X86ISelLowering.cpp revision 199481
175115Sfenner//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
275115Sfenner//
375115Sfenner//                     The LLVM Compiler Infrastructure
475115Sfenner//
575115Sfenner// This file is distributed under the University of Illinois Open Source
675115Sfenner// License. See LICENSE.TXT for details.
775115Sfenner//
875115Sfenner//===----------------------------------------------------------------------===//
975115Sfenner//
1075115Sfenner// This file defines the interfaces that X86 uses to lower LLVM code into a
1175115Sfenner// selection DAG.
1275115Sfenner//
1375115Sfenner//===----------------------------------------------------------------------===//
1475115Sfenner
1575115Sfenner#include "X86.h"
1675115Sfenner#include "X86InstrBuilder.h"
1775115Sfenner#include "X86ISelLowering.h"
1875115Sfenner#include "X86TargetMachine.h"
1975115Sfenner#include "X86TargetObjectFile.h"
2075115Sfenner#include "llvm/CallingConv.h"
2175115Sfenner#include "llvm/Constants.h"
2275115Sfenner#include "llvm/DerivedTypes.h"
2375115Sfenner#include "llvm/GlobalAlias.h"
2475115Sfenner#include "llvm/GlobalVariable.h"
2575115Sfenner#include "llvm/Function.h"
2675115Sfenner#include "llvm/Instructions.h"
2775115Sfenner#include "llvm/Intrinsics.h"
28127668Sbms#include "llvm/LLVMContext.h"
29190207Srpaulo#include "llvm/ADT/BitVector.h"
3075115Sfenner#include "llvm/ADT/VectorExtras.h"
3175115Sfenner#include "llvm/CodeGen/MachineFrameInfo.h"
3275115Sfenner#include "llvm/CodeGen/MachineFunction.h"
3375115Sfenner#include "llvm/CodeGen/MachineInstrBuilder.h"
3475115Sfenner#include "llvm/CodeGen/MachineModuleInfo.h"
3575115Sfenner#include "llvm/CodeGen/MachineRegisterInfo.h"
36127668Sbms#include "llvm/CodeGen/PseudoSourceValue.h"
3775115Sfenner#include "llvm/Support/MathExtras.h"
3875115Sfenner#include "llvm/Support/Debug.h"
3975115Sfenner#include "llvm/Support/ErrorHandling.h"
4075115Sfenner#include "llvm/Target/TargetOptions.h"
4175115Sfenner#include "llvm/ADT/SmallSet.h"
4275115Sfenner#include "llvm/ADT/StringExtras.h"
4375115Sfenner#include "llvm/Support/CommandLine.h"
44146773Ssam#include "llvm/Support/raw_ostream.h"
4575115Sfennerusing namespace llvm;
46127668Sbms
47127668Sbmsstatic cl::opt<bool>
48127668SbmsDisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
49127668Sbms
50127668Sbms// Disable16Bit - 16-bit operations typically have a larger encoding than
51127668Sbms// corresponding 32-bit instructions, and 16-bit code is slow on some
52127668Sbms// processors. This is an experimental flag to disable 16-bit operations
53127668Sbms// (which forces them to be Legalized to 32-bit operations).
54127668Sbmsstatic cl::opt<bool>
55127668SbmsDisable16Bit("disable-16bit", cl::Hidden,
56127668Sbms             cl::desc("Disable use of 16-bit instructions"));
57127668Sbms
58127668Sbms// Forward declarations.
59127668Sbmsstatic SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60127668Sbms                       SDValue V2);
61127668Sbms
62127668Sbmsstatic TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63127668Sbms  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
64127668Sbms  default: llvm_unreachable("unknown subtarget type");
65127668Sbms  case X86Subtarget::isDarwin:
66127668Sbms    if (TM.getSubtarget<X86Subtarget>().is64Bit())
67127668Sbms      return new X8664_MachoTargetObjectFile();
68127668Sbms    return new X8632_MachoTargetObjectFile();
69127668Sbms  case X86Subtarget::isELF:
70127668Sbms    return new TargetLoweringObjectFileELF();
71127668Sbms  case X86Subtarget::isMingw:
72127668Sbms  case X86Subtarget::isCygwin:
73127668Sbms  case X86Subtarget::isWindows:
74127668Sbms    return new TargetLoweringObjectFileCOFF();
75127668Sbms  }
76127668Sbms
77127668Sbms}
78127668Sbms
79127668SbmsX86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
80127668Sbms  : TargetLowering(TM, createTLOF(TM)) {
81127668Sbms  Subtarget = &TM.getSubtarget<X86Subtarget>();
82127668Sbms  X86ScalarSSEf64 = Subtarget->hasSSE2();
83127668Sbms  X86ScalarSSEf32 = Subtarget->hasSSE1();
8498524Sfenner  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
8598524Sfenner
86127668Sbms  RegInfo = TM.getRegisterInfo();
8775115Sfenner  TD = getTargetData();
8875115Sfenner
89127668Sbms  // Set up the TargetLowering object.
9075115Sfenner
91127668Sbms  // X86 is weird, it always uses i8 for shift amounts and setcc results.
92127668Sbms  setShiftAmountType(MVT::i8);
9375115Sfenner  setBooleanContents(ZeroOrOneBooleanContent);
94127668Sbms  setSchedulingPreference(SchedulingForRegPressure);
9575115Sfenner  setStackPointerRegisterToSaveRestore(X86StackPtr);
9675115Sfenner
9775115Sfenner  if (Subtarget->isTargetDarwin()) {
9875115Sfenner    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
99127668Sbms    setUseUnderscoreSetJmp(false);
10075115Sfenner    setUseUnderscoreLongJmp(false);
101127668Sbms  } else if (Subtarget->isTargetMingw()) {
102127668Sbms    // MS runtime is weird: it exports _setjmp, but longjmp!
103127668Sbms    setUseUnderscoreSetJmp(true);
104127668Sbms    setUseUnderscoreLongJmp(false);
105127668Sbms  } else {
106127668Sbms    setUseUnderscoreSetJmp(true);
10775115Sfenner    setUseUnderscoreLongJmp(true);
108127668Sbms  }
10975115Sfenner
110127668Sbms  // Set up the register classes.
111127668Sbms  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
112127668Sbms  if (!Disable16Bit)
113127668Sbms    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114127668Sbms  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115127668Sbms  if (Subtarget->is64Bit())
11675115Sfenner    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117127668Sbms
11898524Sfenner  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
11975115Sfenner
120127668Sbms  // We don't accept any truncstore of integer registers.
121127668Sbms  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122127668Sbms  if (!Disable16Bit)
123127668Sbms    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
124127668Sbms  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
125127668Sbms  if (!Disable16Bit)
126127668Sbms    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
127127668Sbms  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
128127668Sbms  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
129127668Sbms
130127668Sbms  // SETOEQ and SETUNE require checking two conditions.
131127668Sbms  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
132127668Sbms  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
133127668Sbms  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
134127668Sbms  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
135127668Sbms  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
13698524Sfenner  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
137127668Sbms
138127668Sbms  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
139127668Sbms  // operation.
14098524Sfenner  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
141127668Sbms  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
142127668Sbms  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
14398524Sfenner
144127668Sbms  if (Subtarget->is64Bit()) {
145127668Sbms    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
146127668Sbms    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
147127668Sbms  } else if (!UseSoftFloat) {
14898524Sfenner    if (X86ScalarSSEf64) {
149127668Sbms      // We have an impenetrably clever algorithm for ui64->double only.
150127668Sbms      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
151127668Sbms    }
152127668Sbms    // We have an algorithm for SSE2, and we turn this into a 64-bit
153127668Sbms    // FILD for other targets.
154127668Sbms    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
155127668Sbms  }
156127668Sbms
15798524Sfenner  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
158127668Sbms  // this operation.
159127668Sbms  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
16098524Sfenner  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
161127668Sbms
162127668Sbms  if (!UseSoftFloat) {
163127668Sbms    // SSE has no i16 to fp conversion, only i32
16498524Sfenner    if (X86ScalarSSEf32) {
165127668Sbms      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
16698524Sfenner      // f32 and f64 cases are Legal, f80 case is not
167127668Sbms      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168127668Sbms    } else {
16998524Sfenner      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
170127668Sbms      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
171127668Sbms    }
17298524Sfenner  } else {
173127668Sbms    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
174127668Sbms    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
17598524Sfenner  }
176127668Sbms
177127668Sbms  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
178127668Sbms  // are Legal, f80 is custom lowered.
179127668Sbms  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
180127668Sbms  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
181127668Sbms
182127668Sbms  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
18398524Sfenner  // this operation.
184127668Sbms  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
185127668Sbms  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
186127668Sbms
187127668Sbms  if (X86ScalarSSEf32) {
188127668Sbms    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
189127668Sbms    // f32 and f64 cases are Legal, f80 case is not
190127668Sbms    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191127668Sbms  } else {
192127668Sbms    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
193127668Sbms    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
194127668Sbms  }
195127668Sbms
196127668Sbms  // Handle FP_TO_UINT by promoting the destination to a larger signed
197127668Sbms  // conversion.
198127668Sbms  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
199127668Sbms  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
200127668Sbms  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
201127668Sbms
202127668Sbms  if (Subtarget->is64Bit()) {
203127668Sbms    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
204127668Sbms    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
205127668Sbms  } else if (!UseSoftFloat) {
206127668Sbms    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
207127668Sbms      // Expand FP_TO_UINT into a select.
208127668Sbms      // FIXME: We would like to use a Custom expander here eventually to do
209127668Sbms      // the optimal thing for SSE vs. the default expansion in the legalizer.
210127668Sbms      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
211127668Sbms    else
21298524Sfenner      // With SSE3 we can use fisttpll to convert to a signed i64; without
21398524Sfenner      // SSE, we're stuck with a fistpll.
21498524Sfenner      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
215127668Sbms  }
21675115Sfenner
217127668Sbms  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
218127668Sbms  if (!X86ScalarSSEf64) {
21998524Sfenner    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
22098524Sfenner    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
22198524Sfenner  }
22298524Sfenner
22375115Sfenner  // Scalar integer divide and remainder are lowered to use operations that
22475115Sfenner  // produce two results, to match the available instructions. This exposes
22598524Sfenner  // the two-result form to trivial CSE, which is able to combine x/y and x%y
22698524Sfenner  // into a single instruction.
22798524Sfenner  //
22898524Sfenner  // Scalar integer multiply-high is also lowered to use two-result
22998524Sfenner  // operations, to match the available instructions. However, plain multiply
23098524Sfenner  // (low) operations are left as Legal, as there are single-result
23198524Sfenner  // instructions for this in x86. Using the two-result multiply instructions
23298524Sfenner  // when both high and low results are needed must be arranged by dagcombine.
23398524Sfenner  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
23498524Sfenner  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
23598524Sfenner  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
23698524Sfenner  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
23798524Sfenner  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
23875115Sfenner  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
23998524Sfenner  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
24098524Sfenner  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
24198524Sfenner  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
24298524Sfenner  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
24398524Sfenner  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
24498524Sfenner  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
24598524Sfenner  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
24675115Sfenner  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
247127668Sbms  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
24898524Sfenner  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
24998524Sfenner  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
25075115Sfenner  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
25198524Sfenner  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
252127668Sbms  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
25398524Sfenner  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
25498524Sfenner  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
25598524Sfenner  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
25698524Sfenner  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
25798524Sfenner
25875115Sfenner  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
259127668Sbms  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
26098524Sfenner  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
26198524Sfenner  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
26298524Sfenner  if (Subtarget->is64Bit())
26375115Sfenner    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
264146773Ssam  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
26598524Sfenner  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
26698524Sfenner  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
26798524Sfenner  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
26898524Sfenner  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
26998524Sfenner  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
27098524Sfenner  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
27198524Sfenner  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
272127668Sbms
27398524Sfenner  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
27498524Sfenner  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
275127668Sbms  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
276127668Sbms  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
277127668Sbms  if (Disable16Bit) {
27898524Sfenner    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
27975115Sfenner    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
28098524Sfenner  } else {
28198524Sfenner    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
28298524Sfenner    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
28398524Sfenner  }
28498524Sfenner  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
28598524Sfenner  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
28698524Sfenner  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
28798524Sfenner  if (Subtarget->is64Bit()) {
28898524Sfenner    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289127668Sbms    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290127668Sbms    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
29198524Sfenner  }
29298524Sfenner
29398524Sfenner  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294127668Sbms  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295127668Sbms
296127668Sbms  // These should be promoted to a larger select which is supported.
29798524Sfenner  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
29898524Sfenner  // X86 wants to expand cmov itself.
29998524Sfenner  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
30098524Sfenner  if (Disable16Bit)
30198524Sfenner    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
30298524Sfenner  else
30398524Sfenner    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
304127668Sbms  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
30598524Sfenner  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
30698524Sfenner  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
30798524Sfenner  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
30898524Sfenner  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
30998524Sfenner  if (Disable16Bit)
310127668Sbms    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
31198524Sfenner  else
31298524Sfenner    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
31398524Sfenner  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
31498524Sfenner  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
31598524Sfenner  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
316127668Sbms  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
31798524Sfenner  if (Subtarget->is64Bit()) {
31898524Sfenner    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
31998524Sfenner    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
32098524Sfenner  }
32198524Sfenner  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
32275115Sfenner
32398524Sfenner  // Darwin ABI issue.
32498524Sfenner  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
32575115Sfenner  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
32698524Sfenner  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
32798524Sfenner  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
32898524Sfenner  if (Subtarget->is64Bit())
32998524Sfenner    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
33098524Sfenner  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
33175115Sfenner  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
33275115Sfenner  if (Subtarget->is64Bit()) {
33375115Sfenner    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
33498524Sfenner    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
33598524Sfenner    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
33675115Sfenner    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
33798524Sfenner    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
33898524Sfenner  }
33975115Sfenner  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
34098524Sfenner  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
34198524Sfenner  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
34298524Sfenner  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
34398524Sfenner  if (Subtarget->is64Bit()) {
34498524Sfenner    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
34598524Sfenner    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
34698524Sfenner    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
34798524Sfenner  }
34898524Sfenner
34998524Sfenner  if (Subtarget->hasSSE1())
35098524Sfenner    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
35198524Sfenner
35275115Sfenner  if (!Subtarget->hasSSE2())
353127668Sbms    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
354127668Sbms
355127668Sbms  // Expand certain atomics
356127668Sbms  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
357127668Sbms  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
358127668Sbms  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
359127668Sbms  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
360127668Sbms
361127668Sbms  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
362127668Sbms  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
363127668Sbms  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
364127668Sbms  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
365127668Sbms
366127668Sbms  if (!Subtarget->is64Bit()) {
367    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
368    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
374  }
375
376  // Use the default ISD::DBG_STOPPOINT.
377  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
378  // FIXME - use subtarget debug flags
379  if (!Subtarget->isTargetDarwin() &&
380      !Subtarget->isTargetELF() &&
381      !Subtarget->isTargetCygMing()) {
382    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
383    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
384  }
385
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
388  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
389  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
390  if (Subtarget->is64Bit()) {
391    setExceptionPointerRegister(X86::RAX);
392    setExceptionSelectorRegister(X86::RDX);
393  } else {
394    setExceptionPointerRegister(X86::EAX);
395    setExceptionSelectorRegister(X86::EDX);
396  }
397  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
398  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
399
400  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
401
402  setOperationAction(ISD::TRAP, MVT::Other, Legal);
403
404  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
405  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
406  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
407  if (Subtarget->is64Bit()) {
408    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
409    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
410  } else {
411    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
412    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
413  }
414
415  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
416  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
417  if (Subtarget->is64Bit())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
419  if (Subtarget->isTargetCygMing())
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
421  else
422    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
423
424  if (!UseSoftFloat && X86ScalarSSEf64) {
425    // f32 and f64 use SSE.
426    // Set up the FP register classes.
427    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
428    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
429
430    // Use ANDPD to simulate FABS.
431    setOperationAction(ISD::FABS , MVT::f64, Custom);
432    setOperationAction(ISD::FABS , MVT::f32, Custom);
433
434    // Use XORP to simulate FNEG.
435    setOperationAction(ISD::FNEG , MVT::f64, Custom);
436    setOperationAction(ISD::FNEG , MVT::f32, Custom);
437
438    // Use ANDPD and ORPD to simulate FCOPYSIGN.
439    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
440    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
441
442    // We don't support sin/cos/fmod
443    setOperationAction(ISD::FSIN , MVT::f64, Expand);
444    setOperationAction(ISD::FCOS , MVT::f64, Expand);
445    setOperationAction(ISD::FSIN , MVT::f32, Expand);
446    setOperationAction(ISD::FCOS , MVT::f32, Expand);
447
448    // Expand FP immediates into loads from the stack, except for the special
449    // cases we handle.
450    addLegalFPImmediate(APFloat(+0.0)); // xorpd
451    addLegalFPImmediate(APFloat(+0.0f)); // xorps
452  } else if (!UseSoftFloat && X86ScalarSSEf32) {
453    // Use SSE for f32, x87 for f64.
454    // Set up the FP register classes.
455    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
456    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
457
458    // Use ANDPS to simulate FABS.
459    setOperationAction(ISD::FABS , MVT::f32, Custom);
460
461    // Use XORP to simulate FNEG.
462    setOperationAction(ISD::FNEG , MVT::f32, Custom);
463
464    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
465
466    // Use ANDPS and ORPS to simulate FCOPYSIGN.
467    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
468    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
469
470    // We don't support sin/cos/fmod
471    setOperationAction(ISD::FSIN , MVT::f32, Expand);
472    setOperationAction(ISD::FCOS , MVT::f32, Expand);
473
474    // Special cases we handle for FP constants.
475    addLegalFPImmediate(APFloat(+0.0f)); // xorps
476    addLegalFPImmediate(APFloat(+0.0)); // FLD0
477    addLegalFPImmediate(APFloat(+1.0)); // FLD1
478    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
479    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
480
481    if (!UnsafeFPMath) {
482      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
483      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
484    }
485  } else if (!UseSoftFloat) {
486    // f32 and f64 in x87.
487    // Set up the FP register classes.
488    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
489    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
490
491    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
492    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
493    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
494    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
495
496    if (!UnsafeFPMath) {
497      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
498      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
499    }
500    addLegalFPImmediate(APFloat(+0.0)); // FLD0
501    addLegalFPImmediate(APFloat(+1.0)); // FLD1
502    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
503    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
504    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
505    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
506    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
507    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
508  }
509
510  // Long double always uses X87.
511  if (!UseSoftFloat) {
512    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
513    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
514    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
515    {
516      bool ignored;
517      APFloat TmpFlt(+0.0);
518      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
519                     &ignored);
520      addLegalFPImmediate(TmpFlt);  // FLD0
521      TmpFlt.changeSign();
522      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
523      APFloat TmpFlt2(+1.0);
524      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
525                      &ignored);
526      addLegalFPImmediate(TmpFlt2);  // FLD1
527      TmpFlt2.changeSign();
528      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
529    }
530
531    if (!UnsafeFPMath) {
532      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
533      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
534    }
535  }
536
537  // Always use a library call for pow.
538  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
539  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
540  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
541
542  setOperationAction(ISD::FLOG, MVT::f80, Expand);
543  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
544  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
545  setOperationAction(ISD::FEXP, MVT::f80, Expand);
546  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
547
548  // First set operation action for all vector types to either promote
549  // (for widening) or expand (for scalarization). Then we will selectively
550  // turn on ones that can be effectively codegen'd.
551  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
552       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
553    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
568    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
569    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
601  }
602
603  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
604  // with -msoft-float, disable use of MMX as well.
605  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
606    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
607    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
608    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
609    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
610    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
611
612    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
613    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
614    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
615    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
616
617    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
618    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
619    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
620    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
621
622    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
623    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
624
625    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
626    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
627    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
628    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
629    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
630    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
631    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
632
633    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
634    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
635    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
636    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
637    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
638    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
639    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
640
641    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
642    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
643    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
644    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
645    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
646    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
647    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
648
649    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
650    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
651    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
652    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
653    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
654    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
655    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
656    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
657    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
658
659    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
661    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
662    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
663    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
664
665    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
666    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
667    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
668    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
669
670    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
671    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
672    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
673    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
674
675    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
676
677    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
678    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
679    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
680    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
681    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
682    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
683    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
684    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
685    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
686  }
687
688  if (!UseSoftFloat && Subtarget->hasSSE1()) {
689    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
690
691    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
692    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
693    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
694    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
695    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
696    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
697    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
698    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
699    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
700    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
701    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
703  }
704
705  if (!UseSoftFloat && Subtarget->hasSSE2()) {
706    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
707
708    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
709    // registers cannot be used even for integer operations.
710    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
711    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
712    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
713    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
714
715    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
716    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
717    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
718    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
719    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
720    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
721    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
722    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
723    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
724    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
725    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
726    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
727    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
728    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
729    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
730    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
731
732    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
733    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
734    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
735    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
736
737    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
738    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
739    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
740    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
741    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
742
743    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
744    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
745      EVT VT = (MVT::SimpleValueType)i;
746      // Do not attempt to custom lower non-power-of-2 vectors
747      if (!isPowerOf2_32(VT.getVectorNumElements()))
748        continue;
749      // Do not attempt to custom lower non-128-bit vectors
750      if (!VT.is128BitVector())
751        continue;
752      setOperationAction(ISD::BUILD_VECTOR,
753                         VT.getSimpleVT().SimpleTy, Custom);
754      setOperationAction(ISD::VECTOR_SHUFFLE,
755                         VT.getSimpleVT().SimpleTy, Custom);
756      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
757                         VT.getSimpleVT().SimpleTy, Custom);
758    }
759
760    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
761    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
762    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
763    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
764    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
765    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
766
767    if (Subtarget->is64Bit()) {
768      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
769      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
770    }
771
772    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
773    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
774      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
775      EVT VT = SVT;
776
777      // Do not attempt to promote non-128-bit vectors
778      if (!VT.is128BitVector()) {
779        continue;
780      }
781      setOperationAction(ISD::AND,    SVT, Promote);
782      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
783      setOperationAction(ISD::OR,     SVT, Promote);
784      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
785      setOperationAction(ISD::XOR,    SVT, Promote);
786      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
787      setOperationAction(ISD::LOAD,   SVT, Promote);
788      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
789      setOperationAction(ISD::SELECT, SVT, Promote);
790      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
791    }
792
793    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
794
795    // Custom lower v2i64 and v2f64 selects.
796    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
797    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
798    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
799    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
800
801    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
802    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
803    if (!DisableMMX && Subtarget->hasMMX()) {
804      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
805      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
806    }
807  }
808
809  if (Subtarget->hasSSE41()) {
810    // FIXME: Do we need to handle scalar-to-vector here?
811    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
812
813    // i8 and i16 vectors are custom , because the source register and source
814    // source memory operand types are not the same width.  f32 vectors are
815    // custom since the immediate controlling the insert encodes additional
816    // information.
817    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
818    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
819    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
820    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
821
822    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
824    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
825    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
826
827    if (Subtarget->is64Bit()) {
828      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
829      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
830    }
831  }
832
833  if (Subtarget->hasSSE42()) {
834    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
835  }
836
837  if (!UseSoftFloat && Subtarget->hasAVX()) {
838    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
839    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
840    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
841    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
842
843    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
844    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
845    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
846    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
847    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
848    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
849    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
850    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
851    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
852    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
853    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
854    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
855    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
856    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
857    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
858
859    // Operations to consider commented out -v16i16 v32i8
860    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
861    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
862    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
863    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
864    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
865    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
866    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
867    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
868    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
869    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
870    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
871    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
872    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
873    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
874
875    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
876    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
877    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
878    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
879
880    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
881    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
882    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
883    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
884    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
885
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
887    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
888    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
889    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
890    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
891    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
892
893#if 0
894    // Not sure we want to do this since there are no 256-bit integer
895    // operations in AVX
896
897    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
898    // This includes 256-bit vectors
899    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
900      EVT VT = (MVT::SimpleValueType)i;
901
902      // Do not attempt to custom lower non-power-of-2 vectors
903      if (!isPowerOf2_32(VT.getVectorNumElements()))
904        continue;
905
906      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
907      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
908      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
909    }
910
911    if (Subtarget->is64Bit()) {
912      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
913      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
914    }
915#endif
916
917#if 0
918    // Not sure we want to do this since there are no 256-bit integer
919    // operations in AVX
920
921    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
922    // Including 256-bit vectors
923    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
924      EVT VT = (MVT::SimpleValueType)i;
925
926      if (!VT.is256BitVector()) {
927        continue;
928      }
929      setOperationAction(ISD::AND,    VT, Promote);
930      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
931      setOperationAction(ISD::OR,     VT, Promote);
932      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
933      setOperationAction(ISD::XOR,    VT, Promote);
934      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
935      setOperationAction(ISD::LOAD,   VT, Promote);
936      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
937      setOperationAction(ISD::SELECT, VT, Promote);
938      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
939    }
940
941    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
942#endif
943  }
944
945  // We want to custom lower some of our intrinsics.
946  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
947
948  // Add/Sub/Mul with overflow operations are custom lowered.
949  setOperationAction(ISD::SADDO, MVT::i32, Custom);
950  setOperationAction(ISD::SADDO, MVT::i64, Custom);
951  setOperationAction(ISD::UADDO, MVT::i32, Custom);
952  setOperationAction(ISD::UADDO, MVT::i64, Custom);
953  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
954  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
955  setOperationAction(ISD::USUBO, MVT::i32, Custom);
956  setOperationAction(ISD::USUBO, MVT::i64, Custom);
957  setOperationAction(ISD::SMULO, MVT::i32, Custom);
958  setOperationAction(ISD::SMULO, MVT::i64, Custom);
959
960  if (!Subtarget->is64Bit()) {
961    // These libcalls are not available in 32-bit.
962    setLibcallName(RTLIB::SHL_I128, 0);
963    setLibcallName(RTLIB::SRL_I128, 0);
964    setLibcallName(RTLIB::SRA_I128, 0);
965  }
966
967  // We have target-specific dag combine patterns for the following nodes:
968  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
969  setTargetDAGCombine(ISD::BUILD_VECTOR);
970  setTargetDAGCombine(ISD::SELECT);
971  setTargetDAGCombine(ISD::SHL);
972  setTargetDAGCombine(ISD::SRA);
973  setTargetDAGCombine(ISD::SRL);
974  setTargetDAGCombine(ISD::STORE);
975  setTargetDAGCombine(ISD::MEMBARRIER);
976  if (Subtarget->is64Bit())
977    setTargetDAGCombine(ISD::MUL);
978
979  computeRegisterProperties();
980
981  // FIXME: These should be based on subtarget info. Plus, the values should
982  // be smaller when we are in optimizing for size mode.
983  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
984  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
985  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
986  setPrefLoopAlignment(16);
987  benefitFromCodePlacementOpt = true;
988}
989
990
991MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
992  return MVT::i8;
993}
994
995
996/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
997/// the desired ByVal argument alignment.
998static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
999  if (MaxAlign == 16)
1000    return;
1001  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1002    if (VTy->getBitWidth() == 128)
1003      MaxAlign = 16;
1004  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1005    unsigned EltAlign = 0;
1006    getMaxByValAlign(ATy->getElementType(), EltAlign);
1007    if (EltAlign > MaxAlign)
1008      MaxAlign = EltAlign;
1009  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1010    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1011      unsigned EltAlign = 0;
1012      getMaxByValAlign(STy->getElementType(i), EltAlign);
1013      if (EltAlign > MaxAlign)
1014        MaxAlign = EltAlign;
1015      if (MaxAlign == 16)
1016        break;
1017    }
1018  }
1019  return;
1020}
1021
1022/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1023/// function arguments in the caller parameter area. For X86, aggregates
1024/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1025/// are at 4-byte boundaries.
1026unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1027  if (Subtarget->is64Bit()) {
1028    // Max of 8 and alignment of type.
1029    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1030    if (TyAlign > 8)
1031      return TyAlign;
1032    return 8;
1033  }
1034
1035  unsigned Align = 4;
1036  if (Subtarget->hasSSE1())
1037    getMaxByValAlign(Ty, Align);
1038  return Align;
1039}
1040
1041/// getOptimalMemOpType - Returns the target specific optimal type for load
1042/// and store operations as a result of memset, memcpy, and memmove
1043/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1044/// determining it.
1045EVT
1046X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1047                                       bool isSrcConst, bool isSrcStr,
1048                                       SelectionDAG &DAG) const {
1049  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1050  // linux.  This is because the stack realignment code can't handle certain
1051  // cases like PR2962.  This should be removed when PR2962 is fixed.
1052  const Function *F = DAG.getMachineFunction().getFunction();
1053  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1054  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1055    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1056      return MVT::v4i32;
1057    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1058      return MVT::v4f32;
1059  }
1060  if (Subtarget->is64Bit() && Size >= 8)
1061    return MVT::i64;
1062  return MVT::i32;
1063}
1064
1065/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1066/// jumptable.
1067SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1068                                                      SelectionDAG &DAG) const {
1069  if (usesGlobalOffsetTable())
1070    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1071  if (!Subtarget->is64Bit())
1072    // This doesn't have DebugLoc associated with it, but is not really the
1073    // same as a Register.
1074    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1075                       getPointerTy());
1076  return Table;
1077}
1078
1079/// getFunctionAlignment - Return the Log2 alignment of this function.
1080unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1081  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1082}
1083
1084//===----------------------------------------------------------------------===//
1085//               Return Value Calling Convention Implementation
1086//===----------------------------------------------------------------------===//
1087
1088#include "X86GenCallingConv.inc"
1089
1090bool
1091X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1092                        const SmallVectorImpl<EVT> &OutTys,
1093                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1094                        SelectionDAG &DAG) {
1095  SmallVector<CCValAssign, 16> RVLocs;
1096  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1097                 RVLocs, *DAG.getContext());
1098  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1099}
1100
1101SDValue
1102X86TargetLowering::LowerReturn(SDValue Chain,
1103                               CallingConv::ID CallConv, bool isVarArg,
1104                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1105                               DebugLoc dl, SelectionDAG &DAG) {
1106
1107  SmallVector<CCValAssign, 16> RVLocs;
1108  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1109                 RVLocs, *DAG.getContext());
1110  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1111
1112  // If this is the first return lowered for this function, add the regs to the
1113  // liveout set for the function.
1114  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1115    for (unsigned i = 0; i != RVLocs.size(); ++i)
1116      if (RVLocs[i].isRegLoc())
1117        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1118  }
1119
1120  SDValue Flag;
1121
1122  SmallVector<SDValue, 6> RetOps;
1123  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1124  // Operand #1 = Bytes To Pop
1125  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1126
1127  // Copy the result values into the output registers.
1128  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1129    CCValAssign &VA = RVLocs[i];
1130    assert(VA.isRegLoc() && "Can only return in registers!");
1131    SDValue ValToCopy = Outs[i].Val;
1132
1133    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1134    // the RET instruction and handled by the FP Stackifier.
1135    if (VA.getLocReg() == X86::ST0 ||
1136        VA.getLocReg() == X86::ST1) {
1137      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1138      // change the value to the FP stack register class.
1139      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1140        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1141      RetOps.push_back(ValToCopy);
1142      // Don't emit a copytoreg.
1143      continue;
1144    }
1145
1146    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1147    // which is returned in RAX / RDX.
1148    if (Subtarget->is64Bit()) {
1149      EVT ValVT = ValToCopy.getValueType();
1150      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1151        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1152        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1153          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1154      }
1155    }
1156
1157    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1158    Flag = Chain.getValue(1);
1159  }
1160
1161  // The x86-64 ABI for returning structs by value requires that we copy
1162  // the sret argument into %rax for the return. We saved the argument into
1163  // a virtual register in the entry block, so now we copy the value out
1164  // and into %rax.
1165  if (Subtarget->is64Bit() &&
1166      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1167    MachineFunction &MF = DAG.getMachineFunction();
1168    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1169    unsigned Reg = FuncInfo->getSRetReturnReg();
1170    if (!Reg) {
1171      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1172      FuncInfo->setSRetReturnReg(Reg);
1173    }
1174    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1175
1176    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1177    Flag = Chain.getValue(1);
1178
1179    // RAX now acts like a return value.
1180    MF.getRegInfo().addLiveOut(X86::RAX);
1181  }
1182
1183  RetOps[0] = Chain;  // Update chain.
1184
1185  // Add the flag if we have it.
1186  if (Flag.getNode())
1187    RetOps.push_back(Flag);
1188
1189  return DAG.getNode(X86ISD::RET_FLAG, dl,
1190                     MVT::Other, &RetOps[0], RetOps.size());
1191}
1192
1193/// LowerCallResult - Lower the result values of a call into the
1194/// appropriate copies out of appropriate physical registers.
1195///
1196SDValue
1197X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1198                                   CallingConv::ID CallConv, bool isVarArg,
1199                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1200                                   DebugLoc dl, SelectionDAG &DAG,
1201                                   SmallVectorImpl<SDValue> &InVals) {
1202
1203  // Assign locations to each value returned by this call.
1204  SmallVector<CCValAssign, 16> RVLocs;
1205  bool Is64Bit = Subtarget->is64Bit();
1206  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1207                 RVLocs, *DAG.getContext());
1208  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1209
1210  // Copy all of the result registers out of their specified physreg.
1211  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1212    CCValAssign &VA = RVLocs[i];
1213    EVT CopyVT = VA.getValVT();
1214
1215    // If this is x86-64, and we disabled SSE, we can't return FP values
1216    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1217        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1218      llvm_report_error("SSE register return with SSE disabled");
1219    }
1220
1221    // If this is a call to a function that returns an fp value on the floating
1222    // point stack, but where we prefer to use the value in xmm registers, copy
1223    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1224    if ((VA.getLocReg() == X86::ST0 ||
1225         VA.getLocReg() == X86::ST1) &&
1226        isScalarFPTypeInSSEReg(VA.getValVT())) {
1227      CopyVT = MVT::f80;
1228    }
1229
1230    SDValue Val;
1231    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1232      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1233      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1234        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1235                                   MVT::v2i64, InFlag).getValue(1);
1236        Val = Chain.getValue(0);
1237        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1238                          Val, DAG.getConstant(0, MVT::i64));
1239      } else {
1240        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1241                                   MVT::i64, InFlag).getValue(1);
1242        Val = Chain.getValue(0);
1243      }
1244      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1245    } else {
1246      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1247                                 CopyVT, InFlag).getValue(1);
1248      Val = Chain.getValue(0);
1249    }
1250    InFlag = Chain.getValue(2);
1251
1252    if (CopyVT != VA.getValVT()) {
1253      // Round the F80 the right size, which also moves to the appropriate xmm
1254      // register.
1255      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1256                        // This truncation won't change the value.
1257                        DAG.getIntPtrConstant(1));
1258    }
1259
1260    InVals.push_back(Val);
1261  }
1262
1263  return Chain;
1264}
1265
1266
1267//===----------------------------------------------------------------------===//
1268//                C & StdCall & Fast Calling Convention implementation
1269//===----------------------------------------------------------------------===//
1270//  StdCall calling convention seems to be standard for many Windows' API
1271//  routines and around. It differs from C calling convention just a little:
1272//  callee should clean up the stack, not caller. Symbols should be also
1273//  decorated in some fancy way :) It doesn't support any vector arguments.
1274//  For info on fast calling convention see Fast Calling Convention (tail call)
1275//  implementation LowerX86_32FastCCCallTo.
1276
1277/// CallIsStructReturn - Determines whether a call uses struct return
1278/// semantics.
1279static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1280  if (Outs.empty())
1281    return false;
1282
1283  return Outs[0].Flags.isSRet();
1284}
1285
1286/// ArgsAreStructReturn - Determines whether a function uses struct
1287/// return semantics.
1288static bool
1289ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1290  if (Ins.empty())
1291    return false;
1292
1293  return Ins[0].Flags.isSRet();
1294}
1295
1296/// IsCalleePop - Determines whether the callee is required to pop its
1297/// own arguments. Callee pop is necessary to support tail calls.
1298bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1299  if (IsVarArg)
1300    return false;
1301
1302  switch (CallingConv) {
1303  default:
1304    return false;
1305  case CallingConv::X86_StdCall:
1306    return !Subtarget->is64Bit();
1307  case CallingConv::X86_FastCall:
1308    return !Subtarget->is64Bit();
1309  case CallingConv::Fast:
1310    return PerformTailCallOpt;
1311  }
1312}
1313
1314/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1315/// given CallingConvention value.
1316CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1317  if (Subtarget->is64Bit()) {
1318    if (Subtarget->isTargetWin64())
1319      return CC_X86_Win64_C;
1320    else
1321      return CC_X86_64_C;
1322  }
1323
1324  if (CC == CallingConv::X86_FastCall)
1325    return CC_X86_32_FastCall;
1326  else if (CC == CallingConv::Fast)
1327    return CC_X86_32_FastCC;
1328  else
1329    return CC_X86_32_C;
1330}
1331
1332/// NameDecorationForCallConv - Selects the appropriate decoration to
1333/// apply to a MachineFunction containing a given calling convention.
