X86ISelLowering.cpp revision 206083
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Disable16Bit - 16-bit operations typically have a larger encoding than
61// corresponding 32-bit instructions, and 16-bit code is slow on some
62// processors. This is an experimental flag to disable 16-bit operations
63// (which forces them to be Legalized to 32-bit operations).
64static cl::opt<bool>
65Disable16Bit("disable-16bit", cl::Hidden,
66             cl::desc("Disable use of 16-bit instructions"));
67
68// Forward declarations.
69static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
70                       SDValue V2);
71
72static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
73  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
74  default: llvm_unreachable("unknown subtarget type");
75  case X86Subtarget::isDarwin:
76    if (TM.getSubtarget<X86Subtarget>().is64Bit())
77      return new X8664_MachoTargetObjectFile();
78    return new TargetLoweringObjectFileMachO();
79  case X86Subtarget::isELF:
80   if (TM.getSubtarget<X86Subtarget>().is64Bit())
81     return new X8664_ELFTargetObjectFile(TM);
82    return new X8632_ELFTargetObjectFile(TM);
83  case X86Subtarget::isMingw:
84  case X86Subtarget::isCygwin:
85  case X86Subtarget::isWindows:
86    return new TargetLoweringObjectFileCOFF();
87  }
88}
89
90X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
91  : TargetLowering(TM, createTLOF(TM)) {
92  Subtarget = &TM.getSubtarget<X86Subtarget>();
93  X86ScalarSSEf64 = Subtarget->hasSSE2();
94  X86ScalarSSEf32 = Subtarget->hasSSE1();
95  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
96
97  RegInfo = TM.getRegisterInfo();
98  TD = getTargetData();
99
100  // Set up the TargetLowering object.
101
102  // X86 is weird, it always uses i8 for shift amounts and setcc results.
103  setShiftAmountType(MVT::i8);
104  setBooleanContents(ZeroOrOneBooleanContent);
105  setSchedulingPreference(SchedulingForRegPressure);
106  setStackPointerRegisterToSaveRestore(X86StackPtr);
107
108  if (Subtarget->isTargetDarwin()) {
109    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
110    setUseUnderscoreSetJmp(false);
111    setUseUnderscoreLongJmp(false);
112  } else if (Subtarget->isTargetMingw()) {
113    // MS runtime is weird: it exports _setjmp, but longjmp!
114    setUseUnderscoreSetJmp(true);
115    setUseUnderscoreLongJmp(false);
116  } else {
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(true);
119  }
120
121  // Set up the register classes.
122  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
123  if (!Disable16Bit)
124    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
125  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
126  if (Subtarget->is64Bit())
127    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
128
129  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
130
131  // We don't accept any truncstore of integer registers.
132  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
133  if (!Disable16Bit)
134    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
136  if (!Disable16Bit)
137    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    if (X86ScalarSSEf64) {
160      // We have an impenetrably clever algorithm for ui64->double only.
161      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
162    }
163    // We have an algorithm for SSE2, and we turn this into a 64-bit
164    // FILD for other targets.
165    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
166  }
167
168  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
169  // this operation.
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
171  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
172
173  if (!UseSoftFloat) {
174    // SSE has no i16 to fp conversion, only i32
175    if (X86ScalarSSEf32) {
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
177      // f32 and f64 cases are Legal, f80 case is not
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
179    } else {
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
182    }
183  } else {
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
185    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
186  }
187
188  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
189  // are Legal, f80 is custom lowered.
190  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
191  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
192
193  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
194  // this operation.
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
197
198  if (X86ScalarSSEf32) {
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
200    // f32 and f64 cases are Legal, f80 case is not
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
202  } else {
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
205  }
206
207  // Handle FP_TO_UINT by promoting the destination to a larger signed
208  // conversion.
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
212
213  if (Subtarget->is64Bit()) {
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
215    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
216  } else if (!UseSoftFloat) {
217    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
218      // Expand FP_TO_UINT into a select.
219      // FIXME: We would like to use a Custom expander here eventually to do
220      // the optimal thing for SSE vs. the default expansion in the legalizer.
221      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
222    else
223      // With SSE3 we can use fisttpll to convert to a signed i64; without
224      // SSE, we're stuck with a fistpll.
225      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
226  }
227
228  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
229  if (!X86ScalarSSEf64) {
230    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
231    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
232  }
233
234  // Scalar integer divide and remainder are lowered to use operations that
235  // produce two results, to match the available instructions. This exposes
236  // the two-result form to trivial CSE, which is able to combine x/y and x%y
237  // into a single instruction.
238  //
239  // Scalar integer multiply-high is also lowered to use two-result
240  // operations, to match the available instructions. However, plain multiply
241  // (low) operations are left as Legal, as there are single-result
242  // instructions for this in x86. Using the two-result multiply instructions
243  // when both high and low results are needed must be arranged by dagcombine.
244  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
248  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
249  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
262  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
263  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
264  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
265  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
266  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
267  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
268
269  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
270  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
271  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
272  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
273  if (Subtarget->is64Bit())
274    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
276  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
277  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
278  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
280  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
281  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
282  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
283
284  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
287  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
288  if (Disable16Bit) {
289    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
290    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
291  } else {
292    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
293    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
294  }
295  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
296  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
297  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
298  if (Subtarget->is64Bit()) {
299    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
300    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
301    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
302  }
303
304  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
305  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
306
307  // These should be promoted to a larger select which is supported.
308  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
309  // X86 wants to expand cmov itself.
310  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
311  if (Disable16Bit)
312    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
313  else
314    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
317  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
318  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
320  if (Disable16Bit)
321    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
322  else
323    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
326  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
327  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
328  if (Subtarget->is64Bit()) {
329    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
330    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
331  }
332  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
333
334  // Darwin ABI issue.
335  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
336  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
337  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
338  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
339  if (Subtarget->is64Bit())
340    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
341  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
342  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
343  if (Subtarget->is64Bit()) {
344    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
345    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
346    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
347    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
348    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
349  }
350  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
351  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
352  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
353  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
354  if (Subtarget->is64Bit()) {
355    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
356    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
357    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
358  }
359
360  if (Subtarget->hasSSE1())
361    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
362
363  if (!Subtarget->hasSSE2())
364    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
627    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
628    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
629    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
630    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
631
632    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
633    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
634    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
635    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
636
637    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
638    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
639    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
640    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
641
642    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
643    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
644
645    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
646    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
650    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
651    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
652
653    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
658    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
659    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
660
661    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
666    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
667    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
668
669    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
676    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
677    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
678
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
682    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
683    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
684
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
687    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
688    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
689
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
692    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
693    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
694
695    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
696
697    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
699    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
700    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
703    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
704  }
705
706  if (!UseSoftFloat && Subtarget->hasSSE1()) {
707    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
708
709    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
712    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
713    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
714    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
715    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
716    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
717    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
718    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
719    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
720    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
721  }
722
723  if (!UseSoftFloat && Subtarget->hasSSE2()) {
724    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
725
726    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
727    // registers cannot be used even for integer operations.
728    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
730    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
731    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
732
733    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
734    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
735    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
736    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
737    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
738    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
739    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
740    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
741    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
742    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
743    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
746    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
747    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
748    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
749
750    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
752    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
753    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
754
755    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
756    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
760
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
764    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
765    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
766
767    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
768    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
769      EVT VT = (MVT::SimpleValueType)i;
770      // Do not attempt to custom lower non-power-of-2 vectors
771      if (!isPowerOf2_32(VT.getVectorNumElements()))
772        continue;
773      // Do not attempt to custom lower non-128-bit vectors
774      if (!VT.is128BitVector())
775        continue;
776      setOperationAction(ISD::BUILD_VECTOR,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::VECTOR_SHUFFLE,
779                         VT.getSimpleVT().SimpleTy, Custom);
780      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
781                         VT.getSimpleVT().SimpleTy, Custom);
782    }
783
784    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
785    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
786    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
787    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
788    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
789    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
790
791    if (Subtarget->is64Bit()) {
792      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
793      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
794    }
795
796    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
797    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
798      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
799      EVT VT = SVT;
800
801      // Do not attempt to promote non-128-bit vectors
802      if (!VT.is128BitVector()) {
803        continue;
804      }
805
806      setOperationAction(ISD::AND,    SVT, Promote);
807      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
808      setOperationAction(ISD::OR,     SVT, Promote);
809      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
810      setOperationAction(ISD::XOR,    SVT, Promote);
811      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
812      setOperationAction(ISD::LOAD,   SVT, Promote);
813      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
814      setOperationAction(ISD::SELECT, SVT, Promote);
815      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
816    }
817
818    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
819
820    // Custom lower v2i64 and v2f64 selects.
821    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
822    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
823    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
825
826    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
827    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
828    if (!DisableMMX && Subtarget->hasMMX()) {
829      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
830      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
831    }
832  }
833
834  if (Subtarget->hasSSE41()) {
835    // FIXME: Do we need to handle scalar-to-vector here?
836    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
837
838    // i8 and i16 vectors are custom , because the source register and source
839    // source memory operand types are not the same width.  f32 vectors are
840    // custom since the immediate controlling the insert encodes additional
841    // information.
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
843    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
844    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
846
847    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
848    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
849    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
850    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
851
852    if (Subtarget->is64Bit()) {
853      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
854      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
855    }
856  }
857
858  if (Subtarget->hasSSE42()) {
859    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
860  }
861
862  if (!UseSoftFloat && Subtarget->hasAVX()) {
863    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
864    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
865    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
866    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
867
868    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
869    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
870    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
871    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
872    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
873    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
874    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
875    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
876    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
877    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
878    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
879    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
880    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
881    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
882    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
883
884    // Operations to consider commented out -v16i16 v32i8
885    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
886    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
887    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
888    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
889    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
890    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
891    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
892    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
893    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
894    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
895    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
896    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
897    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
898    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
899
900    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
901    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
902    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
903    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
904
905    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
906    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
907    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
908    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
910
911    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
912    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
913    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
914    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
915    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
917
918#if 0
919    // Not sure we want to do this since there are no 256-bit integer
920    // operations in AVX
921
922    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
923    // This includes 256-bit vectors
924    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
925      EVT VT = (MVT::SimpleValueType)i;
926
927      // Do not attempt to custom lower non-power-of-2 vectors
928      if (!isPowerOf2_32(VT.getVectorNumElements()))
929        continue;
930
931      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
932      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
933      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
934    }
935
936    if (Subtarget->is64Bit()) {
937      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
938      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
939    }
940#endif
941
942#if 0
943    // Not sure we want to do this since there are no 256-bit integer
944    // operations in AVX
945
946    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
947    // Including 256-bit vectors
948    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
949      EVT VT = (MVT::SimpleValueType)i;
950
951      if (!VT.is256BitVector()) {
952        continue;
953      }
954      setOperationAction(ISD::AND,    VT, Promote);
955      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
956      setOperationAction(ISD::OR,     VT, Promote);
957      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
958      setOperationAction(ISD::XOR,    VT, Promote);
959      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
960      setOperationAction(ISD::LOAD,   VT, Promote);
961      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
962      setOperationAction(ISD::SELECT, VT, Promote);
963      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
964    }
965
966    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
967#endif
968  }
969
970  // We want to custom lower some of our intrinsics.
971  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
972
973  // Add/Sub/Mul with overflow operations are custom lowered.
974  setOperationAction(ISD::SADDO, MVT::i32, Custom);
975  setOperationAction(ISD::SADDO, MVT::i64, Custom);
976  setOperationAction(ISD::UADDO, MVT::i32, Custom);
977  setOperationAction(ISD::UADDO, MVT::i64, Custom);
978  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
979  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
980  setOperationAction(ISD::USUBO, MVT::i32, Custom);
981  setOperationAction(ISD::USUBO, MVT::i64, Custom);
982  setOperationAction(ISD::SMULO, MVT::i32, Custom);
983  setOperationAction(ISD::SMULO, MVT::i64, Custom);
984
985  if (!Subtarget->is64Bit()) {
986    // These libcalls are not available in 32-bit.
987    setLibcallName(RTLIB::SHL_I128, 0);
988    setLibcallName(RTLIB::SRL_I128, 0);
989    setLibcallName(RTLIB::SRA_I128, 0);
990  }
991
992  // We have target-specific dag combine patterns for the following nodes:
993  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
994  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
995  setTargetDAGCombine(ISD::BUILD_VECTOR);
996  setTargetDAGCombine(ISD::SELECT);
997  setTargetDAGCombine(ISD::SHL);
998  setTargetDAGCombine(ISD::SRA);
999  setTargetDAGCombine(ISD::SRL);
1000  setTargetDAGCombine(ISD::OR);
1001  setTargetDAGCombine(ISD::STORE);
1002  setTargetDAGCombine(ISD::MEMBARRIER);
1003  setTargetDAGCombine(ISD::ZERO_EXTEND);
1004  if (Subtarget->is64Bit())
1005    setTargetDAGCombine(ISD::MUL);
1006
1007  computeRegisterProperties();
1008
1009  // FIXME: These should be based on subtarget info. Plus, the values should
1010  // be smaller when we are in optimizing for size mode.
1011  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1012  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1013  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1014  setPrefLoopAlignment(16);
1015  benefitFromCodePlacementOpt = true;
1016}
1017
1018
1019MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1020  return MVT::i8;
1021}
1022
1023
1024/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1025/// the desired ByVal argument alignment.
1026static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1027  if (MaxAlign == 16)
1028    return;
1029  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1030    if (VTy->getBitWidth() == 128)
1031      MaxAlign = 16;
1032  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1033    unsigned EltAlign = 0;
1034    getMaxByValAlign(ATy->getElementType(), EltAlign);
1035    if (EltAlign > MaxAlign)
1036      MaxAlign = EltAlign;
1037  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1038    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1039      unsigned EltAlign = 0;
1040      getMaxByValAlign(STy->getElementType(i), EltAlign);
1041      if (EltAlign > MaxAlign)
1042        MaxAlign = EltAlign;
1043      if (MaxAlign == 16)
1044        break;
1045    }
1046  }
1047  return;
1048}
1049
1050/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1051/// function arguments in the caller parameter area. For X86, aggregates
1052/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1053/// are at 4-byte boundaries.
1054unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1055  if (Subtarget->is64Bit()) {
1056    // Max of 8 and alignment of type.
1057    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1058    if (TyAlign > 8)
1059      return TyAlign;
1060    return 8;
1061  }
1062
1063  unsigned Align = 4;
1064  if (Subtarget->hasSSE1())
1065    getMaxByValAlign(Ty, Align);
1066  return Align;
1067}
1068
1069/// getOptimalMemOpType - Returns the target specific optimal type for load
1070/// and store operations as a result of memset, memcpy, and memmove lowering.
1071/// If DstAlign is zero that means it's safe to destination alignment can
1072/// satisfy any constraint. Similarly if SrcAlign is zero it means there
1073/// isn't a need to check it against alignment requirement, probably because
1074/// the source does not need to be loaded. It returns EVT::Other if
1075/// SelectionDAG should be responsible for determining it.
1076EVT
1077X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1078                                       unsigned DstAlign, unsigned SrcAlign,
1079                                       bool SafeToUseFP,
1080                                       SelectionDAG &DAG) const {
1081  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1082  // linux.  This is because the stack realignment code can't handle certain
1083  // cases like PR2962.  This should be removed when PR2962 is fixed.
1084  const Function *F = DAG.getMachineFunction().getFunction();
1085  if (!F->hasFnAttr(Attribute::NoImplicitFloat)) {
1086    if (Size >= 16 &&
1087        (Subtarget->isUnalignedMemAccessFast() ||
1088         ((DstAlign == 0 || DstAlign >= 16) &&
1089          (SrcAlign == 0 || SrcAlign >= 16))) &&
1090        Subtarget->getStackAlignment() >= 16) {
1091      if (Subtarget->hasSSE2())
1092        return MVT::v4i32;
1093      if (SafeToUseFP && Subtarget->hasSSE1())
1094        return MVT::v4f32;
1095    } else if (SafeToUseFP &&
1096               Size >= 8 &&
1097               !Subtarget->is64Bit() &&
1098               Subtarget->getStackAlignment() >= 8 &&
1099               Subtarget->hasSSE2())
1100      return MVT::f64;
1101  }
1102  if (Subtarget->is64Bit() && Size >= 8)
1103    return MVT::i64;
1104  return MVT::i32;
1105}
1106
1107/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1108/// current function.  The returned value is a member of the
1109/// MachineJumpTableInfo::JTEntryKind enum.
1110unsigned X86TargetLowering::getJumpTableEncoding() const {
1111  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1112  // symbol.
1113  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1114      Subtarget->isPICStyleGOT())
1115    return MachineJumpTableInfo::EK_Custom32;
1116
1117  // Otherwise, use the normal jump table encoding heuristics.
1118  return TargetLowering::getJumpTableEncoding();
1119}
1120
1121/// getPICBaseSymbol - Return the X86-32 PIC base.
1122MCSymbol *
1123X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1124                                    MCContext &Ctx) const {
1125  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1126  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1127                               Twine(MF->getFunctionNumber())+"$pb");
1128}
1129
1130
1131const MCExpr *
1132X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1133                                             const MachineBasicBlock *MBB,
1134                                             unsigned uid,MCContext &Ctx) const{
1135  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1136         Subtarget->isPICStyleGOT());
1137  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1138  // entries.
1139  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1140                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1141}
1142
1143/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1144/// jumptable.
1145SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1146                                                    SelectionDAG &DAG) const {
1147  if (!Subtarget->is64Bit())
1148    // This doesn't have DebugLoc associated with it, but is not really the
1149    // same as a Register.
1150    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1151                       getPointerTy());
1152  return Table;
1153}
1154
1155/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1156/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1157/// MCExpr.
1158const MCExpr *X86TargetLowering::
1159getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1160                             MCContext &Ctx) const {
1161  // X86-64 uses RIP relative addressing based on the jump table label.
1162  if (Subtarget->isPICStyleRIPRel())
1163    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1164
1165  // Otherwise, the reference is relative to the PIC base.
1166  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1167}
1168
1169/// getFunctionAlignment - Return the Log2 alignment of this function.
1170unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1171  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1172}
1173
1174//===----------------------------------------------------------------------===//
1175//               Return Value Calling Convention Implementation
1176//===----------------------------------------------------------------------===//
1177
1178#include "X86GenCallingConv.inc"
1179
1180bool
1181X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1182                        const SmallVectorImpl<EVT> &OutTys,
1183                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1184                        SelectionDAG &DAG) {
1185  SmallVector<CCValAssign, 16> RVLocs;
1186  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1187                 RVLocs, *DAG.getContext());
1188  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1189}
1190
1191SDValue
1192X86TargetLowering::LowerReturn(SDValue Chain,
1193                               CallingConv::ID CallConv, bool isVarArg,
1194                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1195                               DebugLoc dl, SelectionDAG &DAG) {
1196
1197  SmallVector<CCValAssign, 16> RVLocs;
1198  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1199                 RVLocs, *DAG.getContext());
1200  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1201
1202  // Add the regs to the liveout set for the function.
1203  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1204  for (unsigned i = 0; i != RVLocs.size(); ++i)
1205    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1206      MRI.addLiveOut(RVLocs[i].getLocReg());
1207
1208  SDValue Flag;
1209
1210  SmallVector<SDValue, 6> RetOps;
1211  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1212  // Operand #1 = Bytes To Pop
1213  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1214
1215  // Copy the result values into the output registers.
1216  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1217    CCValAssign &VA = RVLocs[i];
1218    assert(VA.isRegLoc() && "Can only return in registers!");
1219    SDValue ValToCopy = Outs[i].Val;
1220
1221    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1222    // the RET instruction and handled by the FP Stackifier.
1223    if (VA.getLocReg() == X86::ST0 ||
1224        VA.getLocReg() == X86::ST1) {
1225      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1226      // change the value to the FP stack register class.
1227      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1228        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1229      RetOps.push_back(ValToCopy);
1230      // Don't emit a copytoreg.
1231      continue;
1232    }
1233
1234    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1235    // which is returned in RAX / RDX.
1236    if (Subtarget->is64Bit()) {
1237      EVT ValVT = ValToCopy.getValueType();
1238      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1239        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1240        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1241          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1242      }
1243    }
1244
1245    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1246    Flag = Chain.getValue(1);
1247  }
1248
1249  // The x86-64 ABI for returning structs by value requires that we copy
1250  // the sret argument into %rax for the return. We saved the argument into
1251  // a virtual register in the entry block, so now we copy the value out
1252  // and into %rax.
1253  if (Subtarget->is64Bit() &&
1254      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1255    MachineFunction &MF = DAG.getMachineFunction();
1256    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1257    unsigned Reg = FuncInfo->getSRetReturnReg();
1258    if (!Reg) {
1259      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1260      FuncInfo->setSRetReturnReg(Reg);
1261    }
1262    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1263
1264    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1265    Flag = Chain.getValue(1);
1266
1267    // RAX now acts like a return value.
1268    MRI.addLiveOut(X86::RAX);
1269  }
1270
1271  RetOps[0] = Chain;  // Update chain.
1272
1273  // Add the flag if we have it.
1274  if (Flag.getNode())
1275    RetOps.push_back(Flag);
1276
1277  return DAG.getNode(X86ISD::RET_FLAG, dl,
1278                     MVT::Other, &RetOps[0], RetOps.size());
1279}
1280
1281/// LowerCallResult - Lower the result values of a call into the
1282/// appropriate copies out of appropriate physical registers.
1283///
1284SDValue
1285X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1286                                   CallingConv::ID CallConv, bool isVarArg,
1287                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1288                                   DebugLoc dl, SelectionDAG &DAG,
1289                                   SmallVectorImpl<SDValue> &InVals) {
1290
1291  // Assign locations to each value returned by this call.
1292  SmallVector<CCValAssign, 16> RVLocs;
1293  bool Is64Bit = Subtarget->is64Bit();
1294  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1295                 RVLocs, *DAG.getContext());
1296  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1297
1298  // Copy all of the result registers out of their specified physreg.
1299  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1300    CCValAssign &VA = RVLocs[i];
1301    EVT CopyVT = VA.getValVT();
1302
1303    // If this is x86-64, and we disabled SSE, we can't return FP values
1304    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1305        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1306      llvm_report_error("SSE register return with SSE disabled");
1307    }
1308
1309    // If this is a call to a function that returns an fp value on the floating
1310    // point stack, but where we prefer to use the value in xmm registers, copy
1311    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1312    if ((VA.getLocReg() == X86::ST0 ||
1313         VA.getLocReg() == X86::ST1) &&
1314        isScalarFPTypeInSSEReg(VA.getValVT())) {
1315      CopyVT = MVT::f80;
1316    }
1317
1318    SDValue Val;
1319    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1320      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1321      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1322        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1323                                   MVT::v2i64, InFlag).getValue(1);
1324        Val = Chain.getValue(0);
1325        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1326                          Val, DAG.getConstant(0, MVT::i64));
1327      } else {
1328        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1329                                   MVT::i64, InFlag).getValue(1);
1330        Val = Chain.getValue(0);
1331      }
1332      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1333    } else {
1334      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1335                                 CopyVT, InFlag).getValue(1);
1336      Val = Chain.getValue(0);
1337    }
1338    InFlag = Chain.getValue(2);
1339
1340    if (CopyVT != VA.getValVT()) {
1341      // Round the F80 the right size, which also moves to the appropriate xmm
1342      // register.
1343      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1344                        // This truncation won't change the value.
1345                        DAG.getIntPtrConstant(1));
1346    }
1347
1348    InVals.push_back(Val);
1349  }
1350
1351  return Chain;
1352}
1353
1354
1355//===----------------------------------------------------------------------===//
1356//                C & StdCall & Fast Calling Convention implementation
1357//===----------------------------------------------------------------------===//
1358//  StdCall calling convention seems to be standard for many Windows' API
1359//  routines and around. It differs from C calling convention just a little:
1360//  callee should clean up the stack, not caller. Symbols should be also
1361//  decorated in some fancy way :) It doesn't support any vector arguments.
1362//  For info on fast calling convention see Fast Calling Convention (tail call)
1363//  implementation LowerX86_32FastCCCallTo.
1364
1365/// CallIsStructReturn - Determines whether a call uses struct return
1366/// semantics.
1367static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1368  if (Outs.empty())
1369    return false;
1370
1371  return Outs[0].Flags.isSRet();
1372}
1373
1374/// ArgsAreStructReturn - Determines whether a function uses struct
1375/// return semantics.
1376static bool
1377ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1378  if (Ins.empty())
1379    return false;
1380
1381  return Ins[0].Flags.isSRet();
1382}
1383
1384/// IsCalleePop - Determines whether the callee is required to pop its
1385/// own arguments. Callee pop is necessary to support tail calls.
1386bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1387  if (IsVarArg)
1388    return false;
1389
1390  switch (CallingConv) {
1391  default:
1392    return false;
1393  case CallingConv::X86_StdCall:
1394    return !Subtarget->is64Bit();
1395  case CallingConv::X86_FastCall:
1396    return !Subtarget->is64Bit();
1397  case CallingConv::Fast:
1398    return GuaranteedTailCallOpt;
1399  case CallingConv::GHC:
1400    return GuaranteedTailCallOpt;
1401  }
1402}
1403
1404/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1405/// given CallingConvention value.
1406CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1407  if (Subtarget->is64Bit()) {
1408    if (CC == CallingConv::GHC)
1409      return CC_X86_64_GHC;
1410    else if (Subtarget->isTargetWin64())
1411      return CC_X86_Win64_C;
1412    else
1413      return CC_X86_64_C;
1414  }
1415
1416  if (CC == CallingConv::X86_FastCall)
1417    return CC_X86_32_FastCall;
1418  else if (CC == CallingConv::Fast)
1419    return CC_X86_32_FastCC;
1420  else if (CC == CallingConv::GHC)
1421    return CC_X86_32_GHC;
1422  else
1423    return CC_X86_32_C;
1424}
1425
1426/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1427/// by "Src" to address "Dst" with size and alignment information specified by
1428/// the specific parameter attribute. The copy will be passed as a byval
1429/// function parameter.
1430static SDValue
1431CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1432                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1433                          DebugLoc dl) {
1434  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1435  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1436                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1437}
1438
1439/// IsTailCallConvention - Return true if the calling convention is one that
1440/// supports tail call optimization.
1441static bool IsTailCallConvention(CallingConv::ID CC) {
1442  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1443}
1444
1445/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1446/// a tailcall target by changing its ABI.
1447static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1448  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1449}
1450
1451SDValue
1452X86TargetLowering::LowerMemArgument(SDValue Chain,
1453                                    CallingConv::ID CallConv,
1454                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1455                                    DebugLoc dl, SelectionDAG &DAG,
1456                                    const CCValAssign &VA,
1457                                    MachineFrameInfo *MFI,
1458                                    unsigned i) {
1459  // Create the nodes corresponding to a load from this parameter slot.
1460  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1461  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1462  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1463  EVT ValVT;
1464
1465  // If value is passed by pointer we have address passed instead of the value
1466  // itself.
1467  if (VA.getLocInfo() == CCValAssign::Indirect)
1468    ValVT = VA.getLocVT();
1469  else
1470    ValVT = VA.getValVT();
1471
1472  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1473  // changed with more analysis.
1474  // In case of tail call optimization mark all arguments mutable. Since they
1475  // could be overwritten by lowering of arguments in case of a tail call.
1476  if (Flags.isByVal()) {
1477    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1478                                    VA.getLocMemOffset(), isImmutable, false);
1479    return DAG.getFrameIndex(FI, getPointerTy());
1480  } else {
1481    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1482                                    VA.getLocMemOffset(), isImmutable, false);
1483    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1484    return DAG.getLoad(ValVT, dl, Chain, FIN,
1485                       PseudoSourceValue::getFixedStack(FI), 0,
1486                       false, false, 0);
1487  }
1488}
1489
1490SDValue
1491X86TargetLowering::LowerFormalArguments(SDValue Chain,
1492                                        CallingConv::ID CallConv,
1493                                        bool isVarArg,
1494                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1495                                        DebugLoc dl,
1496                                        SelectionDAG &DAG,
1497                                        SmallVectorImpl<SDValue> &InVals) {
1498  MachineFunction &MF = DAG.getMachineFunction();
1499  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1500
1501  const Function* Fn = MF.getFunction();
1502  if (Fn->hasExternalLinkage() &&
1503      Subtarget->isTargetCygMing() &&
1504      Fn->getName() == "main")
1505    FuncInfo->setForceFramePointer(true);
1506
1507  MachineFrameInfo *MFI = MF.getFrameInfo();
1508  bool Is64Bit = Subtarget->is64Bit();
1509  bool IsWin64 = Subtarget->isTargetWin64();
1510
1511  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1512         "Var args not supported with calling convention fastcc or ghc");
1513
1514  // Assign locations to all of the incoming arguments.
1515  SmallVector<CCValAssign, 16> ArgLocs;
1516  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1517                 ArgLocs, *DAG.getContext());
1518  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1519
1520  unsigned LastVal = ~0U;
1521  SDValue ArgValue;
1522  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1523    CCValAssign &VA = ArgLocs[i];
1524    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1525    // places.
1526    assert(VA.getValNo() != LastVal &&
1527           "Don't support value assigned to multiple locs yet");
1528    LastVal = VA.getValNo();
1529
1530    if (VA.isRegLoc()) {
1531      EVT RegVT = VA.getLocVT();
1532      TargetRegisterClass *RC = NULL;
1533      if (RegVT == MVT::i32)
1534        RC = X86::GR32RegisterClass;
1535      else if (Is64Bit && RegVT == MVT::i64)
1536        RC = X86::GR64RegisterClass;
1537      else if (RegVT == MVT::f32)
1538        RC = X86::FR32RegisterClass;
1539      else if (RegVT == MVT::f64)
1540        RC = X86::FR64RegisterClass;
1541      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1542        RC = X86::VR128RegisterClass;
1543      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1544        RC = X86::VR64RegisterClass;
1545      else
1546        llvm_unreachable("Unknown argument type!");
1547
1548      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1549      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1550
1551      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1552      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1553      // right size.
1554      if (VA.getLocInfo() == CCValAssign::SExt)
1555        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1556                               DAG.getValueType(VA.getValVT()));
1557      else if (VA.getLocInfo() == CCValAssign::ZExt)
1558        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1559                               DAG.getValueType(VA.getValVT()));
1560      else if (VA.getLocInfo() == CCValAssign::BCvt)
1561        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1562
1563      if (VA.isExtInLoc()) {
1564        // Handle MMX values passed in XMM regs.
1565        if (RegVT.isVector()) {
1566          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1567                                 ArgValue, DAG.getConstant(0, MVT::i64));
1568          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1569        } else
1570          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1571      }
1572    } else {
1573      assert(VA.isMemLoc());
1574      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1575    }
1576
1577    // If value is passed via pointer - do a load.
1578    if (VA.getLocInfo() == CCValAssign::Indirect)
1579      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1580                             false, false, 0);
1581
1582    InVals.push_back(ArgValue);
1583  }
1584
1585  // The x86-64 ABI for returning structs by value requires that we copy
1586  // the sret argument into %rax for the return. Save the argument into
1587  // a virtual register so that we can access it from the return points.
1588  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1589    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1590    unsigned Reg = FuncInfo->getSRetReturnReg();
1591    if (!Reg) {
1592      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1593      FuncInfo->setSRetReturnReg(Reg);
1594    }
1595    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1596    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1597  }
1598
1599  unsigned StackSize = CCInfo.getNextStackOffset();
1600  // Align stack specially for tail calls.
1601  if (FuncIsMadeTailCallSafe(CallConv))
1602    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1603
1604  // If the function takes variable number of arguments, make a frame index for
1605  // the start of the first vararg value... for expansion of llvm.va_start.
1606  if (isVarArg) {
1607    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1608      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1609    }
1610    if (Is64Bit) {
1611      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1612
1613      // FIXME: We should really autogenerate these arrays
1614      static const unsigned GPR64ArgRegsWin64[] = {
1615        X86::RCX, X86::RDX, X86::R8,  X86::R9
1616      };
1617      static const unsigned XMMArgRegsWin64[] = {
1618        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1619      };
1620      static const unsigned GPR64ArgRegs64Bit[] = {
1621        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1622      };
1623      static const unsigned XMMArgRegs64Bit[] = {
1624        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1625        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1626      };
1627      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1628
1629      if (IsWin64) {
1630        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1631        GPR64ArgRegs = GPR64ArgRegsWin64;
1632        XMMArgRegs = XMMArgRegsWin64;
1633      } else {
1634        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1635        GPR64ArgRegs = GPR64ArgRegs64Bit;
1636        XMMArgRegs = XMMArgRegs64Bit;
1637      }
1638      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1639                                                       TotalNumIntRegs);
1640      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1641                                                       TotalNumXMMRegs);
1642
1643      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1644      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1645             "SSE register cannot be used when SSE is disabled!");
1646      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1647             "SSE register cannot be used when SSE is disabled!");
1648      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1649        // Kernel mode asks for SSE to be disabled, so don't push them
1650        // on the stack.
1651        TotalNumXMMRegs = 0;
1652
1653      // For X86-64, if there are vararg parameters that are passed via
1654      // registers, then we must store them to their spots on the stack so they
1655      // may be loaded by deferencing the result of va_next.
1656      VarArgsGPOffset = NumIntRegs * 8;
1657      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1658      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1659                                                 TotalNumXMMRegs * 16, 16,
1660                                                 false);
1661
1662      // Store the integer parameter registers.
1663      SmallVector<SDValue, 8> MemOps;
1664      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1665      unsigned Offset = VarArgsGPOffset;
1666      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1667        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1668                                  DAG.getIntPtrConstant(Offset));
1669        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1670                                     X86::GR64RegisterClass);
1671        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1672        SDValue Store =
1673          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1674                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1675                       Offset, false, false, 0);
1676        MemOps.push_back(Store);
1677        Offset += 8;
1678      }
1679
1680      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1681        // Now store the XMM (fp + vector) parameter registers.
1682        SmallVector<SDValue, 11> SaveXMMOps;
1683        SaveXMMOps.push_back(Chain);
1684
1685        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1686        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1687        SaveXMMOps.push_back(ALVal);
1688
1689        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1690        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1691
1692        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1693          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1694                                       X86::VR128RegisterClass);
1695          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1696          SaveXMMOps.push_back(Val);
1697        }
1698        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1699                                     MVT::Other,
1700                                     &SaveXMMOps[0], SaveXMMOps.size()));
1701      }
1702
1703      if (!MemOps.empty())
1704        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1705                            &MemOps[0], MemOps.size());
1706    }
1707  }
1708
1709  // Some CCs need callee pop.
1710  if (IsCalleePop(isVarArg, CallConv)) {
1711    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1712  } else {
1713    BytesToPopOnReturn  = 0; // Callee pops nothing.
1714    // If this is an sret function, the return should pop the hidden pointer.
1715    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1716      BytesToPopOnReturn = 4;
1717  }
1718
1719  if (!Is64Bit) {
1720    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1721    if (CallConv == CallingConv::X86_FastCall)
1722      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1723  }
1724
1725  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1726
1727  return Chain;
1728}
1729
1730SDValue
1731X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1732                                    SDValue StackPtr, SDValue Arg,
1733                                    DebugLoc dl, SelectionDAG &DAG,
1734                                    const CCValAssign &VA,
1735                                    ISD::ArgFlagsTy Flags) {
1736  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1737  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1738  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1739  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1740  if (Flags.isByVal()) {
1741    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1742  }
1743  return DAG.getStore(Chain, dl, Arg, PtrOff,
1744                      PseudoSourceValue::getStack(), LocMemOffset,
1745                      false, false, 0);
1746}
1747
1748/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1749/// optimization is performed and it is required.
1750SDValue
1751X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1752                                           SDValue &OutRetAddr, SDValue Chain,
1753                                           bool IsTailCall, bool Is64Bit,
1754                                           int FPDiff, DebugLoc dl) {
1755  // Adjust the Return address stack slot.
1756  EVT VT = getPointerTy();
1757  OutRetAddr = getReturnAddressFrameIndex(DAG);
1758
1759  // Load the "old" Return address.
1760  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1761  return SDValue(OutRetAddr.getNode(), 1);
1762}
1763
1764/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1765/// optimization is performed and it is required (FPDiff!=0).
1766static SDValue
1767EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1768                         SDValue Chain, SDValue RetAddrFrIdx,
1769                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1770  // Store the return address to the appropriate stack slot.
1771  if (!FPDiff) return Chain;
1772  // Calculate the new stack slot for the return address.
1773  int SlotSize = Is64Bit ? 8 : 4;
1774  int NewReturnAddrFI =
1775    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
1776  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1777  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1778  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1779                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1780                       false, false, 0);
1781  return Chain;
1782}
1783
1784SDValue
1785X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1786                             CallingConv::ID CallConv, bool isVarArg,
1787                             bool &isTailCall,
1788                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1789                             const SmallVectorImpl<ISD::InputArg> &Ins,
1790                             DebugLoc dl, SelectionDAG &DAG,
1791                             SmallVectorImpl<SDValue> &InVals) {
1792  MachineFunction &MF = DAG.getMachineFunction();
1793  bool Is64Bit        = Subtarget->is64Bit();
1794  bool IsStructRet    = CallIsStructReturn(Outs);
1795  bool IsSibcall      = false;
1796
1797  if (isTailCall) {
1798    // Check if it's really possible to do a tail call.
1799    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1800                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1801                                                   Outs, Ins, DAG);
1802
1803    // Sibcalls are automatically detected tailcalls which do not require
1804    // ABI changes.
1805    if (!GuaranteedTailCallOpt && isTailCall)
1806      IsSibcall = true;
1807
1808    if (isTailCall)
1809      ++NumTailCalls;
1810  }
1811
1812  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1813         "Var args not supported with calling convention fastcc or ghc");
1814
1815  // Analyze operands of the call, assigning locations to each operand.
