llvm_unreachable("va_arg for f80 not yet implemented");
9069  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9070    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9071  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9072    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9073  } else {
9074    llvm_unreachable("Unhandled argument type in LowerVAARG");
9075  }
9076
9077  if (ArgMode == 2) {
9078    // Sanity Check: Make sure using fp_offset makes sense.
9079    assert(!UseSoftFloat &&
9080           !(DAG.getMachineFunction()
9081                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9082           Subtarget->hasXMM());
9083  }
9084
9085  // Insert VAARG_64 node into the DAG
9086  // VAARG_64 returns two values: Variable Argument Address, Chain
9087  SmallVector<SDValue, 11> InstOps;
9088  InstOps.push_back(Chain);
9089  InstOps.push_back(SrcPtr);
9090  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9091  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9092  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9093  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9094  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9095                                          VTs, &InstOps[0], InstOps.size(),
9096                                          MVT::i64,
9097                                          MachinePointerInfo(SV),
9098                                          /*Align=*/0,
9099                                          /*Volatile=*/false,
9100                                          /*ReadMem=*/true,
9101                                          /*WriteMem=*/true);
9102  Chain = VAARG.getValue(1);
9103
9104  // Load the next argument and return it
9105  return DAG.getLoad(ArgVT, dl,
9106                     Chain,
9107                     VAARG,
9108                     MachinePointerInfo(),
9109                     false, false, 0);
9110}
9111
9112SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9113  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9114  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9115  SDValue Chain = Op.getOperand(0);
9116  SDValue DstPtr = Op.getOperand(1);
9117  SDValue SrcPtr = Op.getOperand(2);
9118  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9119  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9120  DebugLoc DL = Op.getDebugLoc();
9121
9122  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9123                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9124                       false,
9125                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9126}
9127
9128SDValue
9129X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9130  DebugLoc dl = Op.getDebugLoc();
9131  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9132  switch (IntNo) {
9133  default: return SDValue();    // Don't custom lower most intrinsics.
9134  // Comparison intrinsics.
9135  case Intrinsic::x86_sse_comieq_ss:
9136  case Intrinsic::x86_sse_comilt_ss:
9137  case Intrinsic::x86_sse_comile_ss:
9138  case Intrinsic::x86_sse_comigt_ss:
9139  case Intrinsic::x86_sse_comige_ss:
9140  case Intrinsic::x86_sse_comineq_ss:
9141  case Intrinsic::x86_sse_ucomieq_ss:
9142  case Intrinsic::x86_sse_ucomilt_ss:
9143  case Intrinsic::x86_sse_ucomile_ss:
9144  case Intrinsic::x86_sse_ucomigt_ss:
9145  case Intrinsic::x86_sse_ucomige_ss:
9146  case Intrinsic::x86_sse_ucomineq_ss:
9147  case Intrinsic::x86_sse2_comieq_sd:
9148  case Intrinsic::x86_sse2_comilt_sd:
9149  case Intrinsic::x86_sse2_comile_sd:
9150  case Intrinsic::x86_sse2_comigt_sd:
9151  case Intrinsic::x86_sse2_comige_sd:
9152  case Intrinsic::x86_sse2_comineq_sd:
9153  case Intrinsic::x86_sse2_ucomieq_sd:
9154  case Intrinsic::x86_sse2_ucomilt_sd:
9155  case Intrinsic::x86_sse2_ucomile_sd:
9156  case Intrinsic::x86_sse2_ucomigt_sd:
9157  case Intrinsic::x86_sse2_ucomige_sd:
9158  case Intrinsic::x86_sse2_ucomineq_sd: {
9159    unsigned Opc = 0;
9160    ISD::CondCode CC = ISD::SETCC_INVALID;
9161    switch (IntNo) {
9162    default: break;
9163    case Intrinsic::x86_sse_comieq_ss:
9164    case Intrinsic::x86_sse2_comieq_sd:
9165      Opc = X86ISD::COMI;
9166      CC = ISD::SETEQ;
9167      break;
9168    case Intrinsic::x86_sse_comilt_ss:
9169    case Intrinsic::x86_sse2_comilt_sd:
9170      Opc = X86ISD::COMI;
9171      CC = ISD::SETLT;
9172      break;
9173    case Intrinsic::x86_sse_comile_ss:
9174    case Intrinsic::x86_sse2_comile_sd:
9175      Opc = X86ISD::COMI;
9176      CC = ISD::SETLE;
9177      break;
9178    case Intrinsic::x86_sse_comigt_ss:
9179    case Intrinsic::x86_sse2_comigt_sd:
9180      Opc = X86ISD::COMI;
9181      CC = ISD::SETGT;
9182      break;
9183    case Intrinsic::x86_sse_comige_ss:
9184    case Intrinsic::x86_sse2_comige_sd:
9185      Opc = X86ISD::COMI;
9186      CC = ISD::SETGE;
9187      break;
9188    case Intrinsic::x86_sse_comineq_ss:
9189    case Intrinsic::x86_sse2_comineq_sd:
9190      Opc = X86ISD::COMI;
9191      CC = ISD::SETNE;
9192      break;
9193    case Intrinsic::x86_sse_ucomieq_ss:
9194    case Intrinsic::x86_sse2_ucomieq_sd:
9195      Opc = X86ISD::UCOMI;
9196      CC = ISD::SETEQ;
9197      break;
9198    case Intrinsic::x86_sse_ucomilt_ss:
9199    case Intrinsic::x86_sse2_ucomilt_sd:
9200      Opc = X86ISD::UCOMI;
9201      CC = ISD::SETLT;
9202      break;
9203    case Intrinsic::x86_sse_ucomile_ss:
9204    case Intrinsic::x86_sse2_ucomile_sd:
9205      Opc = X86ISD::UCOMI;
9206      CC = ISD::SETLE;
9207      break;
9208    case Intrinsic::x86_sse_ucomigt_ss:
9209    case Intrinsic::x86_sse2_ucomigt_sd:
9210      Opc = X86ISD::UCOMI;
9211      CC = ISD::SETGT;
9212      break;
9213    case Intrinsic::x86_sse_ucomige_ss:
9214    case Intrinsic::x86_sse2_ucomige_sd:
9215      Opc = X86ISD::UCOMI;
9216      CC = ISD::SETGE;
9217      break;
9218    case Intrinsic::x86_sse_ucomineq_ss:
9219    case Intrinsic::x86_sse2_ucomineq_sd:
9220      Opc = X86ISD::UCOMI;
9221      CC = ISD::SETNE;
9222      break;
9223    }
9224
9225    SDValue LHS = Op.getOperand(1);
9226    SDValue RHS = Op.getOperand(2);
9227    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9228    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9229    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9230    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9231                                DAG.getConstant(X86CC, MVT::i8), Cond);
9232    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9233  }
9234  // Arithmetic intrinsics.
9235  case Intrinsic::x86_sse3_hadd_ps:
9236  case Intrinsic::x86_sse3_hadd_pd:
9237  case Intrinsic::x86_avx_hadd_ps_256:
9238  case Intrinsic::x86_avx_hadd_pd_256:
9239    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9240                       Op.getOperand(1), Op.getOperand(2));
9241  case Intrinsic::x86_sse3_hsub_ps:
9242  case Intrinsic::x86_sse3_hsub_pd:
9243  case Intrinsic::x86_avx_hsub_ps_256:
9244  case Intrinsic::x86_avx_hsub_pd_256:
9245    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9246                       Op.getOperand(1), Op.getOperand(2));
9247  // ptest and testp intrinsics. The intrinsic these come from are designed to
9248  // return an integer value, not just an instruction so lower it to the ptest
9249  // or testp pattern and a setcc for the result.
9250  case Intrinsic::x86_sse41_ptestz:
9251  case Intrinsic::x86_sse41_ptestc:
9252  case Intrinsic::x86_sse41_ptestnzc:
9253  case Intrinsic::x86_avx_ptestz_256:
9254  case Intrinsic::x86_avx_ptestc_256:
9255  case Intrinsic::x86_avx_ptestnzc_256:
9256  case Intrinsic::x86_avx_vtestz_ps:
9257  case Intrinsic::x86_avx_vtestc_ps:
9258  case Intrinsic::x86_avx_vtestnzc_ps:
9259  case Intrinsic::x86_avx_vtestz_pd:
9260  case Intrinsic::x86_avx_vtestc_pd:
9261  case Intrinsic::x86_avx_vtestnzc_pd:
9262  case Intrinsic::x86_avx_vtestz_ps_256:
9263  case Intrinsic::x86_avx_vtestc_ps_256:
9264  case Intrinsic::x86_avx_vtestnzc_ps_256:
9265  case Intrinsic::x86_avx_vtestz_pd_256:
9266  case Intrinsic::x86_avx_vtestc_pd_256:
9267  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9268    bool IsTestPacked = false;
9269    unsigned X86CC = 0;
9270    switch (IntNo) {
9271    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9272    case Intrinsic::x86_avx_vtestz_ps:
9273    case Intrinsic::x86_avx_vtestz_pd:
9274    case Intrinsic::x86_avx_vtestz_ps_256:
9275    case Intrinsic::x86_avx_vtestz_pd_256:
9276      IsTestPacked = true; // Fallthrough
9277    case Intrinsic::x86_sse41_ptestz:
9278    case Intrinsic::x86_avx_ptestz_256:
9279      // ZF = 1
9280      X86CC = X86::COND_E;
9281      break;
9282    case Intrinsic::x86_avx_vtestc_ps:
9283    case Intrinsic::x86_avx_vtestc_pd:
9284    case Intrinsic::x86_avx_vtestc_ps_256:
9285    case Intrinsic::x86_avx_vtestc_pd_256:
9286      IsTestPacked = true; // Fallthrough
9287    case Intrinsic::x86_sse41_ptestc:
9288    case Intrinsic::x86_avx_ptestc_256:
9289      // CF = 1
9290      X86CC = X86::COND_B;
9291      break;
9292    case Intrinsic::x86_avx_vtestnzc_ps:
9293    case Intrinsic::x86_avx_vtestnzc_pd:
9294    case Intrinsic::x86_avx_vtestnzc_ps_256:
9295    case Intrinsic::x86_avx_vtestnzc_pd_256:
9296      IsTestPacked = true; // Fallthrough
9297    case Intrinsic::x86_sse41_ptestnzc:
9298    case Intrinsic::x86_avx_ptestnzc_256:
9299      // ZF and CF = 0
9300      X86CC = X86::COND_A;
9301      break;
9302    }
9303
9304    SDValue LHS = Op.getOperand(1);
9305    SDValue RHS = Op.getOperand(2);
9306    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9307    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9308    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9309    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9310    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9311  }
9312
9313  // Fix vector shift instructions where the last operand is a non-immediate
9314  // i32 value.
9315  case Intrinsic::x86_sse2_pslli_w:
9316  case Intrinsic::x86_sse2_pslli_d:
9317  case Intrinsic::x86_sse2_pslli_q:
9318  case Intrinsic::x86_sse2_psrli_w:
9319  case Intrinsic::x86_sse2_psrli_d:
9320  case Intrinsic::x86_sse2_psrli_q:
9321  case Intrinsic::x86_sse2_psrai_w:
9322  case Intrinsic::x86_sse2_psrai_d:
9323  case Intrinsic::x86_mmx_pslli_w:
9324  case Intrinsic::x86_mmx_pslli_d:
9325  case Intrinsic::x86_mmx_pslli_q:
9326  case Intrinsic::x86_mmx_psrli_w:
9327  case Intrinsic::x86_mmx_psrli_d:
9328  case Intrinsic::x86_mmx_psrli_q:
9329  case Intrinsic::x86_mmx_psrai_w:
9330  case Intrinsic::x86_mmx_psrai_d: {
9331    SDValue ShAmt = Op.getOperand(2);
9332    if (isa<ConstantSDNode>(ShAmt))
9333      return SDValue();
9334
9335    unsigned NewIntNo = 0;
9336    EVT ShAmtVT = MVT::v4i32;
9337    switch (IntNo) {
9338    case Intrinsic::x86_sse2_pslli_w:
9339      NewIntNo = Intrinsic::x86_sse2_psll_w;
9340      break;
9341    case Intrinsic::x86_sse2_pslli_d:
9342      NewIntNo = Intrinsic::x86_sse2_psll_d;
9343      break;
9344    case Intrinsic::x86_sse2_pslli_q:
9345      NewIntNo = Intrinsic::x86_sse2_psll_q;
9346      break;
9347    case Intrinsic::x86_sse2_psrli_w:
9348      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9349      break;
9350    case Intrinsic::x86_sse2_psrli_d:
9351      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9352      break;
9353    case Intrinsic::x86_sse2_psrli_q:
9354      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9355      break;
9356    case Intrinsic::x86_sse2_psrai_w:
9357      NewIntNo = Intrinsic::x86_sse2_psra_w;
9358      break;
9359    case Intrinsic::x86_sse2_psrai_d:
9360      NewIntNo = Intrinsic::x86_sse2_psra_d;
9361      break;
9362    default: {
9363      ShAmtVT = MVT::v2i32;
9364      switch (IntNo) {
9365      case Intrinsic::x86_mmx_pslli_w:
9366        NewIntNo = Intrinsic::x86_mmx_psll_w;
9367        break;
9368      case Intrinsic::x86_mmx_pslli_d:
9369        NewIntNo = Intrinsic::x86_mmx_psll_d;
9370        break;
9371      case Intrinsic::x86_mmx_pslli_q:
9372        NewIntNo = Intrinsic::x86_mmx_psll_q;
9373        break;
9374      case Intrinsic::x86_mmx_psrli_w:
9375        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9376        break;
9377      case Intrinsic::x86_mmx_psrli_d:
9378        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9379        break;
9380      case Intrinsic::x86_mmx_psrli_q:
9381        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9382        break;
9383      case Intrinsic::x86_mmx_psrai_w:
9384        NewIntNo = Intrinsic::x86_mmx_psra_w;
9385        break;
9386      case Intrinsic::x86_mmx_psrai_d:
9387        NewIntNo = Intrinsic::x86_mmx_psra_d;
9388        break;
9389      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9390      }
9391      break;
9392    }
9393    }
9394
9395    // The vector shift intrinsics with scalars uses 32b shift amounts but
9396    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9397    // to be zero.
9398    SDValue ShOps[4];
9399    ShOps[0] = ShAmt;
9400    ShOps[1] = DAG.getConstant(0, MVT::i32);
9401    if (ShAmtVT == MVT::v4i32) {
9402      ShOps[2] = DAG.getUNDEF(MVT::i32);
9403      ShOps[3] = DAG.getUNDEF(MVT::i32);
9404      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9405    } else {
9406      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9407// FIXME this must be lowered to get rid of the invalid type.
9408    }
9409
9410    EVT VT = Op.getValueType();
9411    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9412    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9413                       DAG.getConstant(NewIntNo, MVT::i32),
9414                       Op.getOperand(1), ShAmt);
9415  }
9416  }
9417}
9418
9419SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9420                                           SelectionDAG &DAG) const {
9421  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9422  MFI->setReturnAddressIsTaken(true);
9423
9424  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9425  DebugLoc dl = Op.getDebugLoc();
9426
9427  if (Depth > 0) {
9428    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9429    SDValue Offset =
9430      DAG.getConstant(TD->getPointerSize(),
9431                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9432    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9433                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9434                                   FrameAddr, Offset),
9435                       MachinePointerInfo(), false, false, 0);
9436  }
9437
9438  // Just load the return address.
9439  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9440  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9441                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9442}
9443
9444SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9445  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9446  MFI->setFrameAddressIsTaken(true);
9447
9448  EVT VT = Op.getValueType();
9449  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9450  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9451  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9452  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9453  while (Depth--)
9454    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9455                            MachinePointerInfo(),
9456                            false, false, 0);
9457  return FrameAddr;
9458}
9459
9460SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9461                                                     SelectionDAG &DAG) const {
9462  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9463}
9464
9465SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9466  MachineFunction &MF = DAG.getMachineFunction();
9467  SDValue Chain     = Op.getOperand(0);
9468  SDValue Offset    = Op.getOperand(1);
9469  SDValue Handler   = Op.getOperand(2);
9470  DebugLoc dl       = Op.getDebugLoc();
9471
9472  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9473                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9474                                     getPointerTy());
9475  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9476
9477  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9478                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9479  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9480  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9481                       false, false, 0);
9482  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9483  MF.getRegInfo().addLiveOut(StoreAddrReg);
9484
9485  return DAG.getNode(X86ISD::EH_RETURN, dl,
9486                     MVT::Other,
9487                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9488}
9489
9490SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9491                                                  SelectionDAG &DAG) const {
9492  return Op.getOperand(0);
9493}
9494
9495SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9496                                                SelectionDAG &DAG) const {
9497  SDValue Root = Op.getOperand(0);
9498  SDValue Trmp = Op.getOperand(1); // trampoline
9499  SDValue FPtr = Op.getOperand(2); // nested function
9500  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9501  DebugLoc dl  = Op.getDebugLoc();
9502
9503  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9504
9505  if (Subtarget->is64Bit()) {
9506    SDValue OutChains[6];
9507
9508    // Large code-model.
9509    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9510    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9511
9512    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9513    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9514
9515    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9516
9517    // Load the pointer to the nested function into R11.
9518    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9519    SDValue Addr = Trmp;
9520    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9521                                Addr, MachinePointerInfo(TrmpAddr),
9522                                false, false, 0);
9523
9524    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9525                       DAG.getConstant(2, MVT::i64));
9526    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9527                                MachinePointerInfo(TrmpAddr, 2),
9528                                false, false, 2);
9529
9530    // Load the 'nest' parameter value into R10.
9531    // R10 is specified in X86CallingConv.td
9532    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9533    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9534                       DAG.getConstant(10, MVT::i64));
9535    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9536                                Addr, MachinePointerInfo(TrmpAddr, 10),
9537                                false, false, 0);
9538
9539    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9540                       DAG.getConstant(12, MVT::i64));
9541    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9542                                MachinePointerInfo(TrmpAddr, 12),
9543                                false, false, 2);
9544
9545    // Jump to the nested function.
9546    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9547    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9548                       DAG.getConstant(20, MVT::i64));
9549    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9550                                Addr, MachinePointerInfo(TrmpAddr, 20),
9551                                false, false, 0);
9552
9553    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9554    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9555                       DAG.getConstant(22, MVT::i64));
9556    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9557                                MachinePointerInfo(TrmpAddr, 22),
9558                                false, false, 0);
9559
9560    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9561  } else {
9562    const Function *Func =
9563      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9564    CallingConv::ID CC = Func->getCallingConv();
9565    unsigned NestReg;
9566
9567    switch (CC) {
9568    default:
9569      llvm_unreachable("Unsupported calling convention");
9570    case CallingConv::C:
9571    case CallingConv::X86_StdCall: {
9572      // Pass 'nest' parameter in ECX.
9573      // Must be kept in sync with X86CallingConv.td
9574      NestReg = X86::ECX;
9575
9576      // Check that ECX wasn't needed by an 'inreg' parameter.
9577      FunctionType *FTy = Func->getFunctionType();
9578      const AttrListPtr &Attrs = Func->getAttributes();
9579
9580      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9581        unsigned InRegCount = 0;
9582        unsigned Idx = 1;
9583
9584        for (FunctionType::param_iterator I = FTy->param_begin(),
9585             E = FTy->param_end(); I != E; ++I, ++Idx)
9586          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9587            // FIXME: should only count parameters that are lowered to integers.
9588            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9589
9590        if (InRegCount > 2) {
9591          report_fatal_error("Nest register in use - reduce number of inreg"
9592                             " parameters!");
9593        }
9594      }
9595      break;
9596    }
9597    case CallingConv::X86_FastCall:
9598    case CallingConv::X86_ThisCall:
9599    case CallingConv::Fast:
9600      // Pass 'nest' parameter in EAX.
9601      // Must be kept in sync with X86CallingConv.td
9602      NestReg = X86::EAX;
9603      break;
9604    }
9605
9606    SDValue OutChains[4];
9607    SDValue Addr, Disp;
9608
9609    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9610                       DAG.getConstant(10, MVT::i32));
9611    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9612
9613    // This is storing the opcode for MOV32ri.
9614    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9615    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9616    OutChains[0] = DAG.getStore(Root, dl,
9617                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9618                                Trmp, MachinePointerInfo(TrmpAddr),
9619                                false, false, 0);
9620
9621    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9622                       DAG.getConstant(1, MVT::i32));
9623    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9624                                MachinePointerInfo(TrmpAddr, 1),
9625                                false, false, 1);
9626
9627    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9628    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9629                       DAG.getConstant(5, MVT::i32));
9630    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9631                                MachinePointerInfo(TrmpAddr, 5),
9632                                false, false, 1);
9633
9634    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9635                       DAG.getConstant(6, MVT::i32));
9636    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9637                                MachinePointerInfo(TrmpAddr, 6),
9638                                false, false, 1);
9639
9640    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9641  }
9642}
9643
9644SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9645                                            SelectionDAG &DAG) const {
9646  /*
9647   The rounding mode is in bits 11:10 of FPSR, and has the following
9648   settings:
9649     00 Round to nearest
9650     01 Round to -inf
9651     10 Round to +inf
9652     11 Round to 0
9653
9654  FLT_ROUNDS, on the other hand, expects the following:
9655    -1 Undefined
9656     0 Round to 0
9657     1 Round to nearest
9658     2 Round to +inf
9659     3 Round to -inf
9660
9661  To perform the conversion, we do:
9662    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9663  */
9664
9665  MachineFunction &MF = DAG.getMachineFunction();
9666  const TargetMachine &TM = MF.getTarget();
9667  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9668  unsigned StackAlignment = TFI.getStackAlignment();
9669  EVT VT = Op.getValueType();
9670  DebugLoc DL = Op.getDebugLoc();
9671
9672  // Save FP Control Word to stack slot
9673  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9674  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9675
9676
9677  MachineMemOperand *MMO =
9678   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9679                           MachineMemOperand::MOStore, 2, 2);
9680
9681  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9682  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9683                                          DAG.getVTList(MVT::Other),
9684                                          Ops, 2, MVT::i16, MMO);
9685
9686  // Load FP Control Word from stack slot
9687  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9688                            MachinePointerInfo(), false, false, 0);
9689
9690  // Transform as necessary
9691  SDValue CWD1 =
9692    DAG.getNode(ISD::SRL, DL, MVT::i16,
9693                DAG.getNode(ISD::AND, DL, MVT::i16,
9694                            CWD, DAG.getConstant(0x800, MVT::i16)),
9695                DAG.getConstant(11, MVT::i8));
9696  SDValue CWD2 =
9697    DAG.getNode(ISD::SRL, DL, MVT::i16,
9698                DAG.getNode(ISD::AND, DL, MVT::i16,
9699                            CWD, DAG.getConstant(0x400, MVT::i16)),
9700                DAG.getConstant(9, MVT::i8));
9701
9702  SDValue RetVal =
9703    DAG.getNode(ISD::AND, DL, MVT::i16,
9704                DAG.getNode(ISD::ADD, DL, MVT::i16,
9705                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9706                            DAG.getConstant(1, MVT::i16)),
9707                DAG.getConstant(3, MVT::i16));
9708
9709
9710  return DAG.getNode((VT.getSizeInBits() < 16 ?
