X86FastISel.cpp revision 219077
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86RegisterInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/CallingConv.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/Analysis.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/FunctionLoweringInfo.h"
29#include "llvm/CodeGen/MachineConstantPool.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/GetElementPtrTypeIterator.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38namespace {
39
40class X86FastISel : public FastISel {
41  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
42  /// make the right decision when generating code for different targets.
43  const X86Subtarget *Subtarget;
44
45  /// StackPtr - Register used as the stack pointer.
46  ///
47  unsigned StackPtr;
48
49  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
50  /// floating point ops.
51  /// When SSE is available, use it for f32 operations.
52  /// When SSE2 is available, use it for f64 operations.
53  bool X86ScalarSSEf64;
54  bool X86ScalarSSEf32;
55
56public:
57  explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) {
58    Subtarget = &TM.getSubtarget<X86Subtarget>();
59    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
60    X86ScalarSSEf64 = Subtarget->hasSSE2();
61    X86ScalarSSEf32 = Subtarget->hasSSE1();
62  }
63
64  virtual bool TargetSelectInstruction(const Instruction *I);
65
66  /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
67  /// vreg is being provided by the specified load instruction.  If possible,
68  /// try to fold the load as an operand to the instruction, returning true if
69  /// possible.
70  virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
71                             const LoadInst *LI);
72
73#include "X86GenFastISel.inc"
74
75private:
76  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
77
78  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
79
80  bool X86FastEmitStore(EVT VT, const Value *Val,
81                        const X86AddressMode &AM);
82  bool X86FastEmitStore(EVT VT, unsigned Val,
83                        const X86AddressMode &AM);
84
85  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
86                         unsigned &ResultReg);
87
88  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
89  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
90
91  bool X86SelectLoad(const Instruction *I);
92
93  bool X86SelectStore(const Instruction *I);
94
95  bool X86SelectRet(const Instruction *I);
96
97  bool X86SelectCmp(const Instruction *I);
98
99  bool X86SelectZExt(const Instruction *I);
100
101  bool X86SelectBranch(const Instruction *I);
102
103  bool X86SelectShift(const Instruction *I);
104
105  bool X86SelectSelect(const Instruction *I);
106
107  bool X86SelectTrunc(const Instruction *I);
108
109  bool X86SelectFPExt(const Instruction *I);
110  bool X86SelectFPTrunc(const Instruction *I);
111
112  bool X86SelectExtractValue(const Instruction *I);
113
114  bool X86VisitIntrinsicCall(const IntrinsicInst &I);
115  bool X86SelectCall(const Instruction *I);
116
117  const X86InstrInfo *getInstrInfo() const {
118    return getTargetMachine()->getInstrInfo();
119  }
120  const X86TargetMachine *getTargetMachine() const {
121    return static_cast<const X86TargetMachine *>(&TM);
122  }
123
124  unsigned TargetMaterializeConstant(const Constant *C);
125
126  unsigned TargetMaterializeAlloca(const AllocaInst *C);
127
128  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
129  /// computed in an SSE register, not on the X87 floating point stack.
130  bool isScalarFPTypeInSSEReg(EVT VT) const {
131    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
132      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
133  }
134
135  bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
136};
137
138} // end anonymous namespace.
139
140bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
141  EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
142  if (evt == MVT::Other || !evt.isSimple())
143    // Unhandled type. Halt "fast" selection and bail.
144    return false;
145
146  VT = evt.getSimpleVT();
147  // For now, require SSE/SSE2 for performing floating-point operations,
148  // since x87 requires additional work.
149  if (VT == MVT::f64 && !X86ScalarSSEf64)
150     return false;
151  if (VT == MVT::f32 && !X86ScalarSSEf32)
152     return false;
153  // Similarly, no f80 support yet.
154  if (VT == MVT::f80)
155    return false;
156  // We only handle legal types. For example, on x86-32 the instruction
157  // selector contains all of the 64-bit instructions from x86-64,
158  // under the assumption that i64 won't be used if the target doesn't
159  // support it.
160  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
161}
162
163#include "X86GenCallingConv.inc"
164
165/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
166/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
167/// Return true and the result register by reference if it is possible.
168bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
169                                  unsigned &ResultReg) {
170  // Get opcode and regclass of the output for the given load instruction.
171  unsigned Opc = 0;
172  const TargetRegisterClass *RC = NULL;
173  switch (VT.getSimpleVT().SimpleTy) {
174  default: return false;
175  case MVT::i1:
176  case MVT::i8:
177    Opc = X86::MOV8rm;
178    RC  = X86::GR8RegisterClass;
179    break;
180  case MVT::i16:
181    Opc = X86::MOV16rm;
182    RC  = X86::GR16RegisterClass;
183    break;
184  case MVT::i32:
185    Opc = X86::MOV32rm;
186    RC  = X86::GR32RegisterClass;
187    break;
188  case MVT::i64:
189    // Must be in x86-64 mode.
190    Opc = X86::MOV64rm;
191    RC  = X86::GR64RegisterClass;
192    break;
193  case MVT::f32:
194    if (Subtarget->hasSSE1()) {
195      Opc = X86::MOVSSrm;
196      RC  = X86::FR32RegisterClass;
197    } else {
198      Opc = X86::LD_Fp32m;
199      RC  = X86::RFP32RegisterClass;
200    }
201    break;
202  case MVT::f64:
203    if (Subtarget->hasSSE2()) {
204      Opc = X86::MOVSDrm;
205      RC  = X86::FR64RegisterClass;
206    } else {
207      Opc = X86::LD_Fp64m;
208      RC  = X86::RFP64RegisterClass;
209    }
210    break;
211  case MVT::f80:
212    // No f80 support yet.
213    return false;
214  }
215
216  ResultReg = createResultReg(RC);
217  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
218                         DL, TII.get(Opc), ResultReg), AM);
219  return true;
220}
221
222/// X86FastEmitStore - Emit a machine instruction to store a value Val of
223/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
224/// and a displacement offset, or a GlobalAddress,
225/// i.e. V. Return true if it is possible.
226bool
227X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
228                              const X86AddressMode &AM) {
229  // Get opcode and regclass of the output for the given store instruction.
230  unsigned Opc = 0;
231  switch (VT.getSimpleVT().SimpleTy) {
232  case MVT::f80: // No f80 support yet.
233  default: return false;
234  case MVT::i1: {
235    // Mask out all but lowest bit.
236    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
237    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
238            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
239    Val = AndResult;
240  }
241  // FALLTHROUGH, handling i1 as i8.
242  case MVT::i8:  Opc = X86::MOV8mr;  break;
243  case MVT::i16: Opc = X86::MOV16mr; break;
244  case MVT::i32: Opc = X86::MOV32mr; break;
245  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
246  case MVT::f32:
247    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
248    break;
249  case MVT::f64:
250    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
251    break;
252  }
253
254  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
255                         DL, TII.get(Opc)), AM).addReg(Val);
256  return true;
257}
258
259bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
260                                   const X86AddressMode &AM) {
261  // Handle 'null' like i32/i64 0.
262  if (isa<ConstantPointerNull>(Val))
263    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
264
265  // If this is a store of a simple constant, fold the constant into the store.
266  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
267    unsigned Opc = 0;
268    bool Signed = true;
269    switch (VT.getSimpleVT().SimpleTy) {
270    default: break;
271    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
272    case MVT::i8:  Opc = X86::MOV8mi;  break;
273    case MVT::i16: Opc = X86::MOV16mi; break;
274    case MVT::i32: Opc = X86::MOV32mi; break;
275    case MVT::i64:
276      // Must be a 32-bit sign extended value.