1816  SmallVector<CCValAssign, 16> ArgLocs;
1817  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1818                 ArgLocs, *DAG.getContext());
1819  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1820
1821  // Get a count of how many bytes are to be pushed on the stack.
1822  unsigned NumBytes = CCInfo.getNextStackOffset();
1823  if (IsSibcall)
1824    // This is a sibcall. The memory operands are available in caller's
1825    // own caller's stack.
1826    NumBytes = 0;
1827  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1828    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1829
1830  int FPDiff = 0;
1831  if (isTailCall && !IsSibcall) {
1832    // Lower arguments at fp - stackoffset + fpdiff.
1833    unsigned NumBytesCallerPushed =
1834      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1835    FPDiff = NumBytesCallerPushed - NumBytes;
1836
1837    // Set the delta of movement of the returnaddr stackslot.
1838    // But only set if delta is greater than previous delta.
1839    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1840      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1841  }
1842
1843  if (!IsSibcall)
1844    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1845
1846  SDValue RetAddrFrIdx;
1847  // Load return adress for tail calls.
1848  if (isTailCall && FPDiff)
1849    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1850                                    Is64Bit, FPDiff, dl);
1851
1852  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1853  SmallVector<SDValue, 8> MemOpChains;
1854  SDValue StackPtr;
1855
1856  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1857  // of tail call optimization arguments are handle later.
1858  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1859    CCValAssign &VA = ArgLocs[i];
1860    EVT RegVT = VA.getLocVT();
1861    SDValue Arg = Outs[i].Val;
1862    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1863    bool isByVal = Flags.isByVal();
1864
1865    // Promote the value if needed.
1866    switch (VA.getLocInfo()) {
1867    default: llvm_unreachable("Unknown loc info!");
1868    case CCValAssign::Full: break;
1869    case CCValAssign::SExt:
1870      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1871      break;
1872    case CCValAssign::ZExt:
1873      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1874      break;
1875    case CCValAssign::AExt:
1876      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1877        // Special case: passing MMX values in XMM registers.
1878        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1879        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1880        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1881      } else
1882        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1883      break;
1884    case CCValAssign::BCvt:
1885      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1886      break;
1887    case CCValAssign::Indirect: {
1888      // Store the argument.
1889      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1890      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1891      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1892                           PseudoSourceValue::getFixedStack(FI), 0,
1893                           false, false, 0);
1894      Arg = SpillSlot;
1895      break;
1896    }
1897    }
1898
1899    if (VA.isRegLoc()) {
1900      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1901    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1902      assert(VA.isMemLoc());
1903      if (StackPtr.getNode() == 0)
1904        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1905      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1906                                             dl, DAG, VA, Flags));
1907    }
1908  }
1909
1910  if (!MemOpChains.empty())
1911    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1912                        &MemOpChains[0], MemOpChains.size());
1913
1914  // Build a sequence of copy-to-reg nodes chained together with token chain
1915  // and flag operands which copy the outgoing args into registers.
1916  SDValue InFlag;
1917  // Tail call byval lowering might overwrite argument registers so in case of
1918  // tail call optimization the copies to registers are lowered later.
1919  if (!isTailCall)
1920    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1921      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1922                               RegsToPass[i].second, InFlag);
1923      InFlag = Chain.getValue(1);
1924    }
1925
1926  if (Subtarget->isPICStyleGOT()) {
1927    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1928    // GOT pointer.
1929    if (!isTailCall) {
1930      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1931                               DAG.getNode(X86ISD::GlobalBaseReg,
1932                                           DebugLoc::getUnknownLoc(),
1933                                           getPointerTy()),
1934                               InFlag);
1935      InFlag = Chain.getValue(1);
1936    } else {
1937      // If we are tail calling and generating PIC/GOT style code load the
1938      // address of the callee into ECX. The value in ecx is used as target of
1939      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1940      // for tail calls on PIC/GOT architectures. Normally we would just put the
1941      // address of GOT into ebx and then call target@PLT. But for tail calls
1942      // ebx would be restored (since ebx is callee saved) before jumping to the
1943      // target@PLT.
1944
1945      // Note: The actual moving to ECX is done further down.
1946      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1947      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1948          !G->getGlobal()->hasProtectedVisibility())
1949        Callee = LowerGlobalAddress(Callee, DAG);
1950      else if (isa<ExternalSymbolSDNode>(Callee))
1951        Callee = LowerExternalSymbol(Callee, DAG);
1952    }
1953  }
1954
1955  if (Is64Bit && isVarArg) {
1956    // From AMD64 ABI document:
1957    // For calls that may call functions that use varargs or stdargs
1958    // (prototype-less calls or calls to functions containing ellipsis (...) in
1959    // the declaration) %al is used as hidden argument to specify the number
1960    // of SSE registers used. The contents of %al do not need to match exactly
1961    // the number of registers, but must be an ubound on the number of SSE
1962    // registers used and is in the range 0 - 8 inclusive.
1963
1964    // FIXME: Verify this on Win64
1965    // Count the number of XMM registers allocated.
1966    static const unsigned XMMArgRegs[] = {
1967      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1968      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1969    };
1970    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1971    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1972           && "SSE registers cannot be used when SSE is disabled");
1973
1974    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1975                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1976    InFlag = Chain.getValue(1);
1977  }
1978
1979
1980  // For tail calls lower the arguments to the 'real' stack slot.
1981  if (isTailCall) {
1982    // Force all the incoming stack arguments to be loaded from the stack
1983    // before any new outgoing arguments are stored to the stack, because the
1984    // outgoing stack slots may alias the incoming argument stack slots, and
1985    // the alias isn't otherwise explicit. This is slightly more conservative
1986    // than necessary, because it means that each store effectively depends
1987    // on every argument instead of just those arguments it would clobber.
1988    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1989
1990    SmallVector<SDValue, 8> MemOpChains2;
1991    SDValue FIN;
1992    int FI = 0;
1993    // Do not flag preceeding copytoreg stuff together with the following stuff.
1994    InFlag = SDValue();
1995    if (GuaranteedTailCallOpt) {
1996      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1997        CCValAssign &VA = ArgLocs[i];
1998        if (VA.isRegLoc())
1999          continue;
2000        assert(VA.isMemLoc());
2001        SDValue Arg = Outs[i].Val;
2002        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2003        // Create frame index.
2004        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2005        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2006        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
2007        FIN = DAG.getFrameIndex(FI, getPointerTy());
2008
2009        if (Flags.isByVal()) {
2010          // Copy relative to framepointer.
2011          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2012          if (StackPtr.getNode() == 0)
2013            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2014                                          getPointerTy());
2015          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2016
2017          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2018                                                           ArgChain,
2019                                                           Flags, DAG, dl));
2020        } else {
2021          // Store relative to framepointer.
2022          MemOpChains2.push_back(
2023            DAG.getStore(ArgChain, dl, Arg, FIN,
2024                         PseudoSourceValue::getFixedStack(FI), 0,
2025                         false, false, 0));
2026        }
2027      }
2028    }
2029
2030    if (!MemOpChains2.empty())
2031      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2032                          &MemOpChains2[0], MemOpChains2.size());
2033
2034    // Copy arguments to their registers.
2035    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2036      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2037                               RegsToPass[i].second, InFlag);
2038      InFlag = Chain.getValue(1);
2039    }
2040    InFlag =SDValue();
2041
2042    // Store the return address to the appropriate stack slot.
2043    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2044                                     FPDiff, dl);
2045  }
2046
2047  bool WasGlobalOrExternal = false;
2048  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2049    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2050    // In the 64-bit large code model, we have to make all calls
2051    // through a register, since the call instruction's 32-bit
2052    // pc-relative offset may not be large enough to hold the whole
2053    // address.
2054  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2055    WasGlobalOrExternal = true;
2056    // If the callee is a GlobalAddress node (quite common, every direct call
2057    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2058    // it.
2059
2060    // We should use extra load for direct calls to dllimported functions in
2061    // non-JIT mode.
2062    GlobalValue *GV = G->getGlobal();
2063    if (!GV->hasDLLImportLinkage()) {
2064      unsigned char OpFlags = 0;
2065
2066      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2067      // external symbols most go through the PLT in PIC mode.  If the symbol
2068      // has hidden or protected visibility, or if it is static or local, then
2069      // we don't need to use the PLT - we can directly call it.
2070      if (Subtarget->isTargetELF() &&
2071          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2072          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2073        OpFlags = X86II::MO_PLT;
2074      } else if (Subtarget->isPICStyleStubAny() &&
2075               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2076               Subtarget->getDarwinVers() < 9) {
2077        // PC-relative references to external symbols should go through $stub,
2078        // unless we're building with the leopard linker or later, which
2079        // automatically synthesizes these stubs.
2080        OpFlags = X86II::MO_DARWIN_STUB;
2081      }
2082
2083      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2084                                          G->getOffset(), OpFlags);
2085    }
2086  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2087    WasGlobalOrExternal = true;
2088    unsigned char OpFlags = 0;
2089
2090    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2091    // symbols should go through the PLT.
2092    if (Subtarget->isTargetELF() &&
2093        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2094      OpFlags = X86II::MO_PLT;
2095    } else if (Subtarget->isPICStyleStubAny() &&
2096             Subtarget->getDarwinVers() < 9) {
2097      // PC-relative references to external symbols should go through $stub,
2098      // unless we're building with the leopard linker or later, which
2099      // automatically synthesizes these stubs.
2100      OpFlags = X86II::MO_DARWIN_STUB;
2101    }
2102
2103    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2104                                         OpFlags);
2105  }
2106
2107  // Returns a chain & a flag for retval copy to use.
2108  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2109  SmallVector<SDValue, 8> Ops;
2110
2111  if (!IsSibcall && isTailCall) {
2112    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2113                           DAG.getIntPtrConstant(0, true), InFlag);
2114    InFlag = Chain.getValue(1);
2115  }
2116
2117  Ops.push_back(Chain);
2118  Ops.push_back(Callee);
2119
2120  if (isTailCall)
2121    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2122
2123  // Add argument registers to the end of the list so that they are known live
2124  // into the call.
2125  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2126    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2127                                  RegsToPass[i].second.getValueType()));
2128
2129  // Add an implicit use GOT pointer in EBX.
2130  if (!isTailCall && Subtarget->isPICStyleGOT())
2131    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2132
2133  // Add an implicit use of AL for x86 vararg functions.
2134  if (Is64Bit && isVarArg)
2135    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2136
2137  if (InFlag.getNode())
2138    Ops.push_back(InFlag);
2139
2140  if (isTailCall) {
2141    // If this is the first return lowered for this function, add the regs
2142    // to the liveout set for the function.
2143    if (MF.getRegInfo().liveout_empty()) {
2144      SmallVector<CCValAssign, 16> RVLocs;
2145      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2146                     *DAG.getContext());
2147      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2148      for (unsigned i = 0; i != RVLocs.size(); ++i)
2149        if (RVLocs[i].isRegLoc())
2150          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2151    }
2152    return DAG.getNode(X86ISD::TC_RETURN, dl,
2153                       NodeTys, &Ops[0], Ops.size());
2154  }
2155
2156  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2157  InFlag = Chain.getValue(1);
2158
2159  // Create the CALLSEQ_END node.
2160  unsigned NumBytesForCalleeToPush;
2161  if (IsCalleePop(isVarArg, CallConv))
2162    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2163  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2164    // If this is a call to a struct-return function, the callee
2165    // pops the hidden struct pointer, so we have to push it back.
2166    // This is common for Darwin/X86, Linux & Mingw32 targets.
2167    NumBytesForCalleeToPush = 4;
2168  else
2169    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2170
2171  // Returns a flag for retval copy to use.
2172  if (!IsSibcall) {
2173    Chain = DAG.getCALLSEQ_END(Chain,
2174                               DAG.getIntPtrConstant(NumBytes, true),
2175                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2176                                                     true),
2177                               InFlag);
2178    InFlag = Chain.getValue(1);
2179  }
2180
2181  // Handle result values, copying them out of physregs into vregs that we
2182  // return.
2183  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2184                         Ins, dl, DAG, InVals);
2185}
2186
2187
2188//===----------------------------------------------------------------------===//
2189//                Fast Calling Convention (tail call) implementation
2190//===----------------------------------------------------------------------===//
2191
2192//  Like std call, callee cleans arguments, convention except that ECX is
2193//  reserved for storing the tail called function address. Only 2 registers are
2194//  free for argument passing (inreg). Tail call optimization is performed
2195//  provided:
2196//                * tailcallopt is enabled
2197//                * caller/callee are fastcc
2198//  On X86_64 architecture with GOT-style position independent code only local
2199//  (within module) calls are supported at the moment.
2200//  To keep the stack aligned according to platform abi the function
2201//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2202//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2203//  If a tail called function callee has more arguments than the caller the
2204//  caller needs to make sure that there is room to move the RETADDR to. This is
2205//  achieved by reserving an area the size of the argument delta right after the
2206//  original REtADDR, but before the saved framepointer or the spilled registers
2207//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2208//  stack layout:
2209//    arg1
2210//    arg2
2211//    RETADDR
2212//    [ new RETADDR
2213//      move area ]
2214//    (possible EBP)
2215//    ESI
2216//    EDI
2217//    local1 ..
2218
2219/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2220/// for a 16 byte align requirement.
2221unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2222                                                        SelectionDAG& DAG) {
2223  MachineFunction &MF = DAG.getMachineFunction();
2224  const TargetMachine &TM = MF.getTarget();
2225  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2226  unsigned StackAlignment = TFI.getStackAlignment();
2227  uint64_t AlignMask = StackAlignment - 1;
2228  int64_t Offset = StackSize;
2229  uint64_t SlotSize = TD->getPointerSize();
2230  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2231    // Number smaller than 12 so just add the difference.
2232    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2233  } else {
2234    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2235    Offset = ((~AlignMask) & Offset) + StackAlignment +
2236      (StackAlignment-SlotSize);
2237  }
2238  return Offset;
2239}
2240
2241/// MatchingStackOffset - Return true if the given stack call argument is
2242/// already available in the same position (relatively) of the caller's
2243/// incoming argument stack.
2244static
2245bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2246                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2247                         const X86InstrInfo *TII) {
2248  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2249  int FI = INT_MAX;
2250  if (Arg.getOpcode() == ISD::CopyFromReg) {
2251    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2252    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2253      return false;
2254    MachineInstr *Def = MRI->getVRegDef(VR);
2255    if (!Def)
2256      return false;
2257    if (!Flags.isByVal()) {
2258      if (!TII->isLoadFromStackSlot(Def, FI))
2259        return false;
2260    } else {
2261      unsigned Opcode = Def->getOpcode();
2262      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2263          Def->getOperand(1).isFI()) {
2264        FI = Def->getOperand(1).getIndex();
2265        Bytes = Flags.getByValSize();
2266      } else
2267        return false;
2268    }
2269  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2270    if (Flags.isByVal())
2271      // ByVal argument is passed in as a pointer but it's now being
2272      // dereferenced. e.g.
2273      // define @foo(%struct.X* %A) {
2274      //   tail call @bar(%struct.X* byval %A)
2275      // }
2276      return false;
2277    SDValue Ptr = Ld->getBasePtr();
2278    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2279    if (!FINode)
2280      return false;
2281    FI = FINode->getIndex();
2282  } else
2283    return false;
2284
2285  assert(FI != INT_MAX);
2286  if (!MFI->isFixedObjectIndex(FI))
2287    return false;
2288  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2289}
2290
2291/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2292/// for tail call optimization. Targets which want to do tail call
2293/// optimization should implement this function.
2294bool
2295X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2296                                                     CallingConv::ID CalleeCC,
2297                                                     bool isVarArg,
2298                                                     bool isCalleeStructRet,
2299                                                     bool isCallerStructRet,
2300                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2301                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2302                                                     SelectionDAG& DAG) const {
2303  if (!IsTailCallConvention(CalleeCC) &&
2304      CalleeCC != CallingConv::C)
2305    return false;
2306
2307  // If -tailcallopt is specified, make fastcc functions tail-callable.
2308  const MachineFunction &MF = DAG.getMachineFunction();
2309  const Function *CallerF = DAG.getMachineFunction().getFunction();
2310  if (GuaranteedTailCallOpt) {
2311    if (IsTailCallConvention(CalleeCC) &&
2312        CallerF->getCallingConv() == CalleeCC)
2313      return true;
2314    return false;
2315  }
2316
2317  // Look for obvious safe cases to perform tail call optimization that does not
2318  // requite ABI changes. This is what gcc calls sibcall.
2319
2320  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2321  // emit a special epilogue.
2322  if (RegInfo->needsStackRealignment(MF))
2323    return false;
2324
2325  // Do not sibcall optimize vararg calls unless the call site is not passing any
2326  // arguments.
2327  if (isVarArg && !Outs.empty())
2328    return false;
2329
2330  // Also avoid sibcall optimization if either caller or callee uses struct
2331  // return semantics.
2332  if (isCalleeStructRet || isCallerStructRet)
2333    return false;
2334
2335  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2336  // Therefore if it's not used by the call it is not safe to optimize this into
2337  // a sibcall.
2338  bool Unused = false;
2339  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2340    if (!Ins[i].Used) {
2341      Unused = true;
2342      break;
2343    }
2344  }
2345  if (Unused) {
2346    SmallVector<CCValAssign, 16> RVLocs;
2347    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2348                   RVLocs, *DAG.getContext());
2349    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2350    for (unsigned i = 0; i != RVLocs.size(); ++i) {
2351      CCValAssign &VA = RVLocs[i];
2352      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2353        return false;
2354    }
2355  }
2356
2357  // If the callee takes no arguments then go on to check the results of the
2358  // call.
2359  if (!Outs.empty()) {
2360    // Check if stack adjustment is needed. For now, do not do this if any
2361    // argument is passed on the stack.
2362    SmallVector<CCValAssign, 16> ArgLocs;
2363    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2364                   ArgLocs, *DAG.getContext());
2365    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2366    if (CCInfo.getNextStackOffset()) {
2367      MachineFunction &MF = DAG.getMachineFunction();
2368      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2369        return false;
2370      if (Subtarget->isTargetWin64())
2371        // Win64 ABI has additional complications.
2372        return false;
2373
2374      // Check if the arguments are already laid out in the right way as
2375      // the caller's fixed stack objects.
2376      MachineFrameInfo *MFI = MF.getFrameInfo();
2377      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2378      const X86InstrInfo *TII =
2379        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2380      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2381        CCValAssign &VA = ArgLocs[i];
2382        EVT RegVT = VA.getLocVT();
2383        SDValue Arg = Outs[i].Val;
2384        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2385        if (VA.getLocInfo() == CCValAssign::Indirect)
2386          return false;
2387        if (!VA.isRegLoc()) {
2388          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2389                                   MFI, MRI, TII))
2390            return false;
2391        }
2392      }
2393    }
2394  }
2395
2396  return true;
2397}
2398
2399FastISel *
2400X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2401                            DwarfWriter *dw,
2402                            DenseMap<const Value *, unsigned> &vm,
2403                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2404                            DenseMap<const AllocaInst *, int> &am
2405#ifndef NDEBUG
2406                          , SmallSet<Instruction*, 8> &cil
2407#endif
2408                                  ) {
2409  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2410#ifndef NDEBUG
2411                             , cil
2412#endif
2413                             );
2414}
2415
2416
2417//===----------------------------------------------------------------------===//
2418//                           Other Lowering Hooks
2419//===----------------------------------------------------------------------===//
2420
2421
2422SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2423  MachineFunction &MF = DAG.getMachineFunction();
2424  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2425  int ReturnAddrIndex = FuncInfo->getRAIndex();
2426
2427  if (ReturnAddrIndex == 0) {
2428    // Set up a frame object for the return address.
2429    uint64_t SlotSize = TD->getPointerSize();
2430    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2431                                                           false, false);
2432    FuncInfo->setRAIndex(ReturnAddrIndex);
2433  }
2434
2435  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2436}
2437
2438
2439bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2440                                       bool hasSymbolicDisplacement) {
2441  // Offset should fit into 32 bit immediate field.
2442  if (!isInt<32>(Offset))
2443    return false;
2444
2445  // If we don't have a symbolic displacement - we don't have any extra
2446  // restrictions.
2447  if (!hasSymbolicDisplacement)
2448    return true;
2449
2450  // FIXME: Some tweaks might be needed for medium code model.
2451  if (M != CodeModel::Small && M != CodeModel::Kernel)
2452    return false;
2453
2454  // For small code model we assume that latest object is 16MB before end of 31
2455  // bits boundary. We may also accept pretty large negative constants knowing
2456  // that all objects are in the positive half of address space.
2457  if (M == CodeModel::Small && Offset < 16*1024*1024)
2458    return true;
2459
2460  // For kernel code model we know that all object resist in the negative half
2461  // of 32bits address space. We may not accept negative offsets, since they may
2462  // be just off and we may accept pretty large positive ones.
2463  if (M == CodeModel::Kernel && Offset > 0)
2464    return true;
2465
2466  return false;
2467}
2468
2469/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2470/// specific condition code, returning the condition code and the LHS/RHS of the
2471/// comparison to make.
2472static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2473                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2474  if (!isFP) {
2475    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2476      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2477        // X > -1   -> X == 0, jump !sign.
2478        RHS = DAG.getConstant(0, RHS.getValueType());
2479        return X86::COND_NS;
2480      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2481        // X < 0   -> X == 0, jump on sign.
2482        return X86::COND_S;
2483      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2484        // X < 1   -> X <= 0
2485        RHS = DAG.getConstant(0, RHS.getValueType());
2486        return X86::COND_LE;
2487      }
2488    }
2489
2490    switch (SetCCOpcode) {
2491    default: llvm_unreachable("Invalid integer condition!");
2492    case ISD::SETEQ:  return X86::COND_E;
2493    case ISD::SETGT:  return X86::COND_G;
2494    case ISD::SETGE:  return X86::COND_GE;
2495    case ISD::SETLT:  return X86::COND_L;
2496    case ISD::SETLE:  return X86::COND_LE;
2497    case ISD::SETNE:  return X86::COND_NE;
2498    case ISD::SETULT: return X86::COND_B;
2499    case ISD::SETUGT: return X86::COND_A;
2500    case ISD::SETULE: return X86::COND_BE;
2501    case ISD::SETUGE: return X86::COND_AE;
2502    }
2503  }
2504
2505  // First determine if it is required or is profitable to flip the operands.
2506
2507  // If LHS is a foldable load, but RHS is not, flip the condition.
2508  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2509      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2510    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2511    std::swap(LHS, RHS);
2512  }
2513
2514  switch (SetCCOpcode) {
2515  default: break;
2516  case ISD::SETOLT:
2517  case ISD::SETOLE:
2518  case ISD::SETUGT:
2519  case ISD::SETUGE:
2520    std::swap(LHS, RHS);
2521    break;
2522  }
2523
2524  // On a floating point condition, the flags are set as follows:
2525  // ZF  PF  CF   op
2526  //  0 | 0 | 0 | X > Y
2527  //  0 | 0 | 1 | X < Y
2528  //  1 | 0 | 0 | X == Y
2529  //  1 | 1 | 1 | unordered
2530  switch (SetCCOpcode) {
2531  default: llvm_unreachable("Condcode should be pre-legalized away");
2532  case ISD::SETUEQ:
2533  case ISD::SETEQ:   return X86::COND_E;
2534  case ISD::SETOLT:              // flipped
2535  case ISD::SETOGT:
2536  case ISD::SETGT:   return X86::COND_A;
2537  case ISD::SETOLE:              // flipped
2538  case ISD::SETOGE:
2539  case ISD::SETGE:   return X86::COND_AE;
2540  case ISD::SETUGT:              // flipped
2541  case ISD::SETULT:
2542  case ISD::SETLT:   return X86::COND_B;
2543  case ISD::SETUGE:              // flipped
2544  case ISD::SETULE:
2545  case ISD::SETLE:   return X86::COND_BE;
2546  case ISD::SETONE:
2547  case ISD::SETNE:   return X86::COND_NE;
2548  case ISD::SETUO:   return X86::COND_P;
2549  case ISD::SETO:    return X86::COND_NP;
2550  case ISD::SETOEQ:
2551  case ISD::SETUNE:  return X86::COND_INVALID;
2552  }
2553}
2554
2555/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2556/// code. Current x86 isa includes the following FP cmov instructions:
2557/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2558static bool hasFPCMov(unsigned X86CC) {
2559  switch (X86CC) {
2560  default:
2561    return false;
2562  case X86::COND_B:
2563  case X86::COND_BE:
2564  case X86::COND_E:
2565  case X86::COND_P:
2566  case X86::COND_A:
2567  case X86::COND_AE:
2568  case X86::COND_NE:
2569  case X86::COND_NP:
2570    return true;
2571  }
2572}
2573
2574/// isFPImmLegal - Returns true if the target can instruction select the
2575/// specified FP immediate natively. If false, the legalizer will
2576/// materialize the FP immediate as a load from a constant pool.
2577bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2578  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2579    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2580      return true;
2581  }
2582  return false;
2583}
2584
2585/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2586/// the specified range (L, H].
2587static bool isUndefOrInRange(int Val, int Low, int Hi) {
2588  return (Val < 0) || (Val >= Low && Val < Hi);
2589}
2590
2591/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2592/// specified value.
2593static bool isUndefOrEqual(int Val, int CmpVal) {
2594  if (Val < 0 || Val == CmpVal)
2595    return true;
2596  return false;
2597}
2598
2599/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2600/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2601/// the second operand.
2602static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2603  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2604    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2605  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2606    return (Mask[0] < 2 && Mask[1] < 2);
2607  return false;
2608}
2609
2610bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2611  SmallVector<int, 8> M;
2612  N->getMask(M);
2613  return ::isPSHUFDMask(M, N->getValueType(0));
2614}
2615
2616/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2617/// is suitable for input to PSHUFHW.
2618static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2619  if (VT != MVT::v8i16)
2620    return false;
2621
2622  // Lower quadword copied in order or undef.
2623  for (int i = 0; i != 4; ++i)
2624    if (Mask[i] >= 0 && Mask[i] != i)
2625      return false;
2626
2627  // Upper quadword shuffled.
2628  for (int i = 4; i != 8; ++i)
2629    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2630      return false;
2631
2632  return true;
2633}
2634
2635bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2636  SmallVector<int, 8> M;
2637  N->getMask(M);
2638  return ::isPSHUFHWMask(M, N->getValueType(0));
2639}
2640
2641/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2642/// is suitable for input to PSHUFLW.
2643static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2644  if (VT != MVT::v8i16)
2645    return false;
2646
2647  // Upper quadword copied in order.
2648  for (int i = 4; i != 8; ++i)
2649    if (Mask[i] >= 0 && Mask[i] != i)
2650      return false;
2651
2652  // Lower quadword shuffled.
2653  for (int i = 0; i != 4; ++i)
2654    if (Mask[i] >= 4)
2655      return false;
2656
2657  return true;
2658}
2659
2660bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2661  SmallVector<int, 8> M;
2662  N->getMask(M);
2663  return ::isPSHUFLWMask(M, N->getValueType(0));
2664}
2665
2666/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2667/// is suitable for input to PALIGNR.
2668static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2669                          bool hasSSSE3) {
2670  int i, e = VT.getVectorNumElements();
2671
2672  // Do not handle v2i64 / v2f64 shuffles with palignr.
2673  if (e < 4 || !hasSSSE3)
2674    return false;
2675
2676  for (i = 0; i != e; ++i)
2677    if (Mask[i] >= 0)
2678      break;
2679
2680  // All undef, not a palignr.
2681  if (i == e)
2682    return false;
2683
2684  // Determine if it's ok to perform a palignr with only the LHS, since we
2685  // don't have access to the actual shuffle elements to see if RHS is undef.
2686  bool Unary = Mask[i] < (int)e;
2687  bool NeedsUnary = false;
2688
2689  int s = Mask[i] - i;
2690
2691  // Check the rest of the elements to see if they are consecutive.
2692  for (++i; i != e; ++i) {
2693    int m = Mask[i];
2694    if (m < 0)
2695      continue;
2696
2697    Unary = Unary && (m < (int)e);
2698    NeedsUnary = NeedsUnary || (m < s);
2699
2700    if (NeedsUnary && !Unary)
2701      return false;
2702    if (Unary && m != ((s+i) & (e-1)))
2703      return false;
2704    if (!Unary && m != (s+i))
2705      return false;
2706  }
2707  return true;
2708}
2709
2710bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2711  SmallVector<int, 8> M;
2712  N->getMask(M);
2713  return ::isPALIGNRMask(M, N->getValueType(0), true);
2714}
2715
2716/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2717/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2718static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2719  int NumElems = VT.getVectorNumElements();
2720  if (NumElems != 2 && NumElems != 4)
2721    return false;
2722
2723  int Half = NumElems / 2;
2724  for (int i = 0; i < Half; ++i)
2725    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2726      return false;
2727  for (int i = Half; i < NumElems; ++i)
2728    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2729      return false;
2730
2731  return true;
2732}
2733
2734bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2735  SmallVector<int, 8> M;
2736  N->getMask(M);
2737  return ::isSHUFPMask(M, N->getValueType(0));
2738}
2739
2740/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2741/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2742/// half elements to come from vector 1 (which would equal the dest.) and
2743/// the upper half to come from vector 2.
2744static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2745  int NumElems = VT.getVectorNumElements();
2746
2747  if (NumElems != 2 && NumElems != 4)
2748    return false;
2749
2750  int Half = NumElems / 2;
2751  for (int i = 0; i < Half; ++i)
2752    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2753      return false;
2754  for (int i = Half; i < NumElems; ++i)
2755    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2756      return false;
2757  return true;
2758}
2759
2760static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2761  SmallVector<int, 8> M;
2762  N->getMask(M);
2763  return isCommutedSHUFPMask(M, N->getValueType(0));
2764}
2765
2766/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2767/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2768bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2769  if (N->getValueType(0).getVectorNumElements() != 4)
2770    return false;
2771
2772  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2773  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2774         isUndefOrEqual(N->getMaskElt(1), 7) &&
2775         isUndefOrEqual(N->getMaskElt(2), 2) &&
2776         isUndefOrEqual(N->getMaskElt(3), 3);
2777}
2778
2779/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2780/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2781/// <2, 3, 2, 3>
2782bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2783  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2784
2785  if (NumElems != 4)
2786    return false;
2787
2788  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2789  isUndefOrEqual(N->getMaskElt(1), 3) &&
2790  isUndefOrEqual(N->getMaskElt(2), 2) &&
2791  isUndefOrEqual(N->getMaskElt(3), 3);
2792}
2793
2794/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2795/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2796bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2797  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2798
2799  if (NumElems != 2 && NumElems != 4)
2800    return false;
2801
2802  for (unsigned i = 0; i < NumElems/2; ++i)
2803    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2804      return false;
2805
2806  for (unsigned i = NumElems/2; i < NumElems; ++i)
2807    if (!isUndefOrEqual(N->getMaskElt(i), i))
2808      return false;
2809
2810  return true;
2811}
2812
2813/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2814/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2815bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2816  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2817
2818  if (NumElems != 2 && NumElems != 4)
2819    return false;
2820
2821  for (unsigned i = 0; i < NumElems/2; ++i)
2822    if (!isUndefOrEqual(N->getMaskElt(i), i))
2823      return false;
2824
2825  for (unsigned i = 0; i < NumElems/2; ++i)
2826    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2827      return false;
2828
2829  return true;
2830}
2831
2832/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2833/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2834static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2835                         bool V2IsSplat = false) {
2836  int NumElts = VT.getVectorNumElements();
2837  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2838    return false;
2839
2840  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2841    int BitI  = Mask[i];
2842    int BitI1 = Mask[i+1];
2843    if (!isUndefOrEqual(BitI, j))
2844      return false;
2845    if (V2IsSplat) {
2846      if (!isUndefOrEqual(BitI1, NumElts))
2847        return false;
2848    } else {
2849      if (!isUndefOrEqual(BitI1, j + NumElts))
2850        return false;
2851    }
2852  }
2853  return true;
2854}
2855
2856bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2857  SmallVector<int, 8> M;
2858  N->getMask(M);
2859  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2860}
2861
2862/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2863/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2864static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2865                         bool V2IsSplat = false) {
2866  int NumElts = VT.getVectorNumElements();
2867  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2868    return false;
2869
2870  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2871    int BitI  = Mask[i];
2872    int BitI1 = Mask[i+1];
2873    if (!isUndefOrEqual(BitI, j + NumElts/2))
2874      return false;
2875    if (V2IsSplat) {
2876      if (isUndefOrEqual(BitI1, NumElts))
2877        return false;
2878    } else {
2879      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2880        return false;
2881    }
2882  }
2883  return true;
2884}
2885
2886bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2887  SmallVector<int, 8> M;
2888  N->getMask(M);
2889  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2890}
2891
2892/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2893/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2894/// <0, 0, 1, 1>
2895static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2896  int NumElems = VT.getVectorNumElements();
2897  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2898    return false;
2899
2900  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2901    int BitI  = Mask[i];
2902    int BitI1 = Mask[i+1];
2903    if (!isUndefOrEqual(BitI, j))
2904      return false;
2905    if (!isUndefOrEqual(BitI1, j))
2906      return false;
2907  }
2908  return true;
2909}
2910
2911bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2912  SmallVector<int, 8> M;
2913  N->getMask(M);
2914  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2915}
2916
2917/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2918/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2919/// <2, 2, 3, 3>
2920static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2921  int NumElems = VT.getVectorNumElements();
2922  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2923    return false;
2924
2925  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2926    int BitI  = Mask[i];
2927    int BitI1 = Mask[i+1];
2928    if (!isUndefOrEqual(BitI, j))
2929      return false;
2930    if (!isUndefOrEqual(BitI1, j))
2931      return false;
2932  }
2933  return true;
2934}
2935
2936bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2937  SmallVector<int, 8> M;
2938  N->getMask(M);
2939  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2940}
2941
2942/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2943/// specifies a shuffle of elements that is suitable for input to MOVSS,
2944/// MOVSD, and MOVD, i.e. setting the lowest element.
2945static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2946  if (VT.getVectorElementType().getSizeInBits() < 32)
2947    return false;
2948
2949  int NumElts = VT.getVectorNumElements();
2950
2951  if (!isUndefOrEqual(Mask[0], NumElts))
2952    return false;
2953
2954  for (int i = 1; i < NumElts; ++i)
2955    if (!isUndefOrEqual(Mask[i], i))
2956      return false;
2957
2958  return true;
2959}
2960
2961bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2962  SmallVector<int, 8> M;
2963  N->getMask(M);
2964  return ::isMOVLMask(M, N->getValueType(0));
2965}
2966
2967/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2968/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2969/// element of vector 2 and the other elements to come from vector 1 in order.
2970static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2971                               bool V2IsSplat = false, bool V2IsUndef = false) {
2972  int NumOps = VT.getVectorNumElements();
2973  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2974    return false;
2975
2976  if (!isUndefOrEqual(Mask[0], 0))
2977    return false;
2978
2979  for (int i = 1; i < NumOps; ++i)
2980    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2981          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2982          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2983      return false;
2984
2985  return true;
2986}
2987
2988static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2989                           bool V2IsUndef = false) {
2990  SmallVector<int, 8> M;
2991  N->getMask(M);
2992  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2993}
2994
2995/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2996/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2997bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2998  if (N->getValueType(0).getVectorNumElements() != 4)
2999    return false;
3000
3001  // Expect 1, 1, 3, 3
3002  for (unsigned i = 0; i < 2; ++i) {
3003    int Elt = N->getMaskElt(i);
3004    if (Elt >= 0 && Elt != 1)
3005      return false;
3006  }
3007
3008  bool HasHi = false;
3009  for (unsigned i = 2; i < 4; ++i) {
3010    int Elt = N->getMaskElt(i);
3011    if (Elt >= 0 && Elt != 3)
3012      return false;
3013    if (Elt == 3)
3014      HasHi = true;
3015  }
3016  // Don't use movshdup if it can be done with a shufps.
3017  // FIXME: verify that matching u, u, 3, 3 is what we want.
3018  return HasHi;
3019}
3020
3021/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3022/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3023bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3024  if (N->getValueType(0).getVectorNumElements() != 4)
3025    return false;
3026
3027  // Expect 0, 0, 2, 2
3028  for (unsigned i = 0; i < 2; ++i)
3029    if (N->getMaskElt(i) > 0)
3030      return false;
3031
3032  bool HasHi = false;
3033  for (unsigned i = 2; i < 4; ++i) {
3034    int Elt = N->getMaskElt(i);
3035    if (Elt >= 0 && Elt != 2)
3036      return false;
3037    if (Elt == 2)
3038      HasHi = true;
3039  }
3040  // Don't use movsldup if it can be done with a shufps.
3041  return HasHi;
3042}
3043
3044/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3045/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3046bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3047  int e = N->getValueType(0).getVectorNumElements() / 2;
3048
3049  for (int i = 0; i < e; ++i)
3050    if (!isUndefOrEqual(N->getMaskElt(i), i))
3051      return false;
3052  for (int i = 0; i < e; ++i)
3053    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3054      return false;
3055  return true;
3056}
3057
3058/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3059/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3060unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3061  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3062  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3063
3064  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3065  unsigned Mask = 0;
3066  for (int i = 0; i < NumOperands; ++i) {
3067    int Val = SVOp->getMaskElt(NumOperands-i-1);
3068    if (Val < 0) Val = 0;
3069    if (Val >= NumOperands) Val -= NumOperands;
3070    Mask |= Val;
3071    if (i != NumOperands - 1)
3072      Mask <<= Shift;
3073  }
3074  return Mask;
3075}
3076
3077/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3078/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3079unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3080  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3081  unsigned Mask = 0;
3082  // 8 nodes, but we only care about the last 4.
