X86FastISel.cpp revision 208599
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86RegisterInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/CallingConv.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36namespace {
37
38class X86FastISel : public FastISel {
39  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
40  /// make the right decision when generating code for different targets.
41  const X86Subtarget *Subtarget;
42
43  /// StackPtr - Register used as the stack pointer.
44  ///
45  unsigned StackPtr;
46
47  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
48  /// floating point ops.
49  /// When SSE is available, use it for f32 operations.
50  /// When SSE2 is available, use it for f64 operations.
51  bool X86ScalarSSEf64;
52  bool X86ScalarSSEf32;
53
54public:
55  explicit X86FastISel(MachineFunction &mf,
56                       DenseMap<const Value *, unsigned> &vm,
57                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
58                       DenseMap<const AllocaInst *, int> &am,
59                       std::vector<std::pair<MachineInstr*, unsigned> > &pn
60#ifndef NDEBUG
61                       , SmallSet<const Instruction *, 8> &cil
62#endif
63                       )
64    : FastISel(mf, vm, bm, am, pn
65#ifndef NDEBUG
66               , cil
67#endif
68               ) {
69    Subtarget = &TM.getSubtarget<X86Subtarget>();
70    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
71    X86ScalarSSEf64 = Subtarget->hasSSE2();
72    X86ScalarSSEf32 = Subtarget->hasSSE1();
73  }
74
75  virtual bool TargetSelectInstruction(const Instruction *I);
76
77#include "X86GenFastISel.inc"
78
79private:
80  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
81
82  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
83
84  bool X86FastEmitStore(EVT VT, const Value *Val,
85                        const X86AddressMode &AM);
86  bool X86FastEmitStore(EVT VT, unsigned Val,
87                        const X86AddressMode &AM);
88
89  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
90                         unsigned &ResultReg);
91
92  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
93  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
94
95  bool X86SelectLoad(const Instruction *I);
96
97  bool X86SelectStore(const Instruction *I);
98
99  bool X86SelectCmp(const Instruction *I);
100
101  bool X86SelectZExt(const Instruction *I);
102
103  bool X86SelectBranch(const Instruction *I);
104
105  bool X86SelectShift(const Instruction *I);
106
107  bool X86SelectSelect(const Instruction *I);
108
109  bool X86SelectTrunc(const Instruction *I);
110
111  bool X86SelectFPExt(const Instruction *I);
112  bool X86SelectFPTrunc(const Instruction *I);
113
114  bool X86SelectExtractValue(const Instruction *I);
115
116  bool X86VisitIntrinsicCall(const IntrinsicInst &I);
117  bool X86SelectCall(const Instruction *I);
118
119  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
120
121  const X86InstrInfo *getInstrInfo() const {
122    return getTargetMachine()->getInstrInfo();
123  }
124  const X86TargetMachine *getTargetMachine() const {
125    return static_cast<const X86TargetMachine *>(&TM);
126  }
127
128  unsigned TargetMaterializeConstant(const Constant *C);
129
130  unsigned TargetMaterializeAlloca(const AllocaInst *C);
131
132  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
133  /// computed in an SSE register, not on the X87 floating point stack.
134  bool isScalarFPTypeInSSEReg(EVT VT) const {
135    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
136      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
137  }
138
139  bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
140};
141
142} // end anonymous namespace.
143
144bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
145  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
146  if (VT == MVT::Other || !VT.isSimple())
147    // Unhandled type. Halt "fast" selection and bail.
148    return false;
149
150  // For now, require SSE/SSE2 for performing floating-point operations,
151  // since x87 requires additional work.
152  if (VT == MVT::f64 && !X86ScalarSSEf64)
153     return false;
154  if (VT == MVT::f32 && !X86ScalarSSEf32)
155     return false;
156  // Similarly, no f80 support yet.
157  if (VT == MVT::f80)
158    return false;
159  // We only handle legal types. For example, on x86-32 the instruction
160  // selector contains all of the 64-bit instructions from x86-64,
161  // under the assumption that i64 won't be used if the target doesn't
162  // support it.
163  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
164}
165
166#include "X86GenCallingConv.inc"
167
168/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
169/// convention.
170CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
171                                           bool isTaillCall) {
172  if (Subtarget->is64Bit()) {
173    if (CC == CallingConv::GHC)
174      return CC_X86_64_GHC;
175    else if (Subtarget->isTargetWin64())
176      return CC_X86_Win64_C;
177    else
178      return CC_X86_64_C;
179  }
180
181  if (CC == CallingConv::X86_FastCall)
182    return CC_X86_32_FastCall;
183  else if (CC == CallingConv::X86_ThisCall)
184    return CC_X86_32_ThisCall;
185  else if (CC == CallingConv::Fast)
186    return CC_X86_32_FastCC;
187  else if (CC == CallingConv::GHC)
188    return CC_X86_32_GHC;
189  else
190    return CC_X86_32_C;
191}
192
193/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
194/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
195/// Return true and the result register by reference if it is possible.
196bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
197                                  unsigned &ResultReg) {
198  // Get opcode and regclass of the output for the given load instruction.
199  unsigned Opc = 0;
200  const TargetRegisterClass *RC = NULL;
201  switch (VT.getSimpleVT().SimpleTy) {
202  default: return false;
203  case MVT::i1:
204  case MVT::i8:
205    Opc = X86::MOV8rm;
206    RC  = X86::GR8RegisterClass;
207    break;
208  case MVT::i16:
209    Opc = X86::MOV16rm;
210    RC  = X86::GR16RegisterClass;
211    break;
212  case MVT::i32:
213    Opc = X86::MOV32rm;
214    RC  = X86::GR32RegisterClass;
215    break;
216  case MVT::i64:
217    // Must be in x86-64 mode.
218    Opc = X86::MOV64rm;
219    RC  = X86::GR64RegisterClass;
220    break;
221  case MVT::f32:
222    if (Subtarget->hasSSE1()) {
223      Opc = X86::MOVSSrm;
224      RC  = X86::FR32RegisterClass;
225    } else {
226      Opc = X86::LD_Fp32m;
227      RC  = X86::RFP32RegisterClass;
228    }
229    break;
230  case MVT::f64:
231    if (Subtarget->hasSSE2()) {
232      Opc = X86::MOVSDrm;
233      RC  = X86::FR64RegisterClass;
234    } else {
235      Opc = X86::LD_Fp64m;
236      RC  = X86::RFP64RegisterClass;
237    }
238    break;
239  case MVT::f80:
240    // No f80 support yet.
241    return false;
242  }
243
244  ResultReg = createResultReg(RC);
245  addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
246  return true;
247}
248
249/// X86FastEmitStore - Emit a machine instruction to store a value Val of
250/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
251/// and a displacement offset, or a GlobalAddress,
252/// i.e. V. Return true if it is possible.