1334NameDecorationStyle
1335X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
1336  if (CallConv == CallingConv::X86_FastCall)
1337    return FastCall;
1338  else if (CallConv == CallingConv::X86_StdCall)
1339    return StdCall;
1340  return None;
1341}
1342
1343
1344/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1345/// by "Src" to address "Dst" with size and alignment information specified by
1346/// the specific parameter attribute. The copy will be passed as a byval
1347/// function parameter.
1348static SDValue
1349CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1350                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1351                          DebugLoc dl) {
1352  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1353  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1354                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1355}
1356
1357SDValue
1358X86TargetLowering::LowerMemArgument(SDValue Chain,
1359                                    CallingConv::ID CallConv,
1360                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1361                                    DebugLoc dl, SelectionDAG &DAG,
1362                                    const CCValAssign &VA,
1363                                    MachineFrameInfo *MFI,
1364                                    unsigned i) {
1365
1366  // Create the nodes corresponding to a load from this parameter slot.
1367  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1368  bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1369  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1370  EVT ValVT;
1371
1372  // If value is passed by pointer we have address passed instead of the value
1373  // itself.
1374  if (VA.getLocInfo() == CCValAssign::Indirect)
1375    ValVT = VA.getLocVT();
1376  else
1377    ValVT = VA.getValVT();
1378
1379  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1380  // changed with more analysis.
1381  // In case of tail call optimization mark all arguments mutable. Since they
1382  // could be overwritten by lowering of arguments in case of a tail call.
1383  int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1384                                  VA.getLocMemOffset(), isImmutable, false);
1385  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1386  if (Flags.isByVal())
1387    return FIN;
1388  return DAG.getLoad(ValVT, dl, Chain, FIN,
1389                     PseudoSourceValue::getFixedStack(FI), 0);
1390}
1391
1392SDValue
1393X86TargetLowering::LowerFormalArguments(SDValue Chain,
1394                                        CallingConv::ID CallConv,
1395                                        bool isVarArg,
1396                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1397                                        DebugLoc dl,
1398                                        SelectionDAG &DAG,
1399                                        SmallVectorImpl<SDValue> &InVals) {
1400
1401  MachineFunction &MF = DAG.getMachineFunction();
1402  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1403
1404  const Function* Fn = MF.getFunction();
1405  if (Fn->hasExternalLinkage() &&
1406      Subtarget->isTargetCygMing() &&
1407      Fn->getName() == "main")
1408    FuncInfo->setForceFramePointer(true);
1409
1410  // Decorate the function name.
1411  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1412
1413  MachineFrameInfo *MFI = MF.getFrameInfo();
1414  bool Is64Bit = Subtarget->is64Bit();
1415  bool IsWin64 = Subtarget->isTargetWin64();
1416
1417  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1418         "Var args not supported with calling convention fastcc");
1419
1420  // Assign locations to all of the incoming arguments.
1421  SmallVector<CCValAssign, 16> ArgLocs;
1422  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1423                 ArgLocs, *DAG.getContext());
1424  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1425
1426  unsigned LastVal = ~0U;
1427  SDValue ArgValue;
1428  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1429    CCValAssign &VA = ArgLocs[i];
1430    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1431    // places.
1432    assert(VA.getValNo() != LastVal &&
1433           "Don't support value assigned to multiple locs yet");
1434    LastVal = VA.getValNo();
1435
1436    if (VA.isRegLoc()) {
1437      EVT RegVT = VA.getLocVT();
1438      TargetRegisterClass *RC = NULL;
1439      if (RegVT == MVT::i32)
1440        RC = X86::GR32RegisterClass;
1441      else if (Is64Bit && RegVT == MVT::i64)
1442        RC = X86::GR64RegisterClass;
1443      else if (RegVT == MVT::f32)
1444        RC = X86::FR32RegisterClass;
1445      else if (RegVT == MVT::f64)
1446        RC = X86::FR64RegisterClass;
1447      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1448        RC = X86::VR128RegisterClass;
1449      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1450        RC = X86::VR64RegisterClass;
1451      else
1452        llvm_unreachable("Unknown argument type!");
1453
1454      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1455      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1456
1457      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1458      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1459      // right size.
1460      if (VA.getLocInfo() == CCValAssign::SExt)
1461        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1462                               DAG.getValueType(VA.getValVT()));
1463      else if (VA.getLocInfo() == CCValAssign::ZExt)
1464        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1465                               DAG.getValueType(VA.getValVT()));
1466      else if (VA.getLocInfo() == CCValAssign::BCvt)
1467        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1468
1469      if (VA.isExtInLoc()) {
1470        // Handle MMX values passed in XMM regs.
1471        if (RegVT.isVector()) {
1472          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1473                                 ArgValue, DAG.getConstant(0, MVT::i64));
1474          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1475        } else
1476          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1477      }
1478    } else {
1479      assert(VA.isMemLoc());
1480      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1481    }
1482
1483    // If value is passed via pointer - do a load.
1484    if (VA.getLocInfo() == CCValAssign::Indirect)
1485      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1486
1487    InVals.push_back(ArgValue);
1488  }
1489
1490  // The x86-64 ABI for returning structs by value requires that we copy
1491  // the sret argument into %rax for the return. Save the argument into
1492  // a virtual register so that we can access it from the return points.
1493  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1494    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1495    unsigned Reg = FuncInfo->getSRetReturnReg();
1496    if (!Reg) {
1497      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1498      FuncInfo->setSRetReturnReg(Reg);
1499    }
1500    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1501    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1502  }
1503
1504  unsigned StackSize = CCInfo.getNextStackOffset();
1505  // align stack specially for tail calls
1506  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1507    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1508
1509  // If the function takes variable number of arguments, make a frame index for
1510  // the start of the first vararg value... for expansion of llvm.va_start.
1511  if (isVarArg) {
1512    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1513      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1514    }
1515    if (Is64Bit) {
1516      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1517
1518      // FIXME: We should really autogenerate these arrays
1519      static const unsigned GPR64ArgRegsWin64[] = {
1520        X86::RCX, X86::RDX, X86::R8,  X86::R9
1521      };
1522      static const unsigned XMMArgRegsWin64[] = {
1523        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1524      };
1525      static const unsigned GPR64ArgRegs64Bit[] = {
1526        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1527      };
1528      static const unsigned XMMArgRegs64Bit[] = {
1529        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1530        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1531      };
1532      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1533
1534      if (IsWin64) {
1535        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1536        GPR64ArgRegs = GPR64ArgRegsWin64;
1537        XMMArgRegs = XMMArgRegsWin64;
1538      } else {
1539        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1540        GPR64ArgRegs = GPR64ArgRegs64Bit;
1541        XMMArgRegs = XMMArgRegs64Bit;
1542      }
1543      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1544                                                       TotalNumIntRegs);
1545      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1546                                                       TotalNumXMMRegs);
1547
1548      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1549      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1550             "SSE register cannot be used when SSE is disabled!");
1551      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1552             "SSE register cannot be used when SSE is disabled!");
1553      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1554        // Kernel mode asks for SSE to be disabled, so don't push them
1555        // on the stack.
1556        TotalNumXMMRegs = 0;
1557
1558      // For X86-64, if there are vararg parameters that are passed via
1559      // registers, then we must store them to their spots on the stack so they
1560      // may be loaded by deferencing the result of va_next.
1561      VarArgsGPOffset = NumIntRegs * 8;
1562      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1563      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1564                                                 TotalNumXMMRegs * 16, 16,
1565                                                 false);
1566
1567      // Store the integer parameter registers.
1568      SmallVector<SDValue, 8> MemOps;
1569      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1570      unsigned Offset = VarArgsGPOffset;
1571      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1572        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1573                                  DAG.getIntPtrConstant(Offset));
1574        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1575                                     X86::GR64RegisterClass);
1576        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1577        SDValue Store =
1578          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1579                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1580                       Offset);
1581        MemOps.push_back(Store);
1582        Offset += 8;
1583      }
1584
1585      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1586        // Now store the XMM (fp + vector) parameter registers.
1587        SmallVector<SDValue, 11> SaveXMMOps;
1588        SaveXMMOps.push_back(Chain);
1589
1590        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1591        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1592        SaveXMMOps.push_back(ALVal);
1593
1594        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1595        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1596
1597        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1598          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1599                                       X86::VR128RegisterClass);
1600          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1601          SaveXMMOps.push_back(Val);
1602        }
1603        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1604                                     MVT::Other,
1605                                     &SaveXMMOps[0], SaveXMMOps.size()));
1606      }
1607
1608      if (!MemOps.empty())
1609        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1610                            &MemOps[0], MemOps.size());
1611    }
1612  }
1613
1614  // Some CCs need callee pop.
1615  if (IsCalleePop(isVarArg, CallConv)) {
1616    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1617    BytesCallerReserves = 0;
1618  } else {
1619    BytesToPopOnReturn  = 0; // Callee pops nothing.
1620    // If this is an sret function, the return should pop the hidden pointer.
1621    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1622      BytesToPopOnReturn = 4;
1623    BytesCallerReserves = StackSize;
1624  }
1625
1626  if (!Is64Bit) {
1627    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1628    if (CallConv == CallingConv::X86_FastCall)
1629      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1630  }
1631
1632  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1633
1634  return Chain;
1635}
1636
1637SDValue
1638X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1639                                    SDValue StackPtr, SDValue Arg,
1640                                    DebugLoc dl, SelectionDAG &DAG,
1641                                    const CCValAssign &VA,
1642                                    ISD::ArgFlagsTy Flags) {
1643  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1644  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1645  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1646  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1647  if (Flags.isByVal()) {
1648    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1649  }
1650  return DAG.getStore(Chain, dl, Arg, PtrOff,
1651                      PseudoSourceValue::getStack(), LocMemOffset);
1652}
1653
1654/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1655/// optimization is performed and it is required.
1656SDValue
1657X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1658                                           SDValue &OutRetAddr,
1659                                           SDValue Chain,
1660                                           bool IsTailCall,
1661                                           bool Is64Bit,
1662                                           int FPDiff,
1663                                           DebugLoc dl) {
1664  if (!IsTailCall || FPDiff==0) return Chain;
1665
1666  // Adjust the Return address stack slot.
1667  EVT VT = getPointerTy();
1668  OutRetAddr = getReturnAddressFrameIndex(DAG);
1669
1670  // Load the "old" Return address.
1671  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1672  return SDValue(OutRetAddr.getNode(), 1);
1673}
1674
1675/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1676/// optimization is performed and it is required (FPDiff!=0).
1677static SDValue
1678EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1679                         SDValue Chain, SDValue RetAddrFrIdx,
1680                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1681  // Store the return address to the appropriate stack slot.
1682  if (!FPDiff) return Chain;
1683  // Calculate the new stack slot for the return address.
1684  int SlotSize = Is64Bit ? 8 : 4;
1685  int NewReturnAddrFI =
1686    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize,
1687                                         true, false);
1688  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1689  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1690  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1691                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1692  return Chain;
1693}
1694
1695SDValue
1696X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1697                             CallingConv::ID CallConv, bool isVarArg,
1698                             bool isTailCall,
1699                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1700                             const SmallVectorImpl<ISD::InputArg> &Ins,
1701                             DebugLoc dl, SelectionDAG &DAG,
1702                             SmallVectorImpl<SDValue> &InVals) {
1703
1704  MachineFunction &MF = DAG.getMachineFunction();
1705  bool Is64Bit        = Subtarget->is64Bit();
1706  bool IsStructRet    = CallIsStructReturn(Outs);
1707
1708  assert((!isTailCall ||
1709          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1710         "IsEligibleForTailCallOptimization missed a case!");
1711  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1712         "Var args not supported with calling convention fastcc");
1713
1714  // Analyze operands of the call, assigning locations to each operand.
1715  SmallVector<CCValAssign, 16> ArgLocs;
1716  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1717                 ArgLocs, *DAG.getContext());
1718  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1719
1720  // Get a count of how many bytes are to be pushed on the stack.
1721  unsigned NumBytes = CCInfo.getNextStackOffset();
1722  if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1723    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1724
1725  int FPDiff = 0;
1726  if (isTailCall) {
1727    // Lower arguments at fp - stackoffset + fpdiff.
1728    unsigned NumBytesCallerPushed =
1729      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1730    FPDiff = NumBytesCallerPushed - NumBytes;
1731
1732    // Set the delta of movement of the returnaddr stackslot.
1733    // But only set if delta is greater than previous delta.
1734    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1735      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1736  }
1737
1738  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1739
1740  SDValue RetAddrFrIdx;
1741  // Load return adress for tail calls.
1742  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1743                                  FPDiff, dl);
1744
1745  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1746  SmallVector<SDValue, 8> MemOpChains;
1747  SDValue StackPtr;
1748
1749  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1750  // of tail call optimization arguments are handle later.
1751  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1752    CCValAssign &VA = ArgLocs[i];
1753    EVT RegVT = VA.getLocVT();
1754    SDValue Arg = Outs[i].Val;
1755    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1756    bool isByVal = Flags.isByVal();
1757
1758    // Promote the value if needed.
1759    switch (VA.getLocInfo()) {
1760    default: llvm_unreachable("Unknown loc info!");
1761    case CCValAssign::Full: break;
1762    case CCValAssign::SExt:
1763      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1764      break;
1765    case CCValAssign::ZExt:
1766      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1767      break;
1768    case CCValAssign::AExt:
1769      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1770        // Special case: passing MMX values in XMM registers.
1771        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1772        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1773        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1774      } else
1775        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1776      break;
1777    case CCValAssign::BCvt:
1778      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1779      break;
1780    case CCValAssign::Indirect: {
1781      // Store the argument.
1782      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1783      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1784      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1785                           PseudoSourceValue::getFixedStack(FI), 0);
1786      Arg = SpillSlot;
1787      break;
1788    }
1789    }
1790
1791    if (VA.isRegLoc()) {
1792      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1793    } else {
1794      if (!isTailCall || (isTailCall && isByVal)) {
1795        assert(VA.isMemLoc());
1796        if (StackPtr.getNode() == 0)
1797          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1798
1799        MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1800                                               dl, DAG, VA, Flags));
1801      }
1802    }
1803  }
1804
1805  if (!MemOpChains.empty())
1806    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1807                        &MemOpChains[0], MemOpChains.size());
1808
1809  // Build a sequence of copy-to-reg nodes chained together with token chain
1810  // and flag operands which copy the outgoing args into registers.
1811  SDValue InFlag;
1812  // Tail call byval lowering might overwrite argument registers so in case of
1813  // tail call optimization the copies to registers are lowered later.
1814  if (!isTailCall)
1815    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1816      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1817                               RegsToPass[i].second, InFlag);
1818      InFlag = Chain.getValue(1);
1819    }
1820
1821
1822  if (Subtarget->isPICStyleGOT()) {
1823    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1824    // GOT pointer.
1825    if (!isTailCall) {
1826      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1827                               DAG.getNode(X86ISD::GlobalBaseReg,
1828                                           DebugLoc::getUnknownLoc(),
1829                                           getPointerTy()),
1830                               InFlag);
1831      InFlag = Chain.getValue(1);
1832    } else {
1833      // If we are tail calling and generating PIC/GOT style code load the
1834      // address of the callee into ECX. The value in ecx is used as target of
1835      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1836      // for tail calls on PIC/GOT architectures. Normally we would just put the
1837      // address of GOT into ebx and then call target@PLT. But for tail calls
1838      // ebx would be restored (since ebx is callee saved) before jumping to the
1839      // target@PLT.
1840
1841      // Note: The actual moving to ECX is done further down.
1842      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1843      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1844          !G->getGlobal()->hasProtectedVisibility())
1845        Callee = LowerGlobalAddress(Callee, DAG);
1846      else if (isa<ExternalSymbolSDNode>(Callee))
1847        Callee = LowerExternalSymbol(Callee, DAG);
1848    }
1849  }
1850
1851  if (Is64Bit && isVarArg) {
1852    // From AMD64 ABI document:
1853    // For calls that may call functions that use varargs or stdargs
1854    // (prototype-less calls or calls to functions containing ellipsis (...) in
1855    // the declaration) %al is used as hidden argument to specify the number
1856    // of SSE registers used. The contents of %al do not need to match exactly
1857    // the number of registers, but must be an ubound on the number of SSE
1858    // registers used and is in the range 0 - 8 inclusive.
1859
1860    // FIXME: Verify this on Win64
1861    // Count the number of XMM registers allocated.
1862    static const unsigned XMMArgRegs[] = {
1863      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1864      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1865    };
1866    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1867    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1868           && "SSE registers cannot be used when SSE is disabled");
1869
1870    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1871                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1872    InFlag = Chain.getValue(1);
1873  }
1874
1875
1876  // For tail calls lower the arguments to the 'real' stack slot.
1877  if (isTailCall) {
1878    // Force all the incoming stack arguments to be loaded from the stack
1879    // before any new outgoing arguments are stored to the stack, because the
1880    // outgoing stack slots may alias the incoming argument stack slots, and
1881    // the alias isn't otherwise explicit. This is slightly more conservative
1882    // than necessary, because it means that each store effectively depends
1883    // on every argument instead of just those arguments it would clobber.
1884    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1885
1886    SmallVector<SDValue, 8> MemOpChains2;
1887    SDValue FIN;
1888    int FI = 0;
1889    // Do not flag preceeding copytoreg stuff together with the following stuff.
1890    InFlag = SDValue();
1891    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1892      CCValAssign &VA = ArgLocs[i];
1893      if (!VA.isRegLoc()) {
1894        assert(VA.isMemLoc());
1895        SDValue Arg = Outs[i].Val;
1896        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1897        // Create frame index.
1898        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1899        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1900        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1901        FIN = DAG.getFrameIndex(FI, getPointerTy());
1902
1903        if (Flags.isByVal()) {
1904          // Copy relative to framepointer.
1905          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1906          if (StackPtr.getNode() == 0)
1907            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1908                                          getPointerTy());
1909          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1910
1911          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1912                                                           ArgChain,
1913                                                           Flags, DAG, dl));
1914        } else {
1915          // Store relative to framepointer.
1916          MemOpChains2.push_back(
1917            DAG.getStore(ArgChain, dl, Arg, FIN,
1918                         PseudoSourceValue::getFixedStack(FI), 0));
1919        }
1920      }
1921    }
1922
1923    if (!MemOpChains2.empty())
1924      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1925                          &MemOpChains2[0], MemOpChains2.size());
1926
1927    // Copy arguments to their registers.
1928    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1929      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1930                               RegsToPass[i].second, InFlag);
1931      InFlag = Chain.getValue(1);
1932    }
1933    InFlag =SDValue();
1934
1935    // Store the return address to the appropriate stack slot.
1936    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1937                                     FPDiff, dl);
1938  }
1939
1940  bool WasGlobalOrExternal = false;
1941  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
1942    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
1943    // In the 64-bit large code model, we have to make all calls
1944    // through a register, since the call instruction's 32-bit
1945    // pc-relative offset may not be large enough to hold the whole
1946    // address.
1947  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1948    WasGlobalOrExternal = true;
1949    // If the callee is a GlobalAddress node (quite common, every direct call
1950    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
1951    // it.
1952
1953    // We should use extra load for direct calls to dllimported functions in
1954    // non-JIT mode.
1955    GlobalValue *GV = G->getGlobal();
1956    if (!GV->hasDLLImportLinkage()) {
1957      unsigned char OpFlags = 0;
1958
1959      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1960      // external symbols most go through the PLT in PIC mode.  If the symbol
1961      // has hidden or protected visibility, or if it is static or local, then
1962      // we don't need to use the PLT - we can directly call it.
1963      if (Subtarget->isTargetELF() &&
1964          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1965          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1966        OpFlags = X86II::MO_PLT;
1967      } else if (Subtarget->isPICStyleStubAny() &&
1968               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1969               Subtarget->getDarwinVers() < 9) {
1970        // PC-relative references to external symbols should go through $stub,
1971        // unless we're building with the leopard linker or later, which
1972        // automatically synthesizes these stubs.
1973        OpFlags = X86II::MO_DARWIN_STUB;
1974      }
1975
1976      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1977                                          G->getOffset(), OpFlags);
1978    }
1979  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1980    WasGlobalOrExternal = true;
1981    unsigned char OpFlags = 0;
1982
1983    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1984    // symbols should go through the PLT.
1985    if (Subtarget->isTargetELF() &&
1986        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1987      OpFlags = X86II::MO_PLT;
1988    } else if (Subtarget->isPICStyleStubAny() &&
1989             Subtarget->getDarwinVers() < 9) {
1990      // PC-relative references to external symbols should go through $stub,
1991      // unless we're building with the leopard linker or later, which
1992      // automatically synthesizes these stubs.
1993      OpFlags = X86II::MO_DARWIN_STUB;
1994    }
1995
1996    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1997                                         OpFlags);
1998  }
1999
2000  if (isTailCall && !WasGlobalOrExternal) {
2001    unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
2002
2003    Chain = DAG.getCopyToReg(Chain,  dl,
2004                             DAG.getRegister(Opc, getPointerTy()),
2005                             Callee,InFlag);
2006    Callee = DAG.getRegister(Opc, getPointerTy());
2007    // Add register as live out.
2008    MF.getRegInfo().addLiveOut(Opc);
2009  }
2010
2011  // Returns a chain & a flag for retval copy to use.
2012  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2013  SmallVector<SDValue, 8> Ops;
2014
2015  if (isTailCall) {
2016    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2017                           DAG.getIntPtrConstant(0, true), InFlag);
2018    InFlag = Chain.getValue(1);
2019  }
2020
2021  Ops.push_back(Chain);
2022  Ops.push_back(Callee);
2023
2024  if (isTailCall)
2025    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2026
2027  // Add argument registers to the end of the list so that they are known live
2028  // into the call.
2029  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2030    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2031                                  RegsToPass[i].second.getValueType()));
2032
2033  // Add an implicit use GOT pointer in EBX.
2034  if (!isTailCall && Subtarget->isPICStyleGOT())
2035    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2036
2037  // Add an implicit use of AL for x86 vararg functions.
2038  if (Is64Bit && isVarArg)
2039    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2040
2041  if (InFlag.getNode())
2042    Ops.push_back(InFlag);
2043
2044  if (isTailCall) {
2045    // If this is the first return lowered for this function, add the regs
2046    // to the liveout set for the function.
2047    if (MF.getRegInfo().liveout_empty()) {
2048      SmallVector<CCValAssign, 16> RVLocs;
2049      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2050                     *DAG.getContext());
2051      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2052      for (unsigned i = 0; i != RVLocs.size(); ++i)
2053        if (RVLocs[i].isRegLoc())
2054          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2055    }
2056
2057    assert(((Callee.getOpcode() == ISD::Register &&
2058               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2059                cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2060              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2061              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2062             "Expecting an global address, external symbol, or register");
2063
2064    return DAG.getNode(X86ISD::TC_RETURN, dl,
2065                       NodeTys, &Ops[0], Ops.size());
2066  }
2067
2068  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2069  InFlag = Chain.getValue(1);
2070
2071  // Create the CALLSEQ_END node.
2072  unsigned NumBytesForCalleeToPush;
2073  if (IsCalleePop(isVarArg, CallConv))
2074    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2075  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2076    // If this is is a call to a struct-return function, the callee
2077    // pops the hidden struct pointer, so we have to push it back.
2078    // This is common for Darwin/X86, Linux & Mingw32 targets.
2079    NumBytesForCalleeToPush = 4;
2080  else
2081    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2082
2083  // Returns a flag for retval copy to use.
2084  Chain = DAG.getCALLSEQ_END(Chain,
2085                             DAG.getIntPtrConstant(NumBytes, true),
2086                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2087                                                   true),
2088                             InFlag);
2089  InFlag = Chain.getValue(1);
2090
2091  // Handle result values, copying them out of physregs into vregs that we
2092  // return.
2093  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2094                         Ins, dl, DAG, InVals);
2095}
2096
2097
2098//===----------------------------------------------------------------------===//
2099//                Fast Calling Convention (tail call) implementation
2100//===----------------------------------------------------------------------===//
2101
2102//  Like std call, callee cleans arguments, convention except that ECX is
2103//  reserved for storing the tail called function address. Only 2 registers are
2104//  free for argument passing (inreg). Tail call optimization is performed
2105//  provided:
2106//                * tailcallopt is enabled
2107//                * caller/callee are fastcc
2108//  On X86_64 architecture with GOT-style position independent code only local
2109//  (within module) calls are supported at the moment.
2110//  To keep the stack aligned according to platform abi the function
2111//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2112//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2113//  If a tail called function callee has more arguments than the caller the
2114//  caller needs to make sure that there is room to move the RETADDR to. This is
2115//  achieved by reserving an area the size of the argument delta right after the
2116//  original REtADDR, but before the saved framepointer or the spilled registers
2117//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2118//  stack layout:
2119//    arg1
2120//    arg2
2121//    RETADDR
2122//    [ new RETADDR
2123//      move area ]
2124//    (possible EBP)
2125//    ESI
2126//    EDI
2127//    local1 ..
2128
2129/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2130/// for a 16 byte align requirement.
2131unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2132                                                        SelectionDAG& DAG) {
2133  MachineFunction &MF = DAG.getMachineFunction();
2134  const TargetMachine &TM = MF.getTarget();
2135  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2136  unsigned StackAlignment = TFI.getStackAlignment();
2137  uint64_t AlignMask = StackAlignment - 1;
2138  int64_t Offset = StackSize;
2139  uint64_t SlotSize = TD->getPointerSize();
2140  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2141    // Number smaller than 12 so just add the difference.
2142    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2143  } else {
2144    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2145    Offset = ((~AlignMask) & Offset) + StackAlignment +
2146      (StackAlignment-SlotSize);
2147  }
2148  return Offset;
2149}
2150
2151/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2152/// for tail call optimization. Targets which want to do tail call
2153/// optimization should implement this function.
2154bool
2155X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2156                                                     CallingConv::ID CalleeCC,
2157                                                     bool isVarArg,
2158                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2159                                                     SelectionDAG& DAG) const {
2160  MachineFunction &MF = DAG.getMachineFunction();
2161  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2162  return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2163}
2164
2165FastISel *
2166X86TargetLowering::createFastISel(MachineFunction &mf,
2167                                  MachineModuleInfo *mmo,
2168                                  DwarfWriter *dw,
2169                                  DenseMap<const Value *, unsigned> &vm,
2170                                  DenseMap<const BasicBlock *,
2171                                           MachineBasicBlock *> &bm,
2172                                  DenseMap<const AllocaInst *, int> &am
2173#ifndef NDEBUG
2174                                  , SmallSet<Instruction*, 8> &cil
2175#endif
2176                                  ) {
2177  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2178#ifndef NDEBUG
2179                             , cil
2180#endif
2181                             );
2182}
2183
2184
2185//===----------------------------------------------------------------------===//
2186//                           Other Lowering Hooks
2187//===----------------------------------------------------------------------===//
2188
2189
2190SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2191  MachineFunction &MF = DAG.getMachineFunction();
2192  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2193  int ReturnAddrIndex = FuncInfo->getRAIndex();
2194
2195  if (ReturnAddrIndex == 0) {
2196    // Set up a frame object for the return address.
2197    uint64_t SlotSize = TD->getPointerSize();
2198    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2199                                                           true, false);
2200    FuncInfo->setRAIndex(ReturnAddrIndex);
2201  }
2202
2203  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2204}
2205
2206
2207bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2208                                       bool hasSymbolicDisplacement) {
2209  // Offset should fit into 32 bit immediate field.
2210  if (!isInt32(Offset))
2211    return false;
2212
2213  // If we don't have a symbolic displacement - we don't have any extra
2214  // restrictions.
2215  if (!hasSymbolicDisplacement)
2216    return true;
2217
2218  // FIXME: Some tweaks might be needed for medium code model.
2219  if (M != CodeModel::Small && M != CodeModel::Kernel)
2220    return false;
2221
2222  // For small code model we assume that latest object is 16MB before end of 31
2223  // bits boundary. We may also accept pretty large negative constants knowing
2224  // that all objects are in the positive half of address space.
2225  if (M == CodeModel::Small && Offset < 16*1024*1024)
2226    return true;
2227
2228  // For kernel code model we know that all object resist in the negative half
2229  // of 32bits address space. We may not accept negative offsets, since they may
2230  // be just off and we may accept pretty large positive ones.
2231  if (M == CodeModel::Kernel && Offset > 0)
2232    return true;
2233
2234  return false;
2235}
2236
2237/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2238/// specific condition code, returning the condition code and the LHS/RHS of the
2239/// comparison to make.
2240static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2241                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2242  if (!isFP) {
2243    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2244      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2245        // X > -1   -> X == 0, jump !sign.
2246        RHS = DAG.getConstant(0, RHS.getValueType());
2247        return X86::COND_NS;
2248      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2249        // X < 0   -> X == 0, jump on sign.
2250        return X86::COND_S;
2251      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2252        // X < 1   -> X <= 0
2253        RHS = DAG.getConstant(0, RHS.getValueType());
2254        return X86::COND_LE;
2255      }
2256    }
2257
2258    switch (SetCCOpcode) {
2259    default: llvm_unreachable("Invalid integer condition!");
2260    case ISD::SETEQ:  return X86::COND_E;
2261    case ISD::SETGT:  return X86::COND_G;
2262    case ISD::SETGE:  return X86::COND_GE;
2263    case ISD::SETLT:  return X86::COND_L;
2264    case ISD::SETLE:  return X86::COND_LE;
2265    case ISD::SETNE:  return X86::COND_NE;
2266    case ISD::SETULT: return X86::COND_B;
2267    case ISD::SETUGT: return X86::COND_A;
2268    case ISD::SETULE: return X86::COND_BE;
2269    case ISD::SETUGE: return X86::COND_AE;
2270    }
2271  }
2272
2273  // First determine if it is required or is profitable to flip the operands.
2274
2275  // If LHS is a foldable load, but RHS is not, flip the condition.
2276  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2277      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2278    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2279    std::swap(LHS, RHS);
2280  }
2281
2282  switch (SetCCOpcode) {
2283  default: break;
2284  case ISD::SETOLT:
2285  case ISD::SETOLE:
2286  case ISD::SETUGT:
2287  case ISD::SETUGE:
2288    std::swap(LHS, RHS);
2289    break;
2290  }
2291
2292  // On a floating point condition, the flags are set as follows:
2293  // ZF  PF  CF   op
2294  //  0 | 0 | 0 | X > Y
2295  //  0 | 0 | 1 | X < Y
2296  //  1 | 0 | 0 | X == Y
2297  //  1 | 1 | 1 | unordered
2298  switch (SetCCOpcode) {
2299  default: llvm_unreachable("Condcode should be pre-legalized away");
2300  case ISD::SETUEQ:
2301  case ISD::SETEQ:   return X86::COND_E;
2302  case ISD::SETOLT:              // flipped
2303  case ISD::SETOGT:
2304  case ISD::SETGT:   return X86::COND_A;
2305  case ISD::SETOLE:              // flipped
2306  case ISD::SETOGE:
2307  case ISD::SETGE:   return X86::COND_AE;
2308  case ISD::SETUGT:              // flipped
2309  case ISD::SETULT:
2310  case ISD::SETLT:   return X86::COND_B;
2311  case ISD::SETUGE:              // flipped
2312  case ISD::SETULE:
2313  case ISD::SETLE:   return X86::COND_BE;
2314  case ISD::SETONE:
2315  case ISD::SETNE:   return X86::COND_NE;
2316  case ISD::SETUO:   return X86::COND_P;
2317  case ISD::SETO:    return X86::COND_NP;
2318  case ISD::SETOEQ:
2319  case ISD::SETUNE:  return X86::COND_INVALID;
2320  }
2321}
2322
2323/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2324/// code. Current x86 isa includes the following FP cmov instructions:
2325/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2326static bool hasFPCMov(unsigned X86CC) {
2327  switch (X86CC) {
2328  default:
2329    return false;
2330  case X86::COND_B:
2331  case X86::COND_BE:
2332  case X86::COND_E:
2333  case X86::COND_P:
2334  case X86::COND_A:
2335  case X86::COND_AE:
2336  case X86::COND_NE:
2337  case X86::COND_NP:
2338    return true;
2339  }
2340}
2341
2342/// isFPImmLegal - Returns true if the target can instruction select the
2343/// specified FP immediate natively. If false, the legalizer will
2344/// materialize the FP immediate as a load from a constant pool.
2345bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2346  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2347    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2348      return true;
2349  }
2350  return false;
2351}
2352
2353/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2354/// the specified range (L, H].
2355static bool isUndefOrInRange(int Val, int Low, int Hi) {
2356  return (Val < 0) || (Val >= Low && Val < Hi);
2357}
2358
2359/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2360/// specified value.
2361static bool isUndefOrEqual(int Val, int CmpVal) {
2362  if (Val < 0 || Val == CmpVal)
2363    return true;
2364  return false;
2365}
2366
2367/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2368/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2369/// the second operand.
2370static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2371  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2372    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2373  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2374    return (Mask[0] < 2 && Mask[1] < 2);
2375  return false;
2376}
2377
2378bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2379  SmallVector<int, 8> M;
2380  N->getMask(M);
2381  return ::isPSHUFDMask(M, N->getValueType(0));
2382}
2383
2384/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2385/// is suitable for input to PSHUFHW.
2386static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2387  if (VT != MVT::v8i16)
2388    return false;
2389
2390  // Lower quadword copied in order or undef.
2391  for (int i = 0; i != 4; ++i)
2392    if (Mask[i] >= 0 && Mask[i] != i)
2393      return false;
2394
2395  // Upper quadword shuffled.
2396  for (int i = 4; i != 8; ++i)
2397    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2398      return false;
2399
2400  return true;
2401}
2402
2403bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2404  SmallVector<int, 8> M;
2405  N->getMask(M);
2406  return ::isPSHUFHWMask(M, N->getValueType(0));
2407}
2408
2409/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2410/// is suitable for input to PSHUFLW.
2411static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2412  if (VT != MVT::v8i16)
2413    return false;
2414
2415  // Upper quadword copied in order.
2416  for (int i = 4; i != 8; ++i)
2417    if (Mask[i] >= 0 && Mask[i] != i)
2418      return false;
2419
2420  // Lower quadword shuffled.
2421  for (int i = 0; i != 4; ++i)
2422    if (Mask[i] >= 4)
2423      return false;
2424
2425  return true;
2426}
2427
2428bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2429  SmallVector<int, 8> M;
2430  N->getMask(M);
2431  return ::isPSHUFLWMask(M, N->getValueType(0));
2432}
2433
2434/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2435/// is suitable for input to PALIGNR.
2436static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2437                          bool hasSSSE3) {
2438  int i, e = VT.getVectorNumElements();
2439
2440  // Do not handle v2i64 / v2f64 shuffles with palignr.
2441  if (e < 4 || !hasSSSE3)
2442    return false;
2443
2444  for (i = 0; i != e; ++i)
2445    if (Mask[i] >= 0)
2446      break;
2447
2448  // All undef, not a palignr.
2449  if (i == e)
2450    return false;
2451
2452  // Determine if it's ok to perform a palignr with only the LHS, since we
2453  // don't have access to the actual shuffle elements to see if RHS is undef.
2454  bool Unary = Mask[i] < (int)e;
2455  bool NeedsUnary = false;
2456
2457  int s = Mask[i] - i;
2458
2459  // Check the rest of the elements to see if they are consecutive.
2460  for (++i; i != e; ++i) {
2461    int m = Mask[i];
2462    if (m < 0)
2463      continue;
2464
2465    Unary = Unary && (m < (int)e);
2466    NeedsUnary = NeedsUnary || (m < s);
2467
2468    if (NeedsUnary && !Unary)
2469      return false;
2470    if (Unary && m != ((s+i) & (e-1)))
2471      return false;
2472    if (!Unary && m != (s+i))
2473      return false;
2474  }
2475  return true;
2476}
2477
2478bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2479  SmallVector<int, 8> M;
2480  N->getMask(M);
2481  return ::isPALIGNRMask(M, N->getValueType(0), true);
2482}
2483
2484/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2485/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2486static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2487  int NumElems = VT.getVectorNumElements();
2488  if (NumElems != 2 && NumElems != 4)
2489    return false;
2490
2491  int Half = NumElems / 2;
2492  for (int i = 0; i < Half; ++i)
2493    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2494      return false;
2495  for (int i = Half; i < NumElems; ++i)
2496    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2497      return false;
2498
2499  return true;
2500}
2501
2502bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2503  SmallVector<int, 8> M;
2504  N->getMask(M);
2505  return ::isSHUFPMask(M, N->getValueType(0));
2506}
2507
2508/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2509/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2510/// half elements to come from vector 1 (which would equal the dest.) and
2511/// the upper half to come from vector 2.