3083  for (unsigned i = 7; i >= 4; --i) {
3084    int Val = SVOp->getMaskElt(i);
3085    if (Val >= 0)
3086      Mask |= (Val - 4);
3087    if (i != 4)
3088      Mask <<= 2;
3089  }
3090  return Mask;
3091}
3092
3093/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3094/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3095unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3096  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3097  unsigned Mask = 0;
3098  // 8 nodes, but we only care about the first 4.
3099  for (int i = 3; i >= 0; --i) {
3100    int Val = SVOp->getMaskElt(i);
3101    if (Val >= 0)
3102      Mask |= Val;
3103    if (i != 0)
3104      Mask <<= 2;
3105  }
3106  return Mask;
3107}
3108
3109/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3110/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3111unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3112  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3113  EVT VVT = N->getValueType(0);
3114  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3115  int Val = 0;
3116
3117  unsigned i, e;
3118  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3119    Val = SVOp->getMaskElt(i);
3120    if (Val >= 0)
3121      break;
3122  }
3123  return (Val - i) * EltSize;
3124}
3125
3126/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3127/// constant +0.0.
3128bool X86::isZeroNode(SDValue Elt) {
3129  return ((isa<ConstantSDNode>(Elt) &&
3130           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3131          (isa<ConstantFPSDNode>(Elt) &&
3132           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3133}
3134
3135/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3136/// their permute mask.
3137static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3138                                    SelectionDAG &DAG) {
3139  EVT VT = SVOp->getValueType(0);
3140  unsigned NumElems = VT.getVectorNumElements();
3141  SmallVector<int, 8> MaskVec;
3142
3143  for (unsigned i = 0; i != NumElems; ++i) {
3144    int idx = SVOp->getMaskElt(i);
3145    if (idx < 0)
3146      MaskVec.push_back(idx);
3147    else if (idx < (int)NumElems)
3148      MaskVec.push_back(idx + NumElems);
3149    else
3150      MaskVec.push_back(idx - NumElems);
3151  }
3152  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3153                              SVOp->getOperand(0), &MaskVec[0]);
3154}
3155
3156/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3157/// the two vector operands have swapped position.
3158static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3159  unsigned NumElems = VT.getVectorNumElements();
3160  for (unsigned i = 0; i != NumElems; ++i) {
3161    int idx = Mask[i];
3162    if (idx < 0)
3163      continue;
3164    else if (idx < (int)NumElems)
3165      Mask[i] = idx + NumElems;
3166    else
3167      Mask[i] = idx - NumElems;
3168  }
3169}
3170
3171/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3172/// match movhlps. The lower half elements should come from upper half of
3173/// V1 (and in order), and the upper half elements should come from the upper
3174/// half of V2 (and in order).
3175static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3176  if (Op->getValueType(0).getVectorNumElements() != 4)
3177    return false;
3178  for (unsigned i = 0, e = 2; i != e; ++i)
3179    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3180      return false;
3181  for (unsigned i = 2; i != 4; ++i)
3182    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3183      return false;
3184  return true;
3185}
3186
3187/// isScalarLoadToVector - Returns true if the node is a scalar load that
3188/// is promoted to a vector. It also returns the LoadSDNode by reference if
3189/// required.
3190static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3191  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3192    return false;
3193  N = N->getOperand(0).getNode();
3194  if (!ISD::isNON_EXTLoad(N))
3195    return false;
3196  if (LD)
3197    *LD = cast<LoadSDNode>(N);
3198  return true;
3199}
3200
3201/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3202/// match movlp{s|d}. The lower half elements should come from lower half of
3203/// V1 (and in order), and the upper half elements should come from the upper
3204/// half of V2 (and in order). And since V1 will become the source of the
3205/// MOVLP, it must be either a vector load or a scalar load to vector.
3206static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3207                               ShuffleVectorSDNode *Op) {
3208  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3209    return false;
3210  // Is V2 is a vector load, don't do this transformation. We will try to use
3211  // load folding shufps op.
3212  if (ISD::isNON_EXTLoad(V2))
3213    return false;
3214
3215  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3216
3217  if (NumElems != 2 && NumElems != 4)
3218    return false;
3219  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3220    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3221      return false;
3222  for (unsigned i = NumElems/2; i != NumElems; ++i)
3223    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3224      return false;
3225  return true;
3226}
3227
3228/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3229/// all the same.
3230static bool isSplatVector(SDNode *N) {
3231  if (N->getOpcode() != ISD::BUILD_VECTOR)
3232    return false;
3233
3234  SDValue SplatValue = N->getOperand(0);
3235  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3236    if (N->getOperand(i) != SplatValue)
3237      return false;
3238  return true;
3239}
3240
3241/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3242/// to an zero vector.
3243/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3244static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3245  SDValue V1 = N->getOperand(0);
3246  SDValue V2 = N->getOperand(1);
3247  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3248  for (unsigned i = 0; i != NumElems; ++i) {
3249    int Idx = N->getMaskElt(i);
3250    if (Idx >= (int)NumElems) {
3251      unsigned Opc = V2.getOpcode();
3252      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3253        continue;
3254      if (Opc != ISD::BUILD_VECTOR ||
3255          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3256        return false;
3257    } else if (Idx >= 0) {
3258      unsigned Opc = V1.getOpcode();
3259      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3260        continue;
3261      if (Opc != ISD::BUILD_VECTOR ||
3262          !X86::isZeroNode(V1.getOperand(Idx)))
3263        return false;
3264    }
3265  }
3266  return true;
3267}
3268
3269/// getZeroVector - Returns a vector of specified type with all zero elements.
3270///
3271static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3272                             DebugLoc dl) {
3273  assert(VT.isVector() && "Expected a vector type");
3274
3275  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3276  // type.  This ensures they get CSE'd.
3277  SDValue Vec;
3278  if (VT.getSizeInBits() == 64) { // MMX
3279    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3280    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3281  } else if (HasSSE2) {  // SSE2
3282    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3283    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3284  } else { // SSE1
3285    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3286    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3287  }
3288  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3289}
3290
3291/// getOnesVector - Returns a vector of specified type with all bits set.
3292///
3293static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3294  assert(VT.isVector() && "Expected a vector type");
3295
3296  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3297  // type.  This ensures they get CSE'd.
3298  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3299  SDValue Vec;
3300  if (VT.getSizeInBits() == 64)  // MMX
3301    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3302  else                                              // SSE
3303    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3304  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3305}
3306
3307
3308/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3309/// that point to V2 points to its first element.
3310static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3311  EVT VT = SVOp->getValueType(0);
3312  unsigned NumElems = VT.getVectorNumElements();
3313
3314  bool Changed = false;
3315  SmallVector<int, 8> MaskVec;
3316  SVOp->getMask(MaskVec);
3317
3318  for (unsigned i = 0; i != NumElems; ++i) {
3319    if (MaskVec[i] > (int)NumElems) {
3320      MaskVec[i] = NumElems;
3321      Changed = true;
3322    }
3323  }
3324  if (Changed)
3325    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3326                                SVOp->getOperand(1), &MaskVec[0]);
3327  return SDValue(SVOp, 0);
3328}
3329
3330/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3331/// operation of specified width.
3332static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3333                       SDValue V2) {
3334  unsigned NumElems = VT.getVectorNumElements();
3335  SmallVector<int, 8> Mask;
3336  Mask.push_back(NumElems);
3337  for (unsigned i = 1; i != NumElems; ++i)
3338    Mask.push_back(i);
3339  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3340}
3341
3342/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3343static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3344                          SDValue V2) {
3345  unsigned NumElems = VT.getVectorNumElements();
3346  SmallVector<int, 8> Mask;
3347  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3348    Mask.push_back(i);
3349    Mask.push_back(i + NumElems);
3350  }
3351  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3352}
3353
3354/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3355static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3356                          SDValue V2) {
3357  unsigned NumElems = VT.getVectorNumElements();
3358  unsigned Half = NumElems/2;
3359  SmallVector<int, 8> Mask;
3360  for (unsigned i = 0; i != Half; ++i) {
3361    Mask.push_back(i + Half);
3362    Mask.push_back(i + NumElems + Half);
3363  }
3364  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3365}
3366
3367/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3368static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3369                            bool HasSSE2) {
3370  if (SV->getValueType(0).getVectorNumElements() <= 4)
3371    return SDValue(SV, 0);
3372
3373  EVT PVT = MVT::v4f32;
3374  EVT VT = SV->getValueType(0);
3375  DebugLoc dl = SV->getDebugLoc();
3376  SDValue V1 = SV->getOperand(0);
3377  int NumElems = VT.getVectorNumElements();
3378  int EltNo = SV->getSplatIndex();
3379
3380  // unpack elements to the correct location
3381  while (NumElems > 4) {
3382    if (EltNo < NumElems/2) {
3383      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3384    } else {
3385      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3386      EltNo -= NumElems/2;
3387    }
3388    NumElems >>= 1;
3389  }
3390
3391  // Perform the splat.
3392  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3393  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3394  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3395  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3396}
3397
3398/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3399/// vector of zero or undef vector.  This produces a shuffle where the low
3400/// element of V2 is swizzled into the zero/undef vector, landing at element
3401/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3402static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3403                                             bool isZero, bool HasSSE2,
3404                                             SelectionDAG &DAG) {
3405  EVT VT = V2.getValueType();
3406  SDValue V1 = isZero
3407    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3408  unsigned NumElems = VT.getVectorNumElements();
3409  SmallVector<int, 16> MaskVec;
3410  for (unsigned i = 0; i != NumElems; ++i)
3411    // If this is the insertion idx, put the low elt of V2 here.
3412    MaskVec.push_back(i == Idx ? NumElems : i);
3413  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3414}
3415
3416/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3417/// a shuffle that is zero.
3418static
3419unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3420                                  bool Low, SelectionDAG &DAG) {
3421  unsigned NumZeros = 0;
3422  for (int i = 0; i < NumElems; ++i) {
3423    unsigned Index = Low ? i : NumElems-i-1;
3424    int Idx = SVOp->getMaskElt(Index);
3425    if (Idx < 0) {
3426      ++NumZeros;
3427      continue;
3428    }
3429    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3430    if (Elt.getNode() && X86::isZeroNode(Elt))
3431      ++NumZeros;
3432    else
3433      break;
3434  }
3435  return NumZeros;
3436}
3437
3438/// isVectorShift - Returns true if the shuffle can be implemented as a
3439/// logical left or right shift of a vector.
3440/// FIXME: split into pslldqi, psrldqi, palignr variants.
3441static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3442                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3443  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3444
3445  isLeft = true;
3446  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3447  if (!NumZeros) {
3448    isLeft = false;
3449    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3450    if (!NumZeros)
3451      return false;
3452  }
3453  bool SeenV1 = false;
3454  bool SeenV2 = false;
3455  for (int i = NumZeros; i < NumElems; ++i) {
3456    int Val = isLeft ? (i - NumZeros) : i;
3457    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3458    if (Idx < 0)
3459      continue;
3460    if (Idx < NumElems)
3461      SeenV1 = true;
3462    else {
3463      Idx -= NumElems;
3464      SeenV2 = true;
3465    }
3466    if (Idx != Val)
3467      return false;
3468  }
3469  if (SeenV1 && SeenV2)
3470    return false;
3471
3472  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3473  ShAmt = NumZeros;
3474  return true;
3475}
3476
3477
3478/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3479///
3480static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3481                                       unsigned NumNonZero, unsigned NumZero,
3482                                       SelectionDAG &DAG, TargetLowering &TLI) {
3483  if (NumNonZero > 8)
3484    return SDValue();
3485
3486  DebugLoc dl = Op.getDebugLoc();
3487  SDValue V(0, 0);
3488  bool First = true;
3489  for (unsigned i = 0; i < 16; ++i) {
3490    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3491    if (ThisIsNonZero && First) {
3492      if (NumZero)
3493        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3494      else
3495        V = DAG.getUNDEF(MVT::v8i16);
3496      First = false;
3497    }
3498
3499    if ((i & 1) != 0) {
3500      SDValue ThisElt(0, 0), LastElt(0, 0);
3501      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3502      if (LastIsNonZero) {
3503        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3504                              MVT::i16, Op.getOperand(i-1));
3505      }
3506      if (ThisIsNonZero) {
3507        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3508        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3509                              ThisElt, DAG.getConstant(8, MVT::i8));
3510        if (LastIsNonZero)
3511          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3512      } else
3513        ThisElt = LastElt;
3514
3515      if (ThisElt.getNode())
3516        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3517                        DAG.getIntPtrConstant(i/2));
3518    }
3519  }
3520
3521  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3522}
3523
3524/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3525///
3526static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3527                                       unsigned NumNonZero, unsigned NumZero,
3528                                       SelectionDAG &DAG, TargetLowering &TLI) {
3529  if (NumNonZero > 4)
3530    return SDValue();
3531
3532  DebugLoc dl = Op.getDebugLoc();
3533  SDValue V(0, 0);
3534  bool First = true;
3535  for (unsigned i = 0; i < 8; ++i) {
3536    bool isNonZero = (NonZeros & (1 << i)) != 0;
3537    if (isNonZero) {
3538      if (First) {
3539        if (NumZero)
3540          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3541        else
3542          V = DAG.getUNDEF(MVT::v8i16);
3543        First = false;
3544      }
3545      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3546                      MVT::v8i16, V, Op.getOperand(i),
3547                      DAG.getIntPtrConstant(i));
3548    }
3549  }
3550
3551  return V;
3552}
3553
3554/// getVShift - Return a vector logical shift node.
3555///
3556static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3557                         unsigned NumBits, SelectionDAG &DAG,
3558                         const TargetLowering &TLI, DebugLoc dl) {
3559  bool isMMX = VT.getSizeInBits() == 64;
3560  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3561  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3562  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3563  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3564                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3565                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3566}
3567
3568SDValue
3569X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3570                                          SelectionDAG &DAG) {
3571
3572  // Check if the scalar load can be widened into a vector load. And if
3573  // the address is "base + cst" see if the cst can be "absorbed" into
3574  // the shuffle mask.
3575  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3576    SDValue Ptr = LD->getBasePtr();
3577    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3578      return SDValue();
3579    EVT PVT = LD->getValueType(0);
3580    if (PVT != MVT::i32 && PVT != MVT::f32)
3581      return SDValue();
3582
3583    int FI = -1;
3584    int64_t Offset = 0;
3585    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3586      FI = FINode->getIndex();
3587      Offset = 0;
3588    } else if (Ptr.getOpcode() == ISD::ADD &&
3589               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3590               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3591      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3592      Offset = Ptr.getConstantOperandVal(1);
3593      Ptr = Ptr.getOperand(0);
3594    } else {
3595      return SDValue();
3596    }
3597
3598    SDValue Chain = LD->getChain();
3599    // Make sure the stack object alignment is at least 16.
3600    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3601    if (DAG.InferPtrAlignment(Ptr) < 16) {
3602      if (MFI->isFixedObjectIndex(FI)) {
3603        // Can't change the alignment. FIXME: It's possible to compute
3604        // the exact stack offset and reference FI + adjust offset instead.
3605        // If someone *really* cares about this. That's the way to implement it.
3606        return SDValue();
3607      } else {
3608        MFI->setObjectAlignment(FI, 16);
3609      }
3610    }
3611
3612    // (Offset % 16) must be multiple of 4. Then address is then
3613    // Ptr + (Offset & ~15).
3614    if (Offset < 0)
3615      return SDValue();
3616    if ((Offset % 16) & 3)
3617      return SDValue();
3618    int64_t StartOffset = Offset & ~15;
3619    if (StartOffset)
3620      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3621                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3622
3623    int EltNo = (Offset - StartOffset) >> 2;
3624    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3625    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3626    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3627                             false, false, 0);
3628    // Canonicalize it to a v4i32 shuffle.
3629    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3630    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3631                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3632                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3633  }
3634
3635  return SDValue();
3636}
3637
3638/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3639/// vector of type 'VT', see if the elements can be replaced by a single large
3640/// load which has the same value as a build_vector whose operands are 'elts'.
3641///
3642/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3643///
3644/// FIXME: we'd also like to handle the case where the last elements are zero
3645/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3646/// There's even a handy isZeroNode for that purpose.
3647static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3648                                        DebugLoc &dl, SelectionDAG &DAG) {
3649  EVT EltVT = VT.getVectorElementType();
3650  unsigned NumElems = Elts.size();
3651
3652  LoadSDNode *LDBase = NULL;
3653  unsigned LastLoadedElt = -1U;
3654
3655  // For each element in the initializer, see if we've found a load or an undef.
3656  // If we don't find an initial load element, or later load elements are
3657  // non-consecutive, bail out.
3658  for (unsigned i = 0; i < NumElems; ++i) {
3659    SDValue Elt = Elts[i];
3660
3661    if (!Elt.getNode() ||
3662        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3663      return SDValue();
3664    if (!LDBase) {
3665      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3666        return SDValue();
3667      LDBase = cast<LoadSDNode>(Elt.getNode());
3668      LastLoadedElt = i;
3669      continue;
3670    }
3671    if (Elt.getOpcode() == ISD::UNDEF)
3672      continue;
3673
3674    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3675    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3676      return SDValue();
3677    LastLoadedElt = i;
3678  }
3679
3680  // If we have found an entire vector of loads and undefs, then return a large
3681  // load of the entire vector width starting at the base pointer.  If we found
3682  // consecutive loads for the low half, generate a vzext_load node.
3683  if (LastLoadedElt == NumElems - 1) {
3684    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3685      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3686                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3687                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3688    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3689                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3690                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3691                       LDBase->getAlignment());
3692  } else if (NumElems == 4 && LastLoadedElt == 1) {
3693    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3694    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3695    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3696    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3697  }
3698  return SDValue();
3699}
3700
3701SDValue
3702X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3703  DebugLoc dl = Op.getDebugLoc();
3704  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3705  if (ISD::isBuildVectorAllZeros(Op.getNode())
3706      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3707    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3708    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3709    // eliminated on x86-32 hosts.
3710    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3711      return Op;
3712
3713    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3714      return getOnesVector(Op.getValueType(), DAG, dl);
3715    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3716  }
3717
3718  EVT VT = Op.getValueType();
3719  EVT ExtVT = VT.getVectorElementType();
3720  unsigned EVTBits = ExtVT.getSizeInBits();
3721
3722  unsigned NumElems = Op.getNumOperands();
3723  unsigned NumZero  = 0;
3724  unsigned NumNonZero = 0;
3725  unsigned NonZeros = 0;
3726  bool IsAllConstants = true;
3727  SmallSet<SDValue, 8> Values;
3728  for (unsigned i = 0; i < NumElems; ++i) {
3729    SDValue Elt = Op.getOperand(i);
3730    if (Elt.getOpcode() == ISD::UNDEF)
3731      continue;
3732    Values.insert(Elt);
3733    if (Elt.getOpcode() != ISD::Constant &&
3734        Elt.getOpcode() != ISD::ConstantFP)
3735      IsAllConstants = false;
3736    if (X86::isZeroNode(Elt))
3737      NumZero++;
3738    else {
3739      NonZeros |= (1 << i);
3740      NumNonZero++;
3741    }
3742  }
3743
3744  if (NumNonZero == 0) {
3745    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3746    return DAG.getUNDEF(VT);
3747  }
3748
3749  // Special case for single non-zero, non-undef, element.
3750  if (NumNonZero == 1) {
3751    unsigned Idx = CountTrailingZeros_32(NonZeros);
3752    SDValue Item = Op.getOperand(Idx);
3753
3754    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3755    // the value are obviously zero, truncate the value to i32 and do the
3756    // insertion that way.  Only do this if the value is non-constant or if the
3757    // value is a constant being inserted into element 0.  It is cheaper to do
3758    // a constant pool load than it is to do a movd + shuffle.
3759    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3760        (!IsAllConstants || Idx == 0)) {
3761      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3762        // Handle MMX and SSE both.
3763        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3764        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3765
3766        // Truncate the value (which may itself be a constant) to i32, and
3767        // convert it to a vector with movd (S2V+shuffle to zero extend).
3768        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3769        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3770        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3771                                           Subtarget->hasSSE2(), DAG);
3772
3773        // Now we have our 32-bit value zero extended in the low element of
3774        // a vector.  If Idx != 0, swizzle it into place.
3775        if (Idx != 0) {
3776          SmallVector<int, 4> Mask;
3777          Mask.push_back(Idx);
3778          for (unsigned i = 1; i != VecElts; ++i)
3779            Mask.push_back(i);
3780          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3781                                      DAG.getUNDEF(Item.getValueType()),
3782                                      &Mask[0]);
3783        }
3784        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3785      }
3786    }
3787
3788    // If we have a constant or non-constant insertion into the low element of
3789    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3790    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3791    // depending on what the source datatype is.
3792    if (Idx == 0) {
3793      if (NumZero == 0) {
3794        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3795      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3796          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3797        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3798        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3799        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3800                                           DAG);
3801      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3802        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3803        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3804        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3805        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3806                                           Subtarget->hasSSE2(), DAG);
3807        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3808      }
3809    }
3810
3811    // Is it a vector logical left shift?
3812    if (NumElems == 2 && Idx == 1 &&
3813        X86::isZeroNode(Op.getOperand(0)) &&
3814        !X86::isZeroNode(Op.getOperand(1))) {
3815      unsigned NumBits = VT.getSizeInBits();
3816      return getVShift(true, VT,
3817                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3818                                   VT, Op.getOperand(1)),
3819                       NumBits/2, DAG, *this, dl);
3820    }
3821
3822    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3823      return SDValue();
3824
3825    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3826    // is a non-constant being inserted into an element other than the low one,
3827    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3828    // movd/movss) to move this into the low element, then shuffle it into
3829    // place.
3830    if (EVTBits == 32) {
3831      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3832
3833      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3834      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3835                                         Subtarget->hasSSE2(), DAG);
3836      SmallVector<int, 8> MaskVec;
3837      for (unsigned i = 0; i < NumElems; i++)
3838        MaskVec.push_back(i == Idx ? 0 : 1);
3839      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3840    }
3841  }
3842
3843  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3844  if (Values.size() == 1) {
3845    if (EVTBits == 32) {
3846      // Instead of a shuffle like this:
3847      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3848      // Check if it's possible to issue this instead.
3849      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3850      unsigned Idx = CountTrailingZeros_32(NonZeros);
3851      SDValue Item = Op.getOperand(Idx);
3852      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3853        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3854    }
3855    return SDValue();
3856  }
3857
3858  // A vector full of immediates; various special cases are already
3859  // handled, so this is best done with a single constant-pool load.
3860  if (IsAllConstants)
3861    return SDValue();
3862
3863  // Let legalizer expand 2-wide build_vectors.
3864  if (EVTBits == 64) {
3865    if (NumNonZero == 1) {
3866      // One half is zero or undef.
3867      unsigned Idx = CountTrailingZeros_32(NonZeros);
3868      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3869                                 Op.getOperand(Idx));
3870      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3871                                         Subtarget->hasSSE2(), DAG);
3872    }
3873    return SDValue();
3874  }
3875
3876  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3877  if (EVTBits == 8 && NumElems == 16) {
3878    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3879                                        *this);
3880    if (V.getNode()) return V;
3881  }
3882
3883  if (EVTBits == 16 && NumElems == 8) {
3884    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3885                                        *this);
3886    if (V.getNode()) return V;
3887  }
3888
3889  // If element VT is == 32 bits, turn it into a number of shuffles.
3890  SmallVector<SDValue, 8> V;
3891  V.resize(NumElems);
3892  if (NumElems == 4 && NumZero > 0) {
3893    for (unsigned i = 0; i < 4; ++i) {
3894      bool isZero = !(NonZeros & (1 << i));
3895      if (isZero)
3896        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3897      else
3898        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3899    }
3900
3901    for (unsigned i = 0; i < 2; ++i) {
3902      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3903        default: break;
3904        case 0:
3905          V[i] = V[i*2];  // Must be a zero vector.
3906          break;
3907        case 1:
3908          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3909          break;
3910        case 2:
3911          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3912          break;
3913        case 3:
3914          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3915          break;
3916      }
3917    }
3918
3919    SmallVector<int, 8> MaskVec;
3920    bool Reverse = (NonZeros & 0x3) == 2;
3921    for (unsigned i = 0; i < 2; ++i)
3922      MaskVec.push_back(Reverse ? 1-i : i);
3923    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3924    for (unsigned i = 0; i < 2; ++i)
3925      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3926    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3927  }
3928
3929  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
3930    // Check for a build vector of consecutive loads.
3931    for (unsigned i = 0; i < NumElems; ++i)
3932      V[i] = Op.getOperand(i);
3933
3934    // Check for elements which are consecutive loads.
3935    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
3936    if (LD.getNode())
3937      return LD;
3938
3939    // For SSE 4.1, use inserts into undef.
3940    if (getSubtarget()->hasSSE41()) {
3941      V[0] = DAG.getUNDEF(VT);
3942      for (unsigned i = 0; i < NumElems; ++i)
3943        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3944          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3945                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3946      return V[0];
3947    }
3948
3949    // Otherwise, expand into a number of unpckl*
3950    // e.g. for v4f32
3951    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3952    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3953    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3954    for (unsigned i = 0; i < NumElems; ++i)
3955      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3956    NumElems >>= 1;
3957    while (NumElems != 0) {
3958      for (unsigned i = 0; i < NumElems; ++i)
3959        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3960      NumElems >>= 1;
3961    }
3962    return V[0];
3963  }
3964  return SDValue();
3965}
3966
3967SDValue
3968X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3969  // We support concatenate two MMX registers and place them in a MMX
3970  // register.  This is better than doing a stack convert.
3971  DebugLoc dl = Op.getDebugLoc();
3972  EVT ResVT = Op.getValueType();
3973  assert(Op.getNumOperands() == 2);
3974  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3975         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3976  int Mask[2];
3977  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3978  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3979  InVec = Op.getOperand(1);
3980  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3981    unsigned NumElts = ResVT.getVectorNumElements();
3982    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3983    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3984                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3985  } else {
3986    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3987    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3988    Mask[0] = 0; Mask[1] = 2;
3989    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3990  }
3991  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3992}
3993
3994// v8i16 shuffles - Prefer shuffles in the following order:
3995// 1. [all]   pshuflw, pshufhw, optional move
3996// 2. [ssse3] 1 x pshufb
3997// 3. [ssse3] 2 x pshufb + 1 x por
3998// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3999static
4000SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4001                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4002  SDValue V1 = SVOp->getOperand(0);
4003  SDValue V2 = SVOp->getOperand(1);
4004  DebugLoc dl = SVOp->getDebugLoc();
4005  SmallVector<int, 8> MaskVals;
4006
4007  // Determine if more than 1 of the words in each of the low and high quadwords
4008  // of the result come from the same quadword of one of the two inputs.  Undef
4009  // mask values count as coming from any quadword, for better codegen.
4010  SmallVector<unsigned, 4> LoQuad(4);
4011  SmallVector<unsigned, 4> HiQuad(4);
4012  BitVector InputQuads(4);
4013  for (unsigned i = 0; i < 8; ++i) {
4014    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4015    int EltIdx = SVOp->getMaskElt(i);
4016    MaskVals.push_back(EltIdx);
4017    if (EltIdx < 0) {
4018      ++Quad[0];
4019      ++Quad[1];
4020      ++Quad[2];
4021      ++Quad[3];
4022      continue;
4023    }
4024    ++Quad[EltIdx / 4];
4025    InputQuads.set(EltIdx / 4);
4026  }
4027
4028  int BestLoQuad = -1;
4029  unsigned MaxQuad = 1;
4030  for (unsigned i = 0; i < 4; ++i) {
4031    if (LoQuad[i] > MaxQuad) {
4032      BestLoQuad = i;
4033      MaxQuad = LoQuad[i];
4034    }
4035  }
4036
4037  int BestHiQuad = -1;
4038  MaxQuad = 1;
4039  for (unsigned i = 0; i < 4; ++i) {
4040    if (HiQuad[i] > MaxQuad) {
4041      BestHiQuad = i;
4042      MaxQuad = HiQuad[i];
4043    }
4044  }
4045
4046  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4047  // of the two input vectors, shuffle them into one input vector so only a
4048  // single pshufb instruction is necessary. If There are more than 2 input
4049  // quads, disable the next transformation since it does not help SSSE3.
4050  bool V1Used = InputQuads[0] || InputQuads[1];
4051  bool V2Used = InputQuads[2] || InputQuads[3];
4052  if (TLI.getSubtarget()->hasSSSE3()) {
4053    if (InputQuads.count() == 2 && V1Used && V2Used) {
4054      BestLoQuad = InputQuads.find_first();
4055      BestHiQuad = InputQuads.find_next(BestLoQuad);
4056    }
4057    if (InputQuads.count() > 2) {
4058      BestLoQuad = -1;
4059      BestHiQuad = -1;
4060    }
4061  }
4062
4063  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4064  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4065  // words from all 4 input quadwords.
4066  SDValue NewV;
4067  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4068    SmallVector<int, 8> MaskV;
4069    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4070    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4071    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4072                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4073                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4074    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4075
4076    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4077    // source words for the shuffle, to aid later transformations.
4078    bool AllWordsInNewV = true;
4079    bool InOrder[2] = { true, true };
4080    for (unsigned i = 0; i != 8; ++i) {
4081      int idx = MaskVals[i];
4082      if (idx != (int)i)
4083        InOrder[i/4] = false;
4084      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4085        continue;
4086      AllWordsInNewV = false;
4087      break;
4088    }
4089
4090    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4091    if (AllWordsInNewV) {
4092      for (int i = 0; i != 8; ++i) {
4093        int idx = MaskVals[i];
4094        if (idx < 0)
4095          continue;
4096        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4097        if ((idx != i) && idx < 4)
4098          pshufhw = false;
4099        if ((idx != i) && idx > 3)
4100          pshuflw = false;
4101      }
4102      V1 = NewV;
4103      V2Used = false;
4104      BestLoQuad = 0;
4105      BestHiQuad = 1;
4106    }
4107
4108    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4109    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4110    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4111      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4112                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4113    }
4114  }
4115
4116  // If we have SSSE3, and all words of the result are from 1 input vector,
4117  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4118  // is present, fall back to case 4.
4119  if (TLI.getSubtarget()->hasSSSE3()) {
4120    SmallVector<SDValue,16> pshufbMask;
4121
4122    // If we have elements from both input vectors, set the high bit of the
4123    // shuffle mask element to zero out elements that come from V2 in the V1
4124    // mask, and elements that come from V1 in the V2 mask, so that the two
4125    // results can be OR'd together.
4126    bool TwoInputs = V1Used && V2Used;
4127    for (unsigned i = 0; i != 8; ++i) {
4128      int EltIdx = MaskVals[i] * 2;
4129      if (TwoInputs && (EltIdx >= 16)) {
4130        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4131        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4132        continue;
4133      }
4134      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4135      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4136    }
4137    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4138    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4139                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4140                                 MVT::v16i8, &pshufbMask[0], 16));
4141    if (!TwoInputs)
4142      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4143
4144    // Calculate the shuffle mask for the second input, shuffle it, and
4145    // OR it with the first shuffled input.
4146    pshufbMask.clear();
4147    for (unsigned i = 0; i != 8; ++i) {
4148      int EltIdx = MaskVals[i] * 2;
4149      if (EltIdx < 16) {
4150        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4151        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4152        continue;
4153      }
4154      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4155      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4156    }
4157    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4158    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4159                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4160                                 MVT::v16i8, &pshufbMask[0], 16));
4161    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4162    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4163  }
4164
4165  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4166  // and update MaskVals with new element order.
4167  BitVector InOrder(8);
4168  if (BestLoQuad >= 0) {
4169    SmallVector<int, 8> MaskV;
4170    for (int i = 0; i != 4; ++i) {
4171      int idx = MaskVals[i];
4172      if (idx < 0) {
4173        MaskV.push_back(-1);
4174        InOrder.set(i);
4175      } else if ((idx / 4) == BestLoQuad) {
4176        MaskV.push_back(idx & 3);
4177        InOrder.set(i);
4178      } else {
4179        MaskV.push_back(-1);
4180      }
4181    }
4182    for (unsigned i = 4; i != 8; ++i)
4183      MaskV.push_back(i);
4184    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4185                                &MaskV[0]);
4186  }
4187
4188  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4189  // and update MaskVals with the new element order.
4190  if (BestHiQuad >= 0) {
4191    SmallVector<int, 8> MaskV;
4192    for (unsigned i = 0; i != 4; ++i)
4193      MaskV.push_back(i);
4194    for (unsigned i = 4; i != 8; ++i) {
4195      int idx = MaskVals[i];
4196      if (idx < 0) {
4197        MaskV.push_back(-1);
4198        InOrder.set(i);
4199      } else if ((idx / 4) == BestHiQuad) {
4200        MaskV.push_back((idx & 3) + 4);
4201        InOrder.set(i);
4202      } else {
4203        MaskV.push_back(-1);
4204      }
4205    }
4206    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4207                                &MaskV[0]);
4208  }
4209
4210  // In case BestHi & BestLo were both -1, which means each quadword has a word
4211  // from each of the four input quadwords, calculate the InOrder bitvector now
4212  // before falling through to the insert/extract cleanup.
4213  if (BestLoQuad == -1 && BestHiQuad == -1) {
4214    NewV = V1;
4215    for (int i = 0; i != 8; ++i)
4216      if (MaskVals[i] < 0 || MaskVals[i] == i)
4217        InOrder.set(i);
4218  }
4219
4220  // The other elements are put in the right place using pextrw and pinsrw.
4221  for (unsigned i = 0; i != 8; ++i) {
4222    if (InOrder[i])
4223      continue;
4224    int EltIdx = MaskVals[i];
4225    if (EltIdx < 0)
4226      continue;
4227    SDValue ExtOp = (EltIdx < 8)
4228    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4229                  DAG.getIntPtrConstant(EltIdx))
4230    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4231                  DAG.getIntPtrConstant(EltIdx - 8));
4232    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4233                       DAG.getIntPtrConstant(i));
4234  }
4235  return NewV;
4236}
4237
4238// v16i8 shuffles - Prefer shuffles in the following order:
4239// 1. [ssse3] 1 x pshufb
4240// 2. [ssse3] 2 x pshufb + 1 x por
4241// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4242static
4243SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4244                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4245  SDValue V1 = SVOp->getOperand(0);
4246  SDValue V2 = SVOp->getOperand(1);
4247  DebugLoc dl = SVOp->getDebugLoc();
4248  SmallVector<int, 16> MaskVals;
4249  SVOp->getMask(MaskVals);
4250
4251  // If we have SSSE3, case 1 is generated when all result bytes come from
4252  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4253  // present, fall back to case 3.
4254  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4255  bool V1Only = true;
4256  bool V2Only = true;
4257  for (unsigned i = 0; i < 16; ++i) {
4258    int EltIdx = MaskVals[i];
4259    if (EltIdx < 0)
4260      continue;
4261    if (EltIdx < 16)
4262      V2Only = false;
4263    else
4264      V1Only = false;
4265  }
4266
4267  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4268  if (TLI.getSubtarget()->hasSSSE3()) {
4269    SmallVector<SDValue,16> pshufbMask;
4270
4271    // If all result elements are from one input vector, then only translate
4272    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4273    //
4274    // Otherwise, we have elements from both input vectors, and must zero out
4275    // elements that come from V2 in the first mask, and V1 in the second mask
4276    // so that we can OR them together.
4277    bool TwoInputs = !(V1Only || V2Only);
4278    for (unsigned i = 0; i != 16; ++i) {
4279      int EltIdx = MaskVals[i];
4280      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4281        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4282        continue;
4283      }
4284      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4285    }
4286    // If all the elements are from V2, assign it to V1 and return after
4287    // building the first pshufb.
4288    if (V2Only)
4289      V1 = V2;
4290    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4291                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4292                                 MVT::v16i8, &pshufbMask[0], 16));
4293    if (!TwoInputs)
4294      return V1;
4295
4296    // Calculate the shuffle mask for the second input, shuffle it, and
4297    // OR it with the first shuffled input.
4298    pshufbMask.clear();
4299    for (unsigned i = 0; i != 16; ++i) {
4300      int EltIdx = MaskVals[i];
4301      if (EltIdx < 16) {
4302        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4303        continue;
4304      }
4305      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4306    }
4307    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4308                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4309                                 MVT::v16i8, &pshufbMask[0], 16));
4310    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4311  }
4312
4313  // No SSSE3 - Calculate in place words and then fix all out of place words
4314  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4315  // the 16 different words that comprise the two doublequadword input vectors.
4316  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4317  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4318  SDValue NewV = V2Only ? V2 : V1;
4319  for (int i = 0; i != 8; ++i) {
4320    int Elt0 = MaskVals[i*2];
4321    int Elt1 = MaskVals[i*2+1];
4322
4323    // This word of the result is all undef, skip it.
4324    if (Elt0 < 0 && Elt1 < 0)
4325      continue;
4326
4327    // This word of the result is already in the correct place, skip it.
4328    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4329      continue;
4330    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4331      continue;
4332
4333    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4334    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4335    SDValue InsElt;
4336
4337    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4338    // using a single extract together, load it and store it.
4339    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4340      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4341                           DAG.getIntPtrConstant(Elt1 / 2));
4342      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4343                        DAG.getIntPtrConstant(i));
4344      continue;
4345    }
4346
4347    // If Elt1 is defined, extract it from the appropriate source.  If the
4348    // source byte is not also odd, shift the extracted word left 8 bits
4349    // otherwise clear the bottom 8 bits if we need to do an or.
4350    if (Elt1 >= 0) {
4351      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4352                           DAG.getIntPtrConstant(Elt1 / 2));
4353      if ((Elt1 & 1) == 0)
4354        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4355                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4356      else if (Elt0 >= 0)
4357        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4358                             DAG.getConstant(0xFF00, MVT::i16));
4359    }
4360    // If Elt0 is defined, extract it from the appropriate source.  If the
4361    // source byte is not also even, shift the extracted word right 8 bits. If
4362    // Elt1 was also defined, OR the extracted values together before
4363    // inserting them in the result.
