X86FastISel.cpp revision 204792
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Target/TargetOptions.h"
35using namespace llvm;
36
37namespace {
38
39class X86FastISel : public FastISel {
40  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
41  /// make the right decision when generating code for different targets.
42  const X86Subtarget *Subtarget;
43
44  /// StackPtr - Register used as the stack pointer.
45  ///
46  unsigned StackPtr;
47
48  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
49  /// floating point ops.
50  /// When SSE is available, use it for f32 operations.
51  /// When SSE2 is available, use it for f64 operations.
52  bool X86ScalarSSEf64;
53  bool X86ScalarSSEf32;
54
55public:
56  explicit X86FastISel(MachineFunction &mf,
57                       MachineModuleInfo *mmi,
58                       DwarfWriter *dw,
59                       DenseMap<const Value *, unsigned> &vm,
60                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
61                       DenseMap<const AllocaInst *, int> &am
62#ifndef NDEBUG
63                       , SmallSet<Instruction*, 8> &cil
64#endif
65                       )
66    : FastISel(mf, mmi, dw, vm, bm, am
67#ifndef NDEBUG
68               , cil
69#endif
70               ) {
71    Subtarget = &TM.getSubtarget<X86Subtarget>();
72    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
73    X86ScalarSSEf64 = Subtarget->hasSSE2();
74    X86ScalarSSEf32 = Subtarget->hasSSE1();
75  }
76
77  virtual bool TargetSelectInstruction(Instruction *I);
78
79#include "X86GenFastISel.inc"
80
81private:
82  bool X86FastEmitCompare(Value *LHS, Value *RHS, EVT VT);
83
84  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
85
86  bool X86FastEmitStore(EVT VT, Value *Val,
87                        const X86AddressMode &AM);
88  bool X86FastEmitStore(EVT VT, unsigned Val,
89                        const X86AddressMode &AM);
90
91  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
92                         unsigned &ResultReg);
93
94  bool X86SelectAddress(Value *V, X86AddressMode &AM);
95  bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
96
97  bool X86SelectLoad(Instruction *I);
98
99  bool X86SelectStore(Instruction *I);
100
101  bool X86SelectCmp(Instruction *I);
102
103  bool X86SelectZExt(Instruction *I);
104
105  bool X86SelectBranch(Instruction *I);
106
107  bool X86SelectShift(Instruction *I);
108
109  bool X86SelectSelect(Instruction *I);
110
111  bool X86SelectTrunc(Instruction *I);
112
113  bool X86SelectFPExt(Instruction *I);
114  bool X86SelectFPTrunc(Instruction *I);
115
116  bool X86SelectExtractValue(Instruction *I);
117
118  bool X86VisitIntrinsicCall(IntrinsicInst &I);
119  bool X86SelectCall(Instruction *I);
120
121  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
122
123  const X86InstrInfo *getInstrInfo() const {
124    return getTargetMachine()->getInstrInfo();
125  }
126  const X86TargetMachine *getTargetMachine() const {
127    return static_cast<const X86TargetMachine *>(&TM);
128  }
129
130  unsigned TargetMaterializeConstant(Constant *C);
131
132  unsigned TargetMaterializeAlloca(AllocaInst *C);
133
134  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
135  /// computed in an SSE register, not on the X87 floating point stack.
136  bool isScalarFPTypeInSSEReg(EVT VT) const {
137    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
138      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
139  }
140
141  bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
142};
143
144} // end anonymous namespace.
145
146bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
147  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
148  if (VT == MVT::Other || !VT.isSimple())
149    // Unhandled type. Halt "fast" selection and bail.
150    return false;
151
152  // For now, require SSE/SSE2 for performing floating-point operations,
153  // since x87 requires additional work.
154  if (VT == MVT::f64 && !X86ScalarSSEf64)
155     return false;
156  if (VT == MVT::f32 && !X86ScalarSSEf32)
157     return false;
158  // Similarly, no f80 support yet.
159  if (VT == MVT::f80)
160    return false;
161  // We only handle legal types. For example, on x86-32 the instruction
162  // selector contains all of the 64-bit instructions from x86-64,
163  // under the assumption that i64 won't be used if the target doesn't
164  // support it.
165  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
166}
167
168#include "X86GenCallingConv.inc"
169
170/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
171/// convention.
172CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
173                                           bool isTaillCall) {
174  if (Subtarget->is64Bit()) {
175    if (Subtarget->isTargetWin64())
176      return CC_X86_Win64_C;
177    else
178      return CC_X86_64_C;
179  }
180
181  if (CC == CallingConv::X86_FastCall)
182    return CC_X86_32_FastCall;
183  else if (CC == CallingConv::Fast)
184    return CC_X86_32_FastCC;
185  else
186    return CC_X86_32_C;
187}
188
189/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
190/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
191/// Return true and the result register by reference if it is possible.
192bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
193                                  unsigned &ResultReg) {
194  // Get opcode and regclass of the output for the given load instruction.
195  unsigned Opc = 0;
196  const TargetRegisterClass *RC = NULL;
197  switch (VT.getSimpleVT().SimpleTy) {
198  default: return false;
199  case MVT::i1:
200  case MVT::i8:
201    Opc = X86::MOV8rm;
202    RC  = X86::GR8RegisterClass;
203    break;
204  case MVT::i16:
205    Opc = X86::MOV16rm;
206    RC  = X86::GR16RegisterClass;
207    break;
208  case MVT::i32:
209    Opc = X86::MOV32rm;
210    RC  = X86::GR32RegisterClass;
211    break;
212  case MVT::i64:
213    // Must be in x86-64 mode.
214    Opc = X86::MOV64rm;
215    RC  = X86::GR64RegisterClass;
216    break;
217  case MVT::f32:
218    if (Subtarget->hasSSE1()) {
219      Opc = X86::MOVSSrm;
220      RC  = X86::FR32RegisterClass;
221    } else {
222      Opc = X86::LD_Fp32m;
223      RC  = X86::RFP32RegisterClass;
224    }
225    break;
226  case MVT::f64:
227    if (Subtarget->hasSSE2()) {
228      Opc = X86::MOVSDrm;
229      RC  = X86::FR64RegisterClass;
230    } else {
231      Opc = X86::LD_Fp64m;
232      RC  = X86::RFP64RegisterClass;
233    }
234    break;
235  case MVT::f80:
236    // No f80 support yet.
237    return false;
238  }
239
240  ResultReg = createResultReg(RC);
241  addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
242  return true;
243}
244
245/// X86FastEmitStore - Emit a machine instruction to store a value Val of
246/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
247/// and a displacement offset, or a GlobalAddress,
248/// i.e. V. Return true if it is possible.