2512static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2513  int NumElems = VT.getVectorNumElements();
2514
2515  if (NumElems != 2 && NumElems != 4)
2516    return false;
2517
2518  int Half = NumElems / 2;
2519  for (int i = 0; i < Half; ++i)
2520    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2521      return false;
2522  for (int i = Half; i < NumElems; ++i)
2523    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2524      return false;
2525  return true;
2526}
2527
2528static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2529  SmallVector<int, 8> M;
2530  N->getMask(M);
2531  return isCommutedSHUFPMask(M, N->getValueType(0));
2532}
2533
2534/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2535/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2536bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2537  if (N->getValueType(0).getVectorNumElements() != 4)
2538    return false;
2539
2540  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2541  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2542         isUndefOrEqual(N->getMaskElt(1), 7) &&
2543         isUndefOrEqual(N->getMaskElt(2), 2) &&
2544         isUndefOrEqual(N->getMaskElt(3), 3);
2545}
2546
2547/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2548/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2549/// <2, 3, 2, 3>
2550bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2551  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2552
2553  if (NumElems != 4)
2554    return false;
2555
2556  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2557  isUndefOrEqual(N->getMaskElt(1), 3) &&
2558  isUndefOrEqual(N->getMaskElt(2), 2) &&
2559  isUndefOrEqual(N->getMaskElt(3), 3);
2560}
2561
2562/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2563/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2564bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2565  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2566
2567  if (NumElems != 2 && NumElems != 4)
2568    return false;
2569
2570  for (unsigned i = 0; i < NumElems/2; ++i)
2571    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2572      return false;
2573
2574  for (unsigned i = NumElems/2; i < NumElems; ++i)
2575    if (!isUndefOrEqual(N->getMaskElt(i), i))
2576      return false;
2577
2578  return true;
2579}
2580
2581/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2582/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2583bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2584  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2585
2586  if (NumElems != 2 && NumElems != 4)
2587    return false;
2588
2589  for (unsigned i = 0; i < NumElems/2; ++i)
2590    if (!isUndefOrEqual(N->getMaskElt(i), i))
2591      return false;
2592
2593  for (unsigned i = 0; i < NumElems/2; ++i)
2594    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2595      return false;
2596
2597  return true;
2598}
2599
2600/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2601/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2602static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2603                         bool V2IsSplat = false) {
2604  int NumElts = VT.getVectorNumElements();
2605  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2606    return false;
2607
2608  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2609    int BitI  = Mask[i];
2610    int BitI1 = Mask[i+1];
2611    if (!isUndefOrEqual(BitI, j))
2612      return false;
2613    if (V2IsSplat) {
2614      if (!isUndefOrEqual(BitI1, NumElts))
2615        return false;
2616    } else {
2617      if (!isUndefOrEqual(BitI1, j + NumElts))
2618        return false;
2619    }
2620  }
2621  return true;
2622}
2623
2624bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2625  SmallVector<int, 8> M;
2626  N->getMask(M);
2627  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2628}
2629
2630/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2631/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2632static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2633                         bool V2IsSplat = false) {
2634  int NumElts = VT.getVectorNumElements();
2635  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2636    return false;
2637
2638  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2639    int BitI  = Mask[i];
2640    int BitI1 = Mask[i+1];
2641    if (!isUndefOrEqual(BitI, j + NumElts/2))
2642      return false;
2643    if (V2IsSplat) {
2644      if (isUndefOrEqual(BitI1, NumElts))
2645        return false;
2646    } else {
2647      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2648        return false;
2649    }
2650  }
2651  return true;
2652}
2653
2654bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2655  SmallVector<int, 8> M;
2656  N->getMask(M);
2657  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2658}
2659
2660/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2661/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2662/// <0, 0, 1, 1>
2663static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2664  int NumElems = VT.getVectorNumElements();
2665  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2666    return false;
2667
2668  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2669    int BitI  = Mask[i];
2670    int BitI1 = Mask[i+1];
2671    if (!isUndefOrEqual(BitI, j))
2672      return false;
2673    if (!isUndefOrEqual(BitI1, j))
2674      return false;
2675  }
2676  return true;
2677}
2678
2679bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2680  SmallVector<int, 8> M;
2681  N->getMask(M);
2682  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2683}
2684
2685/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2686/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2687/// <2, 2, 3, 3>
2688static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2689  int NumElems = VT.getVectorNumElements();
2690  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2691    return false;
2692
2693  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2694    int BitI  = Mask[i];
2695    int BitI1 = Mask[i+1];
2696    if (!isUndefOrEqual(BitI, j))
2697      return false;
2698    if (!isUndefOrEqual(BitI1, j))
2699      return false;
2700  }
2701  return true;
2702}
2703
2704bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2705  SmallVector<int, 8> M;
2706  N->getMask(M);
2707  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2708}
2709
2710/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2711/// specifies a shuffle of elements that is suitable for input to MOVSS,
2712/// MOVSD, and MOVD, i.e. setting the lowest element.
2713static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2714  if (VT.getVectorElementType().getSizeInBits() < 32)
2715    return false;
2716
2717  int NumElts = VT.getVectorNumElements();
2718
2719  if (!isUndefOrEqual(Mask[0], NumElts))
2720    return false;
2721
2722  for (int i = 1; i < NumElts; ++i)
2723    if (!isUndefOrEqual(Mask[i], i))
2724      return false;
2725
2726  return true;
2727}
2728
2729bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2730  SmallVector<int, 8> M;
2731  N->getMask(M);
2732  return ::isMOVLMask(M, N->getValueType(0));
2733}
2734
2735/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2736/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2737/// element of vector 2 and the other elements to come from vector 1 in order.
2738static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2739                               bool V2IsSplat = false, bool V2IsUndef = false) {
2740  int NumOps = VT.getVectorNumElements();
2741  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2742    return false;
2743
2744  if (!isUndefOrEqual(Mask[0], 0))
2745    return false;
2746
2747  for (int i = 1; i < NumOps; ++i)
2748    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2749          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2750          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2751      return false;
2752
2753  return true;
2754}
2755
2756static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2757                           bool V2IsUndef = false) {
2758  SmallVector<int, 8> M;
2759  N->getMask(M);
2760  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2761}
2762
2763/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2764/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2765bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2766  if (N->getValueType(0).getVectorNumElements() != 4)
2767    return false;
2768
2769  // Expect 1, 1, 3, 3
2770  for (unsigned i = 0; i < 2; ++i) {
2771    int Elt = N->getMaskElt(i);
2772    if (Elt >= 0 && Elt != 1)
2773      return false;
2774  }
2775
2776  bool HasHi = false;
2777  for (unsigned i = 2; i < 4; ++i) {
2778    int Elt = N->getMaskElt(i);
2779    if (Elt >= 0 && Elt != 3)
2780      return false;
2781    if (Elt == 3)
2782      HasHi = true;
2783  }
2784  // Don't use movshdup if it can be done with a shufps.
2785  // FIXME: verify that matching u, u, 3, 3 is what we want.
2786  return HasHi;
2787}
2788
2789/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2790/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2791bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2792  if (N->getValueType(0).getVectorNumElements() != 4)
2793    return false;
2794
2795  // Expect 0, 0, 2, 2
2796  for (unsigned i = 0; i < 2; ++i)
2797    if (N->getMaskElt(i) > 0)
2798      return false;
2799
2800  bool HasHi = false;
2801  for (unsigned i = 2; i < 4; ++i) {
2802    int Elt = N->getMaskElt(i);
2803    if (Elt >= 0 && Elt != 2)
2804      return false;
2805    if (Elt == 2)
2806      HasHi = true;
2807  }
2808  // Don't use movsldup if it can be done with a shufps.
2809  return HasHi;
2810}
2811
2812/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2813/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2814bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2815  int e = N->getValueType(0).getVectorNumElements() / 2;
2816
2817  for (int i = 0; i < e; ++i)
2818    if (!isUndefOrEqual(N->getMaskElt(i), i))
2819      return false;
2820  for (int i = 0; i < e; ++i)
2821    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2822      return false;
2823  return true;
2824}
2825
2826/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2827/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
2828unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2829  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2830  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2831
2832  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2833  unsigned Mask = 0;
2834  for (int i = 0; i < NumOperands; ++i) {
2835    int Val = SVOp->getMaskElt(NumOperands-i-1);
2836    if (Val < 0) Val = 0;
2837    if (Val >= NumOperands) Val -= NumOperands;
2838    Mask |= Val;
2839    if (i != NumOperands - 1)
2840      Mask <<= Shift;
2841  }
2842  return Mask;
2843}
2844
2845/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2846/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
2847unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2848  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2849  unsigned Mask = 0;
2850  // 8 nodes, but we only care about the last 4.
2851  for (unsigned i = 7; i >= 4; --i) {
2852    int Val = SVOp->getMaskElt(i);
2853    if (Val >= 0)
2854      Mask |= (Val - 4);
2855    if (i != 4)
2856      Mask <<= 2;
2857  }
2858  return Mask;
2859}
2860
2861/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2862/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
2863unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2864  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2865  unsigned Mask = 0;
2866  // 8 nodes, but we only care about the first 4.
2867  for (int i = 3; i >= 0; --i) {
2868    int Val = SVOp->getMaskElt(i);
2869    if (Val >= 0)
2870      Mask |= Val;
2871    if (i != 0)
2872      Mask <<= 2;
2873  }
2874  return Mask;
2875}
2876
2877/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
2878/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
2879unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
2880  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2881  EVT VVT = N->getValueType(0);
2882  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
2883  int Val = 0;
2884
2885  unsigned i, e;
2886  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
2887    Val = SVOp->getMaskElt(i);
2888    if (Val >= 0)
2889      break;
2890  }
2891  return (Val - i) * EltSize;
2892}
2893
2894/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2895/// constant +0.0.
2896bool X86::isZeroNode(SDValue Elt) {
2897  return ((isa<ConstantSDNode>(Elt) &&
2898           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2899          (isa<ConstantFPSDNode>(Elt) &&
2900           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2901}
2902
2903/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2904/// their permute mask.
2905static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2906                                    SelectionDAG &DAG) {
2907  EVT VT = SVOp->getValueType(0);
2908  unsigned NumElems = VT.getVectorNumElements();
2909  SmallVector<int, 8> MaskVec;
2910
2911  for (unsigned i = 0; i != NumElems; ++i) {
2912    int idx = SVOp->getMaskElt(i);
2913    if (idx < 0)
2914      MaskVec.push_back(idx);
2915    else if (idx < (int)NumElems)
2916      MaskVec.push_back(idx + NumElems);
2917    else
2918      MaskVec.push_back(idx - NumElems);
2919  }
2920  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2921                              SVOp->getOperand(0), &MaskVec[0]);
2922}
2923
2924/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2925/// the two vector operands have swapped position.
2926static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2927  unsigned NumElems = VT.getVectorNumElements();
2928  for (unsigned i = 0; i != NumElems; ++i) {
2929    int idx = Mask[i];
2930    if (idx < 0)
2931      continue;
2932    else if (idx < (int)NumElems)
2933      Mask[i] = idx + NumElems;
2934    else
2935      Mask[i] = idx - NumElems;
2936  }
2937}
2938
2939/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2940/// match movhlps. The lower half elements should come from upper half of
2941/// V1 (and in order), and the upper half elements should come from the upper
2942/// half of V2 (and in order).
2943static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2944  if (Op->getValueType(0).getVectorNumElements() != 4)
2945    return false;
2946  for (unsigned i = 0, e = 2; i != e; ++i)
2947    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2948      return false;
2949  for (unsigned i = 2; i != 4; ++i)
2950    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2951      return false;
2952  return true;
2953}
2954
2955/// isScalarLoadToVector - Returns true if the node is a scalar load that
2956/// is promoted to a vector. It also returns the LoadSDNode by reference if
2957/// required.
2958static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2959  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2960    return false;
2961  N = N->getOperand(0).getNode();
2962  if (!ISD::isNON_EXTLoad(N))
2963    return false;
2964  if (LD)
2965    *LD = cast<LoadSDNode>(N);
2966  return true;
2967}
2968
2969/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2970/// match movlp{s|d}. The lower half elements should come from lower half of
2971/// V1 (and in order), and the upper half elements should come from the upper
2972/// half of V2 (and in order). And since V1 will become the source of the
2973/// MOVLP, it must be either a vector load or a scalar load to vector.
2974static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2975                               ShuffleVectorSDNode *Op) {
2976  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2977    return false;
2978  // Is V2 is a vector load, don't do this transformation. We will try to use
2979  // load folding shufps op.
2980  if (ISD::isNON_EXTLoad(V2))
2981    return false;
2982
2983  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2984
2985  if (NumElems != 2 && NumElems != 4)
2986    return false;
2987  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2988    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2989      return false;
2990  for (unsigned i = NumElems/2; i != NumElems; ++i)
2991    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2992      return false;
2993  return true;
2994}
2995
2996/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2997/// all the same.
2998static bool isSplatVector(SDNode *N) {
2999  if (N->getOpcode() != ISD::BUILD_VECTOR)
3000    return false;
3001
3002  SDValue SplatValue = N->getOperand(0);
3003  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3004    if (N->getOperand(i) != SplatValue)
3005      return false;
3006  return true;
3007}
3008
3009/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3010/// to an zero vector.
3011/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3012static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3013  SDValue V1 = N->getOperand(0);
3014  SDValue V2 = N->getOperand(1);
3015  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3016  for (unsigned i = 0; i != NumElems; ++i) {
3017    int Idx = N->getMaskElt(i);
3018    if (Idx >= (int)NumElems) {
3019      unsigned Opc = V2.getOpcode();
3020      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3021        continue;
3022      if (Opc != ISD::BUILD_VECTOR ||
3023          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3024        return false;
3025    } else if (Idx >= 0) {
3026      unsigned Opc = V1.getOpcode();
3027      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3028        continue;
3029      if (Opc != ISD::BUILD_VECTOR ||
3030          !X86::isZeroNode(V1.getOperand(Idx)))
3031        return false;
3032    }
3033  }
3034  return true;
3035}
3036
3037/// getZeroVector - Returns a vector of specified type with all zero elements.
3038///
3039static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3040                             DebugLoc dl) {
3041  assert(VT.isVector() && "Expected a vector type");
3042
3043  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3044  // type.  This ensures they get CSE'd.
3045  SDValue Vec;
3046  if (VT.getSizeInBits() == 64) { // MMX
3047    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3048    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3049  } else if (HasSSE2) {  // SSE2
3050    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3051    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3052  } else { // SSE1
3053    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3054    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3055  }
3056  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3057}
3058
3059/// getOnesVector - Returns a vector of specified type with all bits set.
3060///
3061static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3062  assert(VT.isVector() && "Expected a vector type");
3063
3064  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3065  // type.  This ensures they get CSE'd.
3066  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3067  SDValue Vec;
3068  if (VT.getSizeInBits() == 64)  // MMX
3069    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3070  else                                              // SSE
3071    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3072  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3073}
3074
3075
3076/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3077/// that point to V2 points to its first element.
3078static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3079  EVT VT = SVOp->getValueType(0);
3080  unsigned NumElems = VT.getVectorNumElements();
3081
3082  bool Changed = false;
3083  SmallVector<int, 8> MaskVec;
3084  SVOp->getMask(MaskVec);
3085
3086  for (unsigned i = 0; i != NumElems; ++i) {
3087    if (MaskVec[i] > (int)NumElems) {
3088      MaskVec[i] = NumElems;
3089      Changed = true;
3090    }
3091  }
3092  if (Changed)
3093    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3094                                SVOp->getOperand(1), &MaskVec[0]);
3095  return SDValue(SVOp, 0);
3096}
3097
3098/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3099/// operation of specified width.
3100static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3101                       SDValue V2) {
3102  unsigned NumElems = VT.getVectorNumElements();
3103  SmallVector<int, 8> Mask;
3104  Mask.push_back(NumElems);
3105  for (unsigned i = 1; i != NumElems; ++i)
3106    Mask.push_back(i);
3107  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3108}
3109
3110/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3111static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3112                          SDValue V2) {
3113  unsigned NumElems = VT.getVectorNumElements();
3114  SmallVector<int, 8> Mask;
3115  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3116    Mask.push_back(i);
3117    Mask.push_back(i + NumElems);
3118  }
3119  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3120}
3121
3122/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3123static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3124                          SDValue V2) {
3125  unsigned NumElems = VT.getVectorNumElements();
3126  unsigned Half = NumElems/2;
3127  SmallVector<int, 8> Mask;
3128  for (unsigned i = 0; i != Half; ++i) {
3129    Mask.push_back(i + Half);
3130    Mask.push_back(i + NumElems + Half);
3131  }
3132  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3133}
3134
3135/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3136static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3137                            bool HasSSE2) {
3138  if (SV->getValueType(0).getVectorNumElements() <= 4)
3139    return SDValue(SV, 0);
3140
3141  EVT PVT = MVT::v4f32;
3142  EVT VT = SV->getValueType(0);
3143  DebugLoc dl = SV->getDebugLoc();
3144  SDValue V1 = SV->getOperand(0);
3145  int NumElems = VT.getVectorNumElements();
3146  int EltNo = SV->getSplatIndex();
3147
3148  // unpack elements to the correct location
3149  while (NumElems > 4) {
3150    if (EltNo < NumElems/2) {
3151      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3152    } else {
3153      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3154      EltNo -= NumElems/2;
3155    }
3156    NumElems >>= 1;
3157  }
3158
3159  // Perform the splat.
3160  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3161  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3162  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3163  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3164}
3165
3166/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3167/// vector of zero or undef vector.  This produces a shuffle where the low
3168/// element of V2 is swizzled into the zero/undef vector, landing at element
3169/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3170static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3171                                             bool isZero, bool HasSSE2,
3172                                             SelectionDAG &DAG) {
3173  EVT VT = V2.getValueType();
3174  SDValue V1 = isZero
3175    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3176  unsigned NumElems = VT.getVectorNumElements();
3177  SmallVector<int, 16> MaskVec;
3178  for (unsigned i = 0; i != NumElems; ++i)
3179    // If this is the insertion idx, put the low elt of V2 here.
3180    MaskVec.push_back(i == Idx ? NumElems : i);
3181  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3182}
3183
3184/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3185/// a shuffle that is zero.
3186static
3187unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3188                                  bool Low, SelectionDAG &DAG) {
3189  unsigned NumZeros = 0;
3190  for (int i = 0; i < NumElems; ++i) {
3191    unsigned Index = Low ? i : NumElems-i-1;
3192    int Idx = SVOp->getMaskElt(Index);
3193    if (Idx < 0) {
3194      ++NumZeros;
3195      continue;
3196    }
3197    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3198    if (Elt.getNode() && X86::isZeroNode(Elt))
3199      ++NumZeros;
3200    else
3201      break;
3202  }
3203  return NumZeros;
3204}
3205
3206/// isVectorShift - Returns true if the shuffle can be implemented as a
3207/// logical left or right shift of a vector.
3208/// FIXME: split into pslldqi, psrldqi, palignr variants.
3209static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3210                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3211  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3212
3213  isLeft = true;
3214  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3215  if (!NumZeros) {
3216    isLeft = false;
3217    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3218    if (!NumZeros)
3219      return false;
3220  }
3221  bool SeenV1 = false;
3222  bool SeenV2 = false;
3223  for (int i = NumZeros; i < NumElems; ++i) {
3224    int Val = isLeft ? (i - NumZeros) : i;
3225    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3226    if (Idx < 0)
3227      continue;
3228    if (Idx < NumElems)
3229      SeenV1 = true;
3230    else {
3231      Idx -= NumElems;
3232      SeenV2 = true;
3233    }
3234    if (Idx != Val)
3235      return false;
3236  }
3237  if (SeenV1 && SeenV2)
3238    return false;
3239
3240  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3241  ShAmt = NumZeros;
3242  return true;
3243}
3244
3245
3246/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3247///
3248static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3249                                       unsigned NumNonZero, unsigned NumZero,
3250                                       SelectionDAG &DAG, TargetLowering &TLI) {
3251  if (NumNonZero > 8)
3252    return SDValue();
3253
3254  DebugLoc dl = Op.getDebugLoc();
3255  SDValue V(0, 0);
3256  bool First = true;
3257  for (unsigned i = 0; i < 16; ++i) {
3258    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3259    if (ThisIsNonZero && First) {
3260      if (NumZero)
3261        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3262      else
3263        V = DAG.getUNDEF(MVT::v8i16);
3264      First = false;
3265    }
3266
3267    if ((i & 1) != 0) {
3268      SDValue ThisElt(0, 0), LastElt(0, 0);
3269      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3270      if (LastIsNonZero) {
3271        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3272                              MVT::i16, Op.getOperand(i-1));
3273      }
3274      if (ThisIsNonZero) {
3275        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3276        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3277                              ThisElt, DAG.getConstant(8, MVT::i8));
3278        if (LastIsNonZero)
3279          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3280      } else
3281        ThisElt = LastElt;
3282
3283      if (ThisElt.getNode())
3284        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3285                        DAG.getIntPtrConstant(i/2));
3286    }
3287  }
3288
3289  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3290}
3291
3292/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3293///
3294static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3295                                       unsigned NumNonZero, unsigned NumZero,
3296                                       SelectionDAG &DAG, TargetLowering &TLI) {
3297  if (NumNonZero > 4)
3298    return SDValue();
3299
3300  DebugLoc dl = Op.getDebugLoc();
3301  SDValue V(0, 0);
3302  bool First = true;
3303  for (unsigned i = 0; i < 8; ++i) {
3304    bool isNonZero = (NonZeros & (1 << i)) != 0;
3305    if (isNonZero) {
3306      if (First) {
3307        if (NumZero)
3308          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3309        else
3310          V = DAG.getUNDEF(MVT::v8i16);
3311        First = false;
3312      }
3313      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3314                      MVT::v8i16, V, Op.getOperand(i),
3315                      DAG.getIntPtrConstant(i));
3316    }
3317  }
3318
3319  return V;
3320}
3321
3322/// getVShift - Return a vector logical shift node.
3323///
3324static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3325                         unsigned NumBits, SelectionDAG &DAG,
3326                         const TargetLowering &TLI, DebugLoc dl) {
3327  bool isMMX = VT.getSizeInBits() == 64;
3328  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3329  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3330  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3331  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3332                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3333                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3334}
3335
3336SDValue
3337X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3338  DebugLoc dl = Op.getDebugLoc();
3339  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3340  if (ISD::isBuildVectorAllZeros(Op.getNode())
3341      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3342    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3343    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3344    // eliminated on x86-32 hosts.
3345    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3346      return Op;
3347
3348    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3349      return getOnesVector(Op.getValueType(), DAG, dl);
3350    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3351  }
3352
3353  EVT VT = Op.getValueType();
3354  EVT ExtVT = VT.getVectorElementType();
3355  unsigned EVTBits = ExtVT.getSizeInBits();
3356
3357  unsigned NumElems = Op.getNumOperands();
3358  unsigned NumZero  = 0;
3359  unsigned NumNonZero = 0;
3360  unsigned NonZeros = 0;
3361  bool IsAllConstants = true;
3362  SmallSet<SDValue, 8> Values;
3363  for (unsigned i = 0; i < NumElems; ++i) {
3364    SDValue Elt = Op.getOperand(i);
3365    if (Elt.getOpcode() == ISD::UNDEF)
3366      continue;
3367    Values.insert(Elt);
3368    if (Elt.getOpcode() != ISD::Constant &&
3369        Elt.getOpcode() != ISD::ConstantFP)
3370      IsAllConstants = false;
3371    if (X86::isZeroNode(Elt))
3372      NumZero++;
3373    else {
3374      NonZeros |= (1 << i);
3375      NumNonZero++;
3376    }
3377  }
3378
3379  if (NumNonZero == 0) {
3380    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3381    return DAG.getUNDEF(VT);
3382  }
3383
3384  // Special case for single non-zero, non-undef, element.
3385  if (NumNonZero == 1) {
3386    unsigned Idx = CountTrailingZeros_32(NonZeros);
3387    SDValue Item = Op.getOperand(Idx);
3388
3389    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3390    // the value are obviously zero, truncate the value to i32 and do the
3391    // insertion that way.  Only do this if the value is non-constant or if the
3392    // value is a constant being inserted into element 0.  It is cheaper to do
3393    // a constant pool load than it is to do a movd + shuffle.
3394    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3395        (!IsAllConstants || Idx == 0)) {
3396      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3397        // Handle MMX and SSE both.
3398        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3399        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3400
3401        // Truncate the value (which may itself be a constant) to i32, and
3402        // convert it to a vector with movd (S2V+shuffle to zero extend).
3403        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3404        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3405        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3406                                           Subtarget->hasSSE2(), DAG);
3407
3408        // Now we have our 32-bit value zero extended in the low element of
3409        // a vector.  If Idx != 0, swizzle it into place.
3410        if (Idx != 0) {
3411          SmallVector<int, 4> Mask;
3412          Mask.push_back(Idx);
3413          for (unsigned i = 1; i != VecElts; ++i)
3414            Mask.push_back(i);
3415          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3416                                      DAG.getUNDEF(Item.getValueType()),
3417                                      &Mask[0]);
3418        }
3419        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3420      }
3421    }
3422
3423    // If we have a constant or non-constant insertion into the low element of
3424    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3425    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3426    // depending on what the source datatype is.
3427    if (Idx == 0) {
3428      if (NumZero == 0) {
3429        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3430      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3431          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3432        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3433        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3434        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3435                                           DAG);
3436      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3437        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3438        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3439        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3440        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3441                                           Subtarget->hasSSE2(), DAG);
3442        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3443      }
3444    }
3445
3446    // Is it a vector logical left shift?
3447    if (NumElems == 2 && Idx == 1 &&
3448        X86::isZeroNode(Op.getOperand(0)) &&
3449        !X86::isZeroNode(Op.getOperand(1))) {
3450      unsigned NumBits = VT.getSizeInBits();
3451      return getVShift(true, VT,
3452                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3453                                   VT, Op.getOperand(1)),
3454                       NumBits/2, DAG, *this, dl);
3455    }
3456
3457    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3458      return SDValue();
3459
3460    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3461    // is a non-constant being inserted into an element other than the low one,
3462    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3463    // movd/movss) to move this into the low element, then shuffle it into
3464    // place.
3465    if (EVTBits == 32) {
3466      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3467
3468      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3469      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3470                                         Subtarget->hasSSE2(), DAG);
3471      SmallVector<int, 8> MaskVec;
3472      for (unsigned i = 0; i < NumElems; i++)
3473        MaskVec.push_back(i == Idx ? 0 : 1);
3474      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3475    }
3476  }
3477
3478  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3479  if (Values.size() == 1)
3480    return SDValue();
3481
3482  // A vector full of immediates; various special cases are already
3483  // handled, so this is best done with a single constant-pool load.
3484  if (IsAllConstants)
3485    return SDValue();
3486
3487  // Let legalizer expand 2-wide build_vectors.
3488  if (EVTBits == 64) {
3489    if (NumNonZero == 1) {
3490      // One half is zero or undef.
3491      unsigned Idx = CountTrailingZeros_32(NonZeros);
3492      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3493                                 Op.getOperand(Idx));
3494      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3495                                         Subtarget->hasSSE2(), DAG);
3496    }
3497    return SDValue();
3498  }
3499
3500  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3501  if (EVTBits == 8 && NumElems == 16) {
3502    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3503                                        *this);
3504    if (V.getNode()) return V;
3505  }
3506
3507  if (EVTBits == 16 && NumElems == 8) {
3508    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3509                                        *this);
3510    if (V.getNode()) return V;
3511  }
3512
3513  // If element VT is == 32 bits, turn it into a number of shuffles.
3514  SmallVector<SDValue, 8> V;
3515  V.resize(NumElems);
3516  if (NumElems == 4 && NumZero > 0) {
3517    for (unsigned i = 0; i < 4; ++i) {
3518      bool isZero = !(NonZeros & (1 << i));
3519      if (isZero)
3520        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3521      else
3522        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3523    }
3524
3525    for (unsigned i = 0; i < 2; ++i) {
3526      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3527        default: break;
3528        case 0:
3529          V[i] = V[i*2];  // Must be a zero vector.
3530          break;
3531        case 1:
3532          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3533          break;
3534        case 2:
3535          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3536          break;
3537        case 3:
3538          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3539          break;
3540      }
3541    }
3542
3543    SmallVector<int, 8> MaskVec;
3544    bool Reverse = (NonZeros & 0x3) == 2;
3545    for (unsigned i = 0; i < 2; ++i)
3546      MaskVec.push_back(Reverse ? 1-i : i);
3547    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3548    for (unsigned i = 0; i < 2; ++i)
3549      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3550    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3551  }
3552
3553  if (Values.size() > 2) {
3554    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3555    // values to be inserted is equal to the number of elements, in which case
3556    // use the unpack code below in the hopes of matching the consecutive elts
3557    // load merge pattern for shuffles.
3558    // FIXME: We could probably just check that here directly.
3559    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3560        getSubtarget()->hasSSE41()) {
3561      V[0] = DAG.getUNDEF(VT);
3562      for (unsigned i = 0; i < NumElems; ++i)
3563        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3564          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3565                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3566      return V[0];
3567    }
3568    // Expand into a number of unpckl*.
3569    // e.g. for v4f32
3570    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3571    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3572    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3573    for (unsigned i = 0; i < NumElems; ++i)
3574      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3575    NumElems >>= 1;
3576    while (NumElems != 0) {
3577      for (unsigned i = 0; i < NumElems; ++i)
3578        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3579      NumElems >>= 1;
3580    }
3581    return V[0];
3582  }
3583
3584  return SDValue();
3585}
3586
3587// v8i16 shuffles - Prefer shuffles in the following order:
3588// 1. [all]   pshuflw, pshufhw, optional move
3589// 2. [ssse3] 1 x pshufb
3590// 3. [ssse3] 2 x pshufb + 1 x por
3591// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3592static
3593SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3594                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3595  SDValue V1 = SVOp->getOperand(0);
3596  SDValue V2 = SVOp->getOperand(1);
3597  DebugLoc dl = SVOp->getDebugLoc();
3598  SmallVector<int, 8> MaskVals;
3599
3600  // Determine if more than 1 of the words in each of the low and high quadwords
3601  // of the result come from the same quadword of one of the two inputs.  Undef
3602  // mask values count as coming from any quadword, for better codegen.
3603  SmallVector<unsigned, 4> LoQuad(4);
3604  SmallVector<unsigned, 4> HiQuad(4);
3605  BitVector InputQuads(4);
3606  for (unsigned i = 0; i < 8; ++i) {
3607    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3608    int EltIdx = SVOp->getMaskElt(i);
3609    MaskVals.push_back(EltIdx);
3610    if (EltIdx < 0) {
3611      ++Quad[0];
3612      ++Quad[1];
3613      ++Quad[2];
3614      ++Quad[3];
3615      continue;
3616    }
3617    ++Quad[EltIdx / 4];
3618    InputQuads.set(EltIdx / 4);
3619  }
3620
3621  int BestLoQuad = -1;
3622  unsigned MaxQuad = 1;
3623  for (unsigned i = 0; i < 4; ++i) {
3624    if (LoQuad[i] > MaxQuad) {
3625      BestLoQuad = i;
3626      MaxQuad = LoQuad[i];
3627    }
3628  }
3629
3630  int BestHiQuad = -1;
3631  MaxQuad = 1;
3632  for (unsigned i = 0; i < 4; ++i) {
3633    if (HiQuad[i] > MaxQuad) {
3634      BestHiQuad = i;
3635      MaxQuad = HiQuad[i];
3636    }
3637  }
3638
3639  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3640  // of the two input vectors, shuffle them into one input vector so only a
3641  // single pshufb instruction is necessary. If There are more than 2 input
3642  // quads, disable the next transformation since it does not help SSSE3.
3643  bool V1Used = InputQuads[0] || InputQuads[1];
3644  bool V2Used = InputQuads[2] || InputQuads[3];
3645  if (TLI.getSubtarget()->hasSSSE3()) {
3646    if (InputQuads.count() == 2 && V1Used && V2Used) {
3647      BestLoQuad = InputQuads.find_first();
3648      BestHiQuad = InputQuads.find_next(BestLoQuad);
3649    }
3650    if (InputQuads.count() > 2) {
3651      BestLoQuad = -1;
3652      BestHiQuad = -1;
3653    }
3654  }
3655
3656  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3657  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3658  // words from all 4 input quadwords.
3659  SDValue NewV;
3660  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3661    SmallVector<int, 8> MaskV;
3662    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3663    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3664    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3665                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3666                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3667    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3668
3669    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3670    // source words for the shuffle, to aid later transformations.
3671    bool AllWordsInNewV = true;
3672    bool InOrder[2] = { true, true };
3673    for (unsigned i = 0; i != 8; ++i) {
3674      int idx = MaskVals[i];
3675      if (idx != (int)i)
3676        InOrder[i/4] = false;
3677      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3678        continue;
3679      AllWordsInNewV = false;
3680      break;
3681    }
3682
3683    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3684    if (AllWordsInNewV) {
3685      for (int i = 0; i != 8; ++i) {
3686        int idx = MaskVals[i];
3687        if (idx < 0)
3688          continue;
3689        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3690        if ((idx != i) && idx < 4)
3691          pshufhw = false;
3692        if ((idx != i) && idx > 3)
3693          pshuflw = false;
3694      }
3695      V1 = NewV;
3696      V2Used = false;
3697      BestLoQuad = 0;
3698      BestHiQuad = 1;
3699    }
3700
3701    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3702    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3703    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3704      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3705                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3706    }
3707  }
3708
3709  // If we have SSSE3, and all words of the result are from 1 input vector,
3710  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3711  // is present, fall back to case 4.
3712  if (TLI.getSubtarget()->hasSSSE3()) {
3713    SmallVector<SDValue,16> pshufbMask;
3714
3715    // If we have elements from both input vectors, set the high bit of the
3716    // shuffle mask element to zero out elements that come from V2 in the V1
3717    // mask, and elements that come from V1 in the V2 mask, so that the two
3718    // results can be OR'd together.
3719    bool TwoInputs = V1Used && V2Used;
3720    for (unsigned i = 0; i != 8; ++i) {
3721      int EltIdx = MaskVals[i] * 2;
3722      if (TwoInputs && (EltIdx >= 16)) {
3723        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3724        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3725        continue;
3726      }
3727      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3728      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3729    }
3730    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3731    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3732                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3733                                 MVT::v16i8, &pshufbMask[0], 16));
3734    if (!TwoInputs)
3735      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3736
3737    // Calculate the shuffle mask for the second input, shuffle it, and
3738    // OR it with the first shuffled input.
3739    pshufbMask.clear();
3740    for (unsigned i = 0; i != 8; ++i) {
3741      int EltIdx = MaskVals[i] * 2;
3742      if (EltIdx < 16) {
3743        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3744        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3745        continue;
3746      }
3747      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3748      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3749    }
3750    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3751    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3752                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3753                                 MVT::v16i8, &pshufbMask[0], 16));
3754    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3755    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3756  }
3757
3758  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3759  // and update MaskVals with new element order.
3760  BitVector InOrder(8);
3761  if (BestLoQuad >= 0) {
3762    SmallVector<int, 8> MaskV;
3763    for (int i = 0; i != 4; ++i) {
3764      int idx = MaskVals[i];
3765      if (idx < 0) {
3766        MaskV.push_back(-1);
3767        InOrder.set(i);
3768      } else if ((idx / 4) == BestLoQuad) {
3769        MaskV.push_back(idx & 3);
3770        InOrder.set(i);
3771      } else {
3772        MaskV.push_back(-1);
3773      }
3774    }
3775    for (unsigned i = 4; i != 8; ++i)
3776      MaskV.push_back(i);
3777    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3778                                &MaskV[0]);
3779  }
3780
3781  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3782  // and update MaskVals with the new element order.
3783  if (BestHiQuad >= 0) {
3784    SmallVector<int, 8> MaskV;
3785    for (unsigned i = 0; i != 4; ++i)
3786      MaskV.push_back(i);
3787    for (unsigned i = 4; i != 8; ++i) {
3788      int idx = MaskVals[i];
3789      if (idx < 0) {
3790        MaskV.push_back(-1);
3791        InOrder.set(i);
3792      } else if ((idx / 4) == BestHiQuad) {
3793        MaskV.push_back((idx & 3) + 4);
3794        InOrder.set(i);
3795      } else {
3796        MaskV.push_back(-1);
3797      }
3798    }
3799    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3800                                &MaskV[0]);
3801  }
3802
3803  // In case BestHi & BestLo were both -1, which means each quadword has a word
3804  // from each of the four input quadwords, calculate the InOrder bitvector now
3805  // before falling through to the insert/extract cleanup.
3806  if (BestLoQuad == -1 && BestHiQuad == -1) {
3807    NewV = V1;
3808    for (int i = 0; i != 8; ++i)
3809      if (MaskVals[i] < 0 || MaskVals[i] == i)
3810        InOrder.set(i);
3811  }
3812
3813  // The other elements are put in the right place using pextrw and pinsrw.