277      if ((int)CI->getSExtValue() == CI->getSExtValue())
278        Opc = X86::MOV64mi32;
279      break;
280    }
281
282    if (Opc) {
283      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
284                             DL, TII.get(Opc)), AM)
285                             .addImm(Signed ? (uint64_t) CI->getSExtValue() :
286                                              CI->getZExtValue());
287      return true;
288    }
289  }
290
291  unsigned ValReg = getRegForValue(Val);
292  if (ValReg == 0)
293    return false;
294
295  return X86FastEmitStore(VT, ValReg, AM);
296}
297
298/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
299/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
300/// ISD::SIGN_EXTEND).
301bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
302                                    unsigned Src, EVT SrcVT,
303                                    unsigned &ResultReg) {
304  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
305                           Src, /*TODO: Kill=*/false);
306
307  if (RR != 0) {
308    ResultReg = RR;
309    return true;
310  } else
311    return false;
312}
313
314/// X86SelectAddress - Attempt to fill in an address from the given value.
315///
316bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
317  const User *U = NULL;
318  unsigned Opcode = Instruction::UserOp1;
319  if (const Instruction *I = dyn_cast<Instruction>(V)) {
320    // Don't walk into other basic blocks; it's possible we haven't
321    // visited them yet, so the instructions may not yet be assigned
322    // virtual registers.
323    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
324        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
325      Opcode = I->getOpcode();
326      U = I;
327    }
328  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
329    Opcode = C->getOpcode();
330    U = C;
331  }
332
333  if (const PointerType *Ty = dyn_cast<PointerType>(V->getType()))
334    if (Ty->getAddressSpace() > 255)
335      // Fast instruction selection doesn't support the special
336      // address spaces.
337      return false;
338
339  switch (Opcode) {
340  default: break;
341  case Instruction::BitCast:
342    // Look past bitcasts.
343    return X86SelectAddress(U->getOperand(0), AM);
344
345  case Instruction::IntToPtr:
346    // Look past no-op inttoptrs.
347    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
348      return X86SelectAddress(U->getOperand(0), AM);
349    break;
350
351  case Instruction::PtrToInt:
352    // Look past no-op ptrtoints.
353    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
354      return X86SelectAddress(U->getOperand(0), AM);
355    break;
356
357  case Instruction::Alloca: {
358    // Do static allocas.
359    const AllocaInst *A = cast<AllocaInst>(V);
360    DenseMap<const AllocaInst*, int>::iterator SI =
361      FuncInfo.StaticAllocaMap.find(A);
362    if (SI != FuncInfo.StaticAllocaMap.end()) {
363      AM.BaseType = X86AddressMode::FrameIndexBase;
364      AM.Base.FrameIndex = SI->second;
365      return true;
366    }
367    break;
368  }
369
370  case Instruction::Add: {
371    // Adds of constants are common and easy enough.
372    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
373      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
374      // They have to fit in the 32-bit signed displacement field though.
375      if (isInt<32>(Disp)) {
376        AM.Disp = (uint32_t)Disp;
377        return X86SelectAddress(U->getOperand(0), AM);
378      }
379    }
380    break;
381  }
382
383  case Instruction::GetElementPtr: {
384    X86AddressMode SavedAM = AM;
385
386    // Pattern-match simple GEPs.
387    uint64_t Disp = (int32_t)AM.Disp;
388    unsigned IndexReg = AM.IndexReg;
389    unsigned Scale = AM.Scale;
390    gep_type_iterator GTI = gep_type_begin(U);
391    // Iterate through the indices, folding what we can. Constants can be
392    // folded, and one dynamic index can be handled, if the scale is supported.
393    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
394         i != e; ++i, ++GTI) {
395      const Value *Op = *i;
396      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
397        const StructLayout *SL = TD.getStructLayout(STy);
398        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
399        Disp += SL->getElementOffset(Idx);
400      } else {
401        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
402        SmallVector<const Value *, 4> Worklist;
403        Worklist.push_back(Op);
404        do {
405          Op = Worklist.pop_back_val();
406          if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
407            // Constant-offset addressing.
408            Disp += CI->getSExtValue() * S;
409          } else if (isa<AddOperator>(Op) &&
410                     isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
411            // An add with a constant operand. Fold the constant.
412            ConstantInt *CI =
413              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
414            Disp += CI->getSExtValue() * S;
415            // Add the other operand back to the work list.
416            Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
417          } else if (IndexReg == 0 &&
418                     (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
419                     (S == 1 || S == 2 || S == 4 || S == 8)) {
420            // Scaled-index addressing.
421            Scale = S;
422            IndexReg = getRegForGEPIndex(Op).first;
423            if (IndexReg == 0)
424              return false;
425          } else
426            // Unsupported.
427            goto unsupported_gep;
428        } while (!Worklist.empty());
429      }
430    }
431    // Check for displacement overflow.
432    if (!isInt<32>(Disp))
433      break;
434    // Ok, the GEP indices were covered by constant-offset and scaled-index
435    // addressing. Update the address state and move on to examining the base.
436    AM.IndexReg = IndexReg;
437    AM.Scale = Scale;
438    AM.Disp = (uint32_t)Disp;
439    if (X86SelectAddress(U->getOperand(0), AM))
440      return true;
441
442    // If we couldn't merge the sub value into this addr mode, revert back to
443    // our address and just match the value instead of completely failing.
444    AM = SavedAM;
445    break;
446  unsupported_gep:
447    // Ok, the GEP indices weren't all covered.
448    break;
449  }
450  }
451
452  // Handle constant address.
453  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
454    // Can't handle alternate code models yet.
455    if (TM.getCodeModel() != CodeModel::Small)
456      return false;
457
458    // RIP-relative addresses can't have additional register operands.
459    if (Subtarget->isPICStyleRIPRel() &&
460        (AM.Base.Reg != 0 || AM.IndexReg != 0))
461      return false;
462
463    // Can't handle TLS yet.
464    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
465      if (GVar->isThreadLocal())
466        return false;
467
468    // Okay, we've committed to selecting this global. Set up the basic address.
469    AM.GV = GV;
470
471    // Allow the subtarget to classify the global.
472    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
473
474    // If this reference is relative to the pic base, set it now.
475    if (isGlobalRelativeToPICBase(GVFlags)) {
476      // FIXME: How do we know Base.Reg is free??
477      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
478    }
479
480    // Unless the ABI requires an extra load, return a direct reference to
481    // the global.
482    if (!isGlobalStubReference(GVFlags)) {
483      if (Subtarget->isPICStyleRIPRel()) {
484        // Use rip-relative addressing if we can.  Above we verified that the
485        // base and index registers are unused.
486        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
487        AM.Base.Reg = X86::RIP;
488      }
489      AM.GVOpFlags = GVFlags;
490      return true;
491    }
492
493    // Ok, we need to do a load from a stub.  If we've already loaded from this
494    // stub, reuse the loaded pointer, otherwise emit the load now.
495    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
496    unsigned LoadReg;
497    if (I != LocalValueMap.end() && I->second != 0) {
498      LoadReg = I->second;
499    } else {
500      // Issue load from stub.
501      unsigned Opc = 0;
502      const TargetRegisterClass *RC = NULL;
503      X86AddressMode StubAM;
504      StubAM.Base.Reg = AM.Base.Reg;
505      StubAM.GV = GV;
506      StubAM.GVOpFlags = GVFlags;
507
508      // Prepare for inserting code in the local-value area.