9711                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9712}
9713
9714SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9715  EVT VT = Op.getValueType();
9716  EVT OpVT = VT;
9717  unsigned NumBits = VT.getSizeInBits();
9718  DebugLoc dl = Op.getDebugLoc();
9719
9720  Op = Op.getOperand(0);
9721  if (VT == MVT::i8) {
9722    // Zero extend to i32 since there is not an i8 bsr.
9723    OpVT = MVT::i32;
9724    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9725  }
9726
9727  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9728  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9729  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9730
9731  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9732  SDValue Ops[] = {
9733    Op,
9734    DAG.getConstant(NumBits+NumBits-1, OpVT),
9735    DAG.getConstant(X86::COND_E, MVT::i8),
9736    Op.getValue(1)
9737  };
9738  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9739
9740  // Finally xor with NumBits-1.
9741  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9742
9743  if (VT == MVT::i8)
9744    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9745  return Op;
9746}
9747
9748SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9749  EVT VT = Op.getValueType();
9750  EVT OpVT = VT;
9751  unsigned NumBits = VT.getSizeInBits();
9752  DebugLoc dl = Op.getDebugLoc();
9753
9754  Op = Op.getOperand(0);
9755  if (VT == MVT::i8) {
9756    OpVT = MVT::i32;
9757    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9758  }
9759
9760  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9761  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9762  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9763
9764  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9765  SDValue Ops[] = {
9766    Op,
9767    DAG.getConstant(NumBits, OpVT),
9768    DAG.getConstant(X86::COND_E, MVT::i8),
9769    Op.getValue(1)
9770  };
9771  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9772
9773  if (VT == MVT::i8)
9774    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9775  return Op;
9776}
9777
9778// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9779// ones, and then concatenate the result back.
9780static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9781  EVT VT = Op.getValueType();
9782
9783  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9784         "Unsupported value type for operation");
9785
9786  int NumElems = VT.getVectorNumElements();
9787  DebugLoc dl = Op.getDebugLoc();
9788  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9789  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9790
9791  // Extract the LHS vectors
9792  SDValue LHS = Op.getOperand(0);
9793  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9794  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9795
9796  // Extract the RHS vectors
9797  SDValue RHS = Op.getOperand(1);
9798  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9799  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9800
9801  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9802  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9803
9804  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9805                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9806                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9807}
9808
9809SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9810  assert(Op.getValueType().getSizeInBits() == 256 &&
9811         Op.getValueType().isInteger() &&
9812         "Only handle AVX 256-bit vector integer operation");
9813  return Lower256IntArith(Op, DAG);
9814}
9815
9816SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9817  assert(Op.getValueType().getSizeInBits() == 256 &&
9818         Op.getValueType().isInteger() &&
9819         "Only handle AVX 256-bit vector integer operation");
9820  return Lower256IntArith(Op, DAG);
9821}
9822
9823SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9824  EVT VT = Op.getValueType();
9825
9826  // Decompose 256-bit ops into smaller 128-bit ops.
9827  if (VT.getSizeInBits() == 256)
9828    return Lower256IntArith(Op, DAG);
9829
9830  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9831  DebugLoc dl = Op.getDebugLoc();
9832
9833  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9834  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9835  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9836  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9837  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9838  //
9839  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9840  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9841  //  return AloBlo + AloBhi + AhiBlo;
9842
9843  SDValue A = Op.getOperand(0);
9844  SDValue B = Op.getOperand(1);
9845
9846  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9847                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9848                       A, DAG.getConstant(32, MVT::i32));
9849  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9850                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9851                       B, DAG.getConstant(32, MVT::i32));
9852  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9853                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9854                       A, B);
9855  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9856                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9857                       A, Bhi);
9858  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9859                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9860                       Ahi, B);
9861  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9862                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9863                       AloBhi, DAG.getConstant(32, MVT::i32));
9864  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9865                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9866                       AhiBlo, DAG.getConstant(32, MVT::i32));
9867  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9868  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9869  return Res;
9870}
9871
9872SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9873
9874  EVT VT = Op.getValueType();
9875  DebugLoc dl = Op.getDebugLoc();
9876  SDValue R = Op.getOperand(0);
9877  SDValue Amt = Op.getOperand(1);
9878  LLVMContext *Context = DAG.getContext();
9879
9880  if (!Subtarget->hasXMMInt())
9881    return SDValue();
9882
9883  // Decompose 256-bit shifts into smaller 128-bit shifts.
9884  if (VT.getSizeInBits() == 256) {
9885    int NumElems = VT.getVectorNumElements();
9886    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9887    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9888
9889    // Extract the two vectors
9890    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9891    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9892                                     DAG, dl);
9893
9894    // Recreate the shift amount vectors
9895    SDValue Amt1, Amt2;
9896    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9897      // Constant shift amount
9898      SmallVector<SDValue, 4> Amt1Csts;
9899      SmallVector<SDValue, 4> Amt2Csts;
9900      for (int i = 0; i < NumElems/2; ++i)
9901        Amt1Csts.push_back(Amt->getOperand(i));
9902      for (int i = NumElems/2; i < NumElems; ++i)
9903        Amt2Csts.push_back(Amt->getOperand(i));
9904
9905      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9906                                 &Amt1Csts[0], NumElems/2);
9907      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9908                                 &Amt2Csts[0], NumElems/2);
9909    } else {
9910      // Variable shift amount
9911      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9912      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9913                                 DAG, dl);
9914    }
9915
9916    // Issue new vector shifts for the smaller types
9917    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9918    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9919
9920    // Concatenate the result back
9921    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9922  }
9923
9924  // Optimize shl/srl/sra with constant shift amount.
9925  if (isSplatVector(Amt.getNode())) {
9926    SDValue SclrAmt = Amt->getOperand(0);
9927    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9928      uint64_t ShiftAmt = C->getZExtValue();
9929
9930      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9931       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9932                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9933                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9934
9935      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9936       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9937                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9938                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9939
9940      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9941       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9942                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9943                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9944
9945      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9946       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9947                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9948                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9949
9950      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9951       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9952                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9953                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9954
9955      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9956       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9957                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9958                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9959
9960      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9961       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9962                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9963                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9964
9965      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9966       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9967                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9968                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9969    }
9970  }
9971
9972  // Lower SHL with variable shift amount.
9973  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9974    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9975                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9976                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9977
9978    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9979
9980    std::vector<Constant*> CV(4, CI);
9981    Constant *C = ConstantVector::get(CV);
9982    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9983    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9984                                 MachinePointerInfo::getConstantPool(),
9985                                 false, false, 16);
9986
9987    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9988    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9989    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9990    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9991  }
9992  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9993    // a = a << 5;
9994    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9995                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9996                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9997
9998    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9999    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
10000
10001    std::vector<Constant*> CVM1(16, CM1);
10002    std::vector<Constant*> CVM2(16, CM2);
10003    Constant *C = ConstantVector::get(CVM1);
10004    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10005    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10006                            MachinePointerInfo::getConstantPool(),
10007                            false, false, 16);
10008
10009    // r = pblendv(r, psllw(r & (char16)15, 4), a);
10010    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10011    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10012                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10013                    DAG.getConstant(4, MVT::i32));
10014    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10015    // a += a
10016    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10017
10018    C = ConstantVector::get(CVM2);
10019    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10020    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10021                    MachinePointerInfo::getConstantPool(),
10022                    false, false, 16);
10023
10024    // r = pblendv(r, psllw(r & (char16)63, 2), a);
10025    M = DAG.getNode(ISD::AND, dl, VT, R, M);
10026    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10027                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10028                    DAG.getConstant(2, MVT::i32));
10029    R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10030    // a += a
10031    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10032
10033    // return pblendv(r, r+r, a);
10034    R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10035                    R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10036    return R;
10037  }
10038  return SDValue();
10039}
10040
10041SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10042  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10043  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10044  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10045  // has only one use.
10046  SDNode *N = Op.getNode();
10047  SDValue LHS = N->getOperand(0);
10048  SDValue RHS = N->getOperand(1);
10049  unsigned BaseOp = 0;
10050  unsigned Cond = 0;
10051  DebugLoc DL = Op.getDebugLoc();
10052  switch (Op.getOpcode()) {
10053  default: llvm_unreachable("Unknown ovf instruction!");
10054  case ISD::SADDO:
10055    // A subtract of one will be selected as a INC. Note that INC doesn't
10056    // set CF, so we can't do this for UADDO.
10057    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10058      if (C->isOne()) {
10059        BaseOp = X86ISD::INC;
10060        Cond = X86::COND_O;
10061        break;
10062      }
10063    BaseOp = X86ISD::ADD;
10064    Cond = X86::COND_O;
10065    break;
10066  case ISD::UADDO:
10067    BaseOp = X86ISD::ADD;
10068    Cond = X86::COND_B;
10069    break;
10070  case ISD::SSUBO:
10071    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10072    // set CF, so we can't do this for USUBO.
10073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10074      if (C->isOne()) {
10075        BaseOp = X86ISD::DEC;
10076        Cond = X86::COND_O;
10077        break;
10078      }
10079    BaseOp = X86ISD::SUB;
10080    Cond = X86::COND_O;
10081    break;
10082  case ISD::USUBO:
10083    BaseOp = X86ISD::SUB;
10084    Cond = X86::COND_B;
10085    break;
10086  case ISD::SMULO:
10087    BaseOp = X86ISD::SMUL;
10088    Cond = X86::COND_O;
10089    break;
10090  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10091    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10092                                 MVT::i32);
10093    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10094
10095    SDValue SetCC =
10096      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10097                  DAG.getConstant(X86::COND_O, MVT::i32),
10098                  SDValue(Sum.getNode(), 2));
10099
10100    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10101  }
10102  }
10103
10104  // Also sets EFLAGS.
10105  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10106  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10107
10108  SDValue SetCC =
10109    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10110                DAG.getConstant(Cond, MVT::i32),
10111                SDValue(Sum.getNode(), 1));
10112
10113  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10114}
10115
10116SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10117  DebugLoc dl = Op.getDebugLoc();
10118  SDNode* Node = Op.getNode();
10119  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10120  EVT VT = Node->getValueType(0);
10121  if (Subtarget->hasXMMInt() && VT.isVector()) {
10122    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10123                        ExtraVT.getScalarType().getSizeInBits();
10124    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10125
10126    unsigned SHLIntrinsicsID = 0;
10127    unsigned SRAIntrinsicsID = 0;
10128    switch (VT.getSimpleVT().SimpleTy) {
10129      default:
10130        return SDValue();
10131      case MVT::v4i32: {
10132        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10133        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10134        break;
10135      }
10136      case MVT::v8i16: {
10137        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10138        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10139        break;
10140      }
10141    }
10142
10143    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10144                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10145                         Node->getOperand(0), ShAmt);
10146
10147    // In case of 1 bit sext, no need to shr
10148    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10149
10150    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10151                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10152                       Tmp1, ShAmt);
10153  }
10154
10155  return SDValue();
10156}
10157
10158
10159SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10160  DebugLoc dl = Op.getDebugLoc();
10161
10162  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10163  // There isn't any reason to disable it if the target processor supports it.
10164  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10165    SDValue Chain = Op.getOperand(0);
10166    SDValue Zero = DAG.getConstant(0, MVT::i32);
10167    SDValue Ops[] = {
10168      DAG.getRegister(X86::ESP, MVT::i32), // Base
10169      DAG.getTargetConstant(1, MVT::i8),   // Scale
10170      DAG.getRegister(0, MVT::i32),        // Index
10171      DAG.getTargetConstant(0, MVT::i32),  // Disp
10172      DAG.getRegister(0, MVT::i32),        // Segment.
10173      Zero,
10174      Chain
10175    };
10176    SDNode *Res =
10177      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10178                          array_lengthof(Ops));
10179    return SDValue(Res, 0);
10180  }
10181
10182  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10183  if (!isDev)
10184    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10185
10186  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10187  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10188  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10189  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10190
10191  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10192  if (!Op1 && !Op2 && !Op3 && Op4)
10193    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10194
10195  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10196  if (Op1 && !Op2 && !Op3 && !Op4)
10197    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10198
10199  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10200  //           (MFENCE)>;
10201  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10202}
10203
10204SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10205                                             SelectionDAG &DAG) const {
10206  DebugLoc dl = Op.getDebugLoc();
10207  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10208    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10209  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10210    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10211
10212  // The only fence that needs an instruction is a sequentially-consistent
10213  // cross-thread fence.
10214  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10215    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10216    // no-sse2). There isn't any reason to disable it if the target processor
10217    // supports it.
10218    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10219      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10220
10221    SDValue Chain = Op.getOperand(0);
10222    SDValue Zero = DAG.getConstant(0, MVT::i32);
10223    SDValue Ops[] = {
10224      DAG.getRegister(X86::ESP, MVT::i32), // Base
10225      DAG.getTargetConstant(1, MVT::i8),   // Scale
10226      DAG.getRegister(0, MVT::i32),        // Index
10227      DAG.getTargetConstant(0, MVT::i32),  // Disp
10228      DAG.getRegister(0, MVT::i32),        // Segment.
10229      Zero,
10230      Chain
10231    };
10232    SDNode *Res =
10233      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10234                         array_lengthof(Ops));
10235    return SDValue(Res, 0);
10236  }
10237
10238  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10239  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10240}
10241
10242
10243SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10244  EVT T = Op.getValueType();
10245  DebugLoc DL = Op.getDebugLoc();
10246  unsigned Reg = 0;
10247  unsigned size = 0;
10248  switch(T.getSimpleVT().SimpleTy) {
10249  default:
10250    assert(false && "Invalid value type!");
10251  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10252  case MVT::i16: Reg = X86::AX;  size = 2; break;
10253  case MVT::i32: Reg = X86::EAX; size = 4; break;
10254  case MVT::i64:
10255    assert(Subtarget->is64Bit() && "Node not type legal!");
10256    Reg = X86::RAX; size = 8;
10257    break;
10258  }
10259  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10260                                    Op.getOperand(2), SDValue());
10261  SDValue Ops[] = { cpIn.getValue(0),
10262                    Op.getOperand(1),
10263                    Op.getOperand(3),
10264                    DAG.getTargetConstant(size, MVT::i8),
10265                    cpIn.getValue(1) };
10266  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10267  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10268  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10269                                           Ops, 5, T, MMO);
10270  SDValue cpOut =
10271    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10272  return cpOut;
10273}
10274
10275SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10276                                                 SelectionDAG &DAG) const {
10277  assert(Subtarget->is64Bit() && "Result not type legalized?");
10278  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10279  SDValue TheChain = Op.getOperand(0);
10280  DebugLoc dl = Op.getDebugLoc();
10281  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10282  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10283  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10284                                   rax.getValue(2));
10285  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10286                            DAG.getConstant(32, MVT::i8));
10287  SDValue Ops[] = {
10288    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10289    rdx.getValue(1)
10290  };
10291  return DAG.getMergeValues(Ops, 2, dl);
10292}
10293
10294SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10295                                            SelectionDAG &DAG) const {
10296  EVT SrcVT = Op.getOperand(0).getValueType();
10297  EVT DstVT = Op.getValueType();
10298  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10299         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10300  assert((DstVT == MVT::i64 ||
10301          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10302         "Unexpected custom BITCAST");
10303  // i64 <=> MMX conversions are Legal.
10304  if (SrcVT==MVT::i64 && DstVT.isVector())
10305    return Op;
10306  if (DstVT==MVT::i64 && SrcVT.isVector())
10307    return Op;
10308  // MMX <=> MMX conversions are Legal.
10309  if (SrcVT.isVector() && DstVT.isVector())
10310    return Op;
10311  // All other conversions need to be expanded.
10312  return SDValue();
10313}
10314
10315SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10316  SDNode *Node = Op.getNode();
10317  DebugLoc dl = Node->getDebugLoc();
10318  EVT T = Node->getValueType(0);
10319  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10320                              DAG.getConstant(0, T), Node->getOperand(2));
10321  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10322                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10323                       Node->getOperand(0),
10324                       Node->getOperand(1), negOp,
10325                       cast<AtomicSDNode>(Node)->getSrcValue(),
10326                       cast<AtomicSDNode>(Node)->getAlignment(),
10327                       cast<AtomicSDNode>(Node)->getOrdering(),
10328                       cast<AtomicSDNode>(Node)->getSynchScope());
10329}
10330
10331static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10332  SDNode *Node = Op.getNode();
10333  DebugLoc dl = Node->getDebugLoc();
10334  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10335
10336  // Convert seq_cst store -> xchg
10337  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10338  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10339  //        (The only way to get a 16-byte store is cmpxchg16b)
10340  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10341  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10342      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10343    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10344                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10345                                 Node->getOperand(0),
10346                                 Node->getOperand(1), Node->getOperand(2),
10347                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10348                                 cast<AtomicSDNode>(Node)->getOrdering(),
10349                                 cast<AtomicSDNode>(Node)->getSynchScope());
10350    return Swap.getValue(1);
10351  }
10352  // Other atomic stores have a simple pattern.
10353  return Op;
10354}
10355
10356static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10357  EVT VT = Op.getNode()->getValueType(0);
10358
10359  // Let legalize expand this if it isn't a legal type yet.
10360  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10361    return SDValue();
10362
10363  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10364
10365  unsigned Opc;
10366  bool ExtraOp = false;
10367  switch (Op.getOpcode()) {
10368  default: assert(0 && "Invalid code");
10369  case ISD::ADDC: Opc = X86ISD::ADD; break;
10370  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10371  case ISD::SUBC: Opc = X86ISD::SUB; break;
10372  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10373  }
10374
10375  if (!ExtraOp)
10376    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10377                       Op.getOperand(1));
10378  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10379                     Op.getOperand(1), Op.getOperand(2));
10380}
10381
10382/// LowerOperation - Provide custom lowering hooks for some operations.
10383///
10384SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10385  switch (Op.getOpcode()) {
10386  default: llvm_unreachable("Should not custom lower this!");
10387  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10388  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10389  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10390  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10391  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10392  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10393  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10394  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10395  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10396  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10397  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10398  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10399  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10400  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10401  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10402  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10403  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10404  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10405  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10406  case ISD::SHL_PARTS:
10407  case ISD::SRA_PARTS:
10408  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10409  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10410  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10411  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10412  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10413  case ISD::FABS:               return LowerFABS(Op, DAG);
10414  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10415  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10416  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10417  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10418  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10419  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10420  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10421  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10422  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10423  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10424  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10425  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10426  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10427  case ISD::FRAME_TO_ARGS_OFFSET:
10428                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10429  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10430  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10431  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10432  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10433  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10434  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10435  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10436  case ISD::MUL:                return LowerMUL(Op, DAG);
10437  case ISD::SRA:
10438  case ISD::SRL:
10439  case ISD::SHL:                return LowerShift(Op, DAG);
10440  case ISD::SADDO:
10441  case ISD::UADDO:
10442  case ISD::SSUBO:
10443  case ISD::USUBO:
10444  case ISD::SMULO:
10445  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10446  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10447  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10448  case ISD::ADDC:
10449  case ISD::ADDE:
10450  case ISD::SUBC:
10451  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10452  case ISD::ADD:                return LowerADD(Op, DAG);
10453  case ISD::SUB:                return LowerSUB(Op, DAG);
10454  }
10455}
10456
10457static void ReplaceATOMIC_LOAD(SDNode *Node,
10458                                  SmallVectorImpl<SDValue> &Results,
10459                                  SelectionDAG &DAG) {
10460  DebugLoc dl = Node->getDebugLoc();
10461  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10462
10463  // Convert wide load -> cmpxchg8b/cmpxchg16b
10464  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10465  //        (The only way to get a 16-byte load is cmpxchg16b)
10466  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10467  SDValue Zero = DAG.getConstant(0, VT);
10468  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10469                               Node->getOperand(0),
10470                               Node->getOperand(1), Zero, Zero,
10471                               cast<AtomicSDNode>(Node)->getMemOperand(),
10472                               cast<AtomicSDNode>(Node)->getOrdering(),
10473                               cast<AtomicSDNode>(Node)->getSynchScope());
10474  Results.push_back(Swap.getValue(0));
10475  Results.push_back(Swap.getValue(1));
10476}
10477
10478void X86TargetLowering::
10479ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10480                        SelectionDAG &DAG, unsigned NewOp) const {
10481  DebugLoc dl = Node->getDebugLoc();
10482  assert (Node->getValueType(0) == MVT::i64 &&
10483          "Only know how to expand i64 atomics");
10484
10485  SDValue Chain = Node->getOperand(0);
10486  SDValue In1 = Node->getOperand(1);
10487  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10488                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10489  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10490                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10491  SDValue Ops[] = { Chain, In1, In2L, In2H };
10492  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10493  SDValue Result =
10494    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10495                            cast<MemSDNode>(Node)->getMemOperand());
10496  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10497  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10498  Results.push_back(Result.getValue(2));
10499}
10500
10501/// ReplaceNodeResults - Replace a node with an illegal result type
10502/// with a new node built out of custom code.
10503void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10504                                           SmallVectorImpl<SDValue>&Results,
10505                                           SelectionDAG &DAG) const {
10506  DebugLoc dl = N->getDebugLoc();
10507  switch (N->getOpcode()) {
10508  default:
10509    assert(false && "Do not know how to custom type legalize this operation!");
10510    return;
10511  case ISD::SIGN_EXTEND_INREG:
10512  case ISD::ADDC:
10513  case ISD::ADDE:
10514  case ISD::SUBC:
10515  case ISD::SUBE:
10516    // We don't want to expand or promote these.
10517    return;
10518  case ISD::FP_TO_SINT: {
10519    std::pair<SDValue,SDValue> Vals =
10520        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10521    SDValue FIST = Vals.first, StackSlot = Vals.second;
10522    if (FIST.getNode() != 0) {
10523      EVT VT = N->getValueType(0);
10524      // Return a load from the stack slot.
