CPPBackend.cpp revision 234353
1//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the writing of the LLVM IR as a set of C++ calls to the
11// LLVM IR interface. The input module is assumed to be verified.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CPPTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instruction.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/PassManager.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCInstrInfo.h"
27#include "llvm/MC/MCSubtargetInfo.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/FormattedStream.h"
32#include "llvm/Support/TargetRegistry.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Config/config.h"
35#include <algorithm>
36#include <cstdio>
37#include <map>
38#include <set>
39using namespace llvm;
40
41static cl::opt<std::string>
42FuncName("cppfname", cl::desc("Specify the name of the generated function"),
43         cl::value_desc("function name"));
44
45enum WhatToGenerate {
46  GenProgram,
47  GenModule,
48  GenContents,
49  GenFunction,
50  GenFunctions,
51  GenInline,
52  GenVariable,
53  GenType
54};
55
56static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
57  cl::desc("Choose what kind of output to generate"),
58  cl::init(GenProgram),
59  cl::values(
60    clEnumValN(GenProgram,  "program",   "Generate a complete program"),
61    clEnumValN(GenModule,   "module",    "Generate a module definition"),
62    clEnumValN(GenContents, "contents",  "Generate contents of a module"),
63    clEnumValN(GenFunction, "function",  "Generate a function definition"),
64    clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
65    clEnumValN(GenInline,   "inline",    "Generate an inline function"),
66    clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
67    clEnumValN(GenType,     "type",      "Generate a type definition"),
68    clEnumValEnd
69  )
70);
71
72static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
73  cl::desc("Specify the name of the thing to generate"),
74  cl::init("!bad!"));
75
76extern "C" void LLVMInitializeCppBackendTarget() {
77  // Register the target.
78  RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
79}
80
81namespace {
82  typedef std::vector<Type*> TypeList;
83  typedef std::map<Type*,std::string> TypeMap;
84  typedef std::map<const Value*,std::string> ValueMap;
85  typedef std::set<std::string> NameSet;
86  typedef std::set<Type*> TypeSet;
87  typedef std::set<const Value*> ValueSet;
88  typedef std::map<const Value*,std::string> ForwardRefMap;
89
90  /// CppWriter - This class is the main chunk of code that converts an LLVM
91  /// module to a C++ translation unit.
92  class CppWriter : public ModulePass {
93    formatted_raw_ostream &Out;
94    const Module *TheModule;
95    uint64_t uniqueNum;
96    TypeMap TypeNames;
97    ValueMap ValueNames;
98    NameSet UsedNames;
99    TypeSet DefinedTypes;
100    ValueSet DefinedValues;
101    ForwardRefMap ForwardRefs;
102    bool is_inline;
103    unsigned indent_level;
104
105  public:
106    static char ID;
107    explicit CppWriter(formatted_raw_ostream &o) :
108      ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
109
110    virtual const char *getPassName() const { return "C++ backend"; }
111
112    bool runOnModule(Module &M);
113
114    void printProgram(const std::string& fname, const std::string& modName );
115    void printModule(const std::string& fname, const std::string& modName );
116    void printContents(const std::string& fname, const std::string& modName );
117    void printFunction(const std::string& fname, const std::string& funcName );
118    void printFunctions();
119    void printInline(const std::string& fname, const std::string& funcName );
120    void printVariable(const std::string& fname, const std::string& varName );
121    void printType(const std::string& fname, const std::string& typeName );
122
123    void error(const std::string& msg);
124
125
126    formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
127    inline void in() { indent_level++; }
128    inline void out() { if (indent_level >0) indent_level--; }
129
130  private:
131    void printLinkageType(GlobalValue::LinkageTypes LT);
132    void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
133    void printCallingConv(CallingConv::ID cc);
134    void printEscapedString(const std::string& str);
135    void printCFP(const ConstantFP* CFP);
136
137    std::string getCppName(Type* val);
138    inline void printCppName(Type* val);
139
140    std::string getCppName(const Value* val);
141    inline void printCppName(const Value* val);
142
143    void printAttributes(const AttrListPtr &PAL, const std::string &name);
144    void printType(Type* Ty);
145    void printTypes(const Module* M);
146
147    void printConstant(const Constant *CPV);
148    void printConstants(const Module* M);
149
150    void printVariableUses(const GlobalVariable *GV);
151    void printVariableHead(const GlobalVariable *GV);
152    void printVariableBody(const GlobalVariable *GV);
153
154    void printFunctionUses(const Function *F);
155    void printFunctionHead(const Function *F);
156    void printFunctionBody(const Function *F);
157    void printInstruction(const Instruction *I, const std::string& bbname);
158    std::string getOpName(const Value*);
159
160    void printModuleBody();
161  };
162} // end anonymous namespace.
