HexagonNewValueJump.cpp revision 239310
1//===----- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements NewValueJump pass in Hexagon.
11// Ideally, we should merge this as a Peephole pass prior to register
12// allocation, but because we have a spill in between the feeder and new value
13// jump instructions, we are forced to write after register allocation.
14// Having said that, we should re-attempt to pull this earlier at some point
15// in future.
16
17// The basic approach looks for sequence of predicated jump, compare instruciton
18// that genereates the predicate and, the feeder to the predicate. Once it finds
19// all, it collapses compare and jump instruction into a new valu jump
20// intstructions.
21//
22//
23//===----------------------------------------------------------------------===//
24#define DEBUG_TYPE "hexagon-nvj"
25#include "llvm/PassSupport.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/CodeGen/ScheduleDAGInstrs.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/LiveVariables.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/MachineFunctionAnalysis.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "Hexagon.h"
41#include "HexagonTargetMachine.h"
42#include "HexagonRegisterInfo.h"
43#include "HexagonSubtarget.h"
44#include "HexagonInstrInfo.h"
45#include "HexagonMachineFunctionInfo.h"
46
47#include <map>
48
49#include "llvm/Support/CommandLine.h"
50using namespace llvm;
51
52STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
53
54static cl::opt<int>
55DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc(
56  "Maximum number of predicated jumps to be converted to New Value Jump"));
57
58static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
59    cl::ZeroOrMore, cl::init(false),
60    cl::desc("Disable New Value Jumps"));
61
62namespace {
63  struct HexagonNewValueJump : public MachineFunctionPass {
64    const HexagonInstrInfo    *QII;
65    const HexagonRegisterInfo *QRI;
66
67  public:
68    static char ID;
69
70    HexagonNewValueJump() : MachineFunctionPass(ID) { }
71
72    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
73      MachineFunctionPass::getAnalysisUsage(AU);
74    }
75
76    const char *getPassName() const {
77      return "Hexagon NewValueJump";
78    }
79
80    virtual bool runOnMachineFunction(MachineFunction &Fn);
81
82  private:
83
84  };
85
86} // end of anonymous namespace
87
88char HexagonNewValueJump::ID = 0;
89
90// We have identified this II could be feeder to NVJ,
91// verify that it can be.
92static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
93                                      const TargetRegisterInfo *TRI,
94                                      MachineBasicBlock::iterator II,
95                                      MachineBasicBlock::iterator end,
96                                      MachineBasicBlock::iterator skip,
97                                      MachineFunction &MF) {
98
99  // Predicated instruction can not be feeder to NVJ.
100  if (QII->isPredicated(II))
101    return false;
102
103  // Bail out if feederReg is a paired register (double regs in
104  // our case). One would think that we can check to see if a given
105  // register cmpReg1 or cmpReg2 is a sub register of feederReg
106  // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
107  // before the callsite of this function
108  // But we can not as it comes in the following fashion.
109  //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
110  //    %R0<def> = KILL %R0, %D0<imp-use,kill>
111  //    %P0<def> = CMPEQri %R0<kill>, 0
112  // Hence, we need to check if it's a KILL instruction.
113  if (II->getOpcode() == TargetOpcode::KILL)
114    return false;
115
116
117  // Make sure there there is no 'def' or 'use' of any of the uses of
118  // feeder insn between it's definition, this MI and jump, jmpInst
119  // skipping compare, cmpInst.
120  // Here's the example.
121  //    r21=memub(r22+r24<<#0)
122  //    p0 = cmp.eq(r21, #0)
123  //    r4=memub(r3+r21<<#0)
124  //    if (p0.new) jump:t .LBB29_45
125  // Without this check, it will be converted into
126  //    r4=memub(r3+r21<<#0)
127  //    r21=memub(r22+r24<<#0)
128  //    p0 = cmp.eq(r21, #0)
129  //    if (p0.new) jump:t .LBB29_45
130  // and result WAR hazards if converted to New Value Jump.