3814  for (unsigned i = 0; i != 8; ++i) {
3815    if (InOrder[i])
3816      continue;
3817    int EltIdx = MaskVals[i];
3818    if (EltIdx < 0)
3819      continue;
3820    SDValue ExtOp = (EltIdx < 8)
3821    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3822                  DAG.getIntPtrConstant(EltIdx))
3823    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3824                  DAG.getIntPtrConstant(EltIdx - 8));
3825    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3826                       DAG.getIntPtrConstant(i));
3827  }
3828  return NewV;
3829}
3830
3831// v16i8 shuffles - Prefer shuffles in the following order:
3832// 1. [ssse3] 1 x pshufb
3833// 2. [ssse3] 2 x pshufb + 1 x por
3834// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3835static
3836SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3837                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3838  SDValue V1 = SVOp->getOperand(0);
3839  SDValue V2 = SVOp->getOperand(1);
3840  DebugLoc dl = SVOp->getDebugLoc();
3841  SmallVector<int, 16> MaskVals;
3842  SVOp->getMask(MaskVals);
3843
3844  // If we have SSSE3, case 1 is generated when all result bytes come from
3845  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3846  // present, fall back to case 3.
3847  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3848  bool V1Only = true;
3849  bool V2Only = true;
3850  for (unsigned i = 0; i < 16; ++i) {
3851    int EltIdx = MaskVals[i];
3852    if (EltIdx < 0)
3853      continue;
3854    if (EltIdx < 16)
3855      V2Only = false;
3856    else
3857      V1Only = false;
3858  }
3859
3860  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3861  if (TLI.getSubtarget()->hasSSSE3()) {
3862    SmallVector<SDValue,16> pshufbMask;
3863
3864    // If all result elements are from one input vector, then only translate
3865    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3866    //
3867    // Otherwise, we have elements from both input vectors, and must zero out
3868    // elements that come from V2 in the first mask, and V1 in the second mask
3869    // so that we can OR them together.
3870    bool TwoInputs = !(V1Only || V2Only);
3871    for (unsigned i = 0; i != 16; ++i) {
3872      int EltIdx = MaskVals[i];
3873      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3874        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3875        continue;
3876      }
3877      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3878    }
3879    // If all the elements are from V2, assign it to V1 and return after
3880    // building the first pshufb.
3881    if (V2Only)
3882      V1 = V2;
3883    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3884                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3885                                 MVT::v16i8, &pshufbMask[0], 16));
3886    if (!TwoInputs)
3887      return V1;
3888
3889    // Calculate the shuffle mask for the second input, shuffle it, and
3890    // OR it with the first shuffled input.
3891    pshufbMask.clear();
3892    for (unsigned i = 0; i != 16; ++i) {
3893      int EltIdx = MaskVals[i];
3894      if (EltIdx < 16) {
3895        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3896        continue;
3897      }
3898      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3899    }
3900    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3901                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3902                                 MVT::v16i8, &pshufbMask[0], 16));
3903    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3904  }
3905
3906  // No SSSE3 - Calculate in place words and then fix all out of place words
3907  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3908  // the 16 different words that comprise the two doublequadword input vectors.
3909  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3910  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3911  SDValue NewV = V2Only ? V2 : V1;
3912  for (int i = 0; i != 8; ++i) {
3913    int Elt0 = MaskVals[i*2];
3914    int Elt1 = MaskVals[i*2+1];
3915
3916    // This word of the result is all undef, skip it.
3917    if (Elt0 < 0 && Elt1 < 0)
3918      continue;
3919
3920    // This word of the result is already in the correct place, skip it.
3921    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3922      continue;
3923    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3924      continue;
3925
3926    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3927    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3928    SDValue InsElt;
3929
3930    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3931    // using a single extract together, load it and store it.
3932    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3933      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3934                           DAG.getIntPtrConstant(Elt1 / 2));
3935      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3936                        DAG.getIntPtrConstant(i));
3937      continue;
3938    }
3939
3940    // If Elt1 is defined, extract it from the appropriate source.  If the
3941    // source byte is not also odd, shift the extracted word left 8 bits
3942    // otherwise clear the bottom 8 bits if we need to do an or.
3943    if (Elt1 >= 0) {
3944      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3945                           DAG.getIntPtrConstant(Elt1 / 2));
3946      if ((Elt1 & 1) == 0)
3947        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3948                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3949      else if (Elt0 >= 0)
3950        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3951                             DAG.getConstant(0xFF00, MVT::i16));
3952    }
3953    // If Elt0 is defined, extract it from the appropriate source.  If the
3954    // source byte is not also even, shift the extracted word right 8 bits. If
3955    // Elt1 was also defined, OR the extracted values together before
3956    // inserting them in the result.
3957    if (Elt0 >= 0) {
3958      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3959                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3960      if ((Elt0 & 1) != 0)
3961        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3962                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3963      else if (Elt1 >= 0)
3964        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3965                             DAG.getConstant(0x00FF, MVT::i16));
3966      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3967                         : InsElt0;
3968    }
3969    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3970                       DAG.getIntPtrConstant(i));
3971  }
3972  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3973}
3974
3975/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3976/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3977/// done when every pair / quad of shuffle mask elements point to elements in
3978/// the right sequence. e.g.
3979/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3980static
3981SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3982                                 SelectionDAG &DAG,
3983                                 TargetLowering &TLI, DebugLoc dl) {
3984  EVT VT = SVOp->getValueType(0);
3985  SDValue V1 = SVOp->getOperand(0);
3986  SDValue V2 = SVOp->getOperand(1);
3987  unsigned NumElems = VT.getVectorNumElements();
3988  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3989  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3990  EVT MaskEltVT = MaskVT.getVectorElementType();
3991  EVT NewVT = MaskVT;
3992  switch (VT.getSimpleVT().SimpleTy) {
3993  default: assert(false && "Unexpected!");
3994  case MVT::v4f32: NewVT = MVT::v2f64; break;
3995  case MVT::v4i32: NewVT = MVT::v2i64; break;
3996  case MVT::v8i16: NewVT = MVT::v4i32; break;
3997  case MVT::v16i8: NewVT = MVT::v4i32; break;
3998  }
3999
4000  if (NewWidth == 2) {
4001    if (VT.isInteger())
4002      NewVT = MVT::v2i64;
4003    else
4004      NewVT = MVT::v2f64;
4005  }
4006  int Scale = NumElems / NewWidth;
4007  SmallVector<int, 8> MaskVec;
4008  for (unsigned i = 0; i < NumElems; i += Scale) {
4009    int StartIdx = -1;
4010    for (int j = 0; j < Scale; ++j) {
4011      int EltIdx = SVOp->getMaskElt(i+j);
4012      if (EltIdx < 0)
4013        continue;
4014      if (StartIdx == -1)
4015        StartIdx = EltIdx - (EltIdx % Scale);
4016      if (EltIdx != StartIdx + j)
4017        return SDValue();
4018    }
4019    if (StartIdx == -1)
4020      MaskVec.push_back(-1);
4021    else
4022      MaskVec.push_back(StartIdx / Scale);
4023  }
4024
4025  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4026  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4027  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4028}
4029
4030/// getVZextMovL - Return a zero-extending vector move low node.
4031///
4032static SDValue getVZextMovL(EVT VT, EVT OpVT,
4033                            SDValue SrcOp, SelectionDAG &DAG,
4034                            const X86Subtarget *Subtarget, DebugLoc dl) {
4035  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4036    LoadSDNode *LD = NULL;
4037    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4038      LD = dyn_cast<LoadSDNode>(SrcOp);
4039    if (!LD) {
4040      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4041      // instead.
4042      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4043      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4044          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4045          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4046          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4047        // PR2108
4048        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4049        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4050                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4051                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4052                                                   OpVT,
4053                                                   SrcOp.getOperand(0)
4054                                                          .getOperand(0))));
4055      }
4056    }
4057  }
4058
4059  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4060                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4061                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4062                                             OpVT, SrcOp)));
4063}
4064
4065/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4066/// shuffles.
4067static SDValue
4068LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4069  SDValue V1 = SVOp->getOperand(0);
4070  SDValue V2 = SVOp->getOperand(1);
4071  DebugLoc dl = SVOp->getDebugLoc();
4072  EVT VT = SVOp->getValueType(0);
4073
4074  SmallVector<std::pair<int, int>, 8> Locs;
4075  Locs.resize(4);
4076  SmallVector<int, 8> Mask1(4U, -1);
4077  SmallVector<int, 8> PermMask;
4078  SVOp->getMask(PermMask);
4079
4080  unsigned NumHi = 0;
4081  unsigned NumLo = 0;
4082  for (unsigned i = 0; i != 4; ++i) {
4083    int Idx = PermMask[i];
4084    if (Idx < 0) {
4085      Locs[i] = std::make_pair(-1, -1);
4086    } else {
4087      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4088      if (Idx < 4) {
4089        Locs[i] = std::make_pair(0, NumLo);
4090        Mask1[NumLo] = Idx;
4091        NumLo++;
4092      } else {
4093        Locs[i] = std::make_pair(1, NumHi);
4094        if (2+NumHi < 4)
4095          Mask1[2+NumHi] = Idx;
4096        NumHi++;
4097      }
4098    }
4099  }
4100
4101  if (NumLo <= 2 && NumHi <= 2) {
4102    // If no more than two elements come from either vector. This can be
4103    // implemented with two shuffles. First shuffle gather the elements.
4104    // The second shuffle, which takes the first shuffle as both of its
4105    // vector operands, put the elements into the right order.
4106    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4107
4108    SmallVector<int, 8> Mask2(4U, -1);
4109
4110    for (unsigned i = 0; i != 4; ++i) {
4111      if (Locs[i].first == -1)
4112        continue;
4113      else {
4114        unsigned Idx = (i < 2) ? 0 : 4;
4115        Idx += Locs[i].first * 2 + Locs[i].second;
4116        Mask2[i] = Idx;
4117      }
4118    }
4119
4120    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4121  } else if (NumLo == 3 || NumHi == 3) {
4122    // Otherwise, we must have three elements from one vector, call it X, and
4123    // one element from the other, call it Y.  First, use a shufps to build an
4124    // intermediate vector with the one element from Y and the element from X
4125    // that will be in the same half in the final destination (the indexes don't
4126    // matter). Then, use a shufps to build the final vector, taking the half
4127    // containing the element from Y from the intermediate, and the other half
4128    // from X.
4129    if (NumHi == 3) {
4130      // Normalize it so the 3 elements come from V1.
4131      CommuteVectorShuffleMask(PermMask, VT);
4132      std::swap(V1, V2);
4133    }
4134
4135    // Find the element from V2.
4136    unsigned HiIndex;
4137    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4138      int Val = PermMask[HiIndex];
4139      if (Val < 0)
4140        continue;
4141      if (Val >= 4)
4142        break;
4143    }
4144
4145    Mask1[0] = PermMask[HiIndex];
4146    Mask1[1] = -1;
4147    Mask1[2] = PermMask[HiIndex^1];
4148    Mask1[3] = -1;
4149    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4150
4151    if (HiIndex >= 2) {
4152      Mask1[0] = PermMask[0];
4153      Mask1[1] = PermMask[1];
4154      Mask1[2] = HiIndex & 1 ? 6 : 4;
4155      Mask1[3] = HiIndex & 1 ? 4 : 6;
4156      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4157    } else {
4158      Mask1[0] = HiIndex & 1 ? 2 : 0;
4159      Mask1[1] = HiIndex & 1 ? 0 : 2;
4160      Mask1[2] = PermMask[2];
4161      Mask1[3] = PermMask[3];
4162      if (Mask1[2] >= 0)
4163        Mask1[2] += 4;
4164      if (Mask1[3] >= 0)
4165        Mask1[3] += 4;
4166      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4167    }
4168  }
4169
4170  // Break it into (shuffle shuffle_hi, shuffle_lo).
4171  Locs.clear();
4172  SmallVector<int,8> LoMask(4U, -1);
4173  SmallVector<int,8> HiMask(4U, -1);
4174
4175  SmallVector<int,8> *MaskPtr = &LoMask;
4176  unsigned MaskIdx = 0;
4177  unsigned LoIdx = 0;
4178  unsigned HiIdx = 2;
4179  for (unsigned i = 0; i != 4; ++i) {
4180    if (i == 2) {
4181      MaskPtr = &HiMask;
4182      MaskIdx = 1;
4183      LoIdx = 0;
4184      HiIdx = 2;
4185    }
4186    int Idx = PermMask[i];
4187    if (Idx < 0) {
4188      Locs[i] = std::make_pair(-1, -1);
4189    } else if (Idx < 4) {
4190      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4191      (*MaskPtr)[LoIdx] = Idx;
4192      LoIdx++;
4193    } else {
4194      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4195      (*MaskPtr)[HiIdx] = Idx;
4196      HiIdx++;
4197    }
4198  }
4199
4200  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4201  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4202  SmallVector<int, 8> MaskOps;
4203  for (unsigned i = 0; i != 4; ++i) {
4204    if (Locs[i].first == -1) {
4205      MaskOps.push_back(-1);
4206    } else {
4207      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4208      MaskOps.push_back(Idx);
4209    }
4210  }
4211  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4212}
4213
4214SDValue
4215X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4216  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4217  SDValue V1 = Op.getOperand(0);
4218  SDValue V2 = Op.getOperand(1);
4219  EVT VT = Op.getValueType();
4220  DebugLoc dl = Op.getDebugLoc();
4221  unsigned NumElems = VT.getVectorNumElements();
4222  bool isMMX = VT.getSizeInBits() == 64;
4223  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4224  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4225  bool V1IsSplat = false;
4226  bool V2IsSplat = false;
4227
4228  if (isZeroShuffle(SVOp))
4229    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4230
4231  // Promote splats to v4f32.
4232  if (SVOp->isSplat()) {
4233    if (isMMX || NumElems < 4)
4234      return Op;
4235    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4236  }
4237
4238  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4239  // do it!
4240  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4241    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4242    if (NewOp.getNode())
4243      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4244                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4245  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4246    // FIXME: Figure out a cleaner way to do this.
4247    // Try to make use of movq to zero out the top part.
4248    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4249      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4250      if (NewOp.getNode()) {
4251        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4252          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4253                              DAG, Subtarget, dl);
4254      }
4255    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4256      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4257      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4258        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4259                            DAG, Subtarget, dl);
4260    }
4261  }
4262
4263  if (X86::isPSHUFDMask(SVOp))
4264    return Op;
4265
4266  // Check if this can be converted into a logical shift.
4267  bool isLeft = false;
4268  unsigned ShAmt = 0;
4269  SDValue ShVal;
4270  bool isShift = getSubtarget()->hasSSE2() &&
4271  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4272  if (isShift && ShVal.hasOneUse()) {
4273    // If the shifted value has multiple uses, it may be cheaper to use
4274    // v_set0 + movlhps or movhlps, etc.
4275    EVT EltVT = VT.getVectorElementType();
4276    ShAmt *= EltVT.getSizeInBits();
4277    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4278  }
4279
4280  if (X86::isMOVLMask(SVOp)) {
4281    if (V1IsUndef)
4282      return V2;
4283    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4284      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4285    if (!isMMX)
4286      return Op;
4287  }
4288
4289  // FIXME: fold these into legal mask.
4290  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4291                 X86::isMOVSLDUPMask(SVOp) ||
4292                 X86::isMOVHLPSMask(SVOp) ||
4293                 X86::isMOVLHPSMask(SVOp) ||
4294                 X86::isMOVLPMask(SVOp)))
4295    return Op;
4296
4297  if (ShouldXformToMOVHLPS(SVOp) ||
4298      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4299    return CommuteVectorShuffle(SVOp, DAG);
4300
4301  if (isShift) {
4302    // No better options. Use a vshl / vsrl.
4303    EVT EltVT = VT.getVectorElementType();
4304    ShAmt *= EltVT.getSizeInBits();
4305    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4306  }
4307
4308  bool Commuted = false;
4309  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4310  // 1,1,1,1 -> v8i16 though.
4311  V1IsSplat = isSplatVector(V1.getNode());
4312  V2IsSplat = isSplatVector(V2.getNode());
4313
4314  // Canonicalize the splat or undef, if present, to be on the RHS.
4315  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4316    Op = CommuteVectorShuffle(SVOp, DAG);
4317    SVOp = cast<ShuffleVectorSDNode>(Op);
4318    V1 = SVOp->getOperand(0);
4319    V2 = SVOp->getOperand(1);
4320    std::swap(V1IsSplat, V2IsSplat);
4321    std::swap(V1IsUndef, V2IsUndef);
4322    Commuted = true;
4323  }
4324
4325  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4326    // Shuffling low element of v1 into undef, just return v1.
4327    if (V2IsUndef)
4328      return V1;
4329    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4330    // the instruction selector will not match, so get a canonical MOVL with
4331    // swapped operands to undo the commute.
4332    return getMOVL(DAG, dl, VT, V2, V1);
4333  }
4334
4335  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4336      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4337      X86::isUNPCKLMask(SVOp) ||
4338      X86::isUNPCKHMask(SVOp))
4339    return Op;
4340
4341  if (V2IsSplat) {
4342    // Normalize mask so all entries that point to V2 points to its first
4343    // element then try to match unpck{h|l} again. If match, return a
4344    // new vector_shuffle with the corrected mask.
4345    SDValue NewMask = NormalizeMask(SVOp, DAG);
4346    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4347    if (NSVOp != SVOp) {
4348      if (X86::isUNPCKLMask(NSVOp, true)) {
4349        return NewMask;
4350      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4351        return NewMask;
4352      }
4353    }
4354  }
4355
4356  if (Commuted) {
4357    // Commute is back and try unpck* again.
4358    // FIXME: this seems wrong.
4359    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4360    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4361    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4362        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4363        X86::isUNPCKLMask(NewSVOp) ||
4364        X86::isUNPCKHMask(NewSVOp))
4365      return NewOp;
4366  }
4367
4368  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4369
4370  // Normalize the node to match x86 shuffle ops if needed
4371  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4372    return CommuteVectorShuffle(SVOp, DAG);
4373
4374  // Check for legal shuffle and return?
4375  SmallVector<int, 16> PermMask;
4376  SVOp->getMask(PermMask);
4377  if (isShuffleMaskLegal(PermMask, VT))
4378    return Op;
4379
4380  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4381  if (VT == MVT::v8i16) {
4382    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4383    if (NewOp.getNode())
4384      return NewOp;
4385  }
4386
4387  if (VT == MVT::v16i8) {
4388    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4389    if (NewOp.getNode())
4390      return NewOp;
4391  }
4392
4393  // Handle all 4 wide cases with a number of shuffles except for MMX.
4394  if (NumElems == 4 && !isMMX)
4395    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4396
4397  return SDValue();
4398}
4399
4400SDValue
4401X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4402                                                SelectionDAG &DAG) {
4403  EVT VT = Op.getValueType();
4404  DebugLoc dl = Op.getDebugLoc();
4405  if (VT.getSizeInBits() == 8) {
4406    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4407                                    Op.getOperand(0), Op.getOperand(1));
4408    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4409                                    DAG.getValueType(VT));
4410    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4411  } else if (VT.getSizeInBits() == 16) {
4412    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4413    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4414    if (Idx == 0)
4415      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4416                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4417                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4418                                                 MVT::v4i32,
4419                                                 Op.getOperand(0)),
4420                                     Op.getOperand(1)));
4421    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4422                                    Op.getOperand(0), Op.getOperand(1));
4423    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4424                                    DAG.getValueType(VT));
4425    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4426  } else if (VT == MVT::f32) {
4427    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4428    // the result back to FR32 register. It's only worth matching if the
4429    // result has a single use which is a store or a bitcast to i32.  And in
4430    // the case of a store, it's not worth it if the index is a constant 0,
4431    // because a MOVSSmr can be used instead, which is smaller and faster.
4432    if (!Op.hasOneUse())
4433      return SDValue();
4434    SDNode *User = *Op.getNode()->use_begin();
4435    if ((User->getOpcode() != ISD::STORE ||
4436         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4437          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4438        (User->getOpcode() != ISD::BIT_CONVERT ||
4439         User->getValueType(0) != MVT::i32))
4440      return SDValue();
4441    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4442                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4443                                              Op.getOperand(0)),
4444                                              Op.getOperand(1));
4445    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4446  } else if (VT == MVT::i32) {
4447    // ExtractPS works with constant index.
4448    if (isa<ConstantSDNode>(Op.getOperand(1)))
4449      return Op;
4450  }
4451  return SDValue();
4452}
4453
4454
4455SDValue
4456X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4457  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4458    return SDValue();
4459
4460  if (Subtarget->hasSSE41()) {
4461    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4462    if (Res.getNode())
4463      return Res;
4464  }
4465
4466  EVT VT = Op.getValueType();
4467  DebugLoc dl = Op.getDebugLoc();
4468  // TODO: handle v16i8.
4469  if (VT.getSizeInBits() == 16) {
4470    SDValue Vec = Op.getOperand(0);
4471    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4472    if (Idx == 0)
4473      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4474                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4475                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4476                                                 MVT::v4i32, Vec),
4477                                     Op.getOperand(1)));
4478    // Transform it so it match pextrw which produces a 32-bit result.
4479    EVT EltVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4480    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4481                                    Op.getOperand(0), Op.getOperand(1));
4482    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4483                                    DAG.getValueType(VT));
4484    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4485  } else if (VT.getSizeInBits() == 32) {
4486    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4487    if (Idx == 0)
4488      return Op;
4489
4490    // SHUFPS the element to the lowest double word, then movss.
4491    int Mask[4] = { Idx, -1, -1, -1 };
4492    EVT VVT = Op.getOperand(0).getValueType();
4493    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4494                                       DAG.getUNDEF(VVT), Mask);
4495    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4496                       DAG.getIntPtrConstant(0));
4497  } else if (VT.getSizeInBits() == 64) {
4498    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4499    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4500    //        to match extract_elt for f64.
4501    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4502    if (Idx == 0)
4503      return Op;
4504
4505    // UNPCKHPD the element to the lowest double word, then movsd.
4506    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4507    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4508    int Mask[2] = { 1, -1 };
4509    EVT VVT = Op.getOperand(0).getValueType();
4510    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4511                                       DAG.getUNDEF(VVT), Mask);
4512    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4513                       DAG.getIntPtrConstant(0));
4514  }
4515
4516  return SDValue();
4517}
4518
4519SDValue
4520X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4521  EVT VT = Op.getValueType();
4522  EVT EltVT = VT.getVectorElementType();
4523  DebugLoc dl = Op.getDebugLoc();
4524
4525  SDValue N0 = Op.getOperand(0);
4526  SDValue N1 = Op.getOperand(1);
4527  SDValue N2 = Op.getOperand(2);
4528
4529  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4530      isa<ConstantSDNode>(N2)) {
4531    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4532                                                : X86ISD::PINSRW;
4533    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4534    // argument.
4535    if (N1.getValueType() != MVT::i32)
4536      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4537    if (N2.getValueType() != MVT::i32)
4538      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4539    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4540  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4541    // Bits [7:6] of the constant are the source select.  This will always be
4542    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4543    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4544    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4545    // Bits [5:4] of the constant are the destination select.  This is the
4546    //  value of the incoming immediate.
4547    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4548    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4549    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4550    // Create this as a scalar to vector..
4551    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4552    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4553  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4554    // PINSR* works with constant index.
4555    return Op;
4556  }
4557  return SDValue();
4558}
4559
4560SDValue
4561X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4562  EVT VT = Op.getValueType();
4563  EVT EltVT = VT.getVectorElementType();
4564
4565  if (Subtarget->hasSSE41())
4566    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4567
4568  if (EltVT == MVT::i8)
4569    return SDValue();
4570
4571  DebugLoc dl = Op.getDebugLoc();
4572  SDValue N0 = Op.getOperand(0);
4573  SDValue N1 = Op.getOperand(1);
4574  SDValue N2 = Op.getOperand(2);
4575
4576  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4577    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4578    // as its second argument.
4579    if (N1.getValueType() != MVT::i32)
4580      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4581    if (N2.getValueType() != MVT::i32)
4582      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4583    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4584  }
4585  return SDValue();
4586}
4587
4588SDValue
4589X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4590  DebugLoc dl = Op.getDebugLoc();
4591  if (Op.getValueType() == MVT::v2f32)
4592    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4593                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4594                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4595                                               Op.getOperand(0))));
4596
4597  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4598    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4599
4600  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4601  EVT VT = MVT::v2i32;
4602  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4603  default: break;
4604  case MVT::v16i8:
4605  case MVT::v8i16:
4606    VT = MVT::v4i32;
4607    break;
4608  }
4609  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4610                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4611}
4612
4613// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4614// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4615// one of the above mentioned nodes. It has to be wrapped because otherwise
4616// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4617// be used to form addressing mode. These wrapped nodes will be selected
4618// into MOV32ri.
4619SDValue
4620X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4621  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4622
4623  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4624  // global base reg.
4625  unsigned char OpFlag = 0;
4626  unsigned WrapperKind = X86ISD::Wrapper;
4627  CodeModel::Model M = getTargetMachine().getCodeModel();
4628
4629  if (Subtarget->isPICStyleRIPRel() &&
4630      (M == CodeModel::Small || M == CodeModel::Kernel))
4631    WrapperKind = X86ISD::WrapperRIP;
4632  else if (Subtarget->isPICStyleGOT())
4633    OpFlag = X86II::MO_GOTOFF;
4634  else if (Subtarget->isPICStyleStubPIC())
4635    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4636
4637  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4638                                             CP->getAlignment(),
4639                                             CP->getOffset(), OpFlag);
4640  DebugLoc DL = CP->getDebugLoc();
4641  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4642  // With PIC, the address is actually $g + Offset.
4643  if (OpFlag) {
4644    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4645                         DAG.getNode(X86ISD::GlobalBaseReg,
4646                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4647                         Result);
4648  }
4649
4650  return Result;
4651}
4652
4653SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4654  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4655
4656  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4657  // global base reg.
4658  unsigned char OpFlag = 0;
4659  unsigned WrapperKind = X86ISD::Wrapper;
4660  CodeModel::Model M = getTargetMachine().getCodeModel();
4661
4662  if (Subtarget->isPICStyleRIPRel() &&
4663      (M == CodeModel::Small || M == CodeModel::Kernel))
4664    WrapperKind = X86ISD::WrapperRIP;
4665  else if (Subtarget->isPICStyleGOT())
4666    OpFlag = X86II::MO_GOTOFF;
4667  else if (Subtarget->isPICStyleStubPIC())
4668    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4669
4670  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4671                                          OpFlag);
4672  DebugLoc DL = JT->getDebugLoc();
4673  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4674
4675  // With PIC, the address is actually $g + Offset.
4676  if (OpFlag) {
4677    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4678                         DAG.getNode(X86ISD::GlobalBaseReg,
4679                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4680                         Result);
4681  }
4682
4683  return Result;
4684}
4685
4686SDValue
4687X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4688  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4689
4690  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4691  // global base reg.
4692  unsigned char OpFlag = 0;
4693  unsigned WrapperKind = X86ISD::Wrapper;
4694  CodeModel::Model M = getTargetMachine().getCodeModel();
4695
4696  if (Subtarget->isPICStyleRIPRel() &&
4697      (M == CodeModel::Small || M == CodeModel::Kernel))
4698    WrapperKind = X86ISD::WrapperRIP;
4699  else if (Subtarget->isPICStyleGOT())
4700    OpFlag = X86II::MO_GOTOFF;
4701  else if (Subtarget->isPICStyleStubPIC())
4702    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4703
4704  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4705
4706  DebugLoc DL = Op.getDebugLoc();
4707  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4708
4709
4710  // With PIC, the address is actually $g + Offset.
4711  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4712      !Subtarget->is64Bit()) {
4713    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4714                         DAG.getNode(X86ISD::GlobalBaseReg,
4715                                     DebugLoc::getUnknownLoc(),
4716                                     getPointerTy()),
4717                         Result);
4718  }
4719
4720  return Result;
4721}
4722
4723SDValue
4724X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
4725  unsigned WrapperKind = X86ISD::Wrapper;
4726  CodeModel::Model M = getTargetMachine().getCodeModel();
4727  if (Subtarget->isPICStyleRIPRel() &&
4728      (M == CodeModel::Small || M == CodeModel::Kernel))
4729    WrapperKind = X86ISD::WrapperRIP;
4730
4731  DebugLoc DL = Op.getDebugLoc();
4732
4733  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
4734  SDValue Result = DAG.getBlockAddress(BA, DL, /*isTarget=*/true);
4735
4736  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4737
4738  return Result;
4739}
4740
4741SDValue
4742X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4743                                      int64_t Offset,
4744                                      SelectionDAG &DAG) const {
4745  // Create the TargetGlobalAddress node, folding in the constant
4746  // offset if it is legal.
4747  unsigned char OpFlags =
4748    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4749  CodeModel::Model M = getTargetMachine().getCodeModel();
4750  SDValue Result;
4751  if (OpFlags == X86II::MO_NO_FLAG &&
4752      X86::isOffsetSuitableForCodeModel(Offset, M)) {
4753    // A direct static reference to a global.
4754    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4755    Offset = 0;
4756  } else {
4757    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4758  }
4759
4760  if (Subtarget->isPICStyleRIPRel() &&
4761      (M == CodeModel::Small || M == CodeModel::Kernel))
4762    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4763  else
4764    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4765
4766  // With PIC, the address is actually $g + Offset.
4767  if (isGlobalRelativeToPICBase(OpFlags)) {
4768    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4769                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4770                         Result);
4771  }
4772
4773  // For globals that require a load from a stub to get the address, emit the
4774  // load.
4775  if (isGlobalStubReference(OpFlags))
4776    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4777                         PseudoSourceValue::getGOT(), 0);
4778
4779  // If there was a non-zero offset that we didn't fold, create an explicit
4780  // addition for it.
4781  if (Offset != 0)
4782    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4783                         DAG.getConstant(Offset, getPointerTy()));
4784
4785  return Result;
4786}
4787
4788SDValue
4789X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4790  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4791  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4792  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4793}
4794
4795static SDValue
4796GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4797           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4798           unsigned char OperandFlags) {
4799  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4800  DebugLoc dl = GA->getDebugLoc();
4801  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4802                                           GA->getValueType(0),
4803                                           GA->getOffset(),
4804                                           OperandFlags);
4805  if (InFlag) {
4806    SDValue Ops[] = { Chain,  TGA, *InFlag };
4807    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4808  } else {
4809    SDValue Ops[]  = { Chain, TGA };
4810    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4811  }
4812  SDValue Flag = Chain.getValue(1);
4813  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4814}
4815
4816// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4817static SDValue
4818LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4819                                const EVT PtrVT) {
4820  SDValue InFlag;
4821  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4822  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4823                                     DAG.getNode(X86ISD::GlobalBaseReg,
4824                                                 DebugLoc::getUnknownLoc(),
4825                                                 PtrVT), InFlag);
4826  InFlag = Chain.getValue(1);
4827
4828  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4829}
4830
4831// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4832static SDValue
4833LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4834                                const EVT PtrVT) {
4835  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4836                    X86::RAX, X86II::MO_TLSGD);
4837}
4838
4839// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4840// "local exec" model.
4841static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4842                                   const EVT PtrVT, TLSModel::Model model,
4843                                   bool is64Bit) {
4844  DebugLoc dl = GA->getDebugLoc();
4845  // Get the Thread Pointer
4846  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4847                             DebugLoc::getUnknownLoc(), PtrVT,
4848                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4849                                             MVT::i32));
4850
4851  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4852                                      NULL, 0);
4853
4854  unsigned char OperandFlags = 0;
4855  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
4856  // initialexec.
4857  unsigned WrapperKind = X86ISD::Wrapper;
4858  if (model == TLSModel::LocalExec) {
4859    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4860  } else if (is64Bit) {
4861    assert(model == TLSModel::InitialExec);
4862    OperandFlags = X86II::MO_GOTTPOFF;
4863    WrapperKind = X86ISD::WrapperRIP;
4864  } else {
4865    assert(model == TLSModel::InitialExec);
4866    OperandFlags = X86II::MO_INDNTPOFF;
4867  }
4868
4869  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4870  // exec)
4871  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4872                                           GA->getOffset(), OperandFlags);
4873  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4874
4875  if (model == TLSModel::InitialExec)
4876    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4877                         PseudoSourceValue::getGOT(), 0);
4878
4879  // The address of the thread local variable is the add of the thread
4880  // pointer with the offset of the variable.
4881  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4882}
4883
4884SDValue
4885X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4886  // TODO: implement the "local dynamic" model
4887  // TODO: implement the "initial exec"model for pic executables
4888  assert(Subtarget->isTargetELF() &&
4889         "TLS not implemented for non-ELF targets");
4890  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4891  const GlobalValue *GV = GA->getGlobal();
4892
4893  // If GV is an alias then use the aliasee for determining
4894  // thread-localness.
4895  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4896    GV = GA->resolveAliasedGlobal(false);
4897
4898  TLSModel::Model model = getTLSModel(GV,
4899                                      getTargetMachine().getRelocationModel());
4900
4901  switch (model) {
4902  case TLSModel::GeneralDynamic:
4903  case TLSModel::LocalDynamic: // not implemented
4904    if (Subtarget->is64Bit())
4905      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4906    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4907
4908  case TLSModel::InitialExec:
4909  case TLSModel::LocalExec:
4910    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4911                               Subtarget->is64Bit());
4912  }
4913
4914  llvm_unreachable("Unreachable");
4915  return SDValue();
4916}
4917
4918
4919/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4920/// take a 2 x i32 value to shift plus a shift amount.
4921SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4922  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4923  EVT VT = Op.getValueType();
4924  unsigned VTBits = VT.getSizeInBits();
4925  DebugLoc dl = Op.getDebugLoc();
4926  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4927  SDValue ShOpLo = Op.getOperand(0);
4928  SDValue ShOpHi = Op.getOperand(1);
4929  SDValue ShAmt  = Op.getOperand(2);
4930  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4931                                     DAG.getConstant(VTBits - 1, MVT::i8))
4932                       : DAG.getConstant(0, VT);
4933
4934  SDValue Tmp2, Tmp3;
4935  if (Op.getOpcode() == ISD::SHL_PARTS) {
4936    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4937    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4938  } else {
4939    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4940    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4941  }
4942
4943  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4944                                DAG.getConstant(VTBits, MVT::i8));
4945  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4946                             AndNode, DAG.getConstant(0, MVT::i8));
4947
4948  SDValue Hi, Lo;
4949  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4950  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4951  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4952
4953  if (Op.getOpcode() == ISD::SHL_PARTS) {
4954    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4955    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4956  } else {
4957    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4958    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4959  }
4960
4961  SDValue Ops[2] = { Lo, Hi };
4962  return DAG.getMergeValues(Ops, 2, dl);
4963}
4964
4965SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4966  EVT SrcVT = Op.getOperand(0).getValueType();
4967
4968  if (SrcVT.isVector()) {
4969    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4970      return Op;
4971    }
4972    return SDValue();
4973  }
4974
4975  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4976         "Unknown SINT_TO_FP to lower!");
4977
4978  // These are really Legal; return the operand so the caller accepts it as
4979  // Legal.
4980  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4981    return Op;
4982  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4983      Subtarget->is64Bit()) {
4984    return Op;
4985  }
4986
4987  DebugLoc dl = Op.getDebugLoc();
4988  unsigned Size = SrcVT.getSizeInBits()/8;
4989  MachineFunction &MF = DAG.getMachineFunction();
4990  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
4991  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4992  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4993                               StackSlot,
4994                               PseudoSourceValue::getFixedStack(SSFI), 0);
4995  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4996}
4997
4998SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
4999                                     SDValue StackSlot,
5000                                     SelectionDAG &DAG) {
5001  // Build the FILD
5002  DebugLoc dl = Op.getDebugLoc();
5003  SDVTList Tys;
5004  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5005  if (useSSE)
5006    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5007  else
5008    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5009  SmallVector<SDValue, 8> Ops;
5010  Ops.push_back(Chain);
5011  Ops.push_back(StackSlot);
5012  Ops.push_back(DAG.getValueType(SrcVT));
5013  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5014                                 Tys, &Ops[0], Ops.size());
5015
5016  if (useSSE) {
5017    Chain = Result.getValue(1);
5018    SDValue InFlag = Result.getValue(2);
5019
5020    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5021    // shouldn't be necessary except that RFP cannot be live across
5022    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5023    MachineFunction &MF = DAG.getMachineFunction();
5024    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5025    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5026    Tys = DAG.getVTList(MVT::Other);
5027    SmallVector<SDValue, 8> Ops;
5028    Ops.push_back(Chain);
5029    Ops.push_back(Result);
5030    Ops.push_back(StackSlot);
5031    Ops.push_back(DAG.getValueType(Op.getValueType()));
5032    Ops.push_back(InFlag);
5033    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
5034    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5035                         PseudoSourceValue::getFixedStack(SSFI), 0);
5036  }
5037
5038  return Result;
5039}
5040
5041// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5042SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5043  // This algorithm is not obvious. Here it is in C code, more or less:
5044  /*
5045    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5046      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5047      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5048
5049      // Copy ints to xmm registers.
5050      __m128i xh = _mm_cvtsi32_si128( hi );
5051      __m128i xl = _mm_cvtsi32_si128( lo );
5052
5053      // Combine into low half of a single xmm register.
5054      __m128i x = _mm_unpacklo_epi32( xh, xl );
5055      __m128d d;
5056      double sd;
5057
5058      // Merge in appropriate exponents to give the integer bits the right
5059      // magnitude.
5060      x = _mm_unpacklo_epi32( x, exp );
5061
5062      // Subtract away the biases to deal with the IEEE-754 double precision
5063      // implicit 1.