253bool
254X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
255                              const X86AddressMode &AM) {
256  // Get opcode and regclass of the output for the given store instruction.
257  unsigned Opc = 0;
258  switch (VT.getSimpleVT().SimpleTy) {
259  case MVT::f80: // No f80 support yet.
260  default: return false;
261  case MVT::i1: {
262    // Mask out all but lowest bit.
263    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
264    BuildMI(MBB, DL,
265            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
266    Val = AndResult;
267  }
268  // FALLTHROUGH, handling i1 as i8.
269  case MVT::i8:  Opc = X86::MOV8mr;  break;
270  case MVT::i16: Opc = X86::MOV16mr; break;
271  case MVT::i32: Opc = X86::MOV32mr; break;
272  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
273  case MVT::f32:
274    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
275    break;
276  case MVT::f64:
277    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
278    break;
279  }
280
281  addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
282  return true;
283}
284
285bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
286                                   const X86AddressMode &AM) {
287  // Handle 'null' like i32/i64 0.
288  if (isa<ConstantPointerNull>(Val))
289    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
290
291  // If this is a store of a simple constant, fold the constant into the store.
292  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
293    unsigned Opc = 0;
294    bool Signed = true;
295    switch (VT.getSimpleVT().SimpleTy) {
296    default: break;
297    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
298    case MVT::i8:  Opc = X86::MOV8mi;  break;
299    case MVT::i16: Opc = X86::MOV16mi; break;
300    case MVT::i32: Opc = X86::MOV32mi; break;
301    case MVT::i64:
302      // Must be a 32-bit sign extended value.
303      if ((int)CI->getSExtValue() == CI->getSExtValue())
304        Opc = X86::MOV64mi32;
305      break;
306    }
307
308    if (Opc) {
309      addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
310                             .addImm(Signed ? (uint64_t) CI->getSExtValue() :
311                                              CI->getZExtValue());
312      return true;
313    }
314  }
315
316  unsigned ValReg = getRegForValue(Val);
317  if (ValReg == 0)
318    return false;
319
320  return X86FastEmitStore(VT, ValReg, AM);
321}
322
323/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
324/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
325/// ISD::SIGN_EXTEND).
326bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
327                                    unsigned Src, EVT SrcVT,
328                                    unsigned &ResultReg) {
329  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
330                           Src, /*TODO: Kill=*/false);
331
332  if (RR != 0) {
333    ResultReg = RR;
334    return true;
335  } else
336    return false;
337}
338
339/// X86SelectAddress - Attempt to fill in an address from the given value.
340///
341bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
342  const User *U = NULL;
343  unsigned Opcode = Instruction::UserOp1;
344  if (const Instruction *I = dyn_cast<Instruction>(V)) {
345    Opcode = I->getOpcode();
346    U = I;
347  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
348    Opcode = C->getOpcode();
349    U = C;
350  }
351
352  switch (Opcode) {
353  default: break;
354  case Instruction::BitCast:
355    // Look past bitcasts.
356    return X86SelectAddress(U->getOperand(0), AM);
357
358  case Instruction::IntToPtr:
359    // Look past no-op inttoptrs.
360    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
361      return X86SelectAddress(U->getOperand(0), AM);
362    break;
363
364  case Instruction::PtrToInt:
365    // Look past no-op ptrtoints.
366    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
367      return X86SelectAddress(U->getOperand(0), AM);
368    break;
369
370  case Instruction::Alloca: {
371    // Do static allocas.
372    const AllocaInst *A = cast<AllocaInst>(V);
373    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
374    if (SI != StaticAllocaMap.end()) {
375      AM.BaseType = X86AddressMode::FrameIndexBase;
376      AM.Base.FrameIndex = SI->second;
377      return true;
378    }
379    break;
380  }
381
382  case Instruction::Add: {
383    // Adds of constants are common and easy enough.
384    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
385      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
386      // They have to fit in the 32-bit signed displacement field though.
387      if (isInt<32>(Disp)) {
388        AM.Disp = (uint32_t)Disp;
389        return X86SelectAddress(U->getOperand(0), AM);
390      }
391    }
392    break;
393  }
394
395  case Instruction::GetElementPtr: {
396    X86AddressMode SavedAM = AM;
397
398    // Pattern-match simple GEPs.
399    uint64_t Disp = (int32_t)AM.Disp;
400    unsigned IndexReg = AM.IndexReg;
401    unsigned Scale = AM.Scale;
402    gep_type_iterator GTI = gep_type_begin(U);
403    // Iterate through the indices, folding what we can. Constants can be
404    // folded, and one dynamic index can be handled, if the scale is supported.
405    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
406         i != e; ++i, ++GTI) {
407      const Value *Op = *i;
408      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
409        const StructLayout *SL = TD.getStructLayout(STy);
410        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
411        Disp += SL->getElementOffset(Idx);
412      } else {
413        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
414        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
415          // Constant-offset addressing.
416          Disp += CI->getSExtValue() * S;
417        } else if (IndexReg == 0 &&
418                   (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
419                   (S == 1 || S == 2 || S == 4 || S == 8)) {
420          // Scaled-index addressing.
421          Scale = S;
422          IndexReg = getRegForGEPIndex(Op).first;
423          if (IndexReg == 0)
424            return false;
425        } else
426          // Unsupported.
427          goto unsupported_gep;
428      }
429    }
430    // Check for displacement overflow.
431    if (!isInt<32>(Disp))
432      break;
433    // Ok, the GEP indices were covered by constant-offset and scaled-index
434    // addressing. Update the address state and move on to examining the base.
435    AM.IndexReg = IndexReg;
436    AM.Scale = Scale;
437    AM.Disp = (uint32_t)Disp;
438    if (X86SelectAddress(U->getOperand(0), AM))
439      return true;
440
441    // If we couldn't merge the sub value into this addr mode, revert back to
442    // our address and just match the value instead of completely failing.
443    AM = SavedAM;
444    break;
445  unsupported_gep:
446    // Ok, the GEP indices weren't all covered.
447    break;
448  }
449  }
450
451  // Handle constant address.
452  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
453    // Can't handle alternate code models yet.
454    if (TM.getCodeModel() != CodeModel::Small)
455      return false;
456
457    // RIP-relative addresses can't have additional register operands.
458    if (Subtarget->isPICStyleRIPRel() &&
459        (AM.Base.Reg != 0 || AM.IndexReg != 0))
460      return false;
461
462    // Can't handle TLS yet.
463    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
464      if (GVar->isThreadLocal())
465        return false;
466
467    // Okay, we've committed to selecting this global. Set up the basic address.
468    AM.GV = GV;
469
470    // Allow the subtarget to classify the global.
471    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
472
473    // If this reference is relative to the pic base, set it now.
474    if (isGlobalRelativeToPICBase(GVFlags)) {
475      // FIXME: How do we know Base.Reg is free??