10525      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10526                                    MachinePointerInfo(), false, false, 0));
10527    }
10528    return;
10529  }
10530  case ISD::READCYCLECOUNTER: {
10531    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10532    SDValue TheChain = N->getOperand(0);
10533    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10534    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10535                                     rd.getValue(1));
10536    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10537                                     eax.getValue(2));
10538    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10539    SDValue Ops[] = { eax, edx };
10540    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10541    Results.push_back(edx.getValue(1));
10542    return;
10543  }
10544  case ISD::ATOMIC_CMP_SWAP: {
10545    EVT T = N->getValueType(0);
10546    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10547    bool Regs64bit = T == MVT::i128;
10548    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10549    SDValue cpInL, cpInH;
10550    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10551                        DAG.getConstant(0, HalfT));
10552    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10553                        DAG.getConstant(1, HalfT));
10554    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10555                             Regs64bit ? X86::RAX : X86::EAX,
10556                             cpInL, SDValue());
10557    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10558                             Regs64bit ? X86::RDX : X86::EDX,
10559                             cpInH, cpInL.getValue(1));
10560    SDValue swapInL, swapInH;
10561    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10562                          DAG.getConstant(0, HalfT));
10563    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10564                          DAG.getConstant(1, HalfT));
10565    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10566                               Regs64bit ? X86::RBX : X86::EBX,
10567                               swapInL, cpInH.getValue(1));
10568    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10569                               Regs64bit ? X86::RCX : X86::ECX,
10570                               swapInH, swapInL.getValue(1));
10571    SDValue Ops[] = { swapInH.getValue(0),
10572                      N->getOperand(1),
10573                      swapInH.getValue(1) };
10574    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10575    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10576    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10577                                  X86ISD::LCMPXCHG8_DAG;
10578    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10579                                             Ops, 3, T, MMO);
10580    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10581                                        Regs64bit ? X86::RAX : X86::EAX,
10582                                        HalfT, Result.getValue(1));
10583    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10584                                        Regs64bit ? X86::RDX : X86::EDX,
10585                                        HalfT, cpOutL.getValue(2));
10586    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10587    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10588    Results.push_back(cpOutH.getValue(1));
10589    return;
10590  }
10591  case ISD::ATOMIC_LOAD_ADD:
10592    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10593    return;
10594  case ISD::ATOMIC_LOAD_AND:
10595    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10596    return;
10597  case ISD::ATOMIC_LOAD_NAND:
10598    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10599    return;
10600  case ISD::ATOMIC_LOAD_OR:
10601    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10602    return;
10603  case ISD::ATOMIC_LOAD_SUB:
10604    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10605    return;
10606  case ISD::ATOMIC_LOAD_XOR:
10607    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10608    return;
10609  case ISD::ATOMIC_SWAP:
10610    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10611    return;
10612  case ISD::ATOMIC_LOAD:
10613    ReplaceATOMIC_LOAD(N, Results, DAG);
10614  }
10615}
10616
10617const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10618  switch (Opcode) {
10619  default: return NULL;
10620  case X86ISD::BSF:                return "X86ISD::BSF";
10621  case X86ISD::BSR:                return "X86ISD::BSR";
10622  case X86ISD::SHLD:               return "X86ISD::SHLD";
10623  case X86ISD::SHRD:               return "X86ISD::SHRD";
10624  case X86ISD::FAND:               return "X86ISD::FAND";
10625  case X86ISD::FOR:                return "X86ISD::FOR";
10626  case X86ISD::FXOR:               return "X86ISD::FXOR";
10627  case X86ISD::FSRL:               return "X86ISD::FSRL";
10628  case X86ISD::FILD:               return "X86ISD::FILD";
10629  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10630  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10631  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10632  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10633  case X86ISD::FLD:                return "X86ISD::FLD";
10634  case X86ISD::FST:                return "X86ISD::FST";
10635  case X86ISD::CALL:               return "X86ISD::CALL";
10636  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10637  case X86ISD::BT:                 return "X86ISD::BT";
10638  case X86ISD::CMP:                return "X86ISD::CMP";
10639  case X86ISD::COMI:               return "X86ISD::COMI";
10640  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10641  case X86ISD::SETCC:              return "X86ISD::SETCC";
10642  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10643  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10644  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10645  case X86ISD::CMOV:               return "X86ISD::CMOV";
10646  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10647  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10648  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10649  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10650  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10651  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10652  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10653  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10654  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10655  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10656  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10657  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10658  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10659  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10660  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10661  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10662  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10663  case X86ISD::FMAX:               return "X86ISD::FMAX";
10664  case X86ISD::FMIN:               return "X86ISD::FMIN";
10665  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10666  case X86ISD::FRCP:               return "X86ISD::FRCP";
10667  case X86ISD::FHADD:              return "X86ISD::FHADD";
10668  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10669  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10670  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10671  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10672  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10673  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10674  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10675  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10676  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10677  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10678  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10679  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10680  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10681  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10682  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10683  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10684  case X86ISD::VSHL:               return "X86ISD::VSHL";
10685  case X86ISD::VSRL:               return "X86ISD::VSRL";
10686  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10687  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10688  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10689  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10690  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10691  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10692  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10693  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10694  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10695  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10696  case X86ISD::ADD:                return "X86ISD::ADD";
10697  case X86ISD::SUB:                return "X86ISD::SUB";
10698  case X86ISD::ADC:                return "X86ISD::ADC";
10699  case X86ISD::SBB:                return "X86ISD::SBB";
10700  case X86ISD::SMUL:               return "X86ISD::SMUL";
10701  case X86ISD::UMUL:               return "X86ISD::UMUL";
10702  case X86ISD::INC:                return "X86ISD::INC";
10703  case X86ISD::DEC:                return "X86ISD::DEC";
10704  case X86ISD::OR:                 return "X86ISD::OR";
10705  case X86ISD::XOR:                return "X86ISD::XOR";
10706  case X86ISD::AND:                return "X86ISD::AND";
10707  case X86ISD::ANDN:               return "X86ISD::ANDN";
10708  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10709  case X86ISD::PTEST:              return "X86ISD::PTEST";
10710  case X86ISD::TESTP:              return "X86ISD::TESTP";
10711  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10712  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10713  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10714  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10715  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10716  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10717  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10718  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10719  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10720  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10721  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10722  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10723  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10724  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10725  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10726  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10727  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10728  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10729  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10730  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10731  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10732  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10733  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10734  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10735  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10736  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10737  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10738  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10739  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10740  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10741  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10742  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10743  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10744  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10745  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10746  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10747  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10748  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10749  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10750  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10751  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10752  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10753  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10754  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10755  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10756  }
10757}
10758
10759// isLegalAddressingMode - Return true if the addressing mode represented
10760// by AM is legal for this target, for a load/store of the specified type.
10761bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10762                                              Type *Ty) const {
10763  // X86 supports extremely general addressing modes.
10764  CodeModel::Model M = getTargetMachine().getCodeModel();
10765  Reloc::Model R = getTargetMachine().getRelocationModel();
10766
10767  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10768  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10769    return false;
10770
10771  if (AM.BaseGV) {
10772    unsigned GVFlags =
10773      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10774
10775    // If a reference to this global requires an extra load, we can't fold it.
10776    if (isGlobalStubReference(GVFlags))
10777      return false;
10778
10779    // If BaseGV requires a register for the PIC base, we cannot also have a
10780    // BaseReg specified.
10781    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10782      return false;
10783
10784    // If lower 4G is not available, then we must use rip-relative addressing.
10785    if ((M != CodeModel::Small || R != Reloc::Static) &&
10786        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10787      return false;
10788  }
10789
10790  switch (AM.Scale) {
10791  case 0:
10792  case 1:
10793  case 2:
10794  case 4:
10795  case 8:
10796    // These scales always work.
10797    break;
10798  case 3:
10799  case 5:
10800  case 9:
10801    // These scales are formed with basereg+scalereg.  Only accept if there is
10802    // no basereg yet.
10803    if (AM.HasBaseReg)
10804      return false;
10805    break;
10806  default:  // Other stuff never works.
10807    return false;
10808  }
10809
10810  return true;
10811}
10812
10813
10814bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10815  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10816    return false;
10817  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10818  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10819  if (NumBits1 <= NumBits2)
10820    return false;
10821  return true;
10822}
10823
10824bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10825  if (!VT1.isInteger() || !VT2.isInteger())
10826    return false;
10827  unsigned NumBits1 = VT1.getSizeInBits();
10828  unsigned NumBits2 = VT2.getSizeInBits();
10829  if (NumBits1 <= NumBits2)
10830    return false;
10831  return true;
10832}
10833
10834bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10835  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10836  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10837}
10838
10839bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10840  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10841  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10842}
10843
10844bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10845  // i16 instructions are longer (0x66 prefix) and potentially slower.
10846  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10847}
10848
10849/// isShuffleMaskLegal - Targets can use this to indicate that they only
10850/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10851/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10852/// are assumed to be legal.
10853bool
10854X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10855                                      EVT VT) const {
10856  // Very little shuffling can be done for 64-bit vectors right now.
10857  if (VT.getSizeInBits() == 64)
10858    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
10859
10860  // FIXME: pshufb, blends, shifts.
10861  return (VT.getVectorNumElements() == 2 ||
10862          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10863          isMOVLMask(M, VT) ||
10864          isSHUFPMask(M, VT) ||
10865          isPSHUFDMask(M, VT) ||
10866          isPSHUFHWMask(M, VT) ||
10867          isPSHUFLWMask(M, VT) ||
10868          isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
10869          isUNPCKLMask(M, VT) ||
10870          isUNPCKHMask(M, VT) ||
10871          isUNPCKL_v_undef_Mask(M, VT) ||
10872          isUNPCKH_v_undef_Mask(M, VT));
10873}
10874
10875bool
10876X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10877                                          EVT VT) const {
10878  unsigned NumElts = VT.getVectorNumElements();
10879  // FIXME: This collection of masks seems suspect.
10880  if (NumElts == 2)
10881    return true;
10882  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10883    return (isMOVLMask(Mask, VT)  ||
10884            isCommutedMOVLMask(Mask, VT, true) ||
10885            isSHUFPMask(Mask, VT) ||
10886            isCommutedSHUFPMask(Mask, VT));
10887  }
10888  return false;
10889}
10890
10891//===----------------------------------------------------------------------===//
10892//                           X86 Scheduler Hooks
10893//===----------------------------------------------------------------------===//
10894
10895// private utility function
10896MachineBasicBlock *
10897X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10898                                                       MachineBasicBlock *MBB,
10899                                                       unsigned regOpc,
10900                                                       unsigned immOpc,
10901                                                       unsigned LoadOpc,
10902                                                       unsigned CXchgOpc,
10903                                                       unsigned notOpc,
10904                                                       unsigned EAXreg,
10905                                                       TargetRegisterClass *RC,
10906                                                       bool invSrc) const {
10907  // For the atomic bitwise operator, we generate
10908  //   thisMBB:
10909  //   newMBB:
10910  //     ld  t1 = [bitinstr.addr]
10911  //     op  t2 = t1, [bitinstr.val]
10912  //     mov EAX = t1
10913  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10914  //     bz  newMBB
10915  //     fallthrough -->nextMBB
10916  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10917  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10918  MachineFunction::iterator MBBIter = MBB;
10919  ++MBBIter;
10920
10921  /// First build the CFG
10922  MachineFunction *F = MBB->getParent();
10923  MachineBasicBlock *thisMBB = MBB;
10924  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10925  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10926  F->insert(MBBIter, newMBB);
10927  F->insert(MBBIter, nextMBB);
10928
10929  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10930  nextMBB->splice(nextMBB->begin(), thisMBB,
10931                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10932                  thisMBB->end());
10933  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10934
10935  // Update thisMBB to fall through to newMBB
10936  thisMBB->addSuccessor(newMBB);
10937
10938  // newMBB jumps to itself and fall through to nextMBB
10939  newMBB->addSuccessor(nextMBB);
10940  newMBB->addSuccessor(newMBB);
10941
10942  // Insert instructions into newMBB based on incoming instruction
10943  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10944         "unexpected number of operands");
10945  DebugLoc dl = bInstr->getDebugLoc();
10946  MachineOperand& destOper = bInstr->getOperand(0);
10947  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10948  int numArgs = bInstr->getNumOperands() - 1;
10949  for (int i=0; i < numArgs; ++i)
10950    argOpers[i] = &bInstr->getOperand(i+1);
10951
10952  // x86 address has 4 operands: base, index, scale, and displacement
10953  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10954  int valArgIndx = lastAddrIndx + 1;
10955
10956  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10957  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10958  for (int i=0; i <= lastAddrIndx; ++i)
10959    (*MIB).addOperand(*argOpers[i]);
10960
10961  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10962  if (invSrc) {
10963    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10964  }
10965  else
10966    tt = t1;
10967
10968  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10969  assert((argOpers[valArgIndx]->isReg() ||
10970          argOpers[valArgIndx]->isImm()) &&
10971         "invalid operand");
10972  if (argOpers[valArgIndx]->isReg())
10973    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10974  else
10975    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10976  MIB.addReg(tt);
10977  (*MIB).addOperand(*argOpers[valArgIndx]);
10978
10979  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10980  MIB.addReg(t1);
10981
10982  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10983  for (int i=0; i <= lastAddrIndx; ++i)
10984    (*MIB).addOperand(*argOpers[i]);
10985  MIB.addReg(t2);
10986  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10987  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10988                    bInstr->memoperands_end());
10989
10990  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10991  MIB.addReg(EAXreg);
10992
10993  // insert branch
10994  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10995
10996  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10997  return nextMBB;
10998}
10999
11000// private utility function:  64 bit atomics on 32 bit host.
11001MachineBasicBlock *
11002X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11003                                                       MachineBasicBlock *MBB,
11004                                                       unsigned regOpcL,
11005                                                       unsigned regOpcH,
11006                                                       unsigned immOpcL,
11007                                                       unsigned immOpcH,
11008                                                       bool invSrc) const {
11009  // For the atomic bitwise operator, we generate
11010  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11011  //     ld t1,t2 = [bitinstr.addr]
11012  //   newMBB:
11013  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11014  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11015  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11016  //     mov ECX, EBX <- t5, t6
11017  //     mov EAX, EDX <- t1, t2
11018  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11019  //     mov t3, t4 <- EAX, EDX
11020  //     bz  newMBB
11021  //     result in out1, out2
11022  //     fallthrough -->nextMBB
11023
11024  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11025  const unsigned LoadOpc = X86::MOV32rm;
11026  const unsigned NotOpc = X86::NOT32r;
11027  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11028  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11029  MachineFunction::iterator MBBIter = MBB;
11030  ++MBBIter;
11031
11032  /// First build the CFG
11033  MachineFunction *F = MBB->getParent();
11034  MachineBasicBlock *thisMBB = MBB;
11035  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11036  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11037  F->insert(MBBIter, newMBB);
11038  F->insert(MBBIter, nextMBB);
11039
11040  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11041  nextMBB->splice(nextMBB->begin(), thisMBB,
11042                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11043                  thisMBB->end());
11044  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11045
11046  // Update thisMBB to fall through to newMBB
11047  thisMBB->addSuccessor(newMBB);
11048
11049  // newMBB jumps to itself and fall through to nextMBB
11050  newMBB->addSuccessor(nextMBB);
11051  newMBB->addSuccessor(newMBB);
11052
11053  DebugLoc dl = bInstr->getDebugLoc();
11054  // Insert instructions into newMBB based on incoming instruction
11055  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11056  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11057         "unexpected number of operands");
11058  MachineOperand& dest1Oper = bInstr->getOperand(0);
11059  MachineOperand& dest2Oper = bInstr->getOperand(1);
11060  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11061  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11062    argOpers[i] = &bInstr->getOperand(i+2);
11063
11064    // We use some of the operands multiple times, so conservatively just
11065    // clear any kill flags that might be present.
11066    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11067      argOpers[i]->setIsKill(false);
11068  }
11069
11070  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11071  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11072
11073  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11074  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11075  for (int i=0; i <= lastAddrIndx; ++i)
11076    (*MIB).addOperand(*argOpers[i]);
11077  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11078  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11079  // add 4 to displacement.
11080  for (int i=0; i <= lastAddrIndx-2; ++i)
11081    (*MIB).addOperand(*argOpers[i]);
11082  MachineOperand newOp3 = *(argOpers[3]);
11083  if (newOp3.isImm())
11084    newOp3.setImm(newOp3.getImm()+4);
11085  else
11086    newOp3.setOffset(newOp3.getOffset()+4);
11087  (*MIB).addOperand(newOp3);
11088  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11089
11090  // t3/4 are defined later, at the bottom of the loop
11091  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11092  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11093  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11094    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11095  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11096    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11097
11098  // The subsequent operations should be using the destination registers of
11099  //the PHI instructions.
11100  if (invSrc) {
11101    t1 = F->getRegInfo().createVirtualRegister(RC);
11102    t2 = F->getRegInfo().createVirtualRegister(RC);
11103    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11104    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11105  } else {
11106    t1 = dest1Oper.getReg();
11107    t2 = dest2Oper.getReg();
11108  }
11109
11110  int valArgIndx = lastAddrIndx + 1;
11111  assert((argOpers[valArgIndx]->isReg() ||
11112          argOpers[valArgIndx]->isImm()) &&
11113         "invalid operand");
11114  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11115  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11116  if (argOpers[valArgIndx]->isReg())
11117    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11118  else
11119    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11120  if (regOpcL != X86::MOV32rr)
11121    MIB.addReg(t1);
11122  (*MIB).addOperand(*argOpers[valArgIndx]);
11123  assert(argOpers[valArgIndx + 1]->isReg() ==
11124         argOpers[valArgIndx]->isReg());
11125  assert(argOpers[valArgIndx + 1]->isImm() ==
11126         argOpers[valArgIndx]->isImm());
11127  if (argOpers[valArgIndx + 1]->isReg())
11128    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11129  else
11130    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11131  if (regOpcH != X86::MOV32rr)
11132    MIB.addReg(t2);
11133  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11134
11135  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11136  MIB.addReg(t1);
11137  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11138  MIB.addReg(t2);
11139
11140  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11141  MIB.addReg(t5);
11142  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11143  MIB.addReg(t6);
11144
11145  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11146  for (int i=0; i <= lastAddrIndx; ++i)
11147    (*MIB).addOperand(*argOpers[i]);
11148
11149  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11150  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11151                    bInstr->memoperands_end());
11152
11153  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11154  MIB.addReg(X86::EAX);
11155  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11156  MIB.addReg(X86::EDX);
11157
11158  // insert branch
11159  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11160
11161  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11162  return nextMBB;
11163}
11164
11165// private utility function
11166MachineBasicBlock *
11167X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11168                                                      MachineBasicBlock *MBB,
11169                                                      unsigned cmovOpc) const {
11170  // For the atomic min/max operator, we generate
11171  //   thisMBB:
11172  //   newMBB:
11173  //     ld t1 = [min/max.addr]
11174  //     mov t2 = [min/max.val]
11175  //     cmp  t1, t2
11176  //     cmov[cond] t2 = t1
11177  //     mov EAX = t1
11178  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11179  //     bz   newMBB
11180  //     fallthrough -->nextMBB
11181  //
11182  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11183  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11184  MachineFunction::iterator MBBIter = MBB;
11185  ++MBBIter;
11186
11187  /// First build the CFG
11188  MachineFunction *F = MBB->getParent();
11189  MachineBasicBlock *thisMBB = MBB;
11190  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11191  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11192  F->insert(MBBIter, newMBB);
11193  F->insert(MBBIter, nextMBB);
11194
11195  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11196  nextMBB->splice(nextMBB->begin(), thisMBB,
11197                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11198                  thisMBB->end());
11199  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11200
11201  // Update thisMBB to fall through to newMBB
11202  thisMBB->addSuccessor(newMBB);
11203
11204  // newMBB jumps to newMBB and fall through to nextMBB
11205  newMBB->addSuccessor(nextMBB);
11206  newMBB->addSuccessor(newMBB);
11207
11208  DebugLoc dl = mInstr->getDebugLoc();
11209  // Insert instructions into newMBB based on incoming instruction
11210  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11211         "unexpected number of operands");
11212  MachineOperand& destOper = mInstr->getOperand(0);
11213  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11214  int numArgs = mInstr->getNumOperands() - 1;
11215  for (int i=0; i < numArgs; ++i)
11216    argOpers[i] = &mInstr->getOperand(i+1);
11217
11218  // x86 address has 4 operands: base, index, scale, and displacement
11219  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11220  int valArgIndx = lastAddrIndx + 1;
11221
11222  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11223  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11224  for (int i=0; i <= lastAddrIndx; ++i)
11225    (*MIB).addOperand(*argOpers[i]);
11226
11227  // We only support register and immediate values
11228  assert((argOpers[valArgIndx]->isReg() ||
11229          argOpers[valArgIndx]->isImm()) &&
11230         "invalid operand");
11231
11232  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11233  if (argOpers[valArgIndx]->isReg())
11234    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11235  else
11236    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11237  (*MIB).addOperand(*argOpers[valArgIndx]);
11238
11239  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11240  MIB.addReg(t1);
11241
11242  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11243  MIB.addReg(t1);
11244  MIB.addReg(t2);
11245
11246  // Generate movc
11247  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11248  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11249  MIB.addReg(t2);
11250  MIB.addReg(t1);
11251
11252  // Cmp and exchange if none has modified the memory location
11253  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11254  for (int i=0; i <= lastAddrIndx; ++i)
11255    (*MIB).addOperand(*argOpers[i]);
11256  MIB.addReg(t3);
11257  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11258  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11259                    mInstr->memoperands_end());
11260
11261  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11262  MIB.addReg(X86::EAX);
11263
11264  // insert branch
11265  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11266
11267  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11268  return nextMBB;
11269}
11270
11271// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11272// or XMM0_V32I8 in AVX all of this code can be replaced with that
11273// in the .td file.
11274MachineBasicBlock *
11275X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11276                            unsigned numArgs, bool memArg) const {
11277  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11278         "Target must have SSE4.2 or AVX features enabled");
11279
11280  DebugLoc dl = MI->getDebugLoc();
11281  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11282  unsigned Opc;
11283  if (!Subtarget->hasAVX()) {
11284    if (memArg)
11285      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11286    else
11287      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11288  } else {
11289    if (memArg)
11290      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11291    else
11292      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11293  }
11294
11295  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11296  for (unsigned i = 0; i < numArgs; ++i) {
11297    MachineOperand &Op = MI->getOperand(i+1);
11298    if (!(Op.isReg() && Op.isImplicit()))
11299      MIB.addOperand(Op);
11300  }
11301  BuildMI(*BB, MI, dl,
11302    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11303             MI->getOperand(0).getReg())
11304    .addReg(X86::XMM0);
11305
11306  MI->eraseFromParent();
11307  return BB;
11308}
11309
11310MachineBasicBlock *
11311X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11312  DebugLoc dl = MI->getDebugLoc();
11313  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11314
11315  // Address into RAX/EAX, other two args into ECX, EDX.
11316  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11317  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11318  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11319  for (int i = 0; i < X86::AddrNumOperands; ++i)
11320    MIB.addOperand(MI->getOperand(i));
11321
11322  unsigned ValOps = X86::AddrNumOperands;
11323  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11324    .addReg(MI->getOperand(ValOps).getReg());
11325  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11326    .addReg(MI->getOperand(ValOps+1).getReg());
11327
11328  // The instruction doesn't actually take any operands though.
11329  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11330
11331  MI->eraseFromParent(); // The pseudo is gone now.
11332  return BB;
11333}
11334
11335MachineBasicBlock *
11336X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11337  DebugLoc dl = MI->getDebugLoc();
11338  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11339
11340  // First arg in ECX, the second in EAX.
11341  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11342    .addReg(MI->getOperand(0).getReg());
11343  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11344    .addReg(MI->getOperand(1).getReg());
11345
11346  // The instruction doesn't actually take any operands though.