5064      d = _mm_sub_pd( (__m128d) x, bias );
5065
5066      // All conversions up to here are exact. The correctly rounded result is
5067      // calculated using the current rounding mode using the following
5068      // horizontal add.
5069      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5070      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5071                                // store doesn't really need to be here (except
5072                                // maybe to zero the other double)
5073      return sd;
5074    }
5075  */
5076
5077  DebugLoc dl = Op.getDebugLoc();
5078  LLVMContext *Context = DAG.getContext();
5079
5080  // Build some magic constants.
5081  std::vector<Constant*> CV0;
5082  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5083  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5084  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5085  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5086  Constant *C0 = ConstantVector::get(CV0);
5087  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5088
5089  std::vector<Constant*> CV1;
5090  CV1.push_back(
5091    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5092  CV1.push_back(
5093    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5094  Constant *C1 = ConstantVector::get(CV1);
5095  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5096
5097  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5098                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5099                                        Op.getOperand(0),
5100                                        DAG.getIntPtrConstant(1)));
5101  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5102                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5103                                        Op.getOperand(0),
5104                                        DAG.getIntPtrConstant(0)));
5105  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5106  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5107                              PseudoSourceValue::getConstantPool(), 0,
5108                              false, 16);
5109  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5110  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5111  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5112                              PseudoSourceValue::getConstantPool(), 0,
5113                              false, 16);
5114  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5115
5116  // Add the halves; easiest way is to swap them into another reg first.
5117  int ShufMask[2] = { 1, -1 };
5118  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5119                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5120  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5121  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5122                     DAG.getIntPtrConstant(0));
5123}
5124
5125// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5126SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5127  DebugLoc dl = Op.getDebugLoc();
5128  // FP constant to bias correct the final result.
5129  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5130                                   MVT::f64);
5131
5132  // Load the 32-bit value into an XMM register.
5133  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5134                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5135                                         Op.getOperand(0),
5136                                         DAG.getIntPtrConstant(0)));
5137
5138  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5139                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5140                     DAG.getIntPtrConstant(0));
5141
5142  // Or the load with the bias.
5143  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5144                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5145                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5146                                                   MVT::v2f64, Load)),
5147                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5148                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5149                                                   MVT::v2f64, Bias)));
5150  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5151                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5152                   DAG.getIntPtrConstant(0));
5153
5154  // Subtract the bias.
5155  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5156
5157  // Handle final rounding.
5158  EVT DestVT = Op.getValueType();
5159
5160  if (DestVT.bitsLT(MVT::f64)) {
5161    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5162                       DAG.getIntPtrConstant(0));
5163  } else if (DestVT.bitsGT(MVT::f64)) {
5164    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5165  }
5166
5167  // Handle final rounding.
5168  return Sub;
5169}
5170
5171SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5172  SDValue N0 = Op.getOperand(0);
5173  DebugLoc dl = Op.getDebugLoc();
5174
5175  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5176  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5177  // the optimization here.
5178  if (DAG.SignBitIsZero(N0))
5179    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5180
5181  EVT SrcVT = N0.getValueType();
5182  if (SrcVT == MVT::i64) {
5183    // We only handle SSE2 f64 target here; caller can expand the rest.
5184    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5185      return SDValue();
5186
5187    return LowerUINT_TO_FP_i64(Op, DAG);
5188  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5189    return LowerUINT_TO_FP_i32(Op, DAG);
5190  }
5191
5192  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5193
5194  // Make a 64-bit buffer, and use it to build an FILD.
5195  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5196  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5197  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5198                                   getPointerTy(), StackSlot, WordOff);
5199  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5200                                StackSlot, NULL, 0);
5201  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5202                                OffsetSlot, NULL, 0);
5203  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5204}
5205
5206std::pair<SDValue,SDValue> X86TargetLowering::
5207FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5208  DebugLoc dl = Op.getDebugLoc();
5209
5210  EVT DstTy = Op.getValueType();
5211
5212  if (!IsSigned) {
5213    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5214    DstTy = MVT::i64;
5215  }
5216
5217  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5218         DstTy.getSimpleVT() >= MVT::i16 &&
5219         "Unknown FP_TO_SINT to lower!");
5220
5221  // These are really Legal.
5222  if (DstTy == MVT::i32 &&
5223      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5224    return std::make_pair(SDValue(), SDValue());
5225  if (Subtarget->is64Bit() &&
5226      DstTy == MVT::i64 &&
5227      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5228    return std::make_pair(SDValue(), SDValue());
5229
5230  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5231  // stack slot.
5232  MachineFunction &MF = DAG.getMachineFunction();
5233  unsigned MemSize = DstTy.getSizeInBits()/8;
5234  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5235  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5236
5237  unsigned Opc;
5238  switch (DstTy.getSimpleVT().SimpleTy) {
5239  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5240  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5241  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5242  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5243  }
5244
5245  SDValue Chain = DAG.getEntryNode();
5246  SDValue Value = Op.getOperand(0);
5247  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5248    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5249    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5250                         PseudoSourceValue::getFixedStack(SSFI), 0);
5251    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5252    SDValue Ops[] = {
5253      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5254    };
5255    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5256    Chain = Value.getValue(1);
5257    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5258    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5259  }
5260
5261  // Build the FP_TO_INT*_IN_MEM
5262  SDValue Ops[] = { Chain, Value, StackSlot };
5263  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5264
5265  return std::make_pair(FIST, StackSlot);
5266}
5267
5268SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5269  if (Op.getValueType().isVector()) {
5270    if (Op.getValueType() == MVT::v2i32 &&
5271        Op.getOperand(0).getValueType() == MVT::v2f64) {
5272      return Op;
5273    }
5274    return SDValue();
5275  }
5276
5277  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5278  SDValue FIST = Vals.first, StackSlot = Vals.second;
5279  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5280  if (FIST.getNode() == 0) return Op;
5281
5282  // Load the result.
5283  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5284                     FIST, StackSlot, NULL, 0);
5285}
5286
5287SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5288  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5289  SDValue FIST = Vals.first, StackSlot = Vals.second;
5290  assert(FIST.getNode() && "Unexpected failure");
5291
5292  // Load the result.
5293  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5294                     FIST, StackSlot, NULL, 0);
5295}
5296
5297SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5298  LLVMContext *Context = DAG.getContext();
5299  DebugLoc dl = Op.getDebugLoc();
5300  EVT VT = Op.getValueType();
5301  EVT EltVT = VT;
5302  if (VT.isVector())
5303    EltVT = VT.getVectorElementType();
5304  std::vector<Constant*> CV;
5305  if (EltVT == MVT::f64) {
5306    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5307    CV.push_back(C);
5308    CV.push_back(C);
5309  } else {
5310    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5311    CV.push_back(C);
5312    CV.push_back(C);
5313    CV.push_back(C);
5314    CV.push_back(C);
5315  }
5316  Constant *C = ConstantVector::get(CV);
5317  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5318  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5319                               PseudoSourceValue::getConstantPool(), 0,
5320                               false, 16);
5321  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5322}
5323
5324SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5325  LLVMContext *Context = DAG.getContext();
5326  DebugLoc dl = Op.getDebugLoc();
5327  EVT VT = Op.getValueType();
5328  EVT EltVT = VT;
5329  if (VT.isVector())
5330    EltVT = VT.getVectorElementType();
5331  std::vector<Constant*> CV;
5332  if (EltVT == MVT::f64) {
5333    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5334    CV.push_back(C);
5335    CV.push_back(C);
5336  } else {
5337    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5338    CV.push_back(C);
5339    CV.push_back(C);
5340    CV.push_back(C);
5341    CV.push_back(C);
5342  }
5343  Constant *C = ConstantVector::get(CV);
5344  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5345  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5346                               PseudoSourceValue::getConstantPool(), 0,
5347                               false, 16);
5348  if (VT.isVector()) {
5349    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5350                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5351                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5352                                Op.getOperand(0)),
5353                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5354  } else {
5355    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5356  }
5357}
5358
5359SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5360  LLVMContext *Context = DAG.getContext();
5361  SDValue Op0 = Op.getOperand(0);
5362  SDValue Op1 = Op.getOperand(1);
5363  DebugLoc dl = Op.getDebugLoc();
5364  EVT VT = Op.getValueType();
5365  EVT SrcVT = Op1.getValueType();
5366
5367  // If second operand is smaller, extend it first.
5368  if (SrcVT.bitsLT(VT)) {
5369    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5370    SrcVT = VT;
5371  }
5372  // And if it is bigger, shrink it first.
5373  if (SrcVT.bitsGT(VT)) {
5374    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5375    SrcVT = VT;
5376  }
5377
5378  // At this point the operands and the result should have the same
5379  // type, and that won't be f80 since that is not custom lowered.
5380
5381  // First get the sign bit of second operand.
5382  std::vector<Constant*> CV;
5383  if (SrcVT == MVT::f64) {
5384    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5385    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5386  } else {
5387    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5388    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5389    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5390    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5391  }
5392  Constant *C = ConstantVector::get(CV);
5393  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5394  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5395                                PseudoSourceValue::getConstantPool(), 0,
5396                                false, 16);
5397  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5398
5399  // Shift sign bit right or left if the two operands have different types.
5400  if (SrcVT.bitsGT(VT)) {
5401    // Op0 is MVT::f32, Op1 is MVT::f64.
5402    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5403    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5404                          DAG.getConstant(32, MVT::i32));
5405    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5406    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5407                          DAG.getIntPtrConstant(0));
5408  }
5409
5410  // Clear first operand sign bit.
5411  CV.clear();
5412  if (VT == MVT::f64) {
5413    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5414    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5415  } else {
5416    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5417    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5418    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5419    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5420  }
5421  C = ConstantVector::get(CV);
5422  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5423  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5424                                PseudoSourceValue::getConstantPool(), 0,
5425                                false, 16);
5426  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5427
5428  // Or the value with the sign bit.
5429  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5430}
5431
5432/// Emit nodes that will be selected as "test Op0,Op0", or something
5433/// equivalent.
5434SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5435                                    SelectionDAG &DAG) {
5436  DebugLoc dl = Op.getDebugLoc();
5437
5438  // CF and OF aren't always set the way we want. Determine which
5439  // of these we need.
5440  bool NeedCF = false;
5441  bool NeedOF = false;
5442  switch (X86CC) {
5443  case X86::COND_A: case X86::COND_AE:
5444  case X86::COND_B: case X86::COND_BE:
5445    NeedCF = true;
5446    break;
5447  case X86::COND_G: case X86::COND_GE:
5448  case X86::COND_L: case X86::COND_LE:
5449  case X86::COND_O: case X86::COND_NO:
5450    NeedOF = true;
5451    break;
5452  default: break;
5453  }
5454
5455  // See if we can use the EFLAGS value from the operand instead of
5456  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5457  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5458  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5459    unsigned Opcode = 0;
5460    unsigned NumOperands = 0;
5461    switch (Op.getNode()->getOpcode()) {
5462    case ISD::ADD:
5463      // Due to an isel shortcoming, be conservative if this add is likely to
5464      // be selected as part of a load-modify-store instruction. When the root
5465      // node in a match is a store, isel doesn't know how to remap non-chain
5466      // non-flag uses of other nodes in the match, such as the ADD in this
5467      // case. This leads to the ADD being left around and reselected, with
5468      // the result being two adds in the output.
5469      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5470           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5471        if (UI->getOpcode() == ISD::STORE)
5472          goto default_case;
5473      if (ConstantSDNode *C =
5474            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5475        // An add of one will be selected as an INC.
5476        if (C->getAPIntValue() == 1) {
5477          Opcode = X86ISD::INC;
5478          NumOperands = 1;
5479          break;
5480        }
5481        // An add of negative one (subtract of one) will be selected as a DEC.
5482        if (C->getAPIntValue().isAllOnesValue()) {
5483          Opcode = X86ISD::DEC;
5484          NumOperands = 1;
5485          break;
5486        }
5487      }
5488      // Otherwise use a regular EFLAGS-setting add.
5489      Opcode = X86ISD::ADD;
5490      NumOperands = 2;
5491      break;
5492    case ISD::AND: {
5493      // If the primary and result isn't used, don't bother using X86ISD::AND,
5494      // because a TEST instruction will be better.
5495      bool NonFlagUse = false;
5496      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5497           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5498        if (UI->getOpcode() != ISD::BRCOND &&
5499            UI->getOpcode() != ISD::SELECT &&
5500            UI->getOpcode() != ISD::SETCC) {
5501          NonFlagUse = true;
5502          break;
5503        }
5504      if (!NonFlagUse)
5505        break;
5506    }
5507    // FALL THROUGH
5508    case ISD::SUB:
5509    case ISD::OR:
5510    case ISD::XOR:
5511      // Due to the ISEL shortcoming noted above, be conservative if this op is
5512      // likely to be selected as part of a load-modify-store instruction.
5513      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5514           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5515        if (UI->getOpcode() == ISD::STORE)
5516          goto default_case;
5517      // Otherwise use a regular EFLAGS-setting instruction.
5518      switch (Op.getNode()->getOpcode()) {
5519      case ISD::SUB: Opcode = X86ISD::SUB; break;
5520      case ISD::OR:  Opcode = X86ISD::OR;  break;
5521      case ISD::XOR: Opcode = X86ISD::XOR; break;
5522      case ISD::AND: Opcode = X86ISD::AND; break;
5523      default: llvm_unreachable("unexpected operator!");
5524      }
5525      NumOperands = 2;
5526      break;
5527    case X86ISD::ADD:
5528    case X86ISD::SUB:
5529    case X86ISD::INC:
5530    case X86ISD::DEC:
5531    case X86ISD::OR:
5532    case X86ISD::XOR:
5533    case X86ISD::AND:
5534      return SDValue(Op.getNode(), 1);
5535    default:
5536    default_case:
5537      break;
5538    }
5539    if (Opcode != 0) {
5540      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5541      SmallVector<SDValue, 4> Ops;
5542      for (unsigned i = 0; i != NumOperands; ++i)
5543        Ops.push_back(Op.getOperand(i));
5544      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5545      DAG.ReplaceAllUsesWith(Op, New);
5546      return SDValue(New.getNode(), 1);
5547    }
5548  }
5549
5550  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5551  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5552                     DAG.getConstant(0, Op.getValueType()));
5553}
5554
5555/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5556/// equivalent.
5557SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5558                                   SelectionDAG &DAG) {
5559  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5560    if (C->getAPIntValue() == 0)
5561      return EmitTest(Op0, X86CC, DAG);
5562
5563  DebugLoc dl = Op0.getDebugLoc();
5564  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5565}
5566
5567SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5568  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5569  SDValue Op0 = Op.getOperand(0);
5570  SDValue Op1 = Op.getOperand(1);
5571  DebugLoc dl = Op.getDebugLoc();
5572  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5573
5574  // Lower (X & (1 << N)) == 0 to BT(X, N).
5575  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5576  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5577  if (Op0.getOpcode() == ISD::AND &&
5578      Op0.hasOneUse() &&
5579      Op1.getOpcode() == ISD::Constant &&
5580      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5581      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5582    SDValue LHS, RHS;
5583    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5584      if (ConstantSDNode *Op010C =
5585            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5586        if (Op010C->getZExtValue() == 1) {
5587          LHS = Op0.getOperand(0);
5588          RHS = Op0.getOperand(1).getOperand(1);
5589        }
5590    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5591      if (ConstantSDNode *Op000C =
5592            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5593        if (Op000C->getZExtValue() == 1) {
5594          LHS = Op0.getOperand(1);
5595          RHS = Op0.getOperand(0).getOperand(1);
5596        }
5597    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5598      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5599      SDValue AndLHS = Op0.getOperand(0);
5600      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5601        LHS = AndLHS.getOperand(0);
5602        RHS = AndLHS.getOperand(1);
5603      }
5604    }
5605
5606    if (LHS.getNode()) {
5607      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5608      // instruction.  Since the shift amount is in-range-or-undefined, we know
5609      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5610      // the encoding for the i16 version is larger than the i32 version.
5611      if (LHS.getValueType() == MVT::i8)
5612        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5613
5614      // If the operand types disagree, extend the shift amount to match.  Since
5615      // BT ignores high bits (like shifts) we can use anyextend.
5616      if (LHS.getValueType() != RHS.getValueType())
5617        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5618
5619      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5620      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5621      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5622                         DAG.getConstant(Cond, MVT::i8), BT);
5623    }
5624  }
5625
5626  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5627  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5628  if (X86CC == X86::COND_INVALID)
5629    return SDValue();
5630
5631  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5632  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5633                     DAG.getConstant(X86CC, MVT::i8), Cond);
5634}
5635
5636SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5637  SDValue Cond;
5638  SDValue Op0 = Op.getOperand(0);
5639  SDValue Op1 = Op.getOperand(1);
5640  SDValue CC = Op.getOperand(2);
5641  EVT VT = Op.getValueType();
5642  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5643  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5644  DebugLoc dl = Op.getDebugLoc();
5645
5646  if (isFP) {
5647    unsigned SSECC = 8;
5648    EVT VT0 = Op0.getValueType();
5649    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5650    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5651    bool Swap = false;
5652
5653    switch (SetCCOpcode) {
5654    default: break;
5655    case ISD::SETOEQ:
5656    case ISD::SETEQ:  SSECC = 0; break;
5657    case ISD::SETOGT:
5658    case ISD::SETGT: Swap = true; // Fallthrough
5659    case ISD::SETLT:
5660    case ISD::SETOLT: SSECC = 1; break;
5661    case ISD::SETOGE:
5662    case ISD::SETGE: Swap = true; // Fallthrough
5663    case ISD::SETLE:
5664    case ISD::SETOLE: SSECC = 2; break;
5665    case ISD::SETUO:  SSECC = 3; break;
5666    case ISD::SETUNE:
5667    case ISD::SETNE:  SSECC = 4; break;
5668    case ISD::SETULE: Swap = true;
5669    case ISD::SETUGE: SSECC = 5; break;
5670    case ISD::SETULT: Swap = true;
5671    case ISD::SETUGT: SSECC = 6; break;
5672    case ISD::SETO:   SSECC = 7; break;
5673    }
5674    if (Swap)
5675      std::swap(Op0, Op1);
5676
5677    // In the two special cases we can't handle, emit two comparisons.
5678    if (SSECC == 8) {
5679      if (SetCCOpcode == ISD::SETUEQ) {
5680        SDValue UNORD, EQ;
5681        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5682        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5683        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5684      }
5685      else if (SetCCOpcode == ISD::SETONE) {
5686        SDValue ORD, NEQ;
5687        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5688        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5689        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5690      }
5691      llvm_unreachable("Illegal FP comparison");
5692    }
5693    // Handle all other FP comparisons here.
5694    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5695  }
5696
5697  // We are handling one of the integer comparisons here.  Since SSE only has
5698  // GT and EQ comparisons for integer, swapping operands and multiple
5699  // operations may be required for some comparisons.
5700  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5701  bool Swap = false, Invert = false, FlipSigns = false;
5702
5703  switch (VT.getSimpleVT().SimpleTy) {
5704  default: break;
5705  case MVT::v8i8:
5706  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5707  case MVT::v4i16:
5708  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5709  case MVT::v2i32:
5710  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5711  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5712  }
5713
5714  switch (SetCCOpcode) {
5715  default: break;
5716  case ISD::SETNE:  Invert = true;
5717  case ISD::SETEQ:  Opc = EQOpc; break;
5718  case ISD::SETLT:  Swap = true;
5719  case ISD::SETGT:  Opc = GTOpc; break;
5720  case ISD::SETGE:  Swap = true;
5721  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5722  case ISD::SETULT: Swap = true;
5723  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5724  case ISD::SETUGE: Swap = true;
5725  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5726  }
5727  if (Swap)
5728    std::swap(Op0, Op1);
5729
5730  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5731  // bits of the inputs before performing those operations.
5732  if (FlipSigns) {
5733    EVT EltVT = VT.getVectorElementType();
5734    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5735                                      EltVT);
5736    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5737    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5738                                    SignBits.size());
5739    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5740    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5741  }
5742
5743  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5744
5745  // If the logical-not of the result is required, perform that now.
5746  if (Invert)
5747    Result = DAG.getNOT(dl, Result, VT);
5748
5749  return Result;
5750}
5751
5752// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5753static bool isX86LogicalCmp(SDValue Op) {
5754  unsigned Opc = Op.getNode()->getOpcode();
5755  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5756    return true;
5757  if (Op.getResNo() == 1 &&
5758      (Opc == X86ISD::ADD ||
5759       Opc == X86ISD::SUB ||
5760       Opc == X86ISD::SMUL ||
5761       Opc == X86ISD::UMUL ||
5762       Opc == X86ISD::INC ||
5763       Opc == X86ISD::DEC ||
5764       Opc == X86ISD::OR ||
5765       Opc == X86ISD::XOR ||
5766       Opc == X86ISD::AND))
5767    return true;
5768
5769  return false;
5770}
5771
5772SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5773  bool addTest = true;
5774  SDValue Cond  = Op.getOperand(0);
5775  DebugLoc dl = Op.getDebugLoc();
5776  SDValue CC;
5777
5778  if (Cond.getOpcode() == ISD::SETCC) {
5779    SDValue NewCond = LowerSETCC(Cond, DAG);
5780    if (NewCond.getNode())
5781      Cond = NewCond;
5782  }
5783
5784  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5785  // setting operand in place of the X86ISD::SETCC.
5786  if (Cond.getOpcode() == X86ISD::SETCC) {
5787    CC = Cond.getOperand(0);
5788
5789    SDValue Cmp = Cond.getOperand(1);
5790    unsigned Opc = Cmp.getOpcode();
5791    EVT VT = Op.getValueType();
5792
5793    bool IllegalFPCMov = false;
5794    if (VT.isFloatingPoint() && !VT.isVector() &&
5795        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5796      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5797
5798    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5799        Opc == X86ISD::BT) { // FIXME
5800      Cond = Cmp;
5801      addTest = false;
5802    }
5803  }
5804
5805  if (addTest) {
5806    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5807    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5808  }
5809
5810  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5811  SmallVector<SDValue, 4> Ops;
5812  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5813  // condition is true.
5814  Ops.push_back(Op.getOperand(2));
5815  Ops.push_back(Op.getOperand(1));
5816  Ops.push_back(CC);
5817  Ops.push_back(Cond);
5818  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5819}
5820
5821// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5822// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5823// from the AND / OR.
5824static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5825  Opc = Op.getOpcode();
5826  if (Opc != ISD::OR && Opc != ISD::AND)
5827    return false;
5828  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5829          Op.getOperand(0).hasOneUse() &&
5830          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5831          Op.getOperand(1).hasOneUse());
5832}
5833
5834// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5835// 1 and that the SETCC node has a single use.
5836static bool isXor1OfSetCC(SDValue Op) {
5837  if (Op.getOpcode() != ISD::XOR)
5838    return false;
5839  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5840  if (N1C && N1C->getAPIntValue() == 1) {
5841    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5842      Op.getOperand(0).hasOneUse();
5843  }
5844  return false;
5845}
5846
5847SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5848  bool addTest = true;
5849  SDValue Chain = Op.getOperand(0);
5850  SDValue Cond  = Op.getOperand(1);
5851  SDValue Dest  = Op.getOperand(2);
5852  DebugLoc dl = Op.getDebugLoc();
5853  SDValue CC;
5854
5855  if (Cond.getOpcode() == ISD::SETCC) {
5856    SDValue NewCond = LowerSETCC(Cond, DAG);
5857    if (NewCond.getNode())
5858      Cond = NewCond;
5859  }
5860#if 0
5861  // FIXME: LowerXALUO doesn't handle these!!
5862  else if (Cond.getOpcode() == X86ISD::ADD  ||
5863           Cond.getOpcode() == X86ISD::SUB  ||
5864           Cond.getOpcode() == X86ISD::SMUL ||
5865           Cond.getOpcode() == X86ISD::UMUL)
5866    Cond = LowerXALUO(Cond, DAG);
5867#endif
5868
5869  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5870  // setting operand in place of the X86ISD::SETCC.
5871  if (Cond.getOpcode() == X86ISD::SETCC) {
5872    CC = Cond.getOperand(0);
5873
5874    SDValue Cmp = Cond.getOperand(1);
5875    unsigned Opc = Cmp.getOpcode();
5876    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5877    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5878      Cond = Cmp;
5879      addTest = false;
5880    } else {
5881      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5882      default: break;
5883      case X86::COND_O:
5884      case X86::COND_B:
5885        // These can only come from an arithmetic instruction with overflow,
5886        // e.g. SADDO, UADDO.
5887        Cond = Cond.getNode()->getOperand(1);
5888        addTest = false;
5889        break;
5890      }
5891    }
5892  } else {
5893    unsigned CondOpc;
5894    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5895      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5896      if (CondOpc == ISD::OR) {
5897        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5898        // two branches instead of an explicit OR instruction with a
5899        // separate test.
5900        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5901            isX86LogicalCmp(Cmp)) {
5902          CC = Cond.getOperand(0).getOperand(0);
5903          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5904                              Chain, Dest, CC, Cmp);
5905          CC = Cond.getOperand(1).getOperand(0);
5906          Cond = Cmp;
5907          addTest = false;
5908        }
5909      } else { // ISD::AND
5910        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5911        // two branches instead of an explicit AND instruction with a
5912        // separate test. However, we only do this if this block doesn't
5913        // have a fall-through edge, because this requires an explicit
5914        // jmp when the condition is false.
5915        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5916            isX86LogicalCmp(Cmp) &&
5917            Op.getNode()->hasOneUse()) {
5918          X86::CondCode CCode =
5919            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5920          CCode = X86::GetOppositeBranchCondition(CCode);
5921          CC = DAG.getConstant(CCode, MVT::i8);
5922          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5923          // Look for an unconditional branch following this conditional branch.
5924          // We need this because we need to reverse the successors in order
5925          // to implement FCMP_OEQ.
5926          if (User.getOpcode() == ISD::BR) {
5927            SDValue FalseBB = User.getOperand(1);
5928            SDValue NewBR =
5929              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5930            assert(NewBR == User);
5931            Dest = FalseBB;
5932
5933            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5934                                Chain, Dest, CC, Cmp);
5935            X86::CondCode CCode =
5936              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5937            CCode = X86::GetOppositeBranchCondition(CCode);
5938            CC = DAG.getConstant(CCode, MVT::i8);
5939            Cond = Cmp;
5940            addTest = false;
5941          }
5942        }
5943      }
5944    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5945      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5946      // It should be transformed during dag combiner except when the condition
5947      // is set by a arithmetics with overflow node.
5948      X86::CondCode CCode =
5949        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5950      CCode = X86::GetOppositeBranchCondition(CCode);
5951      CC = DAG.getConstant(CCode, MVT::i8);
5952      Cond = Cond.getOperand(0).getOperand(1);
5953      addTest = false;
5954    }
5955  }
5956
5957  if (addTest) {
5958    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5959    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5960  }
5961  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5962                     Chain, Dest, CC, Cond);
5963}
5964
5965
5966// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5967// Calls to _alloca is needed to probe the stack when allocating more than 4k
5968// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5969// that the guard pages used by the OS virtual memory manager are allocated in
5970// correct sequence.
5971SDValue
5972X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5973                                           SelectionDAG &DAG) {
5974  assert(Subtarget->isTargetCygMing() &&
5975         "This should be used only on Cygwin/Mingw targets");
5976  DebugLoc dl = Op.getDebugLoc();
5977
5978  // Get the inputs.
5979  SDValue Chain = Op.getOperand(0);
5980  SDValue Size  = Op.getOperand(1);
5981  // FIXME: Ensure alignment here
5982
5983  SDValue Flag;
5984
5985  EVT IntPtr = getPointerTy();
5986  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5987
5988  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5989
5990  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5991  Flag = Chain.getValue(1);
5992
5993  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5994  SDValue Ops[] = { Chain,
5995                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5996                      DAG.getRegister(X86::EAX, IntPtr),
5997                      DAG.getRegister(X86StackPtr, SPTy),
5998                      Flag };
5999  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
6000  Flag = Chain.getValue(1);
6001
6002  Chain = DAG.getCALLSEQ_END(Chain,
6003                             DAG.getIntPtrConstant(0, true),
6004                             DAG.getIntPtrConstant(0, true),
6005                             Flag);
6006
6007  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6008
6009  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6010  return DAG.getMergeValues(Ops1, 2, dl);
6011}
6012
6013SDValue
6014X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6015                                           SDValue Chain,
6016                                           SDValue Dst, SDValue Src,
6017                                           SDValue Size, unsigned Align,
6018                                           const Value *DstSV,
6019                                           uint64_t DstSVOff) {
6020  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6021
6022  // If not DWORD aligned or size is more than the threshold, call the library.
6023  // The libc version is likely to be faster for these cases. It can use the
6024  // address value and run time information about the CPU.
6025  if ((Align & 3) != 0 ||
6026      !ConstantSize ||
6027      ConstantSize->getZExtValue() >
6028        getSubtarget()->getMaxInlineSizeThreshold()) {
6029    SDValue InFlag(0, 0);
6030
6031    // Check to see if there is a specialized entry-point for memory zeroing.
6032    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6033
6034    if (const char *bzeroEntry =  V &&
6035        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6036      EVT IntPtr = getPointerTy();
6037      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6038      TargetLowering::ArgListTy Args;
6039      TargetLowering::ArgListEntry Entry;
6040      Entry.Node = Dst;
6041      Entry.Ty = IntPtrTy;
6042      Args.push_back(Entry);
6043      Entry.Node = Size;
6044      Args.push_back(Entry);
6045      std::pair<SDValue,SDValue> CallResult =
6046        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6047                    false, false, false, false,
6048                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6049                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6050      return CallResult.second;
6051    }
6052
6053    // Otherwise have the target-independent code call memset.
6054    return SDValue();
6055  }
6056
6057  uint64_t SizeVal = ConstantSize->getZExtValue();
6058  SDValue InFlag(0, 0);
6059  EVT AVT;
6060  SDValue Count;
6061  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6062  unsigned BytesLeft = 0;
6063  bool TwoRepStos = false;
6064  if (ValC) {
6065    unsigned ValReg;
6066    uint64_t Val = ValC->getZExtValue() & 255;
6067
6068    // If the value is a constant, then we can potentially use larger sets.
6069    switch (Align & 3) {
6070    case 2:   // WORD aligned
6071      AVT = MVT::i16;
6072      ValReg = X86::AX;
6073      Val = (Val << 8) | Val;
6074      break;
6075    case 0:  // DWORD aligned
6076      AVT = MVT::i32;
6077      ValReg = X86::EAX;
6078      Val = (Val << 8)  | Val;
6079      Val = (Val << 16) | Val;
6080      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6081        AVT = MVT::i64;
6082        ValReg = X86::RAX;
6083        Val = (Val << 32) | Val;
6084      }
6085      break;
6086    default:  // Byte aligned
6087      AVT = MVT::i8;
6088      ValReg = X86::AL;
6089      Count = DAG.getIntPtrConstant(SizeVal);
6090      break;
6091    }
6092
6093    if (AVT.bitsGT(MVT::i8)) {
6094      unsigned UBytes = AVT.getSizeInBits() / 8;
6095      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6096      BytesLeft = SizeVal % UBytes;
6097    }
6098
6099    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6100                              InFlag);
6101    InFlag = Chain.getValue(1);
6102  } else {
6103    AVT = MVT::i8;
6104    Count  = DAG.getIntPtrConstant(SizeVal);
6105    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6106    InFlag = Chain.getValue(1);
6107  }
6108
6109  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6110                                                              X86::ECX,
6111                            Count, InFlag);
6112  InFlag = Chain.getValue(1);
6113  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6114                                                              X86::EDI,
6115                            Dst, InFlag);
6116  InFlag = Chain.getValue(1);
6117
6118  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6119  SmallVector<SDValue, 8> Ops;
6120  Ops.push_back(Chain);
6121  Ops.push_back(DAG.getValueType(AVT));
6122  Ops.push_back(InFlag);
6123  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6124
6125  if (TwoRepStos) {
6126    InFlag = Chain.getValue(1);
6127    Count  = Size;
6128    EVT CVT = Count.getValueType();
6129    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6130                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6131    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6132                                                             X86::ECX,
6133                              Left, InFlag);
6134    InFlag = Chain.getValue(1);
6135    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6136    Ops.clear();
6137    Ops.push_back(Chain);
6138    Ops.push_back(DAG.getValueType(MVT::i8));
6139    Ops.push_back(InFlag);
6140    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6141  } else if (BytesLeft) {
6142    // Handle the last 1 - 7 bytes.
6143    unsigned Offset = SizeVal - BytesLeft;
6144    EVT AddrVT = Dst.getValueType();
6145    EVT SizeVT = Size.getValueType();
6146
6147    Chain = DAG.getMemset(Chain, dl,
6148                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6149                                      DAG.getConstant(Offset, AddrVT)),
6150                          Src,
6151                          DAG.getConstant(BytesLeft, SizeVT),
6152                          Align, DstSV, DstSVOff + Offset);
6153  }
6154
6155  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6156  return Chain;
6157}
6158
6159SDValue
6160X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6161                                      SDValue Chain, SDValue Dst, SDValue Src,
6162                                      SDValue Size, unsigned Align,
6163                                      bool AlwaysInline,
6164                                      const Value *DstSV, uint64_t DstSVOff,
6165                                      const Value *SrcSV, uint64_t SrcSVOff) {
6166  // This requires the copy size to be a constant, preferrably
6167  // within a subtarget-specific limit.
6168  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6169  if (!ConstantSize)
6170    return SDValue();
6171  uint64_t SizeVal = ConstantSize->getZExtValue();
6172  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6173    return SDValue();
6174
6175  /// If not DWORD aligned, call the library.
6176  if ((Align & 3) != 0)
6177    return SDValue();
6178
6179  // DWORD aligned
6180  EVT AVT = MVT::i32;
6181  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6182    AVT = MVT::i64;
6183
6184  unsigned UBytes = AVT.getSizeInBits() / 8;
6185  unsigned CountVal = SizeVal / UBytes;
6186  SDValue Count = DAG.getIntPtrConstant(CountVal);
6187  unsigned BytesLeft = SizeVal % UBytes;
6188
6189  SDValue InFlag(0, 0);
6190  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6191                                                              X86::ECX,
6192                            Count, InFlag);
6193  InFlag = Chain.getValue(1);
6194  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6195                                                             X86::EDI,
6196                            Dst, InFlag);
6197  InFlag = Chain.getValue(1);
6198  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6199                                                              X86::ESI,
6200                            Src, InFlag);
6201  InFlag = Chain.getValue(1);
6202
6203  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6204  SmallVector<SDValue, 8> Ops;
6205  Ops.push_back(Chain);
6206  Ops.push_back(DAG.getValueType(AVT));
6207  Ops.push_back(InFlag);
6208  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6209
6210  SmallVector<SDValue, 4> Results;
6211  Results.push_back(RepMovs);
6212  if (BytesLeft) {
6213    // Handle the last 1 - 7 bytes.
6214    unsigned Offset = SizeVal - BytesLeft;
6215    EVT DstVT = Dst.getValueType();
6216    EVT SrcVT = Src.getValueType();
6217    EVT SizeVT = Size.getValueType();
6218    Results.push_back(DAG.getMemcpy(Chain, dl,
6219                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6220                                                DAG.getConstant(Offset, DstVT)),
6221                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6222                                                DAG.getConstant(Offset, SrcVT)),
6223                                    DAG.getConstant(BytesLeft, SizeVT),
6224                                    Align, AlwaysInline,
6225                                    DstSV, DstSVOff + Offset,
6226                                    SrcSV, SrcSVOff + Offset));
6227  }
6228
6229  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6230                     &Results[0], Results.size());
6231}
6232
6233SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6234  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6235  DebugLoc dl = Op.getDebugLoc();
6236
6237  if (!Subtarget->is64Bit()) {
6238    // vastart just stores the address of the VarArgsFrameIndex slot into the
6239    // memory location argument.
6240    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6241    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6242  }
6243
6244  // __va_list_tag:
6245  //   gp_offset         (0 - 6 * 8)
6246  //   fp_offset         (48 - 48 + 8 * 16)
6247  //   overflow_arg_area (point to parameters coming in memory).
6248  //   reg_save_area
6249  SmallVector<SDValue, 8> MemOps;
6250  SDValue FIN = Op.getOperand(1);
6251  // Store gp_offset
6252  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6253                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6254                                 FIN, SV, 0);
6255  MemOps.push_back(Store);
6256
6257  // Store fp_offset
6258  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6259                    FIN, DAG.getIntPtrConstant(4));
6260  Store = DAG.getStore(Op.getOperand(0), dl,
6261                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6262                       FIN, SV, 0);
6263  MemOps.push_back(Store);
6264
6265  // Store ptr to overflow_arg_area
6266  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6267                    FIN, DAG.getIntPtrConstant(4));
6268  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6269  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6270  MemOps.push_back(Store);
6271
6272  // Store ptr to reg_save_area.