509      SavePoint SaveInsertPt = enterLocalValueArea();
510
511      if (TLI.getPointerTy() == MVT::i64) {
512        Opc = X86::MOV64rm;
513        RC  = X86::GR64RegisterClass;
514
515        if (Subtarget->isPICStyleRIPRel())
516          StubAM.Base.Reg = X86::RIP;
517      } else {
518        Opc = X86::MOV32rm;
519        RC  = X86::GR32RegisterClass;
520      }
521
522      LoadReg = createResultReg(RC);
523      MachineInstrBuilder LoadMI =
524        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
525      addFullAddress(LoadMI, StubAM);
526
527      // Ok, back to normal mode.
528      leaveLocalValueArea(SaveInsertPt);
529
530      // Prevent loading GV stub multiple times in same MBB.
531      LocalValueMap[V] = LoadReg;
532    }
533
534    // Now construct the final address. Note that the Disp, Scale,
535    // and Index values may already be set here.
536    AM.Base.Reg = LoadReg;
537    AM.GV = 0;
538    return true;
539  }
540
541  // If all else fails, try to materialize the value in a register.
542  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
543    if (AM.Base.Reg == 0) {
544      AM.Base.Reg = getRegForValue(V);
545      return AM.Base.Reg != 0;
546    }
547    if (AM.IndexReg == 0) {
548      assert(AM.Scale == 1 && "Scale with no index!");
549      AM.IndexReg = getRegForValue(V);
550      return AM.IndexReg != 0;
551    }
552  }
553
554  return false;
555}
556
557/// X86SelectCallAddress - Attempt to fill in an address from the given value.
558///
559bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
560  const User *U = NULL;
561  unsigned Opcode = Instruction::UserOp1;
562  if (const Instruction *I = dyn_cast<Instruction>(V)) {
563    Opcode = I->getOpcode();
564    U = I;
565  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
566    Opcode = C->getOpcode();
567    U = C;
568  }
569
570  switch (Opcode) {
571  default: break;
572  case Instruction::BitCast:
573    // Look past bitcasts.
574    return X86SelectCallAddress(U->getOperand(0), AM);
575
576  case Instruction::IntToPtr:
577    // Look past no-op inttoptrs.
578    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
579      return X86SelectCallAddress(U->getOperand(0), AM);
580    break;
581
582  case Instruction::PtrToInt:
583    // Look past no-op ptrtoints.
584    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
585      return X86SelectCallAddress(U->getOperand(0), AM);
586    break;
587  }
588
589  // Handle constant address.
590  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
591    // Can't handle alternate code models yet.
592    if (TM.getCodeModel() != CodeModel::Small)
593      return false;
594
595    // RIP-relative addresses can't have additional register operands.
596    if (Subtarget->isPICStyleRIPRel() &&
597        (AM.Base.Reg != 0 || AM.IndexReg != 0))
598      return false;
599
600    // Can't handle DLLImport.
601    if (GV->hasDLLImportLinkage())
602      return false;
603
604    // Can't handle TLS.
605    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
606      if (GVar->isThreadLocal())
607        return false;
608
609    // Okay, we've committed to selecting this global. Set up the basic address.
610    AM.GV = GV;
611
612    // No ABI requires an extra load for anything other than DLLImport, which
613    // we rejected above. Return a direct reference to the global.
614    if (Subtarget->isPICStyleRIPRel()) {
615      // Use rip-relative addressing if we can.  Above we verified that the
616      // base and index registers are unused.
617      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
618      AM.Base.Reg = X86::RIP;
619    } else if (Subtarget->isPICStyleStubPIC()) {
620      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
621    } else if (Subtarget->isPICStyleGOT()) {
622      AM.GVOpFlags = X86II::MO_GOTOFF;
623    }
624
625    return true;
626  }
627
628  // If all else fails, try to materialize the value in a register.
629  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
630    if (AM.Base.Reg == 0) {
631      AM.Base.Reg = getRegForValue(V);
632      return AM.Base.Reg != 0;
633    }
634    if (AM.IndexReg == 0) {
635      assert(AM.Scale == 1 && "Scale with no index!");
636      AM.IndexReg = getRegForValue(V);
637      return AM.IndexReg != 0;
638    }
639  }
640
641  return false;
642}
643
644
645/// X86SelectStore - Select and emit code to implement store instructions.
646bool X86FastISel::X86SelectStore(const Instruction *I) {
647  MVT VT;
648  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
649    return false;
650
651  X86AddressMode AM;
652  if (!X86SelectAddress(I->getOperand(1), AM))
653    return false;
654
655  return X86FastEmitStore(VT, I->getOperand(0), AM);
656}
657
658/// X86SelectRet - Select and emit code to implement ret instructions.
659bool X86FastISel::X86SelectRet(const Instruction *I) {
660  const ReturnInst *Ret = cast<ReturnInst>(I);
661  const Function &F = *I->getParent()->getParent();
662
663  if (!FuncInfo.CanLowerReturn)
664    return false;
665
666  CallingConv::ID CC = F.getCallingConv();
667  if (CC != CallingConv::C &&
668      CC != CallingConv::Fast &&
669      CC != CallingConv::X86_FastCall)
670    return false;
671
672  if (Subtarget->isTargetWin64())
673    return false;
674
675  // Don't handle popping bytes on return for now.
676  if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
677        ->getBytesToPopOnReturn() != 0)
678    return 0;
679
680  // fastcc with -tailcallopt is intended to provide a guaranteed
681  // tail call optimization. Fastisel doesn't know how to do that.
682  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
683    return false;
684
685  // Let SDISel handle vararg functions.
686  if (F.isVarArg())
687    return false;
688
689  if (Ret->getNumOperands() > 0) {
690    SmallVector<ISD::OutputArg, 4> Outs;
691    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
692                  Outs, TLI);
693
694    // Analyze operands of the call, assigning locations to each operand.
695    SmallVector<CCValAssign, 16> ValLocs;
696    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
697    CCInfo.AnalyzeReturn(Outs, RetCC_X86);
698
699    const Value *RV = Ret->getOperand(0);
700    unsigned Reg = getRegForValue(RV);
701    if (Reg == 0)
702      return false;
703
704    // Only handle a single return value for now.
705    if (ValLocs.size() != 1)
706      return false;
707
708    CCValAssign &VA = ValLocs[0];
709
710    // Don't bother handling odd stuff for now.
711    if (VA.getLocInfo() != CCValAssign::Full)
712      return false;
713    // Only handle register returns for now.
714    if (!VA.isRegLoc())
715      return false;
716    // TODO: For now, don't try to handle cases where getLocInfo()
717    // says Full but the types don't match.
718    if (TLI.getValueType(RV->getType()) != VA.getValVT())
719      return false;
720
721    // The calling-convention tables for x87 returns don't tell
722    // the whole story.
723    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
724      return false;
725
726    // Make the copy.
727    unsigned SrcReg = Reg + VA.getValNo();
728    unsigned DstReg = VA.getLocReg();
729    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
730    // Avoid a cross-class copy. This is very unlikely.
731    if (!SrcRC->contains(DstReg))
732      return false;
733    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
734            DstReg).addReg(SrcReg);
735
736    // Mark the register as live out of the function.
737    MRI.addLiveOut(VA.getLocReg());
738  }
739
740  // Now emit the RET.
741  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
742  return true;
743}
744
745/// X86SelectLoad - Select and emit code to implement load instructions.