131
132  for (unsigned i = 0; i < II->getNumOperands(); ++i) {
133    if (II->getOperand(i).isReg() &&
134        (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
135      MachineBasicBlock::iterator localII = II;
136      ++localII;
137      unsigned Reg = II->getOperand(i).getReg();
138      for (MachineBasicBlock::iterator localBegin = localII;
139                        localBegin != end; ++localBegin) {
140        if (localBegin == skip ) continue;
141        // Check for Subregisters too.
142        if (localBegin->modifiesRegister(Reg, TRI) ||
143            localBegin->readsRegister(Reg, TRI))
144          return false;
145      }
146    }
147  }
148  return true;
149}
150
151// These are the common checks that need to performed
152// to determine if
153// 1. compare instruction can be moved before jump.
154// 2. feeder to the compare instruction can be moved before jump.
155static bool commonChecksToProhibitNewValueJump(bool afterRA,
156                          MachineBasicBlock::iterator MII) {
157
158  // If store in path, bail out.
159  if (MII->getDesc().mayStore())
160    return false;
161
162  // if call in path, bail out.
163  if (MII->getOpcode() == Hexagon::CALLv3)
164    return false;
165
166  // if NVJ is running prior to RA, do the following checks.
167  if (!afterRA) {
168    // The following Target Opcode instructions are spurious
169    // to new value jump. If they are in the path, bail out.
170    // KILL sets kill flag on the opcode. It also sets up a
171    // single register, out of pair.
172    //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
173    //    %R0<def> = KILL %R0, %D0<imp-use,kill>
174    //    %P0<def> = CMPEQri %R0<kill>, 0
175    // PHI can be anything after RA.
176    // COPY can remateriaze things in between feeder, compare and nvj.
177    if (MII->getOpcode() == TargetOpcode::KILL ||
178        MII->getOpcode() == TargetOpcode::PHI  ||
179        MII->getOpcode() == TargetOpcode::COPY)
180      return false;
181
182    // The following pseudo Hexagon instructions sets "use" and "def"
183    // of registers by individual passes in the backend. At this time,
184    // we don't know the scope of usage and definitions of these
185    // instructions.
186    if (MII->getOpcode() == Hexagon::TFR_condset_rr ||
187        MII->getOpcode() == Hexagon::TFR_condset_ii ||
188        MII->getOpcode() == Hexagon::TFR_condset_ri ||
189        MII->getOpcode() == Hexagon::TFR_condset_ir ||
190        MII->getOpcode() == Hexagon::LDriw_pred     ||
191        MII->getOpcode() == Hexagon::STriw_pred)
192      return false;
193  }
194
195  return true;
196}
197
198static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
199                                     const TargetRegisterInfo *TRI,
200                                     MachineBasicBlock::iterator II,
201                                     unsigned pReg,
202                                     bool secondReg,
203                                     bool optLocation,
204                                     MachineBasicBlock::iterator end,
205                                     MachineFunction &MF) {
206
207  MachineInstr *MI = II;
208
209  // If the second operand of the compare is an imm, make sure it's in the
210  // range specified by the arch.
211  if (!secondReg) {
212    int64_t v = MI->getOperand(2).getImm();
213    if (MI->getOpcode() == Hexagon::CMPGEri ||
214       (MI->getOpcode() == Hexagon::CMPGEUri && v > 0))
215      --v;
216
217    if (!(isUInt<5>(v) ||
218         ((MI->getOpcode() == Hexagon::CMPEQri ||
219           MI->getOpcode() == Hexagon::CMPGTri ||
220           MI->getOpcode() == Hexagon::CMPGEri) &&
221          (v == -1))))
222      return false;
223  }
224
225  unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
226  cmpReg1 = MI->getOperand(1).getReg();
227
228  if (secondReg) {
229    cmpOp2 = MI->getOperand(2).getReg();
230
231    // Make sure that that second register is not from COPY
232    // At machine code level, we don't need this, but if we decide
233    // to move new value jump prior to RA, we would be needing this.
