X86ISelLowering.cpp revision 193399
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86TargetMachine.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/BitVector.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/PseudoSourceValue.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/Support/CommandLine.h"
39using namespace llvm;
40
41static cl::opt<bool>
42DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
43
44// Forward declarations.
45static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
46                       SDValue V2);
47
48X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
49  : TargetLowering(TM) {
50  Subtarget = &TM.getSubtarget<X86Subtarget>();
51  X86ScalarSSEf64 = Subtarget->hasSSE2();
52  X86ScalarSSEf32 = Subtarget->hasSSE1();
53  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
54
55  RegInfo = TM.getRegisterInfo();
56  TD = getTargetData();
57
58  // Set up the TargetLowering object.
59
60  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61  setShiftAmountType(MVT::i8);
62  setBooleanContents(ZeroOrOneBooleanContent);
63  setSchedulingPreference(SchedulingForRegPressure);
64  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65  setStackPointerRegisterToSaveRestore(X86StackPtr);
66
67  if (Subtarget->isTargetDarwin()) {
68    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69    setUseUnderscoreSetJmp(false);
70    setUseUnderscoreLongJmp(false);
71  } else if (Subtarget->isTargetMingw()) {
72    // MS runtime is weird: it exports _setjmp, but longjmp!
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(false);
75  } else {
76    setUseUnderscoreSetJmp(true);
77    setUseUnderscoreLongJmp(true);
78  }
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
88
89  // We don't accept any truncstore of integer registers.
90  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
96
97  // SETOEQ and SETUNE require checking two conditions.
98  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
99  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
100  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
101  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
102  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
103  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
104
105  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
106  // operation.
107  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
108  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
109  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
110
111  if (Subtarget->is64Bit()) {
112    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
113    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
114  } else if (!UseSoftFloat) {
115    if (X86ScalarSSEf64) {
116      // We have an impenetrably clever algorithm for ui64->double only.
117      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
118    }
119    // We have an algorithm for SSE2, and we turn this into a 64-bit
120    // FILD for other targets.
121    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
122  }
123
124  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
125  // this operation.
126  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
127  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
128
129  if (!UseSoftFloat && !NoImplicitFloat) {
130    // SSE has no i16 to fp conversion, only i32
131    if (X86ScalarSSEf32) {
132      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
133      // f32 and f64 cases are Legal, f80 case is not
134      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
135    } else {
136      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
137      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
138    }
139  } else {
140    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
141    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
142  }
143
144  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
145  // are Legal, f80 is custom lowered.
146  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
147  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
148
149  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
150  // this operation.
151  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
152  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
153
154  if (X86ScalarSSEf32) {
155    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
156    // f32 and f64 cases are Legal, f80 case is not
157    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
158  } else {
159    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
160    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
161  }
162
163  // Handle FP_TO_UINT by promoting the destination to a larger signed
164  // conversion.
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
166  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
167  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
168
169  if (Subtarget->is64Bit()) {
170    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
171    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
172  } else if (!UseSoftFloat) {
173    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
174      // Expand FP_TO_UINT into a select.
175      // FIXME: We would like to use a Custom expander here eventually to do
176      // the optimal thing for SSE vs. the default expansion in the legalizer.
177      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
178    else
179      // With SSE3 we can use fisttpll to convert to a signed i64; without
180      // SSE, we're stuck with a fistpll.
181      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
182  }
183
184  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
185  if (!X86ScalarSSEf64) {
186    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
187    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
188  }
189
190  // Scalar integer divide and remainder are lowered to use operations that
191  // produce two results, to match the available instructions. This exposes
192  // the two-result form to trivial CSE, which is able to combine x/y and x%y
193  // into a single instruction.
194  //
195  // Scalar integer multiply-high is also lowered to use two-result
196  // operations, to match the available instructions. However, plain multiply
197  // (low) operations are left as Legal, as there are single-result
198  // instructions for this in x86. Using the two-result multiply instructions
199  // when both high and low results are needed must be arranged by dagcombine.
200  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
201  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
202  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
203  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
204  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
205  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
206  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
207  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
208  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
209  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
210  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
211  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
212  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
213  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
214  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
215  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
216  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
217  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
218  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
219  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
220  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
221  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
222  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
223  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
224
225  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
226  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
227  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
228  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
229  if (Subtarget->is64Bit())
230    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
231  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
232  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
233  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
234  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
235  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
236  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
237  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
238  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
239
240  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
241  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
242  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
243  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
244  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
245  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
246  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
247  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
248  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
249  if (Subtarget->is64Bit()) {
250    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
251    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
252    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
253  }
254
255  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
256  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
257
258  // These should be promoted to a larger select which is supported.
259  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
260  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
261  // X86 wants to expand cmov itself.
262  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
264  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
265  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
266  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
268  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
270  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
271  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
272  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
273  if (Subtarget->is64Bit()) {
274    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
275    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
276  }
277  // X86 ret instruction may pop stack.
278  setOperationAction(ISD::RET             , MVT::Other, Custom);
279  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
280
281  // Darwin ABI issue.
282  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
283  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
284  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
285  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
286  if (Subtarget->is64Bit())
287    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
288  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
289  if (Subtarget->is64Bit()) {
290    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
291    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
292    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
293    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
294  }
295  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
296  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
297  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
298  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
299  if (Subtarget->is64Bit()) {
300    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
301    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
302    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
303  }
304
305  if (Subtarget->hasSSE1())
306    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
307
308  if (!Subtarget->hasSSE2())
309    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
310
311  // Expand certain atomics
312  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
313  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
314  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
315  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
316
317  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
318  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
319  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
320  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
321
322  if (!Subtarget->is64Bit()) {
323    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
327    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
328    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
329    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
330  }
331
332  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
333  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
334  // FIXME - use subtarget debug flags
335  if (!Subtarget->isTargetDarwin() &&
336      !Subtarget->isTargetELF() &&
337      !Subtarget->isTargetCygMing()) {
338    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
339    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
340  }
341
342  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
343  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
344  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
345  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
346  if (Subtarget->is64Bit()) {
347    setExceptionPointerRegister(X86::RAX);
348    setExceptionSelectorRegister(X86::RDX);
349  } else {
350    setExceptionPointerRegister(X86::EAX);
351    setExceptionSelectorRegister(X86::EDX);
352  }
353  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
354  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
355
356  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
357
358  setOperationAction(ISD::TRAP, MVT::Other, Legal);
359
360  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
361  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
362  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
363  if (Subtarget->is64Bit()) {
364    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
365    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
366  } else {
367    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
368    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
369  }
370
371  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
372  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
373  if (Subtarget->is64Bit())
374    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
375  if (Subtarget->isTargetCygMing())
376    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
377  else
378    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
379
380  if (!UseSoftFloat && X86ScalarSSEf64) {
381    // f32 and f64 use SSE.
382    // Set up the FP register classes.
383    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
384    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
385
386    // Use ANDPD to simulate FABS.
387    setOperationAction(ISD::FABS , MVT::f64, Custom);
388    setOperationAction(ISD::FABS , MVT::f32, Custom);
389
390    // Use XORP to simulate FNEG.
391    setOperationAction(ISD::FNEG , MVT::f64, Custom);
392    setOperationAction(ISD::FNEG , MVT::f32, Custom);
393
394    // Use ANDPD and ORPD to simulate FCOPYSIGN.
395    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
396    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
397
398    // We don't support sin/cos/fmod
399    setOperationAction(ISD::FSIN , MVT::f64, Expand);
400    setOperationAction(ISD::FCOS , MVT::f64, Expand);
401    setOperationAction(ISD::FSIN , MVT::f32, Expand);
402    setOperationAction(ISD::FCOS , MVT::f32, Expand);
403
404    // Expand FP immediates into loads from the stack, except for the special
405    // cases we handle.
406    addLegalFPImmediate(APFloat(+0.0)); // xorpd
407    addLegalFPImmediate(APFloat(+0.0f)); // xorps
408  } else if (!UseSoftFloat && X86ScalarSSEf32) {
409    // Use SSE for f32, x87 for f64.
410    // Set up the FP register classes.
411    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
412    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
413
414    // Use ANDPS to simulate FABS.
415    setOperationAction(ISD::FABS , MVT::f32, Custom);
416
417    // Use XORP to simulate FNEG.
418    setOperationAction(ISD::FNEG , MVT::f32, Custom);
419
420    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
421
422    // Use ANDPS and ORPS to simulate FCOPYSIGN.
423    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
424    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
425
426    // We don't support sin/cos/fmod
427    setOperationAction(ISD::FSIN , MVT::f32, Expand);
428    setOperationAction(ISD::FCOS , MVT::f32, Expand);
429
430    // Special cases we handle for FP constants.
431    addLegalFPImmediate(APFloat(+0.0f)); // xorps
432    addLegalFPImmediate(APFloat(+0.0)); // FLD0
433    addLegalFPImmediate(APFloat(+1.0)); // FLD1
434    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
435    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
436
437    if (!UnsafeFPMath) {
438      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
439      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
440    }
441  } else if (!UseSoftFloat) {
442    // f32 and f64 in x87.
443    // Set up the FP register classes.
444    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
445    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
446
447    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
448    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
449    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
450    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
451
452    if (!UnsafeFPMath) {
453      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
454      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
455    }
456    addLegalFPImmediate(APFloat(+0.0)); // FLD0
457    addLegalFPImmediate(APFloat(+1.0)); // FLD1
458    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
459    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
460    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
461    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
462    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
463    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
464  }
465
466  // Long double always uses X87.
467  if (!UseSoftFloat) {
468    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
469    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
470    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
471    {
472      bool ignored;
473      APFloat TmpFlt(+0.0);
474      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
475                     &ignored);
476      addLegalFPImmediate(TmpFlt);  // FLD0
477      TmpFlt.changeSign();
478      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
479      APFloat TmpFlt2(+1.0);
480      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
481                      &ignored);
482      addLegalFPImmediate(TmpFlt2);  // FLD1
483      TmpFlt2.changeSign();
484      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
485    }
486
487    if (!UnsafeFPMath) {
488      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
489      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
490    }
491  }
492
493  // Always use a library call for pow.
494  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
495  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
496  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
497
498  setOperationAction(ISD::FLOG, MVT::f80, Expand);
499  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
500  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
501  setOperationAction(ISD::FEXP, MVT::f80, Expand);
502  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
503
504  // First set operation action for all vector types to either promote
505  // (for widening) or expand (for scalarization). Then we will selectively
506  // turn on ones that can be effectively codegen'd.
507  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
508       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
509    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
510    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
511    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
512    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
513    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
514    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
515    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
516    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
517    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
518    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
519    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
520    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
521    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
522    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
523    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
524    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
525    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
526    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
527    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
553  }
554
555  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
556  // with -msoft-float, disable use of MMX as well.
557  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
558    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
559    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
560    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
561    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
562    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
563
564    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
565    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
566    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
567    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
568
569    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
570    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
571    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
572    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
573
574    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
575    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
576
577    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
578    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
579    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
580    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
581    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
582    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
583    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
584
585    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
586    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
587    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
588    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
589    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
590    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
591    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
592
593    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
594    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
595    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
596    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
597    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
598    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
599    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
600
601    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
602    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
603    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
604    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
605    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
606    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
607    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
608    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
609    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
610
611    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
612    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
613    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
614    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
615    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
616
617    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
618    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
619    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
620    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
621
622    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
623    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
624    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
625    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
626
627    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
628
629    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
630    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
631    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
632    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
633    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
634    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
635  }
636
637  if (!UseSoftFloat && Subtarget->hasSSE1()) {
638    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
639
640    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
641    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
642    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
643    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
644    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
645    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
646    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
647    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
648    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
649    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
650    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
651    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
652  }
653
654  if (!UseSoftFloat && Subtarget->hasSSE2()) {
655    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
656
657    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
658    // registers cannot be used even for integer operations.
659    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
660    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
661    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
662    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
663
664    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
665    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
666    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
667    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
668    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
669    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
670    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
671    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
672    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
673    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
674    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
675    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
676    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
677    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
678    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
679    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
680
681    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
682    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
683    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
684    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
685
686    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
687    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
688    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
689    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
690    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
691
692    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
693    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
694      MVT VT = (MVT::SimpleValueType)i;
695      // Do not attempt to custom lower non-power-of-2 vectors
696      if (!isPowerOf2_32(VT.getVectorNumElements()))
697        continue;
698      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
699      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
700      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
701    }
702
703    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
704    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
705    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
706    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
707    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
708    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
709
710    if (Subtarget->is64Bit()) {
711      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
712      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
713    }
714
715    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
716    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
717      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
718      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
719      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
720      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
721      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
722      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
723      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
724      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
725      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
726      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
727    }
728
729    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
730
731    // Custom lower v2i64 and v2f64 selects.
732    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
733    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
734    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
735    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
736
737  }
738
739  if (Subtarget->hasSSE41()) {
740    // FIXME: Do we need to handle scalar-to-vector here?
741    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
742
743    // i8 and i16 vectors are custom , because the source register and source
744    // source memory operand types are not the same width.  f32 vectors are
745    // custom since the immediate controlling the insert encodes additional
746    // information.
747    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
748    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
749    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
751
752    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
753    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
754    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
755    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
756
757    if (Subtarget->is64Bit()) {
758      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
759      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
760    }
761  }
762
763  if (Subtarget->hasSSE42()) {
764    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
765  }
766
767  // We want to custom lower some of our intrinsics.
768  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
769
770  // Add/Sub/Mul with overflow operations are custom lowered.
771  setOperationAction(ISD::SADDO, MVT::i32, Custom);
772  setOperationAction(ISD::SADDO, MVT::i64, Custom);
773  setOperationAction(ISD::UADDO, MVT::i32, Custom);
774  setOperationAction(ISD::UADDO, MVT::i64, Custom);
775  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
776  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
777  setOperationAction(ISD::USUBO, MVT::i32, Custom);
778  setOperationAction(ISD::USUBO, MVT::i64, Custom);
779  setOperationAction(ISD::SMULO, MVT::i32, Custom);
780  setOperationAction(ISD::SMULO, MVT::i64, Custom);
781  setOperationAction(ISD::UMULO, MVT::i32, Custom);
782  setOperationAction(ISD::UMULO, MVT::i64, Custom);
783
784  if (!Subtarget->is64Bit()) {
785    // These libcalls are not available in 32-bit.
786    setLibcallName(RTLIB::SHL_I128, 0);
787    setLibcallName(RTLIB::SRL_I128, 0);
788    setLibcallName(RTLIB::SRA_I128, 0);
789  }
790
791  // We have target-specific dag combine patterns for the following nodes:
792  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
793  setTargetDAGCombine(ISD::BUILD_VECTOR);
794  setTargetDAGCombine(ISD::SELECT);
795  setTargetDAGCombine(ISD::SHL);
796  setTargetDAGCombine(ISD::SRA);
797  setTargetDAGCombine(ISD::SRL);
798  setTargetDAGCombine(ISD::STORE);
799  if (Subtarget->is64Bit())
800    setTargetDAGCombine(ISD::MUL);
801
802  computeRegisterProperties();
803
804  // FIXME: These should be based on subtarget info. Plus, the values should
805  // be smaller when we are in optimizing for size mode.
806  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
807  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
808  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
809  allowUnalignedMemoryAccesses = true; // x86 supports it!
810  setPrefLoopAlignment(16);
811  benefitFromCodePlacementOpt = true;
812}
813
814
815MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
816  return MVT::i8;
817}
818
819
820/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
821/// the desired ByVal argument alignment.
822static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
823  if (MaxAlign == 16)
824    return;
825  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
826    if (VTy->getBitWidth() == 128)
827      MaxAlign = 16;
828  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
829    unsigned EltAlign = 0;
830    getMaxByValAlign(ATy->getElementType(), EltAlign);
831    if (EltAlign > MaxAlign)
832      MaxAlign = EltAlign;
833  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
834    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
835      unsigned EltAlign = 0;
836      getMaxByValAlign(STy->getElementType(i), EltAlign);
837      if (EltAlign > MaxAlign)
838        MaxAlign = EltAlign;
839      if (MaxAlign == 16)
840        break;
841    }
842  }
843  return;
844}
845
846/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
847/// function arguments in the caller parameter area. For X86, aggregates
848/// that contain SSE vectors are placed at 16-byte boundaries while the rest
849/// are at 4-byte boundaries.
850unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
851  if (Subtarget->is64Bit()) {
852    // Max of 8 and alignment of type.
853    unsigned TyAlign = TD->getABITypeAlignment(Ty);
854    if (TyAlign > 8)
855      return TyAlign;
856    return 8;
857  }
858
859  unsigned Align = 4;
860  if (Subtarget->hasSSE1())
861    getMaxByValAlign(Ty, Align);
862  return Align;
863}
864
865/// getOptimalMemOpType - Returns the target specific optimal type for load
866/// and store operations as a result of memset, memcpy, and memmove
867/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
868/// determining it.
869MVT
870X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
871                                       bool isSrcConst, bool isSrcStr) const {
872  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
873  // linux.  This is because the stack realignment code can't handle certain
874  // cases like PR2962.  This should be removed when PR2962 is fixed.
875  if (!NoImplicitFloat && Subtarget->getStackAlignment() >= 16) {
876    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
877      return MVT::v4i32;
878    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
879      return MVT::v4f32;
880  }
881  if (Subtarget->is64Bit() && Size >= 8)
882    return MVT::i64;
883  return MVT::i32;
884}
885
886/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
887/// jumptable.
888SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
889                                                      SelectionDAG &DAG) const {
890  if (usesGlobalOffsetTable())
891    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
892  if (!Subtarget->isPICStyleRIPRel())
893    // This doesn't have DebugLoc associated with it, but is not really the
894    // same as a Register.
895    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
896                       getPointerTy());
897  return Table;
898}
899
900//===----------------------------------------------------------------------===//
901//               Return Value Calling Convention Implementation
902//===----------------------------------------------------------------------===//
903
904#include "X86GenCallingConv.inc"
905
906/// LowerRET - Lower an ISD::RET node.
907SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
908  DebugLoc dl = Op.getDebugLoc();
909  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
910
911  SmallVector<CCValAssign, 16> RVLocs;
912  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
913  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
914  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
915  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
916
917  // If this is the first return lowered for this function, add the regs to the
918  // liveout set for the function.
919  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
920    for (unsigned i = 0; i != RVLocs.size(); ++i)
921      if (RVLocs[i].isRegLoc())
922        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
923  }
924  SDValue Chain = Op.getOperand(0);
925
926  // Handle tail call return.
927  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
928  if (Chain.getOpcode() == X86ISD::TAILCALL) {
929    SDValue TailCall = Chain;
930    SDValue TargetAddress = TailCall.getOperand(1);
931    SDValue StackAdjustment = TailCall.getOperand(2);
932    assert(((TargetAddress.getOpcode() == ISD::Register &&
933               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
934                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
935              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
936              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
937             "Expecting an global address, external symbol, or register");
938    assert(StackAdjustment.getOpcode() == ISD::Constant &&
939           "Expecting a const value");
940
941    SmallVector<SDValue,8> Operands;
942    Operands.push_back(Chain.getOperand(0));
943    Operands.push_back(TargetAddress);
944    Operands.push_back(StackAdjustment);
945    // Copy registers used by the call. Last operand is a flag so it is not
946    // copied.
947    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
948      Operands.push_back(Chain.getOperand(i));
949    }
950    return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
951                       Operands.size());
952  }
953
954  // Regular return.
955  SDValue Flag;
956
957  SmallVector<SDValue, 6> RetOps;
958  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
959  // Operand #1 = Bytes To Pop
960  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
961
962  // Copy the result values into the output registers.
963  for (unsigned i = 0; i != RVLocs.size(); ++i) {
964    CCValAssign &VA = RVLocs[i];
965    assert(VA.isRegLoc() && "Can only return in registers!");
966    SDValue ValToCopy = Op.getOperand(i*2+1);
967
968    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
969    // the RET instruction and handled by the FP Stackifier.
970    if (VA.getLocReg() == X86::ST0 ||
971        VA.getLocReg() == X86::ST1) {
972      // If this is a copy from an xmm register to ST(0), use an FPExtend to
973      // change the value to the FP stack register class.
974      if (isScalarFPTypeInSSEReg(VA.getValVT()))
975        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
976      RetOps.push_back(ValToCopy);
977      // Don't emit a copytoreg.
978      continue;
979    }
980
981    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
982    // which is returned in RAX / RDX.
983    if (Subtarget->is64Bit()) {
984      MVT ValVT = ValToCopy.getValueType();
985      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
986        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
987        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
988          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
989      }
990    }
991
992    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
993    Flag = Chain.getValue(1);
994  }
995
996  // The x86-64 ABI for returning structs by value requires that we copy
997  // the sret argument into %rax for the return. We saved the argument into
998  // a virtual register in the entry block, so now we copy the value out
999  // and into %rax.
1000  if (Subtarget->is64Bit() &&
1001      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1002    MachineFunction &MF = DAG.getMachineFunction();
1003    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1004    unsigned Reg = FuncInfo->getSRetReturnReg();
1005    if (!Reg) {
1006      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1007      FuncInfo->setSRetReturnReg(Reg);
1008    }
1009    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1010
1011    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1012    Flag = Chain.getValue(1);
1013  }
1014
1015  RetOps[0] = Chain;  // Update chain.
1016
1017  // Add the flag if we have it.
1018  if (Flag.getNode())
1019    RetOps.push_back(Flag);
1020
1021  return DAG.getNode(X86ISD::RET_FLAG, dl,
1022                     MVT::Other, &RetOps[0], RetOps.size());
1023}
1024
1025
1026/// LowerCallResult - Lower the result values of an ISD::CALL into the
1027/// appropriate copies out of appropriate physical registers.  This assumes that
1028/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1029/// being lowered.  The returns a SDNode with the same number of values as the
1030/// ISD::CALL.
1031SDNode *X86TargetLowering::
1032LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1033                unsigned CallingConv, SelectionDAG &DAG) {
1034
1035  DebugLoc dl = TheCall->getDebugLoc();
1036  // Assign locations to each value returned by this call.
1037  SmallVector<CCValAssign, 16> RVLocs;
1038  bool isVarArg = TheCall->isVarArg();
1039  bool Is64Bit = Subtarget->is64Bit();
1040  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1041  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1042
1043  SmallVector<SDValue, 8> ResultVals;
1044
1045  // Copy all of the result registers out of their specified physreg.
1046  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1047    CCValAssign &VA = RVLocs[i];
1048    MVT CopyVT = VA.getValVT();
1049
1050    // If this is x86-64, and we disabled SSE, we can't return FP values
1051    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1052        ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1053      cerr << "SSE register return with SSE disabled\n";
1054      exit(1);
1055    }
1056
1057    // If this is a call to a function that returns an fp value on the floating
1058    // point stack, but where we prefer to use the value in xmm registers, copy
1059    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1060    if ((VA.getLocReg() == X86::ST0 ||
1061         VA.getLocReg() == X86::ST1) &&
1062        isScalarFPTypeInSSEReg(VA.getValVT())) {
1063      CopyVT = MVT::f80;
1064    }
1065
1066    SDValue Val;
1067    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1068      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1069      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1070        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1071                                   MVT::v2i64, InFlag).getValue(1);
1072        Val = Chain.getValue(0);
1073        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1074                          Val, DAG.getConstant(0, MVT::i64));
1075      } else {
1076        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1077                                   MVT::i64, InFlag).getValue(1);
1078        Val = Chain.getValue(0);
1079      }
1080      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1081    } else {
1082      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1083                                 CopyVT, InFlag).getValue(1);
1084      Val = Chain.getValue(0);
1085    }
1086    InFlag = Chain.getValue(2);
1087
1088    if (CopyVT != VA.getValVT()) {
1089      // Round the F80 the right size, which also moves to the appropriate xmm
1090      // register.
1091      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1092                        // This truncation won't change the value.
1093                        DAG.getIntPtrConstant(1));
1094    }
1095
1096    ResultVals.push_back(Val);
1097  }
1098
1099  // Merge everything together with a MERGE_VALUES node.
1100  ResultVals.push_back(Chain);
1101  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1102                     &ResultVals[0], ResultVals.size()).getNode();
1103}
1104
1105
1106//===----------------------------------------------------------------------===//
1107//                C & StdCall & Fast Calling Convention implementation
1108//===----------------------------------------------------------------------===//
1109//  StdCall calling convention seems to be standard for many Windows' API
1110//  routines and around. It differs from C calling convention just a little:
1111//  callee should clean up the stack, not caller. Symbols should be also
1112//  decorated in some fancy way :) It doesn't support any vector arguments.
1113//  For info on fast calling convention see Fast Calling Convention (tail call)
1114//  implementation LowerX86_32FastCCCallTo.
1115
1116/// CallIsStructReturn - Determines whether a CALL node uses struct return
1117/// semantics.
1118static bool CallIsStructReturn(CallSDNode *TheCall) {
1119  unsigned NumOps = TheCall->getNumArgs();
1120  if (!NumOps)
1121    return false;
1122
1123  return TheCall->getArgFlags(0).isSRet();
1124}
1125
1126/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1127/// return semantics.
1128static bool ArgsAreStructReturn(SDValue Op) {
1129  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1130  if (!NumArgs)
1131    return false;
1132
1133  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1134}
1135
1136/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1137/// the callee to pop its own arguments. Callee pop is necessary to support tail
1138/// calls.
1139bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1140  if (IsVarArg)
1141    return false;
1142
1143  switch (CallingConv) {
1144  default:
1145    return false;
1146  case CallingConv::X86_StdCall:
1147    return !Subtarget->is64Bit();
1148  case CallingConv::X86_FastCall:
1149    return !Subtarget->is64Bit();
1150  case CallingConv::Fast:
1151    return PerformTailCallOpt;
1152  }
1153}
1154
1155/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1156/// given CallingConvention value.
1157CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1158  if (Subtarget->is64Bit()) {
1159    if (Subtarget->isTargetWin64())
1160      return CC_X86_Win64_C;
1161    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1162      return CC_X86_64_TailCall;
1163    else
1164      return CC_X86_64_C;
1165  }
1166
1167  if (CC == CallingConv::X86_FastCall)
1168    return CC_X86_32_FastCall;
1169  else if (CC == CallingConv::Fast)
1170    return CC_X86_32_FastCC;
1171  else
1172    return CC_X86_32_C;
1173}
1174
1175/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1176/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1177NameDecorationStyle
1178X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1179  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1180  if (CC == CallingConv::X86_FastCall)
1181    return FastCall;
1182  else if (CC == CallingConv::X86_StdCall)
1183    return StdCall;
1184  return None;
1185}
1186
1187
1188/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1189/// in a register before calling.
1190bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1191  return !IsTailCall && !Is64Bit &&
1192    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1193    Subtarget->isPICStyleGOT();
1194}
1195
1196/// CallRequiresFnAddressInReg - Check whether the call requires the function
1197/// address to be loaded in a register.
1198bool
1199X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1200  return !Is64Bit && IsTailCall &&
1201    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1202    Subtarget->isPICStyleGOT();
1203}
1204
1205/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1206/// by "Src" to address "Dst" with size and alignment information specified by
1207/// the specific parameter attribute. The copy will be passed as a byval
1208/// function parameter.
1209static SDValue
1210CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1211                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1212                          DebugLoc dl) {
1213  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1214  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1215                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1216}
1217
1218SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1219                                              const CCValAssign &VA,
1220                                              MachineFrameInfo *MFI,
1221                                              unsigned CC,
1222                                              SDValue Root, unsigned i) {
1223  // Create the nodes corresponding to a load from this parameter slot.
1224  ISD::ArgFlagsTy Flags =
1225    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1226  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1227  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1228
1229  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1230  // changed with more analysis.
1231  // In case of tail call optimization mark all arguments mutable. Since they
1232  // could be overwritten by lowering of arguments in case of a tail call.
1233  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1234                                  VA.getLocMemOffset(), isImmutable);
1235  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1236  if (Flags.isByVal())
1237    return FIN;
1238  return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1239                     PseudoSourceValue::getFixedStack(FI), 0);
1240}
1241
1242SDValue
1243X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1244  MachineFunction &MF = DAG.getMachineFunction();
1245  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1246  DebugLoc dl = Op.getDebugLoc();
1247
1248  const Function* Fn = MF.getFunction();
1249  if (Fn->hasExternalLinkage() &&
1250      Subtarget->isTargetCygMing() &&
1251      Fn->getName() == "main")
1252    FuncInfo->setForceFramePointer(true);
1253
1254  // Decorate the function name.
1255  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1256
1257  MachineFrameInfo *MFI = MF.getFrameInfo();
1258  SDValue Root = Op.getOperand(0);
1259  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1260  unsigned CC = MF.getFunction()->getCallingConv();
1261  bool Is64Bit = Subtarget->is64Bit();
1262  bool IsWin64 = Subtarget->isTargetWin64();
1263
1264  assert(!(isVarArg && CC == CallingConv::Fast) &&
1265         "Var args not supported with calling convention fastcc");
1266
1267  // Assign locations to all of the incoming arguments.
1268  SmallVector<CCValAssign, 16> ArgLocs;
1269  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1270  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1271
1272  SmallVector<SDValue, 8> ArgValues;
1273  unsigned LastVal = ~0U;
1274  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1275    CCValAssign &VA = ArgLocs[i];
1276    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1277    // places.
1278    assert(VA.getValNo() != LastVal &&
1279           "Don't support value assigned to multiple locs yet");
1280    LastVal = VA.getValNo();
1281
1282    if (VA.isRegLoc()) {
1283      MVT RegVT = VA.getLocVT();
1284      TargetRegisterClass *RC = NULL;
1285      if (RegVT == MVT::i32)
1286        RC = X86::GR32RegisterClass;
1287      else if (Is64Bit && RegVT == MVT::i64)
1288        RC = X86::GR64RegisterClass;
1289      else if (RegVT == MVT::f32)
1290        RC = X86::FR32RegisterClass;
1291      else if (RegVT == MVT::f64)
1292        RC = X86::FR64RegisterClass;
1293      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1294        RC = X86::VR128RegisterClass;
1295      else if (RegVT.isVector()) {
1296        assert(RegVT.getSizeInBits() == 64);
1297        if (!Is64Bit)
1298          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1299        else {
1300          // Darwin calling convention passes MMX values in either GPRs or
1301          // XMMs in x86-64. Other targets pass them in memory.
1302          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1303            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1304            RegVT = MVT::v2i64;
1305          } else {
1306            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1307            RegVT = MVT::i64;
1308          }
1309        }
1310      } else {
1311        assert(0 && "Unknown argument type!");
1312      }
1313
1314      unsigned Reg = DAG.getMachineFunction().addLiveIn(VA.getLocReg(), RC);
1315      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1316
1317      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1318      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1319      // right size.
1320      if (VA.getLocInfo() == CCValAssign::SExt)
1321        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1322                               DAG.getValueType(VA.getValVT()));
1323      else if (VA.getLocInfo() == CCValAssign::ZExt)
1324        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1325                               DAG.getValueType(VA.getValVT()));
1326
1327      if (VA.getLocInfo() != CCValAssign::Full)
1328        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1329
1330      // Handle MMX values passed in GPRs.
1331      if (Is64Bit && RegVT != VA.getLocVT()) {
1332        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1333          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1334        else if (RC == X86::VR128RegisterClass) {
1335          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1336                                 ArgValue, DAG.getConstant(0, MVT::i64));
1337          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1338        }
1339      }
1340
1341      ArgValues.push_back(ArgValue);
1342    } else {
1343      assert(VA.isMemLoc());
1344      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1345    }
1346  }
1347
1348  // The x86-64 ABI for returning structs by value requires that we copy
1349  // the sret argument into %rax for the return. Save the argument into
1350  // a virtual register so that we can access it from the return points.
1351  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1352    MachineFunction &MF = DAG.getMachineFunction();
1353    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1354    unsigned Reg = FuncInfo->getSRetReturnReg();
1355    if (!Reg) {
1356      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1357      FuncInfo->setSRetReturnReg(Reg);
1358    }
1359    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1360    Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1361  }
1362
1363  unsigned StackSize = CCInfo.getNextStackOffset();
1364  // align stack specially for tail calls
1365  if (PerformTailCallOpt && CC == CallingConv::Fast)
1366    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1367
1368  // If the function takes variable number of arguments, make a frame index for
1369  // the start of the first vararg value... for expansion of llvm.va_start.