746///
747bool X86FastISel::X86SelectLoad(const Instruction *I)  {
748  MVT VT;
749  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
750    return false;
751
752  X86AddressMode AM;
753  if (!X86SelectAddress(I->getOperand(0), AM))
754    return false;
755
756  unsigned ResultReg = 0;
757  if (X86FastEmitLoad(VT, AM, ResultReg)) {
758    UpdateValueMap(I, ResultReg);
759    return true;
760  }
761  return false;
762}
763
764static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
765  switch (VT.getSimpleVT().SimpleTy) {
766  default:       return 0;
767  case MVT::i8:  return X86::CMP8rr;
768  case MVT::i16: return X86::CMP16rr;
769  case MVT::i32: return X86::CMP32rr;
770  case MVT::i64: return X86::CMP64rr;
771  case MVT::f32: return Subtarget->hasSSE1() ? X86::UCOMISSrr : 0;
772  case MVT::f64: return Subtarget->hasSSE2() ? X86::UCOMISDrr : 0;
773  }
774}
775
776/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
777/// of the comparison, return an opcode that works for the compare (e.g.
778/// CMP32ri) otherwise return 0.
779static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
780  switch (VT.getSimpleVT().SimpleTy) {
781  // Otherwise, we can't fold the immediate into this comparison.
782  default: return 0;
783  case MVT::i8: return X86::CMP8ri;
784  case MVT::i16: return X86::CMP16ri;
785  case MVT::i32: return X86::CMP32ri;
786  case MVT::i64:
787    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
788    // field.
789    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
790      return X86::CMP64ri32;
791    return 0;
792  }
793}
794
795bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
796                                     EVT VT) {
797  unsigned Op0Reg = getRegForValue(Op0);
798  if (Op0Reg == 0) return false;
799
800  // Handle 'null' like i32/i64 0.
801  if (isa<ConstantPointerNull>(Op1))
802    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
803
804  // We have two options: compare with register or immediate.  If the RHS of
805  // the compare is an immediate that we can fold into this compare, use
806  // CMPri, otherwise use CMPrr.
807  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
808    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
809      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
810        .addReg(Op0Reg)
811        .addImm(Op1C->getSExtValue());
812      return true;
813    }
814  }
815
816  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
817  if (CompareOpc == 0) return false;
818
819  unsigned Op1Reg = getRegForValue(Op1);
820  if (Op1Reg == 0) return false;
821  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
822    .addReg(Op0Reg)
823    .addReg(Op1Reg);
824
825  return true;
826}
827
828bool X86FastISel::X86SelectCmp(const Instruction *I) {
829  const CmpInst *CI = cast<CmpInst>(I);
830
831  MVT VT;
832  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
833    return false;
834
835  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
836  unsigned SetCCOpc;
837  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
838  switch (CI->getPredicate()) {
839  case CmpInst::FCMP_OEQ: {
840    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
841      return false;
842
843    unsigned EReg = createResultReg(&X86::GR8RegClass);
844    unsigned NPReg = createResultReg(&X86::GR8RegClass);
845    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
846    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
847            TII.get(X86::SETNPr), NPReg);
848    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
849            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
850    UpdateValueMap(I, ResultReg);
851    return true;
852  }
853  case CmpInst::FCMP_UNE: {
854    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
855      return false;
856
857    unsigned NEReg = createResultReg(&X86::GR8RegClass);
858    unsigned PReg = createResultReg(&X86::GR8RegClass);
859    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
860            TII.get(X86::SETNEr), NEReg);
861    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
862            TII.get(X86::SETPr), PReg);
863    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
864            TII.get(X86::OR8rr), ResultReg)
865      .addReg(PReg).addReg(NEReg);
866    UpdateValueMap(I, ResultReg);
867    return true;
868  }
869  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
870  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
871  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
872  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
873  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
874  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
875  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
876  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
877  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
878  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
879  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
880  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
881
882  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
883  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
884  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
885  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
886  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
887  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
888  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
889  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
890  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
891  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
892  default:
893    return false;
894  }
895
896  const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
897  if (SwapArgs)
898    std::swap(Op0, Op1);
899
900  // Emit a compare of Op0/Op1.
901  if (!X86FastEmitCompare(Op0, Op1, VT))
902    return false;
903
904  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
905  UpdateValueMap(I, ResultReg);
906  return true;
907}
908
909bool X86FastISel::X86SelectZExt(const Instruction *I) {
910  // Handle zero-extension from i1 to i8, which is common.
911  if (I->getType()->isIntegerTy(8) &&
912      I->getOperand(0)->getType()->isIntegerTy(1)) {
913    unsigned ResultReg = getRegForValue(I->getOperand(0));
914    if (ResultReg == 0) return false;
915    // Set the high bits to zero.
916    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
917    if (ResultReg == 0) return false;
918    UpdateValueMap(I, ResultReg);
919    return true;
920  }
921
922  return false;
923}
924
925
926bool X86FastISel::X86SelectBranch(const Instruction *I) {
927  // Unconditional branches are selected by tablegen-generated code.
928  // Handle a conditional branch.
929  const BranchInst *BI = cast<BranchInst>(I);
930  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
931  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
932
933  // Fold the common case of a conditional branch with a comparison
934  // in the same block (values defined on other blocks may not have
935  // initialized registers).
936  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
937    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
938      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
939
940      // Try to take advantage of fallthrough opportunities.
941      CmpInst::Predicate Predicate = CI->getPredicate();
942      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
943        std::swap(TrueMBB, FalseMBB);
944        Predicate = CmpInst::getInversePredicate(Predicate);
945      }
946
947      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
948      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
949
950      switch (Predicate) {
951      case CmpInst::FCMP_OEQ:
952        std::swap(TrueMBB, FalseMBB);
953        Predicate = CmpInst::FCMP_UNE;
954        // FALL THROUGH
955      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
956      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
957      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
958      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
959      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
960      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
961      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
962      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
963      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
964      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
965      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
966      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
967      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
968
969      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
970      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
971      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
972      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
973      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
974      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
975      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
976      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
977      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
978      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
979      default:
980        return false;
981      }
982
983      const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
984      if (SwapArgs)
985        std::swap(Op0, Op1);
986
987      // Emit a compare of the LHS and RHS, setting the flags.
988      if (!X86FastEmitCompare(Op0, Op1, VT))
989        return false;
990
991      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
992        .addMBB(TrueMBB);
993
994      if (Predicate == CmpInst::FCMP_UNE) {
995        // X86 requires a second branch to handle UNE (and OEQ,
996        // which is mapped to UNE above).
997        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
998          .addMBB(TrueMBB);
999      }
1000
1001      FastEmitBranch(FalseMBB, DL);
1002      FuncInfo.MBB->addSuccessor(TrueMBB);
1003      return true;
1004    }
1005  } else if (ExtractValueInst *EI =
1006             dyn_cast<ExtractValueInst>(BI->getCondition())) {
1007    // Check to see if the branch instruction is from an "arithmetic with
1008    // overflow" intrinsic. The main way these intrinsics are used is:
1009    //
1010    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
1011    //   %sum = extractvalue { i32, i1 } %t, 0
1012    //   %obit = extractvalue { i32, i1 } %t, 1
1013    //   br i1 %obit, label %overflow, label %normal
1014    //
1015    // The %sum and %obit are converted in an ADD and a SETO/SETB before
1016    // reaching the branch. Therefore, we search backwards through the MBB
1017    // looking for the SETO/SETB instruction. If an instruction modifies the
1018    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
1019    // convert the branch into a JO/JB instruction.