249bool
250X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
251                              const X86AddressMode &AM) {
252  // Get opcode and regclass of the output for the given store instruction.
253  unsigned Opc = 0;
254  switch (VT.getSimpleVT().SimpleTy) {
255  case MVT::f80: // No f80 support yet.
256  default: return false;
257  case MVT::i1: {
258    // Mask out all but lowest bit.
259    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
260    BuildMI(MBB, DL,
261            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
262    Val = AndResult;
263  }
264  // FALLTHROUGH, handling i1 as i8.
265  case MVT::i8:  Opc = X86::MOV8mr;  break;
266  case MVT::i16: Opc = X86::MOV16mr; break;
267  case MVT::i32: Opc = X86::MOV32mr; break;
268  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
269  case MVT::f32:
270    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
271    break;
272  case MVT::f64:
273    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
274    break;
275  }
276
277  addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
278  return true;
279}
280
281bool X86FastISel::X86FastEmitStore(EVT VT, Value *Val,
282                                   const X86AddressMode &AM) {
283  // Handle 'null' like i32/i64 0.
284  if (isa<ConstantPointerNull>(Val))
285    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
286
287  // If this is a store of a simple constant, fold the constant into the store.
288  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
289    unsigned Opc = 0;
290    bool Signed = true;
291    switch (VT.getSimpleVT().SimpleTy) {
292    default: break;
293    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
294    case MVT::i8:  Opc = X86::MOV8mi;  break;
295    case MVT::i16: Opc = X86::MOV16mi; break;
296    case MVT::i32: Opc = X86::MOV32mi; break;
297    case MVT::i64:
298      // Must be a 32-bit sign extended value.
299      if ((int)CI->getSExtValue() == CI->getSExtValue())
300        Opc = X86::MOV64mi32;
301      break;
302    }
303
304    if (Opc) {
305      addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
306                             .addImm(Signed ? CI->getSExtValue() :
307                                              CI->getZExtValue());
308      return true;
309    }
310  }
311
312  unsigned ValReg = getRegForValue(Val);
313  if (ValReg == 0)
314    return false;
315
316  return X86FastEmitStore(VT, ValReg, AM);
317}
318
319/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
320/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
321/// ISD::SIGN_EXTEND).
322bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
323                                    unsigned Src, EVT SrcVT,
324                                    unsigned &ResultReg) {
325  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
326
327  if (RR != 0) {
328    ResultReg = RR;
329    return true;
330  } else
331    return false;
332}
333
334/// X86SelectAddress - Attempt to fill in an address from the given value.
335///
336bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
337  User *U = NULL;
338  unsigned Opcode = Instruction::UserOp1;
339  if (Instruction *I = dyn_cast<Instruction>(V)) {
340    Opcode = I->getOpcode();
341    U = I;
342  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
343    Opcode = C->getOpcode();
344    U = C;
345  }
346
347  switch (Opcode) {
348  default: break;
349  case Instruction::BitCast:
350    // Look past bitcasts.
351    return X86SelectAddress(U->getOperand(0), AM);
352
353  case Instruction::IntToPtr:
354    // Look past no-op inttoptrs.
355    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
356      return X86SelectAddress(U->getOperand(0), AM);
357    break;
358
359  case Instruction::PtrToInt:
360    // Look past no-op ptrtoints.
361    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
362      return X86SelectAddress(U->getOperand(0), AM);
363    break;
364
365  case Instruction::Alloca: {
366    // Do static allocas.
367    const AllocaInst *A = cast<AllocaInst>(V);
368    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
369    if (SI != StaticAllocaMap.end()) {
370      AM.BaseType = X86AddressMode::FrameIndexBase;
371      AM.Base.FrameIndex = SI->second;
372      return true;
373    }
374    break;
375  }
376
377  case Instruction::Add: {
378    // Adds of constants are common and easy enough.
379    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
380      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
381      // They have to fit in the 32-bit signed displacement field though.
382      if (isInt32(Disp)) {
383        AM.Disp = (uint32_t)Disp;
384        return X86SelectAddress(U->getOperand(0), AM);
385      }
386    }
387    break;
388  }
389
390  case Instruction::GetElementPtr: {
391    X86AddressMode SavedAM = AM;
392
393    // Pattern-match simple GEPs.
394    uint64_t Disp = (int32_t)AM.Disp;
395    unsigned IndexReg = AM.IndexReg;
396    unsigned Scale = AM.Scale;
397    gep_type_iterator GTI = gep_type_begin(U);
398    // Iterate through the indices, folding what we can. Constants can be
399    // folded, and one dynamic index can be handled, if the scale is supported.
400    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
401         i != e; ++i, ++GTI) {
402      Value *Op = *i;
403      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
404        const StructLayout *SL = TD.getStructLayout(STy);
405        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
406        Disp += SL->getElementOffset(Idx);
407      } else {
408        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
409        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
410          // Constant-offset addressing.
411          Disp += CI->getSExtValue() * S;
412        } else if (IndexReg == 0 &&
413                   (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
414                   (S == 1 || S == 2 || S == 4 || S == 8)) {
415          // Scaled-index addressing.
416          Scale = S;
417          IndexReg = getRegForGEPIndex(Op);
418          if (IndexReg == 0)
419            return false;
420        } else
421          // Unsupported.
422          goto unsupported_gep;
423      }
424    }
425    // Check for displacement overflow.
426    if (!isInt32(Disp))
427      break;
428    // Ok, the GEP indices were covered by constant-offset and scaled-index
429    // addressing. Update the address state and move on to examining the base.
430    AM.IndexReg = IndexReg;
431    AM.Scale = Scale;
432    AM.Disp = (uint32_t)Disp;
433    if (X86SelectAddress(U->getOperand(0), AM))
434      return true;
435
436    // If we couldn't merge the sub value into this addr mode, revert back to
437    // our address and just match the value instead of completely failing.
438    AM = SavedAM;
439    break;
440  unsupported_gep:
441    // Ok, the GEP indices weren't all covered.
442    break;
443  }
444  }
445
446  // Handle constant address.
447  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
448    // Can't handle alternate code models yet.
449    if (TM.getCodeModel() != CodeModel::Small)
450      return false;
451
452    // RIP-relative addresses can't have additional register operands.
453    if (Subtarget->isPICStyleRIPRel() &&
454        (AM.Base.Reg != 0 || AM.IndexReg != 0))
455      return false;
456
457    // Can't handle TLS yet.
458    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
459      if (GVar->isThreadLocal())
460        return false;
461
462    // Okay, we've committed to selecting this global. Set up the basic address.