6273  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6274                    FIN, DAG.getIntPtrConstant(8));
6275  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6276  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6277  MemOps.push_back(Store);
6278  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6279                     &MemOps[0], MemOps.size());
6280}
6281
6282SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6283  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6284  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6285  SDValue Chain = Op.getOperand(0);
6286  SDValue SrcPtr = Op.getOperand(1);
6287  SDValue SrcSV = Op.getOperand(2);
6288
6289  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6290  return SDValue();
6291}
6292
6293SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6294  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6295  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6296  SDValue Chain = Op.getOperand(0);
6297  SDValue DstPtr = Op.getOperand(1);
6298  SDValue SrcPtr = Op.getOperand(2);
6299  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6300  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6301  DebugLoc dl = Op.getDebugLoc();
6302
6303  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6304                       DAG.getIntPtrConstant(24), 8, false,
6305                       DstSV, 0, SrcSV, 0);
6306}
6307
6308SDValue
6309X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6310  DebugLoc dl = Op.getDebugLoc();
6311  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6312  switch (IntNo) {
6313  default: return SDValue();    // Don't custom lower most intrinsics.
6314  // Comparison intrinsics.
6315  case Intrinsic::x86_sse_comieq_ss:
6316  case Intrinsic::x86_sse_comilt_ss:
6317  case Intrinsic::x86_sse_comile_ss:
6318  case Intrinsic::x86_sse_comigt_ss:
6319  case Intrinsic::x86_sse_comige_ss:
6320  case Intrinsic::x86_sse_comineq_ss:
6321  case Intrinsic::x86_sse_ucomieq_ss:
6322  case Intrinsic::x86_sse_ucomilt_ss:
6323  case Intrinsic::x86_sse_ucomile_ss:
6324  case Intrinsic::x86_sse_ucomigt_ss:
6325  case Intrinsic::x86_sse_ucomige_ss:
6326  case Intrinsic::x86_sse_ucomineq_ss:
6327  case Intrinsic::x86_sse2_comieq_sd:
6328  case Intrinsic::x86_sse2_comilt_sd:
6329  case Intrinsic::x86_sse2_comile_sd:
6330  case Intrinsic::x86_sse2_comigt_sd:
6331  case Intrinsic::x86_sse2_comige_sd:
6332  case Intrinsic::x86_sse2_comineq_sd:
6333  case Intrinsic::x86_sse2_ucomieq_sd:
6334  case Intrinsic::x86_sse2_ucomilt_sd:
6335  case Intrinsic::x86_sse2_ucomile_sd:
6336  case Intrinsic::x86_sse2_ucomigt_sd:
6337  case Intrinsic::x86_sse2_ucomige_sd:
6338  case Intrinsic::x86_sse2_ucomineq_sd: {
6339    unsigned Opc = 0;
6340    ISD::CondCode CC = ISD::SETCC_INVALID;
6341    switch (IntNo) {
6342    default: break;
6343    case Intrinsic::x86_sse_comieq_ss:
6344    case Intrinsic::x86_sse2_comieq_sd:
6345      Opc = X86ISD::COMI;
6346      CC = ISD::SETEQ;
6347      break;
6348    case Intrinsic::x86_sse_comilt_ss:
6349    case Intrinsic::x86_sse2_comilt_sd:
6350      Opc = X86ISD::COMI;
6351      CC = ISD::SETLT;
6352      break;
6353    case Intrinsic::x86_sse_comile_ss:
6354    case Intrinsic::x86_sse2_comile_sd:
6355      Opc = X86ISD::COMI;
6356      CC = ISD::SETLE;
6357      break;
6358    case Intrinsic::x86_sse_comigt_ss:
6359    case Intrinsic::x86_sse2_comigt_sd:
6360      Opc = X86ISD::COMI;
6361      CC = ISD::SETGT;
6362      break;
6363    case Intrinsic::x86_sse_comige_ss:
6364    case Intrinsic::x86_sse2_comige_sd:
6365      Opc = X86ISD::COMI;
6366      CC = ISD::SETGE;
6367      break;
6368    case Intrinsic::x86_sse_comineq_ss:
6369    case Intrinsic::x86_sse2_comineq_sd:
6370      Opc = X86ISD::COMI;
6371      CC = ISD::SETNE;
6372      break;
6373    case Intrinsic::x86_sse_ucomieq_ss:
6374    case Intrinsic::x86_sse2_ucomieq_sd:
6375      Opc = X86ISD::UCOMI;
6376      CC = ISD::SETEQ;
6377      break;
6378    case Intrinsic::x86_sse_ucomilt_ss:
6379    case Intrinsic::x86_sse2_ucomilt_sd:
6380      Opc = X86ISD::UCOMI;
6381      CC = ISD::SETLT;
6382      break;
6383    case Intrinsic::x86_sse_ucomile_ss:
6384    case Intrinsic::x86_sse2_ucomile_sd:
6385      Opc = X86ISD::UCOMI;
6386      CC = ISD::SETLE;
6387      break;
6388    case Intrinsic::x86_sse_ucomigt_ss:
6389    case Intrinsic::x86_sse2_ucomigt_sd:
6390      Opc = X86ISD::UCOMI;
6391      CC = ISD::SETGT;
6392      break;
6393    case Intrinsic::x86_sse_ucomige_ss:
6394    case Intrinsic::x86_sse2_ucomige_sd:
6395      Opc = X86ISD::UCOMI;
6396      CC = ISD::SETGE;
6397      break;
6398    case Intrinsic::x86_sse_ucomineq_ss:
6399    case Intrinsic::x86_sse2_ucomineq_sd:
6400      Opc = X86ISD::UCOMI;
6401      CC = ISD::SETNE;
6402      break;
6403    }
6404
6405    SDValue LHS = Op.getOperand(1);
6406    SDValue RHS = Op.getOperand(2);
6407    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6408    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6409    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6410    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6411                                DAG.getConstant(X86CC, MVT::i8), Cond);
6412    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6413  }
6414  // ptest intrinsics. The intrinsic these come from are designed to return
6415  // an integer value, not just an instruction so lower it to the ptest
6416  // pattern and a setcc for the result.
6417  case Intrinsic::x86_sse41_ptestz:
6418  case Intrinsic::x86_sse41_ptestc:
6419  case Intrinsic::x86_sse41_ptestnzc:{
6420    unsigned X86CC = 0;
6421    switch (IntNo) {
6422    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6423    case Intrinsic::x86_sse41_ptestz:
6424      // ZF = 1
6425      X86CC = X86::COND_E;
6426      break;
6427    case Intrinsic::x86_sse41_ptestc:
6428      // CF = 1
6429      X86CC = X86::COND_B;
6430      break;
6431    case Intrinsic::x86_sse41_ptestnzc:
6432      // ZF and CF = 0
6433      X86CC = X86::COND_A;
6434      break;
6435    }
6436
6437    SDValue LHS = Op.getOperand(1);
6438    SDValue RHS = Op.getOperand(2);
6439    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6440    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6441    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6442    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6443  }
6444
6445  // Fix vector shift instructions where the last operand is a non-immediate
6446  // i32 value.
6447  case Intrinsic::x86_sse2_pslli_w:
6448  case Intrinsic::x86_sse2_pslli_d:
6449  case Intrinsic::x86_sse2_pslli_q:
6450  case Intrinsic::x86_sse2_psrli_w:
6451  case Intrinsic::x86_sse2_psrli_d:
6452  case Intrinsic::x86_sse2_psrli_q:
6453  case Intrinsic::x86_sse2_psrai_w:
6454  case Intrinsic::x86_sse2_psrai_d:
6455  case Intrinsic::x86_mmx_pslli_w:
6456  case Intrinsic::x86_mmx_pslli_d:
6457  case Intrinsic::x86_mmx_pslli_q:
6458  case Intrinsic::x86_mmx_psrli_w:
6459  case Intrinsic::x86_mmx_psrli_d:
6460  case Intrinsic::x86_mmx_psrli_q:
6461  case Intrinsic::x86_mmx_psrai_w:
6462  case Intrinsic::x86_mmx_psrai_d: {
6463    SDValue ShAmt = Op.getOperand(2);
6464    if (isa<ConstantSDNode>(ShAmt))
6465      return SDValue();
6466
6467    unsigned NewIntNo = 0;
6468    EVT ShAmtVT = MVT::v4i32;
6469    switch (IntNo) {
6470    case Intrinsic::x86_sse2_pslli_w:
6471      NewIntNo = Intrinsic::x86_sse2_psll_w;
6472      break;
6473    case Intrinsic::x86_sse2_pslli_d:
6474      NewIntNo = Intrinsic::x86_sse2_psll_d;
6475      break;
6476    case Intrinsic::x86_sse2_pslli_q:
6477      NewIntNo = Intrinsic::x86_sse2_psll_q;
6478      break;
6479    case Intrinsic::x86_sse2_psrli_w:
6480      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6481      break;
6482    case Intrinsic::x86_sse2_psrli_d:
6483      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6484      break;
6485    case Intrinsic::x86_sse2_psrli_q:
6486      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6487      break;
6488    case Intrinsic::x86_sse2_psrai_w:
6489      NewIntNo = Intrinsic::x86_sse2_psra_w;
6490      break;
6491    case Intrinsic::x86_sse2_psrai_d:
6492      NewIntNo = Intrinsic::x86_sse2_psra_d;
6493      break;
6494    default: {
6495      ShAmtVT = MVT::v2i32;
6496      switch (IntNo) {
6497      case Intrinsic::x86_mmx_pslli_w:
6498        NewIntNo = Intrinsic::x86_mmx_psll_w;
6499        break;
6500      case Intrinsic::x86_mmx_pslli_d:
6501        NewIntNo = Intrinsic::x86_mmx_psll_d;
6502        break;
6503      case Intrinsic::x86_mmx_pslli_q:
6504        NewIntNo = Intrinsic::x86_mmx_psll_q;
6505        break;
6506      case Intrinsic::x86_mmx_psrli_w:
6507        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6508        break;
6509      case Intrinsic::x86_mmx_psrli_d:
6510        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6511        break;
6512      case Intrinsic::x86_mmx_psrli_q:
6513        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6514        break;
6515      case Intrinsic::x86_mmx_psrai_w:
6516        NewIntNo = Intrinsic::x86_mmx_psra_w;
6517        break;
6518      case Intrinsic::x86_mmx_psrai_d:
6519        NewIntNo = Intrinsic::x86_mmx_psra_d;
6520        break;
6521      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6522      }
6523      break;
6524    }
6525    }
6526
6527    // The vector shift intrinsics with scalars uses 32b shift amounts but
6528    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6529    // to be zero.
6530    SDValue ShOps[4];
6531    ShOps[0] = ShAmt;
6532    ShOps[1] = DAG.getConstant(0, MVT::i32);
6533    if (ShAmtVT == MVT::v4i32) {
6534      ShOps[2] = DAG.getUNDEF(MVT::i32);
6535      ShOps[3] = DAG.getUNDEF(MVT::i32);
6536      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6537    } else {
6538      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6539    }
6540
6541    EVT VT = Op.getValueType();
6542    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6543    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6544                       DAG.getConstant(NewIntNo, MVT::i32),
6545                       Op.getOperand(1), ShAmt);
6546  }
6547  }
6548}
6549
6550SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6551  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6552  DebugLoc dl = Op.getDebugLoc();
6553
6554  if (Depth > 0) {
6555    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6556    SDValue Offset =
6557      DAG.getConstant(TD->getPointerSize(),
6558                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6559    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6560                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6561                                   FrameAddr, Offset),
6562                       NULL, 0);
6563  }
6564
6565  // Just load the return address.
6566  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6567  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6568                     RetAddrFI, NULL, 0);
6569}
6570
6571SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6572  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6573  MFI->setFrameAddressIsTaken(true);
6574  EVT VT = Op.getValueType();
6575  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6576  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6577  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6578  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6579  while (Depth--)
6580    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6581  return FrameAddr;
6582}
6583
6584SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6585                                                     SelectionDAG &DAG) {
6586  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6587}
6588
6589SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6590{
6591  MachineFunction &MF = DAG.getMachineFunction();
6592  SDValue Chain     = Op.getOperand(0);
6593  SDValue Offset    = Op.getOperand(1);
6594  SDValue Handler   = Op.getOperand(2);
6595  DebugLoc dl       = Op.getDebugLoc();
6596
6597  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6598                                  getPointerTy());
6599  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6600
6601  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6602                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6603  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6604  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6605  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6606  MF.getRegInfo().addLiveOut(StoreAddrReg);
6607
6608  return DAG.getNode(X86ISD::EH_RETURN, dl,
6609                     MVT::Other,
6610                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6611}
6612
6613SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6614                                             SelectionDAG &DAG) {
6615  SDValue Root = Op.getOperand(0);
6616  SDValue Trmp = Op.getOperand(1); // trampoline
6617  SDValue FPtr = Op.getOperand(2); // nested function
6618  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6619  DebugLoc dl  = Op.getDebugLoc();
6620
6621  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6622
6623  const X86InstrInfo *TII =
6624    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6625
6626  if (Subtarget->is64Bit()) {
6627    SDValue OutChains[6];
6628
6629    // Large code-model.
6630
6631    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6632    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6633
6634    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6635    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6636
6637    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6638
6639    // Load the pointer to the nested function into R11.
6640    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6641    SDValue Addr = Trmp;
6642    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6643                                Addr, TrmpAddr, 0);
6644
6645    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6646                       DAG.getConstant(2, MVT::i64));
6647    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6648
6649    // Load the 'nest' parameter value into R10.
6650    // R10 is specified in X86CallingConv.td
6651    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6652    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6653                       DAG.getConstant(10, MVT::i64));
6654    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6655                                Addr, TrmpAddr, 10);
6656
6657    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6658                       DAG.getConstant(12, MVT::i64));
6659    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6660
6661    // Jump to the nested function.
6662    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6663    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6664                       DAG.getConstant(20, MVT::i64));
6665    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6666                                Addr, TrmpAddr, 20);
6667
6668    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6669    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6670                       DAG.getConstant(22, MVT::i64));
6671    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6672                                TrmpAddr, 22);
6673
6674    SDValue Ops[] =
6675      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6676    return DAG.getMergeValues(Ops, 2, dl);
6677  } else {
6678    const Function *Func =
6679      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6680    CallingConv::ID CC = Func->getCallingConv();
6681    unsigned NestReg;
6682
6683    switch (CC) {
6684    default:
6685      llvm_unreachable("Unsupported calling convention");
6686    case CallingConv::C:
6687    case CallingConv::X86_StdCall: {
6688      // Pass 'nest' parameter in ECX.
6689      // Must be kept in sync with X86CallingConv.td
6690      NestReg = X86::ECX;
6691
6692      // Check that ECX wasn't needed by an 'inreg' parameter.
6693      const FunctionType *FTy = Func->getFunctionType();
6694      const AttrListPtr &Attrs = Func->getAttributes();
6695
6696      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6697        unsigned InRegCount = 0;
6698        unsigned Idx = 1;
6699
6700        for (FunctionType::param_iterator I = FTy->param_begin(),
6701             E = FTy->param_end(); I != E; ++I, ++Idx)
6702          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6703            // FIXME: should only count parameters that are lowered to integers.
6704            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6705
6706        if (InRegCount > 2) {
6707          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6708        }
6709      }
6710      break;
6711    }
6712    case CallingConv::X86_FastCall:
6713    case CallingConv::Fast:
6714      // Pass 'nest' parameter in EAX.
6715      // Must be kept in sync with X86CallingConv.td
6716      NestReg = X86::EAX;
6717      break;
6718    }
6719
6720    SDValue OutChains[4];
6721    SDValue Addr, Disp;
6722
6723    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6724                       DAG.getConstant(10, MVT::i32));
6725    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6726
6727    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6728    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6729    OutChains[0] = DAG.getStore(Root, dl,
6730                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6731                                Trmp, TrmpAddr, 0);
6732
6733    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6734                       DAG.getConstant(1, MVT::i32));
6735    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6736
6737    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6738    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6739                       DAG.getConstant(5, MVT::i32));
6740    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6741                                TrmpAddr, 5, false, 1);
6742
6743    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6744                       DAG.getConstant(6, MVT::i32));
6745    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6746
6747    SDValue Ops[] =
6748      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6749    return DAG.getMergeValues(Ops, 2, dl);
6750  }
6751}
6752
6753SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6754  /*
6755   The rounding mode is in bits 11:10 of FPSR, and has the following
6756   settings:
6757     00 Round to nearest
6758     01 Round to -inf
6759     10 Round to +inf
6760     11 Round to 0
6761
6762  FLT_ROUNDS, on the other hand, expects the following:
6763    -1 Undefined
6764     0 Round to 0
6765     1 Round to nearest
6766     2 Round to +inf
6767     3 Round to -inf
6768
6769  To perform the conversion, we do:
6770    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6771  */
6772
6773  MachineFunction &MF = DAG.getMachineFunction();
6774  const TargetMachine &TM = MF.getTarget();
6775  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6776  unsigned StackAlignment = TFI.getStackAlignment();
6777  EVT VT = Op.getValueType();
6778  DebugLoc dl = Op.getDebugLoc();
6779
6780  // Save FP Control Word to stack slot
6781  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
6782  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6783
6784  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6785                              DAG.getEntryNode(), StackSlot);
6786
6787  // Load FP Control Word from stack slot
6788  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6789
6790  // Transform as necessary
6791  SDValue CWD1 =
6792    DAG.getNode(ISD::SRL, dl, MVT::i16,
6793                DAG.getNode(ISD::AND, dl, MVT::i16,
6794                            CWD, DAG.getConstant(0x800, MVT::i16)),
6795                DAG.getConstant(11, MVT::i8));
6796  SDValue CWD2 =
6797    DAG.getNode(ISD::SRL, dl, MVT::i16,
6798                DAG.getNode(ISD::AND, dl, MVT::i16,
6799                            CWD, DAG.getConstant(0x400, MVT::i16)),
6800                DAG.getConstant(9, MVT::i8));
6801
6802  SDValue RetVal =
6803    DAG.getNode(ISD::AND, dl, MVT::i16,
6804                DAG.getNode(ISD::ADD, dl, MVT::i16,
6805                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6806                            DAG.getConstant(1, MVT::i16)),
6807                DAG.getConstant(3, MVT::i16));
6808
6809
6810  return DAG.getNode((VT.getSizeInBits() < 16 ?
6811                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6812}
6813
6814SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6815  EVT VT = Op.getValueType();
6816  EVT OpVT = VT;
6817  unsigned NumBits = VT.getSizeInBits();
6818  DebugLoc dl = Op.getDebugLoc();
6819
6820  Op = Op.getOperand(0);
6821  if (VT == MVT::i8) {
6822    // Zero extend to i32 since there is not an i8 bsr.
6823    OpVT = MVT::i32;
6824    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6825  }
6826
6827  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6828  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6829  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6830
6831  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6832  SmallVector<SDValue, 4> Ops;
6833  Ops.push_back(Op);
6834  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6835  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6836  Ops.push_back(Op.getValue(1));
6837  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6838
6839  // Finally xor with NumBits-1.
6840  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6841
6842  if (VT == MVT::i8)
6843    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6844  return Op;
6845}
6846
6847SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6848  EVT VT = Op.getValueType();
6849  EVT OpVT = VT;
6850  unsigned NumBits = VT.getSizeInBits();
6851  DebugLoc dl = Op.getDebugLoc();
6852
6853  Op = Op.getOperand(0);
6854  if (VT == MVT::i8) {
6855    OpVT = MVT::i32;
6856    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6857  }
6858
6859  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6860  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6861  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6862
6863  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6864  SmallVector<SDValue, 4> Ops;
6865  Ops.push_back(Op);
6866  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6867  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6868  Ops.push_back(Op.getValue(1));
6869  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6870
6871  if (VT == MVT::i8)
6872    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6873  return Op;
6874}
6875
6876SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6877  EVT VT = Op.getValueType();
6878  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6879  DebugLoc dl = Op.getDebugLoc();
6880
6881  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6882  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6883  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6884  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6885  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6886  //
6887  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6888  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6889  //  return AloBlo + AloBhi + AhiBlo;
6890
6891  SDValue A = Op.getOperand(0);
6892  SDValue B = Op.getOperand(1);
6893
6894  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6895                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6896                       A, DAG.getConstant(32, MVT::i32));
6897  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6898                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6899                       B, DAG.getConstant(32, MVT::i32));
6900  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6901                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6902                       A, B);
6903  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6904                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6905                       A, Bhi);
6906  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6907                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6908                       Ahi, B);
6909  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6910                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6911                       AloBhi, DAG.getConstant(32, MVT::i32));
6912  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6913                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6914                       AhiBlo, DAG.getConstant(32, MVT::i32));
6915  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6916  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6917  return Res;
6918}
6919
6920
6921SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6922  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6923  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6924  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6925  // has only one use.
6926  SDNode *N = Op.getNode();
6927  SDValue LHS = N->getOperand(0);
6928  SDValue RHS = N->getOperand(1);
6929  unsigned BaseOp = 0;
6930  unsigned Cond = 0;
6931  DebugLoc dl = Op.getDebugLoc();
6932
6933  switch (Op.getOpcode()) {
6934  default: llvm_unreachable("Unknown ovf instruction!");
6935  case ISD::SADDO:
6936    // A subtract of one will be selected as a INC. Note that INC doesn't
6937    // set CF, so we can't do this for UADDO.
6938    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6939      if (C->getAPIntValue() == 1) {
6940        BaseOp = X86ISD::INC;
6941        Cond = X86::COND_O;
6942        break;
6943      }
6944    BaseOp = X86ISD::ADD;
6945    Cond = X86::COND_O;
6946    break;
6947  case ISD::UADDO:
6948    BaseOp = X86ISD::ADD;
6949    Cond = X86::COND_B;
6950    break;
6951  case ISD::SSUBO:
6952    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6953    // set CF, so we can't do this for USUBO.
6954    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6955      if (C->getAPIntValue() == 1) {
6956        BaseOp = X86ISD::DEC;
6957        Cond = X86::COND_O;
6958        break;
6959      }
6960    BaseOp = X86ISD::SUB;
6961    Cond = X86::COND_O;
6962    break;
6963  case ISD::USUBO:
6964    BaseOp = X86ISD::SUB;
6965    Cond = X86::COND_B;
6966    break;
6967  case ISD::SMULO:
6968    BaseOp = X86ISD::SMUL;
6969    Cond = X86::COND_O;
6970    break;
6971  case ISD::UMULO:
6972    BaseOp = X86ISD::UMUL;
6973    Cond = X86::COND_B;
6974    break;
6975  }
6976
6977  // Also sets EFLAGS.
6978  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6979  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6980
6981  SDValue SetCC =
6982    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6983                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6984
6985  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6986  return Sum;
6987}
6988
6989SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6990  EVT T = Op.getValueType();
6991  DebugLoc dl = Op.getDebugLoc();
6992  unsigned Reg = 0;
6993  unsigned size = 0;
6994  switch(T.getSimpleVT().SimpleTy) {
6995  default:
6996    assert(false && "Invalid value type!");
6997  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6998  case MVT::i16: Reg = X86::AX;  size = 2; break;
6999  case MVT::i32: Reg = X86::EAX; size = 4; break;
7000  case MVT::i64:
7001    assert(Subtarget->is64Bit() && "Node not type legal!");
7002    Reg = X86::RAX; size = 8;
7003    break;
7004  }
7005  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7006                                    Op.getOperand(2), SDValue());
7007  SDValue Ops[] = { cpIn.getValue(0),
7008                    Op.getOperand(1),
7009                    Op.getOperand(3),
7010                    DAG.getTargetConstant(size, MVT::i8),
7011                    cpIn.getValue(1) };
7012  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7013  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7014  SDValue cpOut =
7015    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7016  return cpOut;
7017}
7018
7019SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7020                                                 SelectionDAG &DAG) {
7021  assert(Subtarget->is64Bit() && "Result not type legalized?");
7022  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7023  SDValue TheChain = Op.getOperand(0);
7024  DebugLoc dl = Op.getDebugLoc();
7025  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7026  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7027  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7028                                   rax.getValue(2));
7029  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7030                            DAG.getConstant(32, MVT::i8));
7031  SDValue Ops[] = {
7032    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7033    rdx.getValue(1)
7034  };
7035  return DAG.getMergeValues(Ops, 2, dl);
7036}
7037
7038SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7039  SDNode *Node = Op.getNode();
7040  DebugLoc dl = Node->getDebugLoc();
7041  EVT T = Node->getValueType(0);
7042  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7043                              DAG.getConstant(0, T), Node->getOperand(2));
7044  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7045                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7046                       Node->getOperand(0),
7047                       Node->getOperand(1), negOp,
7048                       cast<AtomicSDNode>(Node)->getSrcValue(),
7049                       cast<AtomicSDNode>(Node)->getAlignment());
7050}
7051
7052/// LowerOperation - Provide custom lowering hooks for some operations.
7053///
7054SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7055  switch (Op.getOpcode()) {
7056  default: llvm_unreachable("Should not custom lower this!");
7057  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7058  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7059  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7060  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7061  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7062  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7063  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7064  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7065  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7066  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7067  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7068  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7069  case ISD::SHL_PARTS:
7070  case ISD::SRA_PARTS:
7071  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7072  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7073  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7074  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7075  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7076  case ISD::FABS:               return LowerFABS(Op, DAG);
7077  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7078  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7079  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7080  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7081  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7082  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7083  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7084  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7085  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7086  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7087  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7088  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7089  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7090  case ISD::FRAME_TO_ARGS_OFFSET:
7091                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7092  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7093  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7094  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7095  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7096  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7097  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7098  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7099  case ISD::SADDO:
7100  case ISD::UADDO:
7101  case ISD::SSUBO:
7102  case ISD::USUBO:
7103  case ISD::SMULO:
7104  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7105  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7106  }
7107}
7108
7109void X86TargetLowering::
7110ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7111                        SelectionDAG &DAG, unsigned NewOp) {
7112  EVT T = Node->getValueType(0);
7113  DebugLoc dl = Node->getDebugLoc();
7114  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7115
7116  SDValue Chain = Node->getOperand(0);
7117  SDValue In1 = Node->getOperand(1);
7118  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7119                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7120  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7121                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7122  SDValue Ops[] = { Chain, In1, In2L, In2H };
7123  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7124  SDValue Result =
7125    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7126                            cast<MemSDNode>(Node)->getMemOperand());
7127  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7128  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7129  Results.push_back(Result.getValue(2));
7130}
7131
7132/// ReplaceNodeResults - Replace a node with an illegal result type
7133/// with a new node built out of custom code.
7134void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7135                                           SmallVectorImpl<SDValue>&Results,
7136                                           SelectionDAG &DAG) {
7137  DebugLoc dl = N->getDebugLoc();
7138  switch (N->getOpcode()) {
7139  default:
7140    assert(false && "Do not know how to custom type legalize this operation!");
7141    return;
7142  case ISD::FP_TO_SINT: {
7143    std::pair<SDValue,SDValue> Vals =
7144        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7145    SDValue FIST = Vals.first, StackSlot = Vals.second;
7146    if (FIST.getNode() != 0) {
7147      EVT VT = N->getValueType(0);
7148      // Return a load from the stack slot.
7149      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7150    }
7151    return;
7152  }
7153  case ISD::READCYCLECOUNTER: {
7154    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7155    SDValue TheChain = N->getOperand(0);
7156    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7157    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7158                                     rd.getValue(1));
7159    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7160                                     eax.getValue(2));
7161    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7162    SDValue Ops[] = { eax, edx };
7163    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7164    Results.push_back(edx.getValue(1));
7165    return;
7166  }
7167  case ISD::ATOMIC_CMP_SWAP: {
7168    EVT T = N->getValueType(0);
7169    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7170    SDValue cpInL, cpInH;
7171    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7172                        DAG.getConstant(0, MVT::i32));
7173    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7174                        DAG.getConstant(1, MVT::i32));
7175    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7176    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7177                             cpInL.getValue(1));
7178    SDValue swapInL, swapInH;
7179    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7180                          DAG.getConstant(0, MVT::i32));
7181    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7182                          DAG.getConstant(1, MVT::i32));
7183    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7184                               cpInH.getValue(1));
7185    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7186                               swapInL.getValue(1));
7187    SDValue Ops[] = { swapInH.getValue(0),
7188                      N->getOperand(1),
7189                      swapInH.getValue(1) };
7190    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7191    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7192    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7193                                        MVT::i32, Result.getValue(1));
7194    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7195                                        MVT::i32, cpOutL.getValue(2));
7196    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7197    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7198    Results.push_back(cpOutH.getValue(1));
7199    return;
7200  }
7201  case ISD::ATOMIC_LOAD_ADD:
7202    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7203    return;
7204  case ISD::ATOMIC_LOAD_AND:
7205    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7206    return;
7207  case ISD::ATOMIC_LOAD_NAND:
7208    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7209    return;
7210  case ISD::ATOMIC_LOAD_OR:
7211    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7212    return;
7213  case ISD::ATOMIC_LOAD_SUB:
7214    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7215    return;
7216  case ISD::ATOMIC_LOAD_XOR:
7217    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7218    return;
7219  case ISD::ATOMIC_SWAP:
7220    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7221    return;
7222  }
7223}
7224
7225const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7226  switch (Opcode) {
7227  default: return NULL;
7228  case X86ISD::BSF:                return "X86ISD::BSF";
7229  case X86ISD::BSR:                return "X86ISD::BSR";
7230  case X86ISD::SHLD:               return "X86ISD::SHLD";
7231  case X86ISD::SHRD:               return "X86ISD::SHRD";
7232  case X86ISD::FAND:               return "X86ISD::FAND";
7233  case X86ISD::FOR:                return "X86ISD::FOR";
7234  case X86ISD::FXOR:               return "X86ISD::FXOR";
7235  case X86ISD::FSRL:               return "X86ISD::FSRL";
7236  case X86ISD::FILD:               return "X86ISD::FILD";
7237  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7238  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7239  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7240  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7241  case X86ISD::FLD:                return "X86ISD::FLD";
7242  case X86ISD::FST:                return "X86ISD::FST";
7243  case X86ISD::CALL:               return "X86ISD::CALL";
7244  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7245  case X86ISD::BT:                 return "X86ISD::BT";
7246  case X86ISD::CMP:                return "X86ISD::CMP";
7247  case X86ISD::COMI:               return "X86ISD::COMI";
7248  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7249  case X86ISD::SETCC:              return "X86ISD::SETCC";
7250  case X86ISD::CMOV:               return "X86ISD::CMOV";
7251  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7252  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7253  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7254  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7255  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7256  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7257  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7258  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7259  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7260  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7261  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7262  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7263  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7264  case X86ISD::FMAX:               return "X86ISD::FMAX";
7265  case X86ISD::FMIN:               return "X86ISD::FMIN";
7266  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7267  case X86ISD::FRCP:               return "X86ISD::FRCP";
7268  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7269  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7270  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7271  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7272  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7273  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7274  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7275  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7276  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7277  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7278  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7279  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7280  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7281  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7282  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7283  case X86ISD::VSHL:               return "X86ISD::VSHL";
7284  case X86ISD::VSRL:               return "X86ISD::VSRL";
7285  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7286  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7287  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7288  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7289  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7290  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7291  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7292  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7293  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7294  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7295  case X86ISD::ADD:                return "X86ISD::ADD";
7296  case X86ISD::SUB:                return "X86ISD::SUB";
7297  case X86ISD::SMUL:               return "X86ISD::SMUL";
7298  case X86ISD::UMUL:               return "X86ISD::UMUL";
7299  case X86ISD::INC:                return "X86ISD::INC";
7300  case X86ISD::DEC:                return "X86ISD::DEC";
7301  case X86ISD::OR:                 return "X86ISD::OR";
7302  case X86ISD::XOR:                return "X86ISD::XOR";
7303  case X86ISD::AND:                return "X86ISD::AND";
7304  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7305  case X86ISD::PTEST:              return "X86ISD::PTEST";
7306  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7307  }
7308}
7309
7310// isLegalAddressingMode - Return true if the addressing mode represented
7311// by AM is legal for this target, for a load/store of the specified type.
7312bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7313                                              const Type *Ty) const {
7314  // X86 supports extremely general addressing modes.
7315  CodeModel::Model M = getTargetMachine().getCodeModel();
7316
7317  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7318  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7319    return false;
7320
7321  if (AM.BaseGV) {
7322    unsigned GVFlags =
7323      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7324
7325    // If a reference to this global requires an extra load, we can't fold it.
7326    if (isGlobalStubReference(GVFlags))
7327      return false;
7328
7329    // If BaseGV requires a register for the PIC base, we cannot also have a
7330    // BaseReg specified.
7331    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7332      return false;
7333
7334    // If lower 4G is not available, then we must use rip-relative addressing.
7335    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7336      return false;
7337  }
7338
7339  switch (AM.Scale) {
7340  case 0:
7341  case 1:
7342  case 2:
7343  case 4:
7344  case 8:
7345    // These scales always work.
7346    break;
7347  case 3:
7348  case 5:
7349  case 9:
7350    // These scales are formed with basereg+scalereg.  Only accept if there is
7351    // no basereg yet.
7352    if (AM.HasBaseReg)
7353      return false;
7354    break;
7355  default:  // Other stuff never works.
7356    return false;
7357  }
7358
7359  return true;
7360}
7361
7362
7363bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7364  if (!Ty1->isInteger() || !Ty2->isInteger())
7365    return false;
7366  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7367  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7368  if (NumBits1 <= NumBits2)
7369    return false;
7370  return Subtarget->is64Bit() || NumBits1 < 64;
7371}
7372
7373bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7374  if (!VT1.isInteger() || !VT2.isInteger())
7375    return false;
7376  unsigned NumBits1 = VT1.getSizeInBits();
7377  unsigned NumBits2 = VT2.getSizeInBits();
7378  if (NumBits1 <= NumBits2)
7379    return false;
7380  return Subtarget->is64Bit() || NumBits1 < 64;
7381}
7382
7383bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7384  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7385  return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7386         Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7387}
7388
7389bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7390  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7391  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7392}
7393
7394bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7395  // i16 instructions are longer (0x66 prefix) and potentially slower.
7396  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7397}
7398
7399/// isShuffleMaskLegal - Targets can use this to indicate that they only
7400/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7401/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7402/// are assumed to be legal.
7403bool
7404X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7405                                      EVT VT) const {
7406  // Only do shuffles on 128-bit vector types for now.
7407  if (VT.getSizeInBits() == 64)
7408    return false;
7409
7410  // FIXME: pshufb, blends, shifts.
7411  return (VT.getVectorNumElements() == 2 ||
7412          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7413          isMOVLMask(M, VT) ||
7414          isSHUFPMask(M, VT) ||
7415          isPSHUFDMask(M, VT) ||
7416          isPSHUFHWMask(M, VT) ||
7417          isPSHUFLWMask(M, VT) ||
7418          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7419          isUNPCKLMask(M, VT) ||
7420          isUNPCKHMask(M, VT) ||
7421          isUNPCKL_v_undef_Mask(M, VT) ||
7422          isUNPCKH_v_undef_Mask(M, VT));
7423}
7424
7425bool
7426X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7427                                          EVT VT) const {
7428  unsigned NumElts = VT.getVectorNumElements();
7429  // FIXME: This collection of masks seems suspect.
7430  if (NumElts == 2)
7431    return true;
7432  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7433    return (isMOVLMask(Mask, VT)  ||
7434            isCommutedMOVLMask(Mask, VT, true) ||
7435            isSHUFPMask(Mask, VT) ||
7436            isCommutedSHUFPMask(Mask, VT));
7437  }
7438  return false;
7439}
7440
7441//===----------------------------------------------------------------------===//
7442//                           X86 Scheduler Hooks
7443//===----------------------------------------------------------------------===//
7444
7445// private utility function
7446MachineBasicBlock *
7447X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7448                                                       MachineBasicBlock *MBB,
7449                                                       unsigned regOpc,
7450                                                       unsigned immOpc,
7451                                                       unsigned LoadOpc,
7452                                                       unsigned CXchgOpc,
7453                                                       unsigned copyOpc,
7454                                                       unsigned notOpc,
7455                                                       unsigned EAXreg,
7456                                                       TargetRegisterClass *RC,
7457                                                       bool invSrc) const {
7458  // For the atomic bitwise operator, we generate
7459  //   thisMBB:
7460  //   newMBB:
7461  //     ld  t1 = [bitinstr.addr]
7462  //     op  t2 = t1, [bitinstr.val]
7463  //     mov EAX = t1
7464  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7465  //     bz  newMBB
7466  //     fallthrough -->nextMBB
7467  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7468  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7469  MachineFunction::iterator MBBIter = MBB;
7470  ++MBBIter;
7471
7472  /// First build the CFG
7473  MachineFunction *F = MBB->getParent();
7474  MachineBasicBlock *thisMBB = MBB;
7475  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7476  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7477  F->insert(MBBIter, newMBB);
7478  F->insert(MBBIter, nextMBB);
7479
7480  // Move all successors to thisMBB to nextMBB
7481  nextMBB->transferSuccessors(thisMBB);
7482
7483  // Update thisMBB to fall through to newMBB
7484  thisMBB->addSuccessor(newMBB);
7485
7486  // newMBB jumps to itself and fall through to nextMBB
7487  newMBB->addSuccessor(nextMBB);
7488  newMBB->addSuccessor(newMBB);
7489
7490  // Insert instructions into newMBB based on incoming instruction
7491  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7492         "unexpected number of operands");
7493  DebugLoc dl = bInstr->getDebugLoc();
7494  MachineOperand& destOper = bInstr->getOperand(0);
7495  MachineOperand* argOpers[2 + X86AddrNumOperands];
7496  int numArgs = bInstr->getNumOperands() - 1;
7497  for (int i=0; i < numArgs; ++i)
7498    argOpers[i] = &bInstr->getOperand(i+1);
7499
7500  // x86 address has 4 operands: base, index, scale, and displacement
7501  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7502  int valArgIndx = lastAddrIndx + 1;
7503
7504  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7505  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7506  for (int i=0; i <= lastAddrIndx; ++i)
7507    (*MIB).addOperand(*argOpers[i]);
7508
7509  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7510  if (invSrc) {
7511    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7512  }
7513  else
7514    tt = t1;
7515
7516  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7517  assert((argOpers[valArgIndx]->isReg() ||
7518          argOpers[valArgIndx]->isImm()) &&
7519         "invalid operand");
7520  if (argOpers[valArgIndx]->isReg())
7521    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7522  else
7523    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7524  MIB.addReg(tt);
7525  (*MIB).addOperand(*argOpers[valArgIndx]);
7526
7527  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7528  MIB.addReg(t1);
7529
7530  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7531  for (int i=0; i <= lastAddrIndx; ++i)
7532    (*MIB).addOperand(*argOpers[i]);
7533  MIB.addReg(t2);
7534  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7535  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7536                    bInstr->memoperands_end());
7537
7538  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7539  MIB.addReg(EAXreg);
7540
7541  // insert branch
7542  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7543
7544  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7545  return nextMBB;
7546}
7547
7548// private utility function:  64 bit atomics on 32 bit host.