1020    if (const IntrinsicInst *CI =
1021          dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
1022      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
1023          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
1024        const MachineInstr *SetMI = 0;
1025        unsigned Reg = getRegForValue(EI);
1026
1027        for (MachineBasicBlock::const_reverse_iterator
1028               RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend();
1029             RI != RE; ++RI) {
1030          const MachineInstr &MI = *RI;
1031
1032          if (MI.definesRegister(Reg)) {
1033            if (MI.isCopy()) {
1034              Reg = MI.getOperand(1).getReg();
1035              continue;
1036            }
1037
1038            SetMI = &MI;
1039            break;
1040          }
1041
1042          const TargetInstrDesc &TID = MI.getDesc();
1043          if (TID.hasImplicitDefOfPhysReg(X86::EFLAGS) ||
1044              MI.hasUnmodeledSideEffects())
1045            break;
1046        }
1047
1048        if (SetMI) {
1049          unsigned OpCode = SetMI->getOpcode();
1050
1051          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
1052            BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1053                    TII.get(OpCode == X86::SETOr ?  X86::JO_4 : X86::JB_4))
1054              .addMBB(TrueMBB);
1055            FastEmitBranch(FalseMBB, DL);
1056            FuncInfo.MBB->addSuccessor(TrueMBB);
1057            return true;
1058          }
1059        }
1060      }
1061    }
1062  }
1063
1064  // Otherwise do a clumsy setcc and re-test it.
1065  unsigned OpReg = getRegForValue(BI->getCondition());
1066  if (OpReg == 0) return false;
1067
1068  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1069    .addReg(OpReg).addReg(OpReg);
1070  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
1071    .addMBB(TrueMBB);
1072  FastEmitBranch(FalseMBB, DL);
1073  FuncInfo.MBB->addSuccessor(TrueMBB);
1074  return true;
1075}
1076
1077bool X86FastISel::X86SelectShift(const Instruction *I) {
1078  unsigned CReg = 0, OpReg = 0, OpImm = 0;
1079  const TargetRegisterClass *RC = NULL;
1080  if (I->getType()->isIntegerTy(8)) {
1081    CReg = X86::CL;
1082    RC = &X86::GR8RegClass;
1083    switch (I->getOpcode()) {
1084    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
1085    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
1086    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
1087    default: return false;
1088    }
1089  } else if (I->getType()->isIntegerTy(16)) {
1090    CReg = X86::CX;
1091    RC = &X86::GR16RegClass;
1092    switch (I->getOpcode()) {
1093    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
1094    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
1095    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
1096    default: return false;
1097    }
1098  } else if (I->getType()->isIntegerTy(32)) {
1099    CReg = X86::ECX;
1100    RC = &X86::GR32RegClass;
1101    switch (I->getOpcode()) {
1102    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
1103    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
1104    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
1105    default: return false;
1106    }
1107  } else if (I->getType()->isIntegerTy(64)) {
1108    CReg = X86::RCX;
1109    RC = &X86::GR64RegClass;
1110    switch (I->getOpcode()) {
1111    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
1112    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
1113    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
1114    default: return false;
1115    }
1116  } else {
1117    return false;
1118  }
1119
1120  MVT VT;
1121  if (!isTypeLegal(I->getType(), VT))
1122    return false;
1123
1124  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1125  if (Op0Reg == 0) return false;
1126
1127  // Fold immediate in shl(x,3).
1128  if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1129    unsigned ResultReg = createResultReg(RC);
1130    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm),
1131            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1132    UpdateValueMap(I, ResultReg);
1133    return true;
1134  }
1135
1136  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1137  if (Op1Reg == 0) return false;
1138  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1139          CReg).addReg(Op1Reg);
1140
1141  // The shift instruction uses X86::CL. If we defined a super-register
1142  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1143  if (CReg != X86::CL)
1144    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1145            TII.get(TargetOpcode::KILL), X86::CL)
1146      .addReg(CReg, RegState::Kill);
1147
1148  unsigned ResultReg = createResultReg(RC);
1149  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
1150    .addReg(Op0Reg);
1151  UpdateValueMap(I, ResultReg);
1152  return true;
1153}
1154
1155bool X86FastISel::X86SelectSelect(const Instruction *I) {
1156  MVT VT;
1157  if (!isTypeLegal(I->getType(), VT))
1158    return false;
1159
1160  // We only use cmov here, if we don't have a cmov instruction bail.
1161  if (!Subtarget->hasCMov()) return false;
1162
1163  unsigned Opc = 0;
1164  const TargetRegisterClass *RC = NULL;
1165  if (VT == MVT::i16) {
1166    Opc = X86::CMOVE16rr;
1167    RC = &X86::GR16RegClass;
1168  } else if (VT == MVT::i32) {
1169    Opc = X86::CMOVE32rr;
1170    RC = &X86::GR32RegClass;
1171  } else if (VT == MVT::i64) {
1172    Opc = X86::CMOVE64rr;
1173    RC = &X86::GR64RegClass;
1174  } else {
1175    return false;
1176  }
1177
1178  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1179  if (Op0Reg == 0) return false;
1180  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1181  if (Op1Reg == 0) return false;
1182  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1183  if (Op2Reg == 0) return false;
1184
1185  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1186    .addReg(Op0Reg).addReg(Op0Reg);
1187  unsigned ResultReg = createResultReg(RC);
1188  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1189    .addReg(Op1Reg).addReg(Op2Reg);
1190  UpdateValueMap(I, ResultReg);
1191  return true;
1192}
1193
1194bool X86FastISel::X86SelectFPExt(const Instruction *I) {
1195  // fpext from float to double.
1196  if (Subtarget->hasSSE2() &&
1197      I->getType()->isDoubleTy()) {
1198    const Value *V = I->getOperand(0);
1199    if (V->getType()->isFloatTy()) {
1200      unsigned OpReg = getRegForValue(V);
1201      if (OpReg == 0) return false;
1202      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1203      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1204              TII.get(X86::CVTSS2SDrr), ResultReg)
1205        .addReg(OpReg);
1206      UpdateValueMap(I, ResultReg);
1207      return true;
1208    }
1209  }
1210
1211  return false;
1212}
1213
1214bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
1215  if (Subtarget->hasSSE2()) {
1216    if (I->getType()->isFloatTy()) {
1217      const Value *V = I->getOperand(0);
1218      if (V->getType()->isDoubleTy()) {
1219        unsigned OpReg = getRegForValue(V);
1220        if (OpReg == 0) return false;
1221        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1222        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1223                TII.get(X86::CVTSD2SSrr), ResultReg)
1224          .addReg(OpReg);
1225        UpdateValueMap(I, ResultReg);
1226        return true;
1227      }
1228    }
1229  }
1230
1231  return false;
1232}
1233
1234bool X86FastISel::X86SelectTrunc(const Instruction *I) {
1235  if (Subtarget->is64Bit())
1236    // All other cases should be handled by the tblgen generated code.
1237    return false;
1238  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1239  EVT DstVT = TLI.getValueType(I->getType());
1240
1241  // This code only handles truncation to byte right now.
1242  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1243    // All other cases should be handled by the tblgen generated code.
1244    return false;
1245  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1246    // All other cases should be handled by the tblgen generated code.
1247    return false;
1248
1249  unsigned InputReg = getRegForValue(I->getOperand(0));
1250  if (!InputReg)
1251    // Unhandled operand.  Halt "fast" selection and bail.
1252    return false;
1253
1254  // First issue a copy to GR16_ABCD or GR32_ABCD.
1255  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1256    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1257  unsigned CopyReg = createResultReg(CopyRC);
1258  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1259          CopyReg).addReg(InputReg);
1260
1261  // Then issue an extract_subreg.
1262  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1263                                                  CopyReg, /*Kill=*/true,
1264                                                  X86::sub_8bit);
1265  if (!ResultReg)
1266    return false;
1267
1268  UpdateValueMap(I, ResultReg);
1269  return true;
1270}
1271
1272bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
1273  const ExtractValueInst *EI = cast<ExtractValueInst>(I);
1274  const Value *Agg = EI->getAggregateOperand();
1275
1276  if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1277    switch (CI->getIntrinsicID()) {
1278    default: break;
1279    case Intrinsic::sadd_with_overflow:
1280    case Intrinsic::uadd_with_overflow: {
1281      // Cheat a little. We know that the registers for "add" and "seto" are
1282      // allocated sequentially. However, we only keep track of the register
1283      // for "add" in the value map. Use extractvalue's index to get the
1284      // correct register for "seto".