1370  if (isVarArg) {
1371    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1372      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1373    }
1374    if (Is64Bit) {
1375      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1376
1377      // FIXME: We should really autogenerate these arrays
1378      static const unsigned GPR64ArgRegsWin64[] = {
1379        X86::RCX, X86::RDX, X86::R8,  X86::R9
1380      };
1381      static const unsigned XMMArgRegsWin64[] = {
1382        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1383      };
1384      static const unsigned GPR64ArgRegs64Bit[] = {
1385        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1386      };
1387      static const unsigned XMMArgRegs64Bit[] = {
1388        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1389        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1390      };
1391      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1392
1393      if (IsWin64) {
1394        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1395        GPR64ArgRegs = GPR64ArgRegsWin64;
1396        XMMArgRegs = XMMArgRegsWin64;
1397      } else {
1398        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1399        GPR64ArgRegs = GPR64ArgRegs64Bit;
1400        XMMArgRegs = XMMArgRegs64Bit;
1401      }
1402      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1403                                                       TotalNumIntRegs);
1404      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1405                                                       TotalNumXMMRegs);
1406
1407      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1408             "SSE register cannot be used when SSE is disabled!");
1409      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloat) &&
1410             "SSE register cannot be used when SSE is disabled!");
1411      if (UseSoftFloat || NoImplicitFloat || !Subtarget->hasSSE1())
1412        // Kernel mode asks for SSE to be disabled, so don't push them
1413        // on the stack.
1414        TotalNumXMMRegs = 0;
1415
1416      // For X86-64, if there are vararg parameters that are passed via
1417      // registers, then we must store them to their spots on the stack so they
1418      // may be loaded by deferencing the result of va_next.
1419      VarArgsGPOffset = NumIntRegs * 8;
1420      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1421      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1422                                                 TotalNumXMMRegs * 16, 16);
1423
1424      // Store the integer parameter registers.
1425      SmallVector<SDValue, 8> MemOps;
1426      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1427      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1428                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1429      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1430        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1431                                     X86::GR64RegisterClass);
1432        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1433        SDValue Store =
1434          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1435                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1436        MemOps.push_back(Store);
1437        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1438                          DAG.getIntPtrConstant(8));
1439      }
1440
1441      // Now store the XMM (fp + vector) parameter registers.
1442      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1443                        DAG.getIntPtrConstant(VarArgsFPOffset));
1444      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1445        unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1446                                     X86::VR128RegisterClass);
1447        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1448        SDValue Store =
1449          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1450                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1451        MemOps.push_back(Store);
1452        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1453                          DAG.getIntPtrConstant(16));
1454      }
1455      if (!MemOps.empty())
1456          Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1457                             &MemOps[0], MemOps.size());
1458    }
1459  }
1460
1461  ArgValues.push_back(Root);
1462
1463  // Some CCs need callee pop.
1464  if (IsCalleePop(isVarArg, CC)) {
1465    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1466    BytesCallerReserves = 0;
1467  } else {
1468    BytesToPopOnReturn  = 0; // Callee pops nothing.
1469    // If this is an sret function, the return should pop the hidden pointer.
1470    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1471      BytesToPopOnReturn = 4;
1472    BytesCallerReserves = StackSize;
1473  }
1474
1475  if (!Is64Bit) {
1476    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1477    if (CC == CallingConv::X86_FastCall)
1478      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1479  }
1480
1481  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1482
1483  // Return the new list of results.
1484  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1485                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1486}
1487
1488SDValue
1489X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1490                                    const SDValue &StackPtr,
1491                                    const CCValAssign &VA,
1492                                    SDValue Chain,
1493                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1494  DebugLoc dl = TheCall->getDebugLoc();
1495  unsigned LocMemOffset = VA.getLocMemOffset();
1496  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1497  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1498  if (Flags.isByVal()) {
1499    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1500  }
1501  return DAG.getStore(Chain, dl, Arg, PtrOff,
1502                      PseudoSourceValue::getStack(), LocMemOffset);
1503}
1504
1505/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1506/// optimization is performed and it is required.
1507SDValue
1508X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1509                                           SDValue &OutRetAddr,
1510                                           SDValue Chain,
1511                                           bool IsTailCall,
1512                                           bool Is64Bit,
1513                                           int FPDiff,
1514                                           DebugLoc dl) {
1515  if (!IsTailCall || FPDiff==0) return Chain;
1516
1517  // Adjust the Return address stack slot.
1518  MVT VT = getPointerTy();
1519  OutRetAddr = getReturnAddressFrameIndex(DAG);
1520
1521  // Load the "old" Return address.
1522  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1523  return SDValue(OutRetAddr.getNode(), 1);
1524}
1525
1526/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1527/// optimization is performed and it is required (FPDiff!=0).
1528static SDValue
1529EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1530                         SDValue Chain, SDValue RetAddrFrIdx,
1531                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1532  // Store the return address to the appropriate stack slot.
1533  if (!FPDiff) return Chain;
1534  // Calculate the new stack slot for the return address.
1535  int SlotSize = Is64Bit ? 8 : 4;
1536  int NewReturnAddrFI =
1537    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1538  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1539  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1540  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1541                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1542  return Chain;
1543}
1544
1545SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1546  MachineFunction &MF = DAG.getMachineFunction();
1547  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1548  SDValue Chain       = TheCall->getChain();
1549  unsigned CC         = TheCall->getCallingConv();
1550  bool isVarArg       = TheCall->isVarArg();
1551  bool IsTailCall     = TheCall->isTailCall() &&
1552                        CC == CallingConv::Fast && PerformTailCallOpt;
1553  SDValue Callee      = TheCall->getCallee();
1554  bool Is64Bit        = Subtarget->is64Bit();
1555  bool IsStructRet    = CallIsStructReturn(TheCall);
1556  DebugLoc dl         = TheCall->getDebugLoc();
1557
1558  assert(!(isVarArg && CC == CallingConv::Fast) &&
1559         "Var args not supported with calling convention fastcc");
1560
1561  // Analyze operands of the call, assigning locations to each operand.
1562  SmallVector<CCValAssign, 16> ArgLocs;
1563  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1564  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1565
1566  // Get a count of how many bytes are to be pushed on the stack.
1567  unsigned NumBytes = CCInfo.getNextStackOffset();
1568  if (PerformTailCallOpt && CC == CallingConv::Fast)
1569    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1570
1571  int FPDiff = 0;
1572  if (IsTailCall) {
1573    // Lower arguments at fp - stackoffset + fpdiff.
1574    unsigned NumBytesCallerPushed =
1575      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1576    FPDiff = NumBytesCallerPushed - NumBytes;
1577
1578    // Set the delta of movement of the returnaddr stackslot.
1579    // But only set if delta is greater than previous delta.
1580    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1581      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1582  }
1583
1584  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1585
1586  SDValue RetAddrFrIdx;
1587  // Load return adress for tail calls.
1588  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1589                                  FPDiff, dl);
1590
1591  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1592  SmallVector<SDValue, 8> MemOpChains;
1593  SDValue StackPtr;
1594
1595  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1596  // of tail call optimization arguments are handle later.
1597  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1598    CCValAssign &VA = ArgLocs[i];
1599    SDValue Arg = TheCall->getArg(i);
1600    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1601    bool isByVal = Flags.isByVal();
1602
1603    // Promote the value if needed.
1604    switch (VA.getLocInfo()) {
1605    default: assert(0 && "Unknown loc info!");
1606    case CCValAssign::Full: break;
1607    case CCValAssign::SExt:
1608      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1609      break;
1610    case CCValAssign::ZExt:
1611      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1612      break;
1613    case CCValAssign::AExt:
1614      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1615      break;
1616    }
1617
1618    if (VA.isRegLoc()) {
1619      if (Is64Bit) {
1620        MVT RegVT = VA.getLocVT();
1621        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1622          switch (VA.getLocReg()) {
1623          default:
1624            break;
1625          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1626          case X86::R8: {
1627            // Special case: passing MMX values in GPR registers.
1628            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1629            break;
1630          }
1631          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1632          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1633            // Special case: passing MMX values in XMM registers.
1634            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1635            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1636            Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1637            break;
1638          }
1639          }
1640      }
1641      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1642    } else {
1643      if (!IsTailCall || (IsTailCall && isByVal)) {
1644        assert(VA.isMemLoc());
1645        if (StackPtr.getNode() == 0)
1646          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1647
1648        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1649                                               Chain, Arg, Flags));
1650      }
1651    }
1652  }
1653
1654  if (!MemOpChains.empty())
1655    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1656                        &MemOpChains[0], MemOpChains.size());
1657
1658  // Build a sequence of copy-to-reg nodes chained together with token chain
1659  // and flag operands which copy the outgoing args into registers.
1660  SDValue InFlag;
1661  // Tail call byval lowering might overwrite argument registers so in case of
1662  // tail call optimization the copies to registers are lowered later.
1663  if (!IsTailCall)
1664    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1665      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1666                               RegsToPass[i].second, InFlag);
1667      InFlag = Chain.getValue(1);
1668    }
1669
1670  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1671  // GOT pointer.
1672  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1673    Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1674                             DAG.getNode(X86ISD::GlobalBaseReg,
1675                                         DebugLoc::getUnknownLoc(),
1676                                         getPointerTy()),
1677                             InFlag);
1678    InFlag = Chain.getValue(1);
1679  }
1680  // If we are tail calling and generating PIC/GOT style code load the address
1681  // of the callee into ecx. The value in ecx is used as target of the tail
1682  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1683  // calls on PIC/GOT architectures. Normally we would just put the address of
1684  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1685  // restored (since ebx is callee saved) before jumping to the target@PLT.
1686  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1687    // Note: The actual moving to ecx is done further down.
1688    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1689    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1690        !G->getGlobal()->hasProtectedVisibility())
1691      Callee =  LowerGlobalAddress(Callee, DAG);
1692    else if (isa<ExternalSymbolSDNode>(Callee))
1693      Callee = LowerExternalSymbol(Callee,DAG);
1694  }
1695
1696  if (Is64Bit && isVarArg) {
1697    // From AMD64 ABI document:
1698    // For calls that may call functions that use varargs or stdargs
1699    // (prototype-less calls or calls to functions containing ellipsis (...) in
1700    // the declaration) %al is used as hidden argument to specify the number
1701    // of SSE registers used. The contents of %al do not need to match exactly
1702    // the number of registers, but must be an ubound on the number of SSE
1703    // registers used and is in the range 0 - 8 inclusive.
1704
1705    // FIXME: Verify this on Win64
1706    // Count the number of XMM registers allocated.
1707    static const unsigned XMMArgRegs[] = {
1708      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1709      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1710    };
1711    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1712    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1713           && "SSE registers cannot be used when SSE is disabled");
1714
1715    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1716                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1717    InFlag = Chain.getValue(1);
1718  }
1719
1720
1721  // For tail calls lower the arguments to the 'real' stack slot.
1722  if (IsTailCall) {
1723    SmallVector<SDValue, 8> MemOpChains2;
1724    SDValue FIN;
1725    int FI = 0;
1726    // Do not flag preceeding copytoreg stuff together with the following stuff.
1727    InFlag = SDValue();
1728    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1729      CCValAssign &VA = ArgLocs[i];
1730      if (!VA.isRegLoc()) {
1731        assert(VA.isMemLoc());
1732        SDValue Arg = TheCall->getArg(i);
1733        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1734        // Create frame index.
1735        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1736        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1737        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1738        FIN = DAG.getFrameIndex(FI, getPointerTy());
1739
1740        if (Flags.isByVal()) {
1741          // Copy relative to framepointer.
1742          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1743          if (StackPtr.getNode() == 0)
1744            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1745                                          getPointerTy());
1746          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1747
1748          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1749                                                           Flags, DAG, dl));
1750        } else {
1751          // Store relative to framepointer.
1752          MemOpChains2.push_back(
1753            DAG.getStore(Chain, dl, Arg, FIN,
1754                         PseudoSourceValue::getFixedStack(FI), 0));
1755        }
1756      }
1757    }
1758
1759    if (!MemOpChains2.empty())
1760      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1761                          &MemOpChains2[0], MemOpChains2.size());
1762
1763    // Copy arguments to their registers.
1764    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1765      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1766                               RegsToPass[i].second, InFlag);
1767      InFlag = Chain.getValue(1);
1768    }
1769    InFlag =SDValue();
1770
1771    // Store the return address to the appropriate stack slot.
1772    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1773                                     FPDiff, dl);
1774  }
1775
1776  // If the callee is a GlobalAddress node (quite common, every direct call is)
1777  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1778  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1779    // We should use extra load for direct calls to dllimported functions in
1780    // non-JIT mode.
1781    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1782                                        getTargetMachine(), true))
1783      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1784                                          G->getOffset());
1785  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1786    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1787  } else if (IsTailCall) {
1788    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1789
1790    Chain = DAG.getCopyToReg(Chain,  dl,
1791                             DAG.getRegister(Opc, getPointerTy()),
1792                             Callee,InFlag);
1793    Callee = DAG.getRegister(Opc, getPointerTy());
1794    // Add register as live out.
1795    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1796  }
1797
1798  // Returns a chain & a flag for retval copy to use.
1799  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1800  SmallVector<SDValue, 8> Ops;
1801
1802  if (IsTailCall) {
1803    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1804                           DAG.getIntPtrConstant(0, true), InFlag);
1805    InFlag = Chain.getValue(1);
1806
1807    // Returns a chain & a flag for retval copy to use.
1808    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1809    Ops.clear();
1810  }
1811
1812  Ops.push_back(Chain);
1813  Ops.push_back(Callee);
1814
1815  if (IsTailCall)
1816    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1817
1818  // Add argument registers to the end of the list so that they are known live
1819  // into the call.
1820  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1821    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1822                                  RegsToPass[i].second.getValueType()));
1823
1824  // Add an implicit use GOT pointer in EBX.
1825  if (!IsTailCall && !Is64Bit &&
1826      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1827      Subtarget->isPICStyleGOT())
1828    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1829
1830  // Add an implicit use of AL for x86 vararg functions.
1831  if (Is64Bit && isVarArg)
1832    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1833
1834  if (InFlag.getNode())
1835    Ops.push_back(InFlag);
1836
1837  if (IsTailCall) {
1838    assert(InFlag.getNode() &&
1839           "Flag must be set. Depend on flag being set in LowerRET");
1840    Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1841                        TheCall->getVTList(), &Ops[0], Ops.size());
1842
1843    return SDValue(Chain.getNode(), Op.getResNo());
1844  }
1845
1846  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
1847  InFlag = Chain.getValue(1);
1848
1849  // Create the CALLSEQ_END node.
1850  unsigned NumBytesForCalleeToPush;
1851  if (IsCalleePop(isVarArg, CC))
1852    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1853  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1854    // If this is is a call to a struct-return function, the callee
1855    // pops the hidden struct pointer, so we have to push it back.
1856    // This is common for Darwin/X86, Linux & Mingw32 targets.
1857    NumBytesForCalleeToPush = 4;
1858  else
1859    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1860
1861  // Returns a flag for retval copy to use.
1862  Chain = DAG.getCALLSEQ_END(Chain,
1863                             DAG.getIntPtrConstant(NumBytes, true),
1864                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1865                                                   true),
1866                             InFlag);
1867  InFlag = Chain.getValue(1);
1868
1869  // Handle result values, copying them out of physregs into vregs that we
1870  // return.
1871  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1872                 Op.getResNo());
1873}
1874
1875
1876//===----------------------------------------------------------------------===//
1877//                Fast Calling Convention (tail call) implementation
1878//===----------------------------------------------------------------------===//
1879
1880//  Like std call, callee cleans arguments, convention except that ECX is
1881//  reserved for storing the tail called function address. Only 2 registers are
1882//  free for argument passing (inreg). Tail call optimization is performed
1883//  provided:
1884//                * tailcallopt is enabled
1885//                * caller/callee are fastcc
1886//  On X86_64 architecture with GOT-style position independent code only local
1887//  (within module) calls are supported at the moment.
1888//  To keep the stack aligned according to platform abi the function
1889//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1890//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1891//  If a tail called function callee has more arguments than the caller the
1892//  caller needs to make sure that there is room to move the RETADDR to. This is
1893//  achieved by reserving an area the size of the argument delta right after the
1894//  original REtADDR, but before the saved framepointer or the spilled registers
1895//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1896//  stack layout:
1897//    arg1
1898//    arg2
1899//    RETADDR
1900//    [ new RETADDR
1901//      move area ]
1902//    (possible EBP)
1903//    ESI
1904//    EDI
1905//    local1 ..
1906
1907/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1908/// for a 16 byte align requirement.
1909unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1910                                                        SelectionDAG& DAG) {
1911  MachineFunction &MF = DAG.getMachineFunction();
1912  const TargetMachine &TM = MF.getTarget();
1913  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1914  unsigned StackAlignment = TFI.getStackAlignment();
1915  uint64_t AlignMask = StackAlignment - 1;
1916  int64_t Offset = StackSize;
1917  uint64_t SlotSize = TD->getPointerSize();
1918  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1919    // Number smaller than 12 so just add the difference.
1920    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1921  } else {
1922    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1923    Offset = ((~AlignMask) & Offset) + StackAlignment +
1924      (StackAlignment-SlotSize);
1925  }
1926  return Offset;
1927}
1928
1929/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1930/// following the call is a return. A function is eligible if caller/callee
1931/// calling conventions match, currently only fastcc supports tail calls, and
1932/// the function CALL is immediatly followed by a RET.
1933bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1934                                                      SDValue Ret,
1935                                                      SelectionDAG& DAG) const {
1936  if (!PerformTailCallOpt)
1937    return false;
1938
1939  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1940    MachineFunction &MF = DAG.getMachineFunction();
1941    unsigned CallerCC = MF.getFunction()->getCallingConv();
1942    unsigned CalleeCC= TheCall->getCallingConv();
1943    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1944      SDValue Callee = TheCall->getCallee();
1945      // On x86/32Bit PIC/GOT  tail calls are supported.
1946      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1947          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1948        return true;
1949
1950      // Can only do local tail calls (in same module, hidden or protected) on
1951      // x86_64 PIC/GOT at the moment.
1952      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1953        return G->getGlobal()->hasHiddenVisibility()
1954            || G->getGlobal()->hasProtectedVisibility();
1955    }
1956  }
1957
1958  return false;
1959}
1960
1961FastISel *
1962X86TargetLowering::createFastISel(MachineFunction &mf,
1963                                  MachineModuleInfo *mmo,
1964                                  DwarfWriter *dw,
1965                                  DenseMap<const Value *, unsigned> &vm,
1966                                  DenseMap<const BasicBlock *,
1967                                           MachineBasicBlock *> &bm,
1968                                  DenseMap<const AllocaInst *, int> &am
1969#ifndef NDEBUG
1970                                  , SmallSet<Instruction*, 8> &cil
1971#endif
1972                                  ) {
1973  return X86::createFastISel(mf, mmo, dw, vm, bm, am
1974#ifndef NDEBUG
1975                             , cil
1976#endif
1977                             );
1978}
1979
1980
1981//===----------------------------------------------------------------------===//
1982//                           Other Lowering Hooks
1983//===----------------------------------------------------------------------===//
1984
1985
1986SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1987  MachineFunction &MF = DAG.getMachineFunction();
1988  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1989  int ReturnAddrIndex = FuncInfo->getRAIndex();
1990
1991  if (ReturnAddrIndex == 0) {
1992    // Set up a frame object for the return address.
1993    uint64_t SlotSize = TD->getPointerSize();
1994    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
1995    FuncInfo->setRAIndex(ReturnAddrIndex);
1996  }
1997
1998  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1999}
2000
2001
2002/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2003/// specific condition code, returning the condition code and the LHS/RHS of the
2004/// comparison to make.
2005static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2006                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2007  if (!isFP) {
2008    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2009      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2010        // X > -1   -> X == 0, jump !sign.
2011        RHS = DAG.getConstant(0, RHS.getValueType());
2012        return X86::COND_NS;
2013      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2014        // X < 0   -> X == 0, jump on sign.
2015        return X86::COND_S;
2016      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2017        // X < 1   -> X <= 0
2018        RHS = DAG.getConstant(0, RHS.getValueType());
2019        return X86::COND_LE;
2020      }
2021    }
2022
2023    switch (SetCCOpcode) {
2024    default: assert(0 && "Invalid integer condition!");
2025    case ISD::SETEQ:  return X86::COND_E;
2026    case ISD::SETGT:  return X86::COND_G;
2027    case ISD::SETGE:  return X86::COND_GE;
2028    case ISD::SETLT:  return X86::COND_L;
2029    case ISD::SETLE:  return X86::COND_LE;
2030    case ISD::SETNE:  return X86::COND_NE;
2031    case ISD::SETULT: return X86::COND_B;
2032    case ISD::SETUGT: return X86::COND_A;
2033    case ISD::SETULE: return X86::COND_BE;
2034    case ISD::SETUGE: return X86::COND_AE;
2035    }
2036  }
2037
2038  // First determine if it is required or is profitable to flip the operands.
2039
2040  // If LHS is a foldable load, but RHS is not, flip the condition.
2041  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2042      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2043    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2044    std::swap(LHS, RHS);
2045  }
2046
2047  switch (SetCCOpcode) {
2048  default: break;
2049  case ISD::SETOLT:
2050  case ISD::SETOLE:
2051  case ISD::SETUGT:
2052  case ISD::SETUGE:
2053    std::swap(LHS, RHS);
2054    break;
2055  }
2056
2057  // On a floating point condition, the flags are set as follows:
2058  // ZF  PF  CF   op
2059  //  0 | 0 | 0 | X > Y
2060  //  0 | 0 | 1 | X < Y
2061  //  1 | 0 | 0 | X == Y
2062  //  1 | 1 | 1 | unordered
2063  switch (SetCCOpcode) {
2064  default: assert(0 && "Condcode should be pre-legalized away");
2065  case ISD::SETUEQ:
2066  case ISD::SETEQ:   return X86::COND_E;
2067  case ISD::SETOLT:              // flipped
2068  case ISD::SETOGT:
2069  case ISD::SETGT:   return X86::COND_A;
2070  case ISD::SETOLE:              // flipped
2071  case ISD::SETOGE:
2072  case ISD::SETGE:   return X86::COND_AE;
2073  case ISD::SETUGT:              // flipped
2074  case ISD::SETULT:
2075  case ISD::SETLT:   return X86::COND_B;
2076  case ISD::SETUGE:              // flipped
2077  case ISD::SETULE:
2078  case ISD::SETLE:   return X86::COND_BE;
2079  case ISD::SETONE:
2080  case ISD::SETNE:   return X86::COND_NE;
2081  case ISD::SETUO:   return X86::COND_P;
2082  case ISD::SETO:    return X86::COND_NP;
2083  }
2084}
2085
2086/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2087/// code. Current x86 isa includes the following FP cmov instructions:
2088/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2089static bool hasFPCMov(unsigned X86CC) {
2090  switch (X86CC) {
2091  default:
2092    return false;
2093  case X86::COND_B:
2094  case X86::COND_BE:
2095  case X86::COND_E:
2096  case X86::COND_P:
2097  case X86::COND_A:
2098  case X86::COND_AE:
2099  case X86::COND_NE:
2100  case X86::COND_NP:
2101    return true;
2102  }
2103}
2104
2105/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2106/// the specified range (L, H].
2107static bool isUndefOrInRange(int Val, int Low, int Hi) {
2108  return (Val < 0) || (Val >= Low && Val < Hi);
2109}
2110
2111/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2112/// specified value.
2113static bool isUndefOrEqual(int Val, int CmpVal) {
2114  if (Val < 0 || Val == CmpVal)
2115    return true;
2116  return false;
2117}
2118
2119/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2120/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2121/// the second operand.
2122static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2123  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2124    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2125  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2126    return (Mask[0] < 2 && Mask[1] < 2);
2127  return false;
2128}
2129
2130bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2131  SmallVector<int, 8> M;
2132  N->getMask(M);
2133  return ::isPSHUFDMask(M, N->getValueType(0));
2134}
2135
2136/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2137/// is suitable for input to PSHUFHW.
2138static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2139  if (VT != MVT::v8i16)
2140    return false;
2141
2142  // Lower quadword copied in order or undef.
2143  for (int i = 0; i != 4; ++i)
2144    if (Mask[i] >= 0 && Mask[i] != i)
2145      return false;
2146
2147  // Upper quadword shuffled.
2148  for (int i = 4; i != 8; ++i)
2149    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2150      return false;
2151
2152  return true;
2153}
2154
2155bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2156  SmallVector<int, 8> M;
2157  N->getMask(M);
2158  return ::isPSHUFHWMask(M, N->getValueType(0));
2159}
2160
2161/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2162/// is suitable for input to PSHUFLW.
2163static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2164  if (VT != MVT::v8i16)
2165    return false;
2166
2167  // Upper quadword copied in order.
2168  for (int i = 4; i != 8; ++i)
2169    if (Mask[i] >= 0 && Mask[i] != i)
2170      return false;
2171
2172  // Lower quadword shuffled.
2173  for (int i = 0; i != 4; ++i)
2174    if (Mask[i] >= 4)
2175      return false;
2176
2177  return true;
2178}
2179
2180bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2181  SmallVector<int, 8> M;
2182  N->getMask(M);
2183  return ::isPSHUFLWMask(M, N->getValueType(0));
2184}
2185
2186/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2187/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2188static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2189  int NumElems = VT.getVectorNumElements();
2190  if (NumElems != 2 && NumElems != 4)
2191    return false;
2192
2193  int Half = NumElems / 2;
2194  for (int i = 0; i < Half; ++i)
2195    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2196      return false;
2197  for (int i = Half; i < NumElems; ++i)
2198    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2199      return false;
2200
2201  return true;
2202}
2203
2204bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2205  SmallVector<int, 8> M;
2206  N->getMask(M);
2207  return ::isSHUFPMask(M, N->getValueType(0));
2208}
2209
2210/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2211/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2212/// half elements to come from vector 1 (which would equal the dest.) and
2213/// the upper half to come from vector 2.
2214static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2215  int NumElems = VT.getVectorNumElements();
2216
2217  if (NumElems != 2 && NumElems != 4)
2218    return false;
2219
2220  int Half = NumElems / 2;
2221  for (int i = 0; i < Half; ++i)
2222    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2223      return false;
2224  for (int i = Half; i < NumElems; ++i)
2225    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2226      return false;
2227  return true;
2228}
2229
2230static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2231  SmallVector<int, 8> M;
2232  N->getMask(M);
2233  return isCommutedSHUFPMask(M, N->getValueType(0));
2234}
2235
2236/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2237/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2238bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2239  if (N->getValueType(0).getVectorNumElements() != 4)
2240    return false;
2241
2242  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2243  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2244         isUndefOrEqual(N->getMaskElt(1), 7) &&
2245         isUndefOrEqual(N->getMaskElt(2), 2) &&
2246         isUndefOrEqual(N->getMaskElt(3), 3);
2247}
2248
2249/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2250/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2251bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2252  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2253
2254  if (NumElems != 2 && NumElems != 4)
2255    return false;
2256
2257  for (unsigned i = 0; i < NumElems/2; ++i)
2258    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2259      return false;
2260
2261  for (unsigned i = NumElems/2; i < NumElems; ++i)
2262    if (!isUndefOrEqual(N->getMaskElt(i), i))
2263      return false;
2264
2265  return true;
2266}
2267
2268/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2269/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2270/// and MOVLHPS.
2271bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2272  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2273
2274  if (NumElems != 2 && NumElems != 4)
2275    return false;
2276
2277  for (unsigned i = 0; i < NumElems/2; ++i)
2278    if (!isUndefOrEqual(N->getMaskElt(i), i))
2279      return false;
2280
2281  for (unsigned i = 0; i < NumElems/2; ++i)
2282    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2283      return false;
2284
2285  return true;
2286}
2287
2288/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2289/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2290/// <2, 3, 2, 3>
2291bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2292  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2293
2294  if (NumElems != 4)
2295    return false;
2296
2297  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2298         isUndefOrEqual(N->getMaskElt(1), 3) &&
2299         isUndefOrEqual(N->getMaskElt(2), 2) &&
2300         isUndefOrEqual(N->getMaskElt(3), 3);
2301}
2302
2303/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2304/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2305static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2306                         bool V2IsSplat = false) {
2307  int NumElts = VT.getVectorNumElements();
2308  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2309    return false;
2310
2311  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2312    int BitI  = Mask[i];
2313    int BitI1 = Mask[i+1];
2314    if (!isUndefOrEqual(BitI, j))
2315      return false;
2316    if (V2IsSplat) {
2317      if (!isUndefOrEqual(BitI1, NumElts))
2318        return false;
2319    } else {
2320      if (!isUndefOrEqual(BitI1, j + NumElts))
2321        return false;
2322    }
2323  }
2324  return true;
2325}
2326
2327bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2328  SmallVector<int, 8> M;
2329  N->getMask(M);
2330  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2331}
2332
2333/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2334/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2335static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT,
2336                         bool V2IsSplat = false) {
2337  int NumElts = VT.getVectorNumElements();
2338  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2339    return false;
2340
2341  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2342    int BitI  = Mask[i];
2343    int BitI1 = Mask[i+1];
2344    if (!isUndefOrEqual(BitI, j + NumElts/2))
2345      return false;
2346    if (V2IsSplat) {
2347      if (isUndefOrEqual(BitI1, NumElts))
2348        return false;
2349    } else {
2350      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2351        return false;
2352    }
2353  }
2354  return true;
2355}
2356
2357bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2358  SmallVector<int, 8> M;
2359  N->getMask(M);
2360  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2361}
2362
2363/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2364/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2365/// <0, 0, 1, 1>
2366static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2367  int NumElems = VT.getVectorNumElements();
2368  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2369    return false;
2370
2371  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2372    int BitI  = Mask[i];
2373    int BitI1 = Mask[i+1];
2374    if (!isUndefOrEqual(BitI, j))
2375      return false;
2376    if (!isUndefOrEqual(BitI1, j))
2377      return false;
2378  }
2379  return true;
2380}
2381
2382bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2383  SmallVector<int, 8> M;
2384  N->getMask(M);
2385  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2386}
2387
2388/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2389/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2390/// <2, 2, 3, 3>
2391static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2392  int NumElems = VT.getVectorNumElements();
2393  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2394    return false;
2395
2396  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2397    int BitI  = Mask[i];
2398    int BitI1 = Mask[i+1];
2399    if (!isUndefOrEqual(BitI, j))
2400      return false;
2401    if (!isUndefOrEqual(BitI1, j))
2402      return false;
2403  }
2404  return true;
2405}
2406
2407bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2408  SmallVector<int, 8> M;
2409  N->getMask(M);
2410  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2411}
2412
2413/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2414/// specifies a shuffle of elements that is suitable for input to MOVSS,
2415/// MOVSD, and MOVD, i.e. setting the lowest element.
2416static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2417  int NumElts = VT.getVectorNumElements();
2418  if (NumElts != 2 && NumElts != 4)
2419    return false;
2420
2421  if (!isUndefOrEqual(Mask[0], NumElts))
2422    return false;
2423
2424  for (int i = 1; i < NumElts; ++i)
2425    if (!isUndefOrEqual(Mask[i], i))
2426      return false;
2427
2428  return true;
2429}
2430
2431bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2432  SmallVector<int, 8> M;
2433  N->getMask(M);
2434  return ::isMOVLMask(M, N->getValueType(0));
2435}
2436
2437/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2438/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2439/// element of vector 2 and the other elements to come from vector 1 in order.
2440static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2441                               bool V2IsSplat = false, bool V2IsUndef = false) {
2442  int NumOps = VT.getVectorNumElements();
2443  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2444    return false;
2445
2446  if (!isUndefOrEqual(Mask[0], 0))
2447    return false;
2448
2449  for (int i = 1; i < NumOps; ++i)
2450    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2451          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2452          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2453      return false;
2454
2455  return true;
2456}
2457
2458static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2459                           bool V2IsUndef = false) {
2460  SmallVector<int, 8> M;
2461  N->getMask(M);
2462  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2463}
2464
2465/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2466/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2467bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2468  if (N->getValueType(0).getVectorNumElements() != 4)
2469    return false;
2470
2471  // Expect 1, 1, 3, 3
2472  for (unsigned i = 0; i < 2; ++i) {
2473    int Elt = N->getMaskElt(i);
2474    if (Elt >= 0 && Elt != 1)
2475      return false;
2476  }
2477
2478  bool HasHi = false;
2479  for (unsigned i = 2; i < 4; ++i) {
2480    int Elt = N->getMaskElt(i);
2481    if (Elt >= 0 && Elt != 3)
2482      return false;
2483    if (Elt == 3)
2484      HasHi = true;
2485  }
2486  // Don't use movshdup if it can be done with a shufps.
2487  // FIXME: verify that matching u, u, 3, 3 is what we want.