11347  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11348
11349  MI->eraseFromParent(); // The pseudo is gone now.
11350  return BB;
11351}
11352
11353MachineBasicBlock *
11354X86TargetLowering::EmitVAARG64WithCustomInserter(
11355                   MachineInstr *MI,
11356                   MachineBasicBlock *MBB) const {
11357  // Emit va_arg instruction on X86-64.
11358
11359  // Operands to this pseudo-instruction:
11360  // 0  ) Output        : destination address (reg)
11361  // 1-5) Input         : va_list address (addr, i64mem)
11362  // 6  ) ArgSize       : Size (in bytes) of vararg type
11363  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11364  // 8  ) Align         : Alignment of type
11365  // 9  ) EFLAGS (implicit-def)
11366
11367  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11368  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11369
11370  unsigned DestReg = MI->getOperand(0).getReg();
11371  MachineOperand &Base = MI->getOperand(1);
11372  MachineOperand &Scale = MI->getOperand(2);
11373  MachineOperand &Index = MI->getOperand(3);
11374  MachineOperand &Disp = MI->getOperand(4);
11375  MachineOperand &Segment = MI->getOperand(5);
11376  unsigned ArgSize = MI->getOperand(6).getImm();
11377  unsigned ArgMode = MI->getOperand(7).getImm();
11378  unsigned Align = MI->getOperand(8).getImm();
11379
11380  // Memory Reference
11381  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11382  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11383  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11384
11385  // Machine Information
11386  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11387  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11388  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11389  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11390  DebugLoc DL = MI->getDebugLoc();
11391
11392  // struct va_list {
11393  //   i32   gp_offset
11394  //   i32   fp_offset
11395  //   i64   overflow_area (address)
11396  //   i64   reg_save_area (address)
11397  // }
11398  // sizeof(va_list) = 24
11399  // alignment(va_list) = 8
11400
11401  unsigned TotalNumIntRegs = 6;
11402  unsigned TotalNumXMMRegs = 8;
11403  bool UseGPOffset = (ArgMode == 1);
11404  bool UseFPOffset = (ArgMode == 2);
11405  unsigned MaxOffset = TotalNumIntRegs * 8 +
11406                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11407
11408  /* Align ArgSize to a multiple of 8 */
11409  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11410  bool NeedsAlign = (Align > 8);
11411
11412  MachineBasicBlock *thisMBB = MBB;
11413  MachineBasicBlock *overflowMBB;
11414  MachineBasicBlock *offsetMBB;
11415  MachineBasicBlock *endMBB;
11416
11417  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11418  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11419  unsigned OffsetReg = 0;
11420
11421  if (!UseGPOffset && !UseFPOffset) {
11422    // If we only pull from the overflow region, we don't create a branch.
11423    // We don't need to alter control flow.
11424    OffsetDestReg = 0; // unused
11425    OverflowDestReg = DestReg;
11426
11427    offsetMBB = NULL;
11428    overflowMBB = thisMBB;
11429    endMBB = thisMBB;
11430  } else {
11431    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11432    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11433    // If not, pull from overflow_area. (branch to overflowMBB)
11434    //
11435    //       thisMBB
11436    //         |     .
11437    //         |        .
11438    //     offsetMBB   overflowMBB
11439    //         |        .
11440    //         |     .
11441    //        endMBB
11442
11443    // Registers for the PHI in endMBB
11444    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11445    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11446
11447    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11448    MachineFunction *MF = MBB->getParent();
11449    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11450    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11451    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11452
11453    MachineFunction::iterator MBBIter = MBB;
11454    ++MBBIter;
11455
11456    // Insert the new basic blocks
11457    MF->insert(MBBIter, offsetMBB);
11458    MF->insert(MBBIter, overflowMBB);
11459    MF->insert(MBBIter, endMBB);
11460
11461    // Transfer the remainder of MBB and its successor edges to endMBB.
11462    endMBB->splice(endMBB->begin(), thisMBB,
11463                    llvm::next(MachineBasicBlock::iterator(MI)),
11464                    thisMBB->end());
11465    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11466
11467    // Make offsetMBB and overflowMBB successors of thisMBB
11468    thisMBB->addSuccessor(offsetMBB);
11469    thisMBB->addSuccessor(overflowMBB);
11470
11471    // endMBB is a successor of both offsetMBB and overflowMBB
11472    offsetMBB->addSuccessor(endMBB);
11473    overflowMBB->addSuccessor(endMBB);
11474
11475    // Load the offset value into a register
11476    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11477    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11478      .addOperand(Base)
11479      .addOperand(Scale)
11480      .addOperand(Index)
11481      .addDisp(Disp, UseFPOffset ? 4 : 0)
11482      .addOperand(Segment)
11483      .setMemRefs(MMOBegin, MMOEnd);
11484
11485    // Check if there is enough room left to pull this argument.
11486    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11487      .addReg(OffsetReg)
11488      .addImm(MaxOffset + 8 - ArgSizeA8);
11489
11490    // Branch to "overflowMBB" if offset >= max
11491    // Fall through to "offsetMBB" otherwise
11492    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11493      .addMBB(overflowMBB);
11494  }
11495
11496  // In offsetMBB, emit code to use the reg_save_area.
11497  if (offsetMBB) {
11498    assert(OffsetReg != 0);
11499
11500    // Read the reg_save_area address.
11501    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11502    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11503      .addOperand(Base)
11504      .addOperand(Scale)
11505      .addOperand(Index)
11506      .addDisp(Disp, 16)
11507      .addOperand(Segment)
11508      .setMemRefs(MMOBegin, MMOEnd);
11509
11510    // Zero-extend the offset
11511    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11512      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11513        .addImm(0)
11514        .addReg(OffsetReg)
11515        .addImm(X86::sub_32bit);
11516
11517    // Add the offset to the reg_save_area to get the final address.
11518    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11519      .addReg(OffsetReg64)
11520      .addReg(RegSaveReg);
11521
11522    // Compute the offset for the next argument
11523    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11524    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11525      .addReg(OffsetReg)
11526      .addImm(UseFPOffset ? 16 : 8);
11527
11528    // Store it back into the va_list.
11529    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11530      .addOperand(Base)
11531      .addOperand(Scale)
11532      .addOperand(Index)
11533      .addDisp(Disp, UseFPOffset ? 4 : 0)
11534      .addOperand(Segment)
11535      .addReg(NextOffsetReg)
11536      .setMemRefs(MMOBegin, MMOEnd);
11537
11538    // Jump to endMBB
11539    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11540      .addMBB(endMBB);
11541  }
11542
11543  //
11544  // Emit code to use overflow area
11545  //
11546
11547  // Load the overflow_area address into a register.
11548  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11549  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11550    .addOperand(Base)
11551    .addOperand(Scale)
11552    .addOperand(Index)
11553    .addDisp(Disp, 8)
11554    .addOperand(Segment)
11555    .setMemRefs(MMOBegin, MMOEnd);
11556
11557  // If we need to align it, do so. Otherwise, just copy the address
11558  // to OverflowDestReg.
11559  if (NeedsAlign) {
11560    // Align the overflow address
11561    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11562    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11563
11564    // aligned_addr = (addr + (align-1)) & ~(align-1)
11565    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11566      .addReg(OverflowAddrReg)
11567      .addImm(Align-1);
11568
11569    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11570      .addReg(TmpReg)
11571      .addImm(~(uint64_t)(Align-1));
11572  } else {
11573    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11574      .addReg(OverflowAddrReg);
11575  }
11576
11577  // Compute the next overflow address after this argument.
11578  // (the overflow address should be kept 8-byte aligned)
11579  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11580  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11581    .addReg(OverflowDestReg)
11582    .addImm(ArgSizeA8);
11583
11584  // Store the new overflow address.
11585  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11586    .addOperand(Base)
11587    .addOperand(Scale)
11588    .addOperand(Index)
11589    .addDisp(Disp, 8)
11590    .addOperand(Segment)
11591    .addReg(NextAddrReg)
11592    .setMemRefs(MMOBegin, MMOEnd);
11593
11594  // If we branched, emit the PHI to the front of endMBB.
11595  if (offsetMBB) {
11596    BuildMI(*endMBB, endMBB->begin(), DL,
11597            TII->get(X86::PHI), DestReg)
11598      .addReg(OffsetDestReg).addMBB(offsetMBB)
11599      .addReg(OverflowDestReg).addMBB(overflowMBB);
11600  }
11601
11602  // Erase the pseudo instruction
11603  MI->eraseFromParent();
11604
11605  return endMBB;
11606}
11607
11608MachineBasicBlock *
11609X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11610                                                 MachineInstr *MI,
11611                                                 MachineBasicBlock *MBB) const {
11612  // Emit code to save XMM registers to the stack. The ABI says that the
11613  // number of registers to save is given in %al, so it's theoretically
11614  // possible to do an indirect jump trick to avoid saving all of them,
11615  // however this code takes a simpler approach and just executes all
11616  // of the stores if %al is non-zero. It's less code, and it's probably
11617  // easier on the hardware branch predictor, and stores aren't all that
11618  // expensive anyway.
11619
11620  // Create the new basic blocks. One block contains all the XMM stores,
11621  // and one block is the final destination regardless of whether any
11622  // stores were performed.
11623  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11624  MachineFunction *F = MBB->getParent();
11625  MachineFunction::iterator MBBIter = MBB;
11626  ++MBBIter;
11627  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11628  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11629  F->insert(MBBIter, XMMSaveMBB);
11630  F->insert(MBBIter, EndMBB);
11631
11632  // Transfer the remainder of MBB and its successor edges to EndMBB.
11633  EndMBB->splice(EndMBB->begin(), MBB,
11634                 llvm::next(MachineBasicBlock::iterator(MI)),
11635                 MBB->end());
11636  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11637
11638  // The original block will now fall through to the XMM save block.
11639  MBB->addSuccessor(XMMSaveMBB);
11640  // The XMMSaveMBB will fall through to the end block.
11641  XMMSaveMBB->addSuccessor(EndMBB);
11642
11643  // Now add the instructions.
11644  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11645  DebugLoc DL = MI->getDebugLoc();
11646
11647  unsigned CountReg = MI->getOperand(0).getReg();
11648  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11649  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11650
11651  if (!Subtarget->isTargetWin64()) {
11652    // If %al is 0, branch around the XMM save block.
11653    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11654    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11655    MBB->addSuccessor(EndMBB);
11656  }
11657
11658  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11659  // In the XMM save block, save all the XMM argument registers.
11660  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11661    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11662    MachineMemOperand *MMO =
11663      F->getMachineMemOperand(
11664          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11665        MachineMemOperand::MOStore,
11666        /*Size=*/16, /*Align=*/16);
11667    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11668      .addFrameIndex(RegSaveFrameIndex)
11669      .addImm(/*Scale=*/1)
11670      .addReg(/*IndexReg=*/0)
11671      .addImm(/*Disp=*/Offset)
11672      .addReg(/*Segment=*/0)
11673      .addReg(MI->getOperand(i).getReg())
11674      .addMemOperand(MMO);
11675  }
11676
11677  MI->eraseFromParent();   // The pseudo instruction is gone now.
11678
11679  return EndMBB;
11680}
11681
11682MachineBasicBlock *
11683X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11684                                     MachineBasicBlock *BB) const {
11685  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11686  DebugLoc DL = MI->getDebugLoc();
11687
11688  // To "insert" a SELECT_CC instruction, we actually have to insert the
11689  // diamond control-flow pattern.  The incoming instruction knows the
11690  // destination vreg to set, the condition code register to branch on, the
11691  // true/false values to select between, and a branch opcode to use.
11692  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11693  MachineFunction::iterator It = BB;
11694  ++It;
11695
11696  //  thisMBB:
11697  //  ...
11698  //   TrueVal = ...
11699  //   cmpTY ccX, r1, r2
11700  //   bCC copy1MBB
11701  //   fallthrough --> copy0MBB
11702  MachineBasicBlock *thisMBB = BB;
11703  MachineFunction *F = BB->getParent();
11704  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11705  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11706  F->insert(It, copy0MBB);
11707  F->insert(It, sinkMBB);
11708
11709  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11710  // live into the sink and copy blocks.
11711  if (!MI->killsRegister(X86::EFLAGS)) {
11712    copy0MBB->addLiveIn(X86::EFLAGS);
11713    sinkMBB->addLiveIn(X86::EFLAGS);
11714  }
11715
11716  // Transfer the remainder of BB and its successor edges to sinkMBB.
11717  sinkMBB->splice(sinkMBB->begin(), BB,
11718                  llvm::next(MachineBasicBlock::iterator(MI)),
11719                  BB->end());
11720  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11721
11722  // Add the true and fallthrough blocks as its successors.
11723  BB->addSuccessor(copy0MBB);
11724  BB->addSuccessor(sinkMBB);
11725
11726  // Create the conditional branch instruction.
11727  unsigned Opc =
11728    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11729  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11730
11731  //  copy0MBB:
11732  //   %FalseValue = ...
11733  //   # fallthrough to sinkMBB
11734  copy0MBB->addSuccessor(sinkMBB);
11735
11736  //  sinkMBB:
11737  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11738  //  ...
11739  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11740          TII->get(X86::PHI), MI->getOperand(0).getReg())
11741    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11742    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11743
11744  MI->eraseFromParent();   // The pseudo instruction is gone now.
11745  return sinkMBB;
11746}
11747
11748MachineBasicBlock *
11749X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11750                                        bool Is64Bit) const {
11751  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11752  DebugLoc DL = MI->getDebugLoc();
11753  MachineFunction *MF = BB->getParent();
11754  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11755
11756  assert(EnableSegmentedStacks);
11757
11758  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11759  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11760
11761  // BB:
11762  //  ... [Till the alloca]
11763  // If stacklet is not large enough, jump to mallocMBB
11764  //
11765  // bumpMBB:
11766  //  Allocate by subtracting from RSP
11767  //  Jump to continueMBB
11768  //
11769  // mallocMBB:
11770  //  Allocate by call to runtime
11771  //
11772  // continueMBB:
11773  //  ...
11774  //  [rest of original BB]
11775  //
11776
11777  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11778  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11779  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11780
11781  MachineRegisterInfo &MRI = MF->getRegInfo();
11782  const TargetRegisterClass *AddrRegClass =
11783    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11784
11785  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11786    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11787    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11788    sizeVReg = MI->getOperand(1).getReg(),
11789    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11790
11791  MachineFunction::iterator MBBIter = BB;
11792  ++MBBIter;
11793
11794  MF->insert(MBBIter, bumpMBB);
11795  MF->insert(MBBIter, mallocMBB);
11796  MF->insert(MBBIter, continueMBB);
11797
11798  continueMBB->splice(continueMBB->begin(), BB, llvm::next
11799                      (MachineBasicBlock::iterator(MI)), BB->end());
11800  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11801
11802  // Add code to the main basic block to check if the stack limit has been hit,
11803  // and if so, jump to mallocMBB otherwise to bumpMBB.
11804  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11805  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
11806    .addReg(tmpSPVReg).addReg(sizeVReg);
11807  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11808    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11809    .addReg(tmpSPVReg);
11810  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11811
11812  // bumpMBB simply decreases the stack pointer, since we know the current
11813  // stacklet has enough space.
11814  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11815    .addReg(tmpSPVReg);
11816  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11817    .addReg(tmpSPVReg);
11818  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11819
11820  // Calls into a routine in libgcc to allocate more space from the heap.
11821  if (Is64Bit) {
11822    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11823      .addReg(sizeVReg);
11824    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11825    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11826  } else {
11827    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11828      .addImm(12);
11829    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11830    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11831      .addExternalSymbol("__morestack_allocate_stack_space");
11832  }
11833
11834  if (!Is64Bit)
11835    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11836      .addImm(16);
11837
11838  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11839    .addReg(Is64Bit ? X86::RAX : X86::EAX);
11840  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11841
11842  // Set up the CFG correctly.
11843  BB->addSuccessor(bumpMBB);
11844  BB->addSuccessor(mallocMBB);
11845  mallocMBB->addSuccessor(continueMBB);
11846  bumpMBB->addSuccessor(continueMBB);
11847
11848  // Take care of the PHI nodes.
11849  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11850          MI->getOperand(0).getReg())
11851    .addReg(mallocPtrVReg).addMBB(mallocMBB)
11852    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11853
11854  // Delete the original pseudo instruction.
11855  MI->eraseFromParent();
11856
11857  // And we're done.
11858  return continueMBB;
11859}
11860
11861MachineBasicBlock *
11862X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11863                                          MachineBasicBlock *BB) const {
11864  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11865  DebugLoc DL = MI->getDebugLoc();
11866
11867  assert(!Subtarget->isTargetEnvMacho());
11868
11869  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11870  // non-trivial part is impdef of ESP.
11871
11872  if (Subtarget->isTargetWin64()) {
11873    if (Subtarget->isTargetCygMing()) {
11874      // ___chkstk(Mingw64):
11875      // Clobbers R10, R11, RAX and EFLAGS.
11876      // Updates RSP.
11877      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11878        .addExternalSymbol("___chkstk")
11879        .addReg(X86::RAX, RegState::Implicit)
11880        .addReg(X86::RSP, RegState::Implicit)
11881        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11882        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11883        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11884    } else {
11885      // __chkstk(MSVCRT): does not update stack pointer.
11886      // Clobbers R10, R11 and EFLAGS.
11887      // FIXME: RAX(allocated size) might be reused and not killed.
11888      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11889        .addExternalSymbol("__chkstk")
11890        .addReg(X86::RAX, RegState::Implicit)
11891        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11892      // RAX has the offset to subtracted from RSP.
11893      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11894        .addReg(X86::RSP)
11895        .addReg(X86::RAX);
11896    }
11897  } else {
11898    const char *StackProbeSymbol =
11899      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11900
11901    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11902      .addExternalSymbol(StackProbeSymbol)
11903      .addReg(X86::EAX, RegState::Implicit)
11904      .addReg(X86::ESP, RegState::Implicit)
11905      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11906      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11907      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11908  }
11909
11910  MI->eraseFromParent();   // The pseudo instruction is gone now.
11911  return BB;
11912}
11913
11914MachineBasicBlock *
11915X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11916                                      MachineBasicBlock *BB) const {
11917  // This is pretty easy.  We're taking the value that we received from
11918  // our load from the relocation, sticking it in either RDI (x86-64)
11919  // or EAX and doing an indirect call.  The return value will then
11920  // be in the normal return register.
11921  const X86InstrInfo *TII
11922    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11923  DebugLoc DL = MI->getDebugLoc();
11924  MachineFunction *F = BB->getParent();
11925
11926  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11927  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11928
11929  if (Subtarget->is64Bit()) {
11930    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11931                                      TII->get(X86::MOV64rm), X86::RDI)
11932    .addReg(X86::RIP)
11933    .addImm(0).addReg(0)
11934    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11935                      MI->getOperand(3).getTargetFlags())
11936    .addReg(0);
11937    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11938    addDirectMem(MIB, X86::RDI);
11939  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11940    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11941                                      TII->get(X86::MOV32rm), X86::EAX)
11942    .addReg(0)
11943    .addImm(0).addReg(0)
11944    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11945                      MI->getOperand(3).getTargetFlags())
11946    .addReg(0);
11947    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11948    addDirectMem(MIB, X86::EAX);
11949  } else {
11950    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11951                                      TII->get(X86::MOV32rm), X86::EAX)
11952    .addReg(TII->getGlobalBaseReg(F))
11953    .addImm(0).addReg(0)
11954    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11955                      MI->getOperand(3).getTargetFlags())
11956    .addReg(0);
11957    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11958    addDirectMem(MIB, X86::EAX);
11959  }
11960
11961  MI->eraseFromParent(); // The pseudo instruction is gone now.
11962  return BB;
11963}
11964
11965MachineBasicBlock *
11966X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11967                                               MachineBasicBlock *BB) const {
11968  switch (MI->getOpcode()) {
11969  default: assert(0 && "Unexpected instr type to insert");
11970  case X86::TAILJMPd64:
11971  case X86::TAILJMPr64:
11972  case X86::TAILJMPm64:
11973    assert(0 && "TAILJMP64 would not be touched here.");
11974  case X86::TCRETURNdi64:
11975  case X86::TCRETURNri64:
11976  case X86::TCRETURNmi64:
11977    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11978    // On AMD64, additional defs should be added before register allocation.
11979    if (!Subtarget->isTargetWin64()) {
11980      MI->addRegisterDefined(X86::RSI);
11981      MI->addRegisterDefined(X86::RDI);
11982      MI->addRegisterDefined(X86::XMM6);
11983      MI->addRegisterDefined(X86::XMM7);
11984      MI->addRegisterDefined(X86::XMM8);
11985      MI->addRegisterDefined(X86::XMM9);
11986      MI->addRegisterDefined(X86::XMM10);
11987      MI->addRegisterDefined(X86::XMM11);
11988      MI->addRegisterDefined(X86::XMM12);
11989      MI->addRegisterDefined(X86::XMM13);
11990      MI->addRegisterDefined(X86::XMM14);
11991      MI->addRegisterDefined(X86::XMM15);
11992    }
11993    return BB;
11994  case X86::WIN_ALLOCA:
11995    return EmitLoweredWinAlloca(MI, BB);
11996  case X86::SEG_ALLOCA_32:
11997    return EmitLoweredSegAlloca(MI, BB, false);
11998  case X86::SEG_ALLOCA_64:
11999    return EmitLoweredSegAlloca(MI, BB, true);
12000  case X86::TLSCall_32:
12001  case X86::TLSCall_64:
12002    return EmitLoweredTLSCall(MI, BB);
12003  case X86::CMOV_GR8:
12004  case X86::CMOV_FR32:
12005  case X86::CMOV_FR64:
12006  case X86::CMOV_V4F32:
12007  case X86::CMOV_V2F64:
12008  case X86::CMOV_V2I64:
12009  case X86::CMOV_V8F32:
12010  case X86::CMOV_V4F64:
12011  case X86::CMOV_V4I64:
12012  case X86::CMOV_GR16:
12013  case X86::CMOV_GR32:
12014  case X86::CMOV_RFP32:
12015  case X86::CMOV_RFP64:
12016  case X86::CMOV_RFP80:
12017    return EmitLoweredSelect(MI, BB);
12018
12019  case X86::FP32_TO_INT16_IN_MEM:
12020  case X86::FP32_TO_INT32_IN_MEM:
12021  case X86::FP32_TO_INT64_IN_MEM:
12022  case X86::FP64_TO_INT16_IN_MEM:
12023  case X86::FP64_TO_INT32_IN_MEM:
12024  case X86::FP64_TO_INT64_IN_MEM:
12025  case X86::FP80_TO_INT16_IN_MEM:
12026  case X86::FP80_TO_INT32_IN_MEM:
12027  case X86::FP80_TO_INT64_IN_MEM: {
12028    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12029    DebugLoc DL = MI->getDebugLoc();
12030
12031    // Change the floating point control register to use "round towards zero"
12032    // mode when truncating to an integer value.
12033    MachineFunction *F = BB->getParent();
12034    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12035    addFrameReference(BuildMI(*BB, MI, DL,
12036                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12037
12038    // Load the old value of the high byte of the control word...