163
164formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
165  Out << '\n';
166  if (delta >= 0 || indent_level >= unsigned(-delta))
167    indent_level += delta;
168  Out.indent(indent_level);
169  return Out;
170}
171
172static inline void sanitize(std::string &str) {
173  for (size_t i = 0; i < str.length(); ++i)
174    if (!isalnum(str[i]) && str[i] != '_')
175      str[i] = '_';
176}
177
178static std::string getTypePrefix(Type *Ty) {
179  switch (Ty->getTypeID()) {
180  case Type::VoidTyID:     return "void_";
181  case Type::IntegerTyID:
182    return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
183  case Type::FloatTyID:    return "float_";
184  case Type::DoubleTyID:   return "double_";
185  case Type::LabelTyID:    return "label_";
186  case Type::FunctionTyID: return "func_";
187  case Type::StructTyID:   return "struct_";
188  case Type::ArrayTyID:    return "array_";
189  case Type::PointerTyID:  return "ptr_";
190  case Type::VectorTyID:   return "packed_";
191  default:                 return "other_";
192  }
193}
194
195void CppWriter::error(const std::string& msg) {
196  report_fatal_error(msg);
197}
198
199static inline std::string ftostr(const APFloat& V) {
200  std::string Buf;
201  if (&V.getSemantics() == &APFloat::IEEEdouble) {
202    raw_string_ostream(Buf) << V.convertToDouble();
203    return Buf;
204  } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
205    raw_string_ostream(Buf) << (double)V.convertToFloat();
206    return Buf;
207  }
208  return "<unknown format in ftostr>"; // error
209}
210
211// printCFP - Print a floating point constant .. very carefully :)
212// This makes sure that conversion to/from floating yields the same binary
213// result so that we don't lose precision.
214void CppWriter::printCFP(const ConstantFP *CFP) {
215  bool ignored;
216  APFloat APF = APFloat(CFP->getValueAPF());  // copy
217  if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
218    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
219  Out << "ConstantFP::get(mod->getContext(), ";
220  Out << "APFloat(";
221#if HAVE_PRINTF_A
222  char Buffer[100];
223  sprintf(Buffer, "%A", APF.convertToDouble());
224  if ((!strncmp(Buffer, "0x", 2) ||
225       !strncmp(Buffer, "-0x", 3) ||
226       !strncmp(Buffer, "+0x", 3)) &&
227      APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
228    if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
229      Out << "BitsToDouble(" << Buffer << ")";
230    else
231      Out << "BitsToFloat((float)" << Buffer << ")";
232    Out << ")";
233  } else {
234#endif
235    std::string StrVal = ftostr(CFP->getValueAPF());
236
237    while (StrVal[0] == ' ')
238      StrVal.erase(StrVal.begin());
239
240    // Check to make sure that the stringized number is not some string like
241    // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
242    if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
243         ((StrVal[0] == '-' || StrVal[0] == '+') &&
244          (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
245        (CFP->isExactlyValue(atof(StrVal.c_str())))) {
246      if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
247        Out <<  StrVal;
248      else
249        Out << StrVal << "f";
250    } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
251      Out << "BitsToDouble(0x"
252          << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
253          << "ULL) /* " << StrVal << " */";
254    else
255      Out << "BitsToFloat(0x"
256          << utohexstr((uint32_t)CFP->getValueAPF().
257                                      bitcastToAPInt().getZExtValue())
258          << "U) /* " << StrVal << " */";
259    Out << ")";
260#if HAVE_PRINTF_A
261  }
262#endif
263  Out << ")";
264}
265
266void CppWriter::printCallingConv(CallingConv::ID cc){
267  // Print the calling convention.
268  switch (cc) {
269  case CallingConv::C:     Out << "CallingConv::C"; break;
270  case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
271  case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
272  case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
273  default:                 Out << cc; break;
274  }
275}
276
277void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
278  switch (LT) {
279  case GlobalValue::InternalLinkage:
280    Out << "GlobalValue::InternalLinkage"; break;
281  case GlobalValue::PrivateLinkage:
282    Out << "GlobalValue::PrivateLinkage"; break;
283  case GlobalValue::LinkerPrivateLinkage:
284    Out << "GlobalValue::LinkerPrivateLinkage"; break;
285  case GlobalValue::LinkerPrivateWeakLinkage:
286    Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
287  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
288    Out << "GlobalValue::LinkerPrivateWeakDefAutoLinkage"; break;
289  case GlobalValue::AvailableExternallyLinkage:
290    Out << "GlobalValue::AvailableExternallyLinkage "; break;
291  case GlobalValue::LinkOnceAnyLinkage:
292    Out << "GlobalValue::LinkOnceAnyLinkage "; break;
293  case GlobalValue::LinkOnceODRLinkage:
294    Out << "GlobalValue::LinkOnceODRLinkage "; break;
295  case GlobalValue::WeakAnyLinkage:
296    Out << "GlobalValue::WeakAnyLinkage"; break;
297  case GlobalValue::WeakODRLinkage:
298    Out << "GlobalValue::WeakODRLinkage"; break;
299  case GlobalValue::AppendingLinkage:
300    Out << "GlobalValue::AppendingLinkage"; break;
301  case GlobalValue::ExternalLinkage:
302    Out << "GlobalValue::ExternalLinkage"; break;
303  case GlobalValue::DLLImportLinkage:
304    Out << "GlobalValue::DLLImportLinkage"; break;
305  case GlobalValue::DLLExportLinkage:
306    Out << "GlobalValue::DLLExportLinkage"; break;
307  case GlobalValue::ExternalWeakLinkage:
308    Out << "GlobalValue::ExternalWeakLinkage"; break;
309  case GlobalValue::CommonLinkage:
310    Out << "GlobalValue::CommonLinkage"; break;
311  }
312}
313
314void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
315  switch (VisType) {
316  case GlobalValue::DefaultVisibility:
317    Out << "GlobalValue::DefaultVisibility";
318    break;
319  case GlobalValue::HiddenVisibility:
320    Out << "GlobalValue::HiddenVisibility";
321    break;
322  case GlobalValue::ProtectedVisibility:
323    Out << "GlobalValue::ProtectedVisibility";
324    break;
325  }
326}
327
328// printEscapedString - Print each character of the specified string, escaping
329// it if it is not printable or if it is an escape char.