463    AM.GV = GV;
464
465    // Allow the subtarget to classify the global.
466    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
467
468    // If this reference is relative to the pic base, set it now.
469    if (isGlobalRelativeToPICBase(GVFlags)) {
470      // FIXME: How do we know Base.Reg is free??
471      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
472    }
473
474    // Unless the ABI requires an extra load, return a direct reference to
475    // the global.
476    if (!isGlobalStubReference(GVFlags)) {
477      if (Subtarget->isPICStyleRIPRel()) {
478        // Use rip-relative addressing if we can.  Above we verified that the
479        // base and index registers are unused.
480        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
481        AM.Base.Reg = X86::RIP;
482      }
483      AM.GVOpFlags = GVFlags;
484      return true;
485    }
486
487    // Ok, we need to do a load from a stub.  If we've already loaded from this
488    // stub, reuse the loaded pointer, otherwise emit the load now.
489    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
490    unsigned LoadReg;
491    if (I != LocalValueMap.end() && I->second != 0) {
492      LoadReg = I->second;
493    } else {
494      // Issue load from stub.
495      unsigned Opc = 0;
496      const TargetRegisterClass *RC = NULL;
497      X86AddressMode StubAM;
498      StubAM.Base.Reg = AM.Base.Reg;
499      StubAM.GV = GV;
500      StubAM.GVOpFlags = GVFlags;
501
502      if (TLI.getPointerTy() == MVT::i64) {
503        Opc = X86::MOV64rm;
504        RC  = X86::GR64RegisterClass;
505
506        if (Subtarget->isPICStyleRIPRel())
507          StubAM.Base.Reg = X86::RIP;
508      } else {
509        Opc = X86::MOV32rm;
510        RC  = X86::GR32RegisterClass;
511      }
512
513      LoadReg = createResultReg(RC);
514      addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
515
516      // Prevent loading GV stub multiple times in same MBB.
517      LocalValueMap[V] = LoadReg;
518    }
519
520    // Now construct the final address. Note that the Disp, Scale,
521    // and Index values may already be set here.
522    AM.Base.Reg = LoadReg;
523    AM.GV = 0;
524    return true;
525  }
526
527  // If all else fails, try to materialize the value in a register.
528  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
529    if (AM.Base.Reg == 0) {
530      AM.Base.Reg = getRegForValue(V);
531      return AM.Base.Reg != 0;
532    }
533    if (AM.IndexReg == 0) {
534      assert(AM.Scale == 1 && "Scale with no index!");
535      AM.IndexReg = getRegForValue(V);
536      return AM.IndexReg != 0;
537    }
538  }
539
540  return false;
541}
542
543/// X86SelectCallAddress - Attempt to fill in an address from the given value.
544///
545bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
546  User *U = NULL;
547  unsigned Opcode = Instruction::UserOp1;
548  if (Instruction *I = dyn_cast<Instruction>(V)) {
549    Opcode = I->getOpcode();
550    U = I;
551  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
552    Opcode = C->getOpcode();
553    U = C;
554  }
555
556  switch (Opcode) {
557  default: break;
558  case Instruction::BitCast:
559    // Look past bitcasts.
560    return X86SelectCallAddress(U->getOperand(0), AM);
561
562  case Instruction::IntToPtr:
563    // Look past no-op inttoptrs.
564    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
565      return X86SelectCallAddress(U->getOperand(0), AM);
566    break;
567
568  case Instruction::PtrToInt:
569    // Look past no-op ptrtoints.
570    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
571      return X86SelectCallAddress(U->getOperand(0), AM);
572    break;
573  }
574
575  // Handle constant address.
576  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
577    // Can't handle alternate code models yet.
578    if (TM.getCodeModel() != CodeModel::Small)
579      return false;
580
581    // RIP-relative addresses can't have additional register operands.
582    if (Subtarget->isPICStyleRIPRel() &&
583        (AM.Base.Reg != 0 || AM.IndexReg != 0))
584      return false;
585
586    // Can't handle TLS or DLLImport.
587    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
588      if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
589        return false;
590
591    // Okay, we've committed to selecting this global. Set up the basic address.
592    AM.GV = GV;
593
594    // No ABI requires an extra load for anything other than DLLImport, which
595    // we rejected above. Return a direct reference to the global.
596    if (Subtarget->isPICStyleRIPRel()) {
597      // Use rip-relative addressing if we can.  Above we verified that the
598      // base and index registers are unused.
599      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
600      AM.Base.Reg = X86::RIP;
601    } else if (Subtarget->isPICStyleStubPIC()) {
602      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
603    } else if (Subtarget->isPICStyleGOT()) {
604      AM.GVOpFlags = X86II::MO_GOTOFF;
605    }
606
607    return true;
608  }
609
610  // If all else fails, try to materialize the value in a register.
611  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
612    if (AM.Base.Reg == 0) {
613      AM.Base.Reg = getRegForValue(V);
614      return AM.Base.Reg != 0;
615    }
616    if (AM.IndexReg == 0) {
617      assert(AM.Scale == 1 && "Scale with no index!");
618      AM.IndexReg = getRegForValue(V);
619      return AM.IndexReg != 0;
620    }
621  }
622
623  return false;
624}
625
626
627/// X86SelectStore - Select and emit code to implement store instructions.
628bool X86FastISel::X86SelectStore(Instruction* I) {
629  EVT VT;
630  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
631    return false;
632
633  X86AddressMode AM;
634  if (!X86SelectAddress(I->getOperand(1), AM))
635    return false;
636
637  return X86FastEmitStore(VT, I->getOperand(0), AM);
638}
639
640/// X86SelectLoad - Select and emit code to implement load instructions.
641///
642bool X86FastISel::X86SelectLoad(Instruction *I)  {
643  EVT VT;
644  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
645    return false;
646
647  X86AddressMode AM;
648  if (!X86SelectAddress(I->getOperand(0), AM))
649    return false;
650
651  unsigned ResultReg = 0;
652  if (X86FastEmitLoad(VT, AM, ResultReg)) {
653    UpdateValueMap(I, ResultReg);
654    return true;
655  }
656  return false;
657}
658
659static unsigned X86ChooseCmpOpcode(EVT VT) {
660  switch (VT.getSimpleVT().SimpleTy) {
661  default:       return 0;
662  case MVT::i8:  return X86::CMP8rr;
663  case MVT::i16: return X86::CMP16rr;
664  case MVT::i32: return X86::CMP32rr;
665  case MVT::i64: return X86::CMP64rr;
666  case MVT::f32: return X86::UCOMISSrr;
667  case MVT::f64: return X86::UCOMISDrr;
668  }
669}
670
671/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
672/// of the comparison, return an opcode that works for the compare (e.g.