2488  return HasHi;
2489}
2490
2491/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2492/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2493bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2494  if (N->getValueType(0).getVectorNumElements() != 4)
2495    return false;
2496
2497  // Expect 0, 0, 2, 2
2498  for (unsigned i = 0; i < 2; ++i)
2499    if (N->getMaskElt(i) > 0)
2500      return false;
2501
2502  bool HasHi = false;
2503  for (unsigned i = 2; i < 4; ++i) {
2504    int Elt = N->getMaskElt(i);
2505    if (Elt >= 0 && Elt != 2)
2506      return false;
2507    if (Elt == 2)
2508      HasHi = true;
2509  }
2510  // Don't use movsldup if it can be done with a shufps.
2511  return HasHi;
2512}
2513
2514/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2515/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2516bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2517  int e = N->getValueType(0).getVectorNumElements() / 2;
2518
2519  for (int i = 0; i < e; ++i)
2520    if (!isUndefOrEqual(N->getMaskElt(i), i))
2521      return false;
2522  for (int i = 0; i < e; ++i)
2523    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2524      return false;
2525  return true;
2526}
2527
2528/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2529/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2530/// instructions.
2531unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2532  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2533  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2534
2535  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2536  unsigned Mask = 0;
2537  for (int i = 0; i < NumOperands; ++i) {
2538    int Val = SVOp->getMaskElt(NumOperands-i-1);
2539    if (Val < 0) Val = 0;
2540    if (Val >= NumOperands) Val -= NumOperands;
2541    Mask |= Val;
2542    if (i != NumOperands - 1)
2543      Mask <<= Shift;
2544  }
2545  return Mask;
2546}
2547
2548/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2549/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2550/// instructions.
2551unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2552  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2553  unsigned Mask = 0;
2554  // 8 nodes, but we only care about the last 4.
2555  for (unsigned i = 7; i >= 4; --i) {
2556    int Val = SVOp->getMaskElt(i);
2557    if (Val >= 0)
2558      Mask |= (Val - 4);
2559    if (i != 4)
2560      Mask <<= 2;
2561  }
2562  return Mask;
2563}
2564
2565/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2566/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2567/// instructions.
2568unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2569  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2570  unsigned Mask = 0;
2571  // 8 nodes, but we only care about the first 4.
2572  for (int i = 3; i >= 0; --i) {
2573    int Val = SVOp->getMaskElt(i);
2574    if (Val >= 0)
2575      Mask |= Val;
2576    if (i != 0)
2577      Mask <<= 2;
2578  }
2579  return Mask;
2580}
2581
2582/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2583/// their permute mask.
2584static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2585                                    SelectionDAG &DAG) {
2586  MVT VT = SVOp->getValueType(0);
2587  unsigned NumElems = VT.getVectorNumElements();
2588  SmallVector<int, 8> MaskVec;
2589
2590  for (unsigned i = 0; i != NumElems; ++i) {
2591    int idx = SVOp->getMaskElt(i);
2592    if (idx < 0)
2593      MaskVec.push_back(idx);
2594    else if (idx < (int)NumElems)
2595      MaskVec.push_back(idx + NumElems);
2596    else
2597      MaskVec.push_back(idx - NumElems);
2598  }
2599  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2600                              SVOp->getOperand(0), &MaskVec[0]);
2601}
2602
2603/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2604/// the two vector operands have swapped position.
2605static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) {
2606  unsigned NumElems = VT.getVectorNumElements();
2607  for (unsigned i = 0; i != NumElems; ++i) {
2608    int idx = Mask[i];
2609    if (idx < 0)
2610      continue;
2611    else if (idx < (int)NumElems)
2612      Mask[i] = idx + NumElems;
2613    else
2614      Mask[i] = idx - NumElems;
2615  }
2616}
2617
2618/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2619/// match movhlps. The lower half elements should come from upper half of
2620/// V1 (and in order), and the upper half elements should come from the upper
2621/// half of V2 (and in order).
2622static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2623  if (Op->getValueType(0).getVectorNumElements() != 4)
2624    return false;
2625  for (unsigned i = 0, e = 2; i != e; ++i)
2626    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2627      return false;
2628  for (unsigned i = 2; i != 4; ++i)
2629    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2630      return false;
2631  return true;
2632}
2633
2634/// isScalarLoadToVector - Returns true if the node is a scalar load that
2635/// is promoted to a vector. It also returns the LoadSDNode by reference if
2636/// required.
2637static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2638  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2639    return false;
2640  N = N->getOperand(0).getNode();
2641  if (!ISD::isNON_EXTLoad(N))
2642    return false;
2643  if (LD)
2644    *LD = cast<LoadSDNode>(N);
2645  return true;
2646}
2647
2648/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2649/// match movlp{s|d}. The lower half elements should come from lower half of
2650/// V1 (and in order), and the upper half elements should come from the upper
2651/// half of V2 (and in order). And since V1 will become the source of the
2652/// MOVLP, it must be either a vector load or a scalar load to vector.
2653static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2654                               ShuffleVectorSDNode *Op) {
2655  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2656    return false;
2657  // Is V2 is a vector load, don't do this transformation. We will try to use
2658  // load folding shufps op.
2659  if (ISD::isNON_EXTLoad(V2))
2660    return false;
2661
2662  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2663
2664  if (NumElems != 2 && NumElems != 4)
2665    return false;
2666  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2667    if (!isUndefOrEqual(Op->getMaskElt(i), i))
2668      return false;
2669  for (unsigned i = NumElems/2; i != NumElems; ++i)
2670    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2671      return false;
2672  return true;
2673}
2674
2675/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2676/// all the same.
2677static bool isSplatVector(SDNode *N) {
2678  if (N->getOpcode() != ISD::BUILD_VECTOR)
2679    return false;
2680
2681  SDValue SplatValue = N->getOperand(0);
2682  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2683    if (N->getOperand(i) != SplatValue)
2684      return false;
2685  return true;
2686}
2687
2688/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2689/// constant +0.0.
2690static inline bool isZeroNode(SDValue Elt) {
2691  return ((isa<ConstantSDNode>(Elt) &&
2692           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2693          (isa<ConstantFPSDNode>(Elt) &&
2694           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2695}
2696
2697/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2698/// to an zero vector.
2699/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2700static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2701  SDValue V1 = N->getOperand(0);
2702  SDValue V2 = N->getOperand(1);
2703  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2704  for (unsigned i = 0; i != NumElems; ++i) {
2705    int Idx = N->getMaskElt(i);
2706    if (Idx >= (int)NumElems) {
2707      unsigned Opc = V2.getOpcode();
2708      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2709        continue;
2710      if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V2.getOperand(Idx-NumElems)))
2711        return false;
2712    } else if (Idx >= 0) {
2713      unsigned Opc = V1.getOpcode();
2714      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2715        continue;
2716      if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V1.getOperand(Idx)))
2717        return false;
2718    }
2719  }
2720  return true;
2721}
2722
2723/// getZeroVector - Returns a vector of specified type with all zero elements.
2724///
2725static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2726                             DebugLoc dl) {
2727  assert(VT.isVector() && "Expected a vector type");
2728
2729  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2730  // type.  This ensures they get CSE'd.
2731  SDValue Vec;
2732  if (VT.getSizeInBits() == 64) { // MMX
2733    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2734    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2735  } else if (HasSSE2) {  // SSE2
2736    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2737    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2738  } else { // SSE1
2739    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2740    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2741  }
2742  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2743}
2744
2745/// getOnesVector - Returns a vector of specified type with all bits set.
2746///
2747static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2748  assert(VT.isVector() && "Expected a vector type");
2749
2750  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2751  // type.  This ensures they get CSE'd.
2752  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2753  SDValue Vec;
2754  if (VT.getSizeInBits() == 64)  // MMX
2755    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2756  else                                              // SSE
2757    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2758  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2759}
2760
2761
2762/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2763/// that point to V2 points to its first element.
2764static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2765  MVT VT = SVOp->getValueType(0);
2766  unsigned NumElems = VT.getVectorNumElements();
2767
2768  bool Changed = false;
2769  SmallVector<int, 8> MaskVec;
2770  SVOp->getMask(MaskVec);
2771
2772  for (unsigned i = 0; i != NumElems; ++i) {
2773    if (MaskVec[i] > (int)NumElems) {
2774      MaskVec[i] = NumElems;
2775      Changed = true;
2776    }
2777  }
2778  if (Changed)
2779    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2780                                SVOp->getOperand(1), &MaskVec[0]);
2781  return SDValue(SVOp, 0);
2782}
2783
2784/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2785/// operation of specified width.
2786static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2787                       SDValue V2) {
2788  unsigned NumElems = VT.getVectorNumElements();
2789  SmallVector<int, 8> Mask;
2790  Mask.push_back(NumElems);
2791  for (unsigned i = 1; i != NumElems; ++i)
2792    Mask.push_back(i);
2793  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2794}
2795
2796/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2797static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2798                          SDValue V2) {
2799  unsigned NumElems = VT.getVectorNumElements();
2800  SmallVector<int, 8> Mask;
2801  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2802    Mask.push_back(i);
2803    Mask.push_back(i + NumElems);
2804  }
2805  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2806}
2807
2808/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2809static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2810                          SDValue V2) {
2811  unsigned NumElems = VT.getVectorNumElements();
2812  unsigned Half = NumElems/2;
2813  SmallVector<int, 8> Mask;
2814  for (unsigned i = 0; i != Half; ++i) {
2815    Mask.push_back(i + Half);
2816    Mask.push_back(i + NumElems + Half);
2817  }
2818  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2819}
2820
2821/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2822static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
2823                            bool HasSSE2) {
2824  if (SV->getValueType(0).getVectorNumElements() <= 4)
2825    return SDValue(SV, 0);
2826
2827  MVT PVT = MVT::v4f32;
2828  MVT VT = SV->getValueType(0);
2829  DebugLoc dl = SV->getDebugLoc();
2830  SDValue V1 = SV->getOperand(0);
2831  int NumElems = VT.getVectorNumElements();
2832  int EltNo = SV->getSplatIndex();
2833
2834  // unpack elements to the correct location
2835  while (NumElems > 4) {
2836    if (EltNo < NumElems/2) {
2837      V1 = getUnpackl(DAG, dl, VT, V1, V1);
2838    } else {
2839      V1 = getUnpackh(DAG, dl, VT, V1, V1);
2840      EltNo -= NumElems/2;
2841    }
2842    NumElems >>= 1;
2843  }
2844
2845  // Perform the splat.
2846  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
2847  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
2848  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
2849  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
2850}
2851
2852/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2853/// vector of zero or undef vector.  This produces a shuffle where the low
2854/// element of V2 is swizzled into the zero/undef vector, landing at element
2855/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2856static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
2857                                             bool isZero, bool HasSSE2,
2858                                             SelectionDAG &DAG) {
2859  MVT VT = V2.getValueType();
2860  SDValue V1 = isZero
2861    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
2862  unsigned NumElems = VT.getVectorNumElements();
2863  SmallVector<int, 16> MaskVec;
2864  for (unsigned i = 0; i != NumElems; ++i)
2865    // If this is the insertion idx, put the low elt of V2 here.
2866    MaskVec.push_back(i == Idx ? NumElems : i);
2867  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
2868}
2869
2870/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2871/// a shuffle that is zero.
2872static
2873unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
2874                                  bool Low, SelectionDAG &DAG) {
2875  unsigned NumZeros = 0;
2876  for (int i = 0; i < NumElems; ++i) {
2877    unsigned Index = Low ? i : NumElems-i-1;
2878    int Idx = SVOp->getMaskElt(Index);
2879    if (Idx < 0) {
2880      ++NumZeros;
2881      continue;
2882    }
2883    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
2884    if (Elt.getNode() && isZeroNode(Elt))
2885      ++NumZeros;
2886    else
2887      break;
2888  }
2889  return NumZeros;
2890}
2891
2892/// isVectorShift - Returns true if the shuffle can be implemented as a
2893/// logical left or right shift of a vector.
2894/// FIXME: split into pslldqi, psrldqi, palignr variants.
2895static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
2896                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
2897  int NumElems = SVOp->getValueType(0).getVectorNumElements();
2898
2899  isLeft = true;
2900  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
2901  if (!NumZeros) {
2902    isLeft = false;
2903    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
2904    if (!NumZeros)
2905      return false;
2906  }
2907  bool SeenV1 = false;
2908  bool SeenV2 = false;
2909  for (int i = NumZeros; i < NumElems; ++i) {
2910    int Val = isLeft ? (i - NumZeros) : i;
2911    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
2912    if (Idx < 0)
2913      continue;
2914    if (Idx < NumElems)
2915      SeenV1 = true;
2916    else {
2917      Idx -= NumElems;
2918      SeenV2 = true;
2919    }
2920    if (Idx != Val)
2921      return false;
2922  }
2923  if (SeenV1 && SeenV2)
2924    return false;
2925
2926  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
2927  ShAmt = NumZeros;
2928  return true;
2929}
2930
2931
2932/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2933///
2934static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
2935                                       unsigned NumNonZero, unsigned NumZero,
2936                                       SelectionDAG &DAG, TargetLowering &TLI) {
2937  if (NumNonZero > 8)
2938    return SDValue();
2939
2940  DebugLoc dl = Op.getDebugLoc();
2941  SDValue V(0, 0);
2942  bool First = true;
2943  for (unsigned i = 0; i < 16; ++i) {
2944    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2945    if (ThisIsNonZero && First) {
2946      if (NumZero)
2947        V = getZeroVector(MVT::v8i16, true, DAG, dl);
2948      else
2949        V = DAG.getUNDEF(MVT::v8i16);
2950      First = false;
2951    }
2952
2953    if ((i & 1) != 0) {
2954      SDValue ThisElt(0, 0), LastElt(0, 0);
2955      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2956      if (LastIsNonZero) {
2957        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
2958                              MVT::i16, Op.getOperand(i-1));
2959      }
2960      if (ThisIsNonZero) {
2961        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
2962        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
2963                              ThisElt, DAG.getConstant(8, MVT::i8));
2964        if (LastIsNonZero)
2965          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
2966      } else
2967        ThisElt = LastElt;
2968
2969      if (ThisElt.getNode())
2970        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
2971                        DAG.getIntPtrConstant(i/2));
2972    }
2973  }
2974
2975  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
2976}
2977
2978/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2979///
2980static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
2981                                       unsigned NumNonZero, unsigned NumZero,
2982                                       SelectionDAG &DAG, TargetLowering &TLI) {
2983  if (NumNonZero > 4)
2984    return SDValue();
2985
2986  DebugLoc dl = Op.getDebugLoc();
2987  SDValue V(0, 0);
2988  bool First = true;
2989  for (unsigned i = 0; i < 8; ++i) {
2990    bool isNonZero = (NonZeros & (1 << i)) != 0;
2991    if (isNonZero) {
2992      if (First) {
2993        if (NumZero)
2994          V = getZeroVector(MVT::v8i16, true, DAG, dl);
2995        else
2996          V = DAG.getUNDEF(MVT::v8i16);
2997        First = false;
2998      }
2999      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3000                      MVT::v8i16, V, Op.getOperand(i),
3001                      DAG.getIntPtrConstant(i));
3002    }
3003  }
3004
3005  return V;
3006}
3007
3008/// getVShift - Return a vector logical shift node.
3009///
3010static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3011                         unsigned NumBits, SelectionDAG &DAG,
3012                         const TargetLowering &TLI, DebugLoc dl) {
3013  bool isMMX = VT.getSizeInBits() == 64;
3014  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3015  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3016  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3017  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3018                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3019                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3020}
3021
3022SDValue
3023X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3024  DebugLoc dl = Op.getDebugLoc();
3025  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3026  if (ISD::isBuildVectorAllZeros(Op.getNode())
3027      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3028    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3029    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3030    // eliminated on x86-32 hosts.
3031    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3032      return Op;
3033
3034    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3035      return getOnesVector(Op.getValueType(), DAG, dl);
3036    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3037  }
3038
3039  MVT VT = Op.getValueType();
3040  MVT EVT = VT.getVectorElementType();
3041  unsigned EVTBits = EVT.getSizeInBits();
3042
3043  unsigned NumElems = Op.getNumOperands();
3044  unsigned NumZero  = 0;
3045  unsigned NumNonZero = 0;
3046  unsigned NonZeros = 0;
3047  bool IsAllConstants = true;
3048  SmallSet<SDValue, 8> Values;
3049  for (unsigned i = 0; i < NumElems; ++i) {
3050    SDValue Elt = Op.getOperand(i);
3051    if (Elt.getOpcode() == ISD::UNDEF)
3052      continue;
3053    Values.insert(Elt);
3054    if (Elt.getOpcode() != ISD::Constant &&
3055        Elt.getOpcode() != ISD::ConstantFP)
3056      IsAllConstants = false;
3057    if (isZeroNode(Elt))
3058      NumZero++;
3059    else {
3060      NonZeros |= (1 << i);
3061      NumNonZero++;
3062    }
3063  }
3064
3065  if (NumNonZero == 0) {
3066    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3067    return DAG.getUNDEF(VT);
3068  }
3069
3070  // Special case for single non-zero, non-undef, element.
3071  if (NumNonZero == 1 && NumElems <= 4) {
3072    unsigned Idx = CountTrailingZeros_32(NonZeros);
3073    SDValue Item = Op.getOperand(Idx);
3074
3075    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3076    // the value are obviously zero, truncate the value to i32 and do the
3077    // insertion that way.  Only do this if the value is non-constant or if the
3078    // value is a constant being inserted into element 0.  It is cheaper to do
3079    // a constant pool load than it is to do a movd + shuffle.
3080    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3081        (!IsAllConstants || Idx == 0)) {
3082      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3083        // Handle MMX and SSE both.
3084        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3085        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3086
3087        // Truncate the value (which may itself be a constant) to i32, and
3088        // convert it to a vector with movd (S2V+shuffle to zero extend).
3089        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3090        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3091        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3092                                           Subtarget->hasSSE2(), DAG);
3093
3094        // Now we have our 32-bit value zero extended in the low element of
3095        // a vector.  If Idx != 0, swizzle it into place.
3096        if (Idx != 0) {
3097          SmallVector<int, 4> Mask;
3098          Mask.push_back(Idx);
3099          for (unsigned i = 1; i != VecElts; ++i)
3100            Mask.push_back(i);
3101          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3102                                      DAG.getUNDEF(Item.getValueType()),
3103                                      &Mask[0]);
3104        }
3105        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3106      }
3107    }
3108
3109    // If we have a constant or non-constant insertion into the low element of
3110    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3111    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3112    // depending on what the source datatype is.  Because we can only get here
3113    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3114    if (Idx == 0 &&
3115        // Don't do this for i64 values on x86-32.
3116        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3117      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3118      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3119      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3120                                         Subtarget->hasSSE2(), DAG);
3121    }
3122
3123    // Is it a vector logical left shift?
3124    if (NumElems == 2 && Idx == 1 &&
3125        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3126      unsigned NumBits = VT.getSizeInBits();
3127      return getVShift(true, VT,
3128                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3129                                   VT, Op.getOperand(1)),
3130                       NumBits/2, DAG, *this, dl);
3131    }
3132
3133    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3134      return SDValue();
3135
3136    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3137    // is a non-constant being inserted into an element other than the low one,
3138    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3139    // movd/movss) to move this into the low element, then shuffle it into
3140    // place.
3141    if (EVTBits == 32) {
3142      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3143
3144      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3145      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3146                                         Subtarget->hasSSE2(), DAG);
3147      SmallVector<int, 8> MaskVec;
3148      for (unsigned i = 0; i < NumElems; i++)
3149        MaskVec.push_back(i == Idx ? 0 : 1);
3150      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3151    }
3152  }
3153
3154  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3155  if (Values.size() == 1)
3156    return SDValue();
3157
3158  // A vector full of immediates; various special cases are already
3159  // handled, so this is best done with a single constant-pool load.
3160  if (IsAllConstants)
3161    return SDValue();
3162
3163  // Let legalizer expand 2-wide build_vectors.
3164  if (EVTBits == 64) {
3165    if (NumNonZero == 1) {
3166      // One half is zero or undef.
3167      unsigned Idx = CountTrailingZeros_32(NonZeros);
3168      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3169                                 Op.getOperand(Idx));
3170      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3171                                         Subtarget->hasSSE2(), DAG);
3172    }
3173    return SDValue();
3174  }
3175
3176  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3177  if (EVTBits == 8 && NumElems == 16) {
3178    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3179                                        *this);
3180    if (V.getNode()) return V;
3181  }
3182
3183  if (EVTBits == 16 && NumElems == 8) {
3184    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3185                                        *this);
3186    if (V.getNode()) return V;
3187  }
3188
3189  // If element VT is == 32 bits, turn it into a number of shuffles.
3190  SmallVector<SDValue, 8> V;
3191  V.resize(NumElems);
3192  if (NumElems == 4 && NumZero > 0) {
3193    for (unsigned i = 0; i < 4; ++i) {
3194      bool isZero = !(NonZeros & (1 << i));
3195      if (isZero)
3196        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3197      else
3198        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3199    }
3200
3201    for (unsigned i = 0; i < 2; ++i) {
3202      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3203        default: break;
3204        case 0:
3205          V[i] = V[i*2];  // Must be a zero vector.
3206          break;
3207        case 1:
3208          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3209          break;
3210        case 2:
3211          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3212          break;
3213        case 3:
3214          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3215          break;
3216      }
3217    }
3218
3219    SmallVector<int, 8> MaskVec;
3220    bool Reverse = (NonZeros & 0x3) == 2;
3221    for (unsigned i = 0; i < 2; ++i)
3222      MaskVec.push_back(Reverse ? 1-i : i);
3223    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3224    for (unsigned i = 0; i < 2; ++i)
3225      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3226    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3227  }
3228
3229  if (Values.size() > 2) {
3230    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3231    // values to be inserted is equal to the number of elements, in which case
3232    // use the unpack code below in the hopes of matching the consecutive elts
3233    // load merge pattern for shuffles.
3234    // FIXME: We could probably just check that here directly.
3235    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3236        getSubtarget()->hasSSE41()) {
3237      V[0] = DAG.getUNDEF(VT);
3238      for (unsigned i = 0; i < NumElems; ++i)
3239        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3240          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3241                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3242      return V[0];
3243    }
3244    // Expand into a number of unpckl*.
3245    // e.g. for v4f32
3246    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3247    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3248    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3249    for (unsigned i = 0; i < NumElems; ++i)
3250      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3251    NumElems >>= 1;
3252    while (NumElems != 0) {
3253      for (unsigned i = 0; i < NumElems; ++i)
3254        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3255      NumElems >>= 1;
3256    }
3257    return V[0];
3258  }
3259
3260  return SDValue();
3261}
3262
3263// v8i16 shuffles - Prefer shuffles in the following order:
3264// 1. [all]   pshuflw, pshufhw, optional move
3265// 2. [ssse3] 1 x pshufb
3266// 3. [ssse3] 2 x pshufb + 1 x por
3267// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3268static
3269SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3270                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3271  SDValue V1 = SVOp->getOperand(0);
3272  SDValue V2 = SVOp->getOperand(1);
3273  DebugLoc dl = SVOp->getDebugLoc();
3274  SmallVector<int, 8> MaskVals;
3275
3276  // Determine if more than 1 of the words in each of the low and high quadwords
3277  // of the result come from the same quadword of one of the two inputs.  Undef
3278  // mask values count as coming from any quadword, for better codegen.
3279  SmallVector<unsigned, 4> LoQuad(4);
3280  SmallVector<unsigned, 4> HiQuad(4);
3281  BitVector InputQuads(4);
3282  for (unsigned i = 0; i < 8; ++i) {
3283    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3284    int EltIdx = SVOp->getMaskElt(i);
3285    MaskVals.push_back(EltIdx);
3286    if (EltIdx < 0) {
3287      ++Quad[0];
3288      ++Quad[1];
3289      ++Quad[2];
3290      ++Quad[3];
3291      continue;
3292    }
3293    ++Quad[EltIdx / 4];
3294    InputQuads.set(EltIdx / 4);
3295  }
3296
3297  int BestLoQuad = -1;
3298  unsigned MaxQuad = 1;
3299  for (unsigned i = 0; i < 4; ++i) {
3300    if (LoQuad[i] > MaxQuad) {
3301      BestLoQuad = i;
3302      MaxQuad = LoQuad[i];
3303    }
3304  }
3305
3306  int BestHiQuad = -1;
3307  MaxQuad = 1;
3308  for (unsigned i = 0; i < 4; ++i) {
3309    if (HiQuad[i] > MaxQuad) {
3310      BestHiQuad = i;
3311      MaxQuad = HiQuad[i];
3312    }
3313  }
3314
3315  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3316  // of the two input vectors, shuffle them into one input vector so only a
3317  // single pshufb instruction is necessary. If There are more than 2 input
3318  // quads, disable the next transformation since it does not help SSSE3.
3319  bool V1Used = InputQuads[0] || InputQuads[1];
3320  bool V2Used = InputQuads[2] || InputQuads[3];
3321  if (TLI.getSubtarget()->hasSSSE3()) {
3322    if (InputQuads.count() == 2 && V1Used && V2Used) {
3323      BestLoQuad = InputQuads.find_first();
3324      BestHiQuad = InputQuads.find_next(BestLoQuad);
3325    }
3326    if (InputQuads.count() > 2) {
3327      BestLoQuad = -1;
3328      BestHiQuad = -1;
3329    }
3330  }
3331
3332  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3333  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3334  // words from all 4 input quadwords.
3335  SDValue NewV;
3336  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3337    SmallVector<int, 8> MaskV;
3338    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3339    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3340    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3341                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3342                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3343    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3344
3345    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3346    // source words for the shuffle, to aid later transformations.
3347    bool AllWordsInNewV = true;
3348    bool InOrder[2] = { true, true };
3349    for (unsigned i = 0; i != 8; ++i) {
3350      int idx = MaskVals[i];
3351      if (idx != (int)i)
3352        InOrder[i/4] = false;
3353      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3354        continue;
3355      AllWordsInNewV = false;
3356      break;
3357    }
3358
3359    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3360    if (AllWordsInNewV) {
3361      for (int i = 0; i != 8; ++i) {
3362        int idx = MaskVals[i];
3363        if (idx < 0)
3364          continue;
3365        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3366        if ((idx != i) && idx < 4)
3367          pshufhw = false;
3368        if ((idx != i) && idx > 3)
3369          pshuflw = false;
3370      }
3371      V1 = NewV;
3372      V2Used = false;
3373      BestLoQuad = 0;
3374      BestHiQuad = 1;
3375    }
3376
3377    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3378    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3379    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3380      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3381                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3382    }
3383  }
3384
3385  // If we have SSSE3, and all words of the result are from 1 input vector,
3386  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3387  // is present, fall back to case 4.
3388  if (TLI.getSubtarget()->hasSSSE3()) {
3389    SmallVector<SDValue,16> pshufbMask;
3390
3391    // If we have elements from both input vectors, set the high bit of the
3392    // shuffle mask element to zero out elements that come from V2 in the V1
3393    // mask, and elements that come from V1 in the V2 mask, so that the two
3394    // results can be OR'd together.
3395    bool TwoInputs = V1Used && V2Used;
3396    for (unsigned i = 0; i != 8; ++i) {
3397      int EltIdx = MaskVals[i] * 2;
3398      if (TwoInputs && (EltIdx >= 16)) {
3399        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3400        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3401        continue;
3402      }
3403      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3404      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3405    }
3406    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3407    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3408                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3409                                 MVT::v16i8, &pshufbMask[0], 16));
3410    if (!TwoInputs)
3411      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3412
3413    // Calculate the shuffle mask for the second input, shuffle it, and
3414    // OR it with the first shuffled input.
3415    pshufbMask.clear();
3416    for (unsigned i = 0; i != 8; ++i) {
3417      int EltIdx = MaskVals[i] * 2;
3418      if (EltIdx < 16) {
3419        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3420        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3421        continue;
3422      }
3423      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3424      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3425    }
3426    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3427    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3428                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3429                                 MVT::v16i8, &pshufbMask[0], 16));
3430    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3431    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3432  }
3433
3434  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3435  // and update MaskVals with new element order.
3436  BitVector InOrder(8);
3437  if (BestLoQuad >= 0) {
3438    SmallVector<int, 8> MaskV;
3439    for (int i = 0; i != 4; ++i) {
3440      int idx = MaskVals[i];
3441      if (idx < 0) {
3442        MaskV.push_back(-1);
3443        InOrder.set(i);
3444      } else if ((idx / 4) == BestLoQuad) {
3445        MaskV.push_back(idx & 3);
3446        InOrder.set(i);
3447      } else {
3448        MaskV.push_back(-1);
3449      }
3450    }
3451    for (unsigned i = 4; i != 8; ++i)
3452      MaskV.push_back(i);
3453    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3454                                &MaskV[0]);
3455  }
3456
3457  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3458  // and update MaskVals with the new element order.
3459  if (BestHiQuad >= 0) {
3460    SmallVector<int, 8> MaskV;
3461    for (unsigned i = 0; i != 4; ++i)
3462      MaskV.push_back(i);
3463    for (unsigned i = 4; i != 8; ++i) {
3464      int idx = MaskVals[i];
3465      if (idx < 0) {
3466        MaskV.push_back(-1);
3467        InOrder.set(i);
3468      } else if ((idx / 4) == BestHiQuad) {
3469        MaskV.push_back((idx & 3) + 4);
3470        InOrder.set(i);
3471      } else {
3472        MaskV.push_back(-1);
3473      }
3474    }
3475    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3476                                &MaskV[0]);
3477  }
3478
3479  // In case BestHi & BestLo were both -1, which means each quadword has a word
3480  // from each of the four input quadwords, calculate the InOrder bitvector now
3481  // before falling through to the insert/extract cleanup.
3482  if (BestLoQuad == -1 && BestHiQuad == -1) {
3483    NewV = V1;
3484    for (int i = 0; i != 8; ++i)
3485      if (MaskVals[i] < 0 || MaskVals[i] == i)
3486        InOrder.set(i);
3487  }
3488
3489  // The other elements are put in the right place using pextrw and pinsrw.
3490  for (unsigned i = 0; i != 8; ++i) {
3491    if (InOrder[i])
3492      continue;
3493    int EltIdx = MaskVals[i];
3494    if (EltIdx < 0)
3495      continue;
3496    SDValue ExtOp = (EltIdx < 8)
3497    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3498                  DAG.getIntPtrConstant(EltIdx))
3499    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3500                  DAG.getIntPtrConstant(EltIdx - 8));
3501    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3502                       DAG.getIntPtrConstant(i));
3503  }
3504  return NewV;
3505}
3506
3507// v16i8 shuffles - Prefer shuffles in the following order:
3508// 1. [ssse3] 1 x pshufb
3509// 2. [ssse3] 2 x pshufb + 1 x por
3510// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3511static
3512SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3513                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3514  SDValue V1 = SVOp->getOperand(0);
3515  SDValue V2 = SVOp->getOperand(1);
3516  DebugLoc dl = SVOp->getDebugLoc();
3517  SmallVector<int, 16> MaskVals;
3518  SVOp->getMask(MaskVals);
3519
3520  // If we have SSSE3, case 1 is generated when all result bytes come from
3521  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3522  // present, fall back to case 3.
3523  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3524  bool V1Only = true;
3525  bool V2Only = true;
3526  for (unsigned i = 0; i < 16; ++i) {
3527    int EltIdx = MaskVals[i];
3528    if (EltIdx < 0)
3529      continue;
3530    if (EltIdx < 16)
3531      V2Only = false;
3532    else
3533      V1Only = false;
3534  }
3535
3536  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3537  if (TLI.getSubtarget()->hasSSSE3()) {
3538    SmallVector<SDValue,16> pshufbMask;
3539
3540    // If all result elements are from one input vector, then only translate
3541    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3542    //
3543    // Otherwise, we have elements from both input vectors, and must zero out
3544    // elements that come from V2 in the first mask, and V1 in the second mask
3545    // so that we can OR them together.
3546    bool TwoInputs = !(V1Only || V2Only);
3547    for (unsigned i = 0; i != 16; ++i) {
3548      int EltIdx = MaskVals[i];
3549      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3550        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3551        continue;
3552      }
3553      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3554    }
3555    // If all the elements are from V2, assign it to V1 and return after
3556    // building the first pshufb.
3557    if (V2Only)
3558      V1 = V2;
3559    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3560                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3561                                 MVT::v16i8, &pshufbMask[0], 16));
3562    if (!TwoInputs)
3563      return V1;
3564
3565    // Calculate the shuffle mask for the second input, shuffle it, and
3566    // OR it with the first shuffled input.