234    MachineRegisterInfo &MRI = MF.getRegInfo();
235    if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) {
236      MachineInstr *def = MRI.getVRegDef(cmpOp2);
237      if (def->getOpcode() == TargetOpcode::COPY)
238        return false;
239    }
240  }
241
242  // Walk the instructions after the compare (predicate def) to the jump,
243  // and satisfy the following conditions.
244  ++II ;
245  for (MachineBasicBlock::iterator localII = II; localII != end;
246       ++localII) {
247
248    // Check 1.
249    // If "common" checks fail, bail out.
250    if (!commonChecksToProhibitNewValueJump(optLocation, localII))
251      return false;
252
253    // Check 2.
254    // If there is a def or use of predicate (result of compare), bail out.
255    if (localII->modifiesRegister(pReg, TRI) ||
256        localII->readsRegister(pReg, TRI))
257      return false;
258
259    // Check 3.
260    // If there is a def of any of the use of the compare (operands of compare),
261    // bail out.
262    // Eg.
263    //    p0 = cmp.eq(r2, r0)
264    //    r2 = r4
265    //    if (p0.new) jump:t .LBB28_3
266    if (localII->modifiesRegister(cmpReg1, TRI) ||
267        (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
268      return false;
269  }
270  return true;
271}
272
273// Given a compare operator, return a matching New Value Jump
274// compare operator. Make sure that MI here is included in
275// HexagonInstrInfo.cpp::isNewValueJumpCandidate
276static unsigned getNewValueJumpOpcode(const MachineInstr *MI, int reg,
277                                      bool secondRegNewified) {
278  switch (MI->getOpcode()) {
279    case Hexagon::CMPEQrr:
280      return Hexagon::JMP_EQrrPt_nv_V4;
281
282    case Hexagon::CMPEQri: {
283      if (reg >= 0)
284        return Hexagon::JMP_EQriPt_nv_V4;
285      else
286        return Hexagon::JMP_EQriPtneg_nv_V4;
287    }
288
289    case Hexagon::CMPLTrr:
290    case Hexagon::CMPGTrr: {
291      if (secondRegNewified)
292        return Hexagon::JMP_GTrrdnPt_nv_V4;
293      else
294        return Hexagon::JMP_GTrrPt_nv_V4;
295    }
296
297    case Hexagon::CMPGEri: {
298      if (reg >= 1)
299        return Hexagon::JMP_GTriPt_nv_V4;
300      else
301        return Hexagon::JMP_GTriPtneg_nv_V4;
302    }
303
304    case Hexagon::CMPGTri: {
305      if (reg >= 0)
306        return Hexagon::JMP_GTriPt_nv_V4;
307      else
308        return Hexagon::JMP_GTriPtneg_nv_V4;
309    }
310
311    case Hexagon::CMPLTUrr:
312    case Hexagon::CMPGTUrr: {
313      if (secondRegNewified)
314        return Hexagon::JMP_GTUrrdnPt_nv_V4;
315      else
316        return Hexagon::JMP_GTUrrPt_nv_V4;
317    }
318
319    case Hexagon::CMPGTUri:
320      return Hexagon::JMP_GTUriPt_nv_V4;
321
322    case Hexagon::CMPGEUri: {
323      if (reg == 0)
324        return Hexagon::JMP_EQrrPt_nv_V4;
325      else
326        return Hexagon::JMP_GTUriPt_nv_V4;
327    }
328
329    default:
330       llvm_unreachable("Could not find matching New Value Jump instruction.");
331  }
332  // return *some value* to avoid compiler warning
333  return 0;
334}
335
336bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
337
338  DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
339               << "********** Function: "
340               << MF.getFunction()->getName() << "\n");
341
342#if 0
343  // for now disable this, if we move NewValueJump before register
344  // allocation we need this information.