12039    unsigned OldCW =
12040      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12041    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12042                      CWFrameIdx);
12043
12044    // Set the high part to be round to zero...
12045    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12046      .addImm(0xC7F);
12047
12048    // Reload the modified control word now...
12049    addFrameReference(BuildMI(*BB, MI, DL,
12050                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12051
12052    // Restore the memory image of control word to original value
12053    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12054      .addReg(OldCW);
12055
12056    // Get the X86 opcode to use.
12057    unsigned Opc;
12058    switch (MI->getOpcode()) {
12059    default: llvm_unreachable("illegal opcode!");
12060    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12061    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12062    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12063    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12064    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12065    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12066    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12067    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12068    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12069    }
12070
12071    X86AddressMode AM;
12072    MachineOperand &Op = MI->getOperand(0);
12073    if (Op.isReg()) {
12074      AM.BaseType = X86AddressMode::RegBase;
12075      AM.Base.Reg = Op.getReg();
12076    } else {
12077      AM.BaseType = X86AddressMode::FrameIndexBase;
12078      AM.Base.FrameIndex = Op.getIndex();
12079    }
12080    Op = MI->getOperand(1);
12081    if (Op.isImm())
12082      AM.Scale = Op.getImm();
12083    Op = MI->getOperand(2);
12084    if (Op.isImm())
12085      AM.IndexReg = Op.getImm();
12086    Op = MI->getOperand(3);
12087    if (Op.isGlobal()) {
12088      AM.GV = Op.getGlobal();
12089    } else {
12090      AM.Disp = Op.getImm();
12091    }
12092    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12093                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12094
12095    // Reload the original control word now.
12096    addFrameReference(BuildMI(*BB, MI, DL,
12097                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12098
12099    MI->eraseFromParent();   // The pseudo instruction is gone now.
12100    return BB;
12101  }
12102    // String/text processing lowering.
12103  case X86::PCMPISTRM128REG:
12104  case X86::VPCMPISTRM128REG:
12105    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12106  case X86::PCMPISTRM128MEM:
12107  case X86::VPCMPISTRM128MEM:
12108    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12109  case X86::PCMPESTRM128REG:
12110  case X86::VPCMPESTRM128REG:
12111    return EmitPCMP(MI, BB, 5, false /* in mem */);
12112  case X86::PCMPESTRM128MEM:
12113  case X86::VPCMPESTRM128MEM:
12114    return EmitPCMP(MI, BB, 5, true /* in mem */);
12115
12116    // Thread synchronization.
12117  case X86::MONITOR:
12118    return EmitMonitor(MI, BB);
12119  case X86::MWAIT:
12120    return EmitMwait(MI, BB);
12121
12122    // Atomic Lowering.
12123  case X86::ATOMAND32:
12124    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12125                                               X86::AND32ri, X86::MOV32rm,
12126                                               X86::LCMPXCHG32,
12127                                               X86::NOT32r, X86::EAX,
12128                                               X86::GR32RegisterClass);
12129  case X86::ATOMOR32:
12130    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12131                                               X86::OR32ri, X86::MOV32rm,
12132                                               X86::LCMPXCHG32,
12133                                               X86::NOT32r, X86::EAX,
12134                                               X86::GR32RegisterClass);
12135  case X86::ATOMXOR32:
12136    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12137                                               X86::XOR32ri, X86::MOV32rm,
12138                                               X86::LCMPXCHG32,
12139                                               X86::NOT32r, X86::EAX,
12140                                               X86::GR32RegisterClass);
12141  case X86::ATOMNAND32:
12142    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12143                                               X86::AND32ri, X86::MOV32rm,
12144                                               X86::LCMPXCHG32,
12145                                               X86::NOT32r, X86::EAX,
12146                                               X86::GR32RegisterClass, true);
12147  case X86::ATOMMIN32:
12148    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12149  case X86::ATOMMAX32:
12150    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12151  case X86::ATOMUMIN32:
12152    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12153  case X86::ATOMUMAX32:
12154    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12155
12156  case X86::ATOMAND16:
12157    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12158                                               X86::AND16ri, X86::MOV16rm,
12159                                               X86::LCMPXCHG16,
12160                                               X86::NOT16r, X86::AX,
12161                                               X86::GR16RegisterClass);
12162  case X86::ATOMOR16:
12163    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12164                                               X86::OR16ri, X86::MOV16rm,
12165                                               X86::LCMPXCHG16,
12166                                               X86::NOT16r, X86::AX,
12167                                               X86::GR16RegisterClass);
12168  case X86::ATOMXOR16:
12169    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12170                                               X86::XOR16ri, X86::MOV16rm,
12171                                               X86::LCMPXCHG16,
12172                                               X86::NOT16r, X86::AX,
12173                                               X86::GR16RegisterClass);
12174  case X86::ATOMNAND16:
12175    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12176                                               X86::AND16ri, X86::MOV16rm,
12177                                               X86::LCMPXCHG16,
12178                                               X86::NOT16r, X86::AX,
12179                                               X86::GR16RegisterClass, true);
12180  case X86::ATOMMIN16:
12181    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12182  case X86::ATOMMAX16:
12183    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12184  case X86::ATOMUMIN16:
12185    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12186  case X86::ATOMUMAX16:
12187    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12188
12189  case X86::ATOMAND8:
12190    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12191                                               X86::AND8ri, X86::MOV8rm,
12192                                               X86::LCMPXCHG8,
12193                                               X86::NOT8r, X86::AL,
12194                                               X86::GR8RegisterClass);
12195  case X86::ATOMOR8:
12196    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12197                                               X86::OR8ri, X86::MOV8rm,
12198                                               X86::LCMPXCHG8,
12199                                               X86::NOT8r, X86::AL,
12200                                               X86::GR8RegisterClass);
12201  case X86::ATOMXOR8:
12202    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12203                                               X86::XOR8ri, X86::MOV8rm,
12204                                               X86::LCMPXCHG8,
12205                                               X86::NOT8r, X86::AL,
12206                                               X86::GR8RegisterClass);
12207  case X86::ATOMNAND8:
12208    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12209                                               X86::AND8ri, X86::MOV8rm,
12210                                               X86::LCMPXCHG8,
12211                                               X86::NOT8r, X86::AL,
12212                                               X86::GR8RegisterClass, true);
12213  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12214  // This group is for 64-bit host.
12215  case X86::ATOMAND64:
12216    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12217                                               X86::AND64ri32, X86::MOV64rm,
12218                                               X86::LCMPXCHG64,
12219                                               X86::NOT64r, X86::RAX,
12220                                               X86::GR64RegisterClass);
12221  case X86::ATOMOR64:
12222    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12223                                               X86::OR64ri32, X86::MOV64rm,
12224                                               X86::LCMPXCHG64,
12225                                               X86::NOT64r, X86::RAX,
12226                                               X86::GR64RegisterClass);
12227  case X86::ATOMXOR64:
12228    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12229                                               X86::XOR64ri32, X86::MOV64rm,
12230                                               X86::LCMPXCHG64,
12231                                               X86::NOT64r, X86::RAX,
12232                                               X86::GR64RegisterClass);
12233  case X86::ATOMNAND64:
12234    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12235                                               X86::AND64ri32, X86::MOV64rm,
12236                                               X86::LCMPXCHG64,
12237                                               X86::NOT64r, X86::RAX,
12238                                               X86::GR64RegisterClass, true);
12239  case X86::ATOMMIN64:
12240    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12241  case X86::ATOMMAX64:
12242    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12243  case X86::ATOMUMIN64:
12244    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12245  case X86::ATOMUMAX64:
12246    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12247
12248  // This group does 64-bit operations on a 32-bit host.
12249  case X86::ATOMAND6432:
12250    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12251                                               X86::AND32rr, X86::AND32rr,
12252                                               X86::AND32ri, X86::AND32ri,
12253                                               false);
12254  case X86::ATOMOR6432:
12255    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12256                                               X86::OR32rr, X86::OR32rr,
12257                                               X86::OR32ri, X86::OR32ri,
12258                                               false);
12259  case X86::ATOMXOR6432:
12260    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12261                                               X86::XOR32rr, X86::XOR32rr,
12262                                               X86::XOR32ri, X86::XOR32ri,
12263                                               false);
12264  case X86::ATOMNAND6432:
12265    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12266                                               X86::AND32rr, X86::AND32rr,
12267                                               X86::AND32ri, X86::AND32ri,
12268                                               true);
12269  case X86::ATOMADD6432:
12270    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12271                                               X86::ADD32rr, X86::ADC32rr,
12272                                               X86::ADD32ri, X86::ADC32ri,
12273                                               false);
12274  case X86::ATOMSUB6432:
12275    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12276                                               X86::SUB32rr, X86::SBB32rr,
12277                                               X86::SUB32ri, X86::SBB32ri,
12278                                               false);
12279  case X86::ATOMSWAP6432:
12280    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12281                                               X86::MOV32rr, X86::MOV32rr,
12282                                               X86::MOV32ri, X86::MOV32ri,
12283                                               false);
12284  case X86::VASTART_SAVE_XMM_REGS:
12285    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12286
12287  case X86::VAARG_64:
12288    return EmitVAARG64WithCustomInserter(MI, BB);
12289  }
12290}
12291
12292//===----------------------------------------------------------------------===//
12293//                           X86 Optimization Hooks
12294//===----------------------------------------------------------------------===//
12295
12296void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12297                                                       const APInt &Mask,
12298                                                       APInt &KnownZero,
12299                                                       APInt &KnownOne,
12300                                                       const SelectionDAG &DAG,
12301                                                       unsigned Depth) const {
12302  unsigned Opc = Op.getOpcode();
12303  assert((Opc >= ISD::BUILTIN_OP_END ||
12304          Opc == ISD::INTRINSIC_WO_CHAIN ||
12305          Opc == ISD::INTRINSIC_W_CHAIN ||
12306          Opc == ISD::INTRINSIC_VOID) &&
12307         "Should use MaskedValueIsZero if you don't know whether Op"
12308         " is a target node!");
12309
12310  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12311  switch (Opc) {
12312  default: break;
12313  case X86ISD::ADD:
12314  case X86ISD::SUB:
12315  case X86ISD::ADC:
12316  case X86ISD::SBB:
12317  case X86ISD::SMUL:
12318  case X86ISD::UMUL:
12319  case X86ISD::INC:
12320  case X86ISD::DEC:
12321  case X86ISD::OR:
12322  case X86ISD::XOR:
12323  case X86ISD::AND:
12324    // These nodes' second result is a boolean.
12325    if (Op.getResNo() == 0)
12326      break;
12327    // Fallthrough
12328  case X86ISD::SETCC:
12329    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12330                                       Mask.getBitWidth() - 1);
12331    break;
12332  case ISD::INTRINSIC_WO_CHAIN: {
12333    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12334    unsigned NumLoBits = 0;
12335    switch (IntId) {
12336    default: break;
12337    case Intrinsic::x86_sse_movmsk_ps:
12338    case Intrinsic::x86_avx_movmsk_ps_256:
12339    case Intrinsic::x86_sse2_movmsk_pd:
12340    case Intrinsic::x86_avx_movmsk_pd_256:
12341    case Intrinsic::x86_mmx_pmovmskb:
12342    case Intrinsic::x86_sse2_pmovmskb_128: {
12343      // High bits of movmskp{s|d}, pmovmskb are known zero.
12344      switch (IntId) {
12345        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12346        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12347        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12348        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12349        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12350        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12351      }
12352      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12353                                        Mask.getBitWidth() - NumLoBits);
12354      break;
12355    }
12356    }
12357    break;
12358  }
12359  }
12360}
12361
12362unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12363                                                         unsigned Depth) const {
12364  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12365  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12366    return Op.getValueType().getScalarType().getSizeInBits();
12367
12368  // Fallback case.
12369  return 1;
12370}
12371
12372/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12373/// node is a GlobalAddress + offset.
12374bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12375                                       const GlobalValue* &GA,
12376                                       int64_t &Offset) const {
12377  if (N->getOpcode() == X86ISD::Wrapper) {
12378    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12379      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12380      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12381      return true;
12382    }
12383  }
12384  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12385}
12386
12387/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12388/// same as extracting the high 128-bit part of 256-bit vector and then
12389/// inserting the result into the low part of a new 256-bit vector
12390static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12391  EVT VT = SVOp->getValueType(0);
12392  int NumElems = VT.getVectorNumElements();
12393
12394  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12395  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12396    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12397        SVOp->getMaskElt(j) >= 0)
12398      return false;
12399
12400  return true;
12401}
12402
12403/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12404/// same as extracting the low 128-bit part of 256-bit vector and then
12405/// inserting the result into the high part of a new 256-bit vector
12406static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12407  EVT VT = SVOp->getValueType(0);
12408  int NumElems = VT.getVectorNumElements();
12409
12410  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12411  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12412    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12413        SVOp->getMaskElt(j) >= 0)
12414      return false;
12415
12416  return true;
12417}
12418
12419/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12420static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12421                                        TargetLowering::DAGCombinerInfo &DCI) {
12422  DebugLoc dl = N->getDebugLoc();
12423  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12424  SDValue V1 = SVOp->getOperand(0);
12425  SDValue V2 = SVOp->getOperand(1);
12426  EVT VT = SVOp->getValueType(0);
12427  int NumElems = VT.getVectorNumElements();
12428
12429  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12430      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12431    //
12432    //                   0,0,0,...
12433    //                      |
12434    //    V      UNDEF    BUILD_VECTOR    UNDEF
12435    //     \      /           \           /
12436    //  CONCAT_VECTOR         CONCAT_VECTOR
12437    //         \                  /
12438    //          \                /
12439    //          RESULT: V + zero extended
12440    //
12441    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12442        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12443        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12444      return SDValue();
12445
12446    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12447      return SDValue();
12448
12449    // To match the shuffle mask, the first half of the mask should
12450    // be exactly the first vector, and all the rest a splat with the
12451    // first element of the second one.
12452    for (int i = 0; i < NumElems/2; ++i)
12453      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12454          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12455        return SDValue();
12456
12457    // Emit a zeroed vector and insert the desired subvector on its
12458    // first half.
12459    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12460    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12461                         DAG.getConstant(0, MVT::i32), DAG, dl);
12462    return DCI.CombineTo(N, InsV);
12463  }
12464
12465  //===--------------------------------------------------------------------===//
12466  // Combine some shuffles into subvector extracts and inserts:
12467  //
12468
12469  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12470  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12471    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12472                                    DAG, dl);
12473    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12474                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12475    return DCI.CombineTo(N, InsV);
12476  }
12477
12478  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12479  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12480    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12481    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12482                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12483    return DCI.CombineTo(N, InsV);
12484  }
12485
12486  return SDValue();
12487}
12488
12489/// PerformShuffleCombine - Performs several different shuffle combines.
12490static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12491                                     TargetLowering::DAGCombinerInfo &DCI,
12492                                     const X86Subtarget *Subtarget) {
12493  DebugLoc dl = N->getDebugLoc();
12494  EVT VT = N->getValueType(0);
12495
12496  // Don't create instructions with illegal types after legalize types has run.
12497  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12498  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12499    return SDValue();
12500
12501  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12502  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12503      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12504    return PerformShuffleCombine256(N, DAG, DCI);
12505
12506  // Only handle 128 wide vector from here on.
12507  if (VT.getSizeInBits() != 128)
12508    return SDValue();
12509
12510  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12511  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12512  // consecutive, non-overlapping, and in the right order.
12513  SmallVector<SDValue, 16> Elts;
12514  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12515    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12516
12517  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12518}
12519
12520/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12521/// generation and convert it from being a bunch of shuffles and extracts
12522/// to a simple store and scalar loads to extract the elements.
12523static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12524                                                const TargetLowering &TLI) {
12525  SDValue InputVector = N->getOperand(0);
12526
12527  // Only operate on vectors of 4 elements, where the alternative shuffling
12528  // gets to be more expensive.
12529  if (InputVector.getValueType() != MVT::v4i32)
12530    return SDValue();
12531
12532  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12533  // single use which is a sign-extend or zero-extend, and all elements are
12534  // used.
12535  SmallVector<SDNode *, 4> Uses;
12536  unsigned ExtractedElements = 0;
12537  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12538       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12539    if (UI.getUse().getResNo() != InputVector.getResNo())
12540      return SDValue();
12541
12542    SDNode *Extract = *UI;
12543    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12544      return SDValue();
12545
12546    if (Extract->getValueType(0) != MVT::i32)
12547      return SDValue();
12548    if (!Extract->hasOneUse())
12549      return SDValue();
12550    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12551        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12552      return SDValue();
12553    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12554      return SDValue();
12555
12556    // Record which element was extracted.
12557    ExtractedElements |=
12558      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12559
12560    Uses.push_back(Extract);
12561  }
12562
12563  // If not all the elements were used, this may not be worthwhile.
12564  if (ExtractedElements != 15)
12565    return SDValue();
12566
12567  // Ok, we've now decided to do the transformation.
12568  DebugLoc dl = InputVector.getDebugLoc();
12569
12570  // Store the value to a temporary stack slot.
12571  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12572  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12573                            MachinePointerInfo(), false, false, 0);
12574
12575  // Replace each use (extract) with a load of the appropriate element.
12576  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12577       UE = Uses.end(); UI != UE; ++UI) {
12578    SDNode *Extract = *UI;
12579
12580    // cOMpute the element's address.
12581    SDValue Idx = Extract->getOperand(1);
12582    unsigned EltSize =
12583        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12584    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12585    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12586
12587    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12588                                     StackPtr, OffsetVal);
12589
12590    // Load the scalar.
12591    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12592                                     ScalarAddr, MachinePointerInfo(),
12593                                     false, false, 0);
12594
12595    // Replace the exact with the load.
12596    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12597  }
12598
12599  // The replacement was made in place; don't return anything.
12600  return SDValue();
12601}
12602
12603/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12604/// nodes.
12605static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12606                                    const X86Subtarget *Subtarget) {
12607  DebugLoc DL = N->getDebugLoc();
12608  SDValue Cond = N->getOperand(0);
12609  // Get the LHS/RHS of the select.
12610  SDValue LHS = N->getOperand(1);
12611  SDValue RHS = N->getOperand(2);
12612  EVT VT = LHS.getValueType();
12613
12614  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12615  // instructions match the semantics of the common C idiom x<y?x:y but not
12616  // x<=y?x:y, because of how they handle negative zero (which can be
12617  // ignored in unsafe-math mode).
12618  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12619      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12620      (Subtarget->hasXMMInt() ||
12621       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12622    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12623
12624    unsigned Opcode = 0;
12625    // Check for x CC y ? x : y.
12626    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12627        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12628      switch (CC) {
12629      default: break;
12630      case ISD::SETULT:
12631        // Converting this to a min would handle NaNs incorrectly, and swapping
12632        // the operands would cause it to handle comparisons between positive
12633        // and negative zero incorrectly.
12634        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12635          if (!UnsafeFPMath &&
12636              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12637            break;
12638          std::swap(LHS, RHS);
12639        }
12640        Opcode = X86ISD::FMIN;
12641        break;
12642      case ISD::SETOLE:
12643        // Converting this to a min would handle comparisons between positive
12644        // and negative zero incorrectly.
12645        if (!UnsafeFPMath &&
12646            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12647          break;
12648        Opcode = X86ISD::FMIN;
12649        break;
12650      case ISD::SETULE:
12651        // Converting this to a min would handle both negative zeros and NaNs
12652        // incorrectly, but we can swap the operands to fix both.
12653        std::swap(LHS, RHS);
12654      case ISD::SETOLT:
12655      case ISD::SETLT:
12656      case ISD::SETLE:
12657        Opcode = X86ISD::FMIN;
12658        break;
12659
12660      case ISD::SETOGE:
12661        // Converting this to a max would handle comparisons between positive
12662        // and negative zero incorrectly.
12663        if (!UnsafeFPMath &&
12664            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12665          break;
12666        Opcode = X86ISD::FMAX;
12667        break;
12668      case ISD::SETUGT:
12669        // Converting this to a max would handle NaNs incorrectly, and swapping
12670        // the operands would cause it to handle comparisons between positive
12671        // and negative zero incorrectly.
12672        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12673          if (!UnsafeFPMath &&
12674              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12675            break;
12676          std::swap(LHS, RHS);
12677        }
12678        Opcode = X86ISD::FMAX;
12679        break;
12680      case ISD::SETUGE:
12681        // Converting this to a max would handle both negative zeros and NaNs
12682        // incorrectly, but we can swap the operands to fix both.
12683        std::swap(LHS, RHS);
12684      case ISD::SETOGT:
12685      case ISD::SETGT:
12686      case ISD::SETGE:
12687        Opcode = X86ISD::FMAX;
12688        break;
12689      }
12690    // Check for x CC y ? y : x -- a min/max with reversed arms.
12691    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12692               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12693      switch (CC) {
12694      default: break;
12695      case ISD::SETOGE:
12696        // Converting this to a min would handle comparisons between positive
12697        // and negative zero incorrectly, and swapping the operands would
12698        // cause it to handle NaNs incorrectly.
12699        if (!UnsafeFPMath &&
12700            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12701          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12702            break;
12703          std::swap(LHS, RHS);
12704        }
12705        Opcode = X86ISD::FMIN;
12706        break;
12707      case ISD::SETUGT:
12708        // Converting this to a min would handle NaNs incorrectly.
12709        if (!UnsafeFPMath &&
12710            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12711          break;
12712        Opcode = X86ISD::FMIN;
12713        break;
12714      case ISD::SETUGE:
12715        // Converting this to a min would handle both negative zeros and NaNs
12716        // incorrectly, but we can swap the operands to fix both.
12717        std::swap(LHS, RHS);
12718      case ISD::SETOGT:
12719      case ISD::SETGT:
12720      case ISD::SETGE:
12721        Opcode = X86ISD::FMIN;
12722        break;
12723
12724      case ISD::SETULT:
12725        // Converting this to a max would handle NaNs incorrectly.
12726        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12727          break;
12728        Opcode = X86ISD::FMAX;
12729        break;
12730      case ISD::SETOLE:
12731        // Converting this to a max would handle comparisons between positive
12732        // and negative zero incorrectly, and swapping the operands would
12733        // cause it to handle NaNs incorrectly.
12734        if (!UnsafeFPMath &&
12735            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12736          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12737            break;
12738          std::swap(LHS, RHS);
12739        }
12740        Opcode = X86ISD::FMAX;
12741        break;
12742      case ISD::SETULE:
12743        // Converting this to a max would handle both negative zeros and NaNs
12744        // incorrectly, but we can swap the operands to fix both.
12745        std::swap(LHS, RHS);
12746      case ISD::SETOLT:
12747      case ISD::SETLT:
12748      case ISD::SETLE:
12749        Opcode = X86ISD::FMAX;
12750        break;
12751      }
12752    }
12753
12754    if (Opcode)
12755      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12756  }
12757
12758  // If this is a select between two integer constants, try to do some
12759  // optimizations.
12760  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12761    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12762      // Don't do this for crazy integer types.
12763      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12764        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12765        // so that TrueC (the true value) is larger than FalseC.