330void CppWriter::printEscapedString(const std::string &Str) {
331  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
332    unsigned char C = Str[i];
333    if (isprint(C) && C != '"' && C != '\\') {
334      Out << C;
335    } else {
336      Out << "\\x"
337          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
338          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
339    }
340  }
341}
342
343std::string CppWriter::getCppName(Type* Ty) {
344  // First, handle the primitive types .. easy
345  if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
346    switch (Ty->getTypeID()) {
347    case Type::VoidTyID:   return "Type::getVoidTy(mod->getContext())";
348    case Type::IntegerTyID: {
349      unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
350      return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
351    }
352    case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
353    case Type::FloatTyID:    return "Type::getFloatTy(mod->getContext())";
354    case Type::DoubleTyID:   return "Type::getDoubleTy(mod->getContext())";
355    case Type::LabelTyID:    return "Type::getLabelTy(mod->getContext())";
356    case Type::X86_MMXTyID:  return "Type::getX86_MMXTy(mod->getContext())";
357    default:
358      error("Invalid primitive type");
359      break;
360    }
361    // shouldn't be returned, but make it sensible
362    return "Type::getVoidTy(mod->getContext())";
363  }
364
365  // Now, see if we've seen the type before and return that
366  TypeMap::iterator I = TypeNames.find(Ty);
367  if (I != TypeNames.end())
368    return I->second;
369
370  // Okay, let's build a new name for this type. Start with a prefix
371  const char* prefix = 0;
372  switch (Ty->getTypeID()) {
373  case Type::FunctionTyID:    prefix = "FuncTy_"; break;
374  case Type::StructTyID:      prefix = "StructTy_"; break;
375  case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
376  case Type::PointerTyID:     prefix = "PointerTy_"; break;
377  case Type::VectorTyID:      prefix = "VectorTy_"; break;
378  default:                    prefix = "OtherTy_"; break; // prevent breakage
379  }
380
381  // See if the type has a name in the symboltable and build accordingly
382  std::string name;
383  if (StructType *STy = dyn_cast<StructType>(Ty))
384    if (STy->hasName())
385      name = STy->getName();
386
387  if (name.empty())
388    name = utostr(uniqueNum++);
389
390  name = std::string(prefix) + name;
391  sanitize(name);
392
393  // Save the name
394  return TypeNames[Ty] = name;
395}
396
397void CppWriter::printCppName(Type* Ty) {
398  printEscapedString(getCppName(Ty));
399}
400
401std::string CppWriter::getCppName(const Value* val) {
402  std::string name;
403  ValueMap::iterator I = ValueNames.find(val);
404  if (I != ValueNames.end() && I->first == val)
405    return  I->second;
406
407  if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
408    name = std::string("gvar_") +
409      getTypePrefix(GV->getType()->getElementType());
410  } else if (isa<Function>(val)) {
411    name = std::string("func_");
412  } else if (const Constant* C = dyn_cast<Constant>(val)) {
413    name = std::string("const_") + getTypePrefix(C->getType());
414  } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
415    if (is_inline) {
416      unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
417                                      Function::const_arg_iterator(Arg)) + 1;
418      name = std::string("arg_") + utostr(argNum);
419      NameSet::iterator NI = UsedNames.find(name);
420      if (NI != UsedNames.end())
421        name += std::string("_") + utostr(uniqueNum++);
422      UsedNames.insert(name);
423      return ValueNames[val] = name;
424    } else {
425      name = getTypePrefix(val->getType());
426    }
427  } else {
428    name = getTypePrefix(val->getType());
429  }
430  if (val->hasName())
431    name += val->getName();
432  else
433    name += utostr(uniqueNum++);
434  sanitize(name);
435  NameSet::iterator NI = UsedNames.find(name);
436  if (NI != UsedNames.end())
437    name += std::string("_") + utostr(uniqueNum++);
438  UsedNames.insert(name);
439  return ValueNames[val] = name;
440}
441
442void CppWriter::printCppName(const Value* val) {
443  printEscapedString(getCppName(val));
444}
445
446void CppWriter::printAttributes(const AttrListPtr &PAL,
447                                const std::string &name) {
448  Out << "AttrListPtr " << name << "_PAL;";
449  nl(Out);
450  if (!PAL.isEmpty()) {
451    Out << '{'; in(); nl(Out);
452    Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
453    Out << "AttributeWithIndex PAWI;"; nl(Out);
454    for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
455      unsigned index = PAL.getSlot(i).Index;
456      Attributes attrs = PAL.getSlot(i).Attrs;
457      Out << "PAWI.Index = " << index << "U; PAWI.Attrs = Attribute::None ";
458#define HANDLE_ATTR(X)                 \
459      if (attrs & Attribute::X)      \
460        Out << " | Attribute::" #X;  \
461      attrs &= ~Attribute::X;
462
463      HANDLE_ATTR(SExt);
464      HANDLE_ATTR(ZExt);
465      HANDLE_ATTR(NoReturn);
466      HANDLE_ATTR(InReg);
467      HANDLE_ATTR(StructRet);
468      HANDLE_ATTR(NoUnwind);
469      HANDLE_ATTR(NoAlias);
470      HANDLE_ATTR(ByVal);
471      HANDLE_ATTR(Nest);
472      HANDLE_ATTR(ReadNone);
473      HANDLE_ATTR(ReadOnly);
474      HANDLE_ATTR(NoInline);
475      HANDLE_ATTR(AlwaysInline);