345  LiveVariables &LVs = getAnalysis<LiveVariables>();
346#endif
347
348  QII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo());
349  QRI =
350    static_cast<const HexagonRegisterInfo *>(MF.getTarget().getRegisterInfo());
351
352  if (!QRI->Subtarget.hasV4TOps() ||
353      DisableNewValueJumps) {
354    return false;
355  }
356
357  int nvjCount = DbgNVJCount;
358  int nvjGenerated = 0;
359
360  // Loop through all the bb's of the function
361  for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
362        MBBb != MBBe; ++MBBb) {
363    MachineBasicBlock* MBB = MBBb;
364
365    DEBUG(dbgs() << "** dumping bb ** "
366                 << MBB->getNumber() << "\n");
367    DEBUG(MBB->dump());
368    DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n");
369    bool foundJump    = false;
370    bool foundCompare = false;
371    bool invertPredicate = false;
372    unsigned predReg = 0; // predicate reg of the jump.
373    unsigned cmpReg1 = 0;
374    int cmpOp2 = 0;
375    bool MO1IsKill = false;
376    bool MO2IsKill = false;
377    MachineBasicBlock::iterator jmpPos;
378    MachineBasicBlock::iterator cmpPos;
379    MachineInstr *cmpInstr = NULL, *jmpInstr = NULL;
380    MachineBasicBlock *jmpTarget = NULL;
381    bool afterRA = false;
382    bool isSecondOpReg = false;
383    bool isSecondOpNewified = false;
384    // Traverse the basic block - bottom up
385    for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
386             MII != E;) {
387      MachineInstr *MI = --MII;
388      if (MI->isDebugValue()) {
389        continue;
390      }
391
392      if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
393        break;
394
395      DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
396
397      if (!foundJump &&
398         (MI->getOpcode() == Hexagon::JMP_c ||
399          MI->getOpcode() == Hexagon::JMP_cNot ||
400          MI->getOpcode() == Hexagon::JMP_cdnPt ||
401          MI->getOpcode() == Hexagon::JMP_cdnPnt ||
402          MI->getOpcode() == Hexagon::JMP_cdnNotPt ||
403          MI->getOpcode() == Hexagon::JMP_cdnNotPnt)) {
404        // This is where you would insert your compare and
405        // instr that feeds compare
406        jmpPos = MII;
407        jmpInstr = MI;
408        predReg = MI->getOperand(0).getReg();
409        afterRA = TargetRegisterInfo::isPhysicalRegister(predReg);
410
411        // If ifconverter had not messed up with the kill flags of the
412        // operands, the following check on the kill flag would suffice.
413        // if(!jmpInstr->getOperand(0).isKill()) break;
414
415        // This predicate register is live out out of BB
416        // this would only work if we can actually use Live
417        // variable analysis on phy regs - but LLVM does not
418        // provide LV analysis on phys regs.
419        //if(LVs.isLiveOut(predReg, *MBB)) break;
420
421        // Get all the successors of this block - which will always
422        // be 2. Check if the predicate register is live in in those
423        // successor. If yes, we can not delete the predicate -
424        // I am doing this only because LLVM does not provide LiveOut
425        // at the BB level.
426        bool predLive = false;
427        for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
428                            SIE = MBB->succ_end(); SI != SIE; ++SI) {
429          MachineBasicBlock* succMBB = *SI;
430         if (succMBB->isLiveIn(predReg)) {
431            predLive = true;
432          }
433        }
434        if (predLive)
435          break;
436
437        jmpTarget = MI->getOperand(1).getMBB();
438        foundJump = true;
439        if (MI->getOpcode() == Hexagon::JMP_cNot ||
440            MI->getOpcode() == Hexagon::JMP_cdnNotPt ||
441            MI->getOpcode() == Hexagon::JMP_cdnNotPnt) {
442          invertPredicate = true;
443        }
444        continue;
445      }
446
447      // No new value jump if there is a barrier. A barrier has to be in its
448      // own packet. A barrier has zero operands. We conservatively bail out
449      // here if we see any instruction with zero operands.