3567    pshufbMask.clear();
3568    for (unsigned i = 0; i != 16; ++i) {
3569      int EltIdx = MaskVals[i];
3570      if (EltIdx < 16) {
3571        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3572        continue;
3573      }
3574      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3575    }
3576    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3577                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3578                                 MVT::v16i8, &pshufbMask[0], 16));
3579    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3580  }
3581
3582  // No SSSE3 - Calculate in place words and then fix all out of place words
3583  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3584  // the 16 different words that comprise the two doublequadword input vectors.
3585  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3586  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3587  SDValue NewV = V2Only ? V2 : V1;
3588  for (int i = 0; i != 8; ++i) {
3589    int Elt0 = MaskVals[i*2];
3590    int Elt1 = MaskVals[i*2+1];
3591
3592    // This word of the result is all undef, skip it.
3593    if (Elt0 < 0 && Elt1 < 0)
3594      continue;
3595
3596    // This word of the result is already in the correct place, skip it.
3597    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3598      continue;
3599    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3600      continue;
3601
3602    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3603    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3604    SDValue InsElt;
3605
3606    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3607    // using a single extract together, load it and store it.
3608    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3609      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3610                           DAG.getIntPtrConstant(Elt1 / 2));
3611      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3612                        DAG.getIntPtrConstant(i));
3613      continue;
3614    }
3615
3616    // If Elt1 is defined, extract it from the appropriate source.  If the
3617    // source byte is not also odd, shift the extracted word left 8 bits
3618    // otherwise clear the bottom 8 bits if we need to do an or.
3619    if (Elt1 >= 0) {
3620      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3621                           DAG.getIntPtrConstant(Elt1 / 2));
3622      if ((Elt1 & 1) == 0)
3623        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3624                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3625      else if (Elt0 >= 0)
3626        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3627                             DAG.getConstant(0xFF00, MVT::i16));
3628    }
3629    // If Elt0 is defined, extract it from the appropriate source.  If the
3630    // source byte is not also even, shift the extracted word right 8 bits. If
3631    // Elt1 was also defined, OR the extracted values together before
3632    // inserting them in the result.
3633    if (Elt0 >= 0) {
3634      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3635                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3636      if ((Elt0 & 1) != 0)
3637        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3638                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3639      else if (Elt1 >= 0)
3640        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3641                             DAG.getConstant(0x00FF, MVT::i16));
3642      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3643                         : InsElt0;
3644    }
3645    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3646                       DAG.getIntPtrConstant(i));
3647  }
3648  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3649}
3650
3651/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3652/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3653/// done when every pair / quad of shuffle mask elements point to elements in
3654/// the right sequence. e.g.
3655/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3656static
3657SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3658                                 SelectionDAG &DAG,
3659                                 TargetLowering &TLI, DebugLoc dl) {
3660  MVT VT = SVOp->getValueType(0);
3661  SDValue V1 = SVOp->getOperand(0);
3662  SDValue V2 = SVOp->getOperand(1);
3663  unsigned NumElems = VT.getVectorNumElements();
3664  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3665  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3666  MVT MaskEltVT = MaskVT.getVectorElementType();
3667  MVT NewVT = MaskVT;
3668  switch (VT.getSimpleVT()) {
3669  default: assert(false && "Unexpected!");
3670  case MVT::v4f32: NewVT = MVT::v2f64; break;
3671  case MVT::v4i32: NewVT = MVT::v2i64; break;
3672  case MVT::v8i16: NewVT = MVT::v4i32; break;
3673  case MVT::v16i8: NewVT = MVT::v4i32; break;
3674  }
3675
3676  if (NewWidth == 2) {
3677    if (VT.isInteger())
3678      NewVT = MVT::v2i64;
3679    else
3680      NewVT = MVT::v2f64;
3681  }
3682  int Scale = NumElems / NewWidth;
3683  SmallVector<int, 8> MaskVec;
3684  for (unsigned i = 0; i < NumElems; i += Scale) {
3685    int StartIdx = -1;
3686    for (int j = 0; j < Scale; ++j) {
3687      int EltIdx = SVOp->getMaskElt(i+j);
3688      if (EltIdx < 0)
3689        continue;
3690      if (StartIdx == -1)
3691        StartIdx = EltIdx - (EltIdx % Scale);
3692      if (EltIdx != StartIdx + j)
3693        return SDValue();
3694    }
3695    if (StartIdx == -1)
3696      MaskVec.push_back(-1);
3697    else
3698      MaskVec.push_back(StartIdx / Scale);
3699  }
3700
3701  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3702  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3703  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3704}
3705
3706/// getVZextMovL - Return a zero-extending vector move low node.
3707///
3708static SDValue getVZextMovL(MVT VT, MVT OpVT,
3709                            SDValue SrcOp, SelectionDAG &DAG,
3710                            const X86Subtarget *Subtarget, DebugLoc dl) {
3711  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3712    LoadSDNode *LD = NULL;
3713    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3714      LD = dyn_cast<LoadSDNode>(SrcOp);
3715    if (!LD) {
3716      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3717      // instead.
3718      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3719      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3720          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3721          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3722          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3723        // PR2108
3724        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3725        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3726                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3727                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3728                                                   OpVT,
3729                                                   SrcOp.getOperand(0)
3730                                                          .getOperand(0))));
3731      }
3732    }
3733  }
3734
3735  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3736                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3737                                 DAG.getNode(ISD::BIT_CONVERT, dl,
3738                                             OpVT, SrcOp)));
3739}
3740
3741/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3742/// shuffles.
3743static SDValue
3744LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3745  SDValue V1 = SVOp->getOperand(0);
3746  SDValue V2 = SVOp->getOperand(1);
3747  DebugLoc dl = SVOp->getDebugLoc();
3748  MVT VT = SVOp->getValueType(0);
3749
3750  SmallVector<std::pair<int, int>, 8> Locs;
3751  Locs.resize(4);
3752  SmallVector<int, 8> Mask1(4U, -1);
3753  SmallVector<int, 8> PermMask;
3754  SVOp->getMask(PermMask);
3755
3756  unsigned NumHi = 0;
3757  unsigned NumLo = 0;
3758  for (unsigned i = 0; i != 4; ++i) {
3759    int Idx = PermMask[i];
3760    if (Idx < 0) {
3761      Locs[i] = std::make_pair(-1, -1);
3762    } else {
3763      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3764      if (Idx < 4) {
3765        Locs[i] = std::make_pair(0, NumLo);
3766        Mask1[NumLo] = Idx;
3767        NumLo++;
3768      } else {
3769        Locs[i] = std::make_pair(1, NumHi);
3770        if (2+NumHi < 4)
3771          Mask1[2+NumHi] = Idx;
3772        NumHi++;
3773      }
3774    }
3775  }
3776
3777  if (NumLo <= 2 && NumHi <= 2) {
3778    // If no more than two elements come from either vector. This can be
3779    // implemented with two shuffles. First shuffle gather the elements.
3780    // The second shuffle, which takes the first shuffle as both of its
3781    // vector operands, put the elements into the right order.
3782    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3783
3784    SmallVector<int, 8> Mask2(4U, -1);
3785
3786    for (unsigned i = 0; i != 4; ++i) {
3787      if (Locs[i].first == -1)
3788        continue;
3789      else {
3790        unsigned Idx = (i < 2) ? 0 : 4;
3791        Idx += Locs[i].first * 2 + Locs[i].second;
3792        Mask2[i] = Idx;
3793      }
3794    }
3795
3796    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3797  } else if (NumLo == 3 || NumHi == 3) {
3798    // Otherwise, we must have three elements from one vector, call it X, and
3799    // one element from the other, call it Y.  First, use a shufps to build an
3800    // intermediate vector with the one element from Y and the element from X
3801    // that will be in the same half in the final destination (the indexes don't
3802    // matter). Then, use a shufps to build the final vector, taking the half
3803    // containing the element from Y from the intermediate, and the other half
3804    // from X.
3805    if (NumHi == 3) {
3806      // Normalize it so the 3 elements come from V1.
3807      CommuteVectorShuffleMask(PermMask, VT);
3808      std::swap(V1, V2);
3809    }
3810
3811    // Find the element from V2.
3812    unsigned HiIndex;
3813    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3814      int Val = PermMask[HiIndex];
3815      if (Val < 0)
3816        continue;
3817      if (Val >= 4)
3818        break;
3819    }
3820
3821    Mask1[0] = PermMask[HiIndex];
3822    Mask1[1] = -1;
3823    Mask1[2] = PermMask[HiIndex^1];
3824    Mask1[3] = -1;
3825    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3826
3827    if (HiIndex >= 2) {
3828      Mask1[0] = PermMask[0];
3829      Mask1[1] = PermMask[1];
3830      Mask1[2] = HiIndex & 1 ? 6 : 4;
3831      Mask1[3] = HiIndex & 1 ? 4 : 6;
3832      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3833    } else {
3834      Mask1[0] = HiIndex & 1 ? 2 : 0;
3835      Mask1[1] = HiIndex & 1 ? 0 : 2;
3836      Mask1[2] = PermMask[2];
3837      Mask1[3] = PermMask[3];
3838      if (Mask1[2] >= 0)
3839        Mask1[2] += 4;
3840      if (Mask1[3] >= 0)
3841        Mask1[3] += 4;
3842      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
3843    }
3844  }
3845
3846  // Break it into (shuffle shuffle_hi, shuffle_lo).
3847  Locs.clear();
3848  SmallVector<int,8> LoMask(4U, -1);
3849  SmallVector<int,8> HiMask(4U, -1);
3850
3851  SmallVector<int,8> *MaskPtr = &LoMask;
3852  unsigned MaskIdx = 0;
3853  unsigned LoIdx = 0;
3854  unsigned HiIdx = 2;
3855  for (unsigned i = 0; i != 4; ++i) {
3856    if (i == 2) {
3857      MaskPtr = &HiMask;
3858      MaskIdx = 1;
3859      LoIdx = 0;
3860      HiIdx = 2;
3861    }
3862    int Idx = PermMask[i];
3863    if (Idx < 0) {
3864      Locs[i] = std::make_pair(-1, -1);
3865    } else if (Idx < 4) {
3866      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3867      (*MaskPtr)[LoIdx] = Idx;
3868      LoIdx++;
3869    } else {
3870      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3871      (*MaskPtr)[HiIdx] = Idx;
3872      HiIdx++;
3873    }
3874  }
3875
3876  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
3877  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
3878  SmallVector<int, 8> MaskOps;
3879  for (unsigned i = 0; i != 4; ++i) {
3880    if (Locs[i].first == -1) {
3881      MaskOps.push_back(-1);
3882    } else {
3883      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3884      MaskOps.push_back(Idx);
3885    }
3886  }
3887  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
3888}
3889
3890SDValue
3891X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3892  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3893  SDValue V1 = Op.getOperand(0);
3894  SDValue V2 = Op.getOperand(1);
3895  MVT VT = Op.getValueType();
3896  DebugLoc dl = Op.getDebugLoc();
3897  unsigned NumElems = VT.getVectorNumElements();
3898  bool isMMX = VT.getSizeInBits() == 64;
3899  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3900  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3901  bool V1IsSplat = false;
3902  bool V2IsSplat = false;
3903
3904  if (isZeroShuffle(SVOp))
3905    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3906
3907  // Promote splats to v4f32.
3908  if (SVOp->isSplat()) {
3909    if (isMMX || NumElems < 4)
3910      return Op;
3911    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
3912  }
3913
3914  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3915  // do it!
3916  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3917    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3918    if (NewOp.getNode())
3919      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3920                         LowerVECTOR_SHUFFLE(NewOp, DAG));
3921  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3922    // FIXME: Figure out a cleaner way to do this.
3923    // Try to make use of movq to zero out the top part.
3924    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
3925      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3926      if (NewOp.getNode()) {
3927        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
3928          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
3929                              DAG, Subtarget, dl);
3930      }
3931    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
3932      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
3933      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
3934        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3935                            DAG, Subtarget, dl);
3936    }
3937  }
3938
3939  if (X86::isPSHUFDMask(SVOp))
3940    return Op;
3941
3942  // Check if this can be converted into a logical shift.
3943  bool isLeft = false;
3944  unsigned ShAmt = 0;
3945  SDValue ShVal;
3946  bool isShift = getSubtarget()->hasSSE2() &&
3947  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
3948  if (isShift && ShVal.hasOneUse()) {
3949    // If the shifted value has multiple uses, it may be cheaper to use
3950    // v_set0 + movlhps or movhlps, etc.
3951    MVT EVT = VT.getVectorElementType();
3952    ShAmt *= EVT.getSizeInBits();
3953    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
3954  }
3955
3956  if (X86::isMOVLMask(SVOp)) {
3957    if (V1IsUndef)
3958      return V2;
3959    if (ISD::isBuildVectorAllZeros(V1.getNode()))
3960      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
3961    if (!isMMX)
3962      return Op;
3963  }
3964
3965  // FIXME: fold these into legal mask.
3966  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
3967                 X86::isMOVSLDUPMask(SVOp) ||
3968                 X86::isMOVHLPSMask(SVOp) ||
3969                 X86::isMOVHPMask(SVOp) ||
3970                 X86::isMOVLPMask(SVOp)))
3971    return Op;
3972
3973  if (ShouldXformToMOVHLPS(SVOp) ||
3974      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
3975    return CommuteVectorShuffle(SVOp, DAG);
3976
3977  if (isShift) {
3978    // No better options. Use a vshl / vsrl.
3979    MVT EVT = VT.getVectorElementType();
3980    ShAmt *= EVT.getSizeInBits();
3981    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
3982  }
3983
3984  bool Commuted = false;
3985  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3986  // 1,1,1,1 -> v8i16 though.
3987  V1IsSplat = isSplatVector(V1.getNode());
3988  V2IsSplat = isSplatVector(V2.getNode());
3989
3990  // Canonicalize the splat or undef, if present, to be on the RHS.
3991  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3992    Op = CommuteVectorShuffle(SVOp, DAG);
3993    SVOp = cast<ShuffleVectorSDNode>(Op);
3994    V1 = SVOp->getOperand(0);
3995    V2 = SVOp->getOperand(1);
3996    std::swap(V1IsSplat, V2IsSplat);
3997    std::swap(V1IsUndef, V2IsUndef);
3998    Commuted = true;
3999  }
4000
4001  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4002    // Shuffling low element of v1 into undef, just return v1.
4003    if (V2IsUndef)
4004      return V1;
4005    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4006    // the instruction selector will not match, so get a canonical MOVL with
4007    // swapped operands to undo the commute.
4008    return getMOVL(DAG, dl, VT, V2, V1);
4009  }
4010
4011  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4012      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4013      X86::isUNPCKLMask(SVOp) ||
4014      X86::isUNPCKHMask(SVOp))
4015    return Op;
4016
4017  if (V2IsSplat) {
4018    // Normalize mask so all entries that point to V2 points to its first
4019    // element then try to match unpck{h|l} again. If match, return a
4020    // new vector_shuffle with the corrected mask.
4021    SDValue NewMask = NormalizeMask(SVOp, DAG);
4022    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4023    if (NSVOp != SVOp) {
4024      if (X86::isUNPCKLMask(NSVOp, true)) {
4025        return NewMask;
4026      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4027        return NewMask;
4028      }
4029    }
4030  }
4031
4032  if (Commuted) {
4033    // Commute is back and try unpck* again.
4034    // FIXME: this seems wrong.
4035    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4036    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4037    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4038        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4039        X86::isUNPCKLMask(NewSVOp) ||
4040        X86::isUNPCKHMask(NewSVOp))
4041      return NewOp;
4042  }
4043
4044  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4045
4046  // Normalize the node to match x86 shuffle ops if needed
4047  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4048    return CommuteVectorShuffle(SVOp, DAG);
4049
4050  // Check for legal shuffle and return?
4051  SmallVector<int, 16> PermMask;
4052  SVOp->getMask(PermMask);
4053  if (isShuffleMaskLegal(PermMask, VT))
4054    return Op;
4055
4056  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4057  if (VT == MVT::v8i16) {
4058    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4059    if (NewOp.getNode())
4060      return NewOp;
4061  }
4062
4063  if (VT == MVT::v16i8) {
4064    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4065    if (NewOp.getNode())
4066      return NewOp;
4067  }
4068
4069  // Handle all 4 wide cases with a number of shuffles except for MMX.
4070  if (NumElems == 4 && !isMMX)
4071    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4072
4073  return SDValue();
4074}
4075
4076SDValue
4077X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4078                                                SelectionDAG &DAG) {
4079  MVT VT = Op.getValueType();
4080  DebugLoc dl = Op.getDebugLoc();
4081  if (VT.getSizeInBits() == 8) {
4082    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4083                                    Op.getOperand(0), Op.getOperand(1));
4084    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4085                                    DAG.getValueType(VT));
4086    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4087  } else if (VT.getSizeInBits() == 16) {
4088    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4089    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4090    if (Idx == 0)
4091      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4092                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4093                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4094                                                 MVT::v4i32,
4095                                                 Op.getOperand(0)),
4096                                     Op.getOperand(1)));
4097    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4098                                    Op.getOperand(0), Op.getOperand(1));
4099    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4100                                    DAG.getValueType(VT));
4101    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4102  } else if (VT == MVT::f32) {
4103    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4104    // the result back to FR32 register. It's only worth matching if the
4105    // result has a single use which is a store or a bitcast to i32.  And in
4106    // the case of a store, it's not worth it if the index is a constant 0,
4107    // because a MOVSSmr can be used instead, which is smaller and faster.
4108    if (!Op.hasOneUse())
4109      return SDValue();
4110    SDNode *User = *Op.getNode()->use_begin();
4111    if ((User->getOpcode() != ISD::STORE ||
4112         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4113          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4114        (User->getOpcode() != ISD::BIT_CONVERT ||
4115         User->getValueType(0) != MVT::i32))
4116      return SDValue();
4117    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4118                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4119                                              Op.getOperand(0)),
4120                                              Op.getOperand(1));
4121    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4122  } else if (VT == MVT::i32) {
4123    // ExtractPS works with constant index.
4124    if (isa<ConstantSDNode>(Op.getOperand(1)))
4125      return Op;
4126  }
4127  return SDValue();
4128}
4129
4130
4131SDValue
4132X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4133  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4134    return SDValue();
4135
4136  if (Subtarget->hasSSE41()) {
4137    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4138    if (Res.getNode())
4139      return Res;
4140  }
4141
4142  MVT VT = Op.getValueType();
4143  DebugLoc dl = Op.getDebugLoc();
4144  // TODO: handle v16i8.
4145  if (VT.getSizeInBits() == 16) {
4146    SDValue Vec = Op.getOperand(0);
4147    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4148    if (Idx == 0)
4149      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4150                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4151                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4152                                                 MVT::v4i32, Vec),
4153                                     Op.getOperand(1)));
4154    // Transform it so it match pextrw which produces a 32-bit result.
4155    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4156    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4157                                    Op.getOperand(0), Op.getOperand(1));
4158    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4159                                    DAG.getValueType(VT));
4160    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4161  } else if (VT.getSizeInBits() == 32) {
4162    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4163    if (Idx == 0)
4164      return Op;
4165
4166    // SHUFPS the element to the lowest double word, then movss.
4167    int Mask[4] = { Idx, -1, -1, -1 };
4168    MVT VVT = Op.getOperand(0).getValueType();
4169    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4170                                       DAG.getUNDEF(VVT), Mask);
4171    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4172                       DAG.getIntPtrConstant(0));
4173  } else if (VT.getSizeInBits() == 64) {
4174    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4175    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4176    //        to match extract_elt for f64.
4177    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4178    if (Idx == 0)
4179      return Op;
4180
4181    // UNPCKHPD the element to the lowest double word, then movsd.
4182    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4183    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4184    int Mask[2] = { 1, -1 };
4185    MVT VVT = Op.getOperand(0).getValueType();
4186    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4187                                       DAG.getUNDEF(VVT), Mask);
4188    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4189                       DAG.getIntPtrConstant(0));
4190  }
4191
4192  return SDValue();
4193}
4194
4195SDValue
4196X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4197  MVT VT = Op.getValueType();
4198  MVT EVT = VT.getVectorElementType();
4199  DebugLoc dl = Op.getDebugLoc();
4200
4201  SDValue N0 = Op.getOperand(0);
4202  SDValue N1 = Op.getOperand(1);
4203  SDValue N2 = Op.getOperand(2);
4204
4205  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4206      isa<ConstantSDNode>(N2)) {
4207    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4208                                              : X86ISD::PINSRW;
4209    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4210    // argument.
4211    if (N1.getValueType() != MVT::i32)
4212      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4213    if (N2.getValueType() != MVT::i32)
4214      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4215    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4216  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4217    // Bits [7:6] of the constant are the source select.  This will always be
4218    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4219    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4220    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4221    // Bits [5:4] of the constant are the destination select.  This is the
4222    //  value of the incoming immediate.
4223    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4224    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4225    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4226    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4227  } else if (EVT == MVT::i32) {
4228    // InsertPS works with constant index.
4229    if (isa<ConstantSDNode>(N2))
4230      return Op;
4231  }
4232  return SDValue();
4233}
4234
4235SDValue
4236X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4237  MVT VT = Op.getValueType();
4238  MVT EVT = VT.getVectorElementType();
4239
4240  if (Subtarget->hasSSE41())
4241    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4242
4243  if (EVT == MVT::i8)
4244    return SDValue();
4245
4246  DebugLoc dl = Op.getDebugLoc();
4247  SDValue N0 = Op.getOperand(0);
4248  SDValue N1 = Op.getOperand(1);
4249  SDValue N2 = Op.getOperand(2);
4250
4251  if (EVT.getSizeInBits() == 16) {
4252    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4253    // as its second argument.
4254    if (N1.getValueType() != MVT::i32)
4255      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4256    if (N2.getValueType() != MVT::i32)
4257      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4258    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4259  }
4260  return SDValue();
4261}
4262
4263SDValue
4264X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4265  DebugLoc dl = Op.getDebugLoc();
4266  if (Op.getValueType() == MVT::v2f32)
4267    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4268                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4269                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4270                                               Op.getOperand(0))));
4271
4272  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4273  MVT VT = MVT::v2i32;
4274  switch (Op.getValueType().getSimpleVT()) {
4275  default: break;
4276  case MVT::v16i8:
4277  case MVT::v8i16:
4278    VT = MVT::v4i32;
4279    break;
4280  }
4281  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4282                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4283}
4284
4285// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4286// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4287// one of the above mentioned nodes. It has to be wrapped because otherwise
4288// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4289// be used to form addressing mode. These wrapped nodes will be selected
4290// into MOV32ri.
4291SDValue
4292X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4293  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4294  // FIXME there isn't really any debug info here, should come from the parent
4295  DebugLoc dl = CP->getDebugLoc();
4296  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4297                                             CP->getAlignment());
4298  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4299  // With PIC, the address is actually $g + Offset.
4300  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4301      !Subtarget->isPICStyleRIPRel()) {
4302    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4303                         DAG.getNode(X86ISD::GlobalBaseReg,
4304                                     DebugLoc::getUnknownLoc(),
4305                                     getPointerTy()),
4306                         Result);
4307  }
4308
4309  return Result;
4310}
4311
4312SDValue
4313X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4314                                      int64_t Offset,
4315                                      SelectionDAG &DAG) const {
4316  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4317  bool ExtraLoadRequired =
4318    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4319
4320  // Create the TargetGlobalAddress node, folding in the constant
4321  // offset if it is legal.
4322  SDValue Result;
4323  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4324    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4325    Offset = 0;
4326  } else
4327    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4328  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4329
4330  // With PIC, the address is actually $g + Offset.
4331  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4332    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4333                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4334                         Result);
4335  }
4336
4337  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4338  // load the value at address GV, not the value of GV itself. This means that
4339  // the GlobalAddress must be in the base or index register of the address, not
4340  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4341  // The same applies for external symbols during PIC codegen
4342  if (ExtraLoadRequired)
4343    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4344                         PseudoSourceValue::getGOT(), 0);
4345
4346  // If there was a non-zero offset that we didn't fold, create an explicit
4347  // addition for it.
4348  if (Offset != 0)
4349    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4350                         DAG.getConstant(Offset, getPointerTy()));
4351
4352  return Result;
4353}
4354
4355SDValue
4356X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4357  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4358  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4359  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4360}
4361
4362static SDValue
4363GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4364           SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg) {
4365  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4366  DebugLoc dl = GA->getDebugLoc();
4367  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4368                                           GA->getValueType(0),
4369                                           GA->getOffset());
4370  if (InFlag) {
4371    SDValue Ops[] = { Chain,  TGA, *InFlag };
4372    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4373  } else {
4374    SDValue Ops[]  = { Chain, TGA };
4375    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4376  }
4377  SDValue Flag = Chain.getValue(1);
4378  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4379}
4380
4381// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4382static SDValue
4383LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4384                                const MVT PtrVT) {
4385  SDValue InFlag;
4386  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4387  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4388                                     DAG.getNode(X86ISD::GlobalBaseReg,
4389                                                 DebugLoc::getUnknownLoc(),
4390                                                 PtrVT), InFlag);
4391  InFlag = Chain.getValue(1);
4392
4393  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX);
4394}
4395
4396// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4397static SDValue
4398LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4399                                const MVT PtrVT) {
4400  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX);
4401}
4402
4403// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4404// "local exec" model.
4405static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4406                                   const MVT PtrVT, TLSModel::Model model,
4407                                   bool is64Bit) {
4408  DebugLoc dl = GA->getDebugLoc();
4409  // Get the Thread Pointer
4410  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4411                             DebugLoc::getUnknownLoc(), PtrVT,
4412                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
4413                                             MVT::i32));
4414
4415  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4416                                      NULL, 0);
4417
4418  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4419  // exec)
4420  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4421                                             GA->getValueType(0),
4422                                             GA->getOffset());
4423  SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
4424
4425  if (model == TLSModel::InitialExec)
4426    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4427                         PseudoSourceValue::getGOT(), 0);
4428
4429  // The address of the thread local variable is the add of the thread
4430  // pointer with the offset of the variable.
4431  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4432}
4433
4434SDValue
4435X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4436  // TODO: implement the "local dynamic" model
4437  // TODO: implement the "initial exec"model for pic executables
4438  assert(Subtarget->isTargetELF() &&
4439         "TLS not implemented for non-ELF targets");
4440  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4441  GlobalValue *GV = GA->getGlobal();
4442  TLSModel::Model model =
4443    getTLSModel (GV, getTargetMachine().getRelocationModel());
4444  if (Subtarget->is64Bit()) {
4445    switch (model) {
4446    case TLSModel::GeneralDynamic:
4447    case TLSModel::LocalDynamic: // not implemented
4448      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4449
4450    case TLSModel::InitialExec:
4451    case TLSModel::LocalExec:
4452      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, true);
4453    }
4454  } else {
4455    switch (model) {
4456    case TLSModel::GeneralDynamic:
4457    case TLSModel::LocalDynamic: // not implemented
4458      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4459
4460    case TLSModel::InitialExec:
4461    case TLSModel::LocalExec:
4462      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, false);
4463    }
4464  }
4465  assert(0 && "Unreachable");
4466  return SDValue();
4467}
4468
4469SDValue
4470X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4471  // FIXME there isn't really any debug info here
4472  DebugLoc dl = Op.getDebugLoc();
4473  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4474  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4475  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4476  // With PIC, the address is actually $g + Offset.
4477  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4478      !Subtarget->isPICStyleRIPRel()) {
4479    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4480                         DAG.getNode(X86ISD::GlobalBaseReg,
4481                                     DebugLoc::getUnknownLoc(),
4482                                     getPointerTy()),
4483                         Result);
4484  }
4485
4486  return Result;
4487}
4488
4489SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4490  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4491  // FIXME there isn't really any debug into here
4492  DebugLoc dl = JT->getDebugLoc();
4493  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4494  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4495  // With PIC, the address is actually $g + Offset.
4496  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4497      !Subtarget->isPICStyleRIPRel()) {
4498    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4499                         DAG.getNode(X86ISD::GlobalBaseReg,
4500                                     DebugLoc::getUnknownLoc(),
4501                                     getPointerTy()),
4502                         Result);
4503  }
4504
4505  return Result;
4506}
4507
4508/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4509/// take a 2 x i32 value to shift plus a shift amount.
4510SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4511  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4512  MVT VT = Op.getValueType();
4513  unsigned VTBits = VT.getSizeInBits();
4514  DebugLoc dl = Op.getDebugLoc();
4515  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4516  SDValue ShOpLo = Op.getOperand(0);
4517  SDValue ShOpHi = Op.getOperand(1);
4518  SDValue ShAmt  = Op.getOperand(2);
4519  SDValue Tmp1 = isSRA ?
4520    DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4521                DAG.getConstant(VTBits - 1, MVT::i8)) :
4522    DAG.getConstant(0, VT);
4523
4524  SDValue Tmp2, Tmp3;
4525  if (Op.getOpcode() == ISD::SHL_PARTS) {
4526    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4527    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4528  } else {
4529    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4530    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4531  }
4532
4533  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4534                                  DAG.getConstant(VTBits, MVT::i8));
4535  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4536                               AndNode, DAG.getConstant(0, MVT::i8));
4537
4538  SDValue Hi, Lo;
4539  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4540  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4541  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4542
4543  if (Op.getOpcode() == ISD::SHL_PARTS) {
4544    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4545    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4546  } else {
4547    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4548    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4549  }
4550
4551  SDValue Ops[2] = { Lo, Hi };
4552  return DAG.getMergeValues(Ops, 2, dl);
4553}
4554
4555SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4556  MVT SrcVT = Op.getOperand(0).getValueType();
4557  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4558         "Unknown SINT_TO_FP to lower!");
4559
4560  // These are really Legal; return the operand so the caller accepts it as
4561  // Legal.
4562  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4563    return Op;
4564  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4565      Subtarget->is64Bit()) {
4566    return Op;
4567  }
4568
4569  DebugLoc dl = Op.getDebugLoc();
4570  unsigned Size = SrcVT.getSizeInBits()/8;
4571  MachineFunction &MF = DAG.getMachineFunction();
4572  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4573  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4574  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4575                               StackSlot,
4576                               PseudoSourceValue::getFixedStack(SSFI), 0);
4577  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4578}
4579
4580SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
4581                                     SDValue StackSlot,
4582                                     SelectionDAG &DAG) {
4583  // Build the FILD
4584  DebugLoc dl = Op.getDebugLoc();
4585  SDVTList Tys;
4586  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4587  if (useSSE)
4588    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4589  else
4590    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4591  SmallVector<SDValue, 8> Ops;
4592  Ops.push_back(Chain);
4593  Ops.push_back(StackSlot);
4594  Ops.push_back(DAG.getValueType(SrcVT));
4595  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4596                                 Tys, &Ops[0], Ops.size());
4597
4598  if (useSSE) {
4599    Chain = Result.getValue(1);
4600    SDValue InFlag = Result.getValue(2);
4601
4602    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4603    // shouldn't be necessary except that RFP cannot be live across
4604    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4605    MachineFunction &MF = DAG.getMachineFunction();
4606    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4607    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4608    Tys = DAG.getVTList(MVT::Other);
4609    SmallVector<SDValue, 8> Ops;
4610    Ops.push_back(Chain);
4611    Ops.push_back(Result);
4612    Ops.push_back(StackSlot);
4613    Ops.push_back(DAG.getValueType(Op.getValueType()));
4614    Ops.push_back(InFlag);
4615    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4616    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4617                         PseudoSourceValue::getFixedStack(SSFI), 0);
4618  }
4619
4620  return Result;
4621}
4622
4623// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4624SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4625  // This algorithm is not obvious. Here it is in C code, more or less:
4626  /*
4627    double uint64_to_double( uint32_t hi, uint32_t lo ) {
4628      static const __m128i exp = { 0x4330000045300000ULL, 0 };
4629      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4630
4631      // Copy ints to xmm registers.
4632      __m128i xh = _mm_cvtsi32_si128( hi );
4633      __m128i xl = _mm_cvtsi32_si128( lo );
4634
4635      // Combine into low half of a single xmm register.
4636      __m128i x = _mm_unpacklo_epi32( xh, xl );
4637      __m128d d;
4638      double sd;
4639
4640      // Merge in appropriate exponents to give the integer bits the right
4641      // magnitude.
4642      x = _mm_unpacklo_epi32( x, exp );
4643
4644      // Subtract away the biases to deal with the IEEE-754 double precision
4645      // implicit 1.
4646      d = _mm_sub_pd( (__m128d) x, bias );
4647
4648      // All conversions up to here are exact. The correctly rounded result is
4649      // calculated using the current rounding mode using the following
4650      // horizontal add.