673/// CMP32ri) otherwise return 0.
674static unsigned X86ChooseCmpImmediateOpcode(EVT VT, ConstantInt *RHSC) {
675  switch (VT.getSimpleVT().SimpleTy) {
676  // Otherwise, we can't fold the immediate into this comparison.
677  default: return 0;
678  case MVT::i8: return X86::CMP8ri;
679  case MVT::i16: return X86::CMP16ri;
680  case MVT::i32: return X86::CMP32ri;
681  case MVT::i64:
682    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
683    // field.
684    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
685      return X86::CMP64ri32;
686    return 0;
687  }
688}
689
690bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, EVT VT) {
691  unsigned Op0Reg = getRegForValue(Op0);
692  if (Op0Reg == 0) return false;
693
694  // Handle 'null' like i32/i64 0.
695  if (isa<ConstantPointerNull>(Op1))
696    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
697
698  // We have two options: compare with register or immediate.  If the RHS of
699  // the compare is an immediate that we can fold into this compare, use
700  // CMPri, otherwise use CMPrr.
701  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
702    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
703      BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
704                                          .addImm(Op1C->getSExtValue());
705      return true;
706    }
707  }
708
709  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
710  if (CompareOpc == 0) return false;
711
712  unsigned Op1Reg = getRegForValue(Op1);
713  if (Op1Reg == 0) return false;
714  BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
715
716  return true;
717}
718
719bool X86FastISel::X86SelectCmp(Instruction *I) {
720  CmpInst *CI = cast<CmpInst>(I);
721
722  EVT VT;
723  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
724    return false;
725
726  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
727  unsigned SetCCOpc;
728  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
729  switch (CI->getPredicate()) {
730  case CmpInst::FCMP_OEQ: {
731    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
732      return false;
733
734    unsigned EReg = createResultReg(&X86::GR8RegClass);
735    unsigned NPReg = createResultReg(&X86::GR8RegClass);
736    BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
737    BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
738    BuildMI(MBB, DL,
739            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
740    UpdateValueMap(I, ResultReg);
741    return true;
742  }
743  case CmpInst::FCMP_UNE: {
744    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
745      return false;
746
747    unsigned NEReg = createResultReg(&X86::GR8RegClass);
748    unsigned PReg = createResultReg(&X86::GR8RegClass);
749    BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
750    BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
751    BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
752    UpdateValueMap(I, ResultReg);
753    return true;
754  }
755  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
756  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
757  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
758  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
759  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
760  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
761  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
762  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
763  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
764  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
765  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
766  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
767
768  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
769  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
770  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
771  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
772  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
773  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
774  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
775  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
776  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
777  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
778  default:
779    return false;
780  }
781
782  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
783  if (SwapArgs)
784    std::swap(Op0, Op1);
785
786  // Emit a compare of Op0/Op1.
787  if (!X86FastEmitCompare(Op0, Op1, VT))
788    return false;
789
790  BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
791  UpdateValueMap(I, ResultReg);
792  return true;
793}
794
795bool X86FastISel::X86SelectZExt(Instruction *I) {
796  // Handle zero-extension from i1 to i8, which is common.
797  if (I->getType()->isIntegerTy(8) &&
798      I->getOperand(0)->getType()->isIntegerTy(1)) {
799    unsigned ResultReg = getRegForValue(I->getOperand(0));
800    if (ResultReg == 0) return false;
801    // Set the high bits to zero.
802    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
803    if (ResultReg == 0) return false;
804    UpdateValueMap(I, ResultReg);
805    return true;
806  }
807
808  return false;
809}
810
811
812bool X86FastISel::X86SelectBranch(Instruction *I) {
813  // Unconditional branches are selected by tablegen-generated code.
814  // Handle a conditional branch.
815  BranchInst *BI = cast<BranchInst>(I);
816  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
817  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
818
819  // Fold the common case of a conditional branch with a comparison.
820  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
821    if (CI->hasOneUse()) {
822      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
823
824      // Try to take advantage of fallthrough opportunities.
825      CmpInst::Predicate Predicate = CI->getPredicate();
826      if (MBB->isLayoutSuccessor(TrueMBB)) {
827        std::swap(TrueMBB, FalseMBB);
828        Predicate = CmpInst::getInversePredicate(Predicate);
829      }
830
831      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
832      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
833
834      switch (Predicate) {
835      case CmpInst::FCMP_OEQ:
836        std::swap(TrueMBB, FalseMBB);
837        Predicate = CmpInst::FCMP_UNE;
838        // FALL THROUGH
839      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
840      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
841      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
842      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
843      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
844      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
845      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
846      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
847      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
848      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
849      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
850      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
851      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
852
853      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
854      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
855      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
856      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
857      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
858      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
859      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
860      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
861      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
862      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
863      default:
864        return false;
865      }
866
867      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
868      if (SwapArgs)
869        std::swap(Op0, Op1);
870
871      // Emit a compare of the LHS and RHS, setting the flags.
872      if (!X86FastEmitCompare(Op0, Op1, VT))
873        return false;
874
875      BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
876
877      if (Predicate == CmpInst::FCMP_UNE) {
878        // X86 requires a second branch to handle UNE (and OEQ,
879        // which is mapped to UNE above).
880        BuildMI(MBB, DL, TII.get(X86::JP_4)).addMBB(TrueMBB);
881      }
882
883      FastEmitBranch(FalseMBB);
884      MBB->addSuccessor(TrueMBB);
885      return true;
886    }
887  } else if (ExtractValueInst *EI =
888             dyn_cast<ExtractValueInst>(BI->getCondition())) {
889    // Check to see if the branch instruction is from an "arithmetic with
890    // overflow" intrinsic. The main way these intrinsics are used is:
891    //
892    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
893    //   %sum = extractvalue { i32, i1 } %t, 0
894    //   %obit = extractvalue { i32, i1 } %t, 1
895    //   br i1 %obit, label %overflow, label %normal
896    //
897    // The %sum and %obit are converted in an ADD and a SETO/SETB before
898    // reaching the branch. Therefore, we search backwards through the MBB
899    // looking for the SETO/SETB instruction. If an instruction modifies the
900    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
901    // convert the branch into a JO/JB instruction.