12766        bool NeedsCondInvert = false;
12767
12768        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12769            // Efficiently invertible.
12770            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12771             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12772              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12773          NeedsCondInvert = true;
12774          std::swap(TrueC, FalseC);
12775        }
12776
12777        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12778        if (FalseC->getAPIntValue() == 0 &&
12779            TrueC->getAPIntValue().isPowerOf2()) {
12780          if (NeedsCondInvert) // Invert the condition if needed.
12781            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12782                               DAG.getConstant(1, Cond.getValueType()));
12783
12784          // Zero extend the condition if needed.
12785          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12786
12787          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12788          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12789                             DAG.getConstant(ShAmt, MVT::i8));
12790        }
12791
12792        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12793        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12794          if (NeedsCondInvert) // Invert the condition if needed.
12795            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12796                               DAG.getConstant(1, Cond.getValueType()));
12797
12798          // Zero extend the condition if needed.
12799          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12800                             FalseC->getValueType(0), Cond);
12801          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12802                             SDValue(FalseC, 0));
12803        }
12804
12805        // Optimize cases that will turn into an LEA instruction.  This requires
12806        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12807        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12808          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12809          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12810
12811          bool isFastMultiplier = false;
12812          if (Diff < 10) {
12813            switch ((unsigned char)Diff) {
12814              default: break;
12815              case 1:  // result = add base, cond
12816              case 2:  // result = lea base(    , cond*2)
12817              case 3:  // result = lea base(cond, cond*2)
12818              case 4:  // result = lea base(    , cond*4)
12819              case 5:  // result = lea base(cond, cond*4)
12820              case 8:  // result = lea base(    , cond*8)
12821              case 9:  // result = lea base(cond, cond*8)
12822                isFastMultiplier = true;
12823                break;
12824            }
12825          }
12826
12827          if (isFastMultiplier) {
12828            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12829            if (NeedsCondInvert) // Invert the condition if needed.
12830              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12831                                 DAG.getConstant(1, Cond.getValueType()));
12832
12833            // Zero extend the condition if needed.
12834            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12835                               Cond);
12836            // Scale the condition by the difference.
12837            if (Diff != 1)
12838              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12839                                 DAG.getConstant(Diff, Cond.getValueType()));
12840
12841            // Add the base if non-zero.
12842            if (FalseC->getAPIntValue() != 0)
12843              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12844                                 SDValue(FalseC, 0));
12845            return Cond;
12846          }
12847        }
12848      }
12849  }
12850
12851  return SDValue();
12852}
12853
12854/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12855static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12856                                  TargetLowering::DAGCombinerInfo &DCI) {
12857  DebugLoc DL = N->getDebugLoc();
12858
12859  // If the flag operand isn't dead, don't touch this CMOV.
12860  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12861    return SDValue();
12862
12863  SDValue FalseOp = N->getOperand(0);
12864  SDValue TrueOp = N->getOperand(1);
12865  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12866  SDValue Cond = N->getOperand(3);
12867  if (CC == X86::COND_E || CC == X86::COND_NE) {
12868    switch (Cond.getOpcode()) {
12869    default: break;
12870    case X86ISD::BSR:
12871    case X86ISD::BSF:
12872      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12873      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12874        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12875    }
12876  }
12877
12878  // If this is a select between two integer constants, try to do some
12879  // optimizations.  Note that the operands are ordered the opposite of SELECT
12880  // operands.
12881  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12882    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12883      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12884      // larger than FalseC (the false value).
12885      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12886        CC = X86::GetOppositeBranchCondition(CC);
12887        std::swap(TrueC, FalseC);
12888      }
12889
12890      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12891      // This is efficient for any integer data type (including i8/i16) and
12892      // shift amount.
12893      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12894        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12895                           DAG.getConstant(CC, MVT::i8), Cond);
12896
12897        // Zero extend the condition if needed.
12898        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12899
12900        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12901        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12902                           DAG.getConstant(ShAmt, MVT::i8));
12903        if (N->getNumValues() == 2)  // Dead flag value?
12904          return DCI.CombineTo(N, Cond, SDValue());
12905        return Cond;
12906      }
12907
12908      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12909      // for any integer data type, including i8/i16.
12910      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12911        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12912                           DAG.getConstant(CC, MVT::i8), Cond);
12913
12914        // Zero extend the condition if needed.
12915        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12916                           FalseC->getValueType(0), Cond);
12917        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12918                           SDValue(FalseC, 0));
12919
12920        if (N->getNumValues() == 2)  // Dead flag value?
12921          return DCI.CombineTo(N, Cond, SDValue());
12922        return Cond;
12923      }
12924
12925      // Optimize cases that will turn into an LEA instruction.  This requires
12926      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12927      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12928        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12929        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12930
12931        bool isFastMultiplier = false;
12932        if (Diff < 10) {
12933          switch ((unsigned char)Diff) {
12934          default: break;
12935          case 1:  // result = add base, cond
12936          case 2:  // result = lea base(    , cond*2)
12937          case 3:  // result = lea base(cond, cond*2)
12938          case 4:  // result = lea base(    , cond*4)
12939          case 5:  // result = lea base(cond, cond*4)
12940          case 8:  // result = lea base(    , cond*8)
12941          case 9:  // result = lea base(cond, cond*8)
12942            isFastMultiplier = true;
12943            break;
12944          }
12945        }
12946
12947        if (isFastMultiplier) {
12948          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12949          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12950                             DAG.getConstant(CC, MVT::i8), Cond);
12951          // Zero extend the condition if needed.
12952          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12953                             Cond);
12954          // Scale the condition by the difference.
12955          if (Diff != 1)
12956            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12957                               DAG.getConstant(Diff, Cond.getValueType()));
12958
12959          // Add the base if non-zero.
12960          if (FalseC->getAPIntValue() != 0)
12961            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12962                               SDValue(FalseC, 0));
12963          if (N->getNumValues() == 2)  // Dead flag value?
12964            return DCI.CombineTo(N, Cond, SDValue());
12965          return Cond;
12966        }
12967      }
12968    }
12969  }
12970  return SDValue();
12971}
12972
12973
12974/// PerformMulCombine - Optimize a single multiply with constant into two
12975/// in order to implement it with two cheaper instructions, e.g.
12976/// LEA + SHL, LEA + LEA.
12977static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12978                                 TargetLowering::DAGCombinerInfo &DCI) {
12979  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12980    return SDValue();
12981
12982  EVT VT = N->getValueType(0);
12983  if (VT != MVT::i64)
12984    return SDValue();
12985
12986  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12987  if (!C)
12988    return SDValue();
12989  uint64_t MulAmt = C->getZExtValue();
12990  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12991    return SDValue();
12992
12993  uint64_t MulAmt1 = 0;
12994  uint64_t MulAmt2 = 0;
12995  if ((MulAmt % 9) == 0) {
12996    MulAmt1 = 9;
12997    MulAmt2 = MulAmt / 9;
12998  } else if ((MulAmt % 5) == 0) {
12999    MulAmt1 = 5;
13000    MulAmt2 = MulAmt / 5;
13001  } else if ((MulAmt % 3) == 0) {
13002    MulAmt1 = 3;
13003    MulAmt2 = MulAmt / 3;
13004  }
13005  if (MulAmt2 &&
13006      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13007    DebugLoc DL = N->getDebugLoc();
13008
13009    if (isPowerOf2_64(MulAmt2) &&
13010        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13011      // If second multiplifer is pow2, issue it first. We want the multiply by
13012      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13013      // is an add.
13014      std::swap(MulAmt1, MulAmt2);
13015
13016    SDValue NewMul;
13017    if (isPowerOf2_64(MulAmt1))
13018      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13019                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13020    else
13021      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13022                           DAG.getConstant(MulAmt1, VT));
13023
13024    if (isPowerOf2_64(MulAmt2))
13025      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13026                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13027    else
13028      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13029                           DAG.getConstant(MulAmt2, VT));
13030
13031    // Do not add new nodes to DAG combiner worklist.
13032    DCI.CombineTo(N, NewMul, false);
13033  }
13034  return SDValue();
13035}
13036
13037static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13038  SDValue N0 = N->getOperand(0);
13039  SDValue N1 = N->getOperand(1);
13040  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13041  EVT VT = N0.getValueType();
13042
13043  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13044  // since the result of setcc_c is all zero's or all ones.
13045  if (N1C && N0.getOpcode() == ISD::AND &&
13046      N0.getOperand(1).getOpcode() == ISD::Constant) {
13047    SDValue N00 = N0.getOperand(0);
13048    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13049        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13050          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13051         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13052      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13053      APInt ShAmt = N1C->getAPIntValue();
13054      Mask = Mask.shl(ShAmt);
13055      if (Mask != 0)
13056        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13057                           N00, DAG.getConstant(Mask, VT));
13058    }
13059  }
13060
13061  return SDValue();
13062}
13063
13064/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13065///                       when possible.
13066static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13067                                   const X86Subtarget *Subtarget) {
13068  EVT VT = N->getValueType(0);
13069  if (!VT.isVector() && VT.isInteger() &&
13070      N->getOpcode() == ISD::SHL)
13071    return PerformSHLCombine(N, DAG);
13072
13073  // On X86 with SSE2 support, we can transform this to a vector shift if
13074  // all elements are shifted by the same amount.  We can't do this in legalize
13075  // because the a constant vector is typically transformed to a constant pool
13076  // so we have no knowledge of the shift amount.
13077  if (!Subtarget->hasXMMInt())
13078    return SDValue();
13079
13080  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
13081    return SDValue();
13082
13083  SDValue ShAmtOp = N->getOperand(1);
13084  EVT EltVT = VT.getVectorElementType();
13085  DebugLoc DL = N->getDebugLoc();
13086  SDValue BaseShAmt = SDValue();
13087  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13088    unsigned NumElts = VT.getVectorNumElements();
13089    unsigned i = 0;
13090    for (; i != NumElts; ++i) {
13091      SDValue Arg = ShAmtOp.getOperand(i);
13092      if (Arg.getOpcode() == ISD::UNDEF) continue;
13093      BaseShAmt = Arg;
13094      break;
13095    }
13096    for (; i != NumElts; ++i) {
13097      SDValue Arg = ShAmtOp.getOperand(i);
13098      if (Arg.getOpcode() == ISD::UNDEF) continue;
13099      if (Arg != BaseShAmt) {
13100        return SDValue();
13101      }
13102    }
13103  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13104             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13105    SDValue InVec = ShAmtOp.getOperand(0);
13106    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13107      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13108      unsigned i = 0;
13109      for (; i != NumElts; ++i) {
13110        SDValue Arg = InVec.getOperand(i);
13111        if (Arg.getOpcode() == ISD::UNDEF) continue;
13112        BaseShAmt = Arg;
13113        break;
13114      }
13115    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13116       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13117         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13118         if (C->getZExtValue() == SplatIdx)
13119           BaseShAmt = InVec.getOperand(1);
13120       }
13121    }
13122    if (BaseShAmt.getNode() == 0)
13123      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13124                              DAG.getIntPtrConstant(0));
13125  } else
13126    return SDValue();
13127
13128  // The shift amount is an i32.
13129  if (EltVT.bitsGT(MVT::i32))
13130    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13131  else if (EltVT.bitsLT(MVT::i32))
13132    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13133
13134  // The shift amount is identical so we can do a vector shift.
13135  SDValue  ValOp = N->getOperand(0);
13136  switch (N->getOpcode()) {
13137  default:
13138    llvm_unreachable("Unknown shift opcode!");
13139    break;
13140  case ISD::SHL:
13141    if (VT == MVT::v2i64)
13142      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13143                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13144                         ValOp, BaseShAmt);
13145    if (VT == MVT::v4i32)
13146      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13147                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13148                         ValOp, BaseShAmt);
13149    if (VT == MVT::v8i16)
13150      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13151                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13152                         ValOp, BaseShAmt);
13153    break;
13154  case ISD::SRA:
13155    if (VT == MVT::v4i32)
13156      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13157                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13158                         ValOp, BaseShAmt);
13159    if (VT == MVT::v8i16)
13160      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13161                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13162                         ValOp, BaseShAmt);
13163    break;
13164  case ISD::SRL:
13165    if (VT == MVT::v2i64)
13166      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13167                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13168                         ValOp, BaseShAmt);
13169    if (VT == MVT::v4i32)
13170      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13171                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13172                         ValOp, BaseShAmt);
13173    if (VT ==  MVT::v8i16)
13174      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13175                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13176                         ValOp, BaseShAmt);
13177    break;
13178  }
13179  return SDValue();
13180}
13181
13182
13183// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13184// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13185// and friends.  Likewise for OR -> CMPNEQSS.
13186static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13187                            TargetLowering::DAGCombinerInfo &DCI,
13188                            const X86Subtarget *Subtarget) {
13189  unsigned opcode;
13190
13191  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13192  // we're requiring SSE2 for both.
13193  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13194    SDValue N0 = N->getOperand(0);
13195    SDValue N1 = N->getOperand(1);
13196    SDValue CMP0 = N0->getOperand(1);
13197    SDValue CMP1 = N1->getOperand(1);
13198    DebugLoc DL = N->getDebugLoc();
13199
13200    // The SETCCs should both refer to the same CMP.
13201    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13202      return SDValue();
13203
13204    SDValue CMP00 = CMP0->getOperand(0);
13205    SDValue CMP01 = CMP0->getOperand(1);
13206    EVT     VT    = CMP00.getValueType();
13207
13208    if (VT == MVT::f32 || VT == MVT::f64) {
13209      bool ExpectingFlags = false;
13210      // Check for any users that want flags:
13211      for (SDNode::use_iterator UI = N->use_begin(),
13212             UE = N->use_end();
13213           !ExpectingFlags && UI != UE; ++UI)
13214        switch (UI->getOpcode()) {
13215        default:
13216        case ISD::BR_CC:
13217        case ISD::BRCOND:
13218        case ISD::SELECT:
13219          ExpectingFlags = true;
13220          break;
13221        case ISD::CopyToReg:
13222        case ISD::SIGN_EXTEND:
13223        case ISD::ZERO_EXTEND:
13224        case ISD::ANY_EXTEND:
13225          break;
13226        }
13227
13228      if (!ExpectingFlags) {
13229        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13230        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13231
13232        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13233          X86::CondCode tmp = cc0;
13234          cc0 = cc1;
13235          cc1 = tmp;
13236        }
13237
13238        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13239            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13240          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13241          X86ISD::NodeType NTOperator = is64BitFP ?
13242            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13243          // FIXME: need symbolic constants for these magic numbers.
13244          // See X86ATTInstPrinter.cpp:printSSECC().
13245          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13246          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13247                                              DAG.getConstant(x86cc, MVT::i8));
13248          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13249                                              OnesOrZeroesF);
13250          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13251                                      DAG.getConstant(1, MVT::i32));
13252          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13253          return OneBitOfTruth;
13254        }
13255      }
13256    }
13257  }
13258  return SDValue();
13259}
13260
13261/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13262/// so it can be folded inside ANDNP.
13263static bool CanFoldXORWithAllOnes(const SDNode *N) {
13264  EVT VT = N->getValueType(0);
13265
13266  // Match direct AllOnes for 128 and 256-bit vectors
13267  if (ISD::isBuildVectorAllOnes(N))
13268    return true;
13269
13270  // Look through a bit convert.
13271  if (N->getOpcode() == ISD::BITCAST)
13272    N = N->getOperand(0).getNode();
13273
13274  // Sometimes the operand may come from a insert_subvector building a 256-bit
13275  // allones vector
13276  if (VT.getSizeInBits() == 256 &&
13277      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13278    SDValue V1 = N->getOperand(0);
13279    SDValue V2 = N->getOperand(1);
13280
13281    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13282        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13283        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13284        ISD::isBuildVectorAllOnes(V2.getNode()))
13285      return true;
13286  }
13287
13288  return false;
13289}
13290
13291static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13292                                 TargetLowering::DAGCombinerInfo &DCI,
13293                                 const X86Subtarget *Subtarget) {
13294  if (DCI.isBeforeLegalizeOps())
13295    return SDValue();
13296
13297  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13298  if (R.getNode())
13299    return R;
13300
13301  EVT VT = N->getValueType(0);
13302
13303  // Create ANDN instructions
13304  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13305    SDValue N0 = N->getOperand(0);
13306    SDValue N1 = N->getOperand(1);
13307    DebugLoc DL = N->getDebugLoc();
13308
13309    // Check LHS for not
13310    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13311      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13312    // Check RHS for not
13313    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13314      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13315
13316    return SDValue();
13317  }
13318
13319  // Want to form ANDNP nodes:
13320  // 1) In the hopes of then easily combining them with OR and AND nodes
13321  //    to form PBLEND/PSIGN.
13322  // 2) To match ANDN packed intrinsics
13323  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13324    return SDValue();
13325
13326  SDValue N0 = N->getOperand(0);
13327  SDValue N1 = N->getOperand(1);
13328  DebugLoc DL = N->getDebugLoc();
13329
13330  // Check LHS for vnot
13331  if (N0.getOpcode() == ISD::XOR &&
13332      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13333      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13334    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13335
13336  // Check RHS for vnot
13337  if (N1.getOpcode() == ISD::XOR &&
13338      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13339      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13340    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13341
13342  return SDValue();
13343}
13344
13345static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13346                                TargetLowering::DAGCombinerInfo &DCI,
13347                                const X86Subtarget *Subtarget) {
13348  if (DCI.isBeforeLegalizeOps())
13349    return SDValue();
13350
13351  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13352  if (R.getNode())
13353    return R;
13354
13355  EVT VT = N->getValueType(0);
13356  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13357    return SDValue();
13358
13359  SDValue N0 = N->getOperand(0);
13360  SDValue N1 = N->getOperand(1);
13361
13362  // look for psign/blend
13363  if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
13364    if (VT == MVT::v2i64) {
13365      // Canonicalize pandn to RHS
13366      if (N0.getOpcode() == X86ISD::ANDNP)
13367        std::swap(N0, N1);
13368      // or (and (m, x), (pandn m, y))
13369      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13370        SDValue Mask = N1.getOperand(0);
13371        SDValue X    = N1.getOperand(1);
13372        SDValue Y;
13373        if (N0.getOperand(0) == Mask)
13374          Y = N0.getOperand(1);
13375        if (N0.getOperand(1) == Mask)
13376          Y = N0.getOperand(0);
13377
13378        // Check to see if the mask appeared in both the AND and ANDNP and
13379        if (!Y.getNode())
13380          return SDValue();
13381
13382        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13383        if (Mask.getOpcode() != ISD::BITCAST ||
13384            X.getOpcode() != ISD::BITCAST ||
13385            Y.getOpcode() != ISD::BITCAST)
13386          return SDValue();
13387
13388        // Look through mask bitcast.
13389        Mask = Mask.getOperand(0);
13390        EVT MaskVT = Mask.getValueType();
13391
13392        // Validate that the Mask operand is a vector sra node.  The sra node
13393        // will be an intrinsic.
13394        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13395          return SDValue();
13396
13397        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13398        // there is no psrai.b
13399        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13400        case Intrinsic::x86_sse2_psrai_w:
13401        case Intrinsic::x86_sse2_psrai_d:
13402          break;
13403        default: return SDValue();
13404        }
13405
13406        // Check that the SRA is all signbits.
13407        SDValue SraC = Mask.getOperand(2);
13408        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13409        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13410        if ((SraAmt + 1) != EltBits)
13411          return SDValue();
13412
13413        DebugLoc DL = N->getDebugLoc();
13414
13415        // Now we know we at least have a plendvb with the mask val.  See if
13416        // we can form a psignb/w/d.
13417        // psign = x.type == y.type == mask.type && y = sub(0, x);
13418        X = X.getOperand(0);
13419        Y = Y.getOperand(0);
13420        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13421            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13422            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13423          unsigned Opc = 0;
13424          switch (EltBits) {
13425          case 8: Opc = X86ISD::PSIGNB; break;
13426          case 16: Opc = X86ISD::PSIGNW; break;
13427          case 32: Opc = X86ISD::PSIGND; break;
13428          default: break;
13429          }
13430          if (Opc) {
13431            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13432            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13433          }
13434        }
13435        // PBLENDVB only available on SSE 4.1
13436        if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
13437          return SDValue();
13438
13439        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13440        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13441        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13442        Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
13443        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13444      }
13445    }
13446  }
13447
13448  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13449  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13450    std::swap(N0, N1);
13451  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13452    return SDValue();
13453  if (!N0.hasOneUse() || !N1.hasOneUse())
13454    return SDValue();
13455
13456  SDValue ShAmt0 = N0.getOperand(1);
13457  if (ShAmt0.getValueType() != MVT::i8)
13458    return SDValue();
13459  SDValue ShAmt1 = N1.getOperand(1);
13460  if (ShAmt1.getValueType() != MVT::i8)
13461    return SDValue();
13462  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13463    ShAmt0 = ShAmt0.getOperand(0);
13464  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13465    ShAmt1 = ShAmt1.getOperand(0);
13466
13467  DebugLoc DL = N->getDebugLoc();
13468  unsigned Opc = X86ISD::SHLD;
13469  SDValue Op0 = N0.getOperand(0);
13470  SDValue Op1 = N1.getOperand(0);
13471  if (ShAmt0.getOpcode() == ISD::SUB) {
13472    Opc = X86ISD::SHRD;
13473    std::swap(Op0, Op1);
13474    std::swap(ShAmt0, ShAmt1);
13475  }
13476
13477  unsigned Bits = VT.getSizeInBits();
13478  if (ShAmt1.getOpcode() == ISD::SUB) {
13479    SDValue Sum = ShAmt1.getOperand(0);
13480    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13481      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13482      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13483        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13484      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13485        return DAG.getNode(Opc, DL, VT,
13486                           Op0, Op1,
13487                           DAG.getNode(ISD::TRUNCATE, DL,
13488                                       MVT::i8, ShAmt0));
13489    }
13490  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13491    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13492    if (ShAmt0C &&
13493        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13494      return DAG.getNode(Opc, DL, VT,
13495                         N0.getOperand(0), N1.getOperand(0),
13496                         DAG.getNode(ISD::TRUNCATE, DL,
13497                                       MVT::i8, ShAmt0));
13498  }
13499
13500  return SDValue();
13501}
13502
13503/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13504static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13505                                   const X86Subtarget *Subtarget) {
13506  LoadSDNode *Ld = cast<LoadSDNode>(N);
13507  EVT RegVT = Ld->getValueType(0);
13508  EVT MemVT = Ld->getMemoryVT();
13509  DebugLoc dl = Ld->getDebugLoc();
13510  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13511
13512  ISD::LoadExtType Ext = Ld->getExtensionType();
13513
13514  // If this is a vector EXT Load then attempt to optimize it using a
13515  // shuffle. We need SSE4 for the shuffles.
13516  // TODO: It is possible to support ZExt by zeroing the undef values
13517  // during the shuffle phase or after the shuffle.