4364    if (Elt0 >= 0) {
4365      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4366                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4367      if ((Elt0 & 1) != 0)
4368        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4369                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4370      else if (Elt1 >= 0)
4371        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4372                             DAG.getConstant(0x00FF, MVT::i16));
4373      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4374                         : InsElt0;
4375    }
4376    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4377                       DAG.getIntPtrConstant(i));
4378  }
4379  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4380}
4381
4382/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4383/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4384/// done when every pair / quad of shuffle mask elements point to elements in
4385/// the right sequence. e.g.
4386/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4387static
4388SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4389                                 SelectionDAG &DAG,
4390                                 TargetLowering &TLI, DebugLoc dl) {
4391  EVT VT = SVOp->getValueType(0);
4392  SDValue V1 = SVOp->getOperand(0);
4393  SDValue V2 = SVOp->getOperand(1);
4394  unsigned NumElems = VT.getVectorNumElements();
4395  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4396  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4397  EVT MaskEltVT = MaskVT.getVectorElementType();
4398  EVT NewVT = MaskVT;
4399  switch (VT.getSimpleVT().SimpleTy) {
4400  default: assert(false && "Unexpected!");
4401  case MVT::v4f32: NewVT = MVT::v2f64; break;
4402  case MVT::v4i32: NewVT = MVT::v2i64; break;
4403  case MVT::v8i16: NewVT = MVT::v4i32; break;
4404  case MVT::v16i8: NewVT = MVT::v4i32; break;
4405  }
4406
4407  if (NewWidth == 2) {
4408    if (VT.isInteger())
4409      NewVT = MVT::v2i64;
4410    else
4411      NewVT = MVT::v2f64;
4412  }
4413  int Scale = NumElems / NewWidth;
4414  SmallVector<int, 8> MaskVec;
4415  for (unsigned i = 0; i < NumElems; i += Scale) {
4416    int StartIdx = -1;
4417    for (int j = 0; j < Scale; ++j) {
4418      int EltIdx = SVOp->getMaskElt(i+j);
4419      if (EltIdx < 0)
4420        continue;
4421      if (StartIdx == -1)
4422        StartIdx = EltIdx - (EltIdx % Scale);
4423      if (EltIdx != StartIdx + j)
4424        return SDValue();
4425    }
4426    if (StartIdx == -1)
4427      MaskVec.push_back(-1);
4428    else
4429      MaskVec.push_back(StartIdx / Scale);
4430  }
4431
4432  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4433  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4434  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4435}
4436
4437/// getVZextMovL - Return a zero-extending vector move low node.
4438///
4439static SDValue getVZextMovL(EVT VT, EVT OpVT,
4440                            SDValue SrcOp, SelectionDAG &DAG,
4441                            const X86Subtarget *Subtarget, DebugLoc dl) {
4442  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4443    LoadSDNode *LD = NULL;
4444    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4445      LD = dyn_cast<LoadSDNode>(SrcOp);
4446    if (!LD) {
4447      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4448      // instead.
4449      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4450      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4451          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4452          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4453          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4454        // PR2108
4455        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4456        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4457                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4458                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4459                                                   OpVT,
4460                                                   SrcOp.getOperand(0)
4461                                                          .getOperand(0))));
4462      }
4463    }
4464  }
4465
4466  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4467                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4468                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4469                                             OpVT, SrcOp)));
4470}
4471
4472/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4473/// shuffles.
4474static SDValue
4475LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4476  SDValue V1 = SVOp->getOperand(0);
4477  SDValue V2 = SVOp->getOperand(1);
4478  DebugLoc dl = SVOp->getDebugLoc();
4479  EVT VT = SVOp->getValueType(0);
4480
4481  SmallVector<std::pair<int, int>, 8> Locs;
4482  Locs.resize(4);
4483  SmallVector<int, 8> Mask1(4U, -1);
4484  SmallVector<int, 8> PermMask;
4485  SVOp->getMask(PermMask);
4486
4487  unsigned NumHi = 0;
4488  unsigned NumLo = 0;
4489  for (unsigned i = 0; i != 4; ++i) {
4490    int Idx = PermMask[i];
4491    if (Idx < 0) {
4492      Locs[i] = std::make_pair(-1, -1);
4493    } else {
4494      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4495      if (Idx < 4) {
4496        Locs[i] = std::make_pair(0, NumLo);
4497        Mask1[NumLo] = Idx;
4498        NumLo++;
4499      } else {
4500        Locs[i] = std::make_pair(1, NumHi);
4501        if (2+NumHi < 4)
4502          Mask1[2+NumHi] = Idx;
4503        NumHi++;
4504      }
4505    }
4506  }
4507
4508  if (NumLo <= 2 && NumHi <= 2) {
4509    // If no more than two elements come from either vector. This can be
4510    // implemented with two shuffles. First shuffle gather the elements.
4511    // The second shuffle, which takes the first shuffle as both of its
4512    // vector operands, put the elements into the right order.
4513    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4514
4515    SmallVector<int, 8> Mask2(4U, -1);
4516
4517    for (unsigned i = 0; i != 4; ++i) {
4518      if (Locs[i].first == -1)
4519        continue;
4520      else {
4521        unsigned Idx = (i < 2) ? 0 : 4;
4522        Idx += Locs[i].first * 2 + Locs[i].second;
4523        Mask2[i] = Idx;
4524      }
4525    }
4526
4527    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4528  } else if (NumLo == 3 || NumHi == 3) {
4529    // Otherwise, we must have three elements from one vector, call it X, and
4530    // one element from the other, call it Y.  First, use a shufps to build an
4531    // intermediate vector with the one element from Y and the element from X
4532    // that will be in the same half in the final destination (the indexes don't
4533    // matter). Then, use a shufps to build the final vector, taking the half
4534    // containing the element from Y from the intermediate, and the other half
4535    // from X.
4536    if (NumHi == 3) {
4537      // Normalize it so the 3 elements come from V1.
4538      CommuteVectorShuffleMask(PermMask, VT);
4539      std::swap(V1, V2);
4540    }
4541
4542    // Find the element from V2.
4543    unsigned HiIndex;
4544    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4545      int Val = PermMask[HiIndex];
4546      if (Val < 0)
4547        continue;
4548      if (Val >= 4)
4549        break;
4550    }
4551
4552    Mask1[0] = PermMask[HiIndex];
4553    Mask1[1] = -1;
4554    Mask1[2] = PermMask[HiIndex^1];
4555    Mask1[3] = -1;
4556    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4557
4558    if (HiIndex >= 2) {
4559      Mask1[0] = PermMask[0];
4560      Mask1[1] = PermMask[1];
4561      Mask1[2] = HiIndex & 1 ? 6 : 4;
4562      Mask1[3] = HiIndex & 1 ? 4 : 6;
4563      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4564    } else {
4565      Mask1[0] = HiIndex & 1 ? 2 : 0;
4566      Mask1[1] = HiIndex & 1 ? 0 : 2;
4567      Mask1[2] = PermMask[2];
4568      Mask1[3] = PermMask[3];
4569      if (Mask1[2] >= 0)
4570        Mask1[2] += 4;
4571      if (Mask1[3] >= 0)
4572        Mask1[3] += 4;
4573      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4574    }
4575  }
4576
4577  // Break it into (shuffle shuffle_hi, shuffle_lo).
4578  Locs.clear();
4579  SmallVector<int,8> LoMask(4U, -1);
4580  SmallVector<int,8> HiMask(4U, -1);
4581
4582  SmallVector<int,8> *MaskPtr = &LoMask;
4583  unsigned MaskIdx = 0;
4584  unsigned LoIdx = 0;
4585  unsigned HiIdx = 2;
4586  for (unsigned i = 0; i != 4; ++i) {
4587    if (i == 2) {
4588      MaskPtr = &HiMask;
4589      MaskIdx = 1;
4590      LoIdx = 0;
4591      HiIdx = 2;
4592    }
4593    int Idx = PermMask[i];
4594    if (Idx < 0) {
4595      Locs[i] = std::make_pair(-1, -1);
4596    } else if (Idx < 4) {
4597      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4598      (*MaskPtr)[LoIdx] = Idx;
4599      LoIdx++;
4600    } else {
4601      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4602      (*MaskPtr)[HiIdx] = Idx;
4603      HiIdx++;
4604    }
4605  }
4606
4607  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4608  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4609  SmallVector<int, 8> MaskOps;
4610  for (unsigned i = 0; i != 4; ++i) {
4611    if (Locs[i].first == -1) {
4612      MaskOps.push_back(-1);
4613    } else {
4614      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4615      MaskOps.push_back(Idx);
4616    }
4617  }
4618  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4619}
4620
4621SDValue
4622X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4623  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4624  SDValue V1 = Op.getOperand(0);
4625  SDValue V2 = Op.getOperand(1);
4626  EVT VT = Op.getValueType();
4627  DebugLoc dl = Op.getDebugLoc();
4628  unsigned NumElems = VT.getVectorNumElements();
4629  bool isMMX = VT.getSizeInBits() == 64;
4630  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4631  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4632  bool V1IsSplat = false;
4633  bool V2IsSplat = false;
4634
4635  if (isZeroShuffle(SVOp))
4636    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4637
4638  // Promote splats to v4f32.
4639  if (SVOp->isSplat()) {
4640    if (isMMX || NumElems < 4)
4641      return Op;
4642    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4643  }
4644
4645  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4646  // do it!
4647  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4648    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4649    if (NewOp.getNode())
4650      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4651                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4652  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4653    // FIXME: Figure out a cleaner way to do this.
4654    // Try to make use of movq to zero out the top part.
4655    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4656      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4657      if (NewOp.getNode()) {
4658        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4659          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4660                              DAG, Subtarget, dl);
4661      }
4662    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4663      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4664      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4665        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4666                            DAG, Subtarget, dl);
4667    }
4668  }
4669
4670  if (X86::isPSHUFDMask(SVOp))
4671    return Op;
4672
4673  // Check if this can be converted into a logical shift.
4674  bool isLeft = false;
4675  unsigned ShAmt = 0;
4676  SDValue ShVal;
4677  bool isShift = getSubtarget()->hasSSE2() &&
4678    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4679  if (isShift && ShVal.hasOneUse()) {
4680    // If the shifted value has multiple uses, it may be cheaper to use
4681    // v_set0 + movlhps or movhlps, etc.
4682    EVT EltVT = VT.getVectorElementType();
4683    ShAmt *= EltVT.getSizeInBits();
4684    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4685  }
4686
4687  if (X86::isMOVLMask(SVOp)) {
4688    if (V1IsUndef)
4689      return V2;
4690    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4691      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4692    if (!isMMX)
4693      return Op;
4694  }
4695
4696  // FIXME: fold these into legal mask.
4697  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4698                 X86::isMOVSLDUPMask(SVOp) ||
4699                 X86::isMOVHLPSMask(SVOp) ||
4700                 X86::isMOVLHPSMask(SVOp) ||
4701                 X86::isMOVLPMask(SVOp)))
4702    return Op;
4703
4704  if (ShouldXformToMOVHLPS(SVOp) ||
4705      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4706    return CommuteVectorShuffle(SVOp, DAG);
4707
4708  if (isShift) {
4709    // No better options. Use a vshl / vsrl.
4710    EVT EltVT = VT.getVectorElementType();
4711    ShAmt *= EltVT.getSizeInBits();
4712    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4713  }
4714
4715  bool Commuted = false;
4716  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4717  // 1,1,1,1 -> v8i16 though.
4718  V1IsSplat = isSplatVector(V1.getNode());
4719  V2IsSplat = isSplatVector(V2.getNode());
4720
4721  // Canonicalize the splat or undef, if present, to be on the RHS.
4722  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4723    Op = CommuteVectorShuffle(SVOp, DAG);
4724    SVOp = cast<ShuffleVectorSDNode>(Op);
4725    V1 = SVOp->getOperand(0);
4726    V2 = SVOp->getOperand(1);
4727    std::swap(V1IsSplat, V2IsSplat);
4728    std::swap(V1IsUndef, V2IsUndef);
4729    Commuted = true;
4730  }
4731
4732  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4733    // Shuffling low element of v1 into undef, just return v1.
4734    if (V2IsUndef)
4735      return V1;
4736    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4737    // the instruction selector will not match, so get a canonical MOVL with
4738    // swapped operands to undo the commute.
4739    return getMOVL(DAG, dl, VT, V2, V1);
4740  }
4741
4742  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4743      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4744      X86::isUNPCKLMask(SVOp) ||
4745      X86::isUNPCKHMask(SVOp))
4746    return Op;
4747
4748  if (V2IsSplat) {
4749    // Normalize mask so all entries that point to V2 points to its first
4750    // element then try to match unpck{h|l} again. If match, return a
4751    // new vector_shuffle with the corrected mask.
4752    SDValue NewMask = NormalizeMask(SVOp, DAG);
4753    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4754    if (NSVOp != SVOp) {
4755      if (X86::isUNPCKLMask(NSVOp, true)) {
4756        return NewMask;
4757      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4758        return NewMask;
4759      }
4760    }
4761  }
4762
4763  if (Commuted) {
4764    // Commute is back and try unpck* again.
4765    // FIXME: this seems wrong.
4766    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4767    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4768    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4769        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4770        X86::isUNPCKLMask(NewSVOp) ||
4771        X86::isUNPCKHMask(NewSVOp))
4772      return NewOp;
4773  }
4774
4775  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4776
4777  // Normalize the node to match x86 shuffle ops if needed
4778  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4779    return CommuteVectorShuffle(SVOp, DAG);
4780
4781  // Check for legal shuffle and return?
4782  SmallVector<int, 16> PermMask;
4783  SVOp->getMask(PermMask);
4784  if (isShuffleMaskLegal(PermMask, VT))
4785    return Op;
4786
4787  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4788  if (VT == MVT::v8i16) {
4789    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4790    if (NewOp.getNode())
4791      return NewOp;
4792  }
4793
4794  if (VT == MVT::v16i8) {
4795    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4796    if (NewOp.getNode())
4797      return NewOp;
4798  }
4799
4800  // Handle all 4 wide cases with a number of shuffles except for MMX.
4801  if (NumElems == 4 && !isMMX)
4802    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4803
4804  return SDValue();
4805}
4806
4807SDValue
4808X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4809                                                SelectionDAG &DAG) {
4810  EVT VT = Op.getValueType();
4811  DebugLoc dl = Op.getDebugLoc();
4812  if (VT.getSizeInBits() == 8) {
4813    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4814                                    Op.getOperand(0), Op.getOperand(1));
4815    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4816                                    DAG.getValueType(VT));
4817    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4818  } else if (VT.getSizeInBits() == 16) {
4819    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4820    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4821    if (Idx == 0)
4822      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4823                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4824                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4825                                                 MVT::v4i32,
4826                                                 Op.getOperand(0)),
4827                                     Op.getOperand(1)));
4828    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4829                                    Op.getOperand(0), Op.getOperand(1));
4830    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4831                                    DAG.getValueType(VT));
4832    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4833  } else if (VT == MVT::f32) {
4834    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4835    // the result back to FR32 register. It's only worth matching if the
4836    // result has a single use which is a store or a bitcast to i32.  And in
4837    // the case of a store, it's not worth it if the index is a constant 0,
4838    // because a MOVSSmr can be used instead, which is smaller and faster.
4839    if (!Op.hasOneUse())
4840      return SDValue();
4841    SDNode *User = *Op.getNode()->use_begin();
4842    if ((User->getOpcode() != ISD::STORE ||
4843         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4844          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4845        (User->getOpcode() != ISD::BIT_CONVERT ||
4846         User->getValueType(0) != MVT::i32))
4847      return SDValue();
4848    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4849                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4850                                              Op.getOperand(0)),
4851                                              Op.getOperand(1));
4852    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4853  } else if (VT == MVT::i32) {
4854    // ExtractPS works with constant index.
4855    if (isa<ConstantSDNode>(Op.getOperand(1)))
4856      return Op;
4857  }
4858  return SDValue();
4859}
4860
4861
4862SDValue
4863X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4864  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4865    return SDValue();
4866
4867  if (Subtarget->hasSSE41()) {
4868    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4869    if (Res.getNode())
4870      return Res;
4871  }
4872
4873  EVT VT = Op.getValueType();
4874  DebugLoc dl = Op.getDebugLoc();
4875  // TODO: handle v16i8.
4876  if (VT.getSizeInBits() == 16) {
4877    SDValue Vec = Op.getOperand(0);
4878    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4879    if (Idx == 0)
4880      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4881                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4882                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4883                                                 MVT::v4i32, Vec),
4884                                     Op.getOperand(1)));
4885    // Transform it so it match pextrw which produces a 32-bit result.
4886    EVT EltVT = MVT::i32;
4887    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4888                                    Op.getOperand(0), Op.getOperand(1));
4889    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4890                                    DAG.getValueType(VT));
4891    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4892  } else if (VT.getSizeInBits() == 32) {
4893    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4894    if (Idx == 0)
4895      return Op;
4896
4897    // SHUFPS the element to the lowest double word, then movss.
4898    int Mask[4] = { Idx, -1, -1, -1 };
4899    EVT VVT = Op.getOperand(0).getValueType();
4900    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4901                                       DAG.getUNDEF(VVT), Mask);
4902    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4903                       DAG.getIntPtrConstant(0));
4904  } else if (VT.getSizeInBits() == 64) {
4905    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4906    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4907    //        to match extract_elt for f64.
4908    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4909    if (Idx == 0)
4910      return Op;
4911
4912    // UNPCKHPD the element to the lowest double word, then movsd.
4913    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4914    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4915    int Mask[2] = { 1, -1 };
4916    EVT VVT = Op.getOperand(0).getValueType();
4917    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4918                                       DAG.getUNDEF(VVT), Mask);
4919    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4920                       DAG.getIntPtrConstant(0));
4921  }
4922
4923  return SDValue();
4924}
4925
4926SDValue
4927X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4928  EVT VT = Op.getValueType();
4929  EVT EltVT = VT.getVectorElementType();
4930  DebugLoc dl = Op.getDebugLoc();
4931
4932  SDValue N0 = Op.getOperand(0);
4933  SDValue N1 = Op.getOperand(1);
4934  SDValue N2 = Op.getOperand(2);
4935
4936  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4937      isa<ConstantSDNode>(N2)) {
4938    unsigned Opc;
4939    if (VT == MVT::v8i16)
4940      Opc = X86ISD::PINSRW;
4941    else if (VT == MVT::v4i16)
4942      Opc = X86ISD::MMX_PINSRW;
4943    else if (VT == MVT::v16i8)
4944      Opc = X86ISD::PINSRB;
4945    else
4946      Opc = X86ISD::PINSRB;
4947
4948    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4949    // argument.
4950    if (N1.getValueType() != MVT::i32)
4951      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4952    if (N2.getValueType() != MVT::i32)
4953      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4954    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4955  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4956    // Bits [7:6] of the constant are the source select.  This will always be
4957    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4958    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4959    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4960    // Bits [5:4] of the constant are the destination select.  This is the
4961    //  value of the incoming immediate.
4962    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4963    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4964    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4965    // Create this as a scalar to vector..
4966    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4967    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4968  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4969    // PINSR* works with constant index.
4970    return Op;
4971  }
4972  return SDValue();
4973}
4974
4975SDValue
4976X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4977  EVT VT = Op.getValueType();
4978  EVT EltVT = VT.getVectorElementType();
4979
4980  if (Subtarget->hasSSE41())
4981    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4982
4983  if (EltVT == MVT::i8)
4984    return SDValue();
4985
4986  DebugLoc dl = Op.getDebugLoc();
4987  SDValue N0 = Op.getOperand(0);
4988  SDValue N1 = Op.getOperand(1);
4989  SDValue N2 = Op.getOperand(2);
4990
4991  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4992    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4993    // as its second argument.
4994    if (N1.getValueType() != MVT::i32)
4995      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4996    if (N2.getValueType() != MVT::i32)
4997      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4998    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
4999                       dl, VT, N0, N1, N2);
5000  }
5001  return SDValue();
5002}
5003
5004SDValue
5005X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
5006  DebugLoc dl = Op.getDebugLoc();
5007  if (Op.getValueType() == MVT::v2f32)
5008    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
5009                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
5010                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
5011                                               Op.getOperand(0))));
5012
5013  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
5014    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5015
5016  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5017  EVT VT = MVT::v2i32;
5018  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5019  default: break;
5020  case MVT::v16i8:
5021  case MVT::v8i16:
5022    VT = MVT::v4i32;
5023    break;
5024  }
5025  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5026                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5027}
5028
5029// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5030// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5031// one of the above mentioned nodes. It has to be wrapped because otherwise
5032// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5033// be used to form addressing mode. These wrapped nodes will be selected
5034// into MOV32ri.
5035SDValue
5036X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
5037  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5038
5039  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5040  // global base reg.
5041  unsigned char OpFlag = 0;
5042  unsigned WrapperKind = X86ISD::Wrapper;
5043  CodeModel::Model M = getTargetMachine().getCodeModel();
5044
5045  if (Subtarget->isPICStyleRIPRel() &&
5046      (M == CodeModel::Small || M == CodeModel::Kernel))
5047    WrapperKind = X86ISD::WrapperRIP;
5048  else if (Subtarget->isPICStyleGOT())
5049    OpFlag = X86II::MO_GOTOFF;
5050  else if (Subtarget->isPICStyleStubPIC())
5051    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5052
5053  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5054                                             CP->getAlignment(),
5055                                             CP->getOffset(), OpFlag);
5056  DebugLoc DL = CP->getDebugLoc();
5057  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5058  // With PIC, the address is actually $g + Offset.
5059  if (OpFlag) {
5060    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5061                         DAG.getNode(X86ISD::GlobalBaseReg,
5062                                     DebugLoc::getUnknownLoc(), getPointerTy()),
5063                         Result);
5064  }
5065
5066  return Result;
5067}
5068
5069SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
5070  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5071
5072  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5073  // global base reg.
5074  unsigned char OpFlag = 0;
5075  unsigned WrapperKind = X86ISD::Wrapper;
5076  CodeModel::Model M = getTargetMachine().getCodeModel();
5077
5078  if (Subtarget->isPICStyleRIPRel() &&
5079      (M == CodeModel::Small || M == CodeModel::Kernel))
5080    WrapperKind = X86ISD::WrapperRIP;
5081  else if (Subtarget->isPICStyleGOT())
5082    OpFlag = X86II::MO_GOTOFF;
5083  else if (Subtarget->isPICStyleStubPIC())
5084    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5085
5086  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5087                                          OpFlag);
5088  DebugLoc DL = JT->getDebugLoc();
5089  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5090
5091  // With PIC, the address is actually $g + Offset.
5092  if (OpFlag) {
5093    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5094                         DAG.getNode(X86ISD::GlobalBaseReg,
5095                                     DebugLoc::getUnknownLoc(), getPointerTy()),
5096                         Result);
5097  }
5098
5099  return Result;
5100}
5101
5102SDValue
5103X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
5104  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5105
5106  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5107  // global base reg.
5108  unsigned char OpFlag = 0;
5109  unsigned WrapperKind = X86ISD::Wrapper;
5110  CodeModel::Model M = getTargetMachine().getCodeModel();
5111
5112  if (Subtarget->isPICStyleRIPRel() &&
5113      (M == CodeModel::Small || M == CodeModel::Kernel))
5114    WrapperKind = X86ISD::WrapperRIP;
5115  else if (Subtarget->isPICStyleGOT())
5116    OpFlag = X86II::MO_GOTOFF;
5117  else if (Subtarget->isPICStyleStubPIC())
5118    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5119
5120  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5121
5122  DebugLoc DL = Op.getDebugLoc();
5123  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5124
5125
5126  // With PIC, the address is actually $g + Offset.
5127  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5128      !Subtarget->is64Bit()) {
5129    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5130                         DAG.getNode(X86ISD::GlobalBaseReg,
5131                                     DebugLoc::getUnknownLoc(),
5132                                     getPointerTy()),
5133                         Result);
5134  }
5135
5136  return Result;
5137}
5138
5139SDValue
5140X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5141  // Create the TargetBlockAddressAddress node.
5142  unsigned char OpFlags =
5143    Subtarget->ClassifyBlockAddressReference();
5144  CodeModel::Model M = getTargetMachine().getCodeModel();
5145  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5146  DebugLoc dl = Op.getDebugLoc();
5147  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5148                                       /*isTarget=*/true, OpFlags);
5149
5150  if (Subtarget->isPICStyleRIPRel() &&
5151      (M == CodeModel::Small || M == CodeModel::Kernel))
5152    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5153  else
5154    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5155
5156  // With PIC, the address is actually $g + Offset.
5157  if (isGlobalRelativeToPICBase(OpFlags)) {
5158    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5159                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5160                         Result);
5161  }
5162
5163  return Result;
5164}
5165
5166SDValue
5167X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5168                                      int64_t Offset,
5169                                      SelectionDAG &DAG) const {
5170  // Create the TargetGlobalAddress node, folding in the constant
5171  // offset if it is legal.
5172  unsigned char OpFlags =
5173    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5174  CodeModel::Model M = getTargetMachine().getCodeModel();
5175  SDValue Result;
5176  if (OpFlags == X86II::MO_NO_FLAG &&
5177      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5178    // A direct static reference to a global.
5179    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5180    Offset = 0;
5181  } else {
5182    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5183  }
5184
5185  if (Subtarget->isPICStyleRIPRel() &&
5186      (M == CodeModel::Small || M == CodeModel::Kernel))
5187    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5188  else
5189    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5190
5191  // With PIC, the address is actually $g + Offset.
5192  if (isGlobalRelativeToPICBase(OpFlags)) {
5193    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5194                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5195                         Result);
5196  }
5197
5198  // For globals that require a load from a stub to get the address, emit the
5199  // load.
5200  if (isGlobalStubReference(OpFlags))
5201    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5202                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5203
5204  // If there was a non-zero offset that we didn't fold, create an explicit
5205  // addition for it.
5206  if (Offset != 0)
5207    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5208                         DAG.getConstant(Offset, getPointerTy()));
5209
5210  return Result;
5211}
5212
5213SDValue
5214X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5215  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5216  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5217  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5218}
5219
5220static SDValue
5221GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5222           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5223           unsigned char OperandFlags) {
5224  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5225  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5226  DebugLoc dl = GA->getDebugLoc();
5227  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5228                                           GA->getValueType(0),
5229                                           GA->getOffset(),
5230                                           OperandFlags);
5231  if (InFlag) {
5232    SDValue Ops[] = { Chain,  TGA, *InFlag };
5233    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5234  } else {
5235    SDValue Ops[]  = { Chain, TGA };
5236    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5237  }
5238
5239  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5240  MFI->setHasCalls(true);
5241
5242  SDValue Flag = Chain.getValue(1);
5243  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5244}
5245
5246// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5247static SDValue
5248LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5249                                const EVT PtrVT) {
5250  SDValue InFlag;
5251  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5252  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5253                                     DAG.getNode(X86ISD::GlobalBaseReg,
5254                                                 DebugLoc::getUnknownLoc(),
5255                                                 PtrVT), InFlag);
5256  InFlag = Chain.getValue(1);
5257
5258  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5259}
5260
5261// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5262static SDValue
5263LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5264                                const EVT PtrVT) {
5265  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5266                    X86::RAX, X86II::MO_TLSGD);
5267}
5268
5269// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5270// "local exec" model.
5271static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5272                                   const EVT PtrVT, TLSModel::Model model,
5273                                   bool is64Bit) {
5274  DebugLoc dl = GA->getDebugLoc();
5275  // Get the Thread Pointer
5276  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5277                             DebugLoc::getUnknownLoc(), PtrVT,
5278                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5279                                             MVT::i32));
5280
5281  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5282                                      NULL, 0, false, false, 0);
5283
5284  unsigned char OperandFlags = 0;
5285  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5286  // initialexec.
5287  unsigned WrapperKind = X86ISD::Wrapper;
5288  if (model == TLSModel::LocalExec) {
5289    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5290  } else if (is64Bit) {
5291    assert(model == TLSModel::InitialExec);
5292    OperandFlags = X86II::MO_GOTTPOFF;
5293    WrapperKind = X86ISD::WrapperRIP;
5294  } else {
5295    assert(model == TLSModel::InitialExec);
5296    OperandFlags = X86II::MO_INDNTPOFF;
5297  }
5298
5299  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5300  // exec)
5301  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5302                                           GA->getOffset(), OperandFlags);
5303  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5304
5305  if (model == TLSModel::InitialExec)
5306    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5307                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5308
5309  // The address of the thread local variable is the add of the thread
5310  // pointer with the offset of the variable.
5311  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5312}
5313
5314SDValue
5315X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5316  // TODO: implement the "local dynamic" model
5317  // TODO: implement the "initial exec"model for pic executables
5318  assert(Subtarget->isTargetELF() &&
5319         "TLS not implemented for non-ELF targets");
5320  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5321  const GlobalValue *GV = GA->getGlobal();
5322
5323  // If GV is an alias then use the aliasee for determining
5324  // thread-localness.
5325  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5326    GV = GA->resolveAliasedGlobal(false);
5327
5328  TLSModel::Model model = getTLSModel(GV,
5329                                      getTargetMachine().getRelocationModel());
5330
5331  switch (model) {
5332  case TLSModel::GeneralDynamic:
5333  case TLSModel::LocalDynamic: // not implemented
5334    if (Subtarget->is64Bit())
5335      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5336    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5337
5338  case TLSModel::InitialExec:
5339  case TLSModel::LocalExec:
5340    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5341                               Subtarget->is64Bit());
5342  }
5343
5344  llvm_unreachable("Unreachable");
5345  return SDValue();
5346}
5347
5348
5349/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5350/// take a 2 x i32 value to shift plus a shift amount.
5351SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5352  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5353  EVT VT = Op.getValueType();
5354  unsigned VTBits = VT.getSizeInBits();
5355  DebugLoc dl = Op.getDebugLoc();
5356  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5357  SDValue ShOpLo = Op.getOperand(0);
5358  SDValue ShOpHi = Op.getOperand(1);
5359  SDValue ShAmt  = Op.getOperand(2);
5360  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5361                                     DAG.getConstant(VTBits - 1, MVT::i8))
5362                       : DAG.getConstant(0, VT);
5363
5364  SDValue Tmp2, Tmp3;
5365  if (Op.getOpcode() == ISD::SHL_PARTS) {
5366    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5367    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5368  } else {
5369    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5370    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5371  }
5372
5373  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5374                                DAG.getConstant(VTBits, MVT::i8));
5375  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5376                             AndNode, DAG.getConstant(0, MVT::i8));
5377
5378  SDValue Hi, Lo;
5379  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5380  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5381  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5382
5383  if (Op.getOpcode() == ISD::SHL_PARTS) {
5384    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5385    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5386  } else {
5387    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5388    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5389  }
5390
5391  SDValue Ops[2] = { Lo, Hi };
5392  return DAG.getMergeValues(Ops, 2, dl);
5393}
5394
5395SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5396  EVT SrcVT = Op.getOperand(0).getValueType();
5397
5398  if (SrcVT.isVector()) {
5399    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5400      return Op;
5401    }
5402    return SDValue();
5403  }
5404
5405  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5406         "Unknown SINT_TO_FP to lower!");
5407
5408  // These are really Legal; return the operand so the caller accepts it as
5409  // Legal.
5410  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5411    return Op;
5412  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5413      Subtarget->is64Bit()) {
5414    return Op;
5415  }
5416
5417  DebugLoc dl = Op.getDebugLoc();
5418  unsigned Size = SrcVT.getSizeInBits()/8;
5419  MachineFunction &MF = DAG.getMachineFunction();
5420  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5421  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5422  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5423                               StackSlot,
5424                               PseudoSourceValue::getFixedStack(SSFI), 0,
5425                               false, false, 0);
5426  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5427}
5428
5429SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5430                                     SDValue StackSlot,
5431                                     SelectionDAG &DAG) {
5432  // Build the FILD
5433  DebugLoc dl = Op.getDebugLoc();
5434  SDVTList Tys;
5435  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5436  if (useSSE)
5437    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5438  else
5439    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5440  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5441  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5442                               Tys, Ops, array_lengthof(Ops));
5443
5444  if (useSSE) {
5445    Chain = Result.getValue(1);
5446    SDValue InFlag = Result.getValue(2);
5447
5448    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5449    // shouldn't be necessary except that RFP cannot be live across
5450    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5451    MachineFunction &MF = DAG.getMachineFunction();
5452    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5453    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5454    Tys = DAG.getVTList(MVT::Other);
5455    SDValue Ops[] = {
5456      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5457    };
5458    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5459    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5460                         PseudoSourceValue::getFixedStack(SSFI), 0,
5461                         false, false, 0);
5462  }
5463
5464  return Result;
5465}
5466
5467// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5468SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5469  // This algorithm is not obvious. Here it is in C code, more or less:
5470  /*
5471    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5472      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5473      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5474
5475      // Copy ints to xmm registers.
5476      __m128i xh = _mm_cvtsi32_si128( hi );
5477      __m128i xl = _mm_cvtsi32_si128( lo );
5478
5479      // Combine into low half of a single xmm register.
5480      __m128i x = _mm_unpacklo_epi32( xh, xl );
5481      __m128d d;
5482      double sd;
5483
5484      // Merge in appropriate exponents to give the integer bits the right
5485      // magnitude.
5486      x = _mm_unpacklo_epi32( x, exp );
5487
5488      // Subtract away the biases to deal with the IEEE-754 double precision
5489      // implicit 1.
5490      d = _mm_sub_pd( (__m128d) x, bias );
5491
5492      // All conversions up to here are exact. The correctly rounded result is
5493      // calculated using the current rounding mode using the following
5494      // horizontal add.
5495      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5496      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5497                                // store doesn't really need to be here (except
5498                                // maybe to zero the other double)
5499      return sd;
5500    }
5501  */
5502
5503  DebugLoc dl = Op.getDebugLoc();
5504  LLVMContext *Context = DAG.getContext();
5505
5506  // Build some magic constants.
5507  std::vector<Constant*> CV0;
5508  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5509  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5510  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5511  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5512  Constant *C0 = ConstantVector::get(CV0);
5513  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5514
5515  std::vector<Constant*> CV1;
5516  CV1.push_back(
5517    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5518  CV1.push_back(
5519    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5520  Constant *C1 = ConstantVector::get(CV1);
5521  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5522
5523  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5524                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5525                                        Op.getOperand(0),
5526                                        DAG.getIntPtrConstant(1)));
5527  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5528                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5529                                        Op.getOperand(0),
5530                                        DAG.getIntPtrConstant(0)));
5531  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5532  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5533                              PseudoSourceValue::getConstantPool(), 0,
5534                              false, false, 16);
5535  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5536  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5537  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5538                              PseudoSourceValue::getConstantPool(), 0,
5539                              false, false, 16);
5540  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5541
5542  // Add the halves; easiest way is to swap them into another reg first.
5543  int ShufMask[2] = { 1, -1 };
5544  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5545                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5546  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5547  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5548                     DAG.getIntPtrConstant(0));
5549}
5550
5551// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5552SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5553  DebugLoc dl = Op.getDebugLoc();
5554  // FP constant to bias correct the final result.
5555  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5556                                   MVT::f64);
5557
5558  // Load the 32-bit value into an XMM register.
5559  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5560                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5561                                         Op.getOperand(0),
5562                                         DAG.getIntPtrConstant(0)));
5563
5564  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5565                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5566                     DAG.getIntPtrConstant(0));
5567
5568  // Or the load with the bias.
5569  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5570                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5571                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5572                                                   MVT::v2f64, Load)),
5573                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5574                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5575                                                   MVT::v2f64, Bias)));
5576  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5577                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5578                   DAG.getIntPtrConstant(0));
5579
5580  // Subtract the bias.
5581  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5582
5583  // Handle final rounding.
5584  EVT DestVT = Op.getValueType();
5585
5586  if (DestVT.bitsLT(MVT::f64)) {
5587    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5588                       DAG.getIntPtrConstant(0));
5589  } else if (DestVT.bitsGT(MVT::f64)) {
5590    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5591  }
5592
5593  // Handle final rounding.
5594  return Sub;
5595}
5596
5597SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5598  SDValue N0 = Op.getOperand(0);
5599  DebugLoc dl = Op.getDebugLoc();
5600
5601  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5602  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5603  // the optimization here.
5604  if (DAG.SignBitIsZero(N0))
5605    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5606
5607  EVT SrcVT = N0.getValueType();
5608  if (SrcVT == MVT::i64) {
5609    // We only handle SSE2 f64 target here; caller can expand the rest.
5610    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5611      return SDValue();
5612
5613    return LowerUINT_TO_FP_i64(Op, DAG);
5614  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5615    return LowerUINT_TO_FP_i32(Op, DAG);
5616  }
5617
5618  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5619
5620  // Make a 64-bit buffer, and use it to build an FILD.
5621  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5622  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5623  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5624                                   getPointerTy(), StackSlot, WordOff);
5625  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5626                                StackSlot, NULL, 0, false, false, 0);
5627  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5628                                OffsetSlot, NULL, 0, false, false, 0);
5629  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5630}
5631
5632std::pair<SDValue,SDValue> X86TargetLowering::
5633FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5634  DebugLoc dl = Op.getDebugLoc();
5635
5636  EVT DstTy = Op.getValueType();
5637
5638  if (!IsSigned) {
5639    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5640    DstTy = MVT::i64;
5641  }
5642
5643  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5644         DstTy.getSimpleVT() >= MVT::i16 &&
5645         "Unknown FP_TO_SINT to lower!");
5646
5647  // These are really Legal.
5648  if (DstTy == MVT::i32 &&
5649      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5650    return std::make_pair(SDValue(), SDValue());
5651  if (Subtarget->is64Bit() &&
5652      DstTy == MVT::i64 &&
5653      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5654    return std::make_pair(SDValue(), SDValue());
5655
5656  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5657  // stack slot.