4651      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4652      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
4653                                // store doesn't really need to be here (except
4654                                // maybe to zero the other double)
4655      return sd;
4656    }
4657  */
4658
4659  DebugLoc dl = Op.getDebugLoc();
4660
4661  // Build some magic constants.
4662  std::vector<Constant*> CV0;
4663  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4664  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4665  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4666  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4667  Constant *C0 = ConstantVector::get(CV0);
4668  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4669
4670  std::vector<Constant*> CV1;
4671  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4672  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4673  Constant *C1 = ConstantVector::get(CV1);
4674  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4675
4676  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4677                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4678                                        Op.getOperand(0),
4679                                        DAG.getIntPtrConstant(1)));
4680  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4681                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4682                                        Op.getOperand(0),
4683                                        DAG.getIntPtrConstant(0)));
4684  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4685  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4686                              PseudoSourceValue::getConstantPool(), 0,
4687                              false, 16);
4688  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4689  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4690  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4691                              PseudoSourceValue::getConstantPool(), 0,
4692                              false, 16);
4693  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4694
4695  // Add the halves; easiest way is to swap them into another reg first.
4696  int ShufMask[2] = { 1, -1 };
4697  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4698                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
4699  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4700  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4701                     DAG.getIntPtrConstant(0));
4702}
4703
4704// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4705SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4706  DebugLoc dl = Op.getDebugLoc();
4707  // FP constant to bias correct the final result.
4708  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4709                                   MVT::f64);
4710
4711  // Load the 32-bit value into an XMM register.
4712  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4713                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4714                                         Op.getOperand(0),
4715                                         DAG.getIntPtrConstant(0)));
4716
4717  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4718                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4719                     DAG.getIntPtrConstant(0));
4720
4721  // Or the load with the bias.
4722  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4723                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4724                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4725                                                   MVT::v2f64, Load)),
4726                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4727                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4728                                                   MVT::v2f64, Bias)));
4729  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4730                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
4731                   DAG.getIntPtrConstant(0));
4732
4733  // Subtract the bias.
4734  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
4735
4736  // Handle final rounding.
4737  MVT DestVT = Op.getValueType();
4738
4739  if (DestVT.bitsLT(MVT::f64)) {
4740    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
4741                       DAG.getIntPtrConstant(0));
4742  } else if (DestVT.bitsGT(MVT::f64)) {
4743    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
4744  }
4745
4746  // Handle final rounding.
4747  return Sub;
4748}
4749
4750SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4751  SDValue N0 = Op.getOperand(0);
4752  DebugLoc dl = Op.getDebugLoc();
4753
4754  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4755  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4756  // the optimization here.
4757  if (DAG.SignBitIsZero(N0))
4758    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
4759
4760  MVT SrcVT = N0.getValueType();
4761  if (SrcVT == MVT::i64) {
4762    // We only handle SSE2 f64 target here; caller can expand the rest.
4763    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4764      return SDValue();
4765
4766    return LowerUINT_TO_FP_i64(Op, DAG);
4767  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
4768    return LowerUINT_TO_FP_i32(Op, DAG);
4769  }
4770
4771  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
4772
4773  // Make a 64-bit buffer, and use it to build an FILD.
4774  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
4775  SDValue WordOff = DAG.getConstant(4, getPointerTy());
4776  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
4777                                   getPointerTy(), StackSlot, WordOff);
4778  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4779                                StackSlot, NULL, 0);
4780  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
4781                                OffsetSlot, NULL, 0);
4782  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
4783}
4784
4785std::pair<SDValue,SDValue> X86TargetLowering::
4786FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
4787  DebugLoc dl = Op.getDebugLoc();
4788
4789  MVT DstTy = Op.getValueType();
4790
4791  if (!IsSigned) {
4792    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
4793    DstTy = MVT::i64;
4794  }
4795
4796  assert(DstTy.getSimpleVT() <= MVT::i64 &&
4797         DstTy.getSimpleVT() >= MVT::i16 &&
4798         "Unknown FP_TO_SINT to lower!");
4799
4800  // These are really Legal.
4801  if (DstTy == MVT::i32 &&
4802      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4803    return std::make_pair(SDValue(), SDValue());
4804  if (Subtarget->is64Bit() &&
4805      DstTy == MVT::i64 &&
4806      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4807    return std::make_pair(SDValue(), SDValue());
4808
4809  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4810  // stack slot.
4811  MachineFunction &MF = DAG.getMachineFunction();
4812  unsigned MemSize = DstTy.getSizeInBits()/8;
4813  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4814  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4815
4816  unsigned Opc;
4817  switch (DstTy.getSimpleVT()) {
4818  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4819  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4820  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4821  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4822  }
4823
4824  SDValue Chain = DAG.getEntryNode();
4825  SDValue Value = Op.getOperand(0);
4826  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4827    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4828    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
4829                         PseudoSourceValue::getFixedStack(SSFI), 0);
4830    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4831    SDValue Ops[] = {
4832      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4833    };
4834    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
4835    Chain = Value.getValue(1);
4836    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4837    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4838  }
4839
4840  // Build the FP_TO_INT*_IN_MEM
4841  SDValue Ops[] = { Chain, Value, StackSlot };
4842  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
4843
4844  return std::make_pair(FIST, StackSlot);
4845}
4846
4847SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4848  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
4849  SDValue FIST = Vals.first, StackSlot = Vals.second;
4850  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
4851  if (FIST.getNode() == 0) return Op;
4852
4853  // Load the result.
4854  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
4855                     FIST, StackSlot, NULL, 0);
4856}
4857
4858SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
4859  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
4860  SDValue FIST = Vals.first, StackSlot = Vals.second;
4861  assert(FIST.getNode() && "Unexpected failure");
4862
4863  // Load the result.
4864  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
4865                     FIST, StackSlot, NULL, 0);
4866}
4867
4868SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4869  DebugLoc dl = Op.getDebugLoc();
4870  MVT VT = Op.getValueType();
4871  MVT EltVT = VT;
4872  if (VT.isVector())
4873    EltVT = VT.getVectorElementType();
4874  std::vector<Constant*> CV;
4875  if (EltVT == MVT::f64) {
4876    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4877    CV.push_back(C);
4878    CV.push_back(C);
4879  } else {
4880    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4881    CV.push_back(C);
4882    CV.push_back(C);
4883    CV.push_back(C);
4884    CV.push_back(C);
4885  }
4886  Constant *C = ConstantVector::get(CV);
4887  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4888  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4889                               PseudoSourceValue::getConstantPool(), 0,
4890                               false, 16);
4891  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
4892}
4893
4894SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4895  DebugLoc dl = Op.getDebugLoc();
4896  MVT VT = Op.getValueType();
4897  MVT EltVT = VT;
4898  unsigned EltNum = 1;
4899  if (VT.isVector()) {
4900    EltVT = VT.getVectorElementType();
4901    EltNum = VT.getVectorNumElements();
4902  }
4903  std::vector<Constant*> CV;
4904  if (EltVT == MVT::f64) {
4905    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4906    CV.push_back(C);
4907    CV.push_back(C);
4908  } else {
4909    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4910    CV.push_back(C);
4911    CV.push_back(C);
4912    CV.push_back(C);
4913    CV.push_back(C);
4914  }
4915  Constant *C = ConstantVector::get(CV);
4916  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4917  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4918                               PseudoSourceValue::getConstantPool(), 0,
4919                               false, 16);
4920  if (VT.isVector()) {
4921    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4922                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
4923                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4924                                Op.getOperand(0)),
4925                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
4926  } else {
4927    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
4928  }
4929}
4930
4931SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4932  SDValue Op0 = Op.getOperand(0);
4933  SDValue Op1 = Op.getOperand(1);
4934  DebugLoc dl = Op.getDebugLoc();
4935  MVT VT = Op.getValueType();
4936  MVT SrcVT = Op1.getValueType();
4937
4938  // If second operand is smaller, extend it first.
4939  if (SrcVT.bitsLT(VT)) {
4940    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
4941    SrcVT = VT;
4942  }
4943  // And if it is bigger, shrink it first.
4944  if (SrcVT.bitsGT(VT)) {
4945    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
4946    SrcVT = VT;
4947  }
4948
4949  // At this point the operands and the result should have the same
4950  // type, and that won't be f80 since that is not custom lowered.
4951
4952  // First get the sign bit of second operand.
4953  std::vector<Constant*> CV;
4954  if (SrcVT == MVT::f64) {
4955    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4956    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4957  } else {
4958    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4959    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4960    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4961    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4962  }
4963  Constant *C = ConstantVector::get(CV);
4964  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4965  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
4966                                PseudoSourceValue::getConstantPool(), 0,
4967                                false, 16);
4968  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
4969
4970  // Shift sign bit right or left if the two operands have different types.
4971  if (SrcVT.bitsGT(VT)) {
4972    // Op0 is MVT::f32, Op1 is MVT::f64.
4973    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
4974    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
4975                          DAG.getConstant(32, MVT::i32));
4976    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
4977    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
4978                          DAG.getIntPtrConstant(0));
4979  }
4980
4981  // Clear first operand sign bit.
4982  CV.clear();
4983  if (VT == MVT::f64) {
4984    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4985    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4986  } else {
4987    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4988    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4989    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4990    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4991  }
4992  C = ConstantVector::get(CV);
4993  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
4994  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
4995                                PseudoSourceValue::getConstantPool(), 0,
4996                                false, 16);
4997  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
4998
4999  // Or the value with the sign bit.
5000  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5001}
5002
5003/// Emit nodes that will be selected as "test Op0,Op0", or something
5004/// equivalent.
5005SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5006                                    SelectionDAG &DAG) {
5007  DebugLoc dl = Op.getDebugLoc();
5008
5009  // CF and OF aren't always set the way we want. Determine which
5010  // of these we need.
5011  bool NeedCF = false;
5012  bool NeedOF = false;
5013  switch (X86CC) {
5014  case X86::COND_A: case X86::COND_AE:
5015  case X86::COND_B: case X86::COND_BE:
5016    NeedCF = true;
5017    break;
5018  case X86::COND_G: case X86::COND_GE:
5019  case X86::COND_L: case X86::COND_LE:
5020  case X86::COND_O: case X86::COND_NO:
5021    NeedOF = true;
5022    break;
5023  default: break;
5024  }
5025
5026  // See if we can use the EFLAGS value from the operand instead of
5027  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5028  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5029  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5030    unsigned Opcode = 0;
5031    unsigned NumOperands = 0;
5032    switch (Op.getNode()->getOpcode()) {
5033    case ISD::ADD:
5034      // Due to an isel shortcoming, be conservative if this add is likely to
5035      // be selected as part of a load-modify-store instruction. When the root
5036      // node in a match is a store, isel doesn't know how to remap non-chain
5037      // non-flag uses of other nodes in the match, such as the ADD in this
5038      // case. This leads to the ADD being left around and reselected, with
5039      // the result being two adds in the output.
5040      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5041           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5042        if (UI->getOpcode() == ISD::STORE)
5043          goto default_case;
5044      if (ConstantSDNode *C =
5045            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5046        // An add of one will be selected as an INC.
5047        if (C->getAPIntValue() == 1) {
5048          Opcode = X86ISD::INC;
5049          NumOperands = 1;
5050          break;
5051        }
5052        // An add of negative one (subtract of one) will be selected as a DEC.
5053        if (C->getAPIntValue().isAllOnesValue()) {
5054          Opcode = X86ISD::DEC;
5055          NumOperands = 1;
5056          break;
5057        }
5058      }
5059      // Otherwise use a regular EFLAGS-setting add.
5060      Opcode = X86ISD::ADD;
5061      NumOperands = 2;
5062      break;
5063    case ISD::SUB:
5064      // Due to the ISEL shortcoming noted above, be conservative if this sub is
5065      // likely to be selected as part of a load-modify-store instruction.
5066      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5067           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5068        if (UI->getOpcode() == ISD::STORE)
5069          goto default_case;
5070      // Otherwise use a regular EFLAGS-setting sub.
5071      Opcode = X86ISD::SUB;
5072      NumOperands = 2;
5073      break;
5074    case X86ISD::ADD:
5075    case X86ISD::SUB:
5076    case X86ISD::INC:
5077    case X86ISD::DEC:
5078      return SDValue(Op.getNode(), 1);
5079    default:
5080    default_case:
5081      break;
5082    }
5083    if (Opcode != 0) {
5084      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5085      SmallVector<SDValue, 4> Ops;
5086      for (unsigned i = 0; i != NumOperands; ++i)
5087        Ops.push_back(Op.getOperand(i));
5088      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5089      DAG.ReplaceAllUsesWith(Op, New);
5090      return SDValue(New.getNode(), 1);
5091    }
5092  }
5093
5094  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5095  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5096                     DAG.getConstant(0, Op.getValueType()));
5097}
5098
5099/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5100/// equivalent.
5101SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5102                                   SelectionDAG &DAG) {
5103  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5104    if (C->getAPIntValue() == 0)
5105      return EmitTest(Op0, X86CC, DAG);
5106
5107  DebugLoc dl = Op0.getDebugLoc();
5108  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5109}
5110
5111SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5112  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5113  SDValue Op0 = Op.getOperand(0);
5114  SDValue Op1 = Op.getOperand(1);
5115  DebugLoc dl = Op.getDebugLoc();
5116  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5117
5118  // Lower (X & (1 << N)) == 0 to BT(X, N).
5119  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5120  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5121  if (Op0.getOpcode() == ISD::AND &&
5122      Op0.hasOneUse() &&
5123      Op1.getOpcode() == ISD::Constant &&
5124      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5125      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5126    SDValue LHS, RHS;
5127    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5128      if (ConstantSDNode *Op010C =
5129            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5130        if (Op010C->getZExtValue() == 1) {
5131          LHS = Op0.getOperand(0);
5132          RHS = Op0.getOperand(1).getOperand(1);
5133        }
5134    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5135      if (ConstantSDNode *Op000C =
5136            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5137        if (Op000C->getZExtValue() == 1) {
5138          LHS = Op0.getOperand(1);
5139          RHS = Op0.getOperand(0).getOperand(1);
5140        }
5141    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5142      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5143      SDValue AndLHS = Op0.getOperand(0);
5144      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5145        LHS = AndLHS.getOperand(0);
5146        RHS = AndLHS.getOperand(1);
5147      }
5148    }
5149
5150    if (LHS.getNode()) {
5151      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5152      // instruction.  Since the shift amount is in-range-or-undefined, we know
5153      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5154      // the encoding for the i16 version is larger than the i32 version.
5155      if (LHS.getValueType() == MVT::i8)
5156        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5157
5158      // If the operand types disagree, extend the shift amount to match.  Since
5159      // BT ignores high bits (like shifts) we can use anyextend.
5160      if (LHS.getValueType() != RHS.getValueType())
5161        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5162
5163      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5164      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5165      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5166                         DAG.getConstant(Cond, MVT::i8), BT);
5167    }
5168  }
5169
5170  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5171  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5172
5173  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5174  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5175                     DAG.getConstant(X86CC, MVT::i8), Cond);
5176}
5177
5178SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5179  SDValue Cond;
5180  SDValue Op0 = Op.getOperand(0);
5181  SDValue Op1 = Op.getOperand(1);
5182  SDValue CC = Op.getOperand(2);
5183  MVT VT = Op.getValueType();
5184  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5185  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5186  DebugLoc dl = Op.getDebugLoc();
5187
5188  if (isFP) {
5189    unsigned SSECC = 8;
5190    MVT VT0 = Op0.getValueType();
5191    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5192    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5193    bool Swap = false;
5194
5195    switch (SetCCOpcode) {
5196    default: break;
5197    case ISD::SETOEQ:
5198    case ISD::SETEQ:  SSECC = 0; break;
5199    case ISD::SETOGT:
5200    case ISD::SETGT: Swap = true; // Fallthrough
5201    case ISD::SETLT:
5202    case ISD::SETOLT: SSECC = 1; break;
5203    case ISD::SETOGE:
5204    case ISD::SETGE: Swap = true; // Fallthrough
5205    case ISD::SETLE:
5206    case ISD::SETOLE: SSECC = 2; break;
5207    case ISD::SETUO:  SSECC = 3; break;
5208    case ISD::SETUNE:
5209    case ISD::SETNE:  SSECC = 4; break;
5210    case ISD::SETULE: Swap = true;
5211    case ISD::SETUGE: SSECC = 5; break;
5212    case ISD::SETULT: Swap = true;
5213    case ISD::SETUGT: SSECC = 6; break;
5214    case ISD::SETO:   SSECC = 7; break;
5215    }
5216    if (Swap)
5217      std::swap(Op0, Op1);
5218
5219    // In the two special cases we can't handle, emit two comparisons.
5220    if (SSECC == 8) {
5221      if (SetCCOpcode == ISD::SETUEQ) {
5222        SDValue UNORD, EQ;
5223        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5224        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5225        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5226      }
5227      else if (SetCCOpcode == ISD::SETONE) {
5228        SDValue ORD, NEQ;
5229        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5230        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5231        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5232      }
5233      assert(0 && "Illegal FP comparison");
5234    }
5235    // Handle all other FP comparisons here.
5236    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5237  }
5238
5239  // We are handling one of the integer comparisons here.  Since SSE only has
5240  // GT and EQ comparisons for integer, swapping operands and multiple
5241  // operations may be required for some comparisons.
5242  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5243  bool Swap = false, Invert = false, FlipSigns = false;
5244
5245  switch (VT.getSimpleVT()) {
5246  default: break;
5247  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5248  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5249  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5250  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5251  }
5252
5253  switch (SetCCOpcode) {
5254  default: break;
5255  case ISD::SETNE:  Invert = true;
5256  case ISD::SETEQ:  Opc = EQOpc; break;
5257  case ISD::SETLT:  Swap = true;
5258  case ISD::SETGT:  Opc = GTOpc; break;
5259  case ISD::SETGE:  Swap = true;
5260  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5261  case ISD::SETULT: Swap = true;
5262  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5263  case ISD::SETUGE: Swap = true;
5264  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5265  }
5266  if (Swap)
5267    std::swap(Op0, Op1);
5268
5269  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5270  // bits of the inputs before performing those operations.
5271  if (FlipSigns) {
5272    MVT EltVT = VT.getVectorElementType();
5273    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5274                                      EltVT);
5275    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5276    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5277                                    SignBits.size());
5278    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5279    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5280  }
5281
5282  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5283
5284  // If the logical-not of the result is required, perform that now.
5285  if (Invert)
5286    Result = DAG.getNOT(dl, Result, VT);
5287
5288  return Result;
5289}
5290
5291// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5292static bool isX86LogicalCmp(SDValue Op) {
5293  unsigned Opc = Op.getNode()->getOpcode();
5294  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5295    return true;
5296  if (Op.getResNo() == 1 &&
5297      (Opc == X86ISD::ADD ||
5298       Opc == X86ISD::SUB ||
5299       Opc == X86ISD::SMUL ||
5300       Opc == X86ISD::UMUL ||
5301       Opc == X86ISD::INC ||
5302       Opc == X86ISD::DEC))
5303    return true;
5304
5305  return false;
5306}
5307
5308SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5309  bool addTest = true;
5310  SDValue Cond  = Op.getOperand(0);
5311  DebugLoc dl = Op.getDebugLoc();
5312  SDValue CC;
5313
5314  if (Cond.getOpcode() == ISD::SETCC)
5315    Cond = LowerSETCC(Cond, DAG);
5316
5317  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5318  // setting operand in place of the X86ISD::SETCC.
5319  if (Cond.getOpcode() == X86ISD::SETCC) {
5320    CC = Cond.getOperand(0);
5321
5322    SDValue Cmp = Cond.getOperand(1);
5323    unsigned Opc = Cmp.getOpcode();
5324    MVT VT = Op.getValueType();
5325
5326    bool IllegalFPCMov = false;
5327    if (VT.isFloatingPoint() && !VT.isVector() &&
5328        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5329      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5330
5331    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5332        Opc == X86ISD::BT) { // FIXME
5333      Cond = Cmp;
5334      addTest = false;
5335    }
5336  }
5337
5338  if (addTest) {
5339    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5340    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5341  }
5342
5343  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5344  SmallVector<SDValue, 4> Ops;
5345  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5346  // condition is true.
5347  Ops.push_back(Op.getOperand(2));
5348  Ops.push_back(Op.getOperand(1));
5349  Ops.push_back(CC);
5350  Ops.push_back(Cond);
5351  return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5352}
5353
5354// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5355// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5356// from the AND / OR.
5357static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5358  Opc = Op.getOpcode();
5359  if (Opc != ISD::OR && Opc != ISD::AND)
5360    return false;
5361  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5362          Op.getOperand(0).hasOneUse() &&
5363          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5364          Op.getOperand(1).hasOneUse());
5365}
5366
5367// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5368// 1 and that the SETCC node has a single use.
5369static bool isXor1OfSetCC(SDValue Op) {
5370  if (Op.getOpcode() != ISD::XOR)
5371    return false;
5372  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5373  if (N1C && N1C->getAPIntValue() == 1) {
5374    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5375      Op.getOperand(0).hasOneUse();
5376  }
5377  return false;
5378}
5379
5380SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5381  bool addTest = true;
5382  SDValue Chain = Op.getOperand(0);
5383  SDValue Cond  = Op.getOperand(1);
5384  SDValue Dest  = Op.getOperand(2);
5385  DebugLoc dl = Op.getDebugLoc();
5386  SDValue CC;
5387
5388  if (Cond.getOpcode() == ISD::SETCC)
5389    Cond = LowerSETCC(Cond, DAG);
5390#if 0
5391  // FIXME: LowerXALUO doesn't handle these!!
5392  else if (Cond.getOpcode() == X86ISD::ADD  ||
5393           Cond.getOpcode() == X86ISD::SUB  ||
5394           Cond.getOpcode() == X86ISD::SMUL ||
5395           Cond.getOpcode() == X86ISD::UMUL)
5396    Cond = LowerXALUO(Cond, DAG);
5397#endif
5398
5399  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5400  // setting operand in place of the X86ISD::SETCC.
5401  if (Cond.getOpcode() == X86ISD::SETCC) {
5402    CC = Cond.getOperand(0);
5403
5404    SDValue Cmp = Cond.getOperand(1);
5405    unsigned Opc = Cmp.getOpcode();
5406    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5407    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5408      Cond = Cmp;
5409      addTest = false;
5410    } else {
5411      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5412      default: break;
5413      case X86::COND_O:
5414      case X86::COND_B:
5415        // These can only come from an arithmetic instruction with overflow,
5416        // e.g. SADDO, UADDO.
5417        Cond = Cond.getNode()->getOperand(1);
5418        addTest = false;
5419        break;
5420      }
5421    }
5422  } else {
5423    unsigned CondOpc;
5424    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5425      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5426      if (CondOpc == ISD::OR) {
5427        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5428        // two branches instead of an explicit OR instruction with a
5429        // separate test.
5430        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5431            isX86LogicalCmp(Cmp)) {
5432          CC = Cond.getOperand(0).getOperand(0);
5433          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5434                              Chain, Dest, CC, Cmp);
5435          CC = Cond.getOperand(1).getOperand(0);
5436          Cond = Cmp;
5437          addTest = false;
5438        }
5439      } else { // ISD::AND
5440        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5441        // two branches instead of an explicit AND instruction with a
5442        // separate test. However, we only do this if this block doesn't
5443        // have a fall-through edge, because this requires an explicit
5444        // jmp when the condition is false.
5445        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5446            isX86LogicalCmp(Cmp) &&
5447            Op.getNode()->hasOneUse()) {
5448          X86::CondCode CCode =
5449            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5450          CCode = X86::GetOppositeBranchCondition(CCode);
5451          CC = DAG.getConstant(CCode, MVT::i8);
5452          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5453          // Look for an unconditional branch following this conditional branch.
5454          // We need this because we need to reverse the successors in order
5455          // to implement FCMP_OEQ.
5456          if (User.getOpcode() == ISD::BR) {
5457            SDValue FalseBB = User.getOperand(1);
5458            SDValue NewBR =
5459              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5460            assert(NewBR == User);
5461            Dest = FalseBB;
5462
5463            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5464                                Chain, Dest, CC, Cmp);
5465            X86::CondCode CCode =
5466              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5467            CCode = X86::GetOppositeBranchCondition(CCode);
5468            CC = DAG.getConstant(CCode, MVT::i8);
5469            Cond = Cmp;
5470            addTest = false;
5471          }
5472        }
5473      }
5474    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5475      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5476      // It should be transformed during dag combiner except when the condition
5477      // is set by a arithmetics with overflow node.
5478      X86::CondCode CCode =
5479        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5480      CCode = X86::GetOppositeBranchCondition(CCode);
5481      CC = DAG.getConstant(CCode, MVT::i8);
5482      Cond = Cond.getOperand(0).getOperand(1);
5483      addTest = false;
5484    }
5485  }
5486
5487  if (addTest) {
5488    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5489    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5490  }
5491  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5492                     Chain, Dest, CC, Cond);
5493}
5494
5495
5496// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5497// Calls to _alloca is needed to probe the stack when allocating more than 4k
5498// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5499// that the guard pages used by the OS virtual memory manager are allocated in
5500// correct sequence.
5501SDValue
5502X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5503                                           SelectionDAG &DAG) {
5504  assert(Subtarget->isTargetCygMing() &&
5505         "This should be used only on Cygwin/Mingw targets");
5506  DebugLoc dl = Op.getDebugLoc();
5507
5508  // Get the inputs.
5509  SDValue Chain = Op.getOperand(0);
5510  SDValue Size  = Op.getOperand(1);
5511  // FIXME: Ensure alignment here
5512
5513  SDValue Flag;
5514
5515  MVT IntPtr = getPointerTy();
5516  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5517
5518  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5519
5520  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5521  Flag = Chain.getValue(1);
5522
5523  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5524  SDValue Ops[] = { Chain,
5525                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5526                      DAG.getRegister(X86::EAX, IntPtr),
5527                      DAG.getRegister(X86StackPtr, SPTy),
5528                      Flag };
5529  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5530  Flag = Chain.getValue(1);
5531
5532  Chain = DAG.getCALLSEQ_END(Chain,
5533                             DAG.getIntPtrConstant(0, true),
5534                             DAG.getIntPtrConstant(0, true),
5535                             Flag);
5536
5537  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5538
5539  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5540  return DAG.getMergeValues(Ops1, 2, dl);
5541}
5542
5543SDValue
5544X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5545                                           SDValue Chain,
5546                                           SDValue Dst, SDValue Src,
5547                                           SDValue Size, unsigned Align,
5548                                           const Value *DstSV,
5549                                           uint64_t DstSVOff) {
5550  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5551
5552  // If not DWORD aligned or size is more than the threshold, call the library.
5553  // The libc version is likely to be faster for these cases. It can use the
5554  // address value and run time information about the CPU.
5555  if ((Align & 3) != 0 ||
5556      !ConstantSize ||
5557      ConstantSize->getZExtValue() >
5558        getSubtarget()->getMaxInlineSizeThreshold()) {
5559    SDValue InFlag(0, 0);
5560
5561    // Check to see if there is a specialized entry-point for memory zeroing.
5562    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5563
5564    if (const char *bzeroEntry =  V &&
5565        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5566      MVT IntPtr = getPointerTy();
5567      const Type *IntPtrTy = TD->getIntPtrType();
5568      TargetLowering::ArgListTy Args;
5569      TargetLowering::ArgListEntry Entry;
5570      Entry.Node = Dst;
5571      Entry.Ty = IntPtrTy;
5572      Args.push_back(Entry);
5573      Entry.Node = Size;
5574      Args.push_back(Entry);
5575      std::pair<SDValue,SDValue> CallResult =
5576        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5577                    CallingConv::C, false,
5578                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5579      return CallResult.second;
5580    }
5581
5582    // Otherwise have the target-independent code call memset.
5583    return SDValue();
5584  }
5585
5586  uint64_t SizeVal = ConstantSize->getZExtValue();
5587  SDValue InFlag(0, 0);
5588  MVT AVT;
5589  SDValue Count;
5590  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5591  unsigned BytesLeft = 0;
5592  bool TwoRepStos = false;
5593  if (ValC) {
5594    unsigned ValReg;
5595    uint64_t Val = ValC->getZExtValue() & 255;
5596
5597    // If the value is a constant, then we can potentially use larger sets.
5598    switch (Align & 3) {
5599    case 2:   // WORD aligned
5600      AVT = MVT::i16;
5601      ValReg = X86::AX;
5602      Val = (Val << 8) | Val;
5603      break;
5604    case 0:  // DWORD aligned
5605      AVT = MVT::i32;
5606      ValReg = X86::EAX;
5607      Val = (Val << 8)  | Val;
5608      Val = (Val << 16) | Val;
5609      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5610        AVT = MVT::i64;
5611        ValReg = X86::RAX;
5612        Val = (Val << 32) | Val;
5613      }
5614      break;
5615    default:  // Byte aligned
5616      AVT = MVT::i8;
5617      ValReg = X86::AL;
5618      Count = DAG.getIntPtrConstant(SizeVal);
5619      break;
5620    }
5621
5622    if (AVT.bitsGT(MVT::i8)) {
5623      unsigned UBytes = AVT.getSizeInBits() / 8;
5624      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5625      BytesLeft = SizeVal % UBytes;
5626    }
5627
5628    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5629                              InFlag);
5630    InFlag = Chain.getValue(1);
5631  } else {
5632    AVT = MVT::i8;
5633    Count  = DAG.getIntPtrConstant(SizeVal);
5634    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5635    InFlag = Chain.getValue(1);
5636  }
5637
5638  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5639                                                              X86::ECX,
5640                            Count, InFlag);
5641  InFlag = Chain.getValue(1);
5642  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5643                                                              X86::EDI,
5644                            Dst, InFlag);
5645  InFlag = Chain.getValue(1);
5646
5647  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5648  SmallVector<SDValue, 8> Ops;
5649  Ops.push_back(Chain);
5650  Ops.push_back(DAG.getValueType(AVT));
5651  Ops.push_back(InFlag);
5652  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5653
5654  if (TwoRepStos) {
5655    InFlag = Chain.getValue(1);
5656    Count  = Size;
5657    MVT CVT = Count.getValueType();
5658    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5659                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5660    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5661                                                             X86::ECX,
5662                              Left, InFlag);
5663    InFlag = Chain.getValue(1);
5664    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5665    Ops.clear();
5666    Ops.push_back(Chain);
5667    Ops.push_back(DAG.getValueType(MVT::i8));
5668    Ops.push_back(InFlag);
5669    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5670  } else if (BytesLeft) {
5671    // Handle the last 1 - 7 bytes.
5672    unsigned Offset = SizeVal - BytesLeft;
5673    MVT AddrVT = Dst.getValueType();
5674    MVT SizeVT = Size.getValueType();
5675
5676    Chain = DAG.getMemset(Chain, dl,
5677                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5678                                      DAG.getConstant(Offset, AddrVT)),
5679                          Src,
5680                          DAG.getConstant(BytesLeft, SizeVT),
5681                          Align, DstSV, DstSVOff + Offset);
5682  }
5683
5684  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5685  return Chain;
5686}
5687
5688SDValue
5689X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5690                                      SDValue Chain, SDValue Dst, SDValue Src,
5691                                      SDValue Size, unsigned Align,
5692                                      bool AlwaysInline,
5693                                      const Value *DstSV, uint64_t DstSVOff,
5694                                      const Value *SrcSV, uint64_t SrcSVOff) {
5695  // This requires the copy size to be a constant, preferrably
5696  // within a subtarget-specific limit.
5697  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5698  if (!ConstantSize)
5699    return SDValue();
5700  uint64_t SizeVal = ConstantSize->getZExtValue();
5701  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5702    return SDValue();
5703
5704  /// If not DWORD aligned, call the library.
5705  if ((Align & 3) != 0)
5706    return SDValue();
5707
5708  // DWORD aligned
5709  MVT AVT = MVT::i32;
5710  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5711    AVT = MVT::i64;
5712
5713  unsigned UBytes = AVT.getSizeInBits() / 8;
5714  unsigned CountVal = SizeVal / UBytes;
5715  SDValue Count = DAG.getIntPtrConstant(CountVal);
5716  unsigned BytesLeft = SizeVal % UBytes;
5717
5718  SDValue InFlag(0, 0);
5719  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5720                                                              X86::ECX,
5721                            Count, InFlag);
5722  InFlag = Chain.getValue(1);
5723  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5724                                                             X86::EDI,
5725                            Dst, InFlag);
5726  InFlag = Chain.getValue(1);
5727  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
5728                                                              X86::ESI,
5729                            Src, InFlag);
5730  InFlag = Chain.getValue(1);
5731
5732  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5733  SmallVector<SDValue, 8> Ops;
5734  Ops.push_back(Chain);
5735  Ops.push_back(DAG.getValueType(AVT));
5736  Ops.push_back(InFlag);
5737  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
5738
5739  SmallVector<SDValue, 4> Results;
5740  Results.push_back(RepMovs);
5741  if (BytesLeft) {
5742    // Handle the last 1 - 7 bytes.