902    if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
903      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
904          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
905        const MachineInstr *SetMI = 0;
906        unsigned Reg = lookUpRegForValue(EI);
907
908        for (MachineBasicBlock::const_reverse_iterator
909               RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
910          const MachineInstr &MI = *RI;
911
912          if (MI.modifiesRegister(Reg)) {
913            unsigned Src, Dst, SrcSR, DstSR;
914
915            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
916              Reg = Src;
917              continue;
918            }
919
920            SetMI = &MI;
921            break;
922          }
923
924          const TargetInstrDesc &TID = MI.getDesc();
925          if (TID.hasUnmodeledSideEffects() ||
926              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
927            break;
928        }
929
930        if (SetMI) {
931          unsigned OpCode = SetMI->getOpcode();
932
933          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
934            BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ?
935                                        X86::JO_4 : X86::JB_4))
936              .addMBB(TrueMBB);
937            FastEmitBranch(FalseMBB);
938            MBB->addSuccessor(TrueMBB);
939            return true;
940          }
941        }
942      }
943    }
944  }
945
946  // Otherwise do a clumsy setcc and re-test it.
947  unsigned OpReg = getRegForValue(BI->getCondition());
948  if (OpReg == 0) return false;
949
950  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
951  BuildMI(MBB, DL, TII.get(X86::JNE_4)).addMBB(TrueMBB);
952  FastEmitBranch(FalseMBB);
953  MBB->addSuccessor(TrueMBB);
954  return true;
955}
956
957bool X86FastISel::X86SelectShift(Instruction *I) {
958  unsigned CReg = 0, OpReg = 0, OpImm = 0;
959  const TargetRegisterClass *RC = NULL;
960  if (I->getType()->isIntegerTy(8)) {
961    CReg = X86::CL;
962    RC = &X86::GR8RegClass;
963    switch (I->getOpcode()) {
964    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
965    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
966    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
967    default: return false;
968    }
969  } else if (I->getType()->isIntegerTy(16)) {
970    CReg = X86::CX;
971    RC = &X86::GR16RegClass;
972    switch (I->getOpcode()) {
973    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
974    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
975    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
976    default: return false;
977    }
978  } else if (I->getType()->isIntegerTy(32)) {
979    CReg = X86::ECX;
980    RC = &X86::GR32RegClass;
981    switch (I->getOpcode()) {
982    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
983    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
984    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
985    default: return false;
986    }
987  } else if (I->getType()->isIntegerTy(64)) {
988    CReg = X86::RCX;
989    RC = &X86::GR64RegClass;
990    switch (I->getOpcode()) {
991    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
992    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
993    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
994    default: return false;
995    }
996  } else {
997    return false;
998  }
999
1000  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1001  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1002    return false;
1003
1004  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1005  if (Op0Reg == 0) return false;
1006
1007  // Fold immediate in shl(x,3).
1008  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1009    unsigned ResultReg = createResultReg(RC);
1010    BuildMI(MBB, DL, TII.get(OpImm),
1011            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
1012    UpdateValueMap(I, ResultReg);
1013    return true;
1014  }
1015
1016  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1017  if (Op1Reg == 0) return false;
1018  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
1019
1020  // The shift instruction uses X86::CL. If we defined a super-register
1021  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
1022  // we're doing here.
1023  if (CReg != X86::CL)
1024    BuildMI(MBB, DL, TII.get(TargetOpcode::EXTRACT_SUBREG), X86::CL)
1025      .addReg(CReg).addImm(X86::SUBREG_8BIT);
1026
1027  unsigned ResultReg = createResultReg(RC);
1028  BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
1029  UpdateValueMap(I, ResultReg);
1030  return true;
1031}
1032
1033bool X86FastISel::X86SelectSelect(Instruction *I) {
1034  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1035  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1036    return false;
1037
1038  unsigned Opc = 0;
1039  const TargetRegisterClass *RC = NULL;
1040  if (VT.getSimpleVT() == MVT::i16) {
1041    Opc = X86::CMOVE16rr;
1042    RC = &X86::GR16RegClass;
1043  } else if (VT.getSimpleVT() == MVT::i32) {
1044    Opc = X86::CMOVE32rr;
1045    RC = &X86::GR32RegClass;
1046  } else if (VT.getSimpleVT() == MVT::i64) {
1047    Opc = X86::CMOVE64rr;
1048    RC = &X86::GR64RegClass;
1049  } else {
1050    return false;
1051  }
1052
1053  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1054  if (Op0Reg == 0) return false;
1055  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1056  if (Op1Reg == 0) return false;
1057  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1058  if (Op2Reg == 0) return false;
1059
1060  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
1061  unsigned ResultReg = createResultReg(RC);
1062  BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
1063  UpdateValueMap(I, ResultReg);
1064  return true;
1065}
1066
1067bool X86FastISel::X86SelectFPExt(Instruction *I) {
1068  // fpext from float to double.
1069  if (Subtarget->hasSSE2() &&
1070      I->getType()->isDoubleTy()) {
1071    Value *V = I->getOperand(0);
1072    if (V->getType()->isFloatTy()) {
1073      unsigned OpReg = getRegForValue(V);
1074      if (OpReg == 0) return false;
1075      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1076      BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
1077      UpdateValueMap(I, ResultReg);
1078      return true;
1079    }
1080  }
1081
1082  return false;
1083}
1084
1085bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
1086  if (Subtarget->hasSSE2()) {
1087    if (I->getType()->isFloatTy()) {
1088      Value *V = I->getOperand(0);
1089      if (V->getType()->isDoubleTy()) {
1090        unsigned OpReg = getRegForValue(V);
1091        if (OpReg == 0) return false;
1092        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1093        BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
1094        UpdateValueMap(I, ResultReg);
1095        return true;
1096      }
1097    }
1098  }
1099
1100  return false;
1101}
1102
1103bool X86FastISel::X86SelectTrunc(Instruction *I) {
1104  if (Subtarget->is64Bit())
1105    // All other cases should be handled by the tblgen generated code.
1106    return false;
1107  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1108  EVT DstVT = TLI.getValueType(I->getType());
1109
1110  // This code only handles truncation to byte right now.
1111  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1112    // All other cases should be handled by the tblgen generated code.
1113    return false;
1114  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1115    // All other cases should be handled by the tblgen generated code.
1116    return false;
1117
1118  unsigned InputReg = getRegForValue(I->getOperand(0));
1119  if (!InputReg)
1120    // Unhandled operand.  Halt "fast" selection and bail.
1121    return false;
1122
1123  // First issue a copy to GR16_ABCD or GR32_ABCD.
1124  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1125  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1126    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1127  unsigned CopyReg = createResultReg(CopyRC);
1128  BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1129
1130  // Then issue an extract_subreg.