1285      unsigned OpReg = getRegForValue(Agg);
1286      if (OpReg == 0)
1287        return false;
1288      UpdateValueMap(I, OpReg + *EI->idx_begin());
1289      return true;
1290    }
1291    }
1292  }
1293
1294  return false;
1295}
1296
1297bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
1298  // FIXME: Handle more intrinsics.
1299  switch (I.getIntrinsicID()) {
1300  default: return false;
1301  case Intrinsic::stackprotector: {
1302    // Emit code inline code to store the stack guard onto the stack.
1303    EVT PtrTy = TLI.getPointerTy();
1304
1305    const Value *Op1 = I.getArgOperand(0); // The guard's value.
1306    const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
1307
1308    // Grab the frame index.
1309    X86AddressMode AM;
1310    if (!X86SelectAddress(Slot, AM)) return false;
1311
1312    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1313
1314    return true;
1315  }
1316  case Intrinsic::objectsize: {
1317    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
1318    const Type *Ty = I.getCalledFunction()->getReturnType();
1319
1320    assert(CI && "Non-constant type in Intrinsic::objectsize?");
1321
1322    MVT VT;
1323    if (!isTypeLegal(Ty, VT))
1324      return false;
1325
1326    unsigned OpC = 0;
1327    if (VT == MVT::i32)
1328      OpC = X86::MOV32ri;
1329    else if (VT == MVT::i64)
1330      OpC = X86::MOV64ri;
1331    else
1332      return false;
1333
1334    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1335    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg).
1336                                  addImm(CI->isZero() ? -1ULL : 0);
1337    UpdateValueMap(&I, ResultReg);
1338    return true;
1339  }
1340  case Intrinsic::dbg_declare: {
1341    const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1342    X86AddressMode AM;
1343    assert(DI->getAddress() && "Null address should be checked earlier!");
1344    if (!X86SelectAddress(DI->getAddress(), AM))
1345      return false;
1346    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1347    // FIXME may need to add RegState::Debug to any registers produced,
1348    // although ESP/EBP should be the only ones at the moment.
1349    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
1350      addImm(0).addMetadata(DI->getVariable());
1351    return true;
1352  }
1353  case Intrinsic::trap: {
1354    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
1355    return true;
1356  }
1357  case Intrinsic::sadd_with_overflow:
1358  case Intrinsic::uadd_with_overflow: {
1359    // Replace "add with overflow" intrinsics with an "add" instruction followed
1360    // by a seto/setc instruction. Later on, when the "extractvalue"
1361    // instructions are encountered, we use the fact that two registers were
1362    // created sequentially to get the correct registers for the "sum" and the
1363    // "overflow bit".
1364    const Function *Callee = I.getCalledFunction();
1365    const Type *RetTy =
1366      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1367
1368    MVT VT;
1369    if (!isTypeLegal(RetTy, VT))
1370      return false;
1371
1372    const Value *Op1 = I.getArgOperand(0);
1373    const Value *Op2 = I.getArgOperand(1);
1374    unsigned Reg1 = getRegForValue(Op1);
1375    unsigned Reg2 = getRegForValue(Op2);
1376
1377    if (Reg1 == 0 || Reg2 == 0)
1378      // FIXME: Handle values *not* in registers.
1379      return false;
1380
1381    unsigned OpC = 0;
1382    if (VT == MVT::i32)
1383      OpC = X86::ADD32rr;
1384    else if (VT == MVT::i64)
1385      OpC = X86::ADD64rr;
1386    else
1387      return false;
1388
1389    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1390    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
1391      .addReg(Reg1).addReg(Reg2);
1392    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1393
1394    // If the add with overflow is an intra-block value then we just want to
1395    // create temporaries for it like normal.  If it is a cross-block value then
1396    // UpdateValueMap will return the cross-block register used.  Since we
1397    // *really* want the value to be live in the register pair known by
1398    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1399    // the cross block case.  In the non-cross-block case, we should just make
1400    // another register for the value.
1401    if (DestReg1 != ResultReg)
1402      ResultReg = DestReg1+1;
1403    else
1404      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1405
1406    unsigned Opc = X86::SETBr;
1407    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1408      Opc = X86::SETOr;
1409    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
1410    return true;
1411  }
1412  }
1413}
1414
1415bool X86FastISel::X86SelectCall(const Instruction *I) {
1416  const CallInst *CI = cast<CallInst>(I);
1417  const Value *Callee = CI->getCalledValue();
1418
1419  // Can't handle inline asm yet.
1420  if (isa<InlineAsm>(Callee))
1421    return false;
1422
1423  // Handle intrinsic calls.
1424  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1425    return X86VisitIntrinsicCall(*II);
1426
1427  // Handle only C and fastcc calling conventions for now.
1428  ImmutableCallSite CS(CI);
1429  CallingConv::ID CC = CS.getCallingConv();
1430  if (CC != CallingConv::C &&
1431      CC != CallingConv::Fast &&
1432      CC != CallingConv::X86_FastCall)
1433    return false;
1434
1435  // fastcc with -tailcallopt is intended to provide a guaranteed
1436  // tail call optimization. Fastisel doesn't know how to do that.
1437  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1438    return false;
1439
1440  // Let SDISel handle vararg functions.
1441  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1442  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1443  if (FTy->isVarArg())
1444    return false;
1445
1446  // Fast-isel doesn't know about callee-pop yet.
1447  if (Subtarget->IsCalleePop(FTy->isVarArg(), CC))
1448    return false;
1449
1450  // Handle *simple* calls for now.
1451  const Type *RetTy = CS.getType();
1452  MVT RetVT;
1453  if (RetTy->isVoidTy())
1454    RetVT = MVT::isVoid;
1455  else if (!isTypeLegal(RetTy, RetVT, true))
1456    return false;
1457
1458  // Materialize callee address in a register. FIXME: GV address can be
1459  // handled with a CALLpcrel32 instead.
1460  X86AddressMode CalleeAM;
1461  if (!X86SelectCallAddress(Callee, CalleeAM))
1462    return false;
1463  unsigned CalleeOp = 0;
1464  const GlobalValue *GV = 0;
1465  if (CalleeAM.GV != 0) {
1466    GV = CalleeAM.GV;
1467  } else if (CalleeAM.Base.Reg != 0) {
1468    CalleeOp = CalleeAM.Base.Reg;
1469  } else
1470    return false;
1471
1472  // Allow calls which produce i1 results.
1473  bool AndToI1 = false;
1474  if (RetVT == MVT::i1) {
1475    RetVT = MVT::i8;
1476    AndToI1 = true;
1477  }
1478
1479  // Deal with call operands first.
1480  SmallVector<const Value *, 8> ArgVals;
1481  SmallVector<unsigned, 8> Args;
1482  SmallVector<MVT, 8> ArgVTs;
1483  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1484  Args.reserve(CS.arg_size());
1485  ArgVals.reserve(CS.arg_size());
1486  ArgVTs.reserve(CS.arg_size());
1487  ArgFlags.reserve(CS.arg_size());
1488  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1489       i != e; ++i) {
1490    unsigned Arg = getRegForValue(*i);
1491    if (Arg == 0)
1492      return false;
1493    ISD::ArgFlagsTy Flags;
1494    unsigned AttrInd = i - CS.arg_begin() + 1;
1495    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1496      Flags.setSExt();
1497    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1498      Flags.setZExt();
1499
1500    // FIXME: Only handle *easy* calls for now.