7549MachineBasicBlock *
7550X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7551                                                       MachineBasicBlock *MBB,
7552                                                       unsigned regOpcL,
7553                                                       unsigned regOpcH,
7554                                                       unsigned immOpcL,
7555                                                       unsigned immOpcH,
7556                                                       bool invSrc) const {
7557  // For the atomic bitwise operator, we generate
7558  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7559  //     ld t1,t2 = [bitinstr.addr]
7560  //   newMBB:
7561  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7562  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7563  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7564  //     mov ECX, EBX <- t5, t6
7565  //     mov EAX, EDX <- t1, t2
7566  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7567  //     mov t3, t4 <- EAX, EDX
7568  //     bz  newMBB
7569  //     result in out1, out2
7570  //     fallthrough -->nextMBB
7571
7572  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7573  const unsigned LoadOpc = X86::MOV32rm;
7574  const unsigned copyOpc = X86::MOV32rr;
7575  const unsigned NotOpc = X86::NOT32r;
7576  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7577  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7578  MachineFunction::iterator MBBIter = MBB;
7579  ++MBBIter;
7580
7581  /// First build the CFG
7582  MachineFunction *F = MBB->getParent();
7583  MachineBasicBlock *thisMBB = MBB;
7584  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7585  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7586  F->insert(MBBIter, newMBB);
7587  F->insert(MBBIter, nextMBB);
7588
7589  // Move all successors to thisMBB to nextMBB
7590  nextMBB->transferSuccessors(thisMBB);
7591
7592  // Update thisMBB to fall through to newMBB
7593  thisMBB->addSuccessor(newMBB);
7594
7595  // newMBB jumps to itself and fall through to nextMBB
7596  newMBB->addSuccessor(nextMBB);
7597  newMBB->addSuccessor(newMBB);
7598
7599  DebugLoc dl = bInstr->getDebugLoc();
7600  // Insert instructions into newMBB based on incoming instruction
7601  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7602  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7603         "unexpected number of operands");
7604  MachineOperand& dest1Oper = bInstr->getOperand(0);
7605  MachineOperand& dest2Oper = bInstr->getOperand(1);
7606  MachineOperand* argOpers[2 + X86AddrNumOperands];
7607  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7608    argOpers[i] = &bInstr->getOperand(i+2);
7609
7610  // x86 address has 4 operands: base, index, scale, and displacement
7611  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7612
7613  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7614  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7615  for (int i=0; i <= lastAddrIndx; ++i)
7616    (*MIB).addOperand(*argOpers[i]);
7617  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7618  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7619  // add 4 to displacement.
7620  for (int i=0; i <= lastAddrIndx-2; ++i)
7621    (*MIB).addOperand(*argOpers[i]);
7622  MachineOperand newOp3 = *(argOpers[3]);
7623  if (newOp3.isImm())
7624    newOp3.setImm(newOp3.getImm()+4);
7625  else
7626    newOp3.setOffset(newOp3.getOffset()+4);
7627  (*MIB).addOperand(newOp3);
7628  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7629
7630  // t3/4 are defined later, at the bottom of the loop
7631  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7632  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7633  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7634    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7635  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7636    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7637
7638  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7639  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7640  if (invSrc) {
7641    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7642    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7643  } else {
7644    tt1 = t1;
7645    tt2 = t2;
7646  }
7647
7648  int valArgIndx = lastAddrIndx + 1;
7649  assert((argOpers[valArgIndx]->isReg() ||
7650          argOpers[valArgIndx]->isImm()) &&
7651         "invalid operand");
7652  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7653  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7654  if (argOpers[valArgIndx]->isReg())
7655    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7656  else
7657    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7658  if (regOpcL != X86::MOV32rr)
7659    MIB.addReg(tt1);
7660  (*MIB).addOperand(*argOpers[valArgIndx]);
7661  assert(argOpers[valArgIndx + 1]->isReg() ==
7662         argOpers[valArgIndx]->isReg());
7663  assert(argOpers[valArgIndx + 1]->isImm() ==
7664         argOpers[valArgIndx]->isImm());
7665  if (argOpers[valArgIndx + 1]->isReg())
7666    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7667  else
7668    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7669  if (regOpcH != X86::MOV32rr)
7670    MIB.addReg(tt2);
7671  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7672
7673  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7674  MIB.addReg(t1);
7675  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7676  MIB.addReg(t2);
7677
7678  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7679  MIB.addReg(t5);
7680  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7681  MIB.addReg(t6);
7682
7683  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7684  for (int i=0; i <= lastAddrIndx; ++i)
7685    (*MIB).addOperand(*argOpers[i]);
7686
7687  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7688  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7689                    bInstr->memoperands_end());
7690
7691  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7692  MIB.addReg(X86::EAX);
7693  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7694  MIB.addReg(X86::EDX);
7695
7696  // insert branch
7697  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7698
7699  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7700  return nextMBB;
7701}
7702
7703// private utility function
7704MachineBasicBlock *
7705X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7706                                                      MachineBasicBlock *MBB,
7707                                                      unsigned cmovOpc) const {
7708  // For the atomic min/max operator, we generate
7709  //   thisMBB:
7710  //   newMBB:
7711  //     ld t1 = [min/max.addr]
7712  //     mov t2 = [min/max.val]
7713  //     cmp  t1, t2
7714  //     cmov[cond] t2 = t1
7715  //     mov EAX = t1
7716  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7717  //     bz   newMBB
7718  //     fallthrough -->nextMBB
7719  //
7720  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7721  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7722  MachineFunction::iterator MBBIter = MBB;
7723  ++MBBIter;
7724
7725  /// First build the CFG
7726  MachineFunction *F = MBB->getParent();
7727  MachineBasicBlock *thisMBB = MBB;
7728  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7729  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7730  F->insert(MBBIter, newMBB);
7731  F->insert(MBBIter, nextMBB);
7732
7733  // Move all successors of thisMBB to nextMBB
7734  nextMBB->transferSuccessors(thisMBB);
7735
7736  // Update thisMBB to fall through to newMBB
7737  thisMBB->addSuccessor(newMBB);
7738
7739  // newMBB jumps to newMBB and fall through to nextMBB
7740  newMBB->addSuccessor(nextMBB);
7741  newMBB->addSuccessor(newMBB);
7742
7743  DebugLoc dl = mInstr->getDebugLoc();
7744  // Insert instructions into newMBB based on incoming instruction
7745  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7746         "unexpected number of operands");
7747  MachineOperand& destOper = mInstr->getOperand(0);
7748  MachineOperand* argOpers[2 + X86AddrNumOperands];
7749  int numArgs = mInstr->getNumOperands() - 1;
7750  for (int i=0; i < numArgs; ++i)
7751    argOpers[i] = &mInstr->getOperand(i+1);
7752
7753  // x86 address has 4 operands: base, index, scale, and displacement
7754  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7755  int valArgIndx = lastAddrIndx + 1;
7756
7757  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7758  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7759  for (int i=0; i <= lastAddrIndx; ++i)
7760    (*MIB).addOperand(*argOpers[i]);
7761
7762  // We only support register and immediate values
7763  assert((argOpers[valArgIndx]->isReg() ||
7764          argOpers[valArgIndx]->isImm()) &&
7765         "invalid operand");
7766
7767  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7768  if (argOpers[valArgIndx]->isReg())
7769    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7770  else
7771    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7772  (*MIB).addOperand(*argOpers[valArgIndx]);
7773
7774  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7775  MIB.addReg(t1);
7776
7777  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7778  MIB.addReg(t1);
7779  MIB.addReg(t2);
7780
7781  // Generate movc
7782  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7783  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7784  MIB.addReg(t2);
7785  MIB.addReg(t1);
7786
7787  // Cmp and exchange if none has modified the memory location
7788  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7789  for (int i=0; i <= lastAddrIndx; ++i)
7790    (*MIB).addOperand(*argOpers[i]);
7791  MIB.addReg(t3);
7792  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7793  (*MIB).setMemRefs(mInstr->memoperands_begin(),
7794                    mInstr->memoperands_end());
7795
7796  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7797  MIB.addReg(X86::EAX);
7798
7799  // insert branch
7800  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7801
7802  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7803  return nextMBB;
7804}
7805
7806// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
7807// all of this code can be replaced with that in the .td file.
7808MachineBasicBlock *
7809X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
7810                            unsigned numArgs, bool memArg) const {
7811
7812  MachineFunction *F = BB->getParent();
7813  DebugLoc dl = MI->getDebugLoc();
7814  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7815
7816  unsigned Opc;
7817  if (memArg)
7818    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
7819  else
7820    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
7821
7822  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
7823
7824  for (unsigned i = 0; i < numArgs; ++i) {
7825    MachineOperand &Op = MI->getOperand(i+1);
7826
7827    if (!(Op.isReg() && Op.isImplicit()))
7828      MIB.addOperand(Op);
7829  }
7830
7831  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
7832    .addReg(X86::XMM0);
7833
7834  F->DeleteMachineInstr(MI);
7835
7836  return BB;
7837}
7838
7839MachineBasicBlock *
7840X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7841                                                 MachineInstr *MI,
7842                                                 MachineBasicBlock *MBB) const {
7843  // Emit code to save XMM registers to the stack. The ABI says that the
7844  // number of registers to save is given in %al, so it's theoretically
7845  // possible to do an indirect jump trick to avoid saving all of them,
7846  // however this code takes a simpler approach and just executes all
7847  // of the stores if %al is non-zero. It's less code, and it's probably
7848  // easier on the hardware branch predictor, and stores aren't all that
7849  // expensive anyway.
7850
7851  // Create the new basic blocks. One block contains all the XMM stores,
7852  // and one block is the final destination regardless of whether any
7853  // stores were performed.
7854  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7855  MachineFunction *F = MBB->getParent();
7856  MachineFunction::iterator MBBIter = MBB;
7857  ++MBBIter;
7858  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7859  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7860  F->insert(MBBIter, XMMSaveMBB);
7861  F->insert(MBBIter, EndMBB);
7862
7863  // Set up the CFG.
7864  // Move any original successors of MBB to the end block.
7865  EndMBB->transferSuccessors(MBB);
7866  // The original block will now fall through to the XMM save block.
7867  MBB->addSuccessor(XMMSaveMBB);
7868  // The XMMSaveMBB will fall through to the end block.
7869  XMMSaveMBB->addSuccessor(EndMBB);
7870
7871  // Now add the instructions.
7872  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7873  DebugLoc DL = MI->getDebugLoc();
7874
7875  unsigned CountReg = MI->getOperand(0).getReg();
7876  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7877  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7878
7879  if (!Subtarget->isTargetWin64()) {
7880    // If %al is 0, branch around the XMM save block.
7881    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7882    BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7883    MBB->addSuccessor(EndMBB);
7884  }
7885
7886  // In the XMM save block, save all the XMM argument registers.
7887  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7888    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7889    MachineMemOperand *MMO =
7890      F->getMachineMemOperand(
7891        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7892        MachineMemOperand::MOStore, Offset,
7893        /*Size=*/16, /*Align=*/16);
7894    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7895      .addFrameIndex(RegSaveFrameIndex)
7896      .addImm(/*Scale=*/1)
7897      .addReg(/*IndexReg=*/0)
7898      .addImm(/*Disp=*/Offset)
7899      .addReg(/*Segment=*/0)
7900      .addReg(MI->getOperand(i).getReg())
7901      .addMemOperand(MMO);
7902  }
7903
7904  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7905
7906  return EndMBB;
7907}
7908
7909MachineBasicBlock *
7910X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
7911                                     MachineBasicBlock *BB,
7912                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7913  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7914  DebugLoc DL = MI->getDebugLoc();
7915
7916  // To "insert" a SELECT_CC instruction, we actually have to insert the
7917  // diamond control-flow pattern.  The incoming instruction knows the
7918  // destination vreg to set, the condition code register to branch on, the
7919  // true/false values to select between, and a branch opcode to use.
7920  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7921  MachineFunction::iterator It = BB;
7922  ++It;
7923
7924  //  thisMBB:
7925  //  ...
7926  //   TrueVal = ...
7927  //   cmpTY ccX, r1, r2
7928  //   bCC copy1MBB
7929  //   fallthrough --> copy0MBB
7930  MachineBasicBlock *thisMBB = BB;
7931  MachineFunction *F = BB->getParent();
7932  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7933  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7934  unsigned Opc =
7935    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7936  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
7937  F->insert(It, copy0MBB);
7938  F->insert(It, sinkMBB);
7939  // Update machine-CFG edges by first adding all successors of the current
7940  // block to the new block which will contain the Phi node for the select.
7941  // Also inform sdisel of the edge changes.
7942  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
7943         E = BB->succ_end(); I != E; ++I) {
7944    EM->insert(std::make_pair(*I, sinkMBB));
7945    sinkMBB->addSuccessor(*I);
7946  }
7947  // Next, remove all successors of the current block, and add the true
7948  // and fallthrough blocks as its successors.
7949  while (!BB->succ_empty())
7950    BB->removeSuccessor(BB->succ_begin());
7951  // Add the true and fallthrough blocks as its successors.
7952  BB->addSuccessor(copy0MBB);
7953  BB->addSuccessor(sinkMBB);
7954
7955  //  copy0MBB:
7956  //   %FalseValue = ...
7957  //   # fallthrough to sinkMBB
7958  BB = copy0MBB;
7959
7960  // Update machine-CFG edges
7961  BB->addSuccessor(sinkMBB);
7962
7963  //  sinkMBB:
7964  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7965  //  ...
7966  BB = sinkMBB;
7967  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
7968    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7969    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7970
7971  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7972  return BB;
7973}
7974
7975
7976MachineBasicBlock *
7977X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7978                                               MachineBasicBlock *BB,
7979                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
7980  switch (MI->getOpcode()) {
7981  default: assert(false && "Unexpected instr type to insert");
7982  case X86::CMOV_GR8:
7983  case X86::CMOV_V1I64:
7984  case X86::CMOV_FR32:
7985  case X86::CMOV_FR64:
7986  case X86::CMOV_V4F32:
7987  case X86::CMOV_V2F64:
7988  case X86::CMOV_V2I64:
7989    return EmitLoweredSelect(MI, BB, EM);
7990
7991  case X86::FP32_TO_INT16_IN_MEM:
7992  case X86::FP32_TO_INT32_IN_MEM:
7993  case X86::FP32_TO_INT64_IN_MEM:
7994  case X86::FP64_TO_INT16_IN_MEM:
7995  case X86::FP64_TO_INT32_IN_MEM:
7996  case X86::FP64_TO_INT64_IN_MEM:
7997  case X86::FP80_TO_INT16_IN_MEM:
7998  case X86::FP80_TO_INT32_IN_MEM:
7999  case X86::FP80_TO_INT64_IN_MEM: {
8000    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8001    DebugLoc DL = MI->getDebugLoc();
8002
8003    // Change the floating point control register to use "round towards zero"
8004    // mode when truncating to an integer value.
8005    MachineFunction *F = BB->getParent();
8006    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8007    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8008
8009    // Load the old value of the high byte of the control word...
8010    unsigned OldCW =
8011      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8012    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8013                      CWFrameIdx);
8014
8015    // Set the high part to be round to zero...
8016    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8017      .addImm(0xC7F);
8018
8019    // Reload the modified control word now...
8020    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8021
8022    // Restore the memory image of control word to original value
8023    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8024      .addReg(OldCW);
8025
8026    // Get the X86 opcode to use.
8027    unsigned Opc;
8028    switch (MI->getOpcode()) {
8029    default: llvm_unreachable("illegal opcode!");
8030    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8031    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8032    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8033    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8034    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8035    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8036    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8037    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8038    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8039    }
8040
8041    X86AddressMode AM;
8042    MachineOperand &Op = MI->getOperand(0);
8043    if (Op.isReg()) {
8044      AM.BaseType = X86AddressMode::RegBase;
8045      AM.Base.Reg = Op.getReg();
8046    } else {
8047      AM.BaseType = X86AddressMode::FrameIndexBase;
8048      AM.Base.FrameIndex = Op.getIndex();
8049    }
8050    Op = MI->getOperand(1);
8051    if (Op.isImm())
8052      AM.Scale = Op.getImm();
8053    Op = MI->getOperand(2);
8054    if (Op.isImm())
8055      AM.IndexReg = Op.getImm();
8056    Op = MI->getOperand(3);
8057    if (Op.isGlobal()) {
8058      AM.GV = Op.getGlobal();
8059    } else {
8060      AM.Disp = Op.getImm();
8061    }
8062    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8063                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8064
8065    // Reload the original control word now.
8066    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8067
8068    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8069    return BB;
8070  }
8071    // String/text processing lowering.
8072  case X86::PCMPISTRM128REG:
8073    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8074  case X86::PCMPISTRM128MEM:
8075    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8076  case X86::PCMPESTRM128REG:
8077    return EmitPCMP(MI, BB, 5, false /* in mem */);
8078  case X86::PCMPESTRM128MEM:
8079    return EmitPCMP(MI, BB, 5, true /* in mem */);
8080
8081    // Atomic Lowering.
8082  case X86::ATOMAND32:
8083    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8084                                               X86::AND32ri, X86::MOV32rm,
8085                                               X86::LCMPXCHG32, X86::MOV32rr,
8086                                               X86::NOT32r, X86::EAX,
8087                                               X86::GR32RegisterClass);
8088  case X86::ATOMOR32:
8089    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8090                                               X86::OR32ri, X86::MOV32rm,
8091                                               X86::LCMPXCHG32, X86::MOV32rr,
8092                                               X86::NOT32r, X86::EAX,
8093                                               X86::GR32RegisterClass);
8094  case X86::ATOMXOR32:
8095    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8096                                               X86::XOR32ri, X86::MOV32rm,
8097                                               X86::LCMPXCHG32, X86::MOV32rr,
8098                                               X86::NOT32r, X86::EAX,
8099                                               X86::GR32RegisterClass);
8100  case X86::ATOMNAND32:
8101    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8102                                               X86::AND32ri, X86::MOV32rm,
8103                                               X86::LCMPXCHG32, X86::MOV32rr,
8104                                               X86::NOT32r, X86::EAX,
8105                                               X86::GR32RegisterClass, true);
8106  case X86::ATOMMIN32:
8107    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8108  case X86::ATOMMAX32:
8109    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8110  case X86::ATOMUMIN32:
8111    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8112  case X86::ATOMUMAX32:
8113    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8114
8115  case X86::ATOMAND16:
8116    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8117                                               X86::AND16ri, X86::MOV16rm,
8118                                               X86::LCMPXCHG16, X86::MOV16rr,
8119                                               X86::NOT16r, X86::AX,
8120                                               X86::GR16RegisterClass);
8121  case X86::ATOMOR16:
8122    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8123                                               X86::OR16ri, X86::MOV16rm,
8124                                               X86::LCMPXCHG16, X86::MOV16rr,
8125                                               X86::NOT16r, X86::AX,
8126                                               X86::GR16RegisterClass);
8127  case X86::ATOMXOR16:
8128    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8129                                               X86::XOR16ri, X86::MOV16rm,
8130                                               X86::LCMPXCHG16, X86::MOV16rr,
8131                                               X86::NOT16r, X86::AX,
8132                                               X86::GR16RegisterClass);
8133  case X86::ATOMNAND16:
8134    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8135                                               X86::AND16ri, X86::MOV16rm,
8136                                               X86::LCMPXCHG16, X86::MOV16rr,
8137                                               X86::NOT16r, X86::AX,
8138                                               X86::GR16RegisterClass, true);
8139  case X86::ATOMMIN16:
8140    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8141  case X86::ATOMMAX16:
8142    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8143  case X86::ATOMUMIN16:
8144    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8145  case X86::ATOMUMAX16:
8146    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8147
8148  case X86::ATOMAND8:
8149    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8150                                               X86::AND8ri, X86::MOV8rm,
8151                                               X86::LCMPXCHG8, X86::MOV8rr,
8152                                               X86::NOT8r, X86::AL,
8153                                               X86::GR8RegisterClass);
8154  case X86::ATOMOR8:
8155    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8156                                               X86::OR8ri, X86::MOV8rm,
8157                                               X86::LCMPXCHG8, X86::MOV8rr,
8158                                               X86::NOT8r, X86::AL,
8159                                               X86::GR8RegisterClass);
8160  case X86::ATOMXOR8:
8161    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8162                                               X86::XOR8ri, X86::MOV8rm,
8163                                               X86::LCMPXCHG8, X86::MOV8rr,
8164                                               X86::NOT8r, X86::AL,
8165                                               X86::GR8RegisterClass);
8166  case X86::ATOMNAND8:
8167    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8168                                               X86::AND8ri, X86::MOV8rm,
8169                                               X86::LCMPXCHG8, X86::MOV8rr,
8170                                               X86::NOT8r, X86::AL,
8171                                               X86::GR8RegisterClass, true);
8172  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8173  // This group is for 64-bit host.
8174  case X86::ATOMAND64:
8175    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8176                                               X86::AND64ri32, X86::MOV64rm,
8177                                               X86::LCMPXCHG64, X86::MOV64rr,
8178                                               X86::NOT64r, X86::RAX,
8179                                               X86::GR64RegisterClass);
8180  case X86::ATOMOR64:
8181    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8182                                               X86::OR64ri32, X86::MOV64rm,
8183                                               X86::LCMPXCHG64, X86::MOV64rr,
8184                                               X86::NOT64r, X86::RAX,
8185                                               X86::GR64RegisterClass);
8186  case X86::ATOMXOR64:
8187    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8188                                               X86::XOR64ri32, X86::MOV64rm,
8189                                               X86::LCMPXCHG64, X86::MOV64rr,
8190                                               X86::NOT64r, X86::RAX,
8191                                               X86::GR64RegisterClass);
8192  case X86::ATOMNAND64:
8193    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8194                                               X86::AND64ri32, X86::MOV64rm,
8195                                               X86::LCMPXCHG64, X86::MOV64rr,
8196                                               X86::NOT64r, X86::RAX,
8197                                               X86::GR64RegisterClass, true);
8198  case X86::ATOMMIN64:
8199    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8200  case X86::ATOMMAX64:
8201    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8202  case X86::ATOMUMIN64:
8203    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8204  case X86::ATOMUMAX64:
8205    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8206
8207  // This group does 64-bit operations on a 32-bit host.
8208  case X86::ATOMAND6432:
8209    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8210                                               X86::AND32rr, X86::AND32rr,
8211                                               X86::AND32ri, X86::AND32ri,
8212                                               false);
8213  case X86::ATOMOR6432:
8214    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8215                                               X86::OR32rr, X86::OR32rr,
8216                                               X86::OR32ri, X86::OR32ri,
8217                                               false);
8218  case X86::ATOMXOR6432:
8219    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8220                                               X86::XOR32rr, X86::XOR32rr,
8221                                               X86::XOR32ri, X86::XOR32ri,
8222                                               false);
8223  case X86::ATOMNAND6432:
8224    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8225                                               X86::AND32rr, X86::AND32rr,
8226                                               X86::AND32ri, X86::AND32ri,
8227                                               true);
8228  case X86::ATOMADD6432:
8229    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8230                                               X86::ADD32rr, X86::ADC32rr,
8231                                               X86::ADD32ri, X86::ADC32ri,
8232                                               false);
8233  case X86::ATOMSUB6432:
8234    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8235                                               X86::SUB32rr, X86::SBB32rr,
8236                                               X86::SUB32ri, X86::SBB32ri,
8237                                               false);
8238  case X86::ATOMSWAP6432:
8239    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8240                                               X86::MOV32rr, X86::MOV32rr,
8241                                               X86::MOV32ri, X86::MOV32ri,
8242                                               false);
8243  case X86::VASTART_SAVE_XMM_REGS:
8244    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8245  }
8246}
8247
8248//===----------------------------------------------------------------------===//
8249//                           X86 Optimization Hooks
8250//===----------------------------------------------------------------------===//
8251
8252void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8253                                                       const APInt &Mask,
8254                                                       APInt &KnownZero,
8255                                                       APInt &KnownOne,
8256                                                       const SelectionDAG &DAG,
8257                                                       unsigned Depth) const {
8258  unsigned Opc = Op.getOpcode();
8259  assert((Opc >= ISD::BUILTIN_OP_END ||
8260          Opc == ISD::INTRINSIC_WO_CHAIN ||
8261          Opc == ISD::INTRINSIC_W_CHAIN ||
8262          Opc == ISD::INTRINSIC_VOID) &&
8263         "Should use MaskedValueIsZero if you don't know whether Op"
8264         " is a target node!");
8265
8266  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8267  switch (Opc) {
8268  default: break;
8269  case X86ISD::ADD:
8270  case X86ISD::SUB:
8271  case X86ISD::SMUL:
8272  case X86ISD::UMUL:
8273  case X86ISD::INC:
8274  case X86ISD::DEC:
8275  case X86ISD::OR:
8276  case X86ISD::XOR:
8277  case X86ISD::AND:
8278    // These nodes' second result is a boolean.
8279    if (Op.getResNo() == 0)
8280      break;
8281    // Fallthrough
8282  case X86ISD::SETCC:
8283    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8284                                       Mask.getBitWidth() - 1);
8285    break;
8286  }
8287}
8288
8289/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8290/// node is a GlobalAddress + offset.
8291bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8292                                       GlobalValue* &GA, int64_t &Offset) const{
8293  if (N->getOpcode() == X86ISD::Wrapper) {
8294    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8295      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8296      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8297      return true;
8298    }
8299  }
8300  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8301}
8302
8303static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8304                               const TargetLowering &TLI) {
8305  GlobalValue *GV;
8306  int64_t Offset = 0;
8307  if (TLI.isGAPlusOffset(Base, GV, Offset))
8308    return (GV->getAlignment() >= N && (Offset % N) == 0);
8309  // DAG combine handles the stack object case.
8310  return false;
8311}
8312
8313static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8314                                     EVT EltVT, LoadSDNode *&LDBase,
8315                                     unsigned &LastLoadedElt,
8316                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8317                                     const TargetLowering &TLI) {
8318  LDBase = NULL;
8319  LastLoadedElt = -1U;
8320  for (unsigned i = 0; i < NumElems; ++i) {
8321    if (N->getMaskElt(i) < 0) {
8322      if (!LDBase)
8323        return false;
8324      continue;
8325    }
8326
8327    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8328    if (!Elt.getNode() ||
8329        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8330      return false;
8331    if (!LDBase) {
8332      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8333        return false;
8334      LDBase = cast<LoadSDNode>(Elt.getNode());
8335      LastLoadedElt = i;
8336      continue;
8337    }
8338    if (Elt.getOpcode() == ISD::UNDEF)
8339      continue;
8340
8341    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8342    if (!TLI.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i, MFI))
8343      return false;
8344    LastLoadedElt = i;
8345  }
8346  return true;
8347}
8348
8349/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8350/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8351/// if the load addresses are consecutive, non-overlapping, and in the right
8352/// order.  In the case of v2i64, it will see if it can rewrite the
8353/// shuffle to be an appropriate build vector so it can take advantage of
8354// performBuildVectorCombine.
8355static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8356                                     const TargetLowering &TLI) {
8357  DebugLoc dl = N->getDebugLoc();
8358  EVT VT = N->getValueType(0);
8359  EVT EltVT = VT.getVectorElementType();
8360  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8361  unsigned NumElems = VT.getVectorNumElements();
8362
8363  if (VT.getSizeInBits() != 128)
8364    return SDValue();
8365
8366  // Try to combine a vector_shuffle into a 128-bit load.
8367  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8368  LoadSDNode *LD = NULL;
8369  unsigned LastLoadedElt;
8370  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8371                                MFI, TLI))
8372    return SDValue();
8373
8374  if (LastLoadedElt == NumElems - 1) {
8375    if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8376      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8377                         LD->getSrcValue(), LD->getSrcValueOffset(),
8378                         LD->isVolatile());
8379    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8380                       LD->getSrcValue(), LD->getSrcValueOffset(),
8381                       LD->isVolatile(), LD->getAlignment());
8382  } else if (NumElems == 4 && LastLoadedElt == 1) {
8383    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8384    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8385    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8386    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8387  }
8388  return SDValue();
8389}
8390
8391/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8392static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8393                                    const X86Subtarget *Subtarget) {
8394  DebugLoc DL = N->getDebugLoc();
8395  SDValue Cond = N->getOperand(0);
8396  // Get the LHS/RHS of the select.
8397  SDValue LHS = N->getOperand(1);
8398  SDValue RHS = N->getOperand(2);
8399
8400  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8401  // instructions have the peculiarity that if either operand is a NaN,
8402  // they chose what we call the RHS operand (and as such are not symmetric).
8403  // It happens that this matches the semantics of the common C idiom
8404  // x<y?x:y and related forms, so we can recognize these cases.
8405  if (Subtarget->hasSSE2() &&
8406      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8407      Cond.getOpcode() == ISD::SETCC) {
8408    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8409
8410    unsigned Opcode = 0;
8411    // Check for x CC y ? x : y.
8412    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8413      switch (CC) {
8414      default: break;
8415      case ISD::SETULT:
8416        // This can be a min if we can prove that at least one of the operands
8417        // is not a nan.
8418        if (!FiniteOnlyFPMath()) {
8419          if (DAG.isKnownNeverNaN(RHS)) {
8420            // Put the potential NaN in the RHS so that SSE will preserve it.
8421            std::swap(LHS, RHS);
8422          } else if (!DAG.isKnownNeverNaN(LHS))
8423            break;
8424        }
8425        Opcode = X86ISD::FMIN;
8426        break;
8427      case ISD::SETOLE:
8428        // This can be a min if we can prove that at least one of the operands
8429        // is not a nan.
8430        if (!FiniteOnlyFPMath()) {
8431          if (DAG.isKnownNeverNaN(LHS)) {
8432            // Put the potential NaN in the RHS so that SSE will preserve it.
8433            std::swap(LHS, RHS);
8434          } else if (!DAG.isKnownNeverNaN(RHS))
8435            break;
8436        }
8437        Opcode = X86ISD::FMIN;
8438        break;
8439      case ISD::SETULE:
8440        // This can be a min, but if either operand is a NaN we need it to
8441        // preserve the original LHS.
8442        std::swap(LHS, RHS);
8443      case ISD::SETOLT:
8444      case ISD::SETLT:
8445      case ISD::SETLE:
8446        Opcode = X86ISD::FMIN;
8447        break;
8448
8449      case ISD::SETOGE:
8450        // This can be a max if we can prove that at least one of the operands
8451        // is not a nan.
8452        if (!FiniteOnlyFPMath()) {
8453          if (DAG.isKnownNeverNaN(LHS)) {
8454            // Put the potential NaN in the RHS so that SSE will preserve it.
8455            std::swap(LHS, RHS);
8456          } else if (!DAG.isKnownNeverNaN(RHS))
8457            break;
8458        }
8459        Opcode = X86ISD::FMAX;
8460        break;
8461      case ISD::SETUGT:
8462        // This can be a max if we can prove that at least one of the operands
8463        // is not a nan.
8464        if (!FiniteOnlyFPMath()) {
8465          if (DAG.isKnownNeverNaN(RHS)) {
8466            // Put the potential NaN in the RHS so that SSE will preserve it.
8467            std::swap(LHS, RHS);
8468          } else if (!DAG.isKnownNeverNaN(LHS))
8469            break;
8470        }
8471        Opcode = X86ISD::FMAX;
8472        break;
8473      case ISD::SETUGE:
8474        // This can be a max, but if either operand is a NaN we need it to
8475        // preserve the original LHS.
8476        std::swap(LHS, RHS);
8477      case ISD::SETOGT:
8478      case ISD::SETGT:
8479      case ISD::SETGE:
8480        Opcode = X86ISD::FMAX;
8481        break;
8482      }
8483    // Check for x CC y ? y : x -- a min/max with reversed arms.
8484    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8485      switch (CC) {
8486      default: break;
8487      case ISD::SETOGE:
8488        // This can be a min if we can prove that at least one of the operands
8489        // is not a nan.
8490        if (!FiniteOnlyFPMath()) {
8491          if (DAG.isKnownNeverNaN(RHS)) {
8492            // Put the potential NaN in the RHS so that SSE will preserve it.
8493            std::swap(LHS, RHS);
8494          } else if (!DAG.isKnownNeverNaN(LHS))
8495            break;
8496        }
8497        Opcode = X86ISD::FMIN;
8498        break;
8499      case ISD::SETUGT:
8500        // This can be a min if we can prove that at least one of the operands
8501        // is not a nan.
8502        if (!FiniteOnlyFPMath()) {
8503          if (DAG.isKnownNeverNaN(LHS)) {
8504            // Put the potential NaN in the RHS so that SSE will preserve it.
8505            std::swap(LHS, RHS);
8506          } else if (!DAG.isKnownNeverNaN(RHS))
8507            break;
8508        }
8509        Opcode = X86ISD::FMIN;
8510        break;
8511      case ISD::SETUGE:
8512        // This can be a min, but if either operand is a NaN we need it to
8513        // preserve the original LHS.
8514        std::swap(LHS, RHS);
8515      case ISD::SETOGT:
8516      case ISD::SETGT:
8517      case ISD::SETGE:
8518        Opcode = X86ISD::FMIN;
8519        break;
8520
8521      case ISD::SETULT:
8522        // This can be a max if we can prove that at least one of the operands
8523        // is not a nan.
8524        if (!FiniteOnlyFPMath()) {
8525          if (DAG.isKnownNeverNaN(LHS)) {
8526            // Put the potential NaN in the RHS so that SSE will preserve it.
8527            std::swap(LHS, RHS);
8528          } else if (!DAG.isKnownNeverNaN(RHS))
8529            break;
8530        }
8531        Opcode = X86ISD::FMAX;
8532        break;
8533      case ISD::SETOLE:
8534        // This can be a max if we can prove that at least one of the operands
8535        // is not a nan.
8536        if (!FiniteOnlyFPMath()) {
8537          if (DAG.isKnownNeverNaN(RHS)) {
8538            // Put the potential NaN in the RHS so that SSE will preserve it.
8539            std::swap(LHS, RHS);
8540          } else if (!DAG.isKnownNeverNaN(LHS))
8541            break;
8542        }
8543        Opcode = X86ISD::FMAX;
8544        break;
8545      case ISD::SETULE:
8546        // This can be a max, but if either operand is a NaN we need it to
8547        // preserve the original LHS.
8548        std::swap(LHS, RHS);
8549      case ISD::SETOLT:
8550      case ISD::SETLT:
8551      case ISD::SETLE:
8552        Opcode = X86ISD::FMAX;
8553        break;
8554      }
8555    }
8556
8557    if (Opcode)
8558      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8559  }
8560
8561  // If this is a select between two integer constants, try to do some
8562  // optimizations.
8563  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8564    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8565      // Don't do this for crazy integer types.
8566      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8567        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8568        // so that TrueC (the true value) is larger than FalseC.
8569        bool NeedsCondInvert = false;
8570
8571        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8572            // Efficiently invertible.
8573            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8574             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8575              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8576          NeedsCondInvert = true;
8577          std::swap(TrueC, FalseC);
8578        }
8579
8580        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8581        if (FalseC->getAPIntValue() == 0 &&
8582            TrueC->getAPIntValue().isPowerOf2()) {
8583          if (NeedsCondInvert) // Invert the condition if needed.