1131  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1132                                                  CopyReg, X86::SUBREG_8BIT);
1133  if (!ResultReg)
1134    return false;
1135
1136  UpdateValueMap(I, ResultReg);
1137  return true;
1138}
1139
1140bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1141  ExtractValueInst *EI = cast<ExtractValueInst>(I);
1142  Value *Agg = EI->getAggregateOperand();
1143
1144  if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1145    switch (CI->getIntrinsicID()) {
1146    default: break;
1147    case Intrinsic::sadd_with_overflow:
1148    case Intrinsic::uadd_with_overflow:
1149      // Cheat a little. We know that the registers for "add" and "seto" are
1150      // allocated sequentially. However, we only keep track of the register
1151      // for "add" in the value map. Use extractvalue's index to get the
1152      // correct register for "seto".
1153      UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1154      return true;
1155    }
1156  }
1157
1158  return false;
1159}
1160
1161bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1162  // FIXME: Handle more intrinsics.
1163  switch (I.getIntrinsicID()) {
1164  default: return false;
1165  case Intrinsic::dbg_declare: {
1166    DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1167    X86AddressMode AM;
1168    assert(DI->getAddress() && "Null address should be checked earlier!");
1169    if (!X86SelectAddress(DI->getAddress(), AM))
1170      return false;
1171    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1172    // FIXME may need to add RegState::Debug to any registers produced,
1173    // although ESP/EBP should be the only ones at the moment.
1174    addFullAddress(BuildMI(MBB, DL, II), AM).addImm(0).
1175                                        addMetadata(DI->getVariable());
1176    return true;
1177  }
1178  case Intrinsic::trap: {
1179    BuildMI(MBB, DL, TII.get(X86::TRAP));
1180    return true;
1181  }
1182  case Intrinsic::sadd_with_overflow:
1183  case Intrinsic::uadd_with_overflow: {
1184    // Replace "add with overflow" intrinsics with an "add" instruction followed
1185    // by a seto/setc instruction. Later on, when the "extractvalue"
1186    // instructions are encountered, we use the fact that two registers were
1187    // created sequentially to get the correct registers for the "sum" and the
1188    // "overflow bit".
1189    const Function *Callee = I.getCalledFunction();
1190    const Type *RetTy =
1191      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1192
1193    EVT VT;
1194    if (!isTypeLegal(RetTy, VT))
1195      return false;
1196
1197    Value *Op1 = I.getOperand(1);
1198    Value *Op2 = I.getOperand(2);
1199    unsigned Reg1 = getRegForValue(Op1);
1200    unsigned Reg2 = getRegForValue(Op2);
1201
1202    if (Reg1 == 0 || Reg2 == 0)
1203      // FIXME: Handle values *not* in registers.
1204      return false;
1205
1206    unsigned OpC = 0;
1207    if (VT == MVT::i32)
1208      OpC = X86::ADD32rr;
1209    else if (VT == MVT::i64)
1210      OpC = X86::ADD64rr;
1211    else
1212      return false;
1213
1214    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1215    BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1216    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1217
1218    // If the add with overflow is an intra-block value then we just want to
1219    // create temporaries for it like normal.  If it is a cross-block value then
1220    // UpdateValueMap will return the cross-block register used.  Since we
1221    // *really* want the value to be live in the register pair known by
1222    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1223    // the cross block case.  In the non-cross-block case, we should just make
1224    // another register for the value.
1225    if (DestReg1 != ResultReg)
1226      ResultReg = DestReg1+1;
1227    else
1228      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1229
1230    unsigned Opc = X86::SETBr;
1231    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1232      Opc = X86::SETOr;
1233    BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1234    return true;
1235  }
1236  }
1237}
1238
1239bool X86FastISel::X86SelectCall(Instruction *I) {
1240  CallInst *CI = cast<CallInst>(I);
1241  Value *Callee = I->getOperand(0);
1242
1243  // Can't handle inline asm yet.
1244  if (isa<InlineAsm>(Callee))
1245    return false;
1246
1247  // Handle intrinsic calls.
1248  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1249    return X86VisitIntrinsicCall(*II);
1250
1251  // Handle only C and fastcc calling conventions for now.
1252  CallSite CS(CI);
1253  CallingConv::ID CC = CS.getCallingConv();
1254  if (CC != CallingConv::C &&
1255      CC != CallingConv::Fast &&
1256      CC != CallingConv::X86_FastCall)
1257    return false;
1258
1259  // fastcc with -tailcallopt is intended to provide a guaranteed
1260  // tail call optimization. Fastisel doesn't know how to do that.
1261  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1262    return false;
1263
1264  // Let SDISel handle vararg functions.
1265  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1266  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1267  if (FTy->isVarArg())
1268    return false;
1269
1270  // Handle *simple* calls for now.
1271  const Type *RetTy = CS.getType();
1272  EVT RetVT;
1273  if (RetTy->isVoidTy())
1274    RetVT = MVT::isVoid;
1275  else if (!isTypeLegal(RetTy, RetVT, true))
1276    return false;
1277
1278  // Materialize callee address in a register. FIXME: GV address can be
1279  // handled with a CALLpcrel32 instead.
1280  X86AddressMode CalleeAM;
1281  if (!X86SelectCallAddress(Callee, CalleeAM))
1282    return false;
1283  unsigned CalleeOp = 0;
1284  GlobalValue *GV = 0;
1285  if (CalleeAM.GV != 0) {
1286    GV = CalleeAM.GV;
1287  } else if (CalleeAM.Base.Reg != 0) {
1288    CalleeOp = CalleeAM.Base.Reg;
1289  } else
1290    return false;
1291
1292  // Allow calls which produce i1 results.
1293  bool AndToI1 = false;
1294  if (RetVT == MVT::i1) {
1295    RetVT = MVT::i8;
1296    AndToI1 = true;
1297  }
1298
1299  // Deal with call operands first.
1300  SmallVector<Value*, 8> ArgVals;
1301  SmallVector<unsigned, 8> Args;
1302  SmallVector<EVT, 8> ArgVTs;
1303  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1304  Args.reserve(CS.arg_size());
1305  ArgVals.reserve(CS.arg_size());
1306  ArgVTs.reserve(CS.arg_size());
1307  ArgFlags.reserve(CS.arg_size());
1308  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1309       i != e; ++i) {
1310    unsigned Arg = getRegForValue(*i);
1311    if (Arg == 0)
1312      return false;
1313    ISD::ArgFlagsTy Flags;
1314    unsigned AttrInd = i - CS.arg_begin() + 1;
1315    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1316      Flags.setSExt();
1317    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1318      Flags.setZExt();
1319
1320    // FIXME: Only handle *easy* calls for now.