476      HANDLE_ATTR(OptimizeForSize);
477      HANDLE_ATTR(StackProtect);
478      HANDLE_ATTR(StackProtectReq);
479      HANDLE_ATTR(NoCapture);
480      HANDLE_ATTR(NoRedZone);
481      HANDLE_ATTR(NoImplicitFloat);
482      HANDLE_ATTR(Naked);
483      HANDLE_ATTR(InlineHint);
484      HANDLE_ATTR(ReturnsTwice);
485      HANDLE_ATTR(UWTable);
486      HANDLE_ATTR(NonLazyBind);
487#undef HANDLE_ATTR
488      if (attrs & Attribute::StackAlignment)
489        Out << " | Attribute::constructStackAlignmentFromInt("
490            << Attribute::getStackAlignmentFromAttrs(attrs)
491            << ")";
492      attrs &= ~Attribute::StackAlignment;
493      assert(attrs == 0 && "Unhandled attribute!");
494      Out << ";";
495      nl(Out);
496      Out << "Attrs.push_back(PAWI);";
497      nl(Out);
498    }
499    Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
500    nl(Out);
501    out(); nl(Out);
502    Out << '}'; nl(Out);
503  }
504}
505
506void CppWriter::printType(Type* Ty) {
507  // We don't print definitions for primitive types
508  if (Ty->isPrimitiveType() || Ty->isIntegerTy())
509    return;
510
511  // If we already defined this type, we don't need to define it again.
512  if (DefinedTypes.find(Ty) != DefinedTypes.end())
513    return;
514
515  // Everything below needs the name for the type so get it now.
516  std::string typeName(getCppName(Ty));
517
518  // Print the type definition
519  switch (Ty->getTypeID()) {
520  case Type::FunctionTyID:  {
521    FunctionType* FT = cast<FunctionType>(Ty);
522    Out << "std::vector<Type*>" << typeName << "_args;";
523    nl(Out);
524    FunctionType::param_iterator PI = FT->param_begin();
525    FunctionType::param_iterator PE = FT->param_end();
526    for (; PI != PE; ++PI) {
527      Type* argTy = static_cast<Type*>(*PI);
528      printType(argTy);
529      std::string argName(getCppName(argTy));
530      Out << typeName << "_args.push_back(" << argName;
531      Out << ");";
532      nl(Out);
533    }
534    printType(FT->getReturnType());
535    std::string retTypeName(getCppName(FT->getReturnType()));
536    Out << "FunctionType* " << typeName << " = FunctionType::get(";
537    in(); nl(Out) << "/*Result=*/" << retTypeName;
538    Out << ",";
539    nl(Out) << "/*Params=*/" << typeName << "_args,";
540    nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
541    out();
542    nl(Out);
543    break;
544  }
545  case Type::StructTyID: {
546    StructType* ST = cast<StructType>(Ty);
547    if (!ST->isLiteral()) {
548      Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
549      printEscapedString(ST->getName());
550      Out << "\");";
551      nl(Out);
552      Out << "if (!" << typeName << ") {";
553      nl(Out);
554      Out << typeName << " = ";
555      Out << "StructType::create(mod->getContext(), \"";
556      printEscapedString(ST->getName());
557      Out << "\");";
558      nl(Out);
559      Out << "}";
560      nl(Out);
561      // Indicate that this type is now defined.
562      DefinedTypes.insert(Ty);
563    }
564
565    Out << "std::vector<Type*>" << typeName << "_fields;";
566    nl(Out);
567    StructType::element_iterator EI = ST->element_begin();
568    StructType::element_iterator EE = ST->element_end();
569    for (; EI != EE; ++EI) {
570      Type* fieldTy = static_cast<Type*>(*EI);
571      printType(fieldTy);
572      std::string fieldName(getCppName(fieldTy));
573      Out << typeName << "_fields.push_back(" << fieldName;
574      Out << ");";
575      nl(Out);
576    }
577
578    if (ST->isLiteral()) {
579      Out << "StructType *" << typeName << " = ";
580      Out << "StructType::get(" << "mod->getContext(), ";
581    } else {
582      Out << "if (" << typeName << "->isOpaque()) {";
583      nl(Out);
584      Out << typeName << "->setBody(";
585    }
586
587    Out << typeName << "_fields, /*isPacked=*/"
588        << (ST->isPacked() ? "true" : "false") << ");";
589    nl(Out);
590    if (!ST->isLiteral()) {
591      Out << "}";
592      nl(Out);
593    }
594    break;
595  }
596  case Type::ArrayTyID: {
597    ArrayType* AT = cast<ArrayType>(Ty);
598    Type* ET = AT->getElementType();
599    printType(ET);
600    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
601      std::string elemName(getCppName(ET));
602      Out << "ArrayType* " << typeName << " = ArrayType::get("
603          << elemName
604          << ", " << utostr(AT->getNumElements()) << ");";
605      nl(Out);
606    }
607    break;
608  }
609  case Type::PointerTyID: {
610    PointerType* PT = cast<PointerType>(Ty);
611    Type* ET = PT->getElementType();
612    printType(ET);
613    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
614      std::string elemName(getCppName(ET));
615      Out << "PointerType* " << typeName << " = PointerType::get("
616          << elemName
617          << ", " << utostr(PT->getAddressSpace()) << ");";
618      nl(Out);
619    }
620    break;
621  }
622  case Type::VectorTyID: {
623    VectorType* PT = cast<VectorType>(Ty);
624    Type* ET = PT->getElementType();
625    printType(ET);
626    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
627      std::string elemName(getCppName(ET));
628      Out << "VectorType* " << typeName << " = VectorType::get("
629          << elemName
630          << ", " << utostr(PT->getNumElements()) << ");";
631      nl(Out);
632    }
633    break;
634  }
635  default:
636    error("Invalid TypeID");
637  }
638
639  // Indicate that this type is now defined.