5743    unsigned Offset = SizeVal - BytesLeft;
5744    MVT DstVT = Dst.getValueType();
5745    MVT SrcVT = Src.getValueType();
5746    MVT SizeVT = Size.getValueType();
5747    Results.push_back(DAG.getMemcpy(Chain, dl,
5748                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
5749                                                DAG.getConstant(Offset, DstVT)),
5750                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
5751                                                DAG.getConstant(Offset, SrcVT)),
5752                                    DAG.getConstant(BytesLeft, SizeVT),
5753                                    Align, AlwaysInline,
5754                                    DstSV, DstSVOff + Offset,
5755                                    SrcSV, SrcSVOff + Offset));
5756  }
5757
5758  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5759                     &Results[0], Results.size());
5760}
5761
5762SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5763  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5764  DebugLoc dl = Op.getDebugLoc();
5765
5766  if (!Subtarget->is64Bit()) {
5767    // vastart just stores the address of the VarArgsFrameIndex slot into the
5768    // memory location argument.
5769    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5770    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
5771  }
5772
5773  // __va_list_tag:
5774  //   gp_offset         (0 - 6 * 8)
5775  //   fp_offset         (48 - 48 + 8 * 16)
5776  //   overflow_arg_area (point to parameters coming in memory).
5777  //   reg_save_area
5778  SmallVector<SDValue, 8> MemOps;
5779  SDValue FIN = Op.getOperand(1);
5780  // Store gp_offset
5781  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
5782                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5783                                 FIN, SV, 0);
5784  MemOps.push_back(Store);
5785
5786  // Store fp_offset
5787  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5788                    FIN, DAG.getIntPtrConstant(4));
5789  Store = DAG.getStore(Op.getOperand(0), dl,
5790                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5791                       FIN, SV, 0);
5792  MemOps.push_back(Store);
5793
5794  // Store ptr to overflow_arg_area
5795  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5796                    FIN, DAG.getIntPtrConstant(4));
5797  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5798  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
5799  MemOps.push_back(Store);
5800
5801  // Store ptr to reg_save_area.
5802  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5803                    FIN, DAG.getIntPtrConstant(8));
5804  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5805  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
5806  MemOps.push_back(Store);
5807  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5808                     &MemOps[0], MemOps.size());
5809}
5810
5811SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5812  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5813  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5814  SDValue Chain = Op.getOperand(0);
5815  SDValue SrcPtr = Op.getOperand(1);
5816  SDValue SrcSV = Op.getOperand(2);
5817
5818  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5819  abort();
5820  return SDValue();
5821}
5822
5823SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5824  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5825  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5826  SDValue Chain = Op.getOperand(0);
5827  SDValue DstPtr = Op.getOperand(1);
5828  SDValue SrcPtr = Op.getOperand(2);
5829  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5830  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5831  DebugLoc dl = Op.getDebugLoc();
5832
5833  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
5834                       DAG.getIntPtrConstant(24), 8, false,
5835                       DstSV, 0, SrcSV, 0);
5836}
5837
5838SDValue
5839X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5840  DebugLoc dl = Op.getDebugLoc();
5841  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5842  switch (IntNo) {
5843  default: return SDValue();    // Don't custom lower most intrinsics.
5844  // Comparison intrinsics.
5845  case Intrinsic::x86_sse_comieq_ss:
5846  case Intrinsic::x86_sse_comilt_ss:
5847  case Intrinsic::x86_sse_comile_ss:
5848  case Intrinsic::x86_sse_comigt_ss:
5849  case Intrinsic::x86_sse_comige_ss:
5850  case Intrinsic::x86_sse_comineq_ss:
5851  case Intrinsic::x86_sse_ucomieq_ss:
5852  case Intrinsic::x86_sse_ucomilt_ss:
5853  case Intrinsic::x86_sse_ucomile_ss:
5854  case Intrinsic::x86_sse_ucomigt_ss:
5855  case Intrinsic::x86_sse_ucomige_ss:
5856  case Intrinsic::x86_sse_ucomineq_ss:
5857  case Intrinsic::x86_sse2_comieq_sd:
5858  case Intrinsic::x86_sse2_comilt_sd:
5859  case Intrinsic::x86_sse2_comile_sd:
5860  case Intrinsic::x86_sse2_comigt_sd:
5861  case Intrinsic::x86_sse2_comige_sd:
5862  case Intrinsic::x86_sse2_comineq_sd:
5863  case Intrinsic::x86_sse2_ucomieq_sd:
5864  case Intrinsic::x86_sse2_ucomilt_sd:
5865  case Intrinsic::x86_sse2_ucomile_sd:
5866  case Intrinsic::x86_sse2_ucomigt_sd:
5867  case Intrinsic::x86_sse2_ucomige_sd:
5868  case Intrinsic::x86_sse2_ucomineq_sd: {
5869    unsigned Opc = 0;
5870    ISD::CondCode CC = ISD::SETCC_INVALID;
5871    switch (IntNo) {
5872    default: break;
5873    case Intrinsic::x86_sse_comieq_ss:
5874    case Intrinsic::x86_sse2_comieq_sd:
5875      Opc = X86ISD::COMI;
5876      CC = ISD::SETEQ;
5877      break;
5878    case Intrinsic::x86_sse_comilt_ss:
5879    case Intrinsic::x86_sse2_comilt_sd:
5880      Opc = X86ISD::COMI;
5881      CC = ISD::SETLT;
5882      break;
5883    case Intrinsic::x86_sse_comile_ss:
5884    case Intrinsic::x86_sse2_comile_sd:
5885      Opc = X86ISD::COMI;
5886      CC = ISD::SETLE;
5887      break;
5888    case Intrinsic::x86_sse_comigt_ss:
5889    case Intrinsic::x86_sse2_comigt_sd:
5890      Opc = X86ISD::COMI;
5891      CC = ISD::SETGT;
5892      break;
5893    case Intrinsic::x86_sse_comige_ss:
5894    case Intrinsic::x86_sse2_comige_sd:
5895      Opc = X86ISD::COMI;
5896      CC = ISD::SETGE;
5897      break;
5898    case Intrinsic::x86_sse_comineq_ss:
5899    case Intrinsic::x86_sse2_comineq_sd:
5900      Opc = X86ISD::COMI;
5901      CC = ISD::SETNE;
5902      break;
5903    case Intrinsic::x86_sse_ucomieq_ss:
5904    case Intrinsic::x86_sse2_ucomieq_sd:
5905      Opc = X86ISD::UCOMI;
5906      CC = ISD::SETEQ;
5907      break;
5908    case Intrinsic::x86_sse_ucomilt_ss:
5909    case Intrinsic::x86_sse2_ucomilt_sd:
5910      Opc = X86ISD::UCOMI;
5911      CC = ISD::SETLT;
5912      break;
5913    case Intrinsic::x86_sse_ucomile_ss:
5914    case Intrinsic::x86_sse2_ucomile_sd:
5915      Opc = X86ISD::UCOMI;
5916      CC = ISD::SETLE;
5917      break;
5918    case Intrinsic::x86_sse_ucomigt_ss:
5919    case Intrinsic::x86_sse2_ucomigt_sd:
5920      Opc = X86ISD::UCOMI;
5921      CC = ISD::SETGT;
5922      break;
5923    case Intrinsic::x86_sse_ucomige_ss:
5924    case Intrinsic::x86_sse2_ucomige_sd:
5925      Opc = X86ISD::UCOMI;
5926      CC = ISD::SETGE;
5927      break;
5928    case Intrinsic::x86_sse_ucomineq_ss:
5929    case Intrinsic::x86_sse2_ucomineq_sd:
5930      Opc = X86ISD::UCOMI;
5931      CC = ISD::SETNE;
5932      break;
5933    }
5934
5935    SDValue LHS = Op.getOperand(1);
5936    SDValue RHS = Op.getOperand(2);
5937    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
5938    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
5939    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5940                                DAG.getConstant(X86CC, MVT::i8), Cond);
5941    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
5942  }
5943
5944  // Fix vector shift instructions where the last operand is a non-immediate
5945  // i32 value.
5946  case Intrinsic::x86_sse2_pslli_w:
5947  case Intrinsic::x86_sse2_pslli_d:
5948  case Intrinsic::x86_sse2_pslli_q:
5949  case Intrinsic::x86_sse2_psrli_w:
5950  case Intrinsic::x86_sse2_psrli_d:
5951  case Intrinsic::x86_sse2_psrli_q:
5952  case Intrinsic::x86_sse2_psrai_w:
5953  case Intrinsic::x86_sse2_psrai_d:
5954  case Intrinsic::x86_mmx_pslli_w:
5955  case Intrinsic::x86_mmx_pslli_d:
5956  case Intrinsic::x86_mmx_pslli_q:
5957  case Intrinsic::x86_mmx_psrli_w:
5958  case Intrinsic::x86_mmx_psrli_d:
5959  case Intrinsic::x86_mmx_psrli_q:
5960  case Intrinsic::x86_mmx_psrai_w:
5961  case Intrinsic::x86_mmx_psrai_d: {
5962    SDValue ShAmt = Op.getOperand(2);
5963    if (isa<ConstantSDNode>(ShAmt))
5964      return SDValue();
5965
5966    unsigned NewIntNo = 0;
5967    MVT ShAmtVT = MVT::v4i32;
5968    switch (IntNo) {
5969    case Intrinsic::x86_sse2_pslli_w:
5970      NewIntNo = Intrinsic::x86_sse2_psll_w;
5971      break;
5972    case Intrinsic::x86_sse2_pslli_d:
5973      NewIntNo = Intrinsic::x86_sse2_psll_d;
5974      break;
5975    case Intrinsic::x86_sse2_pslli_q:
5976      NewIntNo = Intrinsic::x86_sse2_psll_q;
5977      break;
5978    case Intrinsic::x86_sse2_psrli_w:
5979      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5980      break;
5981    case Intrinsic::x86_sse2_psrli_d:
5982      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5983      break;
5984    case Intrinsic::x86_sse2_psrli_q:
5985      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5986      break;
5987    case Intrinsic::x86_sse2_psrai_w:
5988      NewIntNo = Intrinsic::x86_sse2_psra_w;
5989      break;
5990    case Intrinsic::x86_sse2_psrai_d:
5991      NewIntNo = Intrinsic::x86_sse2_psra_d;
5992      break;
5993    default: {
5994      ShAmtVT = MVT::v2i32;
5995      switch (IntNo) {
5996      case Intrinsic::x86_mmx_pslli_w:
5997        NewIntNo = Intrinsic::x86_mmx_psll_w;
5998        break;
5999      case Intrinsic::x86_mmx_pslli_d:
6000        NewIntNo = Intrinsic::x86_mmx_psll_d;
6001        break;
6002      case Intrinsic::x86_mmx_pslli_q:
6003        NewIntNo = Intrinsic::x86_mmx_psll_q;
6004        break;
6005      case Intrinsic::x86_mmx_psrli_w:
6006        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6007        break;
6008      case Intrinsic::x86_mmx_psrli_d:
6009        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6010        break;
6011      case Intrinsic::x86_mmx_psrli_q:
6012        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6013        break;
6014      case Intrinsic::x86_mmx_psrai_w:
6015        NewIntNo = Intrinsic::x86_mmx_psra_w;
6016        break;
6017      case Intrinsic::x86_mmx_psrai_d:
6018        NewIntNo = Intrinsic::x86_mmx_psra_d;
6019        break;
6020      default: abort();  // Can't reach here.
6021      }
6022      break;
6023    }
6024    }
6025    MVT VT = Op.getValueType();
6026    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6027                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6028    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6029                       DAG.getConstant(NewIntNo, MVT::i32),
6030                       Op.getOperand(1), ShAmt);
6031  }
6032  }
6033}
6034
6035SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6036  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6037  DebugLoc dl = Op.getDebugLoc();
6038
6039  if (Depth > 0) {
6040    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6041    SDValue Offset =
6042      DAG.getConstant(TD->getPointerSize(),
6043                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6044    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6045                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6046                                   FrameAddr, Offset),
6047                       NULL, 0);
6048  }
6049
6050  // Just load the return address.
6051  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6052  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6053                     RetAddrFI, NULL, 0);
6054}
6055
6056SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6057  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6058  MFI->setFrameAddressIsTaken(true);
6059  MVT VT = Op.getValueType();
6060  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6061  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6062  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6063  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6064  while (Depth--)
6065    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6066  return FrameAddr;
6067}
6068
6069SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6070                                                     SelectionDAG &DAG) {
6071  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6072}
6073
6074SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6075{
6076  MachineFunction &MF = DAG.getMachineFunction();
6077  SDValue Chain     = Op.getOperand(0);
6078  SDValue Offset    = Op.getOperand(1);
6079  SDValue Handler   = Op.getOperand(2);
6080  DebugLoc dl       = Op.getDebugLoc();
6081
6082  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6083                                  getPointerTy());
6084  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6085
6086  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6087                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6088  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6089  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6090  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6091  MF.getRegInfo().addLiveOut(StoreAddrReg);
6092
6093  return DAG.getNode(X86ISD::EH_RETURN, dl,
6094                     MVT::Other,
6095                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6096}
6097
6098SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6099                                             SelectionDAG &DAG) {
6100  SDValue Root = Op.getOperand(0);
6101  SDValue Trmp = Op.getOperand(1); // trampoline
6102  SDValue FPtr = Op.getOperand(2); // nested function
6103  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6104  DebugLoc dl  = Op.getDebugLoc();
6105
6106  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6107
6108  const X86InstrInfo *TII =
6109    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6110
6111  if (Subtarget->is64Bit()) {
6112    SDValue OutChains[6];
6113
6114    // Large code-model.
6115
6116    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6117    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6118
6119    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6120    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6121
6122    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6123
6124    // Load the pointer to the nested function into R11.
6125    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6126    SDValue Addr = Trmp;
6127    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6128                                Addr, TrmpAddr, 0);
6129
6130    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6131                       DAG.getConstant(2, MVT::i64));
6132    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6133
6134    // Load the 'nest' parameter value into R10.
6135    // R10 is specified in X86CallingConv.td
6136    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6137    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6138                       DAG.getConstant(10, MVT::i64));
6139    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6140                                Addr, TrmpAddr, 10);
6141
6142    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6143                       DAG.getConstant(12, MVT::i64));
6144    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6145
6146    // Jump to the nested function.
6147    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6148    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6149                       DAG.getConstant(20, MVT::i64));
6150    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6151                                Addr, TrmpAddr, 20);
6152
6153    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6154    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6155                       DAG.getConstant(22, MVT::i64));
6156    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6157                                TrmpAddr, 22);
6158
6159    SDValue Ops[] =
6160      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6161    return DAG.getMergeValues(Ops, 2, dl);
6162  } else {
6163    const Function *Func =
6164      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6165    unsigned CC = Func->getCallingConv();
6166    unsigned NestReg;
6167
6168    switch (CC) {
6169    default:
6170      assert(0 && "Unsupported calling convention");
6171    case CallingConv::C:
6172    case CallingConv::X86_StdCall: {
6173      // Pass 'nest' parameter in ECX.
6174      // Must be kept in sync with X86CallingConv.td
6175      NestReg = X86::ECX;
6176
6177      // Check that ECX wasn't needed by an 'inreg' parameter.
6178      const FunctionType *FTy = Func->getFunctionType();
6179      const AttrListPtr &Attrs = Func->getAttributes();
6180
6181      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6182        unsigned InRegCount = 0;
6183        unsigned Idx = 1;
6184
6185        for (FunctionType::param_iterator I = FTy->param_begin(),
6186             E = FTy->param_end(); I != E; ++I, ++Idx)
6187          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6188            // FIXME: should only count parameters that are lowered to integers.
6189            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6190
6191        if (InRegCount > 2) {
6192          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6193          abort();
6194        }
6195      }
6196      break;
6197    }
6198    case CallingConv::X86_FastCall:
6199    case CallingConv::Fast:
6200      // Pass 'nest' parameter in EAX.
6201      // Must be kept in sync with X86CallingConv.td
6202      NestReg = X86::EAX;
6203      break;
6204    }
6205
6206    SDValue OutChains[4];
6207    SDValue Addr, Disp;
6208
6209    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6210                       DAG.getConstant(10, MVT::i32));
6211    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6212
6213    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6214    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6215    OutChains[0] = DAG.getStore(Root, dl,
6216                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6217                                Trmp, TrmpAddr, 0);
6218
6219    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6220                       DAG.getConstant(1, MVT::i32));
6221    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6222
6223    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6224    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6225                       DAG.getConstant(5, MVT::i32));
6226    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6227                                TrmpAddr, 5, false, 1);
6228
6229    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6230                       DAG.getConstant(6, MVT::i32));
6231    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6232
6233    SDValue Ops[] =
6234      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6235    return DAG.getMergeValues(Ops, 2, dl);
6236  }
6237}
6238
6239SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6240  /*
6241   The rounding mode is in bits 11:10 of FPSR, and has the following
6242   settings:
6243     00 Round to nearest
6244     01 Round to -inf
6245     10 Round to +inf
6246     11 Round to 0
6247
6248  FLT_ROUNDS, on the other hand, expects the following:
6249    -1 Undefined
6250     0 Round to 0
6251     1 Round to nearest
6252     2 Round to +inf
6253     3 Round to -inf
6254
6255  To perform the conversion, we do:
6256    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6257  */
6258
6259  MachineFunction &MF = DAG.getMachineFunction();
6260  const TargetMachine &TM = MF.getTarget();
6261  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6262  unsigned StackAlignment = TFI.getStackAlignment();
6263  MVT VT = Op.getValueType();
6264  DebugLoc dl = Op.getDebugLoc();
6265
6266  // Save FP Control Word to stack slot
6267  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6268  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6269
6270  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6271                              DAG.getEntryNode(), StackSlot);
6272
6273  // Load FP Control Word from stack slot
6274  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6275
6276  // Transform as necessary
6277  SDValue CWD1 =
6278    DAG.getNode(ISD::SRL, dl, MVT::i16,
6279                DAG.getNode(ISD::AND, dl, MVT::i16,
6280                            CWD, DAG.getConstant(0x800, MVT::i16)),
6281                DAG.getConstant(11, MVT::i8));
6282  SDValue CWD2 =
6283    DAG.getNode(ISD::SRL, dl, MVT::i16,
6284                DAG.getNode(ISD::AND, dl, MVT::i16,
6285                            CWD, DAG.getConstant(0x400, MVT::i16)),
6286                DAG.getConstant(9, MVT::i8));
6287
6288  SDValue RetVal =
6289    DAG.getNode(ISD::AND, dl, MVT::i16,
6290                DAG.getNode(ISD::ADD, dl, MVT::i16,
6291                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6292                            DAG.getConstant(1, MVT::i16)),
6293                DAG.getConstant(3, MVT::i16));
6294
6295
6296  return DAG.getNode((VT.getSizeInBits() < 16 ?
6297                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6298}
6299
6300SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6301  MVT VT = Op.getValueType();
6302  MVT OpVT = VT;
6303  unsigned NumBits = VT.getSizeInBits();
6304  DebugLoc dl = Op.getDebugLoc();
6305
6306  Op = Op.getOperand(0);
6307  if (VT == MVT::i8) {
6308    // Zero extend to i32 since there is not an i8 bsr.
6309    OpVT = MVT::i32;
6310    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6311  }
6312
6313  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6314  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6315  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6316
6317  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6318  SmallVector<SDValue, 4> Ops;
6319  Ops.push_back(Op);
6320  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6321  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6322  Ops.push_back(Op.getValue(1));
6323  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6324
6325  // Finally xor with NumBits-1.
6326  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6327
6328  if (VT == MVT::i8)
6329    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6330  return Op;
6331}
6332
6333SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6334  MVT VT = Op.getValueType();
6335  MVT OpVT = VT;
6336  unsigned NumBits = VT.getSizeInBits();
6337  DebugLoc dl = Op.getDebugLoc();
6338
6339  Op = Op.getOperand(0);
6340  if (VT == MVT::i8) {
6341    OpVT = MVT::i32;
6342    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6343  }
6344
6345  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6346  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6347  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6348
6349  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6350  SmallVector<SDValue, 4> Ops;
6351  Ops.push_back(Op);
6352  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6353  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6354  Ops.push_back(Op.getValue(1));
6355  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6356
6357  if (VT == MVT::i8)
6358    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6359  return Op;
6360}
6361
6362SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6363  MVT VT = Op.getValueType();
6364  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6365  DebugLoc dl = Op.getDebugLoc();
6366
6367  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6368  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6369  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6370  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6371  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6372  //
6373  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6374  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6375  //  return AloBlo + AloBhi + AhiBlo;
6376
6377  SDValue A = Op.getOperand(0);
6378  SDValue B = Op.getOperand(1);
6379
6380  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6381                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6382                       A, DAG.getConstant(32, MVT::i32));
6383  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6384                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6385                       B, DAG.getConstant(32, MVT::i32));
6386  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6387                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6388                       A, B);
6389  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6390                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6391                       A, Bhi);
6392  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6393                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6394                       Ahi, B);
6395  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6396                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6397                       AloBhi, DAG.getConstant(32, MVT::i32));
6398  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6399                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6400                       AhiBlo, DAG.getConstant(32, MVT::i32));
6401  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6402  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6403  return Res;
6404}
6405
6406
6407SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6408  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6409  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6410  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6411  // has only one use.
6412  SDNode *N = Op.getNode();
6413  SDValue LHS = N->getOperand(0);
6414  SDValue RHS = N->getOperand(1);
6415  unsigned BaseOp = 0;
6416  unsigned Cond = 0;
6417  DebugLoc dl = Op.getDebugLoc();
6418
6419  switch (Op.getOpcode()) {
6420  default: assert(0 && "Unknown ovf instruction!");
6421  case ISD::SADDO:
6422    // A subtract of one will be selected as a INC. Note that INC doesn't
6423    // set CF, so we can't do this for UADDO.
6424    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6425      if (C->getAPIntValue() == 1) {
6426        BaseOp = X86ISD::INC;
6427        Cond = X86::COND_O;
6428        break;
6429      }
6430    BaseOp = X86ISD::ADD;
6431    Cond = X86::COND_O;
6432    break;
6433  case ISD::UADDO:
6434    BaseOp = X86ISD::ADD;
6435    Cond = X86::COND_B;
6436    break;
6437  case ISD::SSUBO:
6438    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6439    // set CF, so we can't do this for USUBO.
6440    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6441      if (C->getAPIntValue() == 1) {
6442        BaseOp = X86ISD::DEC;
6443        Cond = X86::COND_O;
6444        break;
6445      }
6446    BaseOp = X86ISD::SUB;
6447    Cond = X86::COND_O;
6448    break;
6449  case ISD::USUBO:
6450    BaseOp = X86ISD::SUB;
6451    Cond = X86::COND_B;
6452    break;
6453  case ISD::SMULO:
6454    BaseOp = X86ISD::SMUL;
6455    Cond = X86::COND_O;
6456    break;
6457  case ISD::UMULO:
6458    BaseOp = X86ISD::UMUL;
6459    Cond = X86::COND_B;
6460    break;
6461  }
6462
6463  // Also sets EFLAGS.
6464  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6465  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6466
6467  SDValue SetCC =
6468    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6469                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6470
6471  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6472  return Sum;
6473}
6474
6475SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6476  MVT T = Op.getValueType();
6477  DebugLoc dl = Op.getDebugLoc();
6478  unsigned Reg = 0;
6479  unsigned size = 0;
6480  switch(T.getSimpleVT()) {
6481  default:
6482    assert(false && "Invalid value type!");
6483  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6484  case MVT::i16: Reg = X86::AX;  size = 2; break;
6485  case MVT::i32: Reg = X86::EAX; size = 4; break;
6486  case MVT::i64:
6487    assert(Subtarget->is64Bit() && "Node not type legal!");
6488    Reg = X86::RAX; size = 8;
6489    break;
6490  }
6491  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6492                                    Op.getOperand(2), SDValue());
6493  SDValue Ops[] = { cpIn.getValue(0),
6494                    Op.getOperand(1),
6495                    Op.getOperand(3),
6496                    DAG.getTargetConstant(size, MVT::i8),
6497                    cpIn.getValue(1) };
6498  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6499  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6500  SDValue cpOut =
6501    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6502  return cpOut;
6503}
6504
6505SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6506                                                 SelectionDAG &DAG) {
6507  assert(Subtarget->is64Bit() && "Result not type legalized?");
6508  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6509  SDValue TheChain = Op.getOperand(0);
6510  DebugLoc dl = Op.getDebugLoc();
6511  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6512  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6513  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6514                                   rax.getValue(2));
6515  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6516                            DAG.getConstant(32, MVT::i8));
6517  SDValue Ops[] = {
6518    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6519    rdx.getValue(1)
6520  };
6521  return DAG.getMergeValues(Ops, 2, dl);
6522}
6523
6524SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6525  SDNode *Node = Op.getNode();
6526  DebugLoc dl = Node->getDebugLoc();
6527  MVT T = Node->getValueType(0);
6528  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6529                              DAG.getConstant(0, T), Node->getOperand(2));
6530  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6531                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6532                       Node->getOperand(0),
6533                       Node->getOperand(1), negOp,
6534                       cast<AtomicSDNode>(Node)->getSrcValue(),
6535                       cast<AtomicSDNode>(Node)->getAlignment());
6536}
6537
6538/// LowerOperation - Provide custom lowering hooks for some operations.
6539///
6540SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6541  switch (Op.getOpcode()) {
6542  default: assert(0 && "Should not custom lower this!");
6543  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6544  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6545  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6546  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6547  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6548  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6549  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6550  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6551  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6552  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6553  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6554  case ISD::SHL_PARTS:
6555  case ISD::SRA_PARTS:
6556  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6557  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6558  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6559  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6560  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
6561  case ISD::FABS:               return LowerFABS(Op, DAG);
6562  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6563  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6564  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6565  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6566  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6567  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6568  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6569  case ISD::CALL:               return LowerCALL(Op, DAG);
6570  case ISD::RET:                return LowerRET(Op, DAG);
6571  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6572  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6573  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6574  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6575  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6576  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6577  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6578  case ISD::FRAME_TO_ARGS_OFFSET:
6579                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6580  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6581  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6582  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6583  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6584  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6585  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6586  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6587  case ISD::SADDO:
6588  case ISD::UADDO:
6589  case ISD::SSUBO:
6590  case ISD::USUBO:
6591  case ISD::SMULO:
6592  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6593  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6594  }
6595}
6596
6597void X86TargetLowering::
6598ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6599                        SelectionDAG &DAG, unsigned NewOp) {
6600  MVT T = Node->getValueType(0);
6601  DebugLoc dl = Node->getDebugLoc();
6602  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6603
6604  SDValue Chain = Node->getOperand(0);
6605  SDValue In1 = Node->getOperand(1);
6606  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6607                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6608  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6609                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6610  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6611  // have a MemOperand.  Pass the info through as a normal operand.
6612  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6613  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6614  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6615  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6616  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6617  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6618  Results.push_back(Result.getValue(2));
6619}
6620
6621/// ReplaceNodeResults - Replace a node with an illegal result type
6622/// with a new node built out of custom code.
6623void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6624                                           SmallVectorImpl<SDValue>&Results,
6625                                           SelectionDAG &DAG) {
6626  DebugLoc dl = N->getDebugLoc();
6627  switch (N->getOpcode()) {
6628  default:
6629    assert(false && "Do not know how to custom type legalize this operation!");
6630    return;
6631  case ISD::FP_TO_SINT: {
6632    std::pair<SDValue,SDValue> Vals =
6633        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6634    SDValue FIST = Vals.first, StackSlot = Vals.second;
6635    if (FIST.getNode() != 0) {
6636      MVT VT = N->getValueType(0);
6637      // Return a load from the stack slot.
6638      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6639    }
6640    return;
6641  }
6642  case ISD::READCYCLECOUNTER: {
6643    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6644    SDValue TheChain = N->getOperand(0);
6645    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6646    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6647                                     rd.getValue(1));
6648    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6649                                     eax.getValue(2));
6650    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6651    SDValue Ops[] = { eax, edx };
6652    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6653    Results.push_back(edx.getValue(1));
6654    return;
6655  }
6656  case ISD::ATOMIC_CMP_SWAP: {
6657    MVT T = N->getValueType(0);
6658    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6659    SDValue cpInL, cpInH;
6660    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6661                        DAG.getConstant(0, MVT::i32));
6662    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6663                        DAG.getConstant(1, MVT::i32));
6664    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6665    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6666                             cpInL.getValue(1));
6667    SDValue swapInL, swapInH;
6668    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6669                          DAG.getConstant(0, MVT::i32));
6670    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6671                          DAG.getConstant(1, MVT::i32));
6672    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6673                               cpInH.getValue(1));
6674    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6675                               swapInL.getValue(1));
6676    SDValue Ops[] = { swapInH.getValue(0),
6677                      N->getOperand(1),
6678                      swapInH.getValue(1) };
6679    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6680    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6681    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6682                                        MVT::i32, Result.getValue(1));
6683    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6684                                        MVT::i32, cpOutL.getValue(2));
6685    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6686    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6687    Results.push_back(cpOutH.getValue(1));
6688    return;
6689  }
6690  case ISD::ATOMIC_LOAD_ADD:
6691    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6692    return;
6693  case ISD::ATOMIC_LOAD_AND:
6694    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6695    return;
6696  case ISD::ATOMIC_LOAD_NAND:
6697    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6698    return;
6699  case ISD::ATOMIC_LOAD_OR:
6700    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6701    return;
6702  case ISD::ATOMIC_LOAD_SUB:
6703    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6704    return;
6705  case ISD::ATOMIC_LOAD_XOR:
6706    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6707    return;
6708  case ISD::ATOMIC_SWAP:
6709    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6710    return;
6711  }
6712}
6713
6714const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6715  switch (Opcode) {
6716  default: return NULL;
6717  case X86ISD::BSF:                return "X86ISD::BSF";
6718  case X86ISD::BSR:                return "X86ISD::BSR";
6719  case X86ISD::SHLD:               return "X86ISD::SHLD";
6720  case X86ISD::SHRD:               return "X86ISD::SHRD";
6721  case X86ISD::FAND:               return "X86ISD::FAND";
6722  case X86ISD::FOR:                return "X86ISD::FOR";
6723  case X86ISD::FXOR:               return "X86ISD::FXOR";
6724  case X86ISD::FSRL:               return "X86ISD::FSRL";
6725  case X86ISD::FILD:               return "X86ISD::FILD";
6726  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6727  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6728  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6729  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6730  case X86ISD::FLD:                return "X86ISD::FLD";
6731  case X86ISD::FST:                return "X86ISD::FST";
6732  case X86ISD::CALL:               return "X86ISD::CALL";
6733  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6734  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6735  case X86ISD::BT:                 return "X86ISD::BT";
6736  case X86ISD::CMP:                return "X86ISD::CMP";
6737  case X86ISD::COMI:               return "X86ISD::COMI";
6738  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6739  case X86ISD::SETCC:              return "X86ISD::SETCC";
6740  case X86ISD::CMOV:               return "X86ISD::CMOV";
6741  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6742  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6743  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6744  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6745  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6746  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6747  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6748  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6749  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6750  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6751  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6752  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
6753  case X86ISD::FMAX:               return "X86ISD::FMAX";
6754  case X86ISD::FMIN:               return "X86ISD::FMIN";
6755  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6756  case X86ISD::FRCP:               return "X86ISD::FRCP";
6757  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6758  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
6759  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6760  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6761  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6762  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6763  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6764  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6765  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6766  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6767  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6768  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6769  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6770  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6771  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6772  case X86ISD::VSHL:               return "X86ISD::VSHL";
6773  case X86ISD::VSRL:               return "X86ISD::VSRL";
6774  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6775  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6776  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6777  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6778  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6779  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6780  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6781  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6782  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6783  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6784  case X86ISD::ADD:                return "X86ISD::ADD";
6785  case X86ISD::SUB:                return "X86ISD::SUB";
6786  case X86ISD::SMUL:               return "X86ISD::SMUL";
6787  case X86ISD::UMUL:               return "X86ISD::UMUL";
6788  case X86ISD::INC:                return "X86ISD::INC";
6789  case X86ISD::DEC:                return "X86ISD::DEC";
6790  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
6791  }
6792}
6793
6794// isLegalAddressingMode - Return true if the addressing mode represented
6795// by AM is legal for this target, for a load/store of the specified type.