1501    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1502        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1503        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1504        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1505      return false;
1506
1507    const Type *ArgTy = (*i)->getType();
1508    MVT ArgVT;
1509    if (!isTypeLegal(ArgTy, ArgVT))
1510      return false;
1511    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1512    Flags.setOrigAlign(OriginalAlignment);
1513
1514    Args.push_back(Arg);
1515    ArgVals.push_back(*i);
1516    ArgVTs.push_back(ArgVT);
1517    ArgFlags.push_back(Flags);
1518  }
1519
1520  // Analyze operands of the call, assigning locations to each operand.
1521  SmallVector<CCValAssign, 16> ArgLocs;
1522  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1523
1524  // Allocate shadow area for Win64
1525  if (Subtarget->isTargetWin64()) {
1526    CCInfo.AllocateStack(32, 8);
1527  }
1528
1529  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
1530
1531  // Get a count of how many bytes are to be pushed on the stack.
1532  unsigned NumBytes = CCInfo.getNextStackOffset();
1533
1534  // Issue CALLSEQ_START
1535  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1536  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
1537    .addImm(NumBytes);
1538
1539  // Process argument: walk the register/memloc assignments, inserting
1540  // copies / loads.
1541  SmallVector<unsigned, 4> RegArgs;
1542  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1543    CCValAssign &VA = ArgLocs[i];
1544    unsigned Arg = Args[VA.getValNo()];
1545    EVT ArgVT = ArgVTs[VA.getValNo()];
1546
1547    // Promote the value if needed.
1548    switch (VA.getLocInfo()) {
1549    default: llvm_unreachable("Unknown loc info!");
1550    case CCValAssign::Full: break;
1551    case CCValAssign::SExt: {
1552      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1553                                       Arg, ArgVT, Arg);
1554      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1555      ArgVT = VA.getLocVT();
1556      break;
1557    }
1558    case CCValAssign::ZExt: {
1559      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1560                                       Arg, ArgVT, Arg);
1561      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1562      ArgVT = VA.getLocVT();
1563      break;
1564    }
1565    case CCValAssign::AExt: {
1566      // We don't handle MMX parameters yet.
1567      if (VA.getLocVT().isVector() && VA.getLocVT().getSizeInBits() == 128)
1568        return false;
1569      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1570                                       Arg, ArgVT, Arg);
1571      if (!Emitted)
1572        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1573                                    Arg, ArgVT, Arg);
1574      if (!Emitted)
1575        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1576                                    Arg, ArgVT, Arg);
1577
1578      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1579      ArgVT = VA.getLocVT();
1580      break;
1581    }
1582    case CCValAssign::BCvt: {
1583      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
1584                               ISD::BITCAST, Arg, /*TODO: Kill=*/false);
1585      assert(BC != 0 && "Failed to emit a bitcast!");
1586      Arg = BC;
1587      ArgVT = VA.getLocVT();
1588      break;
1589    }
1590    }
1591
1592    if (VA.isRegLoc()) {
1593      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1594              VA.getLocReg()).addReg(Arg);
1595      RegArgs.push_back(VA.getLocReg());
1596    } else {
1597      unsigned LocMemOffset = VA.getLocMemOffset();
1598      X86AddressMode AM;
1599      AM.Base.Reg = StackPtr;
1600      AM.Disp = LocMemOffset;
1601      const Value *ArgVal = ArgVals[VA.getValNo()];
1602
1603      // If this is a really simple value, emit this with the Value* version of
1604      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1605      // can cause us to reevaluate the argument.
1606      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1607        X86FastEmitStore(ArgVT, ArgVal, AM);
1608      else
1609        X86FastEmitStore(ArgVT, Arg, AM);
1610    }
1611  }
1612
1613  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1614  // GOT pointer.
1615  if (Subtarget->isPICStyleGOT()) {
1616    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1617    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1618            X86::EBX).addReg(Base);
1619  }
1620
1621  // Issue the call.
1622  MachineInstrBuilder MIB;
1623  if (CalleeOp) {
1624    // Register-indirect call.
1625    unsigned CallOpc;
1626    if (Subtarget->isTargetWin64())
1627      CallOpc = X86::WINCALL64r;
1628    else if (Subtarget->is64Bit())
1629      CallOpc = X86::CALL64r;
1630    else
1631      CallOpc = X86::CALL32r;
1632    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1633      .addReg(CalleeOp);
1634
1635  } else {
1636    // Direct call.
1637    assert(GV && "Not a direct call");
1638    unsigned CallOpc;
1639    if (Subtarget->isTargetWin64())
1640      CallOpc = X86::WINCALL64pcrel32;
1641    else if (Subtarget->is64Bit())
1642      CallOpc = X86::CALL64pcrel32;
1643    else
1644      CallOpc = X86::CALLpcrel32;
1645
1646    // See if we need any target-specific flags on the GV operand.
1647    unsigned char OpFlags = 0;
1648
1649    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1650    // external symbols most go through the PLT in PIC mode.  If the symbol
1651    // has hidden or protected visibility, or if it is static or local, then
1652    // we don't need to use the PLT - we can directly call it.
1653    if (Subtarget->isTargetELF() &&
1654        TM.getRelocationModel() == Reloc::PIC_ &&
1655        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1656      OpFlags = X86II::MO_PLT;
1657    } else if (Subtarget->isPICStyleStubAny() &&
1658               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1659               Subtarget->getDarwinVers() < 9) {
1660      // PC-relative references to external symbols should go through $stub,
1661      // unless we're building with the leopard linker or later, which
1662      // automatically synthesizes these stubs.
1663      OpFlags = X86II::MO_DARWIN_STUB;
1664    }
1665
1666
1667    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1668      .addGlobalAddress(GV, 0, OpFlags);
1669  }
1670
1671  // Add an implicit use GOT pointer in EBX.
1672  if (Subtarget->isPICStyleGOT())
1673    MIB.addReg(X86::EBX);
1674
1675  // Add implicit physical register uses to the call.
1676  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1677    MIB.addReg(RegArgs[i]);
1678
1679  // Issue CALLSEQ_END
1680  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1681  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
1682    .addImm(NumBytes).addImm(0);
1683
1684  // Now handle call return value (if any).
1685  SmallVector<unsigned, 4> UsedRegs;
1686  if (RetVT != MVT::isVoid) {
1687    SmallVector<CCValAssign, 16> RVLocs;
1688    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1689    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1690
1691    // Copy all of the result registers out of their specified physreg.
1692    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1693    EVT CopyVT = RVLocs[0].getValVT();
1694    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1695
1696    // If this is a call to a function that returns an fp value on the x87 fp
1697    // stack, but where we prefer to use the value in xmm registers, copy it
1698    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1699    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1700         RVLocs[0].getLocReg() == X86::ST1) &&
1701        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1702      CopyVT = MVT::f80;
1703      DstRC = X86::RFP80RegisterClass;
1704    }
1705
1706    unsigned ResultReg = createResultReg(DstRC);
1707    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1708            ResultReg).addReg(RVLocs[0].getLocReg());
1709    UsedRegs.push_back(RVLocs[0].getLocReg());
1710
1711    if (CopyVT != RVLocs[0].getValVT()) {
1712      // Round the F80 the right size, which also moves to the appropriate xmm
1713      // register. This is accomplished by storing the F80 value in memory and
1714      // then loading it back. Ewww...