640  DefinedTypes.insert(Ty);
641
642  // Finally, separate the type definition from other with a newline.
643  nl(Out);
644}
645
646void CppWriter::printTypes(const Module* M) {
647  // Add all of the global variables to the value table.
648  for (Module::const_global_iterator I = TheModule->global_begin(),
649         E = TheModule->global_end(); I != E; ++I) {
650    if (I->hasInitializer())
651      printType(I->getInitializer()->getType());
652    printType(I->getType());
653  }
654
655  // Add all the functions to the table
656  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
657       FI != FE; ++FI) {
658    printType(FI->getReturnType());
659    printType(FI->getFunctionType());
660    // Add all the function arguments
661    for (Function::const_arg_iterator AI = FI->arg_begin(),
662           AE = FI->arg_end(); AI != AE; ++AI) {
663      printType(AI->getType());
664    }
665
666    // Add all of the basic blocks and instructions
667    for (Function::const_iterator BB = FI->begin(),
668           E = FI->end(); BB != E; ++BB) {
669      printType(BB->getType());
670      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
671           ++I) {
672        printType(I->getType());
673        for (unsigned i = 0; i < I->getNumOperands(); ++i)
674          printType(I->getOperand(i)->getType());
675      }
676    }
677  }
678}
679
680
681// printConstant - Print out a constant pool entry...
682void CppWriter::printConstant(const Constant *CV) {
683  // First, if the constant is actually a GlobalValue (variable or function)
684  // or its already in the constant list then we've printed it already and we
685  // can just return.
686  if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
687    return;
688
689  std::string constName(getCppName(CV));
690  std::string typeName(getCppName(CV->getType()));
691
692  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
693    std::string constValue = CI->getValue().toString(10, true);
694    Out << "ConstantInt* " << constName
695        << " = ConstantInt::get(mod->getContext(), APInt("
696        << cast<IntegerType>(CI->getType())->getBitWidth()
697        << ", StringRef(\"" <<  constValue << "\"), 10));";
698  } else if (isa<ConstantAggregateZero>(CV)) {
699    Out << "ConstantAggregateZero* " << constName
700        << " = ConstantAggregateZero::get(" << typeName << ");";
701  } else if (isa<ConstantPointerNull>(CV)) {
702    Out << "ConstantPointerNull* " << constName
703        << " = ConstantPointerNull::get(" << typeName << ");";
704  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
705    Out << "ConstantFP* " << constName << " = ";
706    printCFP(CFP);
707    Out << ";";
708  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
709    Out << "std::vector<Constant*> " << constName << "_elems;";
710    nl(Out);
711    unsigned N = CA->getNumOperands();
712    for (unsigned i = 0; i < N; ++i) {
713      printConstant(CA->getOperand(i)); // recurse to print operands
714      Out << constName << "_elems.push_back("
715          << getCppName(CA->getOperand(i)) << ");";
716      nl(Out);
717    }
718    Out << "Constant* " << constName << " = ConstantArray::get("
719        << typeName << ", " << constName << "_elems);";
720  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
721    Out << "std::vector<Constant*> " << constName << "_fields;";
722    nl(Out);
723    unsigned N = CS->getNumOperands();
724    for (unsigned i = 0; i < N; i++) {
725      printConstant(CS->getOperand(i));
726      Out << constName << "_fields.push_back("
727          << getCppName(CS->getOperand(i)) << ");";
728      nl(Out);
729    }
730    Out << "Constant* " << constName << " = ConstantStruct::get("
731        << typeName << ", " << constName << "_fields);";
732  } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
733    Out << "std::vector<Constant*> " << constName << "_elems;";
734    nl(Out);
735    unsigned N = CVec->getNumOperands();
736    for (unsigned i = 0; i < N; ++i) {
737      printConstant(CVec->getOperand(i));
738      Out << constName << "_elems.push_back("
739          << getCppName(CVec->getOperand(i)) << ");";
740      nl(Out);
741    }
742    Out << "Constant* " << constName << " = ConstantVector::get("
743        << typeName << ", " << constName << "_elems);";
744  } else if (isa<UndefValue>(CV)) {
745    Out << "UndefValue* " << constName << " = UndefValue::get("
746        << typeName << ");";
747  } else if (const ConstantDataSequential *CDS =
748               dyn_cast<ConstantDataSequential>(CV)) {
749    if (CDS->isString()) {
750      Out << "Constant *" << constName <<
751      " = ConstantDataArray::getString(mod->getContext(), \"";
752      StringRef Str = CDS->getAsString();
753      bool nullTerminate = false;
754      if (Str.back() == 0) {
755        Str = Str.drop_back();
756        nullTerminate = true;
757      }
758      printEscapedString(Str);
759      // Determine if we want null termination or not.