5658  MachineFunction &MF = DAG.getMachineFunction();
5659  unsigned MemSize = DstTy.getSizeInBits()/8;
5660  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5661  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5662
5663  unsigned Opc;
5664  switch (DstTy.getSimpleVT().SimpleTy) {
5665  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5666  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5667  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5668  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5669  }
5670
5671  SDValue Chain = DAG.getEntryNode();
5672  SDValue Value = Op.getOperand(0);
5673  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5674    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5675    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5676                         PseudoSourceValue::getFixedStack(SSFI), 0,
5677                         false, false, 0);
5678    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5679    SDValue Ops[] = {
5680      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5681    };
5682    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5683    Chain = Value.getValue(1);
5684    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5685    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5686  }
5687
5688  // Build the FP_TO_INT*_IN_MEM
5689  SDValue Ops[] = { Chain, Value, StackSlot };
5690  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5691
5692  return std::make_pair(FIST, StackSlot);
5693}
5694
5695SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5696  if (Op.getValueType().isVector()) {
5697    if (Op.getValueType() == MVT::v2i32 &&
5698        Op.getOperand(0).getValueType() == MVT::v2f64) {
5699      return Op;
5700    }
5701    return SDValue();
5702  }
5703
5704  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5705  SDValue FIST = Vals.first, StackSlot = Vals.second;
5706  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5707  if (FIST.getNode() == 0) return Op;
5708
5709  // Load the result.
5710  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5711                     FIST, StackSlot, NULL, 0, false, false, 0);
5712}
5713
5714SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5715  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5716  SDValue FIST = Vals.first, StackSlot = Vals.second;
5717  assert(FIST.getNode() && "Unexpected failure");
5718
5719  // Load the result.
5720  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5721                     FIST, StackSlot, NULL, 0, false, false, 0);
5722}
5723
5724SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5725  LLVMContext *Context = DAG.getContext();
5726  DebugLoc dl = Op.getDebugLoc();
5727  EVT VT = Op.getValueType();
5728  EVT EltVT = VT;
5729  if (VT.isVector())
5730    EltVT = VT.getVectorElementType();
5731  std::vector<Constant*> CV;
5732  if (EltVT == MVT::f64) {
5733    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5734    CV.push_back(C);
5735    CV.push_back(C);
5736  } else {
5737    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5738    CV.push_back(C);
5739    CV.push_back(C);
5740    CV.push_back(C);
5741    CV.push_back(C);
5742  }
5743  Constant *C = ConstantVector::get(CV);
5744  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5745  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5746                             PseudoSourceValue::getConstantPool(), 0,
5747                             false, false, 16);
5748  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5749}
5750
5751SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5752  LLVMContext *Context = DAG.getContext();
5753  DebugLoc dl = Op.getDebugLoc();
5754  EVT VT = Op.getValueType();
5755  EVT EltVT = VT;
5756  if (VT.isVector())
5757    EltVT = VT.getVectorElementType();
5758  std::vector<Constant*> CV;
5759  if (EltVT == MVT::f64) {
5760    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5761    CV.push_back(C);
5762    CV.push_back(C);
5763  } else {
5764    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5765    CV.push_back(C);
5766    CV.push_back(C);
5767    CV.push_back(C);
5768    CV.push_back(C);
5769  }
5770  Constant *C = ConstantVector::get(CV);
5771  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5772  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5773                             PseudoSourceValue::getConstantPool(), 0,
5774                             false, false, 16);
5775  if (VT.isVector()) {
5776    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5777                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5778                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5779                                Op.getOperand(0)),
5780                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5781  } else {
5782    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5783  }
5784}
5785
5786SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5787  LLVMContext *Context = DAG.getContext();
5788  SDValue Op0 = Op.getOperand(0);
5789  SDValue Op1 = Op.getOperand(1);
5790  DebugLoc dl = Op.getDebugLoc();
5791  EVT VT = Op.getValueType();
5792  EVT SrcVT = Op1.getValueType();
5793
5794  // If second operand is smaller, extend it first.
5795  if (SrcVT.bitsLT(VT)) {
5796    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5797    SrcVT = VT;
5798  }
5799  // And if it is bigger, shrink it first.
5800  if (SrcVT.bitsGT(VT)) {
5801    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5802    SrcVT = VT;
5803  }
5804
5805  // At this point the operands and the result should have the same
5806  // type, and that won't be f80 since that is not custom lowered.
5807
5808  // First get the sign bit of second operand.
5809  std::vector<Constant*> CV;
5810  if (SrcVT == MVT::f64) {
5811    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5812    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5813  } else {
5814    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5815    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5816    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5817    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5818  }
5819  Constant *C = ConstantVector::get(CV);
5820  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5821  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5822                              PseudoSourceValue::getConstantPool(), 0,
5823                              false, false, 16);
5824  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5825
5826  // Shift sign bit right or left if the two operands have different types.
5827  if (SrcVT.bitsGT(VT)) {
5828    // Op0 is MVT::f32, Op1 is MVT::f64.
5829    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5830    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5831                          DAG.getConstant(32, MVT::i32));
5832    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5833    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5834                          DAG.getIntPtrConstant(0));
5835  }
5836
5837  // Clear first operand sign bit.
5838  CV.clear();
5839  if (VT == MVT::f64) {
5840    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5841    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5842  } else {
5843    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5844    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5845    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5846    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5847  }
5848  C = ConstantVector::get(CV);
5849  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5850  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5851                              PseudoSourceValue::getConstantPool(), 0,
5852                              false, false, 16);
5853  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5854
5855  // Or the value with the sign bit.
5856  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5857}
5858
5859/// Emit nodes that will be selected as "test Op0,Op0", or something
5860/// equivalent.
5861SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5862                                    SelectionDAG &DAG) {
5863  DebugLoc dl = Op.getDebugLoc();
5864
5865  // CF and OF aren't always set the way we want. Determine which
5866  // of these we need.
5867  bool NeedCF = false;
5868  bool NeedOF = false;
5869  switch (X86CC) {
5870  case X86::COND_A: case X86::COND_AE:
5871  case X86::COND_B: case X86::COND_BE:
5872    NeedCF = true;
5873    break;
5874  case X86::COND_G: case X86::COND_GE:
5875  case X86::COND_L: case X86::COND_LE:
5876  case X86::COND_O: case X86::COND_NO:
5877    NeedOF = true;
5878    break;
5879  default: break;
5880  }
5881
5882  // See if we can use the EFLAGS value from the operand instead of
5883  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5884  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5885  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5886    unsigned Opcode = 0;
5887    unsigned NumOperands = 0;
5888    switch (Op.getNode()->getOpcode()) {
5889    case ISD::ADD:
5890      // Due to an isel shortcoming, be conservative if this add is likely to
5891      // be selected as part of a load-modify-store instruction. When the root
5892      // node in a match is a store, isel doesn't know how to remap non-chain
5893      // non-flag uses of other nodes in the match, such as the ADD in this
5894      // case. This leads to the ADD being left around and reselected, with
5895      // the result being two adds in the output.
5896      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5897           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5898        if (UI->getOpcode() == ISD::STORE)
5899          goto default_case;
5900      if (ConstantSDNode *C =
5901            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5902        // An add of one will be selected as an INC.
5903        if (C->getAPIntValue() == 1) {
5904          Opcode = X86ISD::INC;
5905          NumOperands = 1;
5906          break;
5907        }
5908        // An add of negative one (subtract of one) will be selected as a DEC.
5909        if (C->getAPIntValue().isAllOnesValue()) {
5910          Opcode = X86ISD::DEC;
5911          NumOperands = 1;
5912          break;
5913        }
5914      }
5915      // Otherwise use a regular EFLAGS-setting add.
5916      Opcode = X86ISD::ADD;
5917      NumOperands = 2;
5918      break;
5919    case ISD::AND: {
5920      // If the primary and result isn't used, don't bother using X86ISD::AND,
5921      // because a TEST instruction will be better.
5922      bool NonFlagUse = false;
5923      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5924             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5925        SDNode *User = *UI;
5926        unsigned UOpNo = UI.getOperandNo();
5927        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5928          // Look pass truncate.
5929          UOpNo = User->use_begin().getOperandNo();
5930          User = *User->use_begin();
5931        }
5932        if (User->getOpcode() != ISD::BRCOND &&
5933            User->getOpcode() != ISD::SETCC &&
5934            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5935          NonFlagUse = true;
5936          break;
5937        }
5938      }
5939      if (!NonFlagUse)
5940        break;
5941    }
5942    // FALL THROUGH
5943    case ISD::SUB:
5944    case ISD::OR:
5945    case ISD::XOR:
5946      // Due to the ISEL shortcoming noted above, be conservative if this op is
5947      // likely to be selected as part of a load-modify-store instruction.
5948      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5949           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5950        if (UI->getOpcode() == ISD::STORE)
5951          goto default_case;
5952      // Otherwise use a regular EFLAGS-setting instruction.
5953      switch (Op.getNode()->getOpcode()) {
5954      case ISD::SUB: Opcode = X86ISD::SUB; break;
5955      case ISD::OR:  Opcode = X86ISD::OR;  break;
5956      case ISD::XOR: Opcode = X86ISD::XOR; break;
5957      case ISD::AND: Opcode = X86ISD::AND; break;
5958      default: llvm_unreachable("unexpected operator!");
5959      }
5960      NumOperands = 2;
5961      break;
5962    case X86ISD::ADD:
5963    case X86ISD::SUB:
5964    case X86ISD::INC:
5965    case X86ISD::DEC:
5966    case X86ISD::OR:
5967    case X86ISD::XOR:
5968    case X86ISD::AND:
5969      return SDValue(Op.getNode(), 1);
5970    default:
5971    default_case:
5972      break;
5973    }
5974    if (Opcode != 0) {
5975      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5976      SmallVector<SDValue, 4> Ops;
5977      for (unsigned i = 0; i != NumOperands; ++i)
5978        Ops.push_back(Op.getOperand(i));
5979      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5980      DAG.ReplaceAllUsesWith(Op, New);
5981      return SDValue(New.getNode(), 1);
5982    }
5983  }
5984
5985  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5986  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5987                     DAG.getConstant(0, Op.getValueType()));
5988}
5989
5990/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5991/// equivalent.
5992SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5993                                   SelectionDAG &DAG) {
5994  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5995    if (C->getAPIntValue() == 0)
5996      return EmitTest(Op0, X86CC, DAG);
5997
5998  DebugLoc dl = Op0.getDebugLoc();
5999  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6000}
6001
6002/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6003/// if it's possible.
6004static SDValue LowerToBT(SDValue And, ISD::CondCode CC,
6005                         DebugLoc dl, SelectionDAG &DAG) {
6006  SDValue Op0 = And.getOperand(0);
6007  SDValue Op1 = And.getOperand(1);
6008  if (Op0.getOpcode() == ISD::TRUNCATE)
6009    Op0 = Op0.getOperand(0);
6010  if (Op1.getOpcode() == ISD::TRUNCATE)
6011    Op1 = Op1.getOperand(0);
6012
6013  SDValue LHS, RHS;
6014  if (Op1.getOpcode() == ISD::SHL) {
6015    if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
6016      if (And10C->getZExtValue() == 1) {
6017        LHS = Op0;
6018        RHS = Op1.getOperand(1);
6019      }
6020  } else if (Op0.getOpcode() == ISD::SHL) {
6021    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6022      if (And00C->getZExtValue() == 1) {
6023        LHS = Op1;
6024        RHS = Op0.getOperand(1);
6025      }
6026  } else if (Op1.getOpcode() == ISD::Constant) {
6027    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6028    SDValue AndLHS = Op0;
6029    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6030      LHS = AndLHS.getOperand(0);
6031      RHS = AndLHS.getOperand(1);
6032    }
6033  }
6034
6035  if (LHS.getNode()) {
6036    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
6037    // instruction.  Since the shift amount is in-range-or-undefined, we know
6038    // that doing a bittest on the i16 value is ok.  We extend to i32 because
6039    // the encoding for the i16 version is larger than the i32 version.
6040    if (LHS.getValueType() == MVT::i8)
6041      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6042
6043    // If the operand types disagree, extend the shift amount to match.  Since
6044    // BT ignores high bits (like shifts) we can use anyextend.
6045    if (LHS.getValueType() != RHS.getValueType())
6046      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6047
6048    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6049    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6050    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6051                       DAG.getConstant(Cond, MVT::i8), BT);
6052  }
6053
6054  return SDValue();
6055}
6056
6057SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
6058  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6059  SDValue Op0 = Op.getOperand(0);
6060  SDValue Op1 = Op.getOperand(1);
6061  DebugLoc dl = Op.getDebugLoc();
6062  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6063
6064  // Optimize to BT if possible.
6065  // Lower (X & (1 << N)) == 0 to BT(X, N).
6066  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6067  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6068  if (Op0.getOpcode() == ISD::AND &&
6069      Op0.hasOneUse() &&
6070      Op1.getOpcode() == ISD::Constant &&
6071      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
6072      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6073    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6074    if (NewSetCC.getNode())
6075      return NewSetCC;
6076  }
6077
6078  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6079  if (Op0.getOpcode() == X86ISD::SETCC &&
6080      Op1.getOpcode() == ISD::Constant &&
6081      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6082       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6083      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6084    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6085    bool Invert = (CC == ISD::SETNE) ^
6086      cast<ConstantSDNode>(Op1)->isNullValue();
6087    if (Invert)
6088      CCode = X86::GetOppositeBranchCondition(CCode);
6089    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6090                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6091  }
6092
6093  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6094  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6095  if (X86CC == X86::COND_INVALID)
6096    return SDValue();
6097
6098  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6099
6100  // Use sbb x, x to materialize carry bit into a GPR.
6101  if (X86CC == X86::COND_B)
6102    return DAG.getNode(ISD::AND, dl, MVT::i8,
6103                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6104                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6105                       DAG.getConstant(1, MVT::i8));
6106
6107  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6108                     DAG.getConstant(X86CC, MVT::i8), Cond);
6109}
6110
6111SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
6112  SDValue Cond;
6113  SDValue Op0 = Op.getOperand(0);
6114  SDValue Op1 = Op.getOperand(1);
6115  SDValue CC = Op.getOperand(2);
6116  EVT VT = Op.getValueType();
6117  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6118  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6119  DebugLoc dl = Op.getDebugLoc();
6120
6121  if (isFP) {
6122    unsigned SSECC = 8;
6123    EVT VT0 = Op0.getValueType();
6124    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6125    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6126    bool Swap = false;
6127
6128    switch (SetCCOpcode) {
6129    default: break;
6130    case ISD::SETOEQ:
6131    case ISD::SETEQ:  SSECC = 0; break;
6132    case ISD::SETOGT:
6133    case ISD::SETGT: Swap = true; // Fallthrough
6134    case ISD::SETLT:
6135    case ISD::SETOLT: SSECC = 1; break;
6136    case ISD::SETOGE:
6137    case ISD::SETGE: Swap = true; // Fallthrough
6138    case ISD::SETLE:
6139    case ISD::SETOLE: SSECC = 2; break;
6140    case ISD::SETUO:  SSECC = 3; break;
6141    case ISD::SETUNE:
6142    case ISD::SETNE:  SSECC = 4; break;
6143    case ISD::SETULE: Swap = true;
6144    case ISD::SETUGE: SSECC = 5; break;
6145    case ISD::SETULT: Swap = true;
6146    case ISD::SETUGT: SSECC = 6; break;
6147    case ISD::SETO:   SSECC = 7; break;
6148    }
6149    if (Swap)
6150      std::swap(Op0, Op1);
6151
6152    // In the two special cases we can't handle, emit two comparisons.
6153    if (SSECC == 8) {
6154      if (SetCCOpcode == ISD::SETUEQ) {
6155        SDValue UNORD, EQ;
6156        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6157        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6158        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6159      }
6160      else if (SetCCOpcode == ISD::SETONE) {
6161        SDValue ORD, NEQ;
6162        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6163        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6164        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6165      }
6166      llvm_unreachable("Illegal FP comparison");
6167    }
6168    // Handle all other FP comparisons here.
6169    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6170  }
6171
6172  // We are handling one of the integer comparisons here.  Since SSE only has
6173  // GT and EQ comparisons for integer, swapping operands and multiple
6174  // operations may be required for some comparisons.
6175  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6176  bool Swap = false, Invert = false, FlipSigns = false;
6177
6178  switch (VT.getSimpleVT().SimpleTy) {
6179  default: break;
6180  case MVT::v8i8:
6181  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6182  case MVT::v4i16:
6183  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6184  case MVT::v2i32:
6185  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6186  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6187  }
6188
6189  switch (SetCCOpcode) {
6190  default: break;
6191  case ISD::SETNE:  Invert = true;
6192  case ISD::SETEQ:  Opc = EQOpc; break;
6193  case ISD::SETLT:  Swap = true;
6194  case ISD::SETGT:  Opc = GTOpc; break;
6195  case ISD::SETGE:  Swap = true;
6196  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6197  case ISD::SETULT: Swap = true;
6198  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6199  case ISD::SETUGE: Swap = true;
6200  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6201  }
6202  if (Swap)
6203    std::swap(Op0, Op1);
6204
6205  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6206  // bits of the inputs before performing those operations.
6207  if (FlipSigns) {
6208    EVT EltVT = VT.getVectorElementType();
6209    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6210                                      EltVT);
6211    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6212    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6213                                    SignBits.size());
6214    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6215    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6216  }
6217
6218  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6219
6220  // If the logical-not of the result is required, perform that now.
6221  if (Invert)
6222    Result = DAG.getNOT(dl, Result, VT);
6223
6224  return Result;
6225}
6226
6227// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6228static bool isX86LogicalCmp(SDValue Op) {
6229  unsigned Opc = Op.getNode()->getOpcode();
6230  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6231    return true;
6232  if (Op.getResNo() == 1 &&
6233      (Opc == X86ISD::ADD ||
6234       Opc == X86ISD::SUB ||
6235       Opc == X86ISD::SMUL ||
6236       Opc == X86ISD::UMUL ||
6237       Opc == X86ISD::INC ||
6238       Opc == X86ISD::DEC ||
6239       Opc == X86ISD::OR ||
6240       Opc == X86ISD::XOR ||
6241       Opc == X86ISD::AND))
6242    return true;
6243
6244  return false;
6245}
6246
6247SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6248  bool addTest = true;
6249  SDValue Cond  = Op.getOperand(0);
6250  DebugLoc dl = Op.getDebugLoc();
6251  SDValue CC;
6252
6253  if (Cond.getOpcode() == ISD::SETCC) {
6254    SDValue NewCond = LowerSETCC(Cond, DAG);
6255    if (NewCond.getNode())
6256      Cond = NewCond;
6257  }
6258
6259  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6260  SDValue Op1 = Op.getOperand(1);
6261  SDValue Op2 = Op.getOperand(2);
6262  if (Cond.getOpcode() == X86ISD::SETCC &&
6263      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6264    SDValue Cmp = Cond.getOperand(1);
6265    if (Cmp.getOpcode() == X86ISD::CMP) {
6266      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6267      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6268      ConstantSDNode *RHSC =
6269        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6270      if (N1C && N1C->isAllOnesValue() &&
6271          N2C && N2C->isNullValue() &&
6272          RHSC && RHSC->isNullValue()) {
6273        SDValue CmpOp0 = Cmp.getOperand(0);
6274        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6275                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6276        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6277                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6278      }
6279    }
6280  }
6281
6282  // Look pass (and (setcc_carry (cmp ...)), 1).
6283  if (Cond.getOpcode() == ISD::AND &&
6284      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6285    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6286    if (C && C->getAPIntValue() == 1)
6287      Cond = Cond.getOperand(0);
6288  }
6289
6290  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6291  // setting operand in place of the X86ISD::SETCC.
6292  if (Cond.getOpcode() == X86ISD::SETCC ||
6293      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6294    CC = Cond.getOperand(0);
6295
6296    SDValue Cmp = Cond.getOperand(1);
6297    unsigned Opc = Cmp.getOpcode();
6298    EVT VT = Op.getValueType();
6299
6300    bool IllegalFPCMov = false;
6301    if (VT.isFloatingPoint() && !VT.isVector() &&
6302        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6303      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6304
6305    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6306        Opc == X86ISD::BT) { // FIXME
6307      Cond = Cmp;
6308      addTest = false;
6309    }
6310  }
6311
6312  if (addTest) {
6313    // Look pass the truncate.
6314    if (Cond.getOpcode() == ISD::TRUNCATE)
6315      Cond = Cond.getOperand(0);
6316
6317    // We know the result of AND is compared against zero. Try to match
6318    // it to BT.
6319    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6320      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6321      if (NewSetCC.getNode()) {
6322        CC = NewSetCC.getOperand(0);
6323        Cond = NewSetCC.getOperand(1);
6324        addTest = false;
6325      }
6326    }
6327  }
6328
6329  if (addTest) {
6330    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6331    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6332  }
6333
6334  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6335  // condition is true.
6336  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6337  SDValue Ops[] = { Op2, Op1, CC, Cond };
6338  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6339}
6340
6341// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6342// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6343// from the AND / OR.
6344static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6345  Opc = Op.getOpcode();
6346  if (Opc != ISD::OR && Opc != ISD::AND)
6347    return false;
6348  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6349          Op.getOperand(0).hasOneUse() &&
6350          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6351          Op.getOperand(1).hasOneUse());
6352}
6353
6354// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6355// 1 and that the SETCC node has a single use.
6356static bool isXor1OfSetCC(SDValue Op) {
6357  if (Op.getOpcode() != ISD::XOR)
6358    return false;
6359  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6360  if (N1C && N1C->getAPIntValue() == 1) {
6361    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6362      Op.getOperand(0).hasOneUse();
6363  }
6364  return false;
6365}
6366
6367SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6368  bool addTest = true;
6369  SDValue Chain = Op.getOperand(0);
6370  SDValue Cond  = Op.getOperand(1);
6371  SDValue Dest  = Op.getOperand(2);
6372  DebugLoc dl = Op.getDebugLoc();
6373  SDValue CC;
6374
6375  if (Cond.getOpcode() == ISD::SETCC) {
6376    SDValue NewCond = LowerSETCC(Cond, DAG);
6377    if (NewCond.getNode())
6378      Cond = NewCond;
6379  }
6380#if 0
6381  // FIXME: LowerXALUO doesn't handle these!!
6382  else if (Cond.getOpcode() == X86ISD::ADD  ||
6383           Cond.getOpcode() == X86ISD::SUB  ||
6384           Cond.getOpcode() == X86ISD::SMUL ||
6385           Cond.getOpcode() == X86ISD::UMUL)
6386    Cond = LowerXALUO(Cond, DAG);
6387#endif
6388
6389  // Look pass (and (setcc_carry (cmp ...)), 1).
6390  if (Cond.getOpcode() == ISD::AND &&
6391      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6392    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6393    if (C && C->getAPIntValue() == 1)
6394      Cond = Cond.getOperand(0);
6395  }
6396
6397  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6398  // setting operand in place of the X86ISD::SETCC.
6399  if (Cond.getOpcode() == X86ISD::SETCC ||
6400      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6401    CC = Cond.getOperand(0);
6402
6403    SDValue Cmp = Cond.getOperand(1);
6404    unsigned Opc = Cmp.getOpcode();
6405    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6406    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6407      Cond = Cmp;
6408      addTest = false;
6409    } else {
6410      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6411      default: break;
6412      case X86::COND_O:
6413      case X86::COND_B:
6414        // These can only come from an arithmetic instruction with overflow,
6415        // e.g. SADDO, UADDO.
6416        Cond = Cond.getNode()->getOperand(1);
6417        addTest = false;
6418        break;
6419      }
6420    }
6421  } else {
6422    unsigned CondOpc;
6423    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6424      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6425      if (CondOpc == ISD::OR) {
6426        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6427        // two branches instead of an explicit OR instruction with a
6428        // separate test.
6429        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6430            isX86LogicalCmp(Cmp)) {
6431          CC = Cond.getOperand(0).getOperand(0);
6432          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6433                              Chain, Dest, CC, Cmp);
6434          CC = Cond.getOperand(1).getOperand(0);
6435          Cond = Cmp;
6436          addTest = false;
6437        }
6438      } else { // ISD::AND
6439        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6440        // two branches instead of an explicit AND instruction with a
6441        // separate test. However, we only do this if this block doesn't
6442        // have a fall-through edge, because this requires an explicit
6443        // jmp when the condition is false.
6444        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6445            isX86LogicalCmp(Cmp) &&
6446            Op.getNode()->hasOneUse()) {
6447          X86::CondCode CCode =
6448            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6449          CCode = X86::GetOppositeBranchCondition(CCode);
6450          CC = DAG.getConstant(CCode, MVT::i8);
6451          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6452          // Look for an unconditional branch following this conditional branch.
6453          // We need this because we need to reverse the successors in order
6454          // to implement FCMP_OEQ.
6455          if (User.getOpcode() == ISD::BR) {
6456            SDValue FalseBB = User.getOperand(1);
6457            SDValue NewBR =
6458              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6459            assert(NewBR == User);
6460            Dest = FalseBB;
6461
6462            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6463                                Chain, Dest, CC, Cmp);
6464            X86::CondCode CCode =
6465              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6466            CCode = X86::GetOppositeBranchCondition(CCode);
6467            CC = DAG.getConstant(CCode, MVT::i8);
6468            Cond = Cmp;
6469            addTest = false;
6470          }
6471        }
6472      }
6473    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6474      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6475      // It should be transformed during dag combiner except when the condition
6476      // is set by a arithmetics with overflow node.
6477      X86::CondCode CCode =
6478        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6479      CCode = X86::GetOppositeBranchCondition(CCode);
6480      CC = DAG.getConstant(CCode, MVT::i8);
6481      Cond = Cond.getOperand(0).getOperand(1);
6482      addTest = false;
6483    }
6484  }
6485
6486  if (addTest) {
6487    // Look pass the truncate.
6488    if (Cond.getOpcode() == ISD::TRUNCATE)
6489      Cond = Cond.getOperand(0);
6490
6491    // We know the result of AND is compared against zero. Try to match
6492    // it to BT.
6493    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6494      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6495      if (NewSetCC.getNode()) {
6496        CC = NewSetCC.getOperand(0);
6497        Cond = NewSetCC.getOperand(1);
6498        addTest = false;
6499      }
6500    }
6501  }
6502
6503  if (addTest) {
6504    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6505    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6506  }
6507  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6508                     Chain, Dest, CC, Cond);
6509}
6510
6511
6512// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6513// Calls to _alloca is needed to probe the stack when allocating more than 4k
6514// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6515// that the guard pages used by the OS virtual memory manager are allocated in
6516// correct sequence.
6517SDValue
6518X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6519                                           SelectionDAG &DAG) {
6520  assert(Subtarget->isTargetCygMing() &&
6521         "This should be used only on Cygwin/Mingw targets");
6522  DebugLoc dl = Op.getDebugLoc();
6523
6524  // Get the inputs.
6525  SDValue Chain = Op.getOperand(0);
6526  SDValue Size  = Op.getOperand(1);
6527  // FIXME: Ensure alignment here
6528
6529  SDValue Flag;
6530
6531  EVT IntPtr = getPointerTy();
6532  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6533
6534  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6535  Flag = Chain.getValue(1);
6536
6537  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6538
6539  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6540  Flag = Chain.getValue(1);
6541
6542  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6543
6544  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6545  return DAG.getMergeValues(Ops1, 2, dl);
6546}
6547
6548SDValue
6549X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6550                                           SDValue Chain,
6551                                           SDValue Dst, SDValue Src,
6552                                           SDValue Size, unsigned Align,
6553                                           const Value *DstSV,
6554                                           uint64_t DstSVOff) {
6555  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6556
6557  // If not DWORD aligned or size is more than the threshold, call the library.
6558  // The libc version is likely to be faster for these cases. It can use the
6559  // address value and run time information about the CPU.
6560  if ((Align & 3) != 0 ||
6561      !ConstantSize ||
6562      ConstantSize->getZExtValue() >
6563        getSubtarget()->getMaxInlineSizeThreshold()) {
6564    SDValue InFlag(0, 0);
6565
6566    // Check to see if there is a specialized entry-point for memory zeroing.
6567    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6568
6569    if (const char *bzeroEntry =  V &&
6570        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6571      EVT IntPtr = getPointerTy();
6572      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6573      TargetLowering::ArgListTy Args;
6574      TargetLowering::ArgListEntry Entry;
6575      Entry.Node = Dst;
6576      Entry.Ty = IntPtrTy;
6577      Args.push_back(Entry);
6578      Entry.Node = Size;
6579      Args.push_back(Entry);
6580      std::pair<SDValue,SDValue> CallResult =
6581        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6582                    false, false, false, false,
6583                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6584                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6585      return CallResult.second;
6586    }
6587
6588    // Otherwise have the target-independent code call memset.
6589    return SDValue();
6590  }
6591
6592  uint64_t SizeVal = ConstantSize->getZExtValue();
6593  SDValue InFlag(0, 0);
6594  EVT AVT;
6595  SDValue Count;
6596  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6597  unsigned BytesLeft = 0;
6598  bool TwoRepStos = false;
6599  if (ValC) {
6600    unsigned ValReg;
6601    uint64_t Val = ValC->getZExtValue() & 255;
6602
6603    // If the value is a constant, then we can potentially use larger sets.
6604    switch (Align & 3) {
6605    case 2:   // WORD aligned
6606      AVT = MVT::i16;
6607      ValReg = X86::AX;
6608      Val = (Val << 8) | Val;
6609      break;
6610    case 0:  // DWORD aligned
6611      AVT = MVT::i32;
6612      ValReg = X86::EAX;
6613      Val = (Val << 8)  | Val;
6614      Val = (Val << 16) | Val;
6615      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6616        AVT = MVT::i64;
6617        ValReg = X86::RAX;
6618        Val = (Val << 32) | Val;
6619      }
6620      break;
6621    default:  // Byte aligned
6622      AVT = MVT::i8;
6623      ValReg = X86::AL;
6624      Count = DAG.getIntPtrConstant(SizeVal);
6625      break;
6626    }
6627
6628    if (AVT.bitsGT(MVT::i8)) {
6629      unsigned UBytes = AVT.getSizeInBits() / 8;
6630      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6631      BytesLeft = SizeVal % UBytes;
6632    }
6633
6634    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6635                              InFlag);
6636    InFlag = Chain.getValue(1);
6637  } else {
6638    AVT = MVT::i8;
6639    Count  = DAG.getIntPtrConstant(SizeVal);
6640    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6641    InFlag = Chain.getValue(1);
6642  }
6643
6644  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6645                                                              X86::ECX,
6646                            Count, InFlag);
6647  InFlag = Chain.getValue(1);
6648  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6649                                                              X86::EDI,
6650                            Dst, InFlag);
6651  InFlag = Chain.getValue(1);
6652
6653  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6654  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6655  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6656
6657  if (TwoRepStos) {
6658    InFlag = Chain.getValue(1);
6659    Count  = Size;
6660    EVT CVT = Count.getValueType();
6661    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6662                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6663    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6664                                                             X86::ECX,
6665                              Left, InFlag);
6666    InFlag = Chain.getValue(1);
6667    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6668    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6669    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6670  } else if (BytesLeft) {
6671    // Handle the last 1 - 7 bytes.
6672    unsigned Offset = SizeVal - BytesLeft;
6673    EVT AddrVT = Dst.getValueType();
6674    EVT SizeVT = Size.getValueType();
6675
6676    Chain = DAG.getMemset(Chain, dl,
6677                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6678                                      DAG.getConstant(Offset, AddrVT)),
6679                          Src,
6680                          DAG.getConstant(BytesLeft, SizeVT),
6681                          Align, DstSV, DstSVOff + Offset);
6682  }
6683
6684  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6685  return Chain;
6686}
6687
6688SDValue
6689X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6690                                      SDValue Chain, SDValue Dst, SDValue Src,
6691                                      SDValue Size, unsigned Align,
6692                                      bool AlwaysInline,
6693                                      const Value *DstSV, uint64_t DstSVOff,
6694                                      const Value *SrcSV, uint64_t SrcSVOff) {
6695  // This requires the copy size to be a constant, preferrably
6696  // within a subtarget-specific limit.
6697  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6698  if (!ConstantSize)
6699    return SDValue();
6700  uint64_t SizeVal = ConstantSize->getZExtValue();
6701  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6702    return SDValue();
6703
6704  /// If not DWORD aligned, call the library.
6705  if ((Align & 3) != 0)
6706    return SDValue();
6707
6708  // DWORD aligned
6709  EVT AVT = MVT::i32;
6710  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6711    AVT = MVT::i64;
6712
6713  unsigned UBytes = AVT.getSizeInBits() / 8;
6714  unsigned CountVal = SizeVal / UBytes;
6715  SDValue Count = DAG.getIntPtrConstant(CountVal);
6716  unsigned BytesLeft = SizeVal % UBytes;
6717
6718  SDValue InFlag(0, 0);
6719  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6720                                                              X86::ECX,
6721                            Count, InFlag);
6722  InFlag = Chain.getValue(1);
6723  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6724                                                             X86::EDI,
6725                            Dst, InFlag);
6726  InFlag = Chain.getValue(1);
6727  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6728                                                              X86::ESI,
6729                            Src, InFlag);
6730  InFlag = Chain.getValue(1);
6731
6732  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6733  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6734  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6735                                array_lengthof(Ops));
6736
6737  SmallVector<SDValue, 4> Results;
6738  Results.push_back(RepMovs);
6739  if (BytesLeft) {
6740    // Handle the last 1 - 7 bytes.
6741    unsigned Offset = SizeVal - BytesLeft;
6742    EVT DstVT = Dst.getValueType();
6743    EVT SrcVT = Src.getValueType();
6744    EVT SizeVT = Size.getValueType();
6745    Results.push_back(DAG.getMemcpy(Chain, dl,
6746                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6747                                                DAG.getConstant(Offset, DstVT)),
6748                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6749                                                DAG.getConstant(Offset, SrcVT)),
6750                                    DAG.getConstant(BytesLeft, SizeVT),
6751                                    Align, AlwaysInline,
6752                                    DstSV, DstSVOff + Offset,
6753                                    SrcSV, SrcSVOff + Offset));
6754  }
6755
6756  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6757                     &Results[0], Results.size());
6758}
6759
6760SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6761  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6762  DebugLoc dl = Op.getDebugLoc();
6763
6764  if (!Subtarget->is64Bit()) {
6765    // vastart just stores the address of the VarArgsFrameIndex slot into the
6766    // memory location argument.
6767    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6768    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6769                        false, false, 0);
6770  }
6771
6772  // __va_list_tag:
6773  //   gp_offset         (0 - 6 * 8)
6774  //   fp_offset         (48 - 48 + 8 * 16)
6775  //   overflow_arg_area (point to parameters coming in memory).
6776  //   reg_save_area
6777  SmallVector<SDValue, 8> MemOps;
6778  SDValue FIN = Op.getOperand(1);
6779  // Store gp_offset
6780  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6781                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6782                               FIN, SV, 0, false, false, 0);
6783  MemOps.push_back(Store);
6784
6785  // Store fp_offset
6786  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6787                    FIN, DAG.getIntPtrConstant(4));
6788  Store = DAG.getStore(Op.getOperand(0), dl,
6789                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6790                       FIN, SV, 0, false, false, 0);
6791  MemOps.push_back(Store);
6792
6793  // Store ptr to overflow_arg_area
6794  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6795                    FIN, DAG.getIntPtrConstant(4));
6796  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6797  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6798                       false, false, 0);
6799  MemOps.push_back(Store);
6800
6801  // Store ptr to reg_save_area.
6802  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6803                    FIN, DAG.getIntPtrConstant(8));
6804  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6805  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6806                       false, false, 0);
6807  MemOps.push_back(Store);
6808  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6809                     &MemOps[0], MemOps.size());
6810}
6811
6812SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6813  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6814  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6815  SDValue Chain = Op.getOperand(0);
6816  SDValue SrcPtr = Op.getOperand(1);
6817  SDValue SrcSV = Op.getOperand(2);
6818
6819  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6820  return SDValue();
6821}
6822
6823SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6824  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6825  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6826  SDValue Chain = Op.getOperand(0);
6827  SDValue DstPtr = Op.getOperand(1);
6828  SDValue SrcPtr = Op.getOperand(2);
6829  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6830  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6831  DebugLoc dl = Op.getDebugLoc();
6832
6833  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6834                       DAG.getIntPtrConstant(24), 8, false,
6835                       DstSV, 0, SrcSV, 0);
6836}
6837
6838SDValue
6839X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6840  DebugLoc dl = Op.getDebugLoc();
6841  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6842  switch (IntNo) {
6843  default: return SDValue();    // Don't custom lower most intrinsics.
6844  // Comparison intrinsics.