1321    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1322        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1323        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1324        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1325      return false;
1326
1327    const Type *ArgTy = (*i)->getType();
1328    EVT ArgVT;
1329    if (!isTypeLegal(ArgTy, ArgVT))
1330      return false;
1331    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1332    Flags.setOrigAlign(OriginalAlignment);
1333
1334    Args.push_back(Arg);
1335    ArgVals.push_back(*i);
1336    ArgVTs.push_back(ArgVT);
1337    ArgFlags.push_back(Flags);
1338  }
1339
1340  // Analyze operands of the call, assigning locations to each operand.
1341  SmallVector<CCValAssign, 16> ArgLocs;
1342  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1343  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1344
1345  // Get a count of how many bytes are to be pushed on the stack.
1346  unsigned NumBytes = CCInfo.getNextStackOffset();
1347
1348  // Issue CALLSEQ_START
1349  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1350  BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1351
1352  // Process argument: walk the register/memloc assignments, inserting
1353  // copies / loads.
1354  SmallVector<unsigned, 4> RegArgs;
1355  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1356    CCValAssign &VA = ArgLocs[i];
1357    unsigned Arg = Args[VA.getValNo()];
1358    EVT ArgVT = ArgVTs[VA.getValNo()];
1359
1360    // Promote the value if needed.
1361    switch (VA.getLocInfo()) {
1362    default: llvm_unreachable("Unknown loc info!");
1363    case CCValAssign::Full: break;
1364    case CCValAssign::SExt: {
1365      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1366                                       Arg, ArgVT, Arg);
1367      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1368      Emitted = true;
1369      ArgVT = VA.getLocVT();
1370      break;
1371    }
1372    case CCValAssign::ZExt: {
1373      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1374                                       Arg, ArgVT, Arg);
1375      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1376      Emitted = true;
1377      ArgVT = VA.getLocVT();
1378      break;
1379    }
1380    case CCValAssign::AExt: {
1381      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1382                                       Arg, ArgVT, Arg);
1383      if (!Emitted)
1384        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1385                                    Arg, ArgVT, Arg);
1386      if (!Emitted)
1387        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1388                                    Arg, ArgVT, Arg);
1389
1390      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1391      ArgVT = VA.getLocVT();
1392      break;
1393    }
1394    case CCValAssign::BCvt: {
1395      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
1396                               ISD::BIT_CONVERT, Arg);
1397      assert(BC != 0 && "Failed to emit a bitcast!");
1398      Arg = BC;
1399      ArgVT = VA.getLocVT();
1400      break;
1401    }
1402    }
1403
1404    if (VA.isRegLoc()) {
1405      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1406      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1407                                      Arg, RC, RC);
1408      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1409      Emitted = true;
1410      RegArgs.push_back(VA.getLocReg());
1411    } else {
1412      unsigned LocMemOffset = VA.getLocMemOffset();
1413      X86AddressMode AM;
1414      AM.Base.Reg = StackPtr;
1415      AM.Disp = LocMemOffset;
1416      Value *ArgVal = ArgVals[VA.getValNo()];
1417
1418      // If this is a really simple value, emit this with the Value* version of
1419      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1420      // can cause us to reevaluate the argument.
1421      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1422        X86FastEmitStore(ArgVT, ArgVal, AM);
1423      else
1424        X86FastEmitStore(ArgVT, Arg, AM);
1425    }
1426  }
1427
1428  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1429  // GOT pointer.
1430  if (Subtarget->isPICStyleGOT()) {
1431    TargetRegisterClass *RC = X86::GR32RegisterClass;
1432    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1433    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1434    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1435    Emitted = true;
1436  }
1437
1438  // Issue the call.
1439  MachineInstrBuilder MIB;
1440  if (CalleeOp) {
1441    // Register-indirect call.
1442    unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
1443    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
1444
1445  } else {
1446    // Direct call.
1447    assert(GV && "Not a direct call");
1448    unsigned CallOpc =
1449      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
1450
1451    // See if we need any target-specific flags on the GV operand.
1452    unsigned char OpFlags = 0;
1453
1454    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1455    // external symbols most go through the PLT in PIC mode.  If the symbol
1456    // has hidden or protected visibility, or if it is static or local, then
1457    // we don't need to use the PLT - we can directly call it.
1458    if (Subtarget->isTargetELF() &&
1459        TM.getRelocationModel() == Reloc::PIC_ &&
1460        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1461      OpFlags = X86II::MO_PLT;
1462    } else if (Subtarget->isPICStyleStubAny() &&
1463               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1464               Subtarget->getDarwinVers() < 9) {
1465      // PC-relative references to external symbols should go through $stub,
1466      // unless we're building with the leopard linker or later, which
1467      // automatically synthesizes these stubs.
1468      OpFlags = X86II::MO_DARWIN_STUB;
1469    }
1470
1471
1472    MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
1473  }
1474
1475  // Add an implicit use GOT pointer in EBX.
1476  if (Subtarget->isPICStyleGOT())
1477    MIB.addReg(X86::EBX);
1478
1479  // Add implicit physical register uses to the call.
1480  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1481    MIB.addReg(RegArgs[i]);
1482
1483  // Issue CALLSEQ_END
1484  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1485  BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1486
1487  // Now handle call return value (if any).
1488  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1489    SmallVector<CCValAssign, 16> RVLocs;
1490    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1491    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1492
1493    // Copy all of the result registers out of their specified physreg.
1494    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1495    EVT CopyVT = RVLocs[0].getValVT();
1496    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1497    TargetRegisterClass *SrcRC = DstRC;
1498
1499    // If this is a call to a function that returns an fp value on the x87 fp
1500    // stack, but where we prefer to use the value in xmm registers, copy it
1501    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1502    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1503         RVLocs[0].getLocReg() == X86::ST1) &&
1504        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1505      CopyVT = MVT::f80;
1506      SrcRC = X86::RSTRegisterClass;
1507      DstRC = X86::RFP80RegisterClass;
1508    }
1509
1510    unsigned ResultReg = createResultReg(DstRC);
1511    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1512                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1513    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1514    Emitted = true;
1515    if (CopyVT != RVLocs[0].getValVT()) {
1516      // Round the F80 the right size, which also moves to the appropriate xmm
1517      // register. This is accomplished by storing the F80 value in memory and
1518      // then loading it back. Ewww...
1519      EVT ResVT = RVLocs[0].getValVT();
1520      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1521      unsigned MemSize = ResVT.getSizeInBits()/8;
1522      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1523      addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1524      DstRC = ResVT == MVT::f32
1525        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1526      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1527      ResultReg = createResultReg(DstRC);
1528      addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1529    }
1530
1531    if (AndToI1) {
1532      // Mask out all but lowest bit for some call which produces an i1.