760      if (nullTerminate)
761        Out << "\", true);";
762      else
763        Out << "\", false);";// No null terminator
764    } else {
765      // TODO: Could generate more efficient code generating CDS calls instead.
766      Out << "std::vector<Constant*> " << constName << "_elems;";
767      nl(Out);
768      for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
769        Constant *Elt = CDS->getElementAsConstant(i);
770        printConstant(Elt);
771        Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
772        nl(Out);
773      }
774      Out << "Constant* " << constName;
775
776      if (isa<ArrayType>(CDS->getType()))
777        Out << " = ConstantArray::get(";
778      else
779        Out << " = ConstantVector::get(";
780      Out << typeName << ", " << constName << "_elems);";
781    }
782  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
783    if (CE->getOpcode() == Instruction::GetElementPtr) {
784      Out << "std::vector<Constant*> " << constName << "_indices;";
785      nl(Out);
786      printConstant(CE->getOperand(0));
787      for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
788        printConstant(CE->getOperand(i));
789        Out << constName << "_indices.push_back("
790            << getCppName(CE->getOperand(i)) << ");";
791        nl(Out);
792      }
793      Out << "Constant* " << constName
794          << " = ConstantExpr::getGetElementPtr("
795          << getCppName(CE->getOperand(0)) << ", "
796          << constName << "_indices);";
797    } else if (CE->isCast()) {
798      printConstant(CE->getOperand(0));
799      Out << "Constant* " << constName << " = ConstantExpr::getCast(";
800      switch (CE->getOpcode()) {
801      default: llvm_unreachable("Invalid cast opcode");
802      case Instruction::Trunc: Out << "Instruction::Trunc"; break;
803      case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
804      case Instruction::SExt:  Out << "Instruction::SExt"; break;
805      case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
806      case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
807      case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
808      case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
809      case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
810      case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
811      case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
812      case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
813      case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
814      }
815      Out << ", " << getCppName(CE->getOperand(0)) << ", "
816          << getCppName(CE->getType()) << ");";
817    } else {
818      unsigned N = CE->getNumOperands();
819      for (unsigned i = 0; i < N; ++i ) {
820        printConstant(CE->getOperand(i));
821      }
822      Out << "Constant* " << constName << " = ConstantExpr::";
823      switch (CE->getOpcode()) {
824      case Instruction::Add:    Out << "getAdd(";  break;
825      case Instruction::FAdd:   Out << "getFAdd(";  break;
826      case Instruction::Sub:    Out << "getSub("; break;
827      case Instruction::FSub:   Out << "getFSub("; break;
828      case Instruction::Mul:    Out << "getMul("; break;
829      case Instruction::FMul:   Out << "getFMul("; break;
830      case Instruction::UDiv:   Out << "getUDiv("; break;
831      case Instruction::SDiv:   Out << "getSDiv("; break;
832      case Instruction::FDiv:   Out << "getFDiv("; break;
833      case Instruction::URem:   Out << "getURem("; break;
834      case Instruction::SRem:   Out << "getSRem("; break;
835      case Instruction::FRem:   Out << "getFRem("; break;
836      case Instruction::And:    Out << "getAnd("; break;
837      case Instruction::Or:     Out << "getOr("; break;
838      case Instruction::Xor:    Out << "getXor("; break;
839      case Instruction::ICmp:
840        Out << "getICmp(ICmpInst::ICMP_";
841        switch (CE->getPredicate()) {
842        case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
843        case ICmpInst::ICMP_NE:  Out << "NE"; break;
844        case ICmpInst::ICMP_SLT: Out << "SLT"; break;
845        case ICmpInst::ICMP_ULT: Out << "ULT"; break;
846        case ICmpInst::ICMP_SGT: Out << "SGT"; break;
847        case ICmpInst::ICMP_UGT: Out << "UGT"; break;
848        case ICmpInst::ICMP_SLE: Out << "SLE"; break;
849        case ICmpInst::ICMP_ULE: Out << "ULE"; break;
850        case ICmpInst::ICMP_SGE: Out << "SGE"; break;
851        case ICmpInst::ICMP_UGE: Out << "UGE"; break;
852        default: error("Invalid ICmp Predicate");
853        }
854        break;
855      case Instruction::FCmp:
856        Out << "getFCmp(FCmpInst::FCMP_";
857        switch (CE->getPredicate()) {
858        case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
859        case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
860        case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
861        case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
862        case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
863        case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
864        case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
865        case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
866        case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
867        case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
868        case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
869        case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
870        case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
871        case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
872        case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
873        case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
874        default: error("Invalid FCmp Predicate");
875        }
876        break;
877      case Instruction::Shl:     Out << "getShl("; break;
878      case Instruction::LShr:    Out << "getLShr("; break;
879      case Instruction::AShr:    Out << "getAShr("; break;
880      case Instruction::Select:  Out << "getSelect("; break;