6845  case Intrinsic::x86_sse_comieq_ss:
6846  case Intrinsic::x86_sse_comilt_ss:
6847  case Intrinsic::x86_sse_comile_ss:
6848  case Intrinsic::x86_sse_comigt_ss:
6849  case Intrinsic::x86_sse_comige_ss:
6850  case Intrinsic::x86_sse_comineq_ss:
6851  case Intrinsic::x86_sse_ucomieq_ss:
6852  case Intrinsic::x86_sse_ucomilt_ss:
6853  case Intrinsic::x86_sse_ucomile_ss:
6854  case Intrinsic::x86_sse_ucomigt_ss:
6855  case Intrinsic::x86_sse_ucomige_ss:
6856  case Intrinsic::x86_sse_ucomineq_ss:
6857  case Intrinsic::x86_sse2_comieq_sd:
6858  case Intrinsic::x86_sse2_comilt_sd:
6859  case Intrinsic::x86_sse2_comile_sd:
6860  case Intrinsic::x86_sse2_comigt_sd:
6861  case Intrinsic::x86_sse2_comige_sd:
6862  case Intrinsic::x86_sse2_comineq_sd:
6863  case Intrinsic::x86_sse2_ucomieq_sd:
6864  case Intrinsic::x86_sse2_ucomilt_sd:
6865  case Intrinsic::x86_sse2_ucomile_sd:
6866  case Intrinsic::x86_sse2_ucomigt_sd:
6867  case Intrinsic::x86_sse2_ucomige_sd:
6868  case Intrinsic::x86_sse2_ucomineq_sd: {
6869    unsigned Opc = 0;
6870    ISD::CondCode CC = ISD::SETCC_INVALID;
6871    switch (IntNo) {
6872    default: break;
6873    case Intrinsic::x86_sse_comieq_ss:
6874    case Intrinsic::x86_sse2_comieq_sd:
6875      Opc = X86ISD::COMI;
6876      CC = ISD::SETEQ;
6877      break;
6878    case Intrinsic::x86_sse_comilt_ss:
6879    case Intrinsic::x86_sse2_comilt_sd:
6880      Opc = X86ISD::COMI;
6881      CC = ISD::SETLT;
6882      break;
6883    case Intrinsic::x86_sse_comile_ss:
6884    case Intrinsic::x86_sse2_comile_sd:
6885      Opc = X86ISD::COMI;
6886      CC = ISD::SETLE;
6887      break;
6888    case Intrinsic::x86_sse_comigt_ss:
6889    case Intrinsic::x86_sse2_comigt_sd:
6890      Opc = X86ISD::COMI;
6891      CC = ISD::SETGT;
6892      break;
6893    case Intrinsic::x86_sse_comige_ss:
6894    case Intrinsic::x86_sse2_comige_sd:
6895      Opc = X86ISD::COMI;
6896      CC = ISD::SETGE;
6897      break;
6898    case Intrinsic::x86_sse_comineq_ss:
6899    case Intrinsic::x86_sse2_comineq_sd:
6900      Opc = X86ISD::COMI;
6901      CC = ISD::SETNE;
6902      break;
6903    case Intrinsic::x86_sse_ucomieq_ss:
6904    case Intrinsic::x86_sse2_ucomieq_sd:
6905      Opc = X86ISD::UCOMI;
6906      CC = ISD::SETEQ;
6907      break;
6908    case Intrinsic::x86_sse_ucomilt_ss:
6909    case Intrinsic::x86_sse2_ucomilt_sd:
6910      Opc = X86ISD::UCOMI;
6911      CC = ISD::SETLT;
6912      break;
6913    case Intrinsic::x86_sse_ucomile_ss:
6914    case Intrinsic::x86_sse2_ucomile_sd:
6915      Opc = X86ISD::UCOMI;
6916      CC = ISD::SETLE;
6917      break;
6918    case Intrinsic::x86_sse_ucomigt_ss:
6919    case Intrinsic::x86_sse2_ucomigt_sd:
6920      Opc = X86ISD::UCOMI;
6921      CC = ISD::SETGT;
6922      break;
6923    case Intrinsic::x86_sse_ucomige_ss:
6924    case Intrinsic::x86_sse2_ucomige_sd:
6925      Opc = X86ISD::UCOMI;
6926      CC = ISD::SETGE;
6927      break;
6928    case Intrinsic::x86_sse_ucomineq_ss:
6929    case Intrinsic::x86_sse2_ucomineq_sd:
6930      Opc = X86ISD::UCOMI;
6931      CC = ISD::SETNE;
6932      break;
6933    }
6934
6935    SDValue LHS = Op.getOperand(1);
6936    SDValue RHS = Op.getOperand(2);
6937    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6938    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6939    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6940    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6941                                DAG.getConstant(X86CC, MVT::i8), Cond);
6942    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6943  }
6944  // ptest intrinsics. The intrinsic these come from are designed to return
6945  // an integer value, not just an instruction so lower it to the ptest
6946  // pattern and a setcc for the result.
6947  case Intrinsic::x86_sse41_ptestz:
6948  case Intrinsic::x86_sse41_ptestc:
6949  case Intrinsic::x86_sse41_ptestnzc:{
6950    unsigned X86CC = 0;
6951    switch (IntNo) {
6952    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6953    case Intrinsic::x86_sse41_ptestz:
6954      // ZF = 1
6955      X86CC = X86::COND_E;
6956      break;
6957    case Intrinsic::x86_sse41_ptestc:
6958      // CF = 1
6959      X86CC = X86::COND_B;
6960      break;
6961    case Intrinsic::x86_sse41_ptestnzc:
6962      // ZF and CF = 0
6963      X86CC = X86::COND_A;
6964      break;
6965    }
6966
6967    SDValue LHS = Op.getOperand(1);
6968    SDValue RHS = Op.getOperand(2);
6969    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6970    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6971    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6972    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6973  }
6974
6975  // Fix vector shift instructions where the last operand is a non-immediate
6976  // i32 value.
6977  case Intrinsic::x86_sse2_pslli_w:
6978  case Intrinsic::x86_sse2_pslli_d:
6979  case Intrinsic::x86_sse2_pslli_q:
6980  case Intrinsic::x86_sse2_psrli_w:
6981  case Intrinsic::x86_sse2_psrli_d:
6982  case Intrinsic::x86_sse2_psrli_q:
6983  case Intrinsic::x86_sse2_psrai_w:
6984  case Intrinsic::x86_sse2_psrai_d:
6985  case Intrinsic::x86_mmx_pslli_w:
6986  case Intrinsic::x86_mmx_pslli_d:
6987  case Intrinsic::x86_mmx_pslli_q:
6988  case Intrinsic::x86_mmx_psrli_w:
6989  case Intrinsic::x86_mmx_psrli_d:
6990  case Intrinsic::x86_mmx_psrli_q:
6991  case Intrinsic::x86_mmx_psrai_w:
6992  case Intrinsic::x86_mmx_psrai_d: {
6993    SDValue ShAmt = Op.getOperand(2);
6994    if (isa<ConstantSDNode>(ShAmt))
6995      return SDValue();
6996
6997    unsigned NewIntNo = 0;
6998    EVT ShAmtVT = MVT::v4i32;
6999    switch (IntNo) {
7000    case Intrinsic::x86_sse2_pslli_w:
7001      NewIntNo = Intrinsic::x86_sse2_psll_w;
7002      break;
7003    case Intrinsic::x86_sse2_pslli_d:
7004      NewIntNo = Intrinsic::x86_sse2_psll_d;
7005      break;
7006    case Intrinsic::x86_sse2_pslli_q:
7007      NewIntNo = Intrinsic::x86_sse2_psll_q;
7008      break;
7009    case Intrinsic::x86_sse2_psrli_w:
7010      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7011      break;
7012    case Intrinsic::x86_sse2_psrli_d:
7013      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7014      break;
7015    case Intrinsic::x86_sse2_psrli_q:
7016      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7017      break;
7018    case Intrinsic::x86_sse2_psrai_w:
7019      NewIntNo = Intrinsic::x86_sse2_psra_w;
7020      break;
7021    case Intrinsic::x86_sse2_psrai_d:
7022      NewIntNo = Intrinsic::x86_sse2_psra_d;
7023      break;
7024    default: {
7025      ShAmtVT = MVT::v2i32;
7026      switch (IntNo) {
7027      case Intrinsic::x86_mmx_pslli_w:
7028        NewIntNo = Intrinsic::x86_mmx_psll_w;
7029        break;
7030      case Intrinsic::x86_mmx_pslli_d:
7031        NewIntNo = Intrinsic::x86_mmx_psll_d;
7032        break;
7033      case Intrinsic::x86_mmx_pslli_q:
7034        NewIntNo = Intrinsic::x86_mmx_psll_q;
7035        break;
7036      case Intrinsic::x86_mmx_psrli_w:
7037        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7038        break;
7039      case Intrinsic::x86_mmx_psrli_d:
7040        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7041        break;
7042      case Intrinsic::x86_mmx_psrli_q:
7043        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7044        break;
7045      case Intrinsic::x86_mmx_psrai_w:
7046        NewIntNo = Intrinsic::x86_mmx_psra_w;
7047        break;
7048      case Intrinsic::x86_mmx_psrai_d:
7049        NewIntNo = Intrinsic::x86_mmx_psra_d;
7050        break;
7051      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7052      }
7053      break;
7054    }
7055    }
7056
7057    // The vector shift intrinsics with scalars uses 32b shift amounts but
7058    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7059    // to be zero.
7060    SDValue ShOps[4];
7061    ShOps[0] = ShAmt;
7062    ShOps[1] = DAG.getConstant(0, MVT::i32);
7063    if (ShAmtVT == MVT::v4i32) {
7064      ShOps[2] = DAG.getUNDEF(MVT::i32);
7065      ShOps[3] = DAG.getUNDEF(MVT::i32);
7066      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7067    } else {
7068      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7069    }
7070
7071    EVT VT = Op.getValueType();
7072    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7073    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7074                       DAG.getConstant(NewIntNo, MVT::i32),
7075                       Op.getOperand(1), ShAmt);
7076  }
7077  }
7078}
7079
7080SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
7081  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7082  DebugLoc dl = Op.getDebugLoc();
7083
7084  if (Depth > 0) {
7085    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7086    SDValue Offset =
7087      DAG.getConstant(TD->getPointerSize(),
7088                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7089    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7090                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7091                                   FrameAddr, Offset),
7092                       NULL, 0, false, false, 0);
7093  }
7094
7095  // Just load the return address.
7096  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7097  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7098                     RetAddrFI, NULL, 0, false, false, 0);
7099}
7100
7101SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
7102  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7103  MFI->setFrameAddressIsTaken(true);
7104  EVT VT = Op.getValueType();
7105  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7106  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7107  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7108  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7109  while (Depth--)
7110    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7111                            false, false, 0);
7112  return FrameAddr;
7113}
7114
7115SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7116                                                     SelectionDAG &DAG) {
7117  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7118}
7119
7120SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
7121{
7122  MachineFunction &MF = DAG.getMachineFunction();
7123  SDValue Chain     = Op.getOperand(0);
7124  SDValue Offset    = Op.getOperand(1);
7125  SDValue Handler   = Op.getOperand(2);
7126  DebugLoc dl       = Op.getDebugLoc();
7127
7128  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7129                                  getPointerTy());
7130  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7131
7132  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
7133                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
7134  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7135  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7136  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7137  MF.getRegInfo().addLiveOut(StoreAddrReg);
7138
7139  return DAG.getNode(X86ISD::EH_RETURN, dl,
7140                     MVT::Other,
7141                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7142}
7143
7144SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7145                                             SelectionDAG &DAG) {
7146  SDValue Root = Op.getOperand(0);
7147  SDValue Trmp = Op.getOperand(1); // trampoline
7148  SDValue FPtr = Op.getOperand(2); // nested function
7149  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7150  DebugLoc dl  = Op.getDebugLoc();
7151
7152  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7153
7154  if (Subtarget->is64Bit()) {
7155    SDValue OutChains[6];
7156
7157    // Large code-model.
7158    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7159    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7160
7161    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7162    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7163
7164    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7165
7166    // Load the pointer to the nested function into R11.
7167    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7168    SDValue Addr = Trmp;
7169    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7170                                Addr, TrmpAddr, 0, false, false, 0);
7171
7172    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7173                       DAG.getConstant(2, MVT::i64));
7174    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7175                                false, false, 2);
7176
7177    // Load the 'nest' parameter value into R10.
7178    // R10 is specified in X86CallingConv.td
7179    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7180    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7181                       DAG.getConstant(10, MVT::i64));
7182    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7183                                Addr, TrmpAddr, 10, false, false, 0);
7184
7185    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7186                       DAG.getConstant(12, MVT::i64));
7187    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7188                                false, false, 2);
7189
7190    // Jump to the nested function.
7191    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7192    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7193                       DAG.getConstant(20, MVT::i64));
7194    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7195                                Addr, TrmpAddr, 20, false, false, 0);
7196
7197    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7198    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7199                       DAG.getConstant(22, MVT::i64));
7200    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7201                                TrmpAddr, 22, false, false, 0);
7202
7203    SDValue Ops[] =
7204      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7205    return DAG.getMergeValues(Ops, 2, dl);
7206  } else {
7207    const Function *Func =
7208      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7209    CallingConv::ID CC = Func->getCallingConv();
7210    unsigned NestReg;
7211
7212    switch (CC) {
7213    default:
7214      llvm_unreachable("Unsupported calling convention");
7215    case CallingConv::C:
7216    case CallingConv::X86_StdCall: {
7217      // Pass 'nest' parameter in ECX.
7218      // Must be kept in sync with X86CallingConv.td
7219      NestReg = X86::ECX;
7220
7221      // Check that ECX wasn't needed by an 'inreg' parameter.
7222      const FunctionType *FTy = Func->getFunctionType();
7223      const AttrListPtr &Attrs = Func->getAttributes();
7224
7225      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7226        unsigned InRegCount = 0;
7227        unsigned Idx = 1;
7228
7229        for (FunctionType::param_iterator I = FTy->param_begin(),
7230             E = FTy->param_end(); I != E; ++I, ++Idx)
7231          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7232            // FIXME: should only count parameters that are lowered to integers.
7233            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7234
7235        if (InRegCount > 2) {
7236          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7237        }
7238      }
7239      break;
7240    }
7241    case CallingConv::X86_FastCall:
7242    case CallingConv::Fast:
7243      // Pass 'nest' parameter in EAX.
7244      // Must be kept in sync with X86CallingConv.td
7245      NestReg = X86::EAX;
7246      break;
7247    }
7248
7249    SDValue OutChains[4];
7250    SDValue Addr, Disp;
7251
7252    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7253                       DAG.getConstant(10, MVT::i32));
7254    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7255
7256    // This is storing the opcode for MOV32ri.
7257    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7258    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7259    OutChains[0] = DAG.getStore(Root, dl,
7260                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7261                                Trmp, TrmpAddr, 0, false, false, 0);
7262
7263    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7264                       DAG.getConstant(1, MVT::i32));
7265    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7266                                false, false, 1);
7267
7268    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7269    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7270                       DAG.getConstant(5, MVT::i32));
7271    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7272                                TrmpAddr, 5, false, false, 1);
7273
7274    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7275                       DAG.getConstant(6, MVT::i32));
7276    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7277                                false, false, 1);
7278
7279    SDValue Ops[] =
7280      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7281    return DAG.getMergeValues(Ops, 2, dl);
7282  }
7283}
7284
7285SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7286  /*
7287   The rounding mode is in bits 11:10 of FPSR, and has the following
7288   settings:
7289     00 Round to nearest
7290     01 Round to -inf
7291     10 Round to +inf
7292     11 Round to 0
7293
7294  FLT_ROUNDS, on the other hand, expects the following:
7295    -1 Undefined
7296     0 Round to 0
7297     1 Round to nearest
7298     2 Round to +inf
7299     3 Round to -inf
7300
7301  To perform the conversion, we do:
7302    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7303  */
7304
7305  MachineFunction &MF = DAG.getMachineFunction();
7306  const TargetMachine &TM = MF.getTarget();
7307  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7308  unsigned StackAlignment = TFI.getStackAlignment();
7309  EVT VT = Op.getValueType();
7310  DebugLoc dl = Op.getDebugLoc();
7311
7312  // Save FP Control Word to stack slot
7313  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7314  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7315
7316  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7317                              DAG.getEntryNode(), StackSlot);
7318
7319  // Load FP Control Word from stack slot
7320  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7321                            false, false, 0);
7322
7323  // Transform as necessary
7324  SDValue CWD1 =
7325    DAG.getNode(ISD::SRL, dl, MVT::i16,
7326                DAG.getNode(ISD::AND, dl, MVT::i16,
7327                            CWD, DAG.getConstant(0x800, MVT::i16)),
7328                DAG.getConstant(11, MVT::i8));
7329  SDValue CWD2 =
7330    DAG.getNode(ISD::SRL, dl, MVT::i16,
7331                DAG.getNode(ISD::AND, dl, MVT::i16,
7332                            CWD, DAG.getConstant(0x400, MVT::i16)),
7333                DAG.getConstant(9, MVT::i8));
7334
7335  SDValue RetVal =
7336    DAG.getNode(ISD::AND, dl, MVT::i16,
7337                DAG.getNode(ISD::ADD, dl, MVT::i16,
7338                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7339                            DAG.getConstant(1, MVT::i16)),
7340                DAG.getConstant(3, MVT::i16));
7341
7342
7343  return DAG.getNode((VT.getSizeInBits() < 16 ?
7344                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7345}
7346
7347SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7348  EVT VT = Op.getValueType();
7349  EVT OpVT = VT;
7350  unsigned NumBits = VT.getSizeInBits();
7351  DebugLoc dl = Op.getDebugLoc();
7352
7353  Op = Op.getOperand(0);
7354  if (VT == MVT::i8) {
7355    // Zero extend to i32 since there is not an i8 bsr.
7356    OpVT = MVT::i32;
7357    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7358  }
7359
7360  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7361  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7362  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7363
7364  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7365  SDValue Ops[] = {
7366    Op,
7367    DAG.getConstant(NumBits+NumBits-1, OpVT),
7368    DAG.getConstant(X86::COND_E, MVT::i8),
7369    Op.getValue(1)
7370  };
7371  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7372
7373  // Finally xor with NumBits-1.
7374  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7375
7376  if (VT == MVT::i8)
7377    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7378  return Op;
7379}
7380
7381SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7382  EVT VT = Op.getValueType();
7383  EVT OpVT = VT;
7384  unsigned NumBits = VT.getSizeInBits();
7385  DebugLoc dl = Op.getDebugLoc();
7386
7387  Op = Op.getOperand(0);
7388  if (VT == MVT::i8) {
7389    OpVT = MVT::i32;
7390    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7391  }
7392
7393  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7394  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7395  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7396
7397  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7398  SDValue Ops[] = {
7399    Op,
7400    DAG.getConstant(NumBits, OpVT),
7401    DAG.getConstant(X86::COND_E, MVT::i8),
7402    Op.getValue(1)
7403  };
7404  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7405
7406  if (VT == MVT::i8)
7407    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7408  return Op;
7409}
7410
7411SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7412  EVT VT = Op.getValueType();
7413  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7414  DebugLoc dl = Op.getDebugLoc();
7415
7416  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7417  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7418  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7419  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7420  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7421  //
7422  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7423  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7424  //  return AloBlo + AloBhi + AhiBlo;
7425
7426  SDValue A = Op.getOperand(0);
7427  SDValue B = Op.getOperand(1);
7428
7429  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7430                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7431                       A, DAG.getConstant(32, MVT::i32));
7432  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7433                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7434                       B, DAG.getConstant(32, MVT::i32));
7435  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7436                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7437                       A, B);
7438  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7439                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7440                       A, Bhi);
7441  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7442                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7443                       Ahi, B);
7444  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7445                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7446                       AloBhi, DAG.getConstant(32, MVT::i32));
7447  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7448                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7449                       AhiBlo, DAG.getConstant(32, MVT::i32));
7450  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7451  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7452  return Res;
7453}
7454
7455
7456SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7457  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7458  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7459  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7460  // has only one use.
7461  SDNode *N = Op.getNode();
7462  SDValue LHS = N->getOperand(0);
7463  SDValue RHS = N->getOperand(1);
7464  unsigned BaseOp = 0;
7465  unsigned Cond = 0;
7466  DebugLoc dl = Op.getDebugLoc();
7467
7468  switch (Op.getOpcode()) {
7469  default: llvm_unreachable("Unknown ovf instruction!");
7470  case ISD::SADDO:
7471    // A subtract of one will be selected as a INC. Note that INC doesn't
7472    // set CF, so we can't do this for UADDO.
7473    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7474      if (C->getAPIntValue() == 1) {
7475        BaseOp = X86ISD::INC;
7476        Cond = X86::COND_O;
7477        break;
7478      }
7479    BaseOp = X86ISD::ADD;
7480    Cond = X86::COND_O;
7481    break;
7482  case ISD::UADDO:
7483    BaseOp = X86ISD::ADD;
7484    Cond = X86::COND_B;
7485    break;
7486  case ISD::SSUBO:
7487    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7488    // set CF, so we can't do this for USUBO.
7489    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7490      if (C->getAPIntValue() == 1) {
7491        BaseOp = X86ISD::DEC;
7492        Cond = X86::COND_O;
7493        break;
7494      }
7495    BaseOp = X86ISD::SUB;
7496    Cond = X86::COND_O;
7497    break;
7498  case ISD::USUBO:
7499    BaseOp = X86ISD::SUB;
7500    Cond = X86::COND_B;
7501    break;
7502  case ISD::SMULO:
7503    BaseOp = X86ISD::SMUL;
7504    Cond = X86::COND_O;
7505    break;
7506  case ISD::UMULO:
7507    BaseOp = X86ISD::UMUL;
7508    Cond = X86::COND_B;
7509    break;
7510  }
7511
7512  // Also sets EFLAGS.
7513  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7514  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7515
7516  SDValue SetCC =
7517    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7518                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7519
7520  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7521  return Sum;
7522}
7523
7524SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7525  EVT T = Op.getValueType();
7526  DebugLoc dl = Op.getDebugLoc();
7527  unsigned Reg = 0;
7528  unsigned size = 0;
7529  switch(T.getSimpleVT().SimpleTy) {
7530  default:
7531    assert(false && "Invalid value type!");
7532  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7533  case MVT::i16: Reg = X86::AX;  size = 2; break;
7534  case MVT::i32: Reg = X86::EAX; size = 4; break;
7535  case MVT::i64:
7536    assert(Subtarget->is64Bit() && "Node not type legal!");
7537    Reg = X86::RAX; size = 8;
7538    break;
7539  }
7540  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7541                                    Op.getOperand(2), SDValue());
7542  SDValue Ops[] = { cpIn.getValue(0),
7543                    Op.getOperand(1),
7544                    Op.getOperand(3),
7545                    DAG.getTargetConstant(size, MVT::i8),
7546                    cpIn.getValue(1) };
7547  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7548  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7549  SDValue cpOut =
7550    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7551  return cpOut;
7552}
7553
7554SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7555                                                 SelectionDAG &DAG) {
7556  assert(Subtarget->is64Bit() && "Result not type legalized?");
7557  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7558  SDValue TheChain = Op.getOperand(0);
7559  DebugLoc dl = Op.getDebugLoc();
7560  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7561  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7562  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7563                                   rax.getValue(2));
7564  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7565                            DAG.getConstant(32, MVT::i8));
7566  SDValue Ops[] = {
7567    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7568    rdx.getValue(1)
7569  };
7570  return DAG.getMergeValues(Ops, 2, dl);
7571}
7572
7573SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7574  SDNode *Node = Op.getNode();
7575  DebugLoc dl = Node->getDebugLoc();
7576  EVT T = Node->getValueType(0);
7577  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7578                              DAG.getConstant(0, T), Node->getOperand(2));
7579  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7580                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7581                       Node->getOperand(0),
7582                       Node->getOperand(1), negOp,
7583                       cast<AtomicSDNode>(Node)->getSrcValue(),
7584                       cast<AtomicSDNode>(Node)->getAlignment());
7585}
7586
7587/// LowerOperation - Provide custom lowering hooks for some operations.
7588///
7589SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7590  switch (Op.getOpcode()) {
7591  default: llvm_unreachable("Should not custom lower this!");
7592  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7593  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7594  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7595  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7596  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7597  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7598  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7599  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7600  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7601  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7602  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7603  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7604  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7605  case ISD::SHL_PARTS:
7606  case ISD::SRA_PARTS:
7607  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7608  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7609  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7610  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7611  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7612  case ISD::FABS:               return LowerFABS(Op, DAG);
7613  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7614  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7615  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7616  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7617  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7618  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7619  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7620  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7621  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7622  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7623  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7624  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7625  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7626  case ISD::FRAME_TO_ARGS_OFFSET:
7627                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7628  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7629  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7630  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7631  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7632  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7633  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7634  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7635  case ISD::SADDO:
7636  case ISD::UADDO:
7637  case ISD::SSUBO:
7638  case ISD::USUBO:
7639  case ISD::SMULO:
7640  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7641  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7642  }
7643}
7644
7645void X86TargetLowering::
7646ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7647                        SelectionDAG &DAG, unsigned NewOp) {
7648  EVT T = Node->getValueType(0);
7649  DebugLoc dl = Node->getDebugLoc();
7650  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7651
7652  SDValue Chain = Node->getOperand(0);
7653  SDValue In1 = Node->getOperand(1);
7654  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7655                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7656  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7657                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7658  SDValue Ops[] = { Chain, In1, In2L, In2H };
7659  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7660  SDValue Result =
7661    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7662                            cast<MemSDNode>(Node)->getMemOperand());
7663  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7664  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7665  Results.push_back(Result.getValue(2));
7666}
7667
7668/// ReplaceNodeResults - Replace a node with an illegal result type
7669/// with a new node built out of custom code.
7670void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7671                                           SmallVectorImpl<SDValue>&Results,
7672                                           SelectionDAG &DAG) {
7673  DebugLoc dl = N->getDebugLoc();
7674  switch (N->getOpcode()) {
7675  default:
7676    assert(false && "Do not know how to custom type legalize this operation!");
7677    return;
7678  case ISD::FP_TO_SINT: {
7679    std::pair<SDValue,SDValue> Vals =
7680        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7681    SDValue FIST = Vals.first, StackSlot = Vals.second;
7682    if (FIST.getNode() != 0) {
7683      EVT VT = N->getValueType(0);
7684      // Return a load from the stack slot.
7685      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7686                                    false, false, 0));
7687    }
7688    return;
7689  }
7690  case ISD::READCYCLECOUNTER: {
7691    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7692    SDValue TheChain = N->getOperand(0);
7693    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7694    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7695                                     rd.getValue(1));
7696    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7697                                     eax.getValue(2));
7698    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7699    SDValue Ops[] = { eax, edx };
7700    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7701    Results.push_back(edx.getValue(1));
7702    return;
7703  }
7704  case ISD::ATOMIC_CMP_SWAP: {
7705    EVT T = N->getValueType(0);
7706    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7707    SDValue cpInL, cpInH;
7708    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7709                        DAG.getConstant(0, MVT::i32));
7710    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7711                        DAG.getConstant(1, MVT::i32));
7712    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7713    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7714                             cpInL.getValue(1));
7715    SDValue swapInL, swapInH;
7716    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7717                          DAG.getConstant(0, MVT::i32));
7718    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7719                          DAG.getConstant(1, MVT::i32));
7720    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7721                               cpInH.getValue(1));
7722    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7723                               swapInL.getValue(1));
7724    SDValue Ops[] = { swapInH.getValue(0),
7725                      N->getOperand(1),
7726                      swapInH.getValue(1) };
7727    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7728    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7729    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7730                                        MVT::i32, Result.getValue(1));
7731    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7732                                        MVT::i32, cpOutL.getValue(2));
7733    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7734    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7735    Results.push_back(cpOutH.getValue(1));
7736    return;
7737  }
7738  case ISD::ATOMIC_LOAD_ADD:
7739    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7740    return;
7741  case ISD::ATOMIC_LOAD_AND:
7742    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7743    return;
7744  case ISD::ATOMIC_LOAD_NAND:
7745    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7746    return;
7747  case ISD::ATOMIC_LOAD_OR:
7748    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7749    return;
7750  case ISD::ATOMIC_LOAD_SUB:
7751    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7752    return;
7753  case ISD::ATOMIC_LOAD_XOR:
7754    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7755    return;
7756  case ISD::ATOMIC_SWAP:
7757    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7758    return;
7759  }
7760}
7761
7762const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7763  switch (Opcode) {
7764  default: return NULL;
7765  case X86ISD::BSF:                return "X86ISD::BSF";
7766  case X86ISD::BSR:                return "X86ISD::BSR";
7767  case X86ISD::SHLD:               return "X86ISD::SHLD";
7768  case X86ISD::SHRD:               return "X86ISD::SHRD";
7769  case X86ISD::FAND:               return "X86ISD::FAND";
7770  case X86ISD::FOR:                return "X86ISD::FOR";
7771  case X86ISD::FXOR:               return "X86ISD::FXOR";
7772  case X86ISD::FSRL:               return "X86ISD::FSRL";
7773  case X86ISD::FILD:               return "X86ISD::FILD";
7774  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7775  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7776  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7777  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7778  case X86ISD::FLD:                return "X86ISD::FLD";
7779  case X86ISD::FST:                return "X86ISD::FST";
7780  case X86ISD::CALL:               return "X86ISD::CALL";
7781  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7782  case X86ISD::BT:                 return "X86ISD::BT";
7783  case X86ISD::CMP:                return "X86ISD::CMP";
7784  case X86ISD::COMI:               return "X86ISD::COMI";
7785  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7786  case X86ISD::SETCC:              return "X86ISD::SETCC";
7787  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7788  case X86ISD::CMOV:               return "X86ISD::CMOV";
7789  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7790  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7791  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7792  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7793  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7794  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7795  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7796  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7797  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7798  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7799  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7800  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7801  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
7802  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7803  case X86ISD::FMAX:               return "X86ISD::FMAX";
7804  case X86ISD::FMIN:               return "X86ISD::FMIN";
7805  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7806  case X86ISD::FRCP:               return "X86ISD::FRCP";
7807  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7808  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7809  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7810  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7811  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7812  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7813  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7814  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7815  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7816  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7817  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7818  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7819  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7820  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7821  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7822  case X86ISD::VSHL:               return "X86ISD::VSHL";
7823  case X86ISD::VSRL:               return "X86ISD::VSRL";
7824  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7825  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7826  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7827  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7828  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7829  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7830  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7831  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7832  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7833  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7834  case X86ISD::ADD:                return "X86ISD::ADD";
7835  case X86ISD::SUB:                return "X86ISD::SUB";
7836  case X86ISD::SMUL:               return "X86ISD::SMUL";
7837  case X86ISD::UMUL:               return "X86ISD::UMUL";
7838  case X86ISD::INC:                return "X86ISD::INC";
7839  case X86ISD::DEC:                return "X86ISD::DEC";
7840  case X86ISD::OR:                 return "X86ISD::OR";
7841  case X86ISD::XOR:                return "X86ISD::XOR";
7842  case X86ISD::AND:                return "X86ISD::AND";
7843  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7844  case X86ISD::PTEST:              return "X86ISD::PTEST";
7845  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7846  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
7847  }
7848}
7849
7850// isLegalAddressingMode - Return true if the addressing mode represented
7851// by AM is legal for this target, for a load/store of the specified type.
7852bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7853                                              const Type *Ty) const {
7854  // X86 supports extremely general addressing modes.
7855  CodeModel::Model M = getTargetMachine().getCodeModel();
7856
7857  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7858  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7859    return false;
7860
7861  if (AM.BaseGV) {
7862    unsigned GVFlags =
7863      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7864
7865    // If a reference to this global requires an extra load, we can't fold it.
7866    if (isGlobalStubReference(GVFlags))
7867      return false;
7868
7869    // If BaseGV requires a register for the PIC base, we cannot also have a
7870    // BaseReg specified.
7871    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7872      return false;
7873
7874    // If lower 4G is not available, then we must use rip-relative addressing.
7875    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7876      return false;
7877  }
7878
7879  switch (AM.Scale) {
7880  case 0:
7881  case 1:
7882  case 2:
7883  case 4:
7884  case 8:
7885    // These scales always work.
7886    break;
7887  case 3:
7888  case 5:
7889  case 9:
7890    // These scales are formed with basereg+scalereg.  Only accept if there is
7891    // no basereg yet.
7892    if (AM.HasBaseReg)
7893      return false;
7894    break;
7895  default:  // Other stuff never works.
7896    return false;
7897  }
7898
7899  return true;
7900}
7901
7902
7903bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7904  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7905    return false;
7906  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7907  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7908  if (NumBits1 <= NumBits2)
7909    return false;
7910  return true;
7911}
7912
7913bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7914  if (!VT1.isInteger() || !VT2.isInteger())
7915    return false;
7916  unsigned NumBits1 = VT1.getSizeInBits();
7917  unsigned NumBits2 = VT2.getSizeInBits();
7918  if (NumBits1 <= NumBits2)
7919    return false;
7920  return true;
7921}
7922
7923bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7924  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7925  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7926}
7927
7928bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7929  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7930  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7931}
7932
7933bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7934  // i16 instructions are longer (0x66 prefix) and potentially slower.
7935  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7936}
7937
7938/// isShuffleMaskLegal - Targets can use this to indicate that they only
7939/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7940/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7941/// are assumed to be legal.
7942bool
7943X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7944                                      EVT VT) const {
7945  // Only do shuffles on 128-bit vector types for now.
7946  if (VT.getSizeInBits() == 64)
7947    return false;
7948
7949  // FIXME: pshufb, blends, shifts.
7950  return (VT.getVectorNumElements() == 2 ||
7951          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7952          isMOVLMask(M, VT) ||
7953          isSHUFPMask(M, VT) ||
7954          isPSHUFDMask(M, VT) ||
7955          isPSHUFHWMask(M, VT) ||
7956          isPSHUFLWMask(M, VT) ||
7957          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7958          isUNPCKLMask(M, VT) ||
7959          isUNPCKHMask(M, VT) ||
7960          isUNPCKL_v_undef_Mask(M, VT) ||
7961          isUNPCKH_v_undef_Mask(M, VT));
7962}
7963
7964bool
7965X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7966                                          EVT VT) const {
7967  unsigned NumElts = VT.getVectorNumElements();
7968  // FIXME: This collection of masks seems suspect.
7969  if (NumElts == 2)
7970    return true;
7971  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7972    return (isMOVLMask(Mask, VT)  ||
7973            isCommutedMOVLMask(Mask, VT, true) ||
7974            isSHUFPMask(Mask, VT) ||
7975            isCommutedSHUFPMask(Mask, VT));
7976  }
7977  return false;
7978}
7979
7980//===----------------------------------------------------------------------===//
7981//                           X86 Scheduler Hooks
7982//===----------------------------------------------------------------------===//
7983
7984// private utility function
7985MachineBasicBlock *
7986X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7987                                                       MachineBasicBlock *MBB,
7988                                                       unsigned regOpc,
7989                                                       unsigned immOpc,
7990                                                       unsigned LoadOpc,
7991                                                       unsigned CXchgOpc,
7992                                                       unsigned copyOpc,
7993                                                       unsigned notOpc,
7994                                                       unsigned EAXreg,
7995                                                       TargetRegisterClass *RC,
7996                                                       bool invSrc) const {
7997  // For the atomic bitwise operator, we generate
7998  //   thisMBB:
7999  //   newMBB:
8000  //     ld  t1 = [bitinstr.addr]
8001  //     op  t2 = t1, [bitinstr.val]
8002  //     mov EAX = t1
8003  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8004  //     bz  newMBB
8005  //     fallthrough -->nextMBB
8006  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8007  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8008  MachineFunction::iterator MBBIter = MBB;
8009  ++MBBIter;
8010
8011  /// First build the CFG
8012  MachineFunction *F = MBB->getParent();
8013  MachineBasicBlock *thisMBB = MBB;
8014  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8015  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8016  F->insert(MBBIter, newMBB);
8017  F->insert(MBBIter, nextMBB);
8018
8019  // Move all successors to thisMBB to nextMBB
8020  nextMBB->transferSuccessors(thisMBB);
8021
8022  // Update thisMBB to fall through to newMBB
8023  thisMBB->addSuccessor(newMBB);
8024
8025  // newMBB jumps to itself and fall through to nextMBB
8026  newMBB->addSuccessor(nextMBB);
8027  newMBB->addSuccessor(newMBB);
8028
8029  // Insert instructions into newMBB based on incoming instruction
8030  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8031         "unexpected number of operands");
8032  DebugLoc dl = bInstr->getDebugLoc();
8033  MachineOperand& destOper = bInstr->getOperand(0);
8034  MachineOperand* argOpers[2 + X86AddrNumOperands];
8035  int numArgs = bInstr->getNumOperands() - 1;
8036  for (int i=0; i < numArgs; ++i)
8037    argOpers[i] = &bInstr->getOperand(i+1);
8038
8039  // x86 address has 4 operands: base, index, scale, and displacement
8040  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8041  int valArgIndx = lastAddrIndx + 1;
8042
8043  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8044  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8045  for (int i=0; i <= lastAddrIndx; ++i)
8046    (*MIB).addOperand(*argOpers[i]);
8047
8048  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8049  if (invSrc) {
8050    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8051  }
8052  else
8053    tt = t1;
8054
8055  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8056  assert((argOpers[valArgIndx]->isReg() ||
8057          argOpers[valArgIndx]->isImm()) &&
8058         "invalid operand");
8059  if (argOpers[valArgIndx]->isReg())
8060    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8061  else
8062    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8063  MIB.addReg(tt);
8064  (*MIB).addOperand(*argOpers[valArgIndx]);
8065
8066  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
8067  MIB.addReg(t1);
8068
8069  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8070  for (int i=0; i <= lastAddrIndx; ++i)
8071    (*MIB).addOperand(*argOpers[i]);
8072  MIB.addReg(t2);
8073  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8074  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8075                    bInstr->memoperands_end());
8076
8077  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
8078  MIB.addReg(EAXreg);
8079
8080  // insert branch
8081  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8082
8083  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8084  return nextMBB;
8085}
8086
8087// private utility function:  64 bit atomics on 32 bit host.