476      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
477    }
478
479    // Unless the ABI requires an extra load, return a direct reference to
480    // the global.
481    if (!isGlobalStubReference(GVFlags)) {
482      if (Subtarget->isPICStyleRIPRel()) {
483        // Use rip-relative addressing if we can.  Above we verified that the
484        // base and index registers are unused.
485        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
486        AM.Base.Reg = X86::RIP;
487      }
488      AM.GVOpFlags = GVFlags;
489      return true;
490    }
491
492    // Ok, we need to do a load from a stub.  If we've already loaded from this
493    // stub, reuse the loaded pointer, otherwise emit the load now.
494    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
495    unsigned LoadReg;
496    if (I != LocalValueMap.end() && I->second != 0) {
497      LoadReg = I->second;
498    } else {
499      // Issue load from stub.
500      unsigned Opc = 0;
501      const TargetRegisterClass *RC = NULL;
502      X86AddressMode StubAM;
503      StubAM.Base.Reg = AM.Base.Reg;
504      StubAM.GV = GV;
505      StubAM.GVOpFlags = GVFlags;
506
507      if (TLI.getPointerTy() == MVT::i64) {
508        Opc = X86::MOV64rm;
509        RC  = X86::GR64RegisterClass;
510
511        if (Subtarget->isPICStyleRIPRel())
512          StubAM.Base.Reg = X86::RIP;
513      } else {
514        Opc = X86::MOV32rm;
515        RC  = X86::GR32RegisterClass;
516      }
517
518      LoadReg = createResultReg(RC);
519      addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
520
521      // Prevent loading GV stub multiple times in same MBB.
522      LocalValueMap[V] = LoadReg;
523    }
524
525    // Now construct the final address. Note that the Disp, Scale,
526    // and Index values may already be set here.
527    AM.Base.Reg = LoadReg;
528    AM.GV = 0;
529    return true;
530  }
531
532  // If all else fails, try to materialize the value in a register.
533  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
534    if (AM.Base.Reg == 0) {
535      AM.Base.Reg = getRegForValue(V);
536      return AM.Base.Reg != 0;
537    }
538    if (AM.IndexReg == 0) {
539      assert(AM.Scale == 1 && "Scale with no index!");
540      AM.IndexReg = getRegForValue(V);
541      return AM.IndexReg != 0;
542    }
543  }
544
545  return false;
546}
547
548/// X86SelectCallAddress - Attempt to fill in an address from the given value.
549///
550bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
551  const User *U = NULL;
552  unsigned Opcode = Instruction::UserOp1;
553  if (const Instruction *I = dyn_cast<Instruction>(V)) {
554    Opcode = I->getOpcode();
555    U = I;
556  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
557    Opcode = C->getOpcode();
558    U = C;
559  }
560
561  switch (Opcode) {
562  default: break;
563  case Instruction::BitCast:
564    // Look past bitcasts.
565    return X86SelectCallAddress(U->getOperand(0), AM);
566
567  case Instruction::IntToPtr:
568    // Look past no-op inttoptrs.
569    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
570      return X86SelectCallAddress(U->getOperand(0), AM);
571    break;
572
573  case Instruction::PtrToInt:
574    // Look past no-op ptrtoints.
575    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
576      return X86SelectCallAddress(U->getOperand(0), AM);
577    break;
578  }
579
580  // Handle constant address.
581  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
582    // Can't handle alternate code models yet.
583    if (TM.getCodeModel() != CodeModel::Small)
584      return false;
585
586    // RIP-relative addresses can't have additional register operands.
587    if (Subtarget->isPICStyleRIPRel() &&
588        (AM.Base.Reg != 0 || AM.IndexReg != 0))
589      return false;
590
591    // Can't handle TLS or DLLImport.
592    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
593      if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
594        return false;
595
596    // Okay, we've committed to selecting this global. Set up the basic address.
597    AM.GV = GV;
598
599    // No ABI requires an extra load for anything other than DLLImport, which
600    // we rejected above. Return a direct reference to the global.
601    if (Subtarget->isPICStyleRIPRel()) {
602      // Use rip-relative addressing if we can.  Above we verified that the
603      // base and index registers are unused.
604      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
605      AM.Base.Reg = X86::RIP;
606    } else if (Subtarget->isPICStyleStubPIC()) {
607      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
608    } else if (Subtarget->isPICStyleGOT()) {
609      AM.GVOpFlags = X86II::MO_GOTOFF;
610    }
611
612    return true;
613  }
614
615  // If all else fails, try to materialize the value in a register.
616  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
617    if (AM.Base.Reg == 0) {
618      AM.Base.Reg = getRegForValue(V);
619      return AM.Base.Reg != 0;
620    }
621    if (AM.IndexReg == 0) {
622      assert(AM.Scale == 1 && "Scale with no index!");
623      AM.IndexReg = getRegForValue(V);
624      return AM.IndexReg != 0;
625    }
626  }
627
628  return false;
629}
630
631
632/// X86SelectStore - Select and emit code to implement store instructions.
633bool X86FastISel::X86SelectStore(const Instruction *I) {
634  EVT VT;
635  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
636    return false;
637
638  X86AddressMode AM;
639  if (!X86SelectAddress(I->getOperand(1), AM))
640    return false;
641
642  return X86FastEmitStore(VT, I->getOperand(0), AM);
643}
644
645/// X86SelectLoad - Select and emit code to implement load instructions.
646///
647bool X86FastISel::X86SelectLoad(const Instruction *I)  {
648  EVT VT;
649  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
650    return false;
651
652  X86AddressMode AM;
653  if (!X86SelectAddress(I->getOperand(0), AM))
654    return false;
655
656  unsigned ResultReg = 0;
657  if (X86FastEmitLoad(VT, AM, ResultReg)) {
658    UpdateValueMap(I, ResultReg);
659    return true;
660  }
661  return false;
662}
663
664static unsigned X86ChooseCmpOpcode(EVT VT) {
665  switch (VT.getSimpleVT().SimpleTy) {
666  default:       return 0;
667  case MVT::i8:  return X86::CMP8rr;
668  case MVT::i16: return X86::CMP16rr;
669  case MVT::i32: return X86::CMP32rr;
670  case MVT::i64: return X86::CMP64rr;
671  case MVT::f32: return X86::UCOMISSrr;
672  case MVT::f64: return X86::UCOMISDrr;
673  }
674}
675
676/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
677/// of the comparison, return an opcode that works for the compare (e.g.
678/// CMP32ri) otherwise return 0.
679static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
680  switch (VT.getSimpleVT().SimpleTy) {
681  // Otherwise, we can't fold the immediate into this comparison.
682  default: return 0;
683  case MVT::i8: return X86::CMP8ri;
684  case MVT::i16: return X86::CMP16ri;
685  case MVT::i32: return X86::CMP32ri;
686  case MVT::i64:
687    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
688    // field.