450      if (foundJump && MI->getNumOperands() == 0)
451        break;
452
453      if (foundJump &&
454         !foundCompare &&
455          MI->getOperand(0).isReg() &&
456          MI->getOperand(0).getReg() == predReg) {
457
458        // Not all compares can be new value compare. Arch Spec: 7.6.1.1
459        if (QII->isNewValueJumpCandidate(MI)) {
460
461          assert((MI->getDesc().isCompare()) &&
462              "Only compare instruction can be collapsed into New Value Jump");
463          isSecondOpReg = MI->getOperand(2).isReg();
464
465          if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
466                                        afterRA, jmpPos, MF))
467            break;
468
469          cmpInstr = MI;
470          cmpPos = MII;
471          foundCompare = true;
472
473          // We need cmpReg1 and cmpOp2(imm or reg) while building
474          // new value jump instruction.
475          cmpReg1 = MI->getOperand(1).getReg();
476          if (MI->getOperand(1).isKill())
477            MO1IsKill = true;
478
479          if (isSecondOpReg) {
480            cmpOp2 = MI->getOperand(2).getReg();
481            if (MI->getOperand(2).isKill())
482              MO2IsKill = true;
483          } else
484            cmpOp2 = MI->getOperand(2).getImm();
485          continue;
486        }
487      }
488
489      if (foundCompare && foundJump) {
490
491        // If "common" checks fail, bail out on this BB.
492        if (!commonChecksToProhibitNewValueJump(afterRA, MII))
493          break;
494
495        bool foundFeeder = false;
496        MachineBasicBlock::iterator feederPos = MII;
497        if (MI->getOperand(0).isReg() &&
498            MI->getOperand(0).isDef() &&
499           (MI->getOperand(0).getReg() == cmpReg1 ||
500            (isSecondOpReg &&
501             MI->getOperand(0).getReg() == (unsigned) cmpOp2))) {
502
503          unsigned feederReg = MI->getOperand(0).getReg();
504
505          // First try to see if we can get the feeder from the first operand
506          // of the compare. If we can not, and if secondOpReg is true
507          // (second operand of the compare is also register), try that one.
508          // TODO: Try to come up with some heuristic to figure out which
509          // feeder would benefit.
510
511          if (feederReg == cmpReg1) {
512            if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
513              if (!isSecondOpReg)
514                break;
515              else
516                continue;
517            } else
518              foundFeeder = true;
519          }
520
521          if (!foundFeeder &&
522               isSecondOpReg &&
523               feederReg == (unsigned) cmpOp2)
524            if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
525              break;
526
527          if (isSecondOpReg) {
528            // In case of CMPLT, or CMPLTU, or EQ with the second register
529            // to newify, swap the operands.
530            if (cmpInstr->getOpcode() == Hexagon::CMPLTrr  ||
531                cmpInstr->getOpcode() == Hexagon::CMPLTUrr ||
532                (cmpInstr->getOpcode() == Hexagon::CMPEQrr &&
533                                     feederReg == (unsigned) cmpOp2)) {
534              unsigned tmp = cmpReg1;
535              bool tmpIsKill = MO1IsKill;
536              cmpReg1 = cmpOp2;
537              MO1IsKill = MO2IsKill;
538              cmpOp2 = tmp;
539              MO2IsKill = tmpIsKill;
540            }
541
542            // Now we have swapped the operands, all we need to check is,
543            // if the second operand (after swap) is the feeder.
544            // And if it is, make a note.
545            if (feederReg == (unsigned)cmpOp2)
546              isSecondOpNewified = true;
547          }
548
549          // Now that we are moving feeder close the jump,
550          // make sure we are respecting the kill values of
551          // the operands of the feeder.