8088MachineBasicBlock *
8089X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8090                                                       MachineBasicBlock *MBB,
8091                                                       unsigned regOpcL,
8092                                                       unsigned regOpcH,
8093                                                       unsigned immOpcL,
8094                                                       unsigned immOpcH,
8095                                                       bool invSrc) const {
8096  // For the atomic bitwise operator, we generate
8097  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8098  //     ld t1,t2 = [bitinstr.addr]
8099  //   newMBB:
8100  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8101  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8102  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8103  //     mov ECX, EBX <- t5, t6
8104  //     mov EAX, EDX <- t1, t2
8105  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8106  //     mov t3, t4 <- EAX, EDX
8107  //     bz  newMBB
8108  //     result in out1, out2
8109  //     fallthrough -->nextMBB
8110
8111  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8112  const unsigned LoadOpc = X86::MOV32rm;
8113  const unsigned copyOpc = X86::MOV32rr;
8114  const unsigned NotOpc = X86::NOT32r;
8115  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8116  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8117  MachineFunction::iterator MBBIter = MBB;
8118  ++MBBIter;
8119
8120  /// First build the CFG
8121  MachineFunction *F = MBB->getParent();
8122  MachineBasicBlock *thisMBB = MBB;
8123  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8124  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8125  F->insert(MBBIter, newMBB);
8126  F->insert(MBBIter, nextMBB);
8127
8128  // Move all successors to thisMBB to nextMBB
8129  nextMBB->transferSuccessors(thisMBB);
8130
8131  // Update thisMBB to fall through to newMBB
8132  thisMBB->addSuccessor(newMBB);
8133
8134  // newMBB jumps to itself and fall through to nextMBB
8135  newMBB->addSuccessor(nextMBB);
8136  newMBB->addSuccessor(newMBB);
8137
8138  DebugLoc dl = bInstr->getDebugLoc();
8139  // Insert instructions into newMBB based on incoming instruction
8140  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8141  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8142         "unexpected number of operands");
8143  MachineOperand& dest1Oper = bInstr->getOperand(0);
8144  MachineOperand& dest2Oper = bInstr->getOperand(1);
8145  MachineOperand* argOpers[2 + X86AddrNumOperands];
8146  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8147    argOpers[i] = &bInstr->getOperand(i+2);
8148
8149  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8150  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8151
8152  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8153  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8154  for (int i=0; i <= lastAddrIndx; ++i)
8155    (*MIB).addOperand(*argOpers[i]);
8156  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8157  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8158  // add 4 to displacement.
8159  for (int i=0; i <= lastAddrIndx-2; ++i)
8160    (*MIB).addOperand(*argOpers[i]);
8161  MachineOperand newOp3 = *(argOpers[3]);
8162  if (newOp3.isImm())
8163    newOp3.setImm(newOp3.getImm()+4);
8164  else
8165    newOp3.setOffset(newOp3.getOffset()+4);
8166  (*MIB).addOperand(newOp3);
8167  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8168
8169  // t3/4 are defined later, at the bottom of the loop
8170  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8171  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8172  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8173    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8174  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8175    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8176
8177  // The subsequent operations should be using the destination registers of
8178  //the PHI instructions.
8179  if (invSrc) {
8180    t1 = F->getRegInfo().createVirtualRegister(RC);
8181    t2 = F->getRegInfo().createVirtualRegister(RC);
8182    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8183    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8184  } else {
8185    t1 = dest1Oper.getReg();
8186    t2 = dest2Oper.getReg();
8187  }
8188
8189  int valArgIndx = lastAddrIndx + 1;
8190  assert((argOpers[valArgIndx]->isReg() ||
8191          argOpers[valArgIndx]->isImm()) &&
8192         "invalid operand");
8193  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8194  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8195  if (argOpers[valArgIndx]->isReg())
8196    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8197  else
8198    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8199  if (regOpcL != X86::MOV32rr)
8200    MIB.addReg(t1);
8201  (*MIB).addOperand(*argOpers[valArgIndx]);
8202  assert(argOpers[valArgIndx + 1]->isReg() ==
8203         argOpers[valArgIndx]->isReg());
8204  assert(argOpers[valArgIndx + 1]->isImm() ==
8205         argOpers[valArgIndx]->isImm());
8206  if (argOpers[valArgIndx + 1]->isReg())
8207    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8208  else
8209    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8210  if (regOpcH != X86::MOV32rr)
8211    MIB.addReg(t2);
8212  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8213
8214  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8215  MIB.addReg(t1);
8216  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8217  MIB.addReg(t2);
8218
8219  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8220  MIB.addReg(t5);
8221  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8222  MIB.addReg(t6);
8223
8224  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8225  for (int i=0; i <= lastAddrIndx; ++i)
8226    (*MIB).addOperand(*argOpers[i]);
8227
8228  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8229  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8230                    bInstr->memoperands_end());
8231
8232  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8233  MIB.addReg(X86::EAX);
8234  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8235  MIB.addReg(X86::EDX);
8236
8237  // insert branch
8238  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8239
8240  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8241  return nextMBB;
8242}
8243
8244// private utility function
8245MachineBasicBlock *
8246X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8247                                                      MachineBasicBlock *MBB,
8248                                                      unsigned cmovOpc) const {
8249  // For the atomic min/max operator, we generate
8250  //   thisMBB:
8251  //   newMBB:
8252  //     ld t1 = [min/max.addr]
8253  //     mov t2 = [min/max.val]
8254  //     cmp  t1, t2
8255  //     cmov[cond] t2 = t1
8256  //     mov EAX = t1
8257  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8258  //     bz   newMBB
8259  //     fallthrough -->nextMBB
8260  //
8261  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8262  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8263  MachineFunction::iterator MBBIter = MBB;
8264  ++MBBIter;
8265
8266  /// First build the CFG
8267  MachineFunction *F = MBB->getParent();
8268  MachineBasicBlock *thisMBB = MBB;
8269  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8270  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8271  F->insert(MBBIter, newMBB);
8272  F->insert(MBBIter, nextMBB);
8273
8274  // Move all successors of thisMBB to nextMBB
8275  nextMBB->transferSuccessors(thisMBB);
8276
8277  // Update thisMBB to fall through to newMBB
8278  thisMBB->addSuccessor(newMBB);
8279
8280  // newMBB jumps to newMBB and fall through to nextMBB
8281  newMBB->addSuccessor(nextMBB);
8282  newMBB->addSuccessor(newMBB);
8283
8284  DebugLoc dl = mInstr->getDebugLoc();
8285  // Insert instructions into newMBB based on incoming instruction
8286  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8287         "unexpected number of operands");
8288  MachineOperand& destOper = mInstr->getOperand(0);
8289  MachineOperand* argOpers[2 + X86AddrNumOperands];
8290  int numArgs = mInstr->getNumOperands() - 1;
8291  for (int i=0; i < numArgs; ++i)
8292    argOpers[i] = &mInstr->getOperand(i+1);
8293
8294  // x86 address has 4 operands: base, index, scale, and displacement
8295  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8296  int valArgIndx = lastAddrIndx + 1;
8297
8298  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8299  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8300  for (int i=0; i <= lastAddrIndx; ++i)
8301    (*MIB).addOperand(*argOpers[i]);
8302
8303  // We only support register and immediate values
8304  assert((argOpers[valArgIndx]->isReg() ||
8305          argOpers[valArgIndx]->isImm()) &&
8306         "invalid operand");
8307
8308  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8309  if (argOpers[valArgIndx]->isReg())
8310    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8311  else
8312    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8313  (*MIB).addOperand(*argOpers[valArgIndx]);
8314
8315  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8316  MIB.addReg(t1);
8317
8318  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8319  MIB.addReg(t1);
8320  MIB.addReg(t2);
8321
8322  // Generate movc
8323  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8324  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8325  MIB.addReg(t2);
8326  MIB.addReg(t1);
8327
8328  // Cmp and exchange if none has modified the memory location
8329  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8330  for (int i=0; i <= lastAddrIndx; ++i)
8331    (*MIB).addOperand(*argOpers[i]);
8332  MIB.addReg(t3);
8333  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8334  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8335                    mInstr->memoperands_end());
8336
8337  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8338  MIB.addReg(X86::EAX);
8339
8340  // insert branch
8341  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8342
8343  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8344  return nextMBB;
8345}
8346
8347// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8348// all of this code can be replaced with that in the .td file.
8349MachineBasicBlock *
8350X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8351                            unsigned numArgs, bool memArg) const {
8352
8353  MachineFunction *F = BB->getParent();
8354  DebugLoc dl = MI->getDebugLoc();
8355  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8356
8357  unsigned Opc;
8358  if (memArg)
8359    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8360  else
8361    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8362
8363  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8364
8365  for (unsigned i = 0; i < numArgs; ++i) {
8366    MachineOperand &Op = MI->getOperand(i+1);
8367
8368    if (!(Op.isReg() && Op.isImplicit()))
8369      MIB.addOperand(Op);
8370  }
8371
8372  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8373    .addReg(X86::XMM0);
8374
8375  F->DeleteMachineInstr(MI);
8376
8377  return BB;
8378}
8379
8380MachineBasicBlock *
8381X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8382                                                 MachineInstr *MI,
8383                                                 MachineBasicBlock *MBB) const {
8384  // Emit code to save XMM registers to the stack. The ABI says that the
8385  // number of registers to save is given in %al, so it's theoretically
8386  // possible to do an indirect jump trick to avoid saving all of them,
8387  // however this code takes a simpler approach and just executes all
8388  // of the stores if %al is non-zero. It's less code, and it's probably
8389  // easier on the hardware branch predictor, and stores aren't all that
8390  // expensive anyway.
8391
8392  // Create the new basic blocks. One block contains all the XMM stores,
8393  // and one block is the final destination regardless of whether any
8394  // stores were performed.
8395  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8396  MachineFunction *F = MBB->getParent();
8397  MachineFunction::iterator MBBIter = MBB;
8398  ++MBBIter;
8399  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8400  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8401  F->insert(MBBIter, XMMSaveMBB);
8402  F->insert(MBBIter, EndMBB);
8403
8404  // Set up the CFG.
8405  // Move any original successors of MBB to the end block.
8406  EndMBB->transferSuccessors(MBB);
8407  // The original block will now fall through to the XMM save block.
8408  MBB->addSuccessor(XMMSaveMBB);
8409  // The XMMSaveMBB will fall through to the end block.
8410  XMMSaveMBB->addSuccessor(EndMBB);
8411
8412  // Now add the instructions.
8413  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8414  DebugLoc DL = MI->getDebugLoc();
8415
8416  unsigned CountReg = MI->getOperand(0).getReg();
8417  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8418  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8419
8420  if (!Subtarget->isTargetWin64()) {
8421    // If %al is 0, branch around the XMM save block.
8422    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8423    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8424    MBB->addSuccessor(EndMBB);
8425  }
8426
8427  // In the XMM save block, save all the XMM argument registers.
8428  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8429    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8430    MachineMemOperand *MMO =
8431      F->getMachineMemOperand(
8432        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8433        MachineMemOperand::MOStore, Offset,
8434        /*Size=*/16, /*Align=*/16);
8435    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8436      .addFrameIndex(RegSaveFrameIndex)
8437      .addImm(/*Scale=*/1)
8438      .addReg(/*IndexReg=*/0)
8439      .addImm(/*Disp=*/Offset)
8440      .addReg(/*Segment=*/0)
8441      .addReg(MI->getOperand(i).getReg())
8442      .addMemOperand(MMO);
8443  }
8444
8445  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8446
8447  return EndMBB;
8448}
8449
8450MachineBasicBlock *
8451X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8452                                     MachineBasicBlock *BB,
8453                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8454  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8455  DebugLoc DL = MI->getDebugLoc();
8456
8457  // To "insert" a SELECT_CC instruction, we actually have to insert the
8458  // diamond control-flow pattern.  The incoming instruction knows the
8459  // destination vreg to set, the condition code register to branch on, the
8460  // true/false values to select between, and a branch opcode to use.
8461  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8462  MachineFunction::iterator It = BB;
8463  ++It;
8464
8465  //  thisMBB:
8466  //  ...
8467  //   TrueVal = ...
8468  //   cmpTY ccX, r1, r2
8469  //   bCC copy1MBB
8470  //   fallthrough --> copy0MBB
8471  MachineBasicBlock *thisMBB = BB;
8472  MachineFunction *F = BB->getParent();
8473  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8474  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8475  unsigned Opc =
8476    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8477  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8478  F->insert(It, copy0MBB);
8479  F->insert(It, sinkMBB);
8480  // Update machine-CFG edges by first adding all successors of the current
8481  // block to the new block which will contain the Phi node for the select.
8482  // Also inform sdisel of the edge changes.
8483  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8484         E = BB->succ_end(); I != E; ++I) {
8485    EM->insert(std::make_pair(*I, sinkMBB));
8486    sinkMBB->addSuccessor(*I);
8487  }
8488  // Next, remove all successors of the current block, and add the true
8489  // and fallthrough blocks as its successors.
8490  while (!BB->succ_empty())
8491    BB->removeSuccessor(BB->succ_begin());
8492  // Add the true and fallthrough blocks as its successors.
8493  BB->addSuccessor(copy0MBB);
8494  BB->addSuccessor(sinkMBB);
8495
8496  //  copy0MBB:
8497  //   %FalseValue = ...
8498  //   # fallthrough to sinkMBB
8499  BB = copy0MBB;
8500
8501  // Update machine-CFG edges
8502  BB->addSuccessor(sinkMBB);
8503
8504  //  sinkMBB:
8505  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8506  //  ...
8507  BB = sinkMBB;
8508  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8509    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8510    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8511
8512  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8513  return BB;
8514}
8515
8516MachineBasicBlock *
8517X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8518                                          MachineBasicBlock *BB,
8519                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8520  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8521  DebugLoc DL = MI->getDebugLoc();
8522  MachineFunction *F = BB->getParent();
8523
8524  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8525  // non-trivial part is impdef of ESP.
8526  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8527  // mingw-w64.
8528
8529  BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
8530    .addExternalSymbol("_alloca")
8531    .addReg(X86::EAX, RegState::Implicit)
8532    .addReg(X86::ESP, RegState::Implicit)
8533    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8534    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8535
8536  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8537  return BB;
8538}
8539
8540MachineBasicBlock *
8541X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8542                                               MachineBasicBlock *BB,
8543                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8544  switch (MI->getOpcode()) {
8545  default: assert(false && "Unexpected instr type to insert");
8546  case X86::MINGW_ALLOCA:
8547    return EmitLoweredMingwAlloca(MI, BB, EM);
8548  case X86::CMOV_GR8:
8549  case X86::CMOV_V1I64:
8550  case X86::CMOV_FR32:
8551  case X86::CMOV_FR64:
8552  case X86::CMOV_V4F32:
8553  case X86::CMOV_V2F64:
8554  case X86::CMOV_V2I64:
8555  case X86::CMOV_GR16:
8556  case X86::CMOV_GR32:
8557  case X86::CMOV_RFP32:
8558  case X86::CMOV_RFP64:
8559  case X86::CMOV_RFP80:
8560    return EmitLoweredSelect(MI, BB, EM);
8561
8562  case X86::FP32_TO_INT16_IN_MEM:
8563  case X86::FP32_TO_INT32_IN_MEM:
8564  case X86::FP32_TO_INT64_IN_MEM:
8565  case X86::FP64_TO_INT16_IN_MEM:
8566  case X86::FP64_TO_INT32_IN_MEM:
8567  case X86::FP64_TO_INT64_IN_MEM:
8568  case X86::FP80_TO_INT16_IN_MEM:
8569  case X86::FP80_TO_INT32_IN_MEM:
8570  case X86::FP80_TO_INT64_IN_MEM: {
8571    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8572    DebugLoc DL = MI->getDebugLoc();
8573
8574    // Change the floating point control register to use "round towards zero"
8575    // mode when truncating to an integer value.
8576    MachineFunction *F = BB->getParent();
8577    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8578    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8579
8580    // Load the old value of the high byte of the control word...
8581    unsigned OldCW =
8582      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8583    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8584                      CWFrameIdx);
8585
8586    // Set the high part to be round to zero...
8587    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8588      .addImm(0xC7F);
8589
8590    // Reload the modified control word now...
8591    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8592
8593    // Restore the memory image of control word to original value
8594    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8595      .addReg(OldCW);
8596
8597    // Get the X86 opcode to use.
8598    unsigned Opc;
8599    switch (MI->getOpcode()) {
8600    default: llvm_unreachable("illegal opcode!");
8601    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8602    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8603    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8604    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8605    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8606    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8607    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8608    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8609    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8610    }
8611
8612    X86AddressMode AM;
8613    MachineOperand &Op = MI->getOperand(0);
8614    if (Op.isReg()) {
8615      AM.BaseType = X86AddressMode::RegBase;
8616      AM.Base.Reg = Op.getReg();
8617    } else {
8618      AM.BaseType = X86AddressMode::FrameIndexBase;
8619      AM.Base.FrameIndex = Op.getIndex();
8620    }
8621    Op = MI->getOperand(1);
8622    if (Op.isImm())
8623      AM.Scale = Op.getImm();
8624    Op = MI->getOperand(2);
8625    if (Op.isImm())
8626      AM.IndexReg = Op.getImm();
8627    Op = MI->getOperand(3);
8628    if (Op.isGlobal()) {
8629      AM.GV = Op.getGlobal();
8630    } else {
8631      AM.Disp = Op.getImm();
8632    }
8633    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8634                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8635
8636    // Reload the original control word now.
8637    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8638
8639    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8640    return BB;
8641  }
8642    // DBG_VALUE.  Only the frame index case is done here.
8643  case X86::DBG_VALUE: {
8644    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8645    DebugLoc DL = MI->getDebugLoc();
8646    X86AddressMode AM;
8647    MachineFunction *F = BB->getParent();
8648    AM.BaseType = X86AddressMode::FrameIndexBase;
8649    AM.Base.FrameIndex = MI->getOperand(0).getImm();
8650    addFullAddress(BuildMI(BB, DL, TII->get(X86::DBG_VALUE)), AM).
8651      addImm(MI->getOperand(1).getImm()).
8652      addMetadata(MI->getOperand(2).getMetadata());
8653    F->DeleteMachineInstr(MI);      // Remove pseudo.
8654    return BB;
8655  }
8656
8657    // String/text processing lowering.
8658  case X86::PCMPISTRM128REG:
8659    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8660  case X86::PCMPISTRM128MEM:
8661    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8662  case X86::PCMPESTRM128REG:
8663    return EmitPCMP(MI, BB, 5, false /* in mem */);
8664  case X86::PCMPESTRM128MEM:
8665    return EmitPCMP(MI, BB, 5, true /* in mem */);
8666
8667    // Atomic Lowering.
8668  case X86::ATOMAND32:
8669    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8670                                               X86::AND32ri, X86::MOV32rm,
8671                                               X86::LCMPXCHG32, X86::MOV32rr,
8672                                               X86::NOT32r, X86::EAX,
8673                                               X86::GR32RegisterClass);
8674  case X86::ATOMOR32:
8675    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8676                                               X86::OR32ri, X86::MOV32rm,
8677                                               X86::LCMPXCHG32, X86::MOV32rr,
8678                                               X86::NOT32r, X86::EAX,
8679                                               X86::GR32RegisterClass);
8680  case X86::ATOMXOR32:
8681    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8682                                               X86::XOR32ri, X86::MOV32rm,
8683                                               X86::LCMPXCHG32, X86::MOV32rr,
8684                                               X86::NOT32r, X86::EAX,
8685                                               X86::GR32RegisterClass);
8686  case X86::ATOMNAND32:
8687    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8688                                               X86::AND32ri, X86::MOV32rm,
8689                                               X86::LCMPXCHG32, X86::MOV32rr,
8690                                               X86::NOT32r, X86::EAX,
8691                                               X86::GR32RegisterClass, true);
8692  case X86::ATOMMIN32:
8693    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8694  case X86::ATOMMAX32:
8695    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8696  case X86::ATOMUMIN32:
8697    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8698  case X86::ATOMUMAX32:
8699    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8700
8701  case X86::ATOMAND16:
8702    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8703                                               X86::AND16ri, X86::MOV16rm,
8704                                               X86::LCMPXCHG16, X86::MOV16rr,
8705                                               X86::NOT16r, X86::AX,
8706                                               X86::GR16RegisterClass);
8707  case X86::ATOMOR16:
8708    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8709                                               X86::OR16ri, X86::MOV16rm,
8710                                               X86::LCMPXCHG16, X86::MOV16rr,
8711                                               X86::NOT16r, X86::AX,
8712                                               X86::GR16RegisterClass);
8713  case X86::ATOMXOR16:
8714    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8715                                               X86::XOR16ri, X86::MOV16rm,
8716                                               X86::LCMPXCHG16, X86::MOV16rr,
8717                                               X86::NOT16r, X86::AX,
8718                                               X86::GR16RegisterClass);
8719  case X86::ATOMNAND16:
8720    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8721                                               X86::AND16ri, X86::MOV16rm,
8722                                               X86::LCMPXCHG16, X86::MOV16rr,
8723                                               X86::NOT16r, X86::AX,
8724                                               X86::GR16RegisterClass, true);
8725  case X86::ATOMMIN16:
8726    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8727  case X86::ATOMMAX16:
8728    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8729  case X86::ATOMUMIN16:
8730    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8731  case X86::ATOMUMAX16:
8732    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8733
8734  case X86::ATOMAND8:
8735    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8736                                               X86::AND8ri, X86::MOV8rm,
8737                                               X86::LCMPXCHG8, X86::MOV8rr,
8738                                               X86::NOT8r, X86::AL,
8739                                               X86::GR8RegisterClass);
8740  case X86::ATOMOR8:
8741    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8742                                               X86::OR8ri, X86::MOV8rm,
8743                                               X86::LCMPXCHG8, X86::MOV8rr,
8744                                               X86::NOT8r, X86::AL,
8745                                               X86::GR8RegisterClass);
8746  case X86::ATOMXOR8:
8747    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8748                                               X86::XOR8ri, X86::MOV8rm,
8749                                               X86::LCMPXCHG8, X86::MOV8rr,
8750                                               X86::NOT8r, X86::AL,
8751                                               X86::GR8RegisterClass);
8752  case X86::ATOMNAND8:
8753    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8754                                               X86::AND8ri, X86::MOV8rm,
8755                                               X86::LCMPXCHG8, X86::MOV8rr,
8756                                               X86::NOT8r, X86::AL,
8757                                               X86::GR8RegisterClass, true);
8758  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8759  // This group is for 64-bit host.
8760  case X86::ATOMAND64:
8761    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8762                                               X86::AND64ri32, X86::MOV64rm,
8763                                               X86::LCMPXCHG64, X86::MOV64rr,
8764                                               X86::NOT64r, X86::RAX,
8765                                               X86::GR64RegisterClass);
8766  case X86::ATOMOR64:
8767    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8768                                               X86::OR64ri32, X86::MOV64rm,
8769                                               X86::LCMPXCHG64, X86::MOV64rr,
8770                                               X86::NOT64r, X86::RAX,
8771                                               X86::GR64RegisterClass);
8772  case X86::ATOMXOR64:
8773    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8774                                               X86::XOR64ri32, X86::MOV64rm,
8775                                               X86::LCMPXCHG64, X86::MOV64rr,
8776                                               X86::NOT64r, X86::RAX,
8777                                               X86::GR64RegisterClass);
8778  case X86::ATOMNAND64:
8779    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8780                                               X86::AND64ri32, X86::MOV64rm,
8781                                               X86::LCMPXCHG64, X86::MOV64rr,
8782                                               X86::NOT64r, X86::RAX,
8783                                               X86::GR64RegisterClass, true);
8784  case X86::ATOMMIN64:
8785    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8786  case X86::ATOMMAX64:
8787    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8788  case X86::ATOMUMIN64:
8789    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8790  case X86::ATOMUMAX64:
8791    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8792
8793  // This group does 64-bit operations on a 32-bit host.
8794  case X86::ATOMAND6432:
8795    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8796                                               X86::AND32rr, X86::AND32rr,
8797                                               X86::AND32ri, X86::AND32ri,
8798                                               false);
8799  case X86::ATOMOR6432:
8800    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8801                                               X86::OR32rr, X86::OR32rr,
8802                                               X86::OR32ri, X86::OR32ri,
8803                                               false);
8804  case X86::ATOMXOR6432:
8805    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8806                                               X86::XOR32rr, X86::XOR32rr,
8807                                               X86::XOR32ri, X86::XOR32ri,
8808                                               false);
8809  case X86::ATOMNAND6432:
8810    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8811                                               X86::AND32rr, X86::AND32rr,
8812                                               X86::AND32ri, X86::AND32ri,
8813                                               true);
8814  case X86::ATOMADD6432:
8815    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8816                                               X86::ADD32rr, X86::ADC32rr,
8817                                               X86::ADD32ri, X86::ADC32ri,
8818                                               false);
8819  case X86::ATOMSUB6432:
8820    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8821                                               X86::SUB32rr, X86::SBB32rr,
8822                                               X86::SUB32ri, X86::SBB32ri,
8823                                               false);
8824  case X86::ATOMSWAP6432:
8825    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8826                                               X86::MOV32rr, X86::MOV32rr,
8827                                               X86::MOV32ri, X86::MOV32ri,
8828                                               false);
8829  case X86::VASTART_SAVE_XMM_REGS:
8830    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8831  }
8832}
8833
8834//===----------------------------------------------------------------------===//
8835//                           X86 Optimization Hooks
8836//===----------------------------------------------------------------------===//
8837
8838void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8839                                                       const APInt &Mask,
8840                                                       APInt &KnownZero,
8841                                                       APInt &KnownOne,
8842                                                       const SelectionDAG &DAG,
8843                                                       unsigned Depth) const {
8844  unsigned Opc = Op.getOpcode();
8845  assert((Opc >= ISD::BUILTIN_OP_END ||
8846          Opc == ISD::INTRINSIC_WO_CHAIN ||
8847          Opc == ISD::INTRINSIC_W_CHAIN ||
8848          Opc == ISD::INTRINSIC_VOID) &&
8849         "Should use MaskedValueIsZero if you don't know whether Op"
8850         " is a target node!");
8851
8852  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8853  switch (Opc) {
8854  default: break;
8855  case X86ISD::ADD:
8856  case X86ISD::SUB:
8857  case X86ISD::SMUL:
8858  case X86ISD::UMUL:
8859  case X86ISD::INC:
8860  case X86ISD::DEC:
8861  case X86ISD::OR:
8862  case X86ISD::XOR:
8863  case X86ISD::AND:
8864    // These nodes' second result is a boolean.
8865    if (Op.getResNo() == 0)
8866      break;
8867    // Fallthrough
8868  case X86ISD::SETCC:
8869    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8870                                       Mask.getBitWidth() - 1);
8871    break;
8872  }
8873}
8874
8875/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8876/// node is a GlobalAddress + offset.
8877bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8878                                       GlobalValue* &GA, int64_t &Offset) const{
8879  if (N->getOpcode() == X86ISD::Wrapper) {
8880    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8881      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8882      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8883      return true;
8884    }
8885  }
8886  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8887}
8888
8889/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8890/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8891/// if the load addresses are consecutive, non-overlapping, and in the right
8892/// order.
8893static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8894                                     const TargetLowering &TLI) {
8895  DebugLoc dl = N->getDebugLoc();
8896  EVT VT = N->getValueType(0);
8897  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8898
8899  if (VT.getSizeInBits() != 128)
8900    return SDValue();
8901
8902  SmallVector<SDValue, 16> Elts;
8903  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
8904    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
8905
8906  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
8907}
8908
8909/// PerformShuffleCombine - Detect vector gather/scatter index generation
8910/// and convert it from being a bunch of shuffles and extracts to a simple
8911/// store and scalar loads to extract the elements.
8912static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
8913                                                const TargetLowering &TLI) {
8914  SDValue InputVector = N->getOperand(0);
8915
8916  // Only operate on vectors of 4 elements, where the alternative shuffling
8917  // gets to be more expensive.
8918  if (InputVector.getValueType() != MVT::v4i32)
8919    return SDValue();
8920
8921  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
8922  // single use which is a sign-extend or zero-extend, and all elements are
8923  // used.
8924  SmallVector<SDNode *, 4> Uses;
8925  unsigned ExtractedElements = 0;
8926  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
8927       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
8928    if (UI.getUse().getResNo() != InputVector.getResNo())
8929      return SDValue();
8930
8931    SDNode *Extract = *UI;
8932    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8933      return SDValue();
8934
8935    if (Extract->getValueType(0) != MVT::i32)
8936      return SDValue();
8937    if (!Extract->hasOneUse())
8938      return SDValue();
8939    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
8940        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
8941      return SDValue();
8942    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
8943      return SDValue();
8944
8945    // Record which element was extracted.
8946    ExtractedElements |=
8947      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
8948
8949    Uses.push_back(Extract);
8950  }
8951
8952  // If not all the elements were used, this may not be worthwhile.
8953  if (ExtractedElements != 15)
8954    return SDValue();
8955
8956  // Ok, we've now decided to do the transformation.
8957  DebugLoc dl = InputVector.getDebugLoc();
8958
8959  // Store the value to a temporary stack slot.
8960  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
8961  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
8962                            false, false, 0);
8963
8964  // Replace each use (extract) with a load of the appropriate element.
8965  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
8966       UE = Uses.end(); UI != UE; ++UI) {
8967    SDNode *Extract = *UI;
8968
8969    // Compute the element's address.
8970    SDValue Idx = Extract->getOperand(1);
8971    unsigned EltSize =
8972        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
8973    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
8974    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
8975
8976    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
8977
8978    // Load the scalar.
8979    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
8980                          NULL, 0, false, false, 0);
8981
8982    // Replace the exact with the load.
8983    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
8984  }
8985
8986  // The replacement was made in place; don't return anything.
8987  return SDValue();
8988}
8989
8990/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8991static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8992                                    const X86Subtarget *Subtarget) {
8993  DebugLoc DL = N->getDebugLoc();
8994  SDValue Cond = N->getOperand(0);
8995  // Get the LHS/RHS of the select.
8996  SDValue LHS = N->getOperand(1);
8997  SDValue RHS = N->getOperand(2);
8998
8999  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9000  // instructions match the semantics of the common C idiom x<y?x:y but not
9001  // x<=y?x:y, because of how they handle negative zero (which can be
9002  // ignored in unsafe-math mode).
9003  if (Subtarget->hasSSE2() &&
9004      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9005      Cond.getOpcode() == ISD::SETCC) {
9006    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9007
9008    unsigned Opcode = 0;
9009    // Check for x CC y ? x : y.
9010    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9011        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9012      switch (CC) {
9013      default: break;
9014      case ISD::SETULT:
9015        // Converting this to a min would handle NaNs incorrectly, and swapping
9016        // the operands would cause it to handle comparisons between positive
9017        // and negative zero incorrectly.
9018        if (!FiniteOnlyFPMath() &&
9019            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9020          if (!UnsafeFPMath &&
9021              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9022            break;
9023          std::swap(LHS, RHS);
9024        }
9025        Opcode = X86ISD::FMIN;
9026        break;
9027      case ISD::SETOLE:
9028        // Converting this to a min would handle comparisons between positive
9029        // and negative zero incorrectly.
9030        if (!UnsafeFPMath &&
9031            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9032          break;
9033        Opcode = X86ISD::FMIN;
9034        break;
9035      case ISD::SETULE:
9036        // Converting this to a min would handle both negative zeros and NaNs
9037        // incorrectly, but we can swap the operands to fix both.
9038        std::swap(LHS, RHS);
9039      case ISD::SETOLT:
9040      case ISD::SETLT:
9041      case ISD::SETLE:
9042        Opcode = X86ISD::FMIN;
9043        break;
9044
9045      case ISD::SETOGE:
9046        // Converting this to a max would handle comparisons between positive
9047        // and negative zero incorrectly.
9048        if (!UnsafeFPMath &&
9049            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9050          break;
9051        Opcode = X86ISD::FMAX;
9052        break;
9053      case ISD::SETUGT:
9054        // Converting this to a max would handle NaNs incorrectly, and swapping
9055        // the operands would cause it to handle comparisons between positive
9056        // and negative zero incorrectly.
9057        if (!FiniteOnlyFPMath() &&
9058            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
9059          if (!UnsafeFPMath &&
9060              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9061            break;
9062          std::swap(LHS, RHS);
9063        }
9064        Opcode = X86ISD::FMAX;
9065        break;
9066      case ISD::SETUGE:
9067        // Converting this to a max would handle both negative zeros and NaNs
9068        // incorrectly, but we can swap the operands to fix both.
9069        std::swap(LHS, RHS);
9070      case ISD::SETOGT:
9071      case ISD::SETGT:
9072      case ISD::SETGE:
9073        Opcode = X86ISD::FMAX;
9074        break;
9075      }
9076    // Check for x CC y ? y : x -- a min/max with reversed arms.
9077    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9078               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9079      switch (CC) {
9080      default: break;
9081      case ISD::SETOGE:
9082        // Converting this to a min would handle comparisons between positive
9083        // and negative zero incorrectly, and swapping the operands would
9084        // cause it to handle NaNs incorrectly.
9085        if (!UnsafeFPMath &&
9086            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9087          if (!FiniteOnlyFPMath() &&
9088              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9089            break;
9090          std::swap(LHS, RHS);
9091        }
9092        Opcode = X86ISD::FMIN;
9093        break;
9094      case ISD::SETUGT:
9095        // Converting this to a min would handle NaNs incorrectly.
9096        if (!UnsafeFPMath &&
9097            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9098          break;
9099        Opcode = X86ISD::FMIN;
9100        break;
9101      case ISD::SETUGE:
9102        // Converting this to a min would handle both negative zeros and NaNs
9103        // incorrectly, but we can swap the operands to fix both.
9104        std::swap(LHS, RHS);
9105      case ISD::SETOGT:
9106      case ISD::SETGT:
9107      case ISD::SETGE:
9108        Opcode = X86ISD::FMIN;
9109        break;
9110
9111      case ISD::SETULT:
9112        // Converting this to a max would handle NaNs incorrectly.
9113        if (!FiniteOnlyFPMath() &&
9114            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9115          break;
9116        Opcode = X86ISD::FMAX;
9117        break;
9118      case ISD::SETOLE:
9119        // Converting this to a max would handle comparisons between positive
9120        // and negative zero incorrectly, and swapping the operands would
9121        // cause it to handle NaNs incorrectly.
9122        if (!UnsafeFPMath &&
9123            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9124          if (!FiniteOnlyFPMath() &&
9125              (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9126            break;
9127          std::swap(LHS, RHS);
9128        }
9129        Opcode = X86ISD::FMAX;
9130        break;
9131      case ISD::SETULE:
9132        // Converting this to a max would handle both negative zeros and NaNs
9133        // incorrectly, but we can swap the operands to fix both.
9134        std::swap(LHS, RHS);
9135      case ISD::SETOLT:
9136      case ISD::SETLT:
9137      case ISD::SETLE:
9138        Opcode = X86ISD::FMAX;
9139        break;
9140      }
9141    }
9142
9143    if (Opcode)
9144      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9145  }
9146
9147  // If this is a select between two integer constants, try to do some
9148  // optimizations.
9149  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9150    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9151      // Don't do this for crazy integer types.
9152      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9153        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9154        // so that TrueC (the true value) is larger than FalseC.
9155        bool NeedsCondInvert = false;
9156
9157        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9158            // Efficiently invertible.
9159            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9160             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9161              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9162          NeedsCondInvert = true;
9163          std::swap(TrueC, FalseC);
9164        }
9165
9166        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9167        if (FalseC->getAPIntValue() == 0 &&
9168            TrueC->getAPIntValue().isPowerOf2()) {
9169          if (NeedsCondInvert) // Invert the condition if needed.
9170            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9171                               DAG.getConstant(1, Cond.getValueType()));
9172
9173          // Zero extend the condition if needed.
9174          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9175
9176          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9177          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9178                             DAG.getConstant(ShAmt, MVT::i8));
9179        }
9180
9181        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9182        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9183          if (NeedsCondInvert) // Invert the condition if needed.
9184            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9185                               DAG.getConstant(1, Cond.getValueType()));
9186
9187          // Zero extend the condition if needed.
9188          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9189                             FalseC->getValueType(0), Cond);
9190          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9191                             SDValue(FalseC, 0));
9192        }
9193
9194        // Optimize cases that will turn into an LEA instruction.  This requires
9195        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9196        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9197          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9198          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9199
9200          bool isFastMultiplier = false;
9201          if (Diff < 10) {
9202            switch ((unsigned char)Diff) {
9203              default: break;
9204              case 1:  // result = add base, cond
9205              case 2:  // result = lea base(    , cond*2)
9206              case 3:  // result = lea base(cond, cond*2)
9207              case 4:  // result = lea base(    , cond*4)
9208              case 5:  // result = lea base(cond, cond*4)
9209              case 8:  // result = lea base(    , cond*8)
9210              case 9:  // result = lea base(cond, cond*8)
9211                isFastMultiplier = true;
9212                break;
9213            }
9214          }
9215
9216          if (isFastMultiplier) {
9217            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9218            if (NeedsCondInvert) // Invert the condition if needed.
9219              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9220                                 DAG.getConstant(1, Cond.getValueType()));
9221
9222            // Zero extend the condition if needed.
9223            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9224                               Cond);
9225            // Scale the condition by the difference.
9226            if (Diff != 1)
9227              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9228                                 DAG.getConstant(Diff, Cond.getValueType()));
9229
9230            // Add the base if non-zero.
9231            if (FalseC->getAPIntValue() != 0)
9232              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9233                                 SDValue(FalseC, 0));
9234            return Cond;
9235          }
9236        }
9237      }
9238  }
9239
9240  return SDValue();
9241}
9242
9243/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9244static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9245                                  TargetLowering::DAGCombinerInfo &DCI) {
9246  DebugLoc DL = N->getDebugLoc();
9247
9248  // If the flag operand isn't dead, don't touch this CMOV.
9249  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9250    return SDValue();
9251
9252  // If this is a select between two integer constants, try to do some
9253  // optimizations.  Note that the operands are ordered the opposite of SELECT
9254  // operands.
9255  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9256    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9257      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9258      // larger than FalseC (the false value).
9259      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9260
9261      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9262        CC = X86::GetOppositeBranchCondition(CC);
9263        std::swap(TrueC, FalseC);
9264      }
9265
9266      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9267      // This is efficient for any integer data type (including i8/i16) and
9268      // shift amount.