8584            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8585                               DAG.getConstant(1, Cond.getValueType()));
8586
8587          // Zero extend the condition if needed.
8588          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8589
8590          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8591          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8592                             DAG.getConstant(ShAmt, MVT::i8));
8593        }
8594
8595        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8596        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8597          if (NeedsCondInvert) // Invert the condition if needed.
8598            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8599                               DAG.getConstant(1, Cond.getValueType()));
8600
8601          // Zero extend the condition if needed.
8602          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8603                             FalseC->getValueType(0), Cond);
8604          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8605                             SDValue(FalseC, 0));
8606        }
8607
8608        // Optimize cases that will turn into an LEA instruction.  This requires
8609        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8610        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8611          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8612          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8613
8614          bool isFastMultiplier = false;
8615          if (Diff < 10) {
8616            switch ((unsigned char)Diff) {
8617              default: break;
8618              case 1:  // result = add base, cond
8619              case 2:  // result = lea base(    , cond*2)
8620              case 3:  // result = lea base(cond, cond*2)
8621              case 4:  // result = lea base(    , cond*4)
8622              case 5:  // result = lea base(cond, cond*4)
8623              case 8:  // result = lea base(    , cond*8)
8624              case 9:  // result = lea base(cond, cond*8)
8625                isFastMultiplier = true;
8626                break;
8627            }
8628          }
8629
8630          if (isFastMultiplier) {
8631            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8632            if (NeedsCondInvert) // Invert the condition if needed.
8633              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8634                                 DAG.getConstant(1, Cond.getValueType()));
8635
8636            // Zero extend the condition if needed.
8637            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8638                               Cond);
8639            // Scale the condition by the difference.
8640            if (Diff != 1)
8641              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8642                                 DAG.getConstant(Diff, Cond.getValueType()));
8643
8644            // Add the base if non-zero.
8645            if (FalseC->getAPIntValue() != 0)
8646              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8647                                 SDValue(FalseC, 0));
8648            return Cond;
8649          }
8650        }
8651      }
8652  }
8653
8654  return SDValue();
8655}
8656
8657/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8658static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8659                                  TargetLowering::DAGCombinerInfo &DCI) {
8660  DebugLoc DL = N->getDebugLoc();
8661
8662  // If the flag operand isn't dead, don't touch this CMOV.
8663  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8664    return SDValue();
8665
8666  // If this is a select between two integer constants, try to do some
8667  // optimizations.  Note that the operands are ordered the opposite of SELECT
8668  // operands.
8669  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8670    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8671      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8672      // larger than FalseC (the false value).
8673      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8674
8675      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8676        CC = X86::GetOppositeBranchCondition(CC);
8677        std::swap(TrueC, FalseC);
8678      }
8679
8680      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8681      // This is efficient for any integer data type (including i8/i16) and
8682      // shift amount.
8683      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8684        SDValue Cond = N->getOperand(3);
8685        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8686                           DAG.getConstant(CC, MVT::i8), Cond);
8687
8688        // Zero extend the condition if needed.
8689        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8690
8691        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8692        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8693                           DAG.getConstant(ShAmt, MVT::i8));
8694        if (N->getNumValues() == 2)  // Dead flag value?
8695          return DCI.CombineTo(N, Cond, SDValue());
8696        return Cond;
8697      }
8698
8699      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8700      // for any integer data type, including i8/i16.
8701      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8702        SDValue Cond = N->getOperand(3);
8703        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8704                           DAG.getConstant(CC, MVT::i8), Cond);
8705
8706        // Zero extend the condition if needed.
8707        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8708                           FalseC->getValueType(0), Cond);
8709        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8710                           SDValue(FalseC, 0));
8711
8712        if (N->getNumValues() == 2)  // Dead flag value?
8713          return DCI.CombineTo(N, Cond, SDValue());
8714        return Cond;
8715      }
8716
8717      // Optimize cases that will turn into an LEA instruction.  This requires
8718      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8719      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8720        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8721        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8722
8723        bool isFastMultiplier = false;
8724        if (Diff < 10) {
8725          switch ((unsigned char)Diff) {
8726          default: break;
8727          case 1:  // result = add base, cond
8728          case 2:  // result = lea base(    , cond*2)
8729          case 3:  // result = lea base(cond, cond*2)
8730          case 4:  // result = lea base(    , cond*4)
8731          case 5:  // result = lea base(cond, cond*4)
8732          case 8:  // result = lea base(    , cond*8)
8733          case 9:  // result = lea base(cond, cond*8)
8734            isFastMultiplier = true;
8735            break;
8736          }
8737        }
8738
8739        if (isFastMultiplier) {
8740          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8741          SDValue Cond = N->getOperand(3);
8742          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8743                             DAG.getConstant(CC, MVT::i8), Cond);
8744          // Zero extend the condition if needed.
8745          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8746                             Cond);
8747          // Scale the condition by the difference.
8748          if (Diff != 1)
8749            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8750                               DAG.getConstant(Diff, Cond.getValueType()));
8751
8752          // Add the base if non-zero.
8753          if (FalseC->getAPIntValue() != 0)
8754            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8755                               SDValue(FalseC, 0));
8756          if (N->getNumValues() == 2)  // Dead flag value?
8757            return DCI.CombineTo(N, Cond, SDValue());
8758          return Cond;
8759        }
8760      }
8761    }
8762  }
8763  return SDValue();
8764}
8765
8766
8767/// PerformMulCombine - Optimize a single multiply with constant into two
8768/// in order to implement it with two cheaper instructions, e.g.
8769/// LEA + SHL, LEA + LEA.
8770static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8771                                 TargetLowering::DAGCombinerInfo &DCI) {
8772  if (DAG.getMachineFunction().
8773      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8774    return SDValue();
8775
8776  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8777    return SDValue();
8778
8779  EVT VT = N->getValueType(0);
8780  if (VT != MVT::i64)
8781    return SDValue();
8782
8783  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8784  if (!C)
8785    return SDValue();
8786  uint64_t MulAmt = C->getZExtValue();
8787  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8788    return SDValue();
8789
8790  uint64_t MulAmt1 = 0;
8791  uint64_t MulAmt2 = 0;
8792  if ((MulAmt % 9) == 0) {
8793    MulAmt1 = 9;
8794    MulAmt2 = MulAmt / 9;
8795  } else if ((MulAmt % 5) == 0) {
8796    MulAmt1 = 5;
8797    MulAmt2 = MulAmt / 5;
8798  } else if ((MulAmt % 3) == 0) {
8799    MulAmt1 = 3;
8800    MulAmt2 = MulAmt / 3;
8801  }
8802  if (MulAmt2 &&
8803      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8804    DebugLoc DL = N->getDebugLoc();
8805
8806    if (isPowerOf2_64(MulAmt2) &&
8807        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8808      // If second multiplifer is pow2, issue it first. We want the multiply by
8809      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8810      // is an add.
8811      std::swap(MulAmt1, MulAmt2);
8812
8813    SDValue NewMul;
8814    if (isPowerOf2_64(MulAmt1))
8815      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8816                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8817    else
8818      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8819                           DAG.getConstant(MulAmt1, VT));
8820
8821    if (isPowerOf2_64(MulAmt2))
8822      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8823                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8824    else
8825      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8826                           DAG.getConstant(MulAmt2, VT));
8827
8828    // Do not add new nodes to DAG combiner worklist.
8829    DCI.CombineTo(N, NewMul, false);
8830  }
8831  return SDValue();
8832}
8833
8834
8835/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8836///                       when possible.
8837static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8838                                   const X86Subtarget *Subtarget) {
8839  // On X86 with SSE2 support, we can transform this to a vector shift if
8840  // all elements are shifted by the same amount.  We can't do this in legalize
8841  // because the a constant vector is typically transformed to a constant pool
8842  // so we have no knowledge of the shift amount.
8843  if (!Subtarget->hasSSE2())
8844    return SDValue();
8845
8846  EVT VT = N->getValueType(0);
8847  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8848    return SDValue();
8849
8850  SDValue ShAmtOp = N->getOperand(1);
8851  EVT EltVT = VT.getVectorElementType();
8852  DebugLoc DL = N->getDebugLoc();
8853  SDValue BaseShAmt = SDValue();
8854  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8855    unsigned NumElts = VT.getVectorNumElements();
8856    unsigned i = 0;
8857    for (; i != NumElts; ++i) {
8858      SDValue Arg = ShAmtOp.getOperand(i);
8859      if (Arg.getOpcode() == ISD::UNDEF) continue;
8860      BaseShAmt = Arg;
8861      break;
8862    }
8863    for (; i != NumElts; ++i) {
8864      SDValue Arg = ShAmtOp.getOperand(i);
8865      if (Arg.getOpcode() == ISD::UNDEF) continue;
8866      if (Arg != BaseShAmt) {
8867        return SDValue();
8868      }
8869    }
8870  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8871             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8872    SDValue InVec = ShAmtOp.getOperand(0);
8873    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8874      unsigned NumElts = InVec.getValueType().getVectorNumElements();
8875      unsigned i = 0;
8876      for (; i != NumElts; ++i) {
8877        SDValue Arg = InVec.getOperand(i);
8878        if (Arg.getOpcode() == ISD::UNDEF) continue;
8879        BaseShAmt = Arg;
8880        break;
8881      }
8882    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
8883       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
8884         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
8885         if (C->getZExtValue() == SplatIdx)
8886           BaseShAmt = InVec.getOperand(1);
8887       }
8888    }
8889    if (BaseShAmt.getNode() == 0)
8890      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8891                              DAG.getIntPtrConstant(0));
8892  } else
8893    return SDValue();
8894
8895  // The shift amount is an i32.
8896  if (EltVT.bitsGT(MVT::i32))
8897    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8898  else if (EltVT.bitsLT(MVT::i32))
8899    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
8900
8901  // The shift amount is identical so we can do a vector shift.
8902  SDValue  ValOp = N->getOperand(0);
8903  switch (N->getOpcode()) {
8904  default:
8905    llvm_unreachable("Unknown shift opcode!");
8906    break;
8907  case ISD::SHL:
8908    if (VT == MVT::v2i64)
8909      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8910                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8911                         ValOp, BaseShAmt);
8912    if (VT == MVT::v4i32)
8913      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8914                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8915                         ValOp, BaseShAmt);
8916    if (VT == MVT::v8i16)
8917      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8918                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8919                         ValOp, BaseShAmt);
8920    break;
8921  case ISD::SRA:
8922    if (VT == MVT::v4i32)
8923      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8924                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8925                         ValOp, BaseShAmt);
8926    if (VT == MVT::v8i16)
8927      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8928                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8929                         ValOp, BaseShAmt);
8930    break;
8931  case ISD::SRL:
8932    if (VT == MVT::v2i64)
8933      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8934                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8935                         ValOp, BaseShAmt);
8936    if (VT == MVT::v4i32)
8937      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8938                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8939                         ValOp, BaseShAmt);
8940    if (VT ==  MVT::v8i16)
8941      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8942                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8943                         ValOp, BaseShAmt);
8944    break;
8945  }
8946  return SDValue();
8947}
8948
8949/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8950static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8951                                   const X86Subtarget *Subtarget) {
8952  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8953  // the FP state in cases where an emms may be missing.
8954  // A preferable solution to the general problem is to figure out the right
8955  // places to insert EMMS.  This qualifies as a quick hack.
8956
8957  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8958  StoreSDNode *St = cast<StoreSDNode>(N);
8959  EVT VT = St->getValue().getValueType();
8960  if (VT.getSizeInBits() != 64)
8961    return SDValue();
8962
8963  const Function *F = DAG.getMachineFunction().getFunction();
8964  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8965  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8966    && Subtarget->hasSSE2();
8967  if ((VT.isVector() ||
8968       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8969      isa<LoadSDNode>(St->getValue()) &&
8970      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8971      St->getChain().hasOneUse() && !St->isVolatile()) {
8972    SDNode* LdVal = St->getValue().getNode();
8973    LoadSDNode *Ld = 0;
8974    int TokenFactorIndex = -1;
8975    SmallVector<SDValue, 8> Ops;
8976    SDNode* ChainVal = St->getChain().getNode();
8977    // Must be a store of a load.  We currently handle two cases:  the load
8978    // is a direct child, and it's under an intervening TokenFactor.  It is
8979    // possible to dig deeper under nested TokenFactors.
8980    if (ChainVal == LdVal)
8981      Ld = cast<LoadSDNode>(St->getChain());
8982    else if (St->getValue().hasOneUse() &&
8983             ChainVal->getOpcode() == ISD::TokenFactor) {
8984      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8985        if (ChainVal->getOperand(i).getNode() == LdVal) {
8986          TokenFactorIndex = i;
8987          Ld = cast<LoadSDNode>(St->getValue());
8988        } else
8989          Ops.push_back(ChainVal->getOperand(i));
8990      }
8991    }
8992
8993    if (!Ld || !ISD::isNormalLoad(Ld))
8994      return SDValue();
8995
8996    // If this is not the MMX case, i.e. we are just turning i64 load/store
8997    // into f64 load/store, avoid the transformation if there are multiple
8998    // uses of the loaded value.
8999    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9000      return SDValue();
9001
9002    DebugLoc LdDL = Ld->getDebugLoc();
9003    DebugLoc StDL = N->getDebugLoc();
9004    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9005    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9006    // pair instead.
9007    if (Subtarget->is64Bit() || F64IsLegal) {
9008      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9009      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9010                                  Ld->getBasePtr(), Ld->getSrcValue(),
9011                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9012                                  Ld->getAlignment());
9013      SDValue NewChain = NewLd.getValue(1);
9014      if (TokenFactorIndex != -1) {
9015        Ops.push_back(NewChain);
9016        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9017                               Ops.size());
9018      }
9019      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9020                          St->getSrcValue(), St->getSrcValueOffset(),
9021                          St->isVolatile(), St->getAlignment());
9022    }
9023
9024    // Otherwise, lower to two pairs of 32-bit loads / stores.
9025    SDValue LoAddr = Ld->getBasePtr();
9026    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9027                                 DAG.getConstant(4, MVT::i32));
9028
9029    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9030                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9031                               Ld->isVolatile(), Ld->getAlignment());
9032    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9033                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9034                               Ld->isVolatile(),
9035                               MinAlign(Ld->getAlignment(), 4));
9036
9037    SDValue NewChain = LoLd.getValue(1);
9038    if (TokenFactorIndex != -1) {
9039      Ops.push_back(LoLd);
9040      Ops.push_back(HiLd);
9041      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9042                             Ops.size());
9043    }
9044
9045    LoAddr = St->getBasePtr();
9046    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9047                         DAG.getConstant(4, MVT::i32));
9048
9049    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9050                                St->getSrcValue(), St->getSrcValueOffset(),
9051                                St->isVolatile(), St->getAlignment());
9052    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9053                                St->getSrcValue(),
9054                                St->getSrcValueOffset() + 4,
9055                                St->isVolatile(),
9056                                MinAlign(St->getAlignment(), 4));
9057    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9058  }
9059  return SDValue();
9060}
9061
9062/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9063/// X86ISD::FXOR nodes.
9064static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9065  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9066  // F[X]OR(0.0, x) -> x
9067  // F[X]OR(x, 0.0) -> x
9068  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9069    if (C->getValueAPF().isPosZero())
9070      return N->getOperand(1);
9071  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9072    if (C->getValueAPF().isPosZero())
9073      return N->getOperand(0);
9074  return SDValue();
9075}
9076
9077/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9078static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9079  // FAND(0.0, x) -> 0.0
9080  // FAND(x, 0.0) -> 0.0
9081  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9082    if (C->getValueAPF().isPosZero())
9083      return N->getOperand(0);
9084  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9085    if (C->getValueAPF().isPosZero())
9086      return N->getOperand(1);
9087  return SDValue();
9088}
9089
9090static SDValue PerformBTCombine(SDNode *N,
9091                                SelectionDAG &DAG,
9092                                TargetLowering::DAGCombinerInfo &DCI) {
9093  // BT ignores high bits in the bit index operand.
9094  SDValue Op1 = N->getOperand(1);
9095  if (Op1.hasOneUse()) {
9096    unsigned BitWidth = Op1.getValueSizeInBits();
9097    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9098    APInt KnownZero, KnownOne;
9099    TargetLowering::TargetLoweringOpt TLO(DAG);
9100    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9101    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9102        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9103      DCI.CommitTargetLoweringOpt(TLO);
9104  }
9105  return SDValue();
9106}
9107
9108static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9109  SDValue Op = N->getOperand(0);
9110  if (Op.getOpcode() == ISD::BIT_CONVERT)
9111    Op = Op.getOperand(0);
9112  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9113  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9114      VT.getVectorElementType().getSizeInBits() ==
9115      OpVT.getVectorElementType().getSizeInBits()) {
9116    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9117  }
9118  return SDValue();
9119}
9120
9121// On X86 and X86-64, atomic operations are lowered to locked instructions.
9122// Locked instructions, in turn, have implicit fence semantics (all memory
9123// operations are flushed before issuing the locked instruction, and the
9124// are not buffered), so we can fold away the common pattern of
9125// fence-atomic-fence.
9126static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9127  SDValue atomic = N->getOperand(0);
9128  switch (atomic.getOpcode()) {
9129    case ISD::ATOMIC_CMP_SWAP:
9130    case ISD::ATOMIC_SWAP:
9131    case ISD::ATOMIC_LOAD_ADD:
9132    case ISD::ATOMIC_LOAD_SUB:
9133    case ISD::ATOMIC_LOAD_AND:
9134    case ISD::ATOMIC_LOAD_OR:
9135    case ISD::ATOMIC_LOAD_XOR:
9136    case ISD::ATOMIC_LOAD_NAND:
9137    case ISD::ATOMIC_LOAD_MIN:
9138    case ISD::ATOMIC_LOAD_MAX:
9139    case ISD::ATOMIC_LOAD_UMIN:
9140    case ISD::ATOMIC_LOAD_UMAX:
9141      break;
9142    default:
9143      return SDValue();
9144  }
9145
9146  SDValue fence = atomic.getOperand(0);
9147  if (fence.getOpcode() != ISD::MEMBARRIER)
9148    return SDValue();
9149
9150  switch (atomic.getOpcode()) {
9151    case ISD::ATOMIC_CMP_SWAP:
9152      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9153                                    atomic.getOperand(1), atomic.getOperand(2),
9154                                    atomic.getOperand(3));
9155    case ISD::ATOMIC_SWAP:
9156    case ISD::ATOMIC_LOAD_ADD:
9157    case ISD::ATOMIC_LOAD_SUB:
9158    case ISD::ATOMIC_LOAD_AND:
9159    case ISD::ATOMIC_LOAD_OR:
9160    case ISD::ATOMIC_LOAD_XOR:
9161    case ISD::ATOMIC_LOAD_NAND:
9162    case ISD::ATOMIC_LOAD_MIN:
9163    case ISD::ATOMIC_LOAD_MAX:
9164    case ISD::ATOMIC_LOAD_UMIN:
9165    case ISD::ATOMIC_LOAD_UMAX:
9166      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9167                                    atomic.getOperand(1), atomic.getOperand(2));
9168    default:
9169      return SDValue();
9170  }
9171}
9172
9173SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9174                                             DAGCombinerInfo &DCI) const {
9175  SelectionDAG &DAG = DCI.DAG;
9176  switch (N->getOpcode()) {
9177  default: break;
9178  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9179  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9180  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9181  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9182  case ISD::SHL:
9183  case ISD::SRA:
9184  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9185  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9186  case X86ISD::FXOR:
9187  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9188  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9189  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9190  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9191  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9192  }
9193
9194  return SDValue();
9195}
9196
9197//===----------------------------------------------------------------------===//
9198//                           X86 Inline Assembly Support
9199//===----------------------------------------------------------------------===//
9200
9201static bool LowerToBSwap(CallInst *CI) {
9202  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9203  // we will turn this bswap into something that will be lowered to logical ops
9204  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9205  // so don't worry about this.
9206
9207  // Verify this is a simple bswap.
9208  if (CI->getNumOperands() != 2 ||
9209      CI->getType() != CI->getOperand(1)->getType() ||
9210      !CI->getType()->isInteger())
9211    return false;
9212
9213  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9214  if (!Ty || Ty->getBitWidth() % 16 != 0)
9215    return false;
9216
9217  // Okay, we can do this xform, do so now.
9218  const Type *Tys[] = { Ty };
9219  Module *M = CI->getParent()->getParent()->getParent();
9220  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9221
9222  Value *Op = CI->getOperand(1);
9223  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9224
9225  CI->replaceAllUsesWith(Op);
9226  CI->eraseFromParent();
9227  return true;
9228}
9229
9230bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9231  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9232  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9233
9234  std::string AsmStr = IA->getAsmString();
9235
9236  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9237  std::vector<std::string> AsmPieces;
9238  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9239
9240  switch (AsmPieces.size()) {
9241  default: return false;
9242  case 1:
9243    AsmStr = AsmPieces[0];
9244    AsmPieces.clear();
9245    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9246
9247    // bswap $0
9248    if (AsmPieces.size() == 2 &&
9249        (AsmPieces[0] == "bswap" ||
9250         AsmPieces[0] == "bswapq" ||
9251         AsmPieces[0] == "bswapl") &&
9252        (AsmPieces[1] == "$0" ||
9253         AsmPieces[1] == "${0:q}")) {
9254      // No need to check constraints, nothing other than the equivalent of
9255      // "=r,0" would be valid here.
9256      return LowerToBSwap(CI);
9257    }
9258    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9259    if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
9260        AsmPieces.size() == 3 &&
9261        AsmPieces[0] == "rorw" &&
9262        AsmPieces[1] == "$$8," &&
9263        AsmPieces[2] == "${0:w}" &&
9264        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9265      return LowerToBSwap(CI);
9266    }
9267    break;
9268  case 3:
9269    if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
9270        Constraints.size() >= 2 &&
9271        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9272        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9273      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9274      std::vector<std::string> Words;
9275      SplitString(AsmPieces[0], Words, " \t");
9276      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9277        Words.clear();
9278        SplitString(AsmPieces[1], Words, " \t");
9279        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9280          Words.clear();
9281          SplitString(AsmPieces[2], Words, " \t,");
9282          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9283              Words[2] == "%edx") {
9284            return LowerToBSwap(CI);
9285          }
9286        }
9287      }
9288    }
9289    break;
9290  }
9291  return false;
9292}
9293
9294
9295
9296/// getConstraintType - Given a constraint letter, return the type of
9297/// constraint it is for this target.
9298X86TargetLowering::ConstraintType
9299X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9300  if (Constraint.size() == 1) {
9301    switch (Constraint[0]) {
9302    case 'A':
9303      return C_Register;
9304    case 'f':
9305    case 'r':
9306    case 'R':
9307    case 'l':
9308    case 'q':
9309    case 'Q':
9310    case 'x':
9311    case 'y':
9312    case 'Y':
9313      return C_RegisterClass;
9314    case 'e':
9315    case 'Z':
9316      return C_Other;
9317    default:
9318      break;
9319    }
9320  }
9321  return TargetLowering::getConstraintType(Constraint);
9322}
9323
9324/// LowerXConstraint - try to replace an X constraint, which matches anything,
9325/// with another that has more specific requirements based on the type of the
9326/// corresponding operand.
9327const char *X86TargetLowering::
9328LowerXConstraint(EVT ConstraintVT) const {
9329  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9330  // 'f' like normal targets.
9331  if (ConstraintVT.isFloatingPoint()) {
9332    if (Subtarget->hasSSE2())
9333      return "Y";
9334    if (Subtarget->hasSSE1())
9335      return "x";
9336  }
9337
9338  return TargetLowering::LowerXConstraint(ConstraintVT);
9339}
9340
9341/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9342/// vector.  If it is invalid, don't add anything to Ops.
9343void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9344                                                     char Constraint,
9345                                                     bool hasMemory,
9346                                                     std::vector<SDValue>&Ops,
9347                                                     SelectionDAG &DAG) const {
9348  SDValue Result(0, 0);
9349
9350  switch (Constraint) {
9351  default: break;
9352  case 'I':
9353    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9354      if (C->getZExtValue() <= 31) {
9355        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9356        break;
9357      }
9358    }
9359    return;
9360  case 'J':
9361    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9362      if (C->getZExtValue() <= 63) {
9363        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9364        break;
9365      }
9366    }
9367    return;
9368  case 'K':
9369    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9370      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9371        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9372        break;
9373      }
9374    }
9375    return;
9376  case 'N':
9377    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9378      if (C->getZExtValue() <= 255) {
9379        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9380        break;
9381      }
9382    }
9383    return;
9384  case 'e': {
9385    // 32-bit signed value
9386    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9387      const ConstantInt *CI = C->getConstantIntValue();
9388      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9389                                  C->getSExtValue())) {
9390        // Widen to 64 bits here to get it sign extended.
9391        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9392        break;
9393      }
9394    // FIXME gcc accepts some relocatable values here too, but only in certain
9395    // memory models; it's complicated.
9396    }
9397    return;
9398  }
9399  case 'Z': {
9400    // 32-bit unsigned value
9401    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9402      const ConstantInt *CI = C->getConstantIntValue();
9403      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9404                                  C->getZExtValue())) {
9405        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9406        break;
9407      }
9408    }
9409    // FIXME gcc accepts some relocatable values here too, but only in certain
9410    // memory models; it's complicated.
9411    return;
9412  }
9413  case 'i': {
9414    // Literal immediates are always ok.
9415    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9416      // Widen to 64 bits here to get it sign extended.
9417      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9418      break;
9419    }
9420
9421    // If we are in non-pic codegen mode, we allow the address of a global (with
9422    // an optional displacement) to be used with 'i'.
9423    GlobalAddressSDNode *GA = 0;
9424    int64_t Offset = 0;
9425
9426    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9427    while (1) {
9428      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9429        Offset += GA->getOffset();
9430        break;
9431      } else if (Op.getOpcode() == ISD::ADD) {
9432        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9433          Offset += C->getZExtValue();
9434          Op = Op.getOperand(0);
9435          continue;
9436        }
9437      } else if (Op.getOpcode() == ISD::SUB) {
9438        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9439          Offset += -C->getZExtValue();
9440          Op = Op.getOperand(0);
9441          continue;
9442        }
9443      }
9444
9445      // Otherwise, this isn't something we can handle, reject it.
9446      return;
9447    }
9448
9449    GlobalValue *GV = GA->getGlobal();
9450    // If we require an extra load to get this address, as in PIC mode, we
9451    // can't accept it.
9452    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9453                                                        getTargetMachine())))
9454      return;
9455
9456    if (hasMemory)
9457      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9458    else
9459      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9460    Result = Op;
9461    break;
9462  }
9463  }
9464
9465  if (Result.getNode()) {
9466    Ops.push_back(Result);
9467    return;
9468  }
9469  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9470                                                      Ops, DAG);
9471}
9472
9473std::vector<unsigned> X86TargetLowering::
9474getRegClassForInlineAsmConstraint(const std::string &Constraint,
9475                                  EVT VT) const {
9476  if (Constraint.size() == 1) {
9477    // FIXME: not handling fp-stack yet!
9478    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9479    default: break;  // Unknown constraint letter
9480    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9481      if (Subtarget->is64Bit()) {
9482        if (VT == MVT::i32)
9483          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9484                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9485                                       X86::R10D,X86::R11D,X86::R12D,
9486                                       X86::R13D,X86::R14D,X86::R15D,
9487                                       X86::EBP, X86::ESP, 0);
9488        else if (VT == MVT::i16)
9489          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9490                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9491                                       X86::R10W,X86::R11W,X86::R12W,
9492                                       X86::R13W,X86::R14W,X86::R15W,
9493                                       X86::BP,  X86::SP, 0);
9494        else if (VT == MVT::i8)
9495          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9496                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9497                                       X86::R10B,X86::R11B,X86::R12B,
9498                                       X86::R13B,X86::R14B,X86::R15B,
9499                                       X86::BPL, X86::SPL, 0);
9500
9501        else if (VT == MVT::i64)
9502          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9503                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
9504                                       X86::R10, X86::R11, X86::R12,
9505                                       X86::R13, X86::R14, X86::R15,
9506                                       X86::RBP, X86::RSP, 0);
9507
9508        break;
9509      }
9510      // 32-bit fallthrough
9511    case 'Q':   // Q_REGS
9512      if (VT == MVT::i32)
9513        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9514      else if (VT == MVT::i16)
9515        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9516      else if (VT == MVT::i8)
9517        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9518      else if (VT == MVT::i64)
9519        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9520      break;
9521    }
9522  }
9523
9524  return std::vector<unsigned>();
9525}
9526
9527std::pair<unsigned, const TargetRegisterClass*>
9528X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9529                                                EVT VT) const {
9530  // First, see if this is a constraint that directly corresponds to an LLVM
9531  // register class.
9532  if (Constraint.size() == 1) {
9533    // GCC Constraint Letters
9534    switch (Constraint[0]) {
9535    default: break;
9536    case 'r':   // GENERAL_REGS
9537    case 'l':   // INDEX_REGS
9538      if (VT == MVT::i8)
9539        return std::make_pair(0U, X86::GR8RegisterClass);
9540      if (VT == MVT::i16)
9541        return std::make_pair(0U, X86::GR16RegisterClass);
9542      if (VT == MVT::i32 || !Subtarget->is64Bit())
9543        return std::make_pair(0U, X86::GR32RegisterClass);
9544      return std::make_pair(0U, X86::GR64RegisterClass);
9545    case 'R':   // LEGACY_REGS
9546      if (VT == MVT::i8)
9547        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
9548      if (VT == MVT::i16)
9549        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
9550      if (VT == MVT::i32 || !Subtarget->is64Bit())
9551        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
9552      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
9553    case 'f':  // FP Stack registers.
9554      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9555      // value to the correct fpstack register class.
9556      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9557        return std::make_pair(0U, X86::RFP32RegisterClass);
9558      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9559        return std::make_pair(0U, X86::RFP64RegisterClass);
9560      return std::make_pair(0U, X86::RFP80RegisterClass);
9561    case 'y':   // MMX_REGS if MMX allowed.
9562      if (!Subtarget->hasMMX()) break;
9563      return std::make_pair(0U, X86::VR64RegisterClass);
9564    case 'Y':   // SSE_REGS if SSE2 allowed
9565      if (!Subtarget->hasSSE2()) break;
9566      // FALL THROUGH.
9567    case 'x':   // SSE_REGS if SSE1 allowed
9568      if (!Subtarget->hasSSE1()) break;
9569
9570      switch (VT.getSimpleVT().SimpleTy) {
9571      default: break;
9572      // Scalar SSE types.
9573      case MVT::f32:
9574      case MVT::i32:
9575        return std::make_pair(0U, X86::FR32RegisterClass);
9576      case MVT::f64:
9577      case MVT::i64:
9578        return std::make_pair(0U, X86::FR64RegisterClass);
9579      // Vector types.
9580      case MVT::v16i8:
9581      case MVT::v8i16:
9582      case MVT::v4i32:
9583      case MVT::v2i64:
9584      case MVT::v4f32:
9585      case MVT::v2f64:
9586        return std::make_pair(0U, X86::VR128RegisterClass);
9587      }
9588      break;
9589    }
9590  }
9591
9592  // Use the default implementation in TargetLowering to convert the register
9593  // constraint into a member of a register class.
9594  std::pair<unsigned, const TargetRegisterClass*> Res;
9595  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9596
9597  // Not found as a standard register?
9598  if (Res.second == 0) {
9599    // Map st(0) -> st(7) -> ST0
9600    if (Constraint.size() == 7 && Constraint[0] == '{' &&
9601        tolower(Constraint[1]) == 's' &&
9602        tolower(Constraint[2]) == 't' &&
9603        Constraint[3] == '(' &&
9604        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
9605        Constraint[5] == ')' &&
9606        Constraint[6] == '}') {
9607
9608      Res.first = X86::ST0+Constraint[4]-'0';
9609      Res.second = X86::RFP80RegisterClass;
9610      return Res;
9611    }
9612
9613    // GCC allows "st(0)" to be called just plain "st".
9614    if (StringRef("{st}").equals_lower(Constraint)) {
9615      Res.first = X86::ST0;
9616      Res.second = X86::RFP80RegisterClass;
9617      return Res;
9618    }
9619
9620    // flags -> EFLAGS
9621    if (StringRef("{flags}").equals_lower(Constraint)) {
9622      Res.first = X86::EFLAGS;
9623      Res.second = X86::CCRRegisterClass;
9624      return Res;
9625    }
9626
9627    // 'A' means EAX + EDX.
9628    if (Constraint == "A") {
9629      Res.first = X86::EAX;
9630      Res.second = X86::GR32_ADRegisterClass;
9631      return Res;
9632    }
9633    return Res;
9634  }
9635
9636  // Otherwise, check to see if this is a register class of the wrong value
9637  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9638  // turn into {ax},{dx}.
9639  if (Res.second->hasType(VT))
9640    return Res;   // Correct type already, nothing to do.
9641
9642  // All of the single-register GCC register classes map their values onto
9643  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
9644  // really want an 8-bit or 32-bit register, map to the appropriate register
9645  // class and return the appropriate register.
9646  if (Res.second == X86::GR16RegisterClass) {
9647    if (VT == MVT::i8) {
9648      unsigned DestReg = 0;
9649      switch (Res.first) {
9650      default: break;
9651      case X86::AX: DestReg = X86::AL; break;
9652      case X86::DX: DestReg = X86::DL; break;
9653      case X86::CX: DestReg = X86::CL; break;
9654      case X86::BX: DestReg = X86::BL; break;
9655      }
9656      if (DestReg) {
9657        Res.first = DestReg;
9658        Res.second = X86::GR8RegisterClass;
9659      }
9660    } else if (VT == MVT::i32) {
9661      unsigned DestReg = 0;
9662      switch (Res.first) {
9663      default: break;
9664      case X86::AX: DestReg = X86::EAX; break;
9665      case X86::DX: DestReg = X86::EDX; break;
9666      case X86::CX: DestReg = X86::ECX; break;
9667      case X86::BX: DestReg = X86::EBX; break;
9668      case X86::SI: DestReg = X86::ESI; break;
9669      case X86::DI: DestReg = X86::EDI; break;
9670      case X86::BP: DestReg = X86::EBP; break;
9671      case X86::SP: DestReg = X86::ESP; break;
9672      }
9673      if (DestReg) {
9674        Res.first = DestReg;
9675        Res.second = X86::GR32RegisterClass;
9676      }
9677    } else if (VT == MVT::i64) {
9678      unsigned DestReg = 0;
9679      switch (Res.first) {
9680      default: break;
9681      case X86::AX: DestReg = X86::RAX; break;
9682      case X86::DX: DestReg = X86::RDX; break;
9683      case X86::CX: DestReg = X86::RCX; break;
9684      case X86::BX: DestReg = X86::RBX; break;
9685      case X86::SI: DestReg = X86::RSI; break;
9686      case X86::DI: DestReg = X86::RDI; break;
9687      case X86::BP: DestReg = X86::RBP; break;
9688      case X86::SP: DestReg = X86::RSP; break;
9689      }
9690      if (DestReg) {
9691        Res.first = DestReg;
9692        Res.second = X86::GR64RegisterClass;
9693      }
9694    }
9695  } else if (Res.second == X86::FR32RegisterClass ||
9696             Res.second == X86::FR64RegisterClass ||
9697             Res.second == X86::VR128RegisterClass) {
9698    // Handle references to XMM physical registers that got mapped into the
9699    // wrong class.  This can happen with constraints like {xmm0} where the
9700    // target independent register mapper will just pick the first match it can
9701    // find, ignoring the required type.
9702    if (VT == MVT::f32)
9703      Res.second = X86::FR32RegisterClass;
9704    else if (VT == MVT::f64)
9705      Res.second = X86::FR64RegisterClass;
9706    else if (X86::VR128RegisterClass->hasType(VT))
9707      Res.second = X86::VR128RegisterClass;
9708  }
9709
9710  return Res;
9711}
9712
9713//===----------------------------------------------------------------------===//
9714//                           X86 Widen vector type
9715//===----------------------------------------------------------------------===//
9716
9717/// getWidenVectorType: given a vector type, returns the type to widen
9718/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9719/// If there is no vector type that we want to widen to, returns MVT::Other
9720/// When and where to widen is target dependent based on the cost of
9721/// scalarizing vs using the wider vector type.
9722
9723EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9724  assert(VT.isVector());
9725  if (isTypeLegal(VT))
9726    return VT;
9727
9728  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9729  //       type based on element type.  This would speed up our search (though
9730  //       it may not be worth it since the size of the list is relatively
9731  //       small).
9732  EVT EltVT = VT.getVectorElementType();
9733  unsigned NElts = VT.getVectorNumElements();
9734
9735  // On X86, it make sense to widen any vector wider than 1
9736  if (NElts <= 1)
9737    return MVT::Other;
9738
9739  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9740       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9741    EVT SVT = (MVT::SimpleValueType)nVT;
9742
9743    if (isTypeLegal(SVT) &&
9744        SVT.getVectorElementType() == EltVT &&
9745        SVT.getVectorNumElements() > NElts)
9746      return SVT;
9747  }
9748  return MVT::Other;
9749}
9750