689    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
690      return X86::CMP64ri32;
691    return 0;
692  }
693}
694
695bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
696                                     EVT VT) {
697  unsigned Op0Reg = getRegForValue(Op0);
698  if (Op0Reg == 0) return false;
699
700  // Handle 'null' like i32/i64 0.
701  if (isa<ConstantPointerNull>(Op1))
702    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
703
704  // We have two options: compare with register or immediate.  If the RHS of
705  // the compare is an immediate that we can fold into this compare, use
706  // CMPri, otherwise use CMPrr.
707  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
708    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
709      BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
710                                          .addImm(Op1C->getSExtValue());
711      return true;
712    }
713  }
714
715  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
716  if (CompareOpc == 0) return false;
717
718  unsigned Op1Reg = getRegForValue(Op1);
719  if (Op1Reg == 0) return false;
720  BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
721
722  return true;
723}
724
725bool X86FastISel::X86SelectCmp(const Instruction *I) {
726  const CmpInst *CI = cast<CmpInst>(I);
727
728  EVT VT;
729  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
730    return false;
731
732  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
733  unsigned SetCCOpc;
734  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
735  switch (CI->getPredicate()) {
736  case CmpInst::FCMP_OEQ: {
737    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
738      return false;
739
740    unsigned EReg = createResultReg(&X86::GR8RegClass);
741    unsigned NPReg = createResultReg(&X86::GR8RegClass);
742    BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
743    BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
744    BuildMI(MBB, DL,
745            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
746    UpdateValueMap(I, ResultReg);
747    return true;
748  }
749  case CmpInst::FCMP_UNE: {
750    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
751      return false;
752
753    unsigned NEReg = createResultReg(&X86::GR8RegClass);
754    unsigned PReg = createResultReg(&X86::GR8RegClass);
755    BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
756    BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
757    BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
758    UpdateValueMap(I, ResultReg);
759    return true;
760  }
761  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
762  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
763  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
764  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
765  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
766  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
767  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
768  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
769  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
770  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
771  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
772  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
773
774  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
775  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
776  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
777  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
778  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
779  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
780  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
781  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
782  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
783  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
784  default:
785    return false;
786  }
787
788  const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
789  if (SwapArgs)
790    std::swap(Op0, Op1);
791
792  // Emit a compare of Op0/Op1.
793  if (!X86FastEmitCompare(Op0, Op1, VT))
794    return false;
795
796  BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
797  UpdateValueMap(I, ResultReg);
798  return true;
799}
800
801bool X86FastISel::X86SelectZExt(const Instruction *I) {
802  // Handle zero-extension from i1 to i8, which is common.
803  if (I->getType()->isIntegerTy(8) &&
804      I->getOperand(0)->getType()->isIntegerTy(1)) {
805    unsigned ResultReg = getRegForValue(I->getOperand(0));
806    if (ResultReg == 0) return false;
807    // Set the high bits to zero.
808    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
809    if (ResultReg == 0) return false;
810    UpdateValueMap(I, ResultReg);
811    return true;
812  }
813
814  return false;
815}
816
817
818bool X86FastISel::X86SelectBranch(const Instruction *I) {
819  // Unconditional branches are selected by tablegen-generated code.
820  // Handle a conditional branch.
821  const BranchInst *BI = cast<BranchInst>(I);
822  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
823  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
824
825  // Fold the common case of a conditional branch with a comparison.
826  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
827    if (CI->hasOneUse()) {
828      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
829
830      // Try to take advantage of fallthrough opportunities.
831      CmpInst::Predicate Predicate = CI->getPredicate();
832      if (MBB->isLayoutSuccessor(TrueMBB)) {
833        std::swap(TrueMBB, FalseMBB);
834        Predicate = CmpInst::getInversePredicate(Predicate);
835      }
836
837      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
838      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
839
840      switch (Predicate) {
841      case CmpInst::FCMP_OEQ:
842        std::swap(TrueMBB, FalseMBB);
843        Predicate = CmpInst::FCMP_UNE;
844        // FALL THROUGH
845      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
846      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
847      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
848      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
849      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
850      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
851      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
852      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
853      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
854      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
855      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
856      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
857      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
858
859      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
860      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
861      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
862      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
863      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
864      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
865      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
866      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
867      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
868      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
869      default:
870        return false;
871      }
872
873      const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
874      if (SwapArgs)
875        std::swap(Op0, Op1);
876
877      // Emit a compare of the LHS and RHS, setting the flags.
878      if (!X86FastEmitCompare(Op0, Op1, VT))
879        return false;
880
881      BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
882
883      if (Predicate == CmpInst::FCMP_UNE) {
884        // X86 requires a second branch to handle UNE (and OEQ,
885        // which is mapped to UNE above).
886        BuildMI(MBB, DL, TII.get(X86::JP_4)).addMBB(TrueMBB);
887      }
888
889      FastEmitBranch(FalseMBB);
890      MBB->addSuccessor(TrueMBB);
891      return true;
892    }
893  } else if (ExtractValueInst *EI =
894             dyn_cast<ExtractValueInst>(BI->getCondition())) {
895    // Check to see if the branch instruction is from an "arithmetic with
896    // overflow" intrinsic. The main way these intrinsics are used is:
897    //
898    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
899    //   %sum = extractvalue { i32, i1 } %t, 0
900    //   %obit = extractvalue { i32, i1 } %t, 1
901    //   br i1 %obit, label %overflow, label %normal
902    //
903    // The %sum and %obit are converted in an ADD and a SETO/SETB before
904    // reaching the branch. Therefore, we search backwards through the MBB
905    // looking for the SETO/SETB instruction. If an instruction modifies the
906    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
907    // convert the branch into a JO/JB instruction.
908    if (const IntrinsicInst *CI =
909          dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
910      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
911          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
912        const MachineInstr *SetMI = 0;
913        unsigned Reg = lookUpRegForValue(EI);
914
915        for (MachineBasicBlock::const_reverse_iterator
916               RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
917          const MachineInstr &MI = *RI;
918
919          if (MI.definesRegister(Reg)) {
920            unsigned Src, Dst, SrcSR, DstSR;
921
922            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
923              Reg = Src;
924              continue;
925            }
926
927            SetMI = &MI;
928            break;
929          }
930
931          const TargetInstrDesc &TID = MI.getDesc();
932          if (TID.hasUnmodeledSideEffects() ||
933              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
934            break;
935        }
936
937        if (SetMI) {
938          unsigned OpCode = SetMI->getOpcode();
939
940          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
941            BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ?
942                                        X86::JO_4 : X86::JB_4))
943              .addMBB(TrueMBB);
944            FastEmitBranch(FalseMBB);
945            MBB->addSuccessor(TrueMBB);
946            return true;
947          }
948        }
949      }
950    }
951  }
952
953  // Otherwise do a clumsy setcc and re-test it.