1533      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1534      BuildMI(MBB, DL,
1535              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1536      ResultReg = AndResult;
1537    }
1538
1539    UpdateValueMap(I, ResultReg);
1540  }
1541
1542  return true;
1543}
1544
1545
1546bool
1547X86FastISel::TargetSelectInstruction(Instruction *I)  {
1548  switch (I->getOpcode()) {
1549  default: break;
1550  case Instruction::Load:
1551    return X86SelectLoad(I);
1552  case Instruction::Store:
1553    return X86SelectStore(I);
1554  case Instruction::ICmp:
1555  case Instruction::FCmp:
1556    return X86SelectCmp(I);
1557  case Instruction::ZExt:
1558    return X86SelectZExt(I);
1559  case Instruction::Br:
1560    return X86SelectBranch(I);
1561  case Instruction::Call:
1562    return X86SelectCall(I);
1563  case Instruction::LShr:
1564  case Instruction::AShr:
1565  case Instruction::Shl:
1566    return X86SelectShift(I);
1567  case Instruction::Select:
1568    return X86SelectSelect(I);
1569  case Instruction::Trunc:
1570    return X86SelectTrunc(I);
1571  case Instruction::FPExt:
1572    return X86SelectFPExt(I);
1573  case Instruction::FPTrunc:
1574    return X86SelectFPTrunc(I);
1575  case Instruction::ExtractValue:
1576    return X86SelectExtractValue(I);
1577  case Instruction::IntToPtr: // Deliberate fall-through.
1578  case Instruction::PtrToInt: {
1579    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1580    EVT DstVT = TLI.getValueType(I->getType());
1581    if (DstVT.bitsGT(SrcVT))
1582      return X86SelectZExt(I);
1583    if (DstVT.bitsLT(SrcVT))
1584      return X86SelectTrunc(I);
1585    unsigned Reg = getRegForValue(I->getOperand(0));
1586    if (Reg == 0) return false;
1587    UpdateValueMap(I, Reg);
1588    return true;
1589  }
1590  }
1591
1592  return false;
1593}
1594
1595unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1596  EVT VT;
1597  if (!isTypeLegal(C->getType(), VT))
1598    return false;
1599
1600  // Get opcode and regclass of the output for the given load instruction.
1601  unsigned Opc = 0;
1602  const TargetRegisterClass *RC = NULL;
1603  switch (VT.getSimpleVT().SimpleTy) {
1604  default: return false;
1605  case MVT::i8:
1606    Opc = X86::MOV8rm;
1607    RC  = X86::GR8RegisterClass;
1608    break;
1609  case MVT::i16:
1610    Opc = X86::MOV16rm;
1611    RC  = X86::GR16RegisterClass;
1612    break;
1613  case MVT::i32:
1614    Opc = X86::MOV32rm;
1615    RC  = X86::GR32RegisterClass;
1616    break;
1617  case MVT::i64:
1618    // Must be in x86-64 mode.
1619    Opc = X86::MOV64rm;
1620    RC  = X86::GR64RegisterClass;
1621    break;
1622  case MVT::f32:
1623    if (Subtarget->hasSSE1()) {
1624      Opc = X86::MOVSSrm;
1625      RC  = X86::FR32RegisterClass;
1626    } else {
1627      Opc = X86::LD_Fp32m;
1628      RC  = X86::RFP32RegisterClass;
1629    }
1630    break;
1631  case MVT::f64:
1632    if (Subtarget->hasSSE2()) {
1633      Opc = X86::MOVSDrm;
1634      RC  = X86::FR64RegisterClass;
1635    } else {
1636      Opc = X86::LD_Fp64m;
1637      RC  = X86::RFP64RegisterClass;
1638    }
1639    break;
1640  case MVT::f80:
1641    // No f80 support yet.
1642    return false;
1643  }
1644
1645  // Materialize addresses with LEA instructions.
1646  if (isa<GlobalValue>(C)) {
1647    X86AddressMode AM;
1648    if (X86SelectAddress(C, AM)) {
1649      if (TLI.getPointerTy() == MVT::i32)
1650        Opc = X86::LEA32r;
1651      else
1652        Opc = X86::LEA64r;
1653      unsigned ResultReg = createResultReg(RC);
1654      addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1655      return ResultReg;
1656    }
1657    return 0;
1658  }
1659
1660  // MachineConstantPool wants an explicit alignment.
1661  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1662  if (Align == 0) {
1663    // Alignment of vector types.  FIXME!
1664    Align = TD.getTypeAllocSize(C->getType());
1665  }
1666
1667  // x86-32 PIC requires a PIC base register for constant pools.
1668  unsigned PICBase = 0;
1669  unsigned char OpFlag = 0;
1670  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1671    OpFlag = X86II::MO_PIC_BASE_OFFSET;
1672    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1673  } else if (Subtarget->isPICStyleGOT()) {
1674    OpFlag = X86II::MO_GOTOFF;
1675    PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1676  } else if (Subtarget->isPICStyleRIPRel() &&
1677             TM.getCodeModel() == CodeModel::Small) {
1678    PICBase = X86::RIP;
1679  }
1680
1681  // Create the load from the constant pool.
1682  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1683  unsigned ResultReg = createResultReg(RC);
1684  addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
1685                           MCPOffset, PICBase, OpFlag);
1686
1687  return ResultReg;
1688}
1689
1690unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1691  // Fail on dynamic allocas. At this point, getRegForValue has already
1692  // checked its CSE maps, so if we're here trying to handle a dynamic
1693  // alloca, we're not going to succeed. X86SelectAddress has a
1694  // check for dynamic allocas, because it's called directly from
1695  // various places, but TargetMaterializeAlloca also needs a check
1696  // in order to avoid recursion between getRegForValue,
1697  // X86SelectAddrss, and TargetMaterializeAlloca.
1698  if (!StaticAllocaMap.count(C))
1699    return 0;
1700
1701  X86AddressMode AM;
1702  if (!X86SelectAddress(C, AM))
1703    return 0;
1704  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1705  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1706  unsigned ResultReg = createResultReg(RC);
1707  addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1708  return ResultReg;
1709}
1710
1711namespace llvm {
1712  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1713                        MachineModuleInfo *mmi,
1714                        DwarfWriter *dw,
1715                        DenseMap<const Value *, unsigned> &vm,
1716                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1717                        DenseMap<const AllocaInst *, int> &am
1718#ifndef NDEBUG
1719                        , SmallSet<Instruction*, 8> &cil
1720#endif
1721                        ) {
1722    return new X86FastISel(mf, mmi, dw, vm, bm, am
1723#ifndef NDEBUG
1724                           , cil
1725#endif
1726                           );
1727  }
1728}
1729