13518  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13519    assert(MemVT != RegVT && "Cannot extend to the same type");
13520    assert(MemVT.isVector() && "Must load a vector from memory");
13521
13522    unsigned NumElems = RegVT.getVectorNumElements();
13523    unsigned RegSz = RegVT.getSizeInBits();
13524    unsigned MemSz = MemVT.getSizeInBits();
13525    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13526    // All sizes must be a power of two
13527    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13528
13529    // Attempt to load the original value using a single load op.
13530    // Find a scalar type which is equal to the loaded word size.
13531    MVT SclrLoadTy = MVT::i8;
13532    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13533         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13534      MVT Tp = (MVT::SimpleValueType)tp;
13535      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13536        SclrLoadTy = Tp;
13537        break;
13538      }
13539    }
13540
13541    // Proceed if a load word is found.
13542    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13543
13544    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13545      RegSz/SclrLoadTy.getSizeInBits());
13546
13547    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13548                                  RegSz/MemVT.getScalarType().getSizeInBits());
13549    // Can't shuffle using an illegal type.
13550    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13551
13552    // Perform a single load.
13553    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13554                                  Ld->getBasePtr(),
13555                                  Ld->getPointerInfo(), Ld->isVolatile(),
13556                                  Ld->isNonTemporal(), Ld->getAlignment());
13557
13558    // Insert the word loaded into a vector.
13559    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13560      LoadUnitVecVT, ScalarLoad);
13561
13562    // Bitcast the loaded value to a vector of the original element type, in
13563    // the size of the target vector type.
13564    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13565    unsigned SizeRatio = RegSz/MemSz;
13566
13567    // Redistribute the loaded elements into the different locations.
13568    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13569    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13570
13571    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13572                                DAG.getUNDEF(SlicedVec.getValueType()),
13573                                ShuffleVec.data());
13574
13575    // Bitcast to the requested type.
13576    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13577    // Replace the original load with the new sequence
13578    // and return the new chain.
13579    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13580    return SDValue(ScalarLoad.getNode(), 1);
13581  }
13582
13583  return SDValue();
13584}
13585
13586/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13587static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13588                                   const X86Subtarget *Subtarget) {
13589  StoreSDNode *St = cast<StoreSDNode>(N);
13590  EVT VT = St->getValue().getValueType();
13591  EVT StVT = St->getMemoryVT();
13592  DebugLoc dl = St->getDebugLoc();
13593  SDValue StoredVal = St->getOperand(1);
13594  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13595
13596  // If we are saving a concatination of two XMM registers, perform two stores.
13597  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13598  // 128-bit ones. If in the future the cost becomes only one memory access the
13599  // first version would be better.
13600  if (VT.getSizeInBits() == 256 &&
13601    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13602    StoredVal.getNumOperands() == 2) {
13603
13604    SDValue Value0 = StoredVal.getOperand(0);
13605    SDValue Value1 = StoredVal.getOperand(1);
13606
13607    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13608    SDValue Ptr0 = St->getBasePtr();
13609    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13610
13611    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13612                                St->getPointerInfo(), St->isVolatile(),
13613                                St->isNonTemporal(), St->getAlignment());
13614    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13615                                St->getPointerInfo(), St->isVolatile(),
13616                                St->isNonTemporal(), St->getAlignment());
13617    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13618  }
13619
13620  // Optimize trunc store (of multiple scalars) to shuffle and store.
13621  // First, pack all of the elements in one place. Next, store to memory
13622  // in fewer chunks.
13623  if (St->isTruncatingStore() && VT.isVector()) {
13624    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13625    unsigned NumElems = VT.getVectorNumElements();
13626    assert(StVT != VT && "Cannot truncate to the same type");
13627    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13628    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13629
13630    // From, To sizes and ElemCount must be pow of two
13631    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13632    // We are going to use the original vector elt for storing.
13633    // Accumulated smaller vector elements must be a multiple of the store size.
13634    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
13635
13636    unsigned SizeRatio  = FromSz / ToSz;
13637
13638    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13639
13640    // Create a type on which we perform the shuffle
13641    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13642            StVT.getScalarType(), NumElems*SizeRatio);
13643
13644    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13645
13646    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13647    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13648    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13649
13650    // Can't shuffle using an illegal type
13651    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13652
13653    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13654                                DAG.getUNDEF(WideVec.getValueType()),
13655                                ShuffleVec.data());
13656    // At this point all of the data is stored at the bottom of the
13657    // register. We now need to save it to mem.
13658
13659    // Find the largest store unit
13660    MVT StoreType = MVT::i8;
13661    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13662         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13663      MVT Tp = (MVT::SimpleValueType)tp;
13664      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13665        StoreType = Tp;
13666    }
13667
13668    // Bitcast the original vector into a vector of store-size units
13669    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13670            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13671    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13672    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13673    SmallVector<SDValue, 8> Chains;
13674    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13675                                        TLI.getPointerTy());
13676    SDValue Ptr = St->getBasePtr();
13677
13678    // Perform one or more big stores into memory.
13679    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13680      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13681                                   StoreType, ShuffWide,
13682                                   DAG.getIntPtrConstant(i));
13683      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13684                                St->getPointerInfo(), St->isVolatile(),
13685                                St->isNonTemporal(), St->getAlignment());
13686      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13687      Chains.push_back(Ch);
13688    }
13689
13690    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13691                               Chains.size());
13692  }
13693
13694
13695  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13696  // the FP state in cases where an emms may be missing.
13697  // A preferable solution to the general problem is to figure out the right
13698  // places to insert EMMS.  This qualifies as a quick hack.
13699
13700  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13701  if (VT.getSizeInBits() != 64)
13702    return SDValue();
13703
13704  const Function *F = DAG.getMachineFunction().getFunction();
13705  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13706  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13707                     && Subtarget->hasXMMInt();
13708  if ((VT.isVector() ||
13709       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13710      isa<LoadSDNode>(St->getValue()) &&
13711      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13712      St->getChain().hasOneUse() && !St->isVolatile()) {
13713    SDNode* LdVal = St->getValue().getNode();
13714    LoadSDNode *Ld = 0;
13715    int TokenFactorIndex = -1;
13716    SmallVector<SDValue, 8> Ops;
13717    SDNode* ChainVal = St->getChain().getNode();
13718    // Must be a store of a load.  We currently handle two cases:  the load
13719    // is a direct child, and it's under an intervening TokenFactor.  It is
13720    // possible to dig deeper under nested TokenFactors.
13721    if (ChainVal == LdVal)
13722      Ld = cast<LoadSDNode>(St->getChain());
13723    else if (St->getValue().hasOneUse() &&
13724             ChainVal->getOpcode() == ISD::TokenFactor) {
13725      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13726        if (ChainVal->getOperand(i).getNode() == LdVal) {
13727          TokenFactorIndex = i;
13728          Ld = cast<LoadSDNode>(St->getValue());
13729        } else
13730          Ops.push_back(ChainVal->getOperand(i));
13731      }
13732    }
13733
13734    if (!Ld || !ISD::isNormalLoad(Ld))
13735      return SDValue();
13736
13737    // If this is not the MMX case, i.e. we are just turning i64 load/store
13738    // into f64 load/store, avoid the transformation if there are multiple
13739    // uses of the loaded value.
13740    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13741      return SDValue();
13742
13743    DebugLoc LdDL = Ld->getDebugLoc();
13744    DebugLoc StDL = N->getDebugLoc();
13745    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13746    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13747    // pair instead.
13748    if (Subtarget->is64Bit() || F64IsLegal) {
13749      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13750      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13751                                  Ld->getPointerInfo(), Ld->isVolatile(),
13752                                  Ld->isNonTemporal(), Ld->getAlignment());
13753      SDValue NewChain = NewLd.getValue(1);
13754      if (TokenFactorIndex != -1) {
13755        Ops.push_back(NewChain);
13756        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13757                               Ops.size());
13758      }
13759      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13760                          St->getPointerInfo(),
13761                          St->isVolatile(), St->isNonTemporal(),
13762                          St->getAlignment());
13763    }
13764
13765    // Otherwise, lower to two pairs of 32-bit loads / stores.
13766    SDValue LoAddr = Ld->getBasePtr();
13767    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13768                                 DAG.getConstant(4, MVT::i32));
13769
13770    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13771                               Ld->getPointerInfo(),
13772                               Ld->isVolatile(), Ld->isNonTemporal(),
13773                               Ld->getAlignment());
13774    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13775                               Ld->getPointerInfo().getWithOffset(4),
13776                               Ld->isVolatile(), Ld->isNonTemporal(),
13777                               MinAlign(Ld->getAlignment(), 4));
13778
13779    SDValue NewChain = LoLd.getValue(1);
13780    if (TokenFactorIndex != -1) {
13781      Ops.push_back(LoLd);
13782      Ops.push_back(HiLd);
13783      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13784                             Ops.size());
13785    }
13786
13787    LoAddr = St->getBasePtr();
13788    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13789                         DAG.getConstant(4, MVT::i32));
13790
13791    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13792                                St->getPointerInfo(),
13793                                St->isVolatile(), St->isNonTemporal(),
13794                                St->getAlignment());
13795    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13796                                St->getPointerInfo().getWithOffset(4),
13797                                St->isVolatile(),
13798                                St->isNonTemporal(),
13799                                MinAlign(St->getAlignment(), 4));
13800    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13801  }
13802  return SDValue();
13803}
13804
13805/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
13806/// and return the operands for the horizontal operation in LHS and RHS.  A
13807/// horizontal operation performs the binary operation on successive elements
13808/// of its first operand, then on successive elements of its second operand,
13809/// returning the resulting values in a vector.  For example, if
13810///   A = < float a0, float a1, float a2, float a3 >
13811/// and
13812///   B = < float b0, float b1, float b2, float b3 >
13813/// then the result of doing a horizontal operation on A and B is
13814///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
13815/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
13816/// A horizontal-op B, for some already available A and B, and if so then LHS is
13817/// set to A, RHS to B, and the routine returns 'true'.
13818/// Note that the binary operation should have the property that if one of the
13819/// operands is UNDEF then the result is UNDEF.
13820static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
13821  // Look for the following pattern: if
13822  //   A = < float a0, float a1, float a2, float a3 >
13823  //   B = < float b0, float b1, float b2, float b3 >
13824  // and
13825  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
13826  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
13827  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
13828  // which is A horizontal-op B.
13829
13830  // At least one of the operands should be a vector shuffle.
13831  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13832      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
13833    return false;
13834
13835  EVT VT = LHS.getValueType();
13836  unsigned N = VT.getVectorNumElements();
13837
13838  // View LHS in the form
13839  //   LHS = VECTOR_SHUFFLE A, B, LMask
13840  // If LHS is not a shuffle then pretend it is the shuffle
13841  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
13842  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
13843  // type VT.
13844  SDValue A, B;
13845  SmallVector<int, 8> LMask(N);
13846  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13847    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
13848      A = LHS.getOperand(0);
13849    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
13850      B = LHS.getOperand(1);
13851    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
13852  } else {
13853    if (LHS.getOpcode() != ISD::UNDEF)
13854      A = LHS;
13855    for (unsigned i = 0; i != N; ++i)
13856      LMask[i] = i;
13857  }
13858
13859  // Likewise, view RHS in the form
13860  //   RHS = VECTOR_SHUFFLE C, D, RMask
13861  SDValue C, D;
13862  SmallVector<int, 8> RMask(N);
13863  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13864    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
13865      C = RHS.getOperand(0);
13866    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
13867      D = RHS.getOperand(1);
13868    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
13869  } else {
13870    if (RHS.getOpcode() != ISD::UNDEF)
13871      C = RHS;
13872    for (unsigned i = 0; i != N; ++i)
13873      RMask[i] = i;
13874  }
13875
13876  // Check that the shuffles are both shuffling the same vectors.
13877  if (!(A == C && B == D) && !(A == D && B == C))
13878    return false;
13879
13880  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
13881  if (!A.getNode() && !B.getNode())
13882    return false;
13883
13884  // If A and B occur in reverse order in RHS, then "swap" them (which means
13885  // rewriting the mask).
13886  if (A != C)
13887    for (unsigned i = 0; i != N; ++i) {
13888      unsigned Idx = RMask[i];
13889      if (Idx < N)
13890        RMask[i] += N;
13891      else if (Idx < 2*N)
13892        RMask[i] -= N;
13893    }
13894
13895  // At this point LHS and RHS are equivalent to
13896  //   LHS = VECTOR_SHUFFLE A, B, LMask
13897  //   RHS = VECTOR_SHUFFLE A, B, RMask
13898  // Check that the masks correspond to performing a horizontal operation.
13899  for (unsigned i = 0; i != N; ++i) {
13900    unsigned LIdx = LMask[i], RIdx = RMask[i];
13901
13902    // Ignore any UNDEF components.
13903    if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
13904        || (!B.getNode() && (LIdx >= N || RIdx >= N)))
13905      continue;
13906
13907    // Check that successive elements are being operated on.  If not, this is
13908    // not a horizontal operation.
13909    if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
13910        !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
13911      return false;
13912  }
13913
13914  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
13915  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
13916  return true;
13917}
13918
13919/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
13920static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
13921                                  const X86Subtarget *Subtarget) {
13922  EVT VT = N->getValueType(0);
13923  SDValue LHS = N->getOperand(0);
13924  SDValue RHS = N->getOperand(1);
13925
13926  // Try to synthesize horizontal adds from adds of shuffles.
13927  if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13928      (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13929      isHorizontalBinOp(LHS, RHS, true))
13930    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
13931  return SDValue();
13932}
13933
13934/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
13935static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
13936                                  const X86Subtarget *Subtarget) {
13937  EVT VT = N->getValueType(0);
13938  SDValue LHS = N->getOperand(0);
13939  SDValue RHS = N->getOperand(1);
13940
13941  // Try to synthesize horizontal subs from subs of shuffles.
13942  if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13943      (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13944      isHorizontalBinOp(LHS, RHS, false))
13945    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
13946  return SDValue();
13947}
13948
13949/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13950/// X86ISD::FXOR nodes.
13951static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13952  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13953  // F[X]OR(0.0, x) -> x
13954  // F[X]OR(x, 0.0) -> x
13955  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13956    if (C->getValueAPF().isPosZero())
13957      return N->getOperand(1);
13958  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13959    if (C->getValueAPF().isPosZero())
13960      return N->getOperand(0);
13961  return SDValue();
13962}
13963
13964/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
13965static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13966  // FAND(0.0, x) -> 0.0
13967  // FAND(x, 0.0) -> 0.0
13968  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13969    if (C->getValueAPF().isPosZero())
13970      return N->getOperand(0);
13971  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13972    if (C->getValueAPF().isPosZero())
13973      return N->getOperand(1);
13974  return SDValue();
13975}
13976
13977static SDValue PerformBTCombine(SDNode *N,
13978                                SelectionDAG &DAG,
13979                                TargetLowering::DAGCombinerInfo &DCI) {
13980  // BT ignores high bits in the bit index operand.
13981  SDValue Op1 = N->getOperand(1);
13982  if (Op1.hasOneUse()) {
13983    unsigned BitWidth = Op1.getValueSizeInBits();
13984    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
13985    APInt KnownZero, KnownOne;
13986    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
13987                                          !DCI.isBeforeLegalizeOps());
13988    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13989    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
13990        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
13991      DCI.CommitTargetLoweringOpt(TLO);
13992  }
13993  return SDValue();
13994}
13995
13996static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
13997  SDValue Op = N->getOperand(0);
13998  if (Op.getOpcode() == ISD::BITCAST)
13999    Op = Op.getOperand(0);
14000  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14001  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14002      VT.getVectorElementType().getSizeInBits() ==
14003      OpVT.getVectorElementType().getSizeInBits()) {
14004    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14005  }
14006  return SDValue();
14007}
14008
14009static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14010  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14011  //           (and (i32 x86isd::setcc_carry), 1)
14012  // This eliminates the zext. This transformation is necessary because
14013  // ISD::SETCC is always legalized to i8.
14014  DebugLoc dl = N->getDebugLoc();
14015  SDValue N0 = N->getOperand(0);
14016  EVT VT = N->getValueType(0);
14017  if (N0.getOpcode() == ISD::AND &&
14018      N0.hasOneUse() &&
14019      N0.getOperand(0).hasOneUse()) {
14020    SDValue N00 = N0.getOperand(0);
14021    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14022      return SDValue();
14023    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14024    if (!C || C->getZExtValue() != 1)
14025      return SDValue();
14026    return DAG.getNode(ISD::AND, dl, VT,
14027                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14028                                   N00.getOperand(0), N00.getOperand(1)),
14029                       DAG.getConstant(1, VT));
14030  }
14031
14032  return SDValue();
14033}
14034
14035// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14036static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14037  unsigned X86CC = N->getConstantOperandVal(0);
14038  SDValue EFLAG = N->getOperand(1);
14039  DebugLoc DL = N->getDebugLoc();
14040
14041  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14042  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14043  // cases.
14044  if (X86CC == X86::COND_B)
14045    return DAG.getNode(ISD::AND, DL, MVT::i8,
14046                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14047                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14048                       DAG.getConstant(1, MVT::i8));
14049
14050  return SDValue();
14051}
14052
14053static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14054                                        const X86TargetLowering *XTLI) {
14055  SDValue Op0 = N->getOperand(0);
14056  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14057  // a 32-bit target where SSE doesn't support i64->FP operations.
14058  if (Op0.getOpcode() == ISD::LOAD) {
14059    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14060    EVT VT = Ld->getValueType(0);
14061    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14062        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14063        !XTLI->getSubtarget()->is64Bit() &&
14064        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14065      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14066                                          Ld->getChain(), Op0, DAG);
14067      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14068      return FILDChain;
14069    }
14070  }
14071  return SDValue();
14072}
14073
14074// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14075static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14076                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14077  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14078  // the result is either zero or one (depending on the input carry bit).
14079  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14080  if (X86::isZeroNode(N->getOperand(0)) &&
14081      X86::isZeroNode(N->getOperand(1)) &&
14082      // We don't have a good way to replace an EFLAGS use, so only do this when
14083      // dead right now.
14084      SDValue(N, 1).use_empty()) {
14085    DebugLoc DL = N->getDebugLoc();
14086    EVT VT = N->getValueType(0);
14087    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14088    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14089                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14090                                           DAG.getConstant(X86::COND_B,MVT::i8),
14091                                           N->getOperand(2)),
14092                               DAG.getConstant(1, VT));
14093    return DCI.CombineTo(N, Res1, CarryOut);
14094  }
14095
14096  return SDValue();
14097}
14098
14099// fold (add Y, (sete  X, 0)) -> adc  0, Y
14100//      (add Y, (setne X, 0)) -> sbb -1, Y
14101//      (sub (sete  X, 0), Y) -> sbb  0, Y
14102//      (sub (setne X, 0), Y) -> adc -1, Y
14103static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14104  DebugLoc DL = N->getDebugLoc();
14105
14106  // Look through ZExts.
14107  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14108  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14109    return SDValue();
14110
14111  SDValue SetCC = Ext.getOperand(0);
14112  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14113    return SDValue();
14114
14115  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14116  if (CC != X86::COND_E && CC != X86::COND_NE)
14117    return SDValue();
14118
14119  SDValue Cmp = SetCC.getOperand(1);
14120  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14121      !X86::isZeroNode(Cmp.getOperand(1)) ||
14122      !Cmp.getOperand(0).getValueType().isInteger())
14123    return SDValue();
14124
14125  SDValue CmpOp0 = Cmp.getOperand(0);
14126  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14127                               DAG.getConstant(1, CmpOp0.getValueType()));
14128
14129  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14130  if (CC == X86::COND_NE)
14131    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14132                       DL, OtherVal.getValueType(), OtherVal,
14133                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14134  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14135                     DL, OtherVal.getValueType(), OtherVal,
14136                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14137}
14138
14139static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
14140  SDValue Op0 = N->getOperand(0);
14141  SDValue Op1 = N->getOperand(1);
14142
14143  // X86 can't encode an immediate LHS of a sub. See if we can push the
14144  // negation into a preceding instruction.
14145  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14146    // If the RHS of the sub is a XOR with one use and a constant, invert the
14147    // immediate. Then add one to the LHS of the sub so we can turn
14148    // X-Y -> X+~Y+1, saving one register.
14149    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14150        isa<ConstantSDNode>(Op1.getOperand(1))) {
14151      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14152      EVT VT = Op0.getValueType();
14153      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14154                                   Op1.getOperand(0),
14155                                   DAG.getConstant(~XorC, VT));
14156      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14157                         DAG.getConstant(C->getAPIntValue()+1, VT));
14158    }
14159  }
14160
14161  return OptimizeConditionalInDecrement(N, DAG);
14162}
14163
14164SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14165                                             DAGCombinerInfo &DCI) const {
14166  SelectionDAG &DAG = DCI.DAG;
14167  switch (N->getOpcode()) {
14168  default: break;
14169  case ISD::EXTRACT_VECTOR_ELT:
14170    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14171  case ISD::VSELECT:
14172  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14173  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14174  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
14175  case ISD::SUB:            return PerformSubCombine(N, DAG);
14176  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14177  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14178  case ISD::SHL:
14179  case ISD::SRA:
14180  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14181  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14182  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14183  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14184  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14185  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14186  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14187  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14188  case X86ISD::FXOR:
14189  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14190  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14191  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14192  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14193  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14194  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14195  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14196  case X86ISD::SHUFPD:
14197  case X86ISD::PALIGN:
14198  case X86ISD::PUNPCKHBW:
14199  case X86ISD::PUNPCKHWD:
14200  case X86ISD::PUNPCKHDQ:
14201  case X86ISD::PUNPCKHQDQ:
14202  case X86ISD::UNPCKHPS:
14203  case X86ISD::UNPCKHPD:
14204  case X86ISD::VUNPCKHPSY:
14205  case X86ISD::VUNPCKHPDY:
14206  case X86ISD::PUNPCKLBW:
14207  case X86ISD::PUNPCKLWD:
14208  case X86ISD::PUNPCKLDQ:
14209  case X86ISD::PUNPCKLQDQ:
14210  case X86ISD::UNPCKLPS:
14211  case X86ISD::UNPCKLPD:
14212  case X86ISD::VUNPCKLPSY:
14213  case X86ISD::VUNPCKLPDY:
14214  case X86ISD::MOVHLPS:
14215  case X86ISD::MOVLHPS:
14216  case X86ISD::PSHUFD:
14217  case X86ISD::PSHUFHW:
14218  case X86ISD::PSHUFLW:
14219  case X86ISD::MOVSS:
14220  case X86ISD::MOVSD:
14221  case X86ISD::VPERMILPS:
14222  case X86ISD::VPERMILPSY:
14223  case X86ISD::VPERMILPD:
14224  case X86ISD::VPERMILPDY:
14225  case X86ISD::VPERM2F128:
14226  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14227  }
14228
14229  return SDValue();
14230}
14231
14232/// isTypeDesirableForOp - Return true if the target has native support for
14233/// the specified value type and it is 'desirable' to use the type for the
14234/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14235/// instruction encodings are longer and some i16 instructions are slow.