552
553          bool updatedIsKill = false;
554          for (unsigned i = 0; i < MI->getNumOperands(); i++) {
555            MachineOperand &MO = MI->getOperand(i);
556            if (MO.isReg() && MO.isUse()) {
557              unsigned feederReg = MO.getReg();
558              for (MachineBasicBlock::iterator localII = feederPos,
559                   end = jmpPos; localII != end; localII++) {
560                MachineInstr *localMI = localII;
561                for (unsigned j = 0; j < localMI->getNumOperands(); j++) {
562                  MachineOperand &localMO = localMI->getOperand(j);
563                  if (localMO.isReg() && localMO.isUse() &&
564                      localMO.isKill() && feederReg == localMO.getReg()) {
565                    // We found that there is kill of a use register
566                    // Set up a kill flag on the register
567                    localMO.setIsKill(false);
568                    MO.setIsKill();
569                    updatedIsKill = true;
570                    break;
571                  }
572                }
573                if (updatedIsKill) break;
574              }
575            }
576            if (updatedIsKill) break;
577          }
578
579          MBB->splice(jmpPos, MI->getParent(), MI);
580          MBB->splice(jmpPos, MI->getParent(), cmpInstr);
581          DebugLoc dl = MI->getDebugLoc();
582          MachineInstr *NewMI;
583
584           assert((QII->isNewValueJumpCandidate(cmpInstr)) &&
585                      "This compare is not a New Value Jump candidate.");
586          unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
587                                               isSecondOpNewified);
588          if (invertPredicate)
589            opc = QII->getInvertedPredicatedOpcode(opc);
590
591          // Manage the conversions from CMPGEUri to either CMPEQrr
592          // or CMPGTUri properly. See Arch spec for CMPGEUri instructions.
593          // This has to be after the getNewValueJumpOpcode function call as
594          // second operand of the compare could be modified in this logic.
595          if (cmpInstr->getOpcode() == Hexagon::CMPGEUri) {
596            if (cmpOp2 == 0) {
597              cmpOp2 = cmpReg1;
598              MO2IsKill = MO1IsKill;
599              isSecondOpReg = true;
600            } else
601              --cmpOp2;
602          }
603
604          // Manage the conversions from CMPGEri to CMPGTUri properly.
605          // See Arch spec for CMPGEri instructions.
606          if (cmpInstr->getOpcode() == Hexagon::CMPGEri)
607            --cmpOp2;
608
609          if (isSecondOpReg) {
610            NewMI = BuildMI(*MBB, jmpPos, dl,
611                                  QII->get(opc))
612                                    .addReg(cmpReg1, getKillRegState(MO1IsKill))
613                                    .addReg(cmpOp2, getKillRegState(MO2IsKill))
614                                    .addMBB(jmpTarget);
615          }
616          else {
617            NewMI = BuildMI(*MBB, jmpPos, dl,
618                                  QII->get(opc))
619                                    .addReg(cmpReg1, getKillRegState(MO1IsKill))
620                                    .addImm(cmpOp2)
621                                    .addMBB(jmpTarget);
622          }
623
624          assert(NewMI && "New Value Jump Instruction Not created!");
625          if (cmpInstr->getOperand(0).isReg() &&
626              cmpInstr->getOperand(0).isKill())
627            cmpInstr->getOperand(0).setIsKill(false);
628          if (cmpInstr->getOperand(1).isReg() &&
629              cmpInstr->getOperand(1).isKill())
630            cmpInstr->getOperand(1).setIsKill(false);
631          cmpInstr->eraseFromParent();
632          jmpInstr->eraseFromParent();
633          ++nvjGenerated;
634          ++NumNVJGenerated;
635          break;
636        }
637      }
638    }
639  }
640
641  return true;
642
643}
644
645FunctionPass *llvm::createHexagonNewValueJump() {
646  return new HexagonNewValueJump();
647}
648