9269      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9270        SDValue Cond = N->getOperand(3);
9271        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9272                           DAG.getConstant(CC, MVT::i8), Cond);
9273
9274        // Zero extend the condition if needed.
9275        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9276
9277        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9278        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9279                           DAG.getConstant(ShAmt, MVT::i8));
9280        if (N->getNumValues() == 2)  // Dead flag value?
9281          return DCI.CombineTo(N, Cond, SDValue());
9282        return Cond;
9283      }
9284
9285      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9286      // for any integer data type, including i8/i16.
9287      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9288        SDValue Cond = N->getOperand(3);
9289        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9290                           DAG.getConstant(CC, MVT::i8), Cond);
9291
9292        // Zero extend the condition if needed.
9293        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9294                           FalseC->getValueType(0), Cond);
9295        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9296                           SDValue(FalseC, 0));
9297
9298        if (N->getNumValues() == 2)  // Dead flag value?
9299          return DCI.CombineTo(N, Cond, SDValue());
9300        return Cond;
9301      }
9302
9303      // Optimize cases that will turn into an LEA instruction.  This requires
9304      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9305      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9306        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9307        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9308
9309        bool isFastMultiplier = false;
9310        if (Diff < 10) {
9311          switch ((unsigned char)Diff) {
9312          default: break;
9313          case 1:  // result = add base, cond
9314          case 2:  // result = lea base(    , cond*2)
9315          case 3:  // result = lea base(cond, cond*2)
9316          case 4:  // result = lea base(    , cond*4)
9317          case 5:  // result = lea base(cond, cond*4)
9318          case 8:  // result = lea base(    , cond*8)
9319          case 9:  // result = lea base(cond, cond*8)
9320            isFastMultiplier = true;
9321            break;
9322          }
9323        }
9324
9325        if (isFastMultiplier) {
9326          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9327          SDValue Cond = N->getOperand(3);
9328          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9329                             DAG.getConstant(CC, MVT::i8), Cond);
9330          // Zero extend the condition if needed.
9331          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9332                             Cond);
9333          // Scale the condition by the difference.
9334          if (Diff != 1)
9335            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9336                               DAG.getConstant(Diff, Cond.getValueType()));
9337
9338          // Add the base if non-zero.
9339          if (FalseC->getAPIntValue() != 0)
9340            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9341                               SDValue(FalseC, 0));
9342          if (N->getNumValues() == 2)  // Dead flag value?
9343            return DCI.CombineTo(N, Cond, SDValue());
9344          return Cond;
9345        }
9346      }
9347    }
9348  }
9349  return SDValue();
9350}
9351
9352
9353/// PerformMulCombine - Optimize a single multiply with constant into two
9354/// in order to implement it with two cheaper instructions, e.g.
9355/// LEA + SHL, LEA + LEA.
9356static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9357                                 TargetLowering::DAGCombinerInfo &DCI) {
9358  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9359    return SDValue();
9360
9361  EVT VT = N->getValueType(0);
9362  if (VT != MVT::i64)
9363    return SDValue();
9364
9365  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9366  if (!C)
9367    return SDValue();
9368  uint64_t MulAmt = C->getZExtValue();
9369  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9370    return SDValue();
9371
9372  uint64_t MulAmt1 = 0;
9373  uint64_t MulAmt2 = 0;
9374  if ((MulAmt % 9) == 0) {
9375    MulAmt1 = 9;
9376    MulAmt2 = MulAmt / 9;
9377  } else if ((MulAmt % 5) == 0) {
9378    MulAmt1 = 5;
9379    MulAmt2 = MulAmt / 5;
9380  } else if ((MulAmt % 3) == 0) {
9381    MulAmt1 = 3;
9382    MulAmt2 = MulAmt / 3;
9383  }
9384  if (MulAmt2 &&
9385      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9386    DebugLoc DL = N->getDebugLoc();
9387
9388    if (isPowerOf2_64(MulAmt2) &&
9389        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9390      // If second multiplifer is pow2, issue it first. We want the multiply by
9391      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9392      // is an add.
9393      std::swap(MulAmt1, MulAmt2);
9394
9395    SDValue NewMul;
9396    if (isPowerOf2_64(MulAmt1))
9397      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9398                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9399    else
9400      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9401                           DAG.getConstant(MulAmt1, VT));
9402
9403    if (isPowerOf2_64(MulAmt2))
9404      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9405                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9406    else
9407      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9408                           DAG.getConstant(MulAmt2, VT));
9409
9410    // Do not add new nodes to DAG combiner worklist.
9411    DCI.CombineTo(N, NewMul, false);
9412  }
9413  return SDValue();
9414}
9415
9416static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9417  SDValue N0 = N->getOperand(0);
9418  SDValue N1 = N->getOperand(1);
9419  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9420  EVT VT = N0.getValueType();
9421
9422  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9423  // since the result of setcc_c is all zero's or all ones.
9424  if (N1C && N0.getOpcode() == ISD::AND &&
9425      N0.getOperand(1).getOpcode() == ISD::Constant) {
9426    SDValue N00 = N0.getOperand(0);
9427    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9428        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9429          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9430         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9431      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9432      APInt ShAmt = N1C->getAPIntValue();
9433      Mask = Mask.shl(ShAmt);
9434      if (Mask != 0)
9435        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9436                           N00, DAG.getConstant(Mask, VT));
9437    }
9438  }
9439
9440  return SDValue();
9441}
9442
9443/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9444///                       when possible.
9445static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9446                                   const X86Subtarget *Subtarget) {
9447  EVT VT = N->getValueType(0);
9448  if (!VT.isVector() && VT.isInteger() &&
9449      N->getOpcode() == ISD::SHL)
9450    return PerformSHLCombine(N, DAG);
9451
9452  // On X86 with SSE2 support, we can transform this to a vector shift if
9453  // all elements are shifted by the same amount.  We can't do this in legalize
9454  // because the a constant vector is typically transformed to a constant pool
9455  // so we have no knowledge of the shift amount.
9456  if (!Subtarget->hasSSE2())
9457    return SDValue();
9458
9459  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9460    return SDValue();
9461
9462  SDValue ShAmtOp = N->getOperand(1);
9463  EVT EltVT = VT.getVectorElementType();
9464  DebugLoc DL = N->getDebugLoc();
9465  SDValue BaseShAmt = SDValue();
9466  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9467    unsigned NumElts = VT.getVectorNumElements();
9468    unsigned i = 0;
9469    for (; i != NumElts; ++i) {
9470      SDValue Arg = ShAmtOp.getOperand(i);
9471      if (Arg.getOpcode() == ISD::UNDEF) continue;
9472      BaseShAmt = Arg;
9473      break;
9474    }
9475    for (; i != NumElts; ++i) {
9476      SDValue Arg = ShAmtOp.getOperand(i);
9477      if (Arg.getOpcode() == ISD::UNDEF) continue;
9478      if (Arg != BaseShAmt) {
9479        return SDValue();
9480      }
9481    }
9482  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9483             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9484    SDValue InVec = ShAmtOp.getOperand(0);
9485    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9486      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9487      unsigned i = 0;
9488      for (; i != NumElts; ++i) {
9489        SDValue Arg = InVec.getOperand(i);
9490        if (Arg.getOpcode() == ISD::UNDEF) continue;
9491        BaseShAmt = Arg;
9492        break;
9493      }
9494    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9495       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9496         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9497         if (C->getZExtValue() == SplatIdx)
9498           BaseShAmt = InVec.getOperand(1);
9499       }
9500    }
9501    if (BaseShAmt.getNode() == 0)
9502      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9503                              DAG.getIntPtrConstant(0));
9504  } else
9505    return SDValue();
9506
9507  // The shift amount is an i32.
9508  if (EltVT.bitsGT(MVT::i32))
9509    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9510  else if (EltVT.bitsLT(MVT::i32))
9511    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9512
9513  // The shift amount is identical so we can do a vector shift.
9514  SDValue  ValOp = N->getOperand(0);
9515  switch (N->getOpcode()) {
9516  default:
9517    llvm_unreachable("Unknown shift opcode!");
9518    break;
9519  case ISD::SHL:
9520    if (VT == MVT::v2i64)
9521      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9522                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9523                         ValOp, BaseShAmt);
9524    if (VT == MVT::v4i32)
9525      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9526                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9527                         ValOp, BaseShAmt);
9528    if (VT == MVT::v8i16)
9529      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9530                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9531                         ValOp, BaseShAmt);
9532    break;
9533  case ISD::SRA:
9534    if (VT == MVT::v4i32)
9535      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9536                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9537                         ValOp, BaseShAmt);
9538    if (VT == MVT::v8i16)
9539      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9540                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9541                         ValOp, BaseShAmt);
9542    break;
9543  case ISD::SRL:
9544    if (VT == MVT::v2i64)
9545      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9546                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9547                         ValOp, BaseShAmt);
9548    if (VT == MVT::v4i32)
9549      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9550                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9551                         ValOp, BaseShAmt);
9552    if (VT ==  MVT::v8i16)
9553      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9554                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9555                         ValOp, BaseShAmt);
9556    break;
9557  }
9558  return SDValue();
9559}
9560
9561static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9562                                const X86Subtarget *Subtarget) {
9563  EVT VT = N->getValueType(0);
9564  if (VT != MVT::i64 || !Subtarget->is64Bit())
9565    return SDValue();
9566
9567  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9568  SDValue N0 = N->getOperand(0);
9569  SDValue N1 = N->getOperand(1);
9570  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9571    std::swap(N0, N1);
9572  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9573    return SDValue();
9574
9575  SDValue ShAmt0 = N0.getOperand(1);
9576  if (ShAmt0.getValueType() != MVT::i8)
9577    return SDValue();
9578  SDValue ShAmt1 = N1.getOperand(1);
9579  if (ShAmt1.getValueType() != MVT::i8)
9580    return SDValue();
9581  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9582    ShAmt0 = ShAmt0.getOperand(0);
9583  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9584    ShAmt1 = ShAmt1.getOperand(0);
9585
9586  DebugLoc DL = N->getDebugLoc();
9587  unsigned Opc = X86ISD::SHLD;
9588  SDValue Op0 = N0.getOperand(0);
9589  SDValue Op1 = N1.getOperand(0);
9590  if (ShAmt0.getOpcode() == ISD::SUB) {
9591    Opc = X86ISD::SHRD;
9592    std::swap(Op0, Op1);
9593    std::swap(ShAmt0, ShAmt1);
9594  }
9595
9596  if (ShAmt1.getOpcode() == ISD::SUB) {
9597    SDValue Sum = ShAmt1.getOperand(0);
9598    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9599      if (SumC->getSExtValue() == 64 &&
9600          ShAmt1.getOperand(1) == ShAmt0)
9601        return DAG.getNode(Opc, DL, VT,
9602                           Op0, Op1,
9603                           DAG.getNode(ISD::TRUNCATE, DL,
9604                                       MVT::i8, ShAmt0));
9605    }
9606  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9607    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9608    if (ShAmt0C &&
9609        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9610      return DAG.getNode(Opc, DL, VT,
9611                         N0.getOperand(0), N1.getOperand(0),
9612                         DAG.getNode(ISD::TRUNCATE, DL,
9613                                       MVT::i8, ShAmt0));
9614  }
9615
9616  return SDValue();
9617}
9618
9619/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9620static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9621                                   const X86Subtarget *Subtarget) {
9622  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9623  // the FP state in cases where an emms may be missing.
9624  // A preferable solution to the general problem is to figure out the right
9625  // places to insert EMMS.  This qualifies as a quick hack.
9626
9627  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9628  StoreSDNode *St = cast<StoreSDNode>(N);
9629  EVT VT = St->getValue().getValueType();
9630  if (VT.getSizeInBits() != 64)
9631    return SDValue();
9632
9633  const Function *F = DAG.getMachineFunction().getFunction();
9634  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9635  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9636    && Subtarget->hasSSE2();
9637  if ((VT.isVector() ||
9638       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9639      isa<LoadSDNode>(St->getValue()) &&
9640      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9641      St->getChain().hasOneUse() && !St->isVolatile()) {
9642    SDNode* LdVal = St->getValue().getNode();
9643    LoadSDNode *Ld = 0;
9644    int TokenFactorIndex = -1;
9645    SmallVector<SDValue, 8> Ops;
9646    SDNode* ChainVal = St->getChain().getNode();
9647    // Must be a store of a load.  We currently handle two cases:  the load
9648    // is a direct child, and it's under an intervening TokenFactor.  It is
9649    // possible to dig deeper under nested TokenFactors.
9650    if (ChainVal == LdVal)
9651      Ld = cast<LoadSDNode>(St->getChain());
9652    else if (St->getValue().hasOneUse() &&
9653             ChainVal->getOpcode() == ISD::TokenFactor) {
9654      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9655        if (ChainVal->getOperand(i).getNode() == LdVal) {
9656          TokenFactorIndex = i;
9657          Ld = cast<LoadSDNode>(St->getValue());
9658        } else
9659          Ops.push_back(ChainVal->getOperand(i));
9660      }
9661    }
9662
9663    if (!Ld || !ISD::isNormalLoad(Ld))
9664      return SDValue();
9665
9666    // If this is not the MMX case, i.e. we are just turning i64 load/store
9667    // into f64 load/store, avoid the transformation if there are multiple
9668    // uses of the loaded value.
9669    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9670      return SDValue();
9671
9672    DebugLoc LdDL = Ld->getDebugLoc();
9673    DebugLoc StDL = N->getDebugLoc();
9674    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9675    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9676    // pair instead.
9677    if (Subtarget->is64Bit() || F64IsLegal) {
9678      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9679      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9680                                  Ld->getBasePtr(), Ld->getSrcValue(),
9681                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9682                                  Ld->isNonTemporal(), Ld->getAlignment());
9683      SDValue NewChain = NewLd.getValue(1);
9684      if (TokenFactorIndex != -1) {
9685        Ops.push_back(NewChain);
9686        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9687                               Ops.size());
9688      }
9689      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9690                          St->getSrcValue(), St->getSrcValueOffset(),
9691                          St->isVolatile(), St->isNonTemporal(),
9692                          St->getAlignment());
9693    }
9694
9695    // Otherwise, lower to two pairs of 32-bit loads / stores.
9696    SDValue LoAddr = Ld->getBasePtr();
9697    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9698                                 DAG.getConstant(4, MVT::i32));
9699
9700    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9701                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9702                               Ld->isVolatile(), Ld->isNonTemporal(),
9703                               Ld->getAlignment());
9704    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9705                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9706                               Ld->isVolatile(), Ld->isNonTemporal(),
9707                               MinAlign(Ld->getAlignment(), 4));
9708
9709    SDValue NewChain = LoLd.getValue(1);
9710    if (TokenFactorIndex != -1) {
9711      Ops.push_back(LoLd);
9712      Ops.push_back(HiLd);
9713      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9714                             Ops.size());
9715    }
9716
9717    LoAddr = St->getBasePtr();
9718    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9719                         DAG.getConstant(4, MVT::i32));
9720
9721    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9722                                St->getSrcValue(), St->getSrcValueOffset(),
9723                                St->isVolatile(), St->isNonTemporal(),
9724                                St->getAlignment());
9725    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9726                                St->getSrcValue(),
9727                                St->getSrcValueOffset() + 4,
9728                                St->isVolatile(),
9729                                St->isNonTemporal(),
9730                                MinAlign(St->getAlignment(), 4));
9731    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9732  }
9733  return SDValue();
9734}
9735
9736/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9737/// X86ISD::FXOR nodes.
9738static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9739  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9740  // F[X]OR(0.0, x) -> x
9741  // F[X]OR(x, 0.0) -> x
9742  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9743    if (C->getValueAPF().isPosZero())
9744      return N->getOperand(1);
9745  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9746    if (C->getValueAPF().isPosZero())
9747      return N->getOperand(0);
9748  return SDValue();
9749}
9750
9751/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9752static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9753  // FAND(0.0, x) -> 0.0
9754  // FAND(x, 0.0) -> 0.0
9755  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9756    if (C->getValueAPF().isPosZero())
9757      return N->getOperand(0);
9758  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9759    if (C->getValueAPF().isPosZero())
9760      return N->getOperand(1);
9761  return SDValue();
9762}
9763
9764static SDValue PerformBTCombine(SDNode *N,
9765                                SelectionDAG &DAG,
9766                                TargetLowering::DAGCombinerInfo &DCI) {
9767  // BT ignores high bits in the bit index operand.
9768  SDValue Op1 = N->getOperand(1);
9769  if (Op1.hasOneUse()) {
9770    unsigned BitWidth = Op1.getValueSizeInBits();
9771    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9772    APInt KnownZero, KnownOne;
9773    TargetLowering::TargetLoweringOpt TLO(DAG);
9774    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9775    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9776        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9777      DCI.CommitTargetLoweringOpt(TLO);
9778  }
9779  return SDValue();
9780}
9781
9782static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9783  SDValue Op = N->getOperand(0);
9784  if (Op.getOpcode() == ISD::BIT_CONVERT)
9785    Op = Op.getOperand(0);
9786  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9787  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9788      VT.getVectorElementType().getSizeInBits() ==
9789      OpVT.getVectorElementType().getSizeInBits()) {
9790    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9791  }
9792  return SDValue();
9793}
9794
9795// On X86 and X86-64, atomic operations are lowered to locked instructions.
9796// Locked instructions, in turn, have implicit fence semantics (all memory
9797// operations are flushed before issuing the locked instruction, and the
9798// are not buffered), so we can fold away the common pattern of
9799// fence-atomic-fence.
9800static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9801  SDValue atomic = N->getOperand(0);
9802  switch (atomic.getOpcode()) {
9803    case ISD::ATOMIC_CMP_SWAP:
9804    case ISD::ATOMIC_SWAP:
9805    case ISD::ATOMIC_LOAD_ADD:
9806    case ISD::ATOMIC_LOAD_SUB:
9807    case ISD::ATOMIC_LOAD_AND:
9808    case ISD::ATOMIC_LOAD_OR:
9809    case ISD::ATOMIC_LOAD_XOR:
9810    case ISD::ATOMIC_LOAD_NAND:
9811    case ISD::ATOMIC_LOAD_MIN:
9812    case ISD::ATOMIC_LOAD_MAX:
9813    case ISD::ATOMIC_LOAD_UMIN:
9814    case ISD::ATOMIC_LOAD_UMAX:
9815      break;
9816    default:
9817      return SDValue();
9818  }
9819
9820  SDValue fence = atomic.getOperand(0);
9821  if (fence.getOpcode() != ISD::MEMBARRIER)
9822    return SDValue();
9823
9824  switch (atomic.getOpcode()) {
9825    case ISD::ATOMIC_CMP_SWAP:
9826      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9827                                    atomic.getOperand(1), atomic.getOperand(2),
9828                                    atomic.getOperand(3));
9829    case ISD::ATOMIC_SWAP:
9830    case ISD::ATOMIC_LOAD_ADD:
9831    case ISD::ATOMIC_LOAD_SUB:
9832    case ISD::ATOMIC_LOAD_AND:
9833    case ISD::ATOMIC_LOAD_OR:
9834    case ISD::ATOMIC_LOAD_XOR:
9835    case ISD::ATOMIC_LOAD_NAND:
9836    case ISD::ATOMIC_LOAD_MIN:
9837    case ISD::ATOMIC_LOAD_MAX:
9838    case ISD::ATOMIC_LOAD_UMIN:
9839    case ISD::ATOMIC_LOAD_UMAX:
9840      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9841                                    atomic.getOperand(1), atomic.getOperand(2));
9842    default:
9843      return SDValue();
9844  }
9845}
9846
9847static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9848  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9849  //           (and (i32 x86isd::setcc_carry), 1)
9850  // This eliminates the zext. This transformation is necessary because
9851  // ISD::SETCC is always legalized to i8.
9852  DebugLoc dl = N->getDebugLoc();
9853  SDValue N0 = N->getOperand(0);
9854  EVT VT = N->getValueType(0);
9855  if (N0.getOpcode() == ISD::AND &&
9856      N0.hasOneUse() &&
9857      N0.getOperand(0).hasOneUse()) {
9858    SDValue N00 = N0.getOperand(0);
9859    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9860      return SDValue();
9861    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9862    if (!C || C->getZExtValue() != 1)
9863      return SDValue();
9864    return DAG.getNode(ISD::AND, dl, VT,
9865                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9866                                   N00.getOperand(0), N00.getOperand(1)),
9867                       DAG.getConstant(1, VT));
9868  }
9869
9870  return SDValue();
9871}
9872
9873SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9874                                             DAGCombinerInfo &DCI) const {
9875  SelectionDAG &DAG = DCI.DAG;
9876  switch (N->getOpcode()) {
9877  default: break;
9878  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9879  case ISD::EXTRACT_VECTOR_ELT:
9880                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
9881  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9882  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9883  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9884  case ISD::SHL:
9885  case ISD::SRA:
9886  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9887  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9888  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9889  case X86ISD::FXOR:
9890  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9891  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9892  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9893  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9894  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9895  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9896  }
9897
9898  return SDValue();
9899}
9900
9901//===----------------------------------------------------------------------===//
9902//                           X86 Inline Assembly Support
9903//===----------------------------------------------------------------------===//
9904
9905static bool LowerToBSwap(CallInst *CI) {
9906  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9907  // we will turn this bswap into something that will be lowered to logical ops
9908  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9909  // so don't worry about this.
9910
9911  // Verify this is a simple bswap.
9912  if (CI->getNumOperands() != 2 ||
9913      CI->getType() != CI->getOperand(1)->getType() ||
9914      !CI->getType()->isIntegerTy())
9915    return false;
9916
9917  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9918  if (!Ty || Ty->getBitWidth() % 16 != 0)
9919    return false;
9920
9921  // Okay, we can do this xform, do so now.
9922  const Type *Tys[] = { Ty };
9923  Module *M = CI->getParent()->getParent()->getParent();
9924  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9925
9926  Value *Op = CI->getOperand(1);
9927  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9928
9929  CI->replaceAllUsesWith(Op);
9930  CI->eraseFromParent();
9931  return true;
9932}
9933
9934bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9935  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9936  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9937
9938  std::string AsmStr = IA->getAsmString();
9939
9940  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9941  SmallVector<StringRef, 4> AsmPieces;
9942  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9943
9944  switch (AsmPieces.size()) {
9945  default: return false;
9946  case 1:
9947    AsmStr = AsmPieces[0];
9948    AsmPieces.clear();
9949    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9950
9951    // bswap $0
9952    if (AsmPieces.size() == 2 &&
9953        (AsmPieces[0] == "bswap" ||
9954         AsmPieces[0] == "bswapq" ||
9955         AsmPieces[0] == "bswapl") &&
9956        (AsmPieces[1] == "$0" ||
9957         AsmPieces[1] == "${0:q}")) {
9958      // No need to check constraints, nothing other than the equivalent of
9959      // "=r,0" would be valid here.
9960      return LowerToBSwap(CI);
9961    }
9962    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9963    if (CI->getType()->isIntegerTy(16) &&
9964        AsmPieces.size() == 3 &&
9965        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
9966        AsmPieces[1] == "$$8," &&
9967        AsmPieces[2] == "${0:w}" &&
9968        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
9969      AsmPieces.clear();
9970      const std::string &Constraints = IA->getConstraintString();
9971      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
9972      std::sort(AsmPieces.begin(), AsmPieces.end());
9973      if (AsmPieces.size() == 4 &&
9974          AsmPieces[0] == "~{cc}" &&
9975          AsmPieces[1] == "~{dirflag}" &&
9976          AsmPieces[2] == "~{flags}" &&
9977          AsmPieces[3] == "~{fpsr}") {
9978        return LowerToBSwap(CI);
9979      }
9980    }
9981    break;
9982  case 3:
9983    if (CI->getType()->isIntegerTy(64) &&
9984        Constraints.size() >= 2 &&
9985        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9986        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9987      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9988      SmallVector<StringRef, 4> Words;
9989      SplitString(AsmPieces[0], Words, " \t");
9990      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9991        Words.clear();
9992        SplitString(AsmPieces[1], Words, " \t");
9993        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9994          Words.clear();
9995          SplitString(AsmPieces[2], Words, " \t,");
9996          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9997              Words[2] == "%edx") {
9998            return LowerToBSwap(CI);
9999          }
10000        }
10001      }
10002    }
10003    break;
10004  }
10005  return false;
10006}
10007
10008
10009
10010/// getConstraintType - Given a constraint letter, return the type of
10011/// constraint it is for this target.
10012X86TargetLowering::ConstraintType
10013X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10014  if (Constraint.size() == 1) {
10015    switch (Constraint[0]) {
10016    case 'A':
10017      return C_Register;
10018    case 'f':
10019    case 'r':
10020    case 'R':
10021    case 'l':
10022    case 'q':
10023    case 'Q':
10024    case 'x':
10025    case 'y':
10026    case 'Y':
10027      return C_RegisterClass;
10028    case 'e':
10029    case 'Z':
10030      return C_Other;
10031    default:
10032      break;
10033    }
10034  }
10035  return TargetLowering::getConstraintType(Constraint);
10036}
10037
10038/// LowerXConstraint - try to replace an X constraint, which matches anything,
10039/// with another that has more specific requirements based on the type of the
10040/// corresponding operand.
10041const char *X86TargetLowering::
10042LowerXConstraint(EVT ConstraintVT) const {
10043  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10044  // 'f' like normal targets.
10045  if (ConstraintVT.isFloatingPoint()) {
10046    if (Subtarget->hasSSE2())
10047      return "Y";
10048    if (Subtarget->hasSSE1())
10049      return "x";
10050  }
10051
10052  return TargetLowering::LowerXConstraint(ConstraintVT);
10053}
10054
10055/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10056/// vector.  If it is invalid, don't add anything to Ops.
10057void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10058                                                     char Constraint,
10059                                                     bool hasMemory,
10060                                                     std::vector<SDValue>&Ops,
10061                                                     SelectionDAG &DAG) const {
10062  SDValue Result(0, 0);
10063
10064  switch (Constraint) {
10065  default: break;
10066  case 'I':
10067    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10068      if (C->getZExtValue() <= 31) {
10069        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10070        break;
10071      }
10072    }
10073    return;
10074  case 'J':
10075    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10076      if (C->getZExtValue() <= 63) {
10077        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10078        break;
10079      }
10080    }
10081    return;
10082  case 'K':
10083    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10084      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10085        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10086        break;
10087      }
10088    }
10089    return;
10090  case 'N':
10091    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10092      if (C->getZExtValue() <= 255) {
10093        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10094        break;
10095      }
10096    }
10097    return;
10098  case 'e': {
10099    // 32-bit signed value
10100    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10101      const ConstantInt *CI = C->getConstantIntValue();
10102      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10103                                  C->getSExtValue())) {
10104        // Widen to 64 bits here to get it sign extended.
10105        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10106        break;
10107      }
10108    // FIXME gcc accepts some relocatable values here too, but only in certain
10109    // memory models; it's complicated.
10110    }
10111    return;
10112  }
10113  case 'Z': {
10114    // 32-bit unsigned value
10115    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10116      const ConstantInt *CI = C->getConstantIntValue();
10117      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10118                                  C->getZExtValue())) {
10119        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10120        break;
10121      }
10122    }
10123    // FIXME gcc accepts some relocatable values here too, but only in certain
10124    // memory models; it's complicated.
10125    return;
10126  }
10127  case 'i': {
10128    // Literal immediates are always ok.
10129    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10130      // Widen to 64 bits here to get it sign extended.
10131      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10132      break;
10133    }
10134
10135    // If we are in non-pic codegen mode, we allow the address of a global (with
10136    // an optional displacement) to be used with 'i'.
10137    GlobalAddressSDNode *GA = 0;
10138    int64_t Offset = 0;
10139
10140    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10141    while (1) {
10142      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10143        Offset += GA->getOffset();
10144        break;
10145      } else if (Op.getOpcode() == ISD::ADD) {
10146        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10147          Offset += C->getZExtValue();
10148          Op = Op.getOperand(0);
10149          continue;
10150        }
10151      } else if (Op.getOpcode() == ISD::SUB) {
10152        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10153          Offset += -C->getZExtValue();
10154          Op = Op.getOperand(0);
10155          continue;
10156        }
10157      }
10158
10159      // Otherwise, this isn't something we can handle, reject it.
10160      return;
10161    }
10162
10163    GlobalValue *GV = GA->getGlobal();
10164    // If we require an extra load to get this address, as in PIC mode, we
10165    // can't accept it.
10166    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10167                                                        getTargetMachine())))
10168      return;
10169
10170    if (hasMemory)
10171      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
10172    else
10173      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
10174    Result = Op;
10175    break;
10176  }
10177  }
10178
10179  if (Result.getNode()) {
10180    Ops.push_back(Result);
10181    return;
10182  }
10183  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
10184                                                      Ops, DAG);
10185}
10186
10187std::vector<unsigned> X86TargetLowering::
10188getRegClassForInlineAsmConstraint(const std::string &Constraint,
10189                                  EVT VT) const {
10190  if (Constraint.size() == 1) {
10191    // FIXME: not handling fp-stack yet!
10192    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10193    default: break;  // Unknown constraint letter
10194    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10195      if (Subtarget->is64Bit()) {
10196        if (VT == MVT::i32)
10197          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10198                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10199                                       X86::R10D,X86::R11D,X86::R12D,
10200                                       X86::R13D,X86::R14D,X86::R15D,
10201                                       X86::EBP, X86::ESP, 0);
10202        else if (VT == MVT::i16)
10203          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10204                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10205                                       X86::R10W,X86::R11W,X86::R12W,
10206                                       X86::R13W,X86::R14W,X86::R15W,
10207                                       X86::BP,  X86::SP, 0);
10208        else if (VT == MVT::i8)
10209          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10210                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10211                                       X86::R10B,X86::R11B,X86::R12B,
10212                                       X86::R13B,X86::R14B,X86::R15B,
10213                                       X86::BPL, X86::SPL, 0);
10214
10215        else if (VT == MVT::i64)
10216          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10217                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10218                                       X86::R10, X86::R11, X86::R12,
10219                                       X86::R13, X86::R14, X86::R15,
10220                                       X86::RBP, X86::RSP, 0);
10221
10222        break;
10223      }
10224      // 32-bit fallthrough
10225    case 'Q':   // Q_REGS
10226      if (VT == MVT::i32)
10227        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10228      else if (VT == MVT::i16)
10229        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10230      else if (VT == MVT::i8)
10231        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10232      else if (VT == MVT::i64)
10233        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10234      break;
10235    }
10236  }
10237
10238  return std::vector<unsigned>();
10239}
10240
10241std::pair<unsigned, const TargetRegisterClass*>
10242X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10243                                                EVT VT) const {
10244  // First, see if this is a constraint that directly corresponds to an LLVM
10245  // register class.
10246  if (Constraint.size() == 1) {
10247    // GCC Constraint Letters
10248    switch (Constraint[0]) {
10249    default: break;
10250    case 'r':   // GENERAL_REGS
10251    case 'l':   // INDEX_REGS
10252      if (VT == MVT::i8)
10253        return std::make_pair(0U, X86::GR8RegisterClass);
10254      if (VT == MVT::i16)
10255        return std::make_pair(0U, X86::GR16RegisterClass);
10256      if (VT == MVT::i32 || !Subtarget->is64Bit())
10257        return std::make_pair(0U, X86::GR32RegisterClass);
10258      return std::make_pair(0U, X86::GR64RegisterClass);
10259    case 'R':   // LEGACY_REGS
10260      if (VT == MVT::i8)
10261        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10262      if (VT == MVT::i16)
10263        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10264      if (VT == MVT::i32 || !Subtarget->is64Bit())
10265        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10266      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10267    case 'f':  // FP Stack registers.
10268      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10269      // value to the correct fpstack register class.
10270      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10271        return std::make_pair(0U, X86::RFP32RegisterClass);
10272      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10273        return std::make_pair(0U, X86::RFP64RegisterClass);
10274      return std::make_pair(0U, X86::RFP80RegisterClass);
10275    case 'y':   // MMX_REGS if MMX allowed.
10276      if (!Subtarget->hasMMX()) break;
10277      return std::make_pair(0U, X86::VR64RegisterClass);
10278    case 'Y':   // SSE_REGS if SSE2 allowed
10279      if (!Subtarget->hasSSE2()) break;
10280      // FALL THROUGH.
10281    case 'x':   // SSE_REGS if SSE1 allowed
10282      if (!Subtarget->hasSSE1()) break;
10283
10284      switch (VT.getSimpleVT().SimpleTy) {
10285      default: break;
10286      // Scalar SSE types.
10287      case MVT::f32:
10288      case MVT::i32:
10289        return std::make_pair(0U, X86::FR32RegisterClass);
10290      case MVT::f64:
10291      case MVT::i64:
10292        return std::make_pair(0U, X86::FR64RegisterClass);
10293      // Vector types.
10294      case MVT::v16i8:
10295      case MVT::v8i16:
10296      case MVT::v4i32:
10297      case MVT::v2i64:
10298      case MVT::v4f32:
10299      case MVT::v2f64:
10300        return std::make_pair(0U, X86::VR128RegisterClass);
10301      }
10302      break;
10303    }
10304  }
10305
10306  // Use the default implementation in TargetLowering to convert the register
10307  // constraint into a member of a register class.
10308  std::pair<unsigned, const TargetRegisterClass*> Res;
10309  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10310
10311  // Not found as a standard register?
10312  if (Res.second == 0) {
10313    // Map st(0) -> st(7) -> ST0
10314    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10315        tolower(Constraint[1]) == 's' &&
10316        tolower(Constraint[2]) == 't' &&
10317        Constraint[3] == '(' &&
10318        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10319        Constraint[5] == ')' &&
10320        Constraint[6] == '}') {
10321
10322      Res.first = X86::ST0+Constraint[4]-'0';
10323      Res.second = X86::RFP80RegisterClass;
10324      return Res;
10325    }
10326
10327    // GCC allows "st(0)" to be called just plain "st".
10328    if (StringRef("{st}").equals_lower(Constraint)) {
10329      Res.first = X86::ST0;
10330      Res.second = X86::RFP80RegisterClass;
10331      return Res;
10332    }
10333
10334    // flags -> EFLAGS
10335    if (StringRef("{flags}").equals_lower(Constraint)) {
10336      Res.first = X86::EFLAGS;
10337      Res.second = X86::CCRRegisterClass;
10338      return Res;
10339    }
10340
10341    // 'A' means EAX + EDX.
10342    if (Constraint == "A") {
10343      Res.first = X86::EAX;
10344      Res.second = X86::GR32_ADRegisterClass;
10345      return Res;
10346    }
10347    return Res;
10348  }
10349
10350  // Otherwise, check to see if this is a register class of the wrong value
10351  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10352  // turn into {ax},{dx}.
10353  if (Res.second->hasType(VT))
10354    return Res;   // Correct type already, nothing to do.
10355
10356  // All of the single-register GCC register classes map their values onto
10357  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10358  // really want an 8-bit or 32-bit register, map to the appropriate register
10359  // class and return the appropriate register.
10360  if (Res.second == X86::GR16RegisterClass) {
10361    if (VT == MVT::i8) {
10362      unsigned DestReg = 0;
10363      switch (Res.first) {
10364      default: break;
10365      case X86::AX: DestReg = X86::AL; break;
10366      case X86::DX: DestReg = X86::DL; break;
10367      case X86::CX: DestReg = X86::CL; break;
10368      case X86::BX: DestReg = X86::BL; break;
10369      }
10370      if (DestReg) {
10371        Res.first = DestReg;
10372        Res.second = X86::GR8RegisterClass;
10373      }
10374    } else if (VT == MVT::i32) {
10375      unsigned DestReg = 0;
10376      switch (Res.first) {
10377      default: break;
10378      case X86::AX: DestReg = X86::EAX; break;
10379      case X86::DX: DestReg = X86::EDX; break;
10380      case X86::CX: DestReg = X86::ECX; break;
10381      case X86::BX: DestReg = X86::EBX; break;
10382      case X86::SI: DestReg = X86::ESI; break;
10383      case X86::DI: DestReg = X86::EDI; break;
10384      case X86::BP: DestReg = X86::EBP; break;
10385      case X86::SP: DestReg = X86::ESP; break;
10386      }
10387      if (DestReg) {
10388        Res.first = DestReg;
10389        Res.second = X86::GR32RegisterClass;
10390      }
10391    } else if (VT == MVT::i64) {
10392      unsigned DestReg = 0;
10393      switch (Res.first) {
10394      default: break;
10395      case X86::AX: DestReg = X86::RAX; break;
10396      case X86::DX: DestReg = X86::RDX; break;
10397      case X86::CX: DestReg = X86::RCX; break;
10398      case X86::BX: DestReg = X86::RBX; break;
10399      case X86::SI: DestReg = X86::RSI; break;
10400      case X86::DI: DestReg = X86::RDI; break;
10401      case X86::BP: DestReg = X86::RBP; break;
10402      case X86::SP: DestReg = X86::RSP; break;
10403      }
10404      if (DestReg) {
10405        Res.first = DestReg;
10406        Res.second = X86::GR64RegisterClass;
10407      }
10408    }
10409  } else if (Res.second == X86::FR32RegisterClass ||
10410             Res.second == X86::FR64RegisterClass ||
10411             Res.second == X86::VR128RegisterClass) {
10412    // Handle references to XMM physical registers that got mapped into the
10413    // wrong class.  This can happen with constraints like {xmm0} where the
10414    // target independent register mapper will just pick the first match it can
10415    // find, ignoring the required type.
10416    if (VT == MVT::f32)
10417      Res.second = X86::FR32RegisterClass;
10418    else if (VT == MVT::f64)
10419      Res.second = X86::FR64RegisterClass;
10420    else if (X86::VR128RegisterClass->hasType(VT))
10421      Res.second = X86::VR128RegisterClass;
10422  }
10423
10424  return Res;
10425}
10426