1715      EVT ResVT = RVLocs[0].getValVT();
1716      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1717      unsigned MemSize = ResVT.getSizeInBits()/8;
1718      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1719      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1720                                TII.get(Opc)), FI)
1721        .addReg(ResultReg);
1722      DstRC = ResVT == MVT::f32
1723        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1724      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1725      ResultReg = createResultReg(DstRC);
1726      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1727                                TII.get(Opc), ResultReg), FI);
1728    }
1729
1730    if (AndToI1) {
1731      // Mask out all but lowest bit for some call which produces an i1.
1732      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1733      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1734              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1735      ResultReg = AndResult;
1736    }
1737
1738    UpdateValueMap(I, ResultReg);
1739  }
1740
1741  // Set all unused physreg defs as dead.
1742  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1743
1744  return true;
1745}
1746
1747
1748bool
1749X86FastISel::TargetSelectInstruction(const Instruction *I)  {
1750  switch (I->getOpcode()) {
1751  default: break;
1752  case Instruction::Load:
1753    return X86SelectLoad(I);
1754  case Instruction::Store:
1755    return X86SelectStore(I);
1756  case Instruction::Ret:
1757    return X86SelectRet(I);
1758  case Instruction::ICmp:
1759  case Instruction::FCmp:
1760    return X86SelectCmp(I);
1761  case Instruction::ZExt:
1762    return X86SelectZExt(I);
1763  case Instruction::Br:
1764    return X86SelectBranch(I);
1765  case Instruction::Call:
1766    return X86SelectCall(I);
1767  case Instruction::LShr:
1768  case Instruction::AShr:
1769  case Instruction::Shl:
1770    return X86SelectShift(I);
1771  case Instruction::Select:
1772    return X86SelectSelect(I);
1773  case Instruction::Trunc:
1774    return X86SelectTrunc(I);
1775  case Instruction::FPExt:
1776    return X86SelectFPExt(I);
1777  case Instruction::FPTrunc:
1778    return X86SelectFPTrunc(I);
1779  case Instruction::ExtractValue:
1780    return X86SelectExtractValue(I);
1781  case Instruction::IntToPtr: // Deliberate fall-through.
1782  case Instruction::PtrToInt: {
1783    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1784    EVT DstVT = TLI.getValueType(I->getType());
1785    if (DstVT.bitsGT(SrcVT))
1786      return X86SelectZExt(I);
1787    if (DstVT.bitsLT(SrcVT))
1788      return X86SelectTrunc(I);
1789    unsigned Reg = getRegForValue(I->getOperand(0));
1790    if (Reg == 0) return false;
1791    UpdateValueMap(I, Reg);
1792    return true;
1793  }
1794  }
1795
1796  return false;
1797}
1798
1799unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
1800  MVT VT;
1801  if (!isTypeLegal(C->getType(), VT))
1802    return false;
1803
1804  // Get opcode and regclass of the output for the given load instruction.
1805  unsigned Opc = 0;
1806  const TargetRegisterClass *RC = NULL;
1807  switch (VT.SimpleTy) {
1808  default: return false;
1809  case MVT::i8:
1810    Opc = X86::MOV8rm;
1811    RC  = X86::GR8RegisterClass;
1812    break;
1813  case MVT::i16:
1814    Opc = X86::MOV16rm;
1815    RC  = X86::GR16RegisterClass;
1816    break;
1817  case MVT::i32:
1818    Opc = X86::MOV32rm;
1819    RC  = X86::GR32RegisterClass;
1820    break;
1821  case MVT::i64:
1822    // Must be in x86-64 mode.
1823    Opc = X86::MOV64rm;
1824    RC  = X86::GR64RegisterClass;
1825    break;
1826  case MVT::f32:
1827    if (Subtarget->hasSSE1()) {
1828      Opc = X86::MOVSSrm;
1829      RC  = X86::FR32RegisterClass;
1830    } else {
1831      Opc = X86::LD_Fp32m;
1832      RC  = X86::RFP32RegisterClass;
1833    }
1834    break;
1835  case MVT::f64:
1836    if (Subtarget->hasSSE2()) {
1837      Opc = X86::MOVSDrm;
1838      RC  = X86::FR64RegisterClass;
1839    } else {
1840      Opc = X86::LD_Fp64m;
1841      RC  = X86::RFP64RegisterClass;
1842    }
1843    break;
1844  case MVT::f80:
1845    // No f80 support yet.
1846    return false;
1847  }
1848
1849  // Materialize addresses with LEA instructions.
1850  if (isa<GlobalValue>(C)) {
1851    X86AddressMode AM;
1852    if (X86SelectAddress(C, AM)) {
1853      if (TLI.getPointerTy() == MVT::i32)
1854        Opc = X86::LEA32r;
1855      else
1856        Opc = X86::LEA64r;
1857      unsigned ResultReg = createResultReg(RC);
1858      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1859                             TII.get(Opc), ResultReg), AM);
1860      return ResultReg;
1861    }
1862    return 0;
1863  }
1864
1865  // MachineConstantPool wants an explicit alignment.
1866  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1867  if (Align == 0) {
1868    // Alignment of vector types.  FIXME!
1869    Align = TD.getTypeAllocSize(C->getType());
1870  }
1871
1872  // x86-32 PIC requires a PIC base register for constant pools.
1873  unsigned PICBase = 0;
1874  unsigned char OpFlag = 0;
1875  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1876    OpFlag = X86II::MO_PIC_BASE_OFFSET;
1877    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1878  } else if (Subtarget->isPICStyleGOT()) {
1879    OpFlag = X86II::MO_GOTOFF;
1880    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1881  } else if (Subtarget->isPICStyleRIPRel() &&
1882             TM.getCodeModel() == CodeModel::Small) {
1883    PICBase = X86::RIP;
1884  }
1885
1886  // Create the load from the constant pool.
1887  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1888  unsigned ResultReg = createResultReg(RC);
1889  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1890                                   TII.get(Opc), ResultReg),
1891                           MCPOffset, PICBase, OpFlag);
1892
1893  return ResultReg;
1894}
1895
1896unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
1897  // Fail on dynamic allocas. At this point, getRegForValue has already
1898  // checked its CSE maps, so if we're here trying to handle a dynamic
1899  // alloca, we're not going to succeed. X86SelectAddress has a
1900  // check for dynamic allocas, because it's called directly from
1901  // various places, but TargetMaterializeAlloca also needs a check
1902  // in order to avoid recursion between getRegForValue,
1903  // X86SelectAddrss, and TargetMaterializeAlloca.
1904  if (!FuncInfo.StaticAllocaMap.count(C))
1905    return 0;
1906
1907  X86AddressMode AM;
1908  if (!X86SelectAddress(C, AM))
1909    return 0;
1910  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1911  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1912  unsigned ResultReg = createResultReg(RC);
1913  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1914                         TII.get(Opc), ResultReg), AM);
1915  return ResultReg;
1916}
1917
1918/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
1919/// vreg is being provided by the specified load instruction.  If possible,
1920/// try to fold the load as an operand to the instruction, returning true if
1921/// possible.
1922bool X86FastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
1923                                const LoadInst *LI) {
1924  X86AddressMode AM;
1925  if (!X86SelectAddress(LI->getOperand(0), AM))
1926    return false;
1927
1928  X86InstrInfo &XII = (X86InstrInfo&)TII;
1929
1930  unsigned Size = TD.getTypeAllocSize(LI->getType());
1931  unsigned Alignment = LI->getAlignment();
1932
1933  SmallVector<MachineOperand, 8> AddrOps;
1934  AM.getFullAddress(AddrOps);
1935
1936  MachineInstr *Result =
1937    XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
1938  if (Result == 0) return false;
1939
1940  FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
1941  MI->eraseFromParent();
1942  return true;
1943}
1944
1945
1946namespace llvm {
1947  llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) {
1948    return new X86FastISel(funcInfo);
1949  }
1950}
1951