954  unsigned OpReg = getRegForValue(BI->getCondition());
955  if (OpReg == 0) return false;
956
957  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
958  BuildMI(MBB, DL, TII.get(X86::JNE_4)).addMBB(TrueMBB);
959  FastEmitBranch(FalseMBB);
960  MBB->addSuccessor(TrueMBB);
961  return true;
962}
963
964bool X86FastISel::X86SelectShift(const Instruction *I) {
965  unsigned CReg = 0, OpReg = 0, OpImm = 0;
966  const TargetRegisterClass *RC = NULL;
967  if (I->getType()->isIntegerTy(8)) {
968    CReg = X86::CL;
969    RC = &X86::GR8RegClass;
970    switch (I->getOpcode()) {
971    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
972    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
973    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
974    default: return false;
975    }
976  } else if (I->getType()->isIntegerTy(16)) {
977    CReg = X86::CX;
978    RC = &X86::GR16RegClass;
979    switch (I->getOpcode()) {
980    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
981    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
982    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
983    default: return false;
984    }
985  } else if (I->getType()->isIntegerTy(32)) {
986    CReg = X86::ECX;
987    RC = &X86::GR32RegClass;
988    switch (I->getOpcode()) {
989    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
990    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
991    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
992    default: return false;
993    }
994  } else if (I->getType()->isIntegerTy(64)) {
995    CReg = X86::RCX;
996    RC = &X86::GR64RegClass;
997    switch (I->getOpcode()) {
998    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
999    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
1000    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
1001    default: return false;
1002    }
1003  } else {
1004    return false;
1005  }
1006
1007  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1008  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1009    return false;
1010
1011  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1012  if (Op0Reg == 0) return false;
1013
1014  // Fold immediate in shl(x,3).
1015  if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1016    unsigned ResultReg = createResultReg(RC);
1017    BuildMI(MBB, DL, TII.get(OpImm),
1018            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1019    UpdateValueMap(I, ResultReg);
1020    return true;
1021  }
1022
1023  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1024  if (Op1Reg == 0) return false;
1025  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC, DL);
1026
1027  // The shift instruction uses X86::CL. If we defined a super-register
1028  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
1029  // we're doing here.
1030  if (CReg != X86::CL)
1031    BuildMI(MBB, DL, TII.get(TargetOpcode::EXTRACT_SUBREG), X86::CL)
1032      .addReg(CReg).addImm(X86::sub_8bit);
1033
1034  unsigned ResultReg = createResultReg(RC);
1035  BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
1036  UpdateValueMap(I, ResultReg);
1037  return true;
1038}
1039
1040bool X86FastISel::X86SelectSelect(const Instruction *I) {
1041  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1042  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1043    return false;
1044
1045  unsigned Opc = 0;
1046  const TargetRegisterClass *RC = NULL;
1047  if (VT.getSimpleVT() == MVT::i16) {
1048    Opc = X86::CMOVE16rr;
1049    RC = &X86::GR16RegClass;
1050  } else if (VT.getSimpleVT() == MVT::i32) {
1051    Opc = X86::CMOVE32rr;
1052    RC = &X86::GR32RegClass;
1053  } else if (VT.getSimpleVT() == MVT::i64) {
1054    Opc = X86::CMOVE64rr;
1055    RC = &X86::GR64RegClass;
1056  } else {
1057    return false;
1058  }
1059
1060  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1061  if (Op0Reg == 0) return false;
1062  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1063  if (Op1Reg == 0) return false;
1064  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1065  if (Op2Reg == 0) return false;
1066
1067  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
1068  unsigned ResultReg = createResultReg(RC);
1069  BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
1070  UpdateValueMap(I, ResultReg);
1071  return true;
1072}
1073
1074bool X86FastISel::X86SelectFPExt(const Instruction *I) {
1075  // fpext from float to double.
1076  if (Subtarget->hasSSE2() &&
1077      I->getType()->isDoubleTy()) {
1078    const Value *V = I->getOperand(0);
1079    if (V->getType()->isFloatTy()) {
1080      unsigned OpReg = getRegForValue(V);
1081      if (OpReg == 0) return false;
1082      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1083      BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
1084      UpdateValueMap(I, ResultReg);
1085      return true;
1086    }
1087  }
1088
1089  return false;
1090}
1091
1092bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
1093  if (Subtarget->hasSSE2()) {
1094    if (I->getType()->isFloatTy()) {
1095      const Value *V = I->getOperand(0);
1096      if (V->getType()->isDoubleTy()) {
1097        unsigned OpReg = getRegForValue(V);
1098        if (OpReg == 0) return false;
1099        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1100        BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
1101        UpdateValueMap(I, ResultReg);
1102        return true;
1103      }
1104    }
1105  }
1106
1107  return false;
1108}
1109
1110bool X86FastISel::X86SelectTrunc(const Instruction *I) {
1111  if (Subtarget->is64Bit())
1112    // All other cases should be handled by the tblgen generated code.
1113    return false;
1114  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1115  EVT DstVT = TLI.getValueType(I->getType());
1116
1117  // This code only handles truncation to byte right now.
1118  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1119    // All other cases should be handled by the tblgen generated code.
1120    return false;
1121  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1122    // All other cases should be handled by the tblgen generated code.
1123    return false;
1124
1125  unsigned InputReg = getRegForValue(I->getOperand(0));
1126  if (!InputReg)
1127    // Unhandled operand.  Halt "fast" selection and bail.
1128    return false;
1129
1130  // First issue a copy to GR16_ABCD or GR32_ABCD.
1131  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1132  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1133    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1134  unsigned CopyReg = createResultReg(CopyRC);
1135  BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1136
1137  // Then issue an extract_subreg.
1138  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1139                                                  CopyReg, /*Kill=*/true,
1140                                                  X86::sub_8bit);
1141  if (!ResultReg)
1142    return false;
1143
1144  UpdateValueMap(I, ResultReg);
1145  return true;
1146}
1147
1148bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
1149  const ExtractValueInst *EI = cast<ExtractValueInst>(I);
1150  const Value *Agg = EI->getAggregateOperand();
1151
1152  if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1153    switch (CI->getIntrinsicID()) {
1154    default: break;
1155    case Intrinsic::sadd_with_overflow:
1156    case Intrinsic::uadd_with_overflow:
1157      // Cheat a little. We know that the registers for "add" and "seto" are
1158      // allocated sequentially. However, we only keep track of the register
1159      // for "add" in the value map. Use extractvalue's index to get the
1160      // correct register for "seto".
1161      UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1162      return true;
1163    }
1164  }
1165
1166  return false;
1167}
1168
1169bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
1170  // FIXME: Handle more intrinsics.