881      case Instruction::ExtractElement: Out << "getExtractElement("; break;
882      case Instruction::InsertElement:  Out << "getInsertElement("; break;
883      case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
884      default:
885        error("Invalid constant expression");
886        break;
887      }
888      Out << getCppName(CE->getOperand(0));
889      for (unsigned i = 1; i < CE->getNumOperands(); ++i)
890        Out << ", " << getCppName(CE->getOperand(i));
891      Out << ");";
892    }
893  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
894    Out << "Constant* " << constName << " = ";
895    Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
896  } else {
897    error("Bad Constant");
898    Out << "Constant* " << constName << " = 0; ";
899  }
900  nl(Out);
901}
902
903void CppWriter::printConstants(const Module* M) {
904  // Traverse all the global variables looking for constant initializers
905  for (Module::const_global_iterator I = TheModule->global_begin(),
906         E = TheModule->global_end(); I != E; ++I)
907    if (I->hasInitializer())
908      printConstant(I->getInitializer());
909
910  // Traverse the LLVM functions looking for constants
911  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
912       FI != FE; ++FI) {
913    // Add all of the basic blocks and instructions
914    for (Function::const_iterator BB = FI->begin(),
915           E = FI->end(); BB != E; ++BB) {
916      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
917           ++I) {
918        for (unsigned i = 0; i < I->getNumOperands(); ++i) {
919          if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
920            printConstant(C);
921          }
922        }
923      }
924    }
925  }
926}
927
928void CppWriter::printVariableUses(const GlobalVariable *GV) {
929  nl(Out) << "// Type Definitions";
930  nl(Out);
931  printType(GV->getType());
932  if (GV->hasInitializer()) {
933    const Constant *Init = GV->getInitializer();
934    printType(Init->getType());
935    if (const Function *F = dyn_cast<Function>(Init)) {
936      nl(Out)<< "/ Function Declarations"; nl(Out);
937      printFunctionHead(F);
938    } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
939      nl(Out) << "// Global Variable Declarations"; nl(Out);
940      printVariableHead(gv);
941
942      nl(Out) << "// Global Variable Definitions"; nl(Out);
943      printVariableBody(gv);
944    } else  {
945      nl(Out) << "// Constant Definitions"; nl(Out);
946      printConstant(Init);
947    }
948  }
949}
950
951void CppWriter::printVariableHead(const GlobalVariable *GV) {
952  nl(Out) << "GlobalVariable* " << getCppName(GV);
953  if (is_inline) {
954    Out << " = mod->getGlobalVariable(mod->getContext(), ";
955    printEscapedString(GV->getName());
956    Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
957    nl(Out) << "if (!" << getCppName(GV) << ") {";
958    in(); nl(Out) << getCppName(GV);
959  }
960  Out << " = new GlobalVariable(/*Module=*/*mod, ";
961  nl(Out) << "/*Type=*/";
962  printCppName(GV->getType()->getElementType());
963  Out << ",";
964  nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
965  Out << ",";
966  nl(Out) << "/*Linkage=*/";
967  printLinkageType(GV->getLinkage());
968  Out << ",";
969  nl(Out) << "/*Initializer=*/0, ";
970  if (GV->hasInitializer()) {
971    Out << "// has initializer, specified below";
972  }
973  nl(Out) << "/*Name=*/\"";
974  printEscapedString(GV->getName());
975  Out << "\");";
976  nl(Out);
977
978  if (GV->hasSection()) {
979    printCppName(GV);
980    Out << "->setSection(\"";
981    printEscapedString(GV->getSection());
982    Out << "\");";
983    nl(Out);
984  }
985  if (GV->getAlignment()) {
986    printCppName(GV);
987    Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
988    nl(Out);
989  }
990  if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
991    printCppName(GV);
992    Out << "->setVisibility(";
993    printVisibilityType(GV->getVisibility());
994    Out << ");";
995    nl(Out);
996  }
997  if (GV->isThreadLocal()) {
998    printCppName(GV);
999    Out << "->setThreadLocal(true);";
1000    nl(Out);
1001  }
1002  if (is_inline) {
1003    out(); Out << "}"; nl(Out);
1004  }
1005}
1006
1007void CppWriter::printVariableBody(const GlobalVariable *GV) {
1008  if (GV->hasInitializer()) {
1009    printCppName(GV);
1010    Out << "->setInitializer(";
1011    Out << getCppName(GV->getInitializer()) << ");";
1012    nl(Out);
1013  }
1014}
1015
1016std::string CppWriter::getOpName(const Value* V) {
1017  if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1018    return getCppName(V);
1019
1020  // See if its alread in the map of forward references, if so just return the
1021  // name we already set up for it
1022  ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1023  if (I != ForwardRefs.end())
1024    return I->second;
1025
1026  // This is a new forward reference. Generate a unique name for it
1027  std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1028
1029  // Yes, this is a hack. An Argument is the smallest instantiable value that
1030  // we can make as a placeholder for the real value. We'll replace these
1031  // Argument instances later.
1032  Out << "Argument* " << result << " = new Argument("
1033      << getCppName(V->getType()) << ");";
1034  nl(Out);
1035  ForwardRefs[V] = result;
1036  return result;
1037}
1038
1039static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1040  switch (Ordering) {
1041    case NotAtomic: return "NotAtomic";
1042    case Unordered: return "Unordered";
1043    case Monotonic: return "Monotonic";
1044    case Acquire: return "Acquire";
1045    case Release: return "Release";
1046    case AcquireRelease: return "AcquireRelease";
1047    case SequentiallyConsistent: return "SequentiallyConsistent";
1048  }
1049  llvm_unreachable("Unknown ordering");
1050}
1051
1052static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1053  switch (SynchScope) {
1054    case SingleThread: return "SingleThread";
1055    case CrossThread: return "CrossThread";
1056  }
1057  llvm_unreachable("Unknown synch scope");
1058}
1059
1060// printInstruction - This member is called for each Instruction in a function.