14236bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14237  if (!isTypeLegal(VT))
14238    return false;
14239  if (VT != MVT::i16)
14240    return true;
14241
14242  switch (Opc) {
14243  default:
14244    return true;
14245  case ISD::LOAD:
14246  case ISD::SIGN_EXTEND:
14247  case ISD::ZERO_EXTEND:
14248  case ISD::ANY_EXTEND:
14249  case ISD::SHL:
14250  case ISD::SRL:
14251  case ISD::SUB:
14252  case ISD::ADD:
14253  case ISD::MUL:
14254  case ISD::AND:
14255  case ISD::OR:
14256  case ISD::XOR:
14257    return false;
14258  }
14259}
14260
14261/// IsDesirableToPromoteOp - This method query the target whether it is
14262/// beneficial for dag combiner to promote the specified node. If true, it
14263/// should return the desired promotion type by reference.
14264bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14265  EVT VT = Op.getValueType();
14266  if (VT != MVT::i16)
14267    return false;
14268
14269  bool Promote = false;
14270  bool Commute = false;
14271  switch (Op.getOpcode()) {
14272  default: break;
14273  case ISD::LOAD: {
14274    LoadSDNode *LD = cast<LoadSDNode>(Op);
14275    // If the non-extending load has a single use and it's not live out, then it
14276    // might be folded.
14277    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14278                                                     Op.hasOneUse()*/) {
14279      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14280             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14281        // The only case where we'd want to promote LOAD (rather then it being
14282        // promoted as an operand is when it's only use is liveout.
14283        if (UI->getOpcode() != ISD::CopyToReg)
14284          return false;
14285      }
14286    }
14287    Promote = true;
14288    break;
14289  }
14290  case ISD::SIGN_EXTEND:
14291  case ISD::ZERO_EXTEND:
14292  case ISD::ANY_EXTEND:
14293    Promote = true;
14294    break;
14295  case ISD::SHL:
14296  case ISD::SRL: {
14297    SDValue N0 = Op.getOperand(0);
14298    // Look out for (store (shl (load), x)).
14299    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14300      return false;
14301    Promote = true;
14302    break;
14303  }
14304  case ISD::ADD:
14305  case ISD::MUL:
14306  case ISD::AND:
14307  case ISD::OR:
14308  case ISD::XOR:
14309    Commute = true;
14310    // fallthrough
14311  case ISD::SUB: {
14312    SDValue N0 = Op.getOperand(0);
14313    SDValue N1 = Op.getOperand(1);
14314    if (!Commute && MayFoldLoad(N1))
14315      return false;
14316    // Avoid disabling potential load folding opportunities.
14317    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14318      return false;
14319    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14320      return false;
14321    Promote = true;
14322  }
14323  }
14324
14325  PVT = MVT::i32;
14326  return Promote;
14327}
14328
14329//===----------------------------------------------------------------------===//
14330//                           X86 Inline Assembly Support
14331//===----------------------------------------------------------------------===//
14332
14333bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14334  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14335
14336  std::string AsmStr = IA->getAsmString();
14337
14338  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14339  SmallVector<StringRef, 4> AsmPieces;
14340  SplitString(AsmStr, AsmPieces, ";\n");
14341
14342  switch (AsmPieces.size()) {
14343  default: return false;
14344  case 1:
14345    AsmStr = AsmPieces[0];
14346    AsmPieces.clear();
14347    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14348
14349    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14350    // we will turn this bswap into something that will be lowered to logical ops
14351    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14352    // so don't worry about this.
14353    // bswap $0
14354    if (AsmPieces.size() == 2 &&
14355        (AsmPieces[0] == "bswap" ||
14356         AsmPieces[0] == "bswapq" ||
14357         AsmPieces[0] == "bswapl") &&
14358        (AsmPieces[1] == "$0" ||
14359         AsmPieces[1] == "${0:q}")) {
14360      // No need to check constraints, nothing other than the equivalent of
14361      // "=r,0" would be valid here.
14362      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14363      if (!Ty || Ty->getBitWidth() % 16 != 0)
14364        return false;
14365      return IntrinsicLowering::LowerToByteSwap(CI);
14366    }
14367    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14368    if (CI->getType()->isIntegerTy(16) &&
14369        AsmPieces.size() == 3 &&
14370        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14371        AsmPieces[1] == "$$8," &&
14372        AsmPieces[2] == "${0:w}" &&
14373        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14374      AsmPieces.clear();
14375      const std::string &ConstraintsStr = IA->getConstraintString();
14376      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14377      std::sort(AsmPieces.begin(), AsmPieces.end());
14378      if (AsmPieces.size() == 4 &&
14379          AsmPieces[0] == "~{cc}" &&
14380          AsmPieces[1] == "~{dirflag}" &&
14381          AsmPieces[2] == "~{flags}" &&
14382          AsmPieces[3] == "~{fpsr}") {
14383        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14384        if (!Ty || Ty->getBitWidth() % 16 != 0)
14385          return false;
14386        return IntrinsicLowering::LowerToByteSwap(CI);
14387      }
14388    }
14389    break;
14390  case 3:
14391    if (CI->getType()->isIntegerTy(32) &&
14392        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14393      SmallVector<StringRef, 4> Words;
14394      SplitString(AsmPieces[0], Words, " \t,");
14395      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14396          Words[2] == "${0:w}") {
14397        Words.clear();
14398        SplitString(AsmPieces[1], Words, " \t,");
14399        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14400            Words[2] == "$0") {
14401          Words.clear();
14402          SplitString(AsmPieces[2], Words, " \t,");
14403          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14404              Words[2] == "${0:w}") {
14405            AsmPieces.clear();
14406            const std::string &ConstraintsStr = IA->getConstraintString();
14407            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14408            std::sort(AsmPieces.begin(), AsmPieces.end());
14409            if (AsmPieces.size() == 4 &&
14410                AsmPieces[0] == "~{cc}" &&
14411                AsmPieces[1] == "~{dirflag}" &&
14412                AsmPieces[2] == "~{flags}" &&
14413                AsmPieces[3] == "~{fpsr}") {
14414              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14415              if (!Ty || Ty->getBitWidth() % 16 != 0)
14416                return false;
14417              return IntrinsicLowering::LowerToByteSwap(CI);
14418            }
14419          }
14420        }
14421      }
14422    }
14423
14424    if (CI->getType()->isIntegerTy(64)) {
14425      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14426      if (Constraints.size() >= 2 &&
14427          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14428          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14429        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14430        SmallVector<StringRef, 4> Words;
14431        SplitString(AsmPieces[0], Words, " \t");
14432        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14433          Words.clear();
14434          SplitString(AsmPieces[1], Words, " \t");
14435          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14436            Words.clear();
14437            SplitString(AsmPieces[2], Words, " \t,");
14438            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14439                Words[2] == "%edx") {
14440              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14441              if (!Ty || Ty->getBitWidth() % 16 != 0)
14442                return false;
14443              return IntrinsicLowering::LowerToByteSwap(CI);
14444            }
14445          }
14446        }
14447      }
14448    }
14449    break;
14450  }
14451  return false;
14452}
14453
14454
14455
14456/// getConstraintType - Given a constraint letter, return the type of
14457/// constraint it is for this target.
14458X86TargetLowering::ConstraintType
14459X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14460  if (Constraint.size() == 1) {
14461    switch (Constraint[0]) {
14462    case 'R':
14463    case 'q':
14464    case 'Q':
14465    case 'f':
14466    case 't':
14467    case 'u':
14468    case 'y':
14469    case 'x':
14470    case 'Y':
14471    case 'l':
14472      return C_RegisterClass;
14473    case 'a':
14474    case 'b':
14475    case 'c':
14476    case 'd':
14477    case 'S':
14478    case 'D':
14479    case 'A':
14480      return C_Register;
14481    case 'I':
14482    case 'J':
14483    case 'K':
14484    case 'L':
14485    case 'M':
14486    case 'N':
14487    case 'G':
14488    case 'C':
14489    case 'e':
14490    case 'Z':
14491      return C_Other;
14492    default:
14493      break;
14494    }
14495  }
14496  return TargetLowering::getConstraintType(Constraint);
14497}
14498
14499/// Examine constraint type and operand type and determine a weight value.
14500/// This object must already have been set up with the operand type
14501/// and the current alternative constraint selected.
14502TargetLowering::ConstraintWeight
14503  X86TargetLowering::getSingleConstraintMatchWeight(
14504    AsmOperandInfo &info, const char *constraint) const {
14505  ConstraintWeight weight = CW_Invalid;
14506  Value *CallOperandVal = info.CallOperandVal;
14507    // If we don't have a value, we can't do a match,
14508    // but allow it at the lowest weight.
14509  if (CallOperandVal == NULL)
14510    return CW_Default;
14511  Type *type = CallOperandVal->getType();
14512  // Look at the constraint type.
14513  switch (*constraint) {
14514  default:
14515    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14516  case 'R':
14517  case 'q':
14518  case 'Q':
14519  case 'a':
14520  case 'b':
14521  case 'c':
14522  case 'd':
14523  case 'S':
14524  case 'D':
14525  case 'A':
14526    if (CallOperandVal->getType()->isIntegerTy())
14527      weight = CW_SpecificReg;
14528    break;
14529  case 'f':
14530  case 't':
14531  case 'u':
14532      if (type->isFloatingPointTy())
14533        weight = CW_SpecificReg;
14534      break;
14535  case 'y':
14536      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14537        weight = CW_SpecificReg;
14538      break;
14539  case 'x':
14540  case 'Y':
14541    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14542      weight = CW_Register;
14543    break;
14544  case 'I':
14545    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14546      if (C->getZExtValue() <= 31)
14547        weight = CW_Constant;
14548    }
14549    break;
14550  case 'J':
14551    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14552      if (C->getZExtValue() <= 63)
14553        weight = CW_Constant;
14554    }
14555    break;
14556  case 'K':
14557    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14558      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14559        weight = CW_Constant;
14560    }
14561    break;
14562  case 'L':
14563    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14564      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14565        weight = CW_Constant;
14566    }
14567    break;
14568  case 'M':
14569    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14570      if (C->getZExtValue() <= 3)
14571        weight = CW_Constant;
14572    }
14573    break;
14574  case 'N':
14575    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14576      if (C->getZExtValue() <= 0xff)
14577        weight = CW_Constant;
14578    }
14579    break;
14580  case 'G':
14581  case 'C':
14582    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14583      weight = CW_Constant;
14584    }
14585    break;
14586  case 'e':
14587    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14588      if ((C->getSExtValue() >= -0x80000000LL) &&
14589          (C->getSExtValue() <= 0x7fffffffLL))
14590        weight = CW_Constant;
14591    }
14592    break;
14593  case 'Z':
14594    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14595      if (C->getZExtValue() <= 0xffffffff)
14596        weight = CW_Constant;
14597    }
14598    break;
14599  }
14600  return weight;
14601}
14602
14603/// LowerXConstraint - try to replace an X constraint, which matches anything,
14604/// with another that has more specific requirements based on the type of the
14605/// corresponding operand.
14606const char *X86TargetLowering::
14607LowerXConstraint(EVT ConstraintVT) const {
14608  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14609  // 'f' like normal targets.
14610  if (ConstraintVT.isFloatingPoint()) {
14611    if (Subtarget->hasXMMInt())
14612      return "Y";
14613    if (Subtarget->hasXMM())
14614      return "x";
14615  }
14616
14617  return TargetLowering::LowerXConstraint(ConstraintVT);
14618}
14619
14620/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14621/// vector.  If it is invalid, don't add anything to Ops.
14622void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14623                                                     std::string &Constraint,
14624                                                     std::vector<SDValue>&Ops,
14625                                                     SelectionDAG &DAG) const {
14626  SDValue Result(0, 0);
14627
14628  // Only support length 1 constraints for now.
14629  if (Constraint.length() > 1) return;
14630
14631  char ConstraintLetter = Constraint[0];
14632  switch (ConstraintLetter) {
14633  default: break;
14634  case 'I':
14635    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14636      if (C->getZExtValue() <= 31) {
14637        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14638        break;
14639      }
14640    }
14641    return;
14642  case 'J':
14643    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14644      if (C->getZExtValue() <= 63) {
14645        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14646        break;
14647      }
14648    }
14649    return;
14650  case 'K':
14651    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14652      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14653        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14654        break;
14655      }
14656    }
14657    return;
14658  case 'N':
14659    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14660      if (C->getZExtValue() <= 255) {
14661        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14662        break;
14663      }
14664    }
14665    return;
14666  case 'e': {
14667    // 32-bit signed value
14668    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14669      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14670                                           C->getSExtValue())) {
14671        // Widen to 64 bits here to get it sign extended.
14672        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14673        break;
14674      }
14675    // FIXME gcc accepts some relocatable values here too, but only in certain
14676    // memory models; it's complicated.
14677    }
14678    return;
14679  }
14680  case 'Z': {
14681    // 32-bit unsigned value
14682    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14683      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14684                                           C->getZExtValue())) {
14685        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14686        break;
14687      }
14688    }
14689    // FIXME gcc accepts some relocatable values here too, but only in certain
14690    // memory models; it's complicated.
14691    return;
14692  }
14693  case 'i': {
14694    // Literal immediates are always ok.
14695    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14696      // Widen to 64 bits here to get it sign extended.
14697      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14698      break;
14699    }
14700
14701    // In any sort of PIC mode addresses need to be computed at runtime by
14702    // adding in a register or some sort of table lookup.  These can't
14703    // be used as immediates.
14704    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14705      return;
14706
14707    // If we are in non-pic codegen mode, we allow the address of a global (with
14708    // an optional displacement) to be used with 'i'.
14709    GlobalAddressSDNode *GA = 0;
14710    int64_t Offset = 0;
14711
14712    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14713    while (1) {
14714      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14715        Offset += GA->getOffset();
14716        break;
14717      } else if (Op.getOpcode() == ISD::ADD) {
14718        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14719          Offset += C->getZExtValue();
14720          Op = Op.getOperand(0);
14721          continue;
14722        }
14723      } else if (Op.getOpcode() == ISD::SUB) {
14724        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14725          Offset += -C->getZExtValue();
14726          Op = Op.getOperand(0);
14727          continue;
14728        }
14729      }
14730
14731      // Otherwise, this isn't something we can handle, reject it.
14732      return;
14733    }
14734
14735    const GlobalValue *GV = GA->getGlobal();
14736    // If we require an extra load to get this address, as in PIC mode, we
14737    // can't accept it.
14738    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14739                                                        getTargetMachine())))
14740      return;
14741
14742    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14743                                        GA->getValueType(0), Offset);
14744    break;
14745  }
14746  }
14747
14748  if (Result.getNode()) {
14749    Ops.push_back(Result);
14750    return;
14751  }
14752  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14753}
14754
14755std::pair<unsigned, const TargetRegisterClass*>
14756X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14757                                                EVT VT) const {
14758  // First, see if this is a constraint that directly corresponds to an LLVM
14759  // register class.
14760  if (Constraint.size() == 1) {
14761    // GCC Constraint Letters
14762    switch (Constraint[0]) {
14763    default: break;
14764      // TODO: Slight differences here in allocation order and leaving
14765      // RIP in the class. Do they matter any more here than they do
14766      // in the normal allocation?
14767    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14768      if (Subtarget->is64Bit()) {
14769	if (VT == MVT::i32 || VT == MVT::f32)
14770	  return std::make_pair(0U, X86::GR32RegisterClass);
14771	else if (VT == MVT::i16)
14772	  return std::make_pair(0U, X86::GR16RegisterClass);
14773	else if (VT == MVT::i8 || VT == MVT::i1)
14774	  return std::make_pair(0U, X86::GR8RegisterClass);
14775	else if (VT == MVT::i64 || VT == MVT::f64)
14776	  return std::make_pair(0U, X86::GR64RegisterClass);
14777	break;
14778      }
14779      // 32-bit fallthrough
14780    case 'Q':   // Q_REGS
14781      if (VT == MVT::i32 || VT == MVT::f32)
14782	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14783      else if (VT == MVT::i16)
14784	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14785      else if (VT == MVT::i8 || VT == MVT::i1)
14786	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14787      else if (VT == MVT::i64)
14788	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14789      break;
14790    case 'r':   // GENERAL_REGS
14791    case 'l':   // INDEX_REGS
14792      if (VT == MVT::i8 || VT == MVT::i1)
14793        return std::make_pair(0U, X86::GR8RegisterClass);
14794      if (VT == MVT::i16)
14795        return std::make_pair(0U, X86::GR16RegisterClass);
14796      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14797        return std::make_pair(0U, X86::GR32RegisterClass);
14798      return std::make_pair(0U, X86::GR64RegisterClass);
14799    case 'R':   // LEGACY_REGS
14800      if (VT == MVT::i8 || VT == MVT::i1)
14801        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14802      if (VT == MVT::i16)
14803        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14804      if (VT == MVT::i32 || !Subtarget->is64Bit())
14805        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14806      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14807    case 'f':  // FP Stack registers.
14808      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14809      // value to the correct fpstack register class.
14810      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14811        return std::make_pair(0U, X86::RFP32RegisterClass);
14812      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14813        return std::make_pair(0U, X86::RFP64RegisterClass);
14814      return std::make_pair(0U, X86::RFP80RegisterClass);
14815    case 'y':   // MMX_REGS if MMX allowed.
14816      if (!Subtarget->hasMMX()) break;
14817      return std::make_pair(0U, X86::VR64RegisterClass);
14818    case 'Y':   // SSE_REGS if SSE2 allowed
14819      if (!Subtarget->hasXMMInt()) break;
14820      // FALL THROUGH.
14821    case 'x':   // SSE_REGS if SSE1 allowed
14822      if (!Subtarget->hasXMM()) break;
14823
14824      switch (VT.getSimpleVT().SimpleTy) {
14825      default: break;
14826      // Scalar SSE types.
14827      case MVT::f32:
14828      case MVT::i32:
14829        return std::make_pair(0U, X86::FR32RegisterClass);
14830      case MVT::f64:
14831      case MVT::i64:
14832        return std::make_pair(0U, X86::FR64RegisterClass);
14833      // Vector types.
14834      case MVT::v16i8:
14835      case MVT::v8i16:
14836      case MVT::v4i32:
14837      case MVT::v2i64:
14838      case MVT::v4f32:
14839      case MVT::v2f64:
14840        return std::make_pair(0U, X86::VR128RegisterClass);
14841      }
14842      break;
14843    }
14844  }
14845
14846  // Use the default implementation in TargetLowering to convert the register
14847  // constraint into a member of a register class.
14848  std::pair<unsigned, const TargetRegisterClass*> Res;
14849  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14850
14851  // Not found as a standard register?
14852  if (Res.second == 0) {
14853    // Map st(0) -> st(7) -> ST0
14854    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14855        tolower(Constraint[1]) == 's' &&
14856        tolower(Constraint[2]) == 't' &&
14857        Constraint[3] == '(' &&
14858        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14859        Constraint[5] == ')' &&
14860        Constraint[6] == '}') {
14861
14862      Res.first = X86::ST0+Constraint[4]-'0';
14863      Res.second = X86::RFP80RegisterClass;
14864      return Res;
14865    }
14866
14867    // GCC allows "st(0)" to be called just plain "st".
14868    if (StringRef("{st}").equals_lower(Constraint)) {
14869      Res.first = X86::ST0;
14870      Res.second = X86::RFP80RegisterClass;
14871      return Res;
14872    }
14873
14874    // flags -> EFLAGS
14875    if (StringRef("{flags}").equals_lower(Constraint)) {
14876      Res.first = X86::EFLAGS;
14877      Res.second = X86::CCRRegisterClass;
14878      return Res;
14879    }
14880
14881    // 'A' means EAX + EDX.
14882    if (Constraint == "A") {
14883      Res.first = X86::EAX;
14884      Res.second = X86::GR32_ADRegisterClass;
14885      return Res;
14886    }
14887    return Res;
14888  }
14889
14890  // Otherwise, check to see if this is a register class of the wrong value
14891  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14892  // turn into {ax},{dx}.
14893  if (Res.second->hasType(VT))
14894    return Res;   // Correct type already, nothing to do.
14895
14896  // All of the single-register GCC register classes map their values onto
14897  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14898  // really want an 8-bit or 32-bit register, map to the appropriate register
14899  // class and return the appropriate register.
14900  if (Res.second == X86::GR16RegisterClass) {
14901    if (VT == MVT::i8) {
14902      unsigned DestReg = 0;
14903      switch (Res.first) {
14904      default: break;
14905      case X86::AX: DestReg = X86::AL; break;
14906      case X86::DX: DestReg = X86::DL; break;
14907      case X86::CX: DestReg = X86::CL; break;
14908      case X86::BX: DestReg = X86::BL; break;
14909      }
14910      if (DestReg) {
14911        Res.first = DestReg;
14912        Res.second = X86::GR8RegisterClass;
14913      }
14914    } else if (VT == MVT::i32) {
14915      unsigned DestReg = 0;
14916      switch (Res.first) {
14917      default: break;
14918      case X86::AX: DestReg = X86::EAX; break;
14919      case X86::DX: DestReg = X86::EDX; break;
14920      case X86::CX: DestReg = X86::ECX; break;
14921      case X86::BX: DestReg = X86::EBX; break;
14922      case X86::SI: DestReg = X86::ESI; break;
14923      case X86::DI: DestReg = X86::EDI; break;
14924      case X86::BP: DestReg = X86::EBP; break;
14925      case X86::SP: DestReg = X86::ESP; break;
14926      }
14927      if (DestReg) {
14928        Res.first = DestReg;
14929        Res.second = X86::GR32RegisterClass;
14930      }
14931    } else if (VT == MVT::i64) {
14932      unsigned DestReg = 0;
14933      switch (Res.first) {
14934      default: break;
14935      case X86::AX: DestReg = X86::RAX; break;
14936      case X86::DX: DestReg = X86::RDX; break;
14937      case X86::CX: DestReg = X86::RCX; break;
14938      case X86::BX: DestReg = X86::RBX; break;
14939      case X86::SI: DestReg = X86::RSI; break;
14940      case X86::DI: DestReg = X86::RDI; break;
14941      case X86::BP: DestReg = X86::RBP; break;
14942      case X86::SP: DestReg = X86::RSP; break;
14943      }
14944      if (DestReg) {
14945        Res.first = DestReg;
14946        Res.second = X86::GR64RegisterClass;
14947      }
14948    }
14949  } else if (Res.second == X86::FR32RegisterClass ||
14950             Res.second == X86::FR64RegisterClass ||
14951             Res.second == X86::VR128RegisterClass) {
14952    // Handle references to XMM physical registers that got mapped into the
14953    // wrong class.  This can happen with constraints like {xmm0} where the
14954    // target independent register mapper will just pick the first match it can
14955    // find, ignoring the required type.
14956    if (VT == MVT::f32)
14957      Res.second = X86::FR32RegisterClass;
14958    else if (VT == MVT::f64)
14959      Res.second = X86::FR64RegisterClass;
14960    else if (X86::VR128RegisterClass->hasType(VT))
14961      Res.second = X86::VR128RegisterClass;
14962  }
14963
14964  return Res;
14965}
14966