1171  switch (I.getIntrinsicID()) {
1172  default: return false;
1173  case Intrinsic::stackprotector: {
1174    // Emit code inline code to store the stack guard onto the stack.
1175    EVT PtrTy = TLI.getPointerTy();
1176
1177    const Value *Op1 = I.getOperand(1); // The guard's value.
1178    const AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
1179
1180    // Grab the frame index.
1181    X86AddressMode AM;
1182    if (!X86SelectAddress(Slot, AM)) return false;
1183
1184    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1185
1186    return true;
1187  }
1188  case Intrinsic::objectsize: {
1189    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
1190    const Type *Ty = I.getCalledFunction()->getReturnType();
1191
1192    assert(CI && "Non-constant type in Intrinsic::objectsize?");
1193
1194    EVT VT;
1195    if (!isTypeLegal(Ty, VT))
1196      return false;
1197
1198    unsigned OpC = 0;
1199    if (VT == MVT::i32)
1200      OpC = X86::MOV32ri;
1201    else if (VT == MVT::i64)
1202      OpC = X86::MOV64ri;
1203    else
1204      return false;
1205
1206    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1207    BuildMI(MBB, DL, TII.get(OpC), ResultReg).
1208                                  addImm(CI->getZExtValue() == 0 ? -1ULL : 0);
1209    UpdateValueMap(&I, ResultReg);
1210    return true;
1211  }
1212  case Intrinsic::dbg_declare: {
1213    const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1214    X86AddressMode AM;
1215    assert(DI->getAddress() && "Null address should be checked earlier!");
1216    if (!X86SelectAddress(DI->getAddress(), AM))
1217      return false;
1218    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1219    // FIXME may need to add RegState::Debug to any registers produced,
1220    // although ESP/EBP should be the only ones at the moment.
1221    addFullAddress(BuildMI(MBB, DL, II), AM).addImm(0).
1222                                        addMetadata(DI->getVariable());
1223    return true;
1224  }
1225  case Intrinsic::trap: {
1226    BuildMI(MBB, DL, TII.get(X86::TRAP));
1227    return true;
1228  }
1229  case Intrinsic::sadd_with_overflow:
1230  case Intrinsic::uadd_with_overflow: {
1231    // Replace "add with overflow" intrinsics with an "add" instruction followed
1232    // by a seto/setc instruction. Later on, when the "extractvalue"
1233    // instructions are encountered, we use the fact that two registers were
1234    // created sequentially to get the correct registers for the "sum" and the
1235    // "overflow bit".
1236    const Function *Callee = I.getCalledFunction();
1237    const Type *RetTy =
1238      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1239
1240    EVT VT;
1241    if (!isTypeLegal(RetTy, VT))
1242      return false;
1243
1244    const Value *Op1 = I.getOperand(1);
1245    const Value *Op2 = I.getOperand(2);
1246    unsigned Reg1 = getRegForValue(Op1);
1247    unsigned Reg2 = getRegForValue(Op2);
1248
1249    if (Reg1 == 0 || Reg2 == 0)
1250      // FIXME: Handle values *not* in registers.
1251      return false;
1252
1253    unsigned OpC = 0;
1254    if (VT == MVT::i32)
1255      OpC = X86::ADD32rr;
1256    else if (VT == MVT::i64)
1257      OpC = X86::ADD64rr;
1258    else
1259      return false;
1260
1261    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1262    BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1263    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1264
1265    // If the add with overflow is an intra-block value then we just want to
1266    // create temporaries for it like normal.  If it is a cross-block value then
1267    // UpdateValueMap will return the cross-block register used.  Since we
1268    // *really* want the value to be live in the register pair known by
1269    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1270    // the cross block case.  In the non-cross-block case, we should just make
1271    // another register for the value.
1272    if (DestReg1 != ResultReg)
1273      ResultReg = DestReg1+1;
1274    else
1275      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1276
1277    unsigned Opc = X86::SETBr;
1278    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1279      Opc = X86::SETOr;
1280    BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1281    return true;
1282  }
1283  }
1284}
1285
1286bool X86FastISel::X86SelectCall(const Instruction *I) {
1287  const CallInst *CI = cast<CallInst>(I);
1288  const Value *Callee = I->getOperand(0);
1289
1290  // Can't handle inline asm yet.
1291  if (isa<InlineAsm>(Callee))
1292    return false;
1293
1294  // Handle intrinsic calls.
1295  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1296    return X86VisitIntrinsicCall(*II);
1297
1298  // Handle only C and fastcc calling conventions for now.
1299  ImmutableCallSite CS(CI);
1300  CallingConv::ID CC = CS.getCallingConv();
1301  if (CC != CallingConv::C &&
1302      CC != CallingConv::Fast &&
1303      CC != CallingConv::X86_FastCall)
1304    return false;
1305
1306  // fastcc with -tailcallopt is intended to provide a guaranteed
1307  // tail call optimization. Fastisel doesn't know how to do that.
1308  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1309    return false;
1310
1311  // Let SDISel handle vararg functions.
1312  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1313  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1314  if (FTy->isVarArg())
1315    return false;
1316
1317  // Handle *simple* calls for now.
1318  const Type *RetTy = CS.getType();
1319  EVT RetVT;
1320  if (RetTy->isVoidTy())
1321    RetVT = MVT::isVoid;
1322  else if (!isTypeLegal(RetTy, RetVT, true))
1323    return false;
1324
1325  // Materialize callee address in a register. FIXME: GV address can be
1326  // handled with a CALLpcrel32 instead.
1327  X86AddressMode CalleeAM;
1328  if (!X86SelectCallAddress(Callee, CalleeAM))
1329    return false;
1330  unsigned CalleeOp = 0;
1331  const GlobalValue *GV = 0;
1332  if (CalleeAM.GV != 0) {
1333    GV = CalleeAM.GV;
1334  } else if (CalleeAM.Base.Reg != 0) {
1335    CalleeOp = CalleeAM.Base.Reg;
1336  } else
1337    return false;
1338
1339  // Allow calls which produce i1 results.
1340  bool AndToI1 = false;
1341  if (RetVT == MVT::i1) {
1342    RetVT = MVT::i8;
1343    AndToI1 = true;
1344  }
1345
1346  // Deal with call operands first.
1347  SmallVector<const Value *, 8> ArgVals;
1348  SmallVector<unsigned, 8> Args;
1349  SmallVector<EVT, 8> ArgVTs;
1350  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1351  Args.reserve(CS.arg_size());
1352  ArgVals.reserve(CS.arg_size());
1353  ArgVTs.reserve(CS.arg_size());
1354  ArgFlags.reserve(CS.arg_size());
1355  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1356       i != e; ++i) {
1357    unsigned Arg = getRegForValue(*i);
1358    if (Arg == 0)
1359      return false;
1360    ISD::ArgFlagsTy Flags;
1361    unsigned AttrInd = i - CS.arg_begin() + 1;
1362    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1363      Flags.setSExt();
1364    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1365      Flags.setZExt();
1366
1367    // FIXME: Only handle *easy* calls for now.