6796bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6797                                              const Type *Ty) const {
6798  // X86 supports extremely general addressing modes.
6799
6800  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6801  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6802    return false;
6803
6804  if (AM.BaseGV) {
6805    // We can only fold this if we don't need an extra load.
6806    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6807      return false;
6808    // If BaseGV requires a register, we cannot also have a BaseReg.
6809    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
6810        AM.HasBaseReg)
6811      return false;
6812
6813    // X86-64 only supports addr of globals in small code model.
6814    if (Subtarget->is64Bit()) {
6815      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6816        return false;
6817      // If lower 4G is not available, then we must use rip-relative addressing.
6818      if (AM.BaseOffs || AM.Scale > 1)
6819        return false;
6820    }
6821  }
6822
6823  switch (AM.Scale) {
6824  case 0:
6825  case 1:
6826  case 2:
6827  case 4:
6828  case 8:
6829    // These scales always work.
6830    break;
6831  case 3:
6832  case 5:
6833  case 9:
6834    // These scales are formed with basereg+scalereg.  Only accept if there is
6835    // no basereg yet.
6836    if (AM.HasBaseReg)
6837      return false;
6838    break;
6839  default:  // Other stuff never works.
6840    return false;
6841  }
6842
6843  return true;
6844}
6845
6846
6847bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6848  if (!Ty1->isInteger() || !Ty2->isInteger())
6849    return false;
6850  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6851  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6852  if (NumBits1 <= NumBits2)
6853    return false;
6854  return Subtarget->is64Bit() || NumBits1 < 64;
6855}
6856
6857bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6858  if (!VT1.isInteger() || !VT2.isInteger())
6859    return false;
6860  unsigned NumBits1 = VT1.getSizeInBits();
6861  unsigned NumBits2 = VT2.getSizeInBits();
6862  if (NumBits1 <= NumBits2)
6863    return false;
6864  return Subtarget->is64Bit() || NumBits1 < 64;
6865}
6866
6867bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
6868  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6869  return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
6870}
6871
6872bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const {
6873  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6874  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
6875}
6876
6877bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const {
6878  // i16 instructions are longer (0x66 prefix) and potentially slower.
6879  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
6880}
6881
6882/// isShuffleMaskLegal - Targets can use this to indicate that they only
6883/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6884/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6885/// are assumed to be legal.
6886bool
6887X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6888                                      MVT VT) const {
6889  // Only do shuffles on 128-bit vector types for now.
6890  if (VT.getSizeInBits() == 64)
6891    return false;
6892
6893  // FIXME: pshufb, blends, palignr, shifts.
6894  return (VT.getVectorNumElements() == 2 ||
6895          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6896          isMOVLMask(M, VT) ||
6897          isSHUFPMask(M, VT) ||
6898          isPSHUFDMask(M, VT) ||
6899          isPSHUFHWMask(M, VT) ||
6900          isPSHUFLWMask(M, VT) ||
6901          isUNPCKLMask(M, VT) ||
6902          isUNPCKHMask(M, VT) ||
6903          isUNPCKL_v_undef_Mask(M, VT) ||
6904          isUNPCKH_v_undef_Mask(M, VT));
6905}
6906
6907bool
6908X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
6909                                          MVT VT) const {
6910  unsigned NumElts = VT.getVectorNumElements();
6911  // FIXME: This collection of masks seems suspect.
6912  if (NumElts == 2)
6913    return true;
6914  if (NumElts == 4 && VT.getSizeInBits() == 128) {
6915    return (isMOVLMask(Mask, VT)  ||
6916            isCommutedMOVLMask(Mask, VT, true) ||
6917            isSHUFPMask(Mask, VT) ||
6918            isCommutedSHUFPMask(Mask, VT));
6919  }
6920  return false;
6921}
6922
6923//===----------------------------------------------------------------------===//
6924//                           X86 Scheduler Hooks
6925//===----------------------------------------------------------------------===//
6926
6927// private utility function
6928MachineBasicBlock *
6929X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6930                                                       MachineBasicBlock *MBB,
6931                                                       unsigned regOpc,
6932                                                       unsigned immOpc,
6933                                                       unsigned LoadOpc,
6934                                                       unsigned CXchgOpc,
6935                                                       unsigned copyOpc,
6936                                                       unsigned notOpc,
6937                                                       unsigned EAXreg,
6938                                                       TargetRegisterClass *RC,
6939                                                       bool invSrc) const {
6940  // For the atomic bitwise operator, we generate
6941  //   thisMBB:
6942  //   newMBB:
6943  //     ld  t1 = [bitinstr.addr]
6944  //     op  t2 = t1, [bitinstr.val]
6945  //     mov EAX = t1
6946  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6947  //     bz  newMBB
6948  //     fallthrough -->nextMBB
6949  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6950  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6951  MachineFunction::iterator MBBIter = MBB;
6952  ++MBBIter;
6953
6954  /// First build the CFG
6955  MachineFunction *F = MBB->getParent();
6956  MachineBasicBlock *thisMBB = MBB;
6957  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6958  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6959  F->insert(MBBIter, newMBB);
6960  F->insert(MBBIter, nextMBB);
6961
6962  // Move all successors to thisMBB to nextMBB
6963  nextMBB->transferSuccessors(thisMBB);
6964
6965  // Update thisMBB to fall through to newMBB
6966  thisMBB->addSuccessor(newMBB);
6967
6968  // newMBB jumps to itself and fall through to nextMBB
6969  newMBB->addSuccessor(nextMBB);
6970  newMBB->addSuccessor(newMBB);
6971
6972  // Insert instructions into newMBB based on incoming instruction
6973  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
6974         "unexpected number of operands");
6975  DebugLoc dl = bInstr->getDebugLoc();
6976  MachineOperand& destOper = bInstr->getOperand(0);
6977  MachineOperand* argOpers[2 + X86AddrNumOperands];
6978  int numArgs = bInstr->getNumOperands() - 1;
6979  for (int i=0; i < numArgs; ++i)
6980    argOpers[i] = &bInstr->getOperand(i+1);
6981
6982  // x86 address has 4 operands: base, index, scale, and displacement
6983  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
6984  int valArgIndx = lastAddrIndx + 1;
6985
6986  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6987  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
6988  for (int i=0; i <= lastAddrIndx; ++i)
6989    (*MIB).addOperand(*argOpers[i]);
6990
6991  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6992  if (invSrc) {
6993    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
6994  }
6995  else
6996    tt = t1;
6997
6998  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6999  assert((argOpers[valArgIndx]->isReg() ||
7000          argOpers[valArgIndx]->isImm()) &&
7001         "invalid operand");
7002  if (argOpers[valArgIndx]->isReg())
7003    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7004  else
7005    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7006  MIB.addReg(tt);
7007  (*MIB).addOperand(*argOpers[valArgIndx]);
7008
7009  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7010  MIB.addReg(t1);
7011
7012  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7013  for (int i=0; i <= lastAddrIndx; ++i)
7014    (*MIB).addOperand(*argOpers[i]);
7015  MIB.addReg(t2);
7016  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7017  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7018
7019  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7020  MIB.addReg(EAXreg);
7021
7022  // insert branch
7023  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7024
7025  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7026  return nextMBB;
7027}
7028
7029// private utility function:  64 bit atomics on 32 bit host.
7030MachineBasicBlock *
7031X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7032                                                       MachineBasicBlock *MBB,
7033                                                       unsigned regOpcL,
7034                                                       unsigned regOpcH,
7035                                                       unsigned immOpcL,
7036                                                       unsigned immOpcH,
7037                                                       bool invSrc) const {
7038  // For the atomic bitwise operator, we generate
7039  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7040  //     ld t1,t2 = [bitinstr.addr]
7041  //   newMBB:
7042  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7043  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7044  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7045  //     mov ECX, EBX <- t5, t6
7046  //     mov EAX, EDX <- t1, t2
7047  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7048  //     mov t3, t4 <- EAX, EDX
7049  //     bz  newMBB
7050  //     result in out1, out2
7051  //     fallthrough -->nextMBB
7052
7053  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7054  const unsigned LoadOpc = X86::MOV32rm;
7055  const unsigned copyOpc = X86::MOV32rr;
7056  const unsigned NotOpc = X86::NOT32r;
7057  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7058  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7059  MachineFunction::iterator MBBIter = MBB;
7060  ++MBBIter;
7061
7062  /// First build the CFG
7063  MachineFunction *F = MBB->getParent();
7064  MachineBasicBlock *thisMBB = MBB;
7065  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7066  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7067  F->insert(MBBIter, newMBB);
7068  F->insert(MBBIter, nextMBB);
7069
7070  // Move all successors to thisMBB to nextMBB
7071  nextMBB->transferSuccessors(thisMBB);
7072
7073  // Update thisMBB to fall through to newMBB
7074  thisMBB->addSuccessor(newMBB);
7075
7076  // newMBB jumps to itself and fall through to nextMBB
7077  newMBB->addSuccessor(nextMBB);
7078  newMBB->addSuccessor(newMBB);
7079
7080  DebugLoc dl = bInstr->getDebugLoc();
7081  // Insert instructions into newMBB based on incoming instruction
7082  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7083  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7084         "unexpected number of operands");
7085  MachineOperand& dest1Oper = bInstr->getOperand(0);
7086  MachineOperand& dest2Oper = bInstr->getOperand(1);
7087  MachineOperand* argOpers[2 + X86AddrNumOperands];
7088  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7089    argOpers[i] = &bInstr->getOperand(i+2);
7090
7091  // x86 address has 4 operands: base, index, scale, and displacement
7092  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7093
7094  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7095  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7096  for (int i=0; i <= lastAddrIndx; ++i)
7097    (*MIB).addOperand(*argOpers[i]);
7098  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7099  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7100  // add 4 to displacement.
7101  for (int i=0; i <= lastAddrIndx-2; ++i)
7102    (*MIB).addOperand(*argOpers[i]);
7103  MachineOperand newOp3 = *(argOpers[3]);
7104  if (newOp3.isImm())
7105    newOp3.setImm(newOp3.getImm()+4);
7106  else
7107    newOp3.setOffset(newOp3.getOffset()+4);
7108  (*MIB).addOperand(newOp3);
7109  (*MIB).addOperand(*argOpers[lastAddrIndx]);
7110
7111  // t3/4 are defined later, at the bottom of the loop
7112  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7113  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7114  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7115    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7116  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7117    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7118
7119  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7120  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7121  if (invSrc) {
7122    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7123    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7124  } else {
7125    tt1 = t1;
7126    tt2 = t2;
7127  }
7128
7129  int valArgIndx = lastAddrIndx + 1;
7130  assert((argOpers[valArgIndx]->isReg() ||
7131          argOpers[valArgIndx]->isImm()) &&
7132         "invalid operand");
7133  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7134  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7135  if (argOpers[valArgIndx]->isReg())
7136    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7137  else
7138    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7139  if (regOpcL != X86::MOV32rr)
7140    MIB.addReg(tt1);
7141  (*MIB).addOperand(*argOpers[valArgIndx]);
7142  assert(argOpers[valArgIndx + 1]->isReg() ==
7143         argOpers[valArgIndx]->isReg());
7144  assert(argOpers[valArgIndx + 1]->isImm() ==
7145         argOpers[valArgIndx]->isImm());
7146  if (argOpers[valArgIndx + 1]->isReg())
7147    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7148  else
7149    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7150  if (regOpcH != X86::MOV32rr)
7151    MIB.addReg(tt2);
7152  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7153
7154  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7155  MIB.addReg(t1);
7156  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7157  MIB.addReg(t2);
7158
7159  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7160  MIB.addReg(t5);
7161  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7162  MIB.addReg(t6);
7163
7164  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7165  for (int i=0; i <= lastAddrIndx; ++i)
7166    (*MIB).addOperand(*argOpers[i]);
7167
7168  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7169  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7170
7171  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7172  MIB.addReg(X86::EAX);
7173  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7174  MIB.addReg(X86::EDX);
7175
7176  // insert branch
7177  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7178
7179  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7180  return nextMBB;
7181}
7182
7183// private utility function
7184MachineBasicBlock *
7185X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7186                                                      MachineBasicBlock *MBB,
7187                                                      unsigned cmovOpc) const {
7188  // For the atomic min/max operator, we generate
7189  //   thisMBB:
7190  //   newMBB:
7191  //     ld t1 = [min/max.addr]
7192  //     mov t2 = [min/max.val]
7193  //     cmp  t1, t2
7194  //     cmov[cond] t2 = t1
7195  //     mov EAX = t1
7196  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7197  //     bz   newMBB
7198  //     fallthrough -->nextMBB
7199  //
7200  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7201  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7202  MachineFunction::iterator MBBIter = MBB;
7203  ++MBBIter;
7204
7205  /// First build the CFG
7206  MachineFunction *F = MBB->getParent();
7207  MachineBasicBlock *thisMBB = MBB;
7208  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7209  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7210  F->insert(MBBIter, newMBB);
7211  F->insert(MBBIter, nextMBB);
7212
7213  // Move all successors to thisMBB to nextMBB
7214  nextMBB->transferSuccessors(thisMBB);
7215
7216  // Update thisMBB to fall through to newMBB
7217  thisMBB->addSuccessor(newMBB);
7218
7219  // newMBB jumps to newMBB and fall through to nextMBB
7220  newMBB->addSuccessor(nextMBB);
7221  newMBB->addSuccessor(newMBB);
7222
7223  DebugLoc dl = mInstr->getDebugLoc();
7224  // Insert instructions into newMBB based on incoming instruction
7225  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7226         "unexpected number of operands");
7227  MachineOperand& destOper = mInstr->getOperand(0);
7228  MachineOperand* argOpers[2 + X86AddrNumOperands];
7229  int numArgs = mInstr->getNumOperands() - 1;
7230  for (int i=0; i < numArgs; ++i)
7231    argOpers[i] = &mInstr->getOperand(i+1);
7232
7233  // x86 address has 4 operands: base, index, scale, and displacement
7234  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7235  int valArgIndx = lastAddrIndx + 1;
7236
7237  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7238  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7239  for (int i=0; i <= lastAddrIndx; ++i)
7240    (*MIB).addOperand(*argOpers[i]);
7241
7242  // We only support register and immediate values
7243  assert((argOpers[valArgIndx]->isReg() ||
7244          argOpers[valArgIndx]->isImm()) &&
7245         "invalid operand");
7246
7247  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7248  if (argOpers[valArgIndx]->isReg())
7249    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7250  else
7251    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7252  (*MIB).addOperand(*argOpers[valArgIndx]);
7253
7254  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7255  MIB.addReg(t1);
7256
7257  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7258  MIB.addReg(t1);
7259  MIB.addReg(t2);
7260
7261  // Generate movc
7262  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7263  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7264  MIB.addReg(t2);
7265  MIB.addReg(t1);
7266
7267  // Cmp and exchange if none has modified the memory location
7268  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7269  for (int i=0; i <= lastAddrIndx; ++i)
7270    (*MIB).addOperand(*argOpers[i]);
7271  MIB.addReg(t3);
7272  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7273  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7274
7275  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7276  MIB.addReg(X86::EAX);
7277
7278  // insert branch
7279  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7280
7281  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7282  return nextMBB;
7283}
7284
7285
7286MachineBasicBlock *
7287X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7288                                               MachineBasicBlock *BB) const {
7289  DebugLoc dl = MI->getDebugLoc();
7290  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7291  switch (MI->getOpcode()) {
7292  default: assert(false && "Unexpected instr type to insert");
7293  case X86::CMOV_V1I64:
7294  case X86::CMOV_FR32:
7295  case X86::CMOV_FR64:
7296  case X86::CMOV_V4F32:
7297  case X86::CMOV_V2F64:
7298  case X86::CMOV_V2I64: {
7299    // To "insert" a SELECT_CC instruction, we actually have to insert the
7300    // diamond control-flow pattern.  The incoming instruction knows the
7301    // destination vreg to set, the condition code register to branch on, the
7302    // true/false values to select between, and a branch opcode to use.
7303    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7304    MachineFunction::iterator It = BB;
7305    ++It;
7306
7307    //  thisMBB:
7308    //  ...
7309    //   TrueVal = ...
7310    //   cmpTY ccX, r1, r2
7311    //   bCC copy1MBB
7312    //   fallthrough --> copy0MBB
7313    MachineBasicBlock *thisMBB = BB;
7314    MachineFunction *F = BB->getParent();
7315    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7316    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7317    unsigned Opc =
7318      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7319    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7320    F->insert(It, copy0MBB);
7321    F->insert(It, sinkMBB);
7322    // Update machine-CFG edges by transferring all successors of the current
7323    // block to the new block which will contain the Phi node for the select.
7324    sinkMBB->transferSuccessors(BB);
7325
7326    // Add the true and fallthrough blocks as its successors.
7327    BB->addSuccessor(copy0MBB);
7328    BB->addSuccessor(sinkMBB);
7329
7330    //  copy0MBB:
7331    //   %FalseValue = ...
7332    //   # fallthrough to sinkMBB
7333    BB = copy0MBB;
7334
7335    // Update machine-CFG edges
7336    BB->addSuccessor(sinkMBB);
7337
7338    //  sinkMBB:
7339    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7340    //  ...
7341    BB = sinkMBB;
7342    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7343      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7344      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7345
7346    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7347    return BB;
7348  }
7349
7350  case X86::FP32_TO_INT16_IN_MEM:
7351  case X86::FP32_TO_INT32_IN_MEM:
7352  case X86::FP32_TO_INT64_IN_MEM:
7353  case X86::FP64_TO_INT16_IN_MEM:
7354  case X86::FP64_TO_INT32_IN_MEM:
7355  case X86::FP64_TO_INT64_IN_MEM:
7356  case X86::FP80_TO_INT16_IN_MEM:
7357  case X86::FP80_TO_INT32_IN_MEM:
7358  case X86::FP80_TO_INT64_IN_MEM: {
7359    // Change the floating point control register to use "round towards zero"
7360    // mode when truncating to an integer value.
7361    MachineFunction *F = BB->getParent();
7362    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7363    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7364
7365    // Load the old value of the high byte of the control word...
7366    unsigned OldCW =
7367      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7368    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7369                      CWFrameIdx);
7370
7371    // Set the high part to be round to zero...
7372    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7373      .addImm(0xC7F);
7374
7375    // Reload the modified control word now...
7376    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7377
7378    // Restore the memory image of control word to original value
7379    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7380      .addReg(OldCW);
7381
7382    // Get the X86 opcode to use.
7383    unsigned Opc;
7384    switch (MI->getOpcode()) {
7385    default: assert(0 && "illegal opcode!");
7386    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7387    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7388    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7389    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7390    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7391    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7392    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7393    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7394    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7395    }
7396
7397    X86AddressMode AM;
7398    MachineOperand &Op = MI->getOperand(0);
7399    if (Op.isReg()) {
7400      AM.BaseType = X86AddressMode::RegBase;
7401      AM.Base.Reg = Op.getReg();
7402    } else {
7403      AM.BaseType = X86AddressMode::FrameIndexBase;
7404      AM.Base.FrameIndex = Op.getIndex();
7405    }
7406    Op = MI->getOperand(1);
7407    if (Op.isImm())
7408      AM.Scale = Op.getImm();
7409    Op = MI->getOperand(2);
7410    if (Op.isImm())
7411      AM.IndexReg = Op.getImm();
7412    Op = MI->getOperand(3);
7413    if (Op.isGlobal()) {
7414      AM.GV = Op.getGlobal();
7415    } else {
7416      AM.Disp = Op.getImm();
7417    }
7418    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7419                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7420
7421    // Reload the original control word now.
7422    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7423
7424    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7425    return BB;
7426  }
7427  case X86::ATOMAND32:
7428    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7429                                               X86::AND32ri, X86::MOV32rm,
7430                                               X86::LCMPXCHG32, X86::MOV32rr,
7431                                               X86::NOT32r, X86::EAX,
7432                                               X86::GR32RegisterClass);
7433  case X86::ATOMOR32:
7434    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7435                                               X86::OR32ri, X86::MOV32rm,
7436                                               X86::LCMPXCHG32, X86::MOV32rr,
7437                                               X86::NOT32r, X86::EAX,
7438                                               X86::GR32RegisterClass);
7439  case X86::ATOMXOR32:
7440    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7441                                               X86::XOR32ri, X86::MOV32rm,
7442                                               X86::LCMPXCHG32, X86::MOV32rr,
7443                                               X86::NOT32r, X86::EAX,
7444                                               X86::GR32RegisterClass);
7445  case X86::ATOMNAND32:
7446    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7447                                               X86::AND32ri, X86::MOV32rm,
7448                                               X86::LCMPXCHG32, X86::MOV32rr,
7449                                               X86::NOT32r, X86::EAX,
7450                                               X86::GR32RegisterClass, true);
7451  case X86::ATOMMIN32:
7452    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7453  case X86::ATOMMAX32:
7454    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7455  case X86::ATOMUMIN32:
7456    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7457  case X86::ATOMUMAX32:
7458    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7459
7460  case X86::ATOMAND16:
7461    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7462                                               X86::AND16ri, X86::MOV16rm,
7463                                               X86::LCMPXCHG16, X86::MOV16rr,
7464                                               X86::NOT16r, X86::AX,
7465                                               X86::GR16RegisterClass);
7466  case X86::ATOMOR16:
7467    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7468                                               X86::OR16ri, X86::MOV16rm,
7469                                               X86::LCMPXCHG16, X86::MOV16rr,
7470                                               X86::NOT16r, X86::AX,
7471                                               X86::GR16RegisterClass);
7472  case X86::ATOMXOR16:
7473    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7474                                               X86::XOR16ri, X86::MOV16rm,
7475                                               X86::LCMPXCHG16, X86::MOV16rr,
7476                                               X86::NOT16r, X86::AX,
7477                                               X86::GR16RegisterClass);
7478  case X86::ATOMNAND16:
7479    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7480                                               X86::AND16ri, X86::MOV16rm,
7481                                               X86::LCMPXCHG16, X86::MOV16rr,
7482                                               X86::NOT16r, X86::AX,
7483                                               X86::GR16RegisterClass, true);
7484  case X86::ATOMMIN16:
7485    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7486  case X86::ATOMMAX16:
7487    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7488  case X86::ATOMUMIN16:
7489    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7490  case X86::ATOMUMAX16:
7491    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7492
7493  case X86::ATOMAND8:
7494    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7495                                               X86::AND8ri, X86::MOV8rm,
7496                                               X86::LCMPXCHG8, X86::MOV8rr,
7497                                               X86::NOT8r, X86::AL,
7498                                               X86::GR8RegisterClass);
7499  case X86::ATOMOR8:
7500    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7501                                               X86::OR8ri, X86::MOV8rm,
7502                                               X86::LCMPXCHG8, X86::MOV8rr,
7503                                               X86::NOT8r, X86::AL,
7504                                               X86::GR8RegisterClass);
7505  case X86::ATOMXOR8:
7506    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7507                                               X86::XOR8ri, X86::MOV8rm,
7508                                               X86::LCMPXCHG8, X86::MOV8rr,
7509                                               X86::NOT8r, X86::AL,
7510                                               X86::GR8RegisterClass);
7511  case X86::ATOMNAND8:
7512    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7513                                               X86::AND8ri, X86::MOV8rm,
7514                                               X86::LCMPXCHG8, X86::MOV8rr,
7515                                               X86::NOT8r, X86::AL,
7516                                               X86::GR8RegisterClass, true);
7517  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7518  // This group is for 64-bit host.
7519  case X86::ATOMAND64:
7520    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7521                                               X86::AND64ri32, X86::MOV64rm,
7522                                               X86::LCMPXCHG64, X86::MOV64rr,
7523                                               X86::NOT64r, X86::RAX,
7524                                               X86::GR64RegisterClass);
7525  case X86::ATOMOR64:
7526    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7527                                               X86::OR64ri32, X86::MOV64rm,
7528                                               X86::LCMPXCHG64, X86::MOV64rr,
7529                                               X86::NOT64r, X86::RAX,
7530                                               X86::GR64RegisterClass);
7531  case X86::ATOMXOR64:
7532    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7533                                               X86::XOR64ri32, X86::MOV64rm,
7534                                               X86::LCMPXCHG64, X86::MOV64rr,
7535                                               X86::NOT64r, X86::RAX,
7536                                               X86::GR64RegisterClass);
7537  case X86::ATOMNAND64:
7538    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7539                                               X86::AND64ri32, X86::MOV64rm,
7540                                               X86::LCMPXCHG64, X86::MOV64rr,
7541                                               X86::NOT64r, X86::RAX,
7542                                               X86::GR64RegisterClass, true);
7543  case X86::ATOMMIN64:
7544    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7545  case X86::ATOMMAX64:
7546    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7547  case X86::ATOMUMIN64:
7548    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7549  case X86::ATOMUMAX64:
7550    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7551
7552  // This group does 64-bit operations on a 32-bit host.
7553  case X86::ATOMAND6432:
7554    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7555                                               X86::AND32rr, X86::AND32rr,
7556                                               X86::AND32ri, X86::AND32ri,
7557                                               false);
7558  case X86::ATOMOR6432:
7559    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7560                                               X86::OR32rr, X86::OR32rr,
7561                                               X86::OR32ri, X86::OR32ri,
7562                                               false);
7563  case X86::ATOMXOR6432:
7564    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7565                                               X86::XOR32rr, X86::XOR32rr,
7566                                               X86::XOR32ri, X86::XOR32ri,
7567                                               false);
7568  case X86::ATOMNAND6432:
7569    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7570                                               X86::AND32rr, X86::AND32rr,
7571                                               X86::AND32ri, X86::AND32ri,
7572                                               true);
7573  case X86::ATOMADD6432:
7574    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7575                                               X86::ADD32rr, X86::ADC32rr,
7576                                               X86::ADD32ri, X86::ADC32ri,
7577                                               false);
7578  case X86::ATOMSUB6432:
7579    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7580                                               X86::SUB32rr, X86::SBB32rr,
7581                                               X86::SUB32ri, X86::SBB32ri,
7582                                               false);
7583  case X86::ATOMSWAP6432:
7584    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7585                                               X86::MOV32rr, X86::MOV32rr,
7586                                               X86::MOV32ri, X86::MOV32ri,
7587                                               false);
7588  }
7589}
7590
7591//===----------------------------------------------------------------------===//
7592//                           X86 Optimization Hooks
7593//===----------------------------------------------------------------------===//
7594
7595void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7596                                                       const APInt &Mask,
7597                                                       APInt &KnownZero,
7598                                                       APInt &KnownOne,
7599                                                       const SelectionDAG &DAG,
7600                                                       unsigned Depth) const {
7601  unsigned Opc = Op.getOpcode();
7602  assert((Opc >= ISD::BUILTIN_OP_END ||
7603          Opc == ISD::INTRINSIC_WO_CHAIN ||
7604          Opc == ISD::INTRINSIC_W_CHAIN ||
7605          Opc == ISD::INTRINSIC_VOID) &&
7606         "Should use MaskedValueIsZero if you don't know whether Op"
7607         " is a target node!");
7608
7609  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7610  switch (Opc) {
7611  default: break;
7612  case X86ISD::ADD:
7613  case X86ISD::SUB:
7614  case X86ISD::SMUL:
7615  case X86ISD::UMUL:
7616  case X86ISD::INC:
7617  case X86ISD::DEC:
7618    // These nodes' second result is a boolean.
7619    if (Op.getResNo() == 0)
7620      break;
7621    // Fallthrough
7622  case X86ISD::SETCC:
7623    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7624                                       Mask.getBitWidth() - 1);
7625    break;
7626  }
7627}
7628
7629/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7630/// node is a GlobalAddress + offset.
7631bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7632                                       GlobalValue* &GA, int64_t &Offset) const{
7633  if (N->getOpcode() == X86ISD::Wrapper) {
7634    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7635      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7636      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7637      return true;
7638    }
7639  }
7640  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7641}
7642
7643static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7644                               const TargetLowering &TLI) {
7645  GlobalValue *GV;
7646  int64_t Offset = 0;
7647  if (TLI.isGAPlusOffset(Base, GV, Offset))
7648    return (GV->getAlignment() >= N && (Offset % N) == 0);
7649  // DAG combine handles the stack object case.
7650  return false;
7651}
7652
7653static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
7654                                     MVT EVT, SDNode *&Base,
7655                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7656                                     const TargetLowering &TLI) {
7657  Base = NULL;
7658  for (unsigned i = 0; i < NumElems; ++i) {
7659    if (N->getMaskElt(i) < 0) {
7660      if (!Base)
7661        return false;
7662      continue;
7663    }
7664
7665    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7666    if (!Elt.getNode() ||
7667        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7668      return false;
7669    if (!Base) {
7670      Base = Elt.getNode();
7671      if (Base->getOpcode() == ISD::UNDEF)
7672        return false;
7673      continue;
7674    }
7675    if (Elt.getOpcode() == ISD::UNDEF)
7676      continue;
7677
7678    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7679                               EVT.getSizeInBits()/8, i, MFI))
7680      return false;
7681  }
7682  return true;
7683}
7684
7685/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7686/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7687/// if the load addresses are consecutive, non-overlapping, and in the right
7688/// order.  In the case of v2i64, it will see if it can rewrite the
7689/// shuffle to be an appropriate build vector so it can take advantage of
7690// performBuildVectorCombine.
7691static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7692                                     const TargetLowering &TLI) {
7693  DebugLoc dl = N->getDebugLoc();
7694  MVT VT = N->getValueType(0);
7695  MVT EVT = VT.getVectorElementType();
7696  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7697  unsigned NumElems = VT.getVectorNumElements();
7698
7699  // For x86-32 machines, if we see an insert and then a shuffle in a v2i64
7700  // where the upper half is 0, it is advantageous to rewrite it as a build
7701  // vector of (0, val) so it can use movq.
7702  if (VT == MVT::v2i64) {
7703    SDValue In[2];
7704    In[0] = N->getOperand(0);
7705    In[1] = N->getOperand(1);
7706    int Idx0 = SVN->getMaskElt(0);
7707    int Idx1 = SVN->getMaskElt(1);
7708    // FIXME: can we take advantage of undef index?
7709    if (Idx0 >= 0 && Idx1 >= 0 &&
7710        In[Idx0/2].getOpcode() == ISD::INSERT_VECTOR_ELT &&
7711        In[Idx1/2].getOpcode() == ISD::BUILD_VECTOR) {
7712      ConstantSDNode* InsertVecIdx =
7713                             dyn_cast<ConstantSDNode>(In[Idx0/2].getOperand(2));
7714      if (InsertVecIdx &&
7715          InsertVecIdx->getZExtValue() == (unsigned)(Idx0 % 2) &&
7716          isZeroNode(In[Idx1/2].getOperand(Idx1 % 2))) {
7717        return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
7718                           In[Idx0/2].getOperand(1),
7719                           In[Idx1/2].getOperand(Idx1 % 2));
7720      }
7721    }
7722  }
7723
7724  // Try to combine a vector_shuffle into a 128-bit load.
7725  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7726  SDNode *Base = NULL;
7727  if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, Base, DAG, MFI, TLI))
7728    return SDValue();
7729
7730  LoadSDNode *LD = cast<LoadSDNode>(Base);
7731  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7732    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7733                       LD->getSrcValue(), LD->getSrcValueOffset(),
7734                       LD->isVolatile());
7735  return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7736                     LD->getSrcValue(), LD->getSrcValueOffset(),
7737                     LD->isVolatile(), LD->getAlignment());
7738}
7739
7740/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7741static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7742                                         TargetLowering::DAGCombinerInfo &DCI,
7743                                         const X86Subtarget *Subtarget,
7744                                         const TargetLowering &TLI) {
7745  unsigned NumOps = N->getNumOperands();
7746  DebugLoc dl = N->getDebugLoc();
7747
7748  // Ignore single operand BUILD_VECTOR.
7749  if (NumOps == 1)
7750    return SDValue();
7751
7752  MVT VT = N->getValueType(0);
7753  MVT EVT = VT.getVectorElementType();
7754  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7755    // We are looking for load i64 and zero extend. We want to transform
7756    // it before legalizer has a chance to expand it. Also look for i64
7757    // BUILD_PAIR bit casted to f64.
7758    return SDValue();
7759  // This must be an insertion into a zero vector.
7760  SDValue HighElt = N->getOperand(1);
7761  if (!isZeroNode(HighElt))
7762    return SDValue();
7763
7764  // Value must be a load.