1368    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1369        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1370        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1371        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1372      return false;
1373
1374    const Type *ArgTy = (*i)->getType();
1375    EVT ArgVT;
1376    if (!isTypeLegal(ArgTy, ArgVT))
1377      return false;
1378    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1379    Flags.setOrigAlign(OriginalAlignment);
1380
1381    Args.push_back(Arg);
1382    ArgVals.push_back(*i);
1383    ArgVTs.push_back(ArgVT);
1384    ArgFlags.push_back(Flags);
1385  }
1386
1387  // Analyze operands of the call, assigning locations to each operand.
1388  SmallVector<CCValAssign, 16> ArgLocs;
1389  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1390  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1391
1392  // Get a count of how many bytes are to be pushed on the stack.
1393  unsigned NumBytes = CCInfo.getNextStackOffset();
1394
1395  // Issue CALLSEQ_START
1396  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1397  BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1398
1399  // Process argument: walk the register/memloc assignments, inserting
1400  // copies / loads.
1401  SmallVector<unsigned, 4> RegArgs;
1402  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1403    CCValAssign &VA = ArgLocs[i];
1404    unsigned Arg = Args[VA.getValNo()];
1405    EVT ArgVT = ArgVTs[VA.getValNo()];
1406
1407    // Promote the value if needed.
1408    switch (VA.getLocInfo()) {
1409    default: llvm_unreachable("Unknown loc info!");
1410    case CCValAssign::Full: break;
1411    case CCValAssign::SExt: {
1412      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1413                                       Arg, ArgVT, Arg);
1414      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1415      Emitted = true;
1416      ArgVT = VA.getLocVT();
1417      break;
1418    }
1419    case CCValAssign::ZExt: {
1420      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1421                                       Arg, ArgVT, Arg);
1422      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1423      Emitted = true;
1424      ArgVT = VA.getLocVT();
1425      break;
1426    }
1427    case CCValAssign::AExt: {
1428      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1429                                       Arg, ArgVT, Arg);
1430      if (!Emitted)
1431        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1432                                    Arg, ArgVT, Arg);
1433      if (!Emitted)
1434        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1435                                    Arg, ArgVT, Arg);
1436
1437      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1438      ArgVT = VA.getLocVT();
1439      break;
1440    }
1441    case CCValAssign::BCvt: {
1442      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
1443                               ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false);
1444      assert(BC != 0 && "Failed to emit a bitcast!");
1445      Arg = BC;
1446      ArgVT = VA.getLocVT();
1447      break;
1448    }
1449    }
1450
1451    if (VA.isRegLoc()) {
1452      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1453      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1454                                      Arg, RC, RC, DL);
1455      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1456      Emitted = true;
1457      RegArgs.push_back(VA.getLocReg());
1458    } else {
1459      unsigned LocMemOffset = VA.getLocMemOffset();
1460      X86AddressMode AM;
1461      AM.Base.Reg = StackPtr;
1462      AM.Disp = LocMemOffset;
1463      const Value *ArgVal = ArgVals[VA.getValNo()];
1464
1465      // If this is a really simple value, emit this with the Value* version of
1466      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1467      // can cause us to reevaluate the argument.
1468      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1469        X86FastEmitStore(ArgVT, ArgVal, AM);
1470      else
1471        X86FastEmitStore(ArgVT, Arg, AM);
1472    }
1473  }
1474
1475  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1476  // GOT pointer.
1477  if (Subtarget->isPICStyleGOT()) {
1478    TargetRegisterClass *RC = X86::GR32RegisterClass;
1479    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1480    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC,
1481                                    DL);
1482    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1483    Emitted = true;
1484  }
1485
1486  // Issue the call.
1487  MachineInstrBuilder MIB;
1488  if (CalleeOp) {
1489    // Register-indirect call.
1490    unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
1491    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
1492
1493  } else {
1494    // Direct call.
1495    assert(GV && "Not a direct call");
1496    unsigned CallOpc =
1497      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
1498
1499    // See if we need any target-specific flags on the GV operand.
1500    unsigned char OpFlags = 0;
1501
1502    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1503    // external symbols most go through the PLT in PIC mode.  If the symbol
1504    // has hidden or protected visibility, or if it is static or local, then
1505    // we don't need to use the PLT - we can directly call it.
1506    if (Subtarget->isTargetELF() &&
1507        TM.getRelocationModel() == Reloc::PIC_ &&
1508        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1509      OpFlags = X86II::MO_PLT;
1510    } else if (Subtarget->isPICStyleStubAny() &&
1511               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1512               Subtarget->getDarwinVers() < 9) {
1513      // PC-relative references to external symbols should go through $stub,
1514      // unless we're building with the leopard linker or later, which
1515      // automatically synthesizes these stubs.
1516      OpFlags = X86II::MO_DARWIN_STUB;
1517    }
1518
1519
1520    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
1521  }
1522
1523  // Add an implicit use GOT pointer in EBX.
1524  if (Subtarget->isPICStyleGOT())
1525    MIB.addReg(X86::EBX);
1526
1527  // Add implicit physical register uses to the call.
1528  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1529    MIB.addReg(RegArgs[i]);
1530
1531  // Issue CALLSEQ_END
1532  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1533  BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1534
1535  // Now handle call return value (if any).
1536  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1537    SmallVector<CCValAssign, 16> RVLocs;
1538    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1539    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1540
1541    // Copy all of the result registers out of their specified physreg.
1542    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1543    EVT CopyVT = RVLocs[0].getValVT();
1544    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1545    TargetRegisterClass *SrcRC = DstRC;
1546
1547    // If this is a call to a function that returns an fp value on the x87 fp
1548    // stack, but where we prefer to use the value in xmm registers, copy it
1549    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1550    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1551         RVLocs[0].getLocReg() == X86::ST1) &&
1552        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1553      CopyVT = MVT::f80;
1554      SrcRC = X86::RSTRegisterClass;
1555      DstRC = X86::RFP80RegisterClass;
1556    }
1557
1558    unsigned ResultReg = createResultReg(DstRC);
1559    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1560                                    RVLocs[0].getLocReg(), DstRC, SrcRC, DL);
1561    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1562    Emitted = true;
1563    if (CopyVT != RVLocs[0].getValVT()) {
1564      // Round the F80 the right size, which also moves to the appropriate xmm
1565      // register. This is accomplished by storing the F80 value in memory and
1566      // then loading it back. Ewww...
1567      EVT ResVT = RVLocs[0].getValVT();
1568      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1569      unsigned MemSize = ResVT.getSizeInBits()/8;
1570      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1571      addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1572      DstRC = ResVT == MVT::f32
1573        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1574      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1575      ResultReg = createResultReg(DstRC);
1576      addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1577    }
1578
1579    if (AndToI1) {
1580      // Mask out all but lowest bit for some call which produces an i1.
1581      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1582      BuildMI(MBB, DL,
1583              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1584      ResultReg = AndResult;
1585    }
1586
1587    UpdateValueMap(I, ResultReg);
1588  }
1589
1590  return true;
1591}
1592
1593
1594bool
1595X86FastISel::TargetSelectInstruction(const Instruction *I)  {
1596  switch (I->getOpcode()) {
1597  default: break;
1598  case Instruction::Load:
1599    return X86SelectLoad(I);
1600  case Instruction::Store:
1601    return X86SelectStore(I);
1602  case Instruction::ICmp:
1603  case Instruction::FCmp:
1604    return X86SelectCmp(I);
1605  case Instruction::ZExt:
1606    return X86SelectZExt(I);
1607  case Instruction::Br:
1608    return X86SelectBranch(I);
1609  case Instruction::Call:
1610    return X86SelectCall(I);
1611  case Instruction::LShr:
1612  case Instruction::AShr:
1613  case Instruction::Shl:
1614    return X86SelectShift(I);
1615  case Instruction::Select:
1616    return X86SelectSelect(I);
1617  case Instruction::Trunc:
1618    return X86SelectTrunc(I);
1619  case Instruction::FPExt:
1620    return X86SelectFPExt(I);
1621  case Instruction::FPTrunc:
1622    return X86SelectFPTrunc(I);
1623  case Instruction::ExtractValue:
1624    return X86SelectExtractValue(I);
1625  case Instruction::IntToPtr: // Deliberate fall-through.
1626  case Instruction::PtrToInt: {
1627    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1628    EVT DstVT = TLI.getValueType(I->getType());
1629    if (DstVT.bitsGT(SrcVT))
1630      return X86SelectZExt(I);
1631    if (DstVT.bitsLT(SrcVT))
1632      return X86SelectTrunc(I);
1633    unsigned Reg = getRegForValue(I->getOperand(0));
1634    if (Reg == 0) return false;
1635    UpdateValueMap(I, Reg);
1636    return true;
1637  }
1638  }
1639
1640  return false;
1641}
1642
1643unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
1644  EVT VT;
1645  if (!isTypeLegal(C->getType(), VT))
1646    return false;
1647
1648  // Get opcode and regclass of the output for the given load instruction.
1649  unsigned Opc = 0;
1650  const TargetRegisterClass *RC = NULL;
1651  switch (VT.getSimpleVT().SimpleTy) {
1652  default: return false;
1653  case MVT::i8:
1654    Opc = X86::MOV8rm;
1655    RC  = X86::GR8RegisterClass;
1656    break;
1657  case MVT::i16:
1658    Opc = X86::MOV16rm;
1659    RC  = X86::GR16RegisterClass;
1660    break;
1661  case MVT::i32:
1662    Opc = X86::MOV32rm;
1663    RC  = X86::GR32RegisterClass;
1664    break;
1665  case MVT::i64:
1666    // Must be in x86-64 mode.
1667    Opc = X86::MOV64rm;
1668    RC  = X86::GR64RegisterClass;
1669    break;
1670  case MVT::f32:
1671    if (Subtarget->hasSSE1()) {
1672      Opc = X86::MOVSSrm;
1673      RC  = X86::FR32RegisterClass;
1674    } else {
1675      Opc = X86::LD_Fp32m;
1676      RC  = X86::RFP32RegisterClass;
1677    }
1678    break;
1679  case MVT::f64:
1680    if (Subtarget->hasSSE2()) {
1681      Opc = X86::MOVSDrm;
1682      RC  = X86::FR64RegisterClass;
1683    } else {
1684      Opc = X86::LD_Fp64m;
1685      RC  = X86::RFP64RegisterClass;
1686    }
1687    break;
1688  case MVT::f80:
1689    // No f80 support yet.
1690    return false;
1691  }
1692
1693  // Materialize addresses with LEA instructions.
1694  if (isa<GlobalValue>(C)) {
1695    X86AddressMode AM;
1696    if (X86SelectAddress(C, AM)) {
1697      if (TLI.getPointerTy() == MVT::i32)
1698        Opc = X86::LEA32r;
1699      else
1700        Opc = X86::LEA64r;
1701      unsigned ResultReg = createResultReg(RC);
1702      addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1703      return ResultReg;
1704    }
1705    return 0;
1706  }
1707
1708  // MachineConstantPool wants an explicit alignment.
1709  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1710  if (Align == 0) {
1711    // Alignment of vector types.  FIXME!
1712    Align = TD.getTypeAllocSize(C->getType());
1713  }
1714
1715  // x86-32 PIC requires a PIC base register for constant pools.
1716  unsigned PICBase = 0;
1717  unsigned char OpFlag = 0;
1718  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1719    OpFlag = X86II::MO_PIC_BASE_OFFSET;
1720    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1721  } else if (Subtarget->isPICStyleGOT()) {
1722    OpFlag = X86II::MO_GOTOFF;
1723    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1724  } else if (Subtarget->isPICStyleRIPRel() &&
1725             TM.getCodeModel() == CodeModel::Small) {
1726    PICBase = X86::RIP;
1727  }
1728
1729  // Create the load from the constant pool.
1730  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1731  unsigned ResultReg = createResultReg(RC);
1732  addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
1733                           MCPOffset, PICBase, OpFlag);
1734
1735  return ResultReg;
1736}
1737
1738unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
1739  // Fail on dynamic allocas. At this point, getRegForValue has already
1740  // checked its CSE maps, so if we're here trying to handle a dynamic
1741  // alloca, we're not going to succeed. X86SelectAddress has a
1742  // check for dynamic allocas, because it's called directly from
1743  // various places, but TargetMaterializeAlloca also needs a check
1744  // in order to avoid recursion between getRegForValue,
1745  // X86SelectAddrss, and TargetMaterializeAlloca.
1746  if (!StaticAllocaMap.count(C))
1747    return 0;
1748
1749  X86AddressMode AM;
1750  if (!X86SelectAddress(C, AM))
1751    return 0;
1752  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1753  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1754  unsigned ResultReg = createResultReg(RC);
1755  addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1756  return ResultReg;
1757}
1758
1759namespace llvm {
1760  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1761                        DenseMap<const Value *, unsigned> &vm,
1762                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1763                        DenseMap<const AllocaInst *, int> &am,
1764                        std::vector<std::pair<MachineInstr*, unsigned> > &pn
1765#ifndef NDEBUG
1766                        , SmallSet<const Instruction *, 8> &cil
1767#endif
1768                        ) {
1769    return new X86FastISel(mf, vm, bm, am, pn
1770#ifndef NDEBUG
1771                           , cil
1772#endif
1773                           );
1774  }
1775}
1776