7765  SDNode *Base = N->getOperand(0).getNode();
7766  if (!isa<LoadSDNode>(Base)) {
7767    if (Base->getOpcode() != ISD::BIT_CONVERT)
7768      return SDValue();
7769    Base = Base->getOperand(0).getNode();
7770    if (!isa<LoadSDNode>(Base))
7771      return SDValue();
7772  }
7773
7774  // Transform it into VZEXT_LOAD addr.
7775  LoadSDNode *LD = cast<LoadSDNode>(Base);
7776
7777  // Load must not be an extload.
7778  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7779    return SDValue();
7780
7781  // Load type should legal type so we don't have to legalize it.
7782  if (!TLI.isTypeLegal(VT))
7783    return SDValue();
7784
7785  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7786  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7787  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
7788  TargetLowering::TargetLoweringOpt TLO(DAG);
7789  TLO.CombineTo(SDValue(Base, 1), ResNode.getValue(1));
7790  DCI.CommitTargetLoweringOpt(TLO);
7791  return ResNode;
7792}
7793
7794/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7795static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7796                                    const X86Subtarget *Subtarget) {
7797  DebugLoc DL = N->getDebugLoc();
7798  SDValue Cond = N->getOperand(0);
7799  // Get the LHS/RHS of the select.
7800  SDValue LHS = N->getOperand(1);
7801  SDValue RHS = N->getOperand(2);
7802
7803  // If we have SSE[12] support, try to form min/max nodes.
7804  if (Subtarget->hasSSE2() &&
7805      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
7806      Cond.getOpcode() == ISD::SETCC) {
7807    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7808
7809    unsigned Opcode = 0;
7810    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7811      switch (CC) {
7812      default: break;
7813      case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7814      case ISD::SETULE:
7815      case ISD::SETLE:
7816        if (!UnsafeFPMath) break;
7817        // FALL THROUGH.
7818      case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7819      case ISD::SETLT:
7820        Opcode = X86ISD::FMIN;
7821        break;
7822
7823      case ISD::SETOGT: // (X > Y) ? X : Y -> max
7824      case ISD::SETUGT:
7825      case ISD::SETGT:
7826        if (!UnsafeFPMath) break;
7827        // FALL THROUGH.
7828      case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7829      case ISD::SETGE:
7830        Opcode = X86ISD::FMAX;
7831        break;
7832      }
7833    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7834      switch (CC) {
7835      default: break;
7836      case ISD::SETOGT: // (X > Y) ? Y : X -> min
7837      case ISD::SETUGT:
7838      case ISD::SETGT:
7839        if (!UnsafeFPMath) break;
7840        // FALL THROUGH.
7841      case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7842      case ISD::SETGE:
7843        Opcode = X86ISD::FMIN;
7844        break;
7845
7846      case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7847      case ISD::SETULE:
7848      case ISD::SETLE:
7849        if (!UnsafeFPMath) break;
7850        // FALL THROUGH.
7851      case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7852      case ISD::SETLT:
7853        Opcode = X86ISD::FMAX;
7854        break;
7855      }
7856    }
7857
7858    if (Opcode)
7859      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
7860  }
7861
7862  // If this is a select between two integer constants, try to do some
7863  // optimizations.
7864  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
7865    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
7866      // Don't do this for crazy integer types.
7867      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
7868        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
7869        // so that TrueC (the true value) is larger than FalseC.
7870        bool NeedsCondInvert = false;
7871
7872        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
7873            // Efficiently invertible.
7874            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
7875             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
7876              isa<ConstantSDNode>(Cond.getOperand(1))))) {
7877          NeedsCondInvert = true;
7878          std::swap(TrueC, FalseC);
7879        }
7880
7881        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
7882        if (FalseC->getAPIntValue() == 0 &&
7883            TrueC->getAPIntValue().isPowerOf2()) {
7884          if (NeedsCondInvert) // Invert the condition if needed.
7885            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7886                               DAG.getConstant(1, Cond.getValueType()));
7887
7888          // Zero extend the condition if needed.
7889          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
7890
7891          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
7892          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
7893                             DAG.getConstant(ShAmt, MVT::i8));
7894        }
7895
7896        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
7897        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
7898          if (NeedsCondInvert) // Invert the condition if needed.
7899            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7900                               DAG.getConstant(1, Cond.getValueType()));
7901
7902          // Zero extend the condition if needed.
7903          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
7904                             FalseC->getValueType(0), Cond);
7905          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7906                             SDValue(FalseC, 0));
7907        }
7908
7909        // Optimize cases that will turn into an LEA instruction.  This requires
7910        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
7911        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
7912          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
7913          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
7914
7915          bool isFastMultiplier = false;
7916          if (Diff < 10) {
7917            switch ((unsigned char)Diff) {
7918              default: break;
7919              case 1:  // result = add base, cond
7920              case 2:  // result = lea base(    , cond*2)
7921              case 3:  // result = lea base(cond, cond*2)
7922              case 4:  // result = lea base(    , cond*4)
7923              case 5:  // result = lea base(cond, cond*4)
7924              case 8:  // result = lea base(    , cond*8)
7925              case 9:  // result = lea base(cond, cond*8)
7926                isFastMultiplier = true;
7927                break;
7928            }
7929          }
7930
7931          if (isFastMultiplier) {
7932            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
7933            if (NeedsCondInvert) // Invert the condition if needed.
7934              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
7935                                 DAG.getConstant(1, Cond.getValueType()));
7936
7937            // Zero extend the condition if needed.
7938            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
7939                               Cond);
7940            // Scale the condition by the difference.
7941            if (Diff != 1)
7942              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
7943                                 DAG.getConstant(Diff, Cond.getValueType()));
7944
7945            // Add the base if non-zero.
7946            if (FalseC->getAPIntValue() != 0)
7947              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
7948                                 SDValue(FalseC, 0));
7949            return Cond;
7950          }
7951        }
7952      }
7953  }
7954
7955  return SDValue();
7956}
7957
7958/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
7959static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
7960                                  TargetLowering::DAGCombinerInfo &DCI) {
7961  DebugLoc DL = N->getDebugLoc();
7962
7963  // If the flag operand isn't dead, don't touch this CMOV.
7964  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
7965    return SDValue();
7966
7967  // If this is a select between two integer constants, try to do some
7968  // optimizations.  Note that the operands are ordered the opposite of SELECT
7969  // operands.
7970  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7971    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7972      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
7973      // larger than FalseC (the false value).
7974      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
7975
7976      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
7977        CC = X86::GetOppositeBranchCondition(CC);
7978        std::swap(TrueC, FalseC);
7979      }
7980
7981      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
7982      // This is efficient for any integer data type (including i8/i16) and
7983      // shift amount.
7984      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
7985        SDValue Cond = N->getOperand(3);
7986        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
7987                           DAG.getConstant(CC, MVT::i8), Cond);
7988
7989        // Zero extend the condition if needed.
7990        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
7991
7992        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
7993        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
7994                           DAG.getConstant(ShAmt, MVT::i8));
7995        if (N->getNumValues() == 2)  // Dead flag value?
7996          return DCI.CombineTo(N, Cond, SDValue());
7997        return Cond;
7998      }
7999
8000      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8001      // for any integer data type, including i8/i16.
8002      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8003        SDValue Cond = N->getOperand(3);
8004        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8005                           DAG.getConstant(CC, MVT::i8), Cond);
8006
8007        // Zero extend the condition if needed.
8008        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8009                           FalseC->getValueType(0), Cond);
8010        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8011                           SDValue(FalseC, 0));
8012
8013        if (N->getNumValues() == 2)  // Dead flag value?
8014          return DCI.CombineTo(N, Cond, SDValue());
8015        return Cond;
8016      }
8017
8018      // Optimize cases that will turn into an LEA instruction.  This requires
8019      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8020      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8021        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8022        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8023
8024        bool isFastMultiplier = false;
8025        if (Diff < 10) {
8026          switch ((unsigned char)Diff) {
8027          default: break;
8028          case 1:  // result = add base, cond
8029          case 2:  // result = lea base(    , cond*2)
8030          case 3:  // result = lea base(cond, cond*2)
8031          case 4:  // result = lea base(    , cond*4)
8032          case 5:  // result = lea base(cond, cond*4)
8033          case 8:  // result = lea base(    , cond*8)
8034          case 9:  // result = lea base(cond, cond*8)
8035            isFastMultiplier = true;
8036            break;
8037          }
8038        }
8039
8040        if (isFastMultiplier) {
8041          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8042          SDValue Cond = N->getOperand(3);
8043          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8044                             DAG.getConstant(CC, MVT::i8), Cond);
8045          // Zero extend the condition if needed.
8046          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8047                             Cond);
8048          // Scale the condition by the difference.
8049          if (Diff != 1)
8050            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8051                               DAG.getConstant(Diff, Cond.getValueType()));
8052
8053          // Add the base if non-zero.
8054          if (FalseC->getAPIntValue() != 0)
8055            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8056                               SDValue(FalseC, 0));
8057          if (N->getNumValues() == 2)  // Dead flag value?
8058            return DCI.CombineTo(N, Cond, SDValue());
8059          return Cond;
8060        }
8061      }
8062    }
8063  }
8064  return SDValue();
8065}
8066
8067
8068/// PerformMulCombine - Optimize a single multiply with constant into two
8069/// in order to implement it with two cheaper instructions, e.g.
8070/// LEA + SHL, LEA + LEA.
8071static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8072                                 TargetLowering::DAGCombinerInfo &DCI) {
8073  if (DAG.getMachineFunction().
8074      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8075    return SDValue();
8076
8077  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8078    return SDValue();
8079
8080  MVT VT = N->getValueType(0);
8081  if (VT != MVT::i64)
8082    return SDValue();
8083
8084  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8085  if (!C)
8086    return SDValue();
8087  uint64_t MulAmt = C->getZExtValue();
8088  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8089    return SDValue();
8090
8091  uint64_t MulAmt1 = 0;
8092  uint64_t MulAmt2 = 0;
8093  if ((MulAmt % 9) == 0) {
8094    MulAmt1 = 9;
8095    MulAmt2 = MulAmt / 9;
8096  } else if ((MulAmt % 5) == 0) {
8097    MulAmt1 = 5;
8098    MulAmt2 = MulAmt / 5;
8099  } else if ((MulAmt % 3) == 0) {
8100    MulAmt1 = 3;
8101    MulAmt2 = MulAmt / 3;
8102  }
8103  if (MulAmt2 &&
8104      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8105    DebugLoc DL = N->getDebugLoc();
8106
8107    if (isPowerOf2_64(MulAmt2) &&
8108        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8109      // If second multiplifer is pow2, issue it first. We want the multiply by
8110      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8111      // is an add.
8112      std::swap(MulAmt1, MulAmt2);
8113
8114    SDValue NewMul;
8115    if (isPowerOf2_64(MulAmt1))
8116      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8117                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8118    else
8119      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8120                           DAG.getConstant(MulAmt1, VT));
8121
8122    if (isPowerOf2_64(MulAmt2))
8123      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8124                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8125    else
8126      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8127                           DAG.getConstant(MulAmt2, VT));
8128
8129    // Do not add new nodes to DAG combiner worklist.
8130    DCI.CombineTo(N, NewMul, false);
8131  }
8132  return SDValue();
8133}
8134
8135
8136/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8137///                       when possible.
8138static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8139                                   const X86Subtarget *Subtarget) {
8140  // On X86 with SSE2 support, we can transform this to a vector shift if
8141  // all elements are shifted by the same amount.  We can't do this in legalize
8142  // because the a constant vector is typically transformed to a constant pool
8143  // so we have no knowledge of the shift amount.
8144  if (!Subtarget->hasSSE2())
8145    return SDValue();
8146
8147  MVT VT = N->getValueType(0);
8148  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8149    return SDValue();
8150
8151  SDValue ShAmtOp = N->getOperand(1);
8152  MVT EltVT = VT.getVectorElementType();
8153  DebugLoc DL = N->getDebugLoc();
8154  SDValue BaseShAmt;
8155  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8156    unsigned NumElts = VT.getVectorNumElements();
8157    unsigned i = 0;
8158    for (; i != NumElts; ++i) {
8159      SDValue Arg = ShAmtOp.getOperand(i);
8160      if (Arg.getOpcode() == ISD::UNDEF) continue;
8161      BaseShAmt = Arg;
8162      break;
8163    }
8164    for (; i != NumElts; ++i) {
8165      SDValue Arg = ShAmtOp.getOperand(i);
8166      if (Arg.getOpcode() == ISD::UNDEF) continue;
8167      if (Arg != BaseShAmt) {
8168        return SDValue();
8169      }
8170    }
8171  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8172             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8173    BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8174                            DAG.getIntPtrConstant(0));
8175  } else
8176    return SDValue();
8177
8178  if (EltVT.bitsGT(MVT::i32))
8179    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8180  else if (EltVT.bitsLT(MVT::i32))
8181    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8182
8183  // The shift amount is identical so we can do a vector shift.
8184  SDValue  ValOp = N->getOperand(0);
8185  switch (N->getOpcode()) {
8186  default:
8187    assert(0 && "Unknown shift opcode!");
8188    break;
8189  case ISD::SHL:
8190    if (VT == MVT::v2i64)
8191      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8192                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8193                         ValOp, BaseShAmt);
8194    if (VT == MVT::v4i32)
8195      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8196                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8197                         ValOp, BaseShAmt);
8198    if (VT == MVT::v8i16)
8199      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8200                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8201                         ValOp, BaseShAmt);
8202    break;
8203  case ISD::SRA:
8204    if (VT == MVT::v4i32)
8205      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8206                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8207                         ValOp, BaseShAmt);
8208    if (VT == MVT::v8i16)
8209      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8210                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8211                         ValOp, BaseShAmt);
8212    break;
8213  case ISD::SRL:
8214    if (VT == MVT::v2i64)
8215      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8216                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8217                         ValOp, BaseShAmt);
8218    if (VT == MVT::v4i32)
8219      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8220                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8221                         ValOp, BaseShAmt);
8222    if (VT ==  MVT::v8i16)
8223      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8224                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8225                         ValOp, BaseShAmt);
8226    break;
8227  }
8228  return SDValue();
8229}
8230
8231/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8232static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8233                                   const X86Subtarget *Subtarget) {
8234  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8235  // the FP state in cases where an emms may be missing.
8236  // A preferable solution to the general problem is to figure out the right
8237  // places to insert EMMS.  This qualifies as a quick hack.
8238
8239  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8240  StoreSDNode *St = cast<StoreSDNode>(N);
8241  MVT VT = St->getValue().getValueType();
8242  if (VT.getSizeInBits() != 64)
8243    return SDValue();
8244
8245  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloat && Subtarget->hasSSE2();
8246  if ((VT.isVector() ||
8247       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8248      isa<LoadSDNode>(St->getValue()) &&
8249      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8250      St->getChain().hasOneUse() && !St->isVolatile()) {
8251    SDNode* LdVal = St->getValue().getNode();
8252    LoadSDNode *Ld = 0;
8253    int TokenFactorIndex = -1;
8254    SmallVector<SDValue, 8> Ops;
8255    SDNode* ChainVal = St->getChain().getNode();
8256    // Must be a store of a load.  We currently handle two cases:  the load
8257    // is a direct child, and it's under an intervening TokenFactor.  It is
8258    // possible to dig deeper under nested TokenFactors.
8259    if (ChainVal == LdVal)
8260      Ld = cast<LoadSDNode>(St->getChain());
8261    else if (St->getValue().hasOneUse() &&
8262             ChainVal->getOpcode() == ISD::TokenFactor) {
8263      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8264        if (ChainVal->getOperand(i).getNode() == LdVal) {
8265          TokenFactorIndex = i;
8266          Ld = cast<LoadSDNode>(St->getValue());
8267        } else
8268          Ops.push_back(ChainVal->getOperand(i));
8269      }
8270    }
8271
8272    if (!Ld || !ISD::isNormalLoad(Ld))
8273      return SDValue();
8274
8275    // If this is not the MMX case, i.e. we are just turning i64 load/store
8276    // into f64 load/store, avoid the transformation if there are multiple
8277    // uses of the loaded value.
8278    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8279      return SDValue();
8280
8281    DebugLoc LdDL = Ld->getDebugLoc();
8282    DebugLoc StDL = N->getDebugLoc();
8283    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8284    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8285    // pair instead.
8286    if (Subtarget->is64Bit() || F64IsLegal) {
8287      MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8288      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8289                                  Ld->getBasePtr(), Ld->getSrcValue(),
8290                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8291                                  Ld->getAlignment());
8292      SDValue NewChain = NewLd.getValue(1);
8293      if (TokenFactorIndex != -1) {
8294        Ops.push_back(NewChain);
8295        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8296                               Ops.size());
8297      }
8298      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8299                          St->getSrcValue(), St->getSrcValueOffset(),
8300                          St->isVolatile(), St->getAlignment());
8301    }
8302
8303    // Otherwise, lower to two pairs of 32-bit loads / stores.
8304    SDValue LoAddr = Ld->getBasePtr();
8305    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8306                                 DAG.getConstant(4, MVT::i32));
8307
8308    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8309                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8310                               Ld->isVolatile(), Ld->getAlignment());
8311    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8312                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8313                               Ld->isVolatile(),
8314                               MinAlign(Ld->getAlignment(), 4));
8315
8316    SDValue NewChain = LoLd.getValue(1);
8317    if (TokenFactorIndex != -1) {
8318      Ops.push_back(LoLd);
8319      Ops.push_back(HiLd);
8320      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8321                             Ops.size());
8322    }
8323
8324    LoAddr = St->getBasePtr();
8325    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8326                         DAG.getConstant(4, MVT::i32));
8327
8328    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8329                                St->getSrcValue(), St->getSrcValueOffset(),
8330                                St->isVolatile(), St->getAlignment());
8331    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8332                                St->getSrcValue(),
8333                                St->getSrcValueOffset() + 4,
8334                                St->isVolatile(),
8335                                MinAlign(St->getAlignment(), 4));
8336    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8337  }
8338  return SDValue();
8339}
8340
8341/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8342/// X86ISD::FXOR nodes.
8343static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8344  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8345  // F[X]OR(0.0, x) -> x
8346  // F[X]OR(x, 0.0) -> x
8347  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8348    if (C->getValueAPF().isPosZero())
8349      return N->getOperand(1);
8350  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8351    if (C->getValueAPF().isPosZero())
8352      return N->getOperand(0);
8353  return SDValue();
8354}
8355
8356/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8357static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8358  // FAND(0.0, x) -> 0.0
8359  // FAND(x, 0.0) -> 0.0
8360  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8361    if (C->getValueAPF().isPosZero())
8362      return N->getOperand(0);
8363  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8364    if (C->getValueAPF().isPosZero())
8365      return N->getOperand(1);
8366  return SDValue();
8367}
8368
8369static SDValue PerformBTCombine(SDNode *N,
8370                                SelectionDAG &DAG,
8371                                TargetLowering::DAGCombinerInfo &DCI) {
8372  // BT ignores high bits in the bit index operand.
8373  SDValue Op1 = N->getOperand(1);
8374  if (Op1.hasOneUse()) {
8375    unsigned BitWidth = Op1.getValueSizeInBits();
8376    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8377    APInt KnownZero, KnownOne;
8378    TargetLowering::TargetLoweringOpt TLO(DAG);
8379    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8380    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8381        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8382      DCI.CommitTargetLoweringOpt(TLO);
8383  }
8384  return SDValue();
8385}
8386
8387SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8388                                             DAGCombinerInfo &DCI) const {
8389  SelectionDAG &DAG = DCI.DAG;
8390  switch (N->getOpcode()) {
8391  default: break;
8392  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8393  case ISD::BUILD_VECTOR:
8394    return PerformBuildVectorCombine(N, DAG, DCI, Subtarget, *this);
8395  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8396  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
8397  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
8398  case ISD::SHL:
8399  case ISD::SRA:
8400  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8401  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8402  case X86ISD::FXOR:
8403  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8404  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8405  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8406  }
8407
8408  return SDValue();
8409}
8410
8411//===----------------------------------------------------------------------===//
8412//                           X86 Inline Assembly Support
8413//===----------------------------------------------------------------------===//
8414
8415/// getConstraintType - Given a constraint letter, return the type of
8416/// constraint it is for this target.
8417X86TargetLowering::ConstraintType
8418X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8419  if (Constraint.size() == 1) {
8420    switch (Constraint[0]) {
8421    case 'A':
8422      return C_Register;
8423    case 'f':
8424    case 'r':
8425    case 'R':
8426    case 'l':
8427    case 'q':
8428    case 'Q':
8429    case 'x':
8430    case 'y':
8431    case 'Y':
8432      return C_RegisterClass;
8433    case 'e':
8434    case 'Z':
8435      return C_Other;
8436    default:
8437      break;
8438    }
8439  }
8440  return TargetLowering::getConstraintType(Constraint);
8441}
8442
8443/// LowerXConstraint - try to replace an X constraint, which matches anything,
8444/// with another that has more specific requirements based on the type of the
8445/// corresponding operand.
8446const char *X86TargetLowering::
8447LowerXConstraint(MVT ConstraintVT) const {
8448  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8449  // 'f' like normal targets.
8450  if (ConstraintVT.isFloatingPoint()) {
8451    if (Subtarget->hasSSE2())
8452      return "Y";
8453    if (Subtarget->hasSSE1())
8454      return "x";
8455  }
8456
8457  return TargetLowering::LowerXConstraint(ConstraintVT);
8458}
8459
8460/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8461/// vector.  If it is invalid, don't add anything to Ops.
8462void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8463                                                     char Constraint,
8464                                                     bool hasMemory,
8465                                                     std::vector<SDValue>&Ops,
8466                                                     SelectionDAG &DAG) const {
8467  SDValue Result(0, 0);
8468
8469  switch (Constraint) {
8470  default: break;
8471  case 'I':
8472    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8473      if (C->getZExtValue() <= 31) {
8474        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8475        break;
8476      }
8477    }
8478    return;
8479  case 'J':
8480    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8481      if (C->getZExtValue() <= 63) {
8482        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8483        break;
8484      }
8485    }
8486    return;
8487  case 'N':
8488    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8489      if (C->getZExtValue() <= 255) {
8490        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8491        break;
8492      }
8493    }
8494    return;
8495  case 'e': {
8496    // 32-bit signed value
8497    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8498      const ConstantInt *CI = C->getConstantIntValue();
8499      if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8500        // Widen to 64 bits here to get it sign extended.
8501        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8502        break;
8503      }
8504    // FIXME gcc accepts some relocatable values here too, but only in certain
8505    // memory models; it's complicated.
8506    }
8507    return;
8508  }
8509  case 'Z': {
8510    // 32-bit unsigned value
8511    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8512      const ConstantInt *CI = C->getConstantIntValue();
8513      if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8514        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8515        break;
8516      }
8517    }
8518    // FIXME gcc accepts some relocatable values here too, but only in certain
8519    // memory models; it's complicated.
8520    return;
8521  }
8522  case 'i': {
8523    // Literal immediates are always ok.
8524    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8525      // Widen to 64 bits here to get it sign extended.
8526      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8527      break;
8528    }
8529
8530    // If we are in non-pic codegen mode, we allow the address of a global (with
8531    // an optional displacement) to be used with 'i'.
8532    GlobalAddressSDNode *GA = 0;
8533    int64_t Offset = 0;
8534
8535    // Match either (GA), (GA+C), (GA+C1+C2), etc.
8536    while (1) {
8537      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
8538        Offset += GA->getOffset();
8539        break;
8540      } else if (Op.getOpcode() == ISD::ADD) {
8541        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8542          Offset += C->getZExtValue();
8543          Op = Op.getOperand(0);
8544          continue;
8545        }
8546      } else if (Op.getOpcode() == ISD::SUB) {
8547        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8548          Offset += -C->getZExtValue();
8549          Op = Op.getOperand(0);
8550          continue;
8551        }
8552      }
8553
8554      // Otherwise, this isn't something we can handle, reject it.
8555      return;
8556    }
8557
8558    if (hasMemory)
8559      Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(), Offset, DAG);
8560    else
8561      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
8562                                      Offset);
8563    Result = Op;
8564    break;
8565  }
8566  }
8567
8568  if (Result.getNode()) {
8569    Ops.push_back(Result);
8570    return;
8571  }
8572  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8573                                                      Ops, DAG);
8574}
8575
8576std::vector<unsigned> X86TargetLowering::
8577getRegClassForInlineAsmConstraint(const std::string &Constraint,
8578                                  MVT VT) const {
8579  if (Constraint.size() == 1) {
8580    // FIXME: not handling fp-stack yet!
8581    switch (Constraint[0]) {      // GCC X86 Constraint Letters
8582    default: break;  // Unknown constraint letter
8583    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
8584    case 'Q':   // Q_REGS
8585      if (VT == MVT::i32)
8586        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8587      else if (VT == MVT::i16)
8588        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8589      else if (VT == MVT::i8)
8590        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8591      else if (VT == MVT::i64)
8592        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8593      break;
8594    }
8595  }
8596
8597  return std::vector<unsigned>();
8598}
8599
8600std::pair<unsigned, const TargetRegisterClass*>
8601X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8602                                                MVT VT) const {
8603  // First, see if this is a constraint that directly corresponds to an LLVM
8604  // register class.
8605  if (Constraint.size() == 1) {
8606    // GCC Constraint Letters
8607    switch (Constraint[0]) {
8608    default: break;
8609    case 'r':   // GENERAL_REGS
8610    case 'R':   // LEGACY_REGS
8611    case 'l':   // INDEX_REGS
8612      if (VT == MVT::i8)
8613        return std::make_pair(0U, X86::GR8RegisterClass);
8614      if (VT == MVT::i16)
8615        return std::make_pair(0U, X86::GR16RegisterClass);
8616      if (VT == MVT::i32 || !Subtarget->is64Bit())
8617        return std::make_pair(0U, X86::GR32RegisterClass);
8618      return std::make_pair(0U, X86::GR64RegisterClass);
8619    case 'f':  // FP Stack registers.
8620      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8621      // value to the correct fpstack register class.
8622      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8623        return std::make_pair(0U, X86::RFP32RegisterClass);
8624      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8625        return std::make_pair(0U, X86::RFP64RegisterClass);
8626      return std::make_pair(0U, X86::RFP80RegisterClass);
8627    case 'y':   // MMX_REGS if MMX allowed.
8628      if (!Subtarget->hasMMX()) break;
8629      return std::make_pair(0U, X86::VR64RegisterClass);
8630    case 'Y':   // SSE_REGS if SSE2 allowed
8631      if (!Subtarget->hasSSE2()) break;
8632      // FALL THROUGH.
8633    case 'x':   // SSE_REGS if SSE1 allowed
8634      if (!Subtarget->hasSSE1()) break;
8635
8636      switch (VT.getSimpleVT()) {
8637      default: break;
8638      // Scalar SSE types.
8639      case MVT::f32:
8640      case MVT::i32:
8641        return std::make_pair(0U, X86::FR32RegisterClass);
8642      case MVT::f64:
8643      case MVT::i64:
8644        return std::make_pair(0U, X86::FR64RegisterClass);
8645      // Vector types.
8646      case MVT::v16i8:
8647      case MVT::v8i16:
8648      case MVT::v4i32:
8649      case MVT::v2i64:
8650      case MVT::v4f32:
8651      case MVT::v2f64:
8652        return std::make_pair(0U, X86::VR128RegisterClass);
8653      }
8654      break;
8655    }
8656  }
8657
8658  // Use the default implementation in TargetLowering to convert the register
8659  // constraint into a member of a register class.
8660  std::pair<unsigned, const TargetRegisterClass*> Res;
8661  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8662
8663  // Not found as a standard register?
8664  if (Res.second == 0) {
8665    // GCC calls "st(0)" just plain "st".
8666    if (StringsEqualNoCase("{st}", Constraint)) {
8667      Res.first = X86::ST0;
8668      Res.second = X86::RFP80RegisterClass;
8669    }
8670    // 'A' means EAX + EDX.
8671    if (Constraint == "A") {
8672      Res.first = X86::EAX;
8673      Res.second = X86::GRADRegisterClass;
8674    }
8675    return Res;
8676  }
8677
8678  // Otherwise, check to see if this is a register class of the wrong value
8679  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8680  // turn into {ax},{dx}.
8681  if (Res.second->hasType(VT))
8682    return Res;   // Correct type already, nothing to do.
8683
8684  // All of the single-register GCC register classes map their values onto
8685  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8686  // really want an 8-bit or 32-bit register, map to the appropriate register
8687  // class and return the appropriate register.
8688  if (Res.second == X86::GR16RegisterClass) {
8689    if (VT == MVT::i8) {
8690      unsigned DestReg = 0;
8691      switch (Res.first) {
8692      default: break;
8693      case X86::AX: DestReg = X86::AL; break;
8694      case X86::DX: DestReg = X86::DL; break;
8695      case X86::CX: DestReg = X86::CL; break;
8696      case X86::BX: DestReg = X86::BL; break;
8697      }
8698      if (DestReg) {
8699        Res.first = DestReg;
8700        Res.second = X86::GR8RegisterClass;
8701      }
8702    } else if (VT == MVT::i32) {
8703      unsigned DestReg = 0;
8704      switch (Res.first) {
8705      default: break;
8706      case X86::AX: DestReg = X86::EAX; break;
8707      case X86::DX: DestReg = X86::EDX; break;
8708      case X86::CX: DestReg = X86::ECX; break;
8709      case X86::BX: DestReg = X86::EBX; break;
8710      case X86::SI: DestReg = X86::ESI; break;
8711      case X86::DI: DestReg = X86::EDI; break;
8712      case X86::BP: DestReg = X86::EBP; break;
8713      case X86::SP: DestReg = X86::ESP; break;
8714      }
8715      if (DestReg) {
8716        Res.first = DestReg;
8717        Res.second = X86::GR32RegisterClass;
8718      }
8719    } else if (VT == MVT::i64) {
8720      unsigned DestReg = 0;
8721      switch (Res.first) {
8722      default: break;
8723      case X86::AX: DestReg = X86::RAX; break;
8724      case X86::DX: DestReg = X86::RDX; break;
8725      case X86::CX: DestReg = X86::RCX; break;
8726      case X86::BX: DestReg = X86::RBX; break;
8727      case X86::SI: DestReg = X86::RSI; break;
8728      case X86::DI: DestReg = X86::RDI; break;
8729      case X86::BP: DestReg = X86::RBP; break;
8730      case X86::SP: DestReg = X86::RSP; break;
8731      }
8732      if (DestReg) {
8733        Res.first = DestReg;
8734        Res.second = X86::GR64RegisterClass;
8735      }
8736    }
8737  } else if (Res.second == X86::FR32RegisterClass ||
8738             Res.second == X86::FR64RegisterClass ||
8739             Res.second == X86::VR128RegisterClass) {
8740    // Handle references to XMM physical registers that got mapped into the
8741    // wrong class.  This can happen with constraints like {xmm0} where the
8742    // target independent register mapper will just pick the first match it can
8743    // find, ignoring the required type.
8744    if (VT == MVT::f32)
8745      Res.second = X86::FR32RegisterClass;
8746    else if (VT == MVT::f64)
8747      Res.second = X86::FR64RegisterClass;
8748    else if (X86::VR128RegisterClass->hasType(VT))
8749      Res.second = X86::VR128RegisterClass;
8750  }
8751
8752  return Res;
8753}
8754
8755//===----------------------------------------------------------------------===//
8756//                           X86 Widen vector type
8757//===----------------------------------------------------------------------===//
8758
8759/// getWidenVectorType: given a vector type, returns the type to widen
8760/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8761/// If there is no vector type that we want to widen to, returns MVT::Other
8762/// When and where to widen is target dependent based on the cost of
8763/// scalarizing vs using the wider vector type.
8764
8765MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
8766  assert(VT.isVector());
8767  if (isTypeLegal(VT))
8768    return VT;
8769
8770  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8771  //       type based on element type.  This would speed up our search (though
8772  //       it may not be worth it since the size of the list is relatively
8773  //       small).
8774  MVT EltVT = VT.getVectorElementType();
8775  unsigned NElts = VT.getVectorNumElements();
8776
8777  // On X86, it make sense to widen any vector wider than 1
8778  if (NElts <= 1)
8779    return MVT::Other;
8780
8781  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8782       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8783    MVT SVT = (MVT::SimpleValueType)nVT;
8784
8785    if (isTypeLegal(SVT) &&
8786        SVT.getVectorElementType() == EltVT &&
8787        SVT.getVectorNumElements() > NElts)
8788      return SVT;
8789  }
8790  return MVT::Other;
8791}
8792