1061void CppWriter::printInstruction(const Instruction *I,
1062                                 const std::string& bbname) {
1063  std::string iName(getCppName(I));
1064
1065  // Before we emit this instruction, we need to take care of generating any
1066  // forward references. So, we get the names of all the operands in advance
1067  const unsigned Ops(I->getNumOperands());
1068  std::string* opNames = new std::string[Ops];
1069  for (unsigned i = 0; i < Ops; i++)
1070    opNames[i] = getOpName(I->getOperand(i));
1071
1072  switch (I->getOpcode()) {
1073  default:
1074    error("Invalid instruction");
1075    break;
1076
1077  case Instruction::Ret: {
1078    const ReturnInst* ret =  cast<ReturnInst>(I);
1079    Out << "ReturnInst::Create(mod->getContext(), "
1080        << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1081    break;
1082  }
1083  case Instruction::Br: {
1084    const BranchInst* br = cast<BranchInst>(I);
1085    Out << "BranchInst::Create(" ;
1086    if (br->getNumOperands() == 3) {
1087      Out << opNames[2] << ", "
1088          << opNames[1] << ", "
1089          << opNames[0] << ", ";
1090
1091    } else if (br->getNumOperands() == 1) {
1092      Out << opNames[0] << ", ";
1093    } else {
1094      error("Branch with 2 operands?");
1095    }
1096    Out << bbname << ");";
1097    break;
1098  }
1099  case Instruction::Switch: {
1100    const SwitchInst *SI = cast<SwitchInst>(I);
1101    Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1102        << getOpName(SI->getCondition()) << ", "
1103        << getOpName(SI->getDefaultDest()) << ", "
1104        << SI->getNumCases() << ", " << bbname << ");";
1105    nl(Out);
1106    for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1107         i != e; ++i) {
1108      const ConstantInt* CaseVal = i.getCaseValue();
1109      const BasicBlock *BB = i.getCaseSuccessor();
1110      Out << iName << "->addCase("
1111          << getOpName(CaseVal) << ", "
1112          << getOpName(BB) << ");";
1113      nl(Out);
1114    }
1115    break;
1116  }
1117  case Instruction::IndirectBr: {
1118    const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1119    Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1120        << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1121    nl(Out);
1122    for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1123      Out << iName << "->addDestination(" << opNames[i] << ");";
1124      nl(Out);
1125    }
1126    break;
1127  }
1128  case Instruction::Resume: {
1129    Out << "ResumeInst::Create(mod->getContext(), " << opNames[0]
1130        << ", " << bbname << ");";
1131    break;
1132  }
1133  case Instruction::Invoke: {
1134    const InvokeInst* inv = cast<InvokeInst>(I);
1135    Out << "std::vector<Value*> " << iName << "_params;";
1136    nl(Out);
1137    for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1138      Out << iName << "_params.push_back("
1139          << getOpName(inv->getArgOperand(i)) << ");";
1140      nl(Out);
1141    }
1142    // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1143    Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1144        << getOpName(inv->getCalledFunction()) << ", "
1145        << getOpName(inv->getNormalDest()) << ", "
1146        << getOpName(inv->getUnwindDest()) << ", "
1147        << iName << "_params, \"";
1148    printEscapedString(inv->getName());
1149    Out << "\", " << bbname << ");";
1150    nl(Out) << iName << "->setCallingConv(";
1151    printCallingConv(inv->getCallingConv());
1152    Out << ");";
1153    printAttributes(inv->getAttributes(), iName);
1154    Out << iName << "->setAttributes(" << iName << "_PAL);";
1155    nl(Out);
1156    break;
1157  }
1158  case Instruction::Unreachable: {
1159    Out << "new UnreachableInst("
1160        << "mod->getContext(), "
1161        << bbname << ");";
1162    break;
1163  }
1164  case Instruction::Add:
1165  case Instruction::FAdd:
1166  case Instruction::Sub:
1167  case Instruction::FSub:
1168  case Instruction::Mul:
1169  case Instruction::FMul:
1170  case Instruction::UDiv:
1171  case Instruction::SDiv:
1172  case Instruction::FDiv:
1173  case Instruction::URem:
1174  case Instruction::SRem:
1175  case Instruction::FRem:
1176  case Instruction::And:
1177  case Instruction::Or:
1178  case Instruction::Xor:
1179  case Instruction::Shl:
1180  case Instruction::LShr:
1181  case Instruction::AShr:{
1182    Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1183    switch (I->getOpcode()) {
1184    case Instruction::Add: Out << "Instruction::Add"; break;
1185    case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1186    case Instruction::Sub: Out << "Instruction::Sub"; break;
1187    case Instruction::FSub: Out << "Instruction::FSub"; break;
1188    case Instruction::Mul: Out << "Instruction::Mul"; break;
1189    case Instruction::FMul: Out << "Instruction::FMul"; break;
1190    case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1191    case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1192    case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1193    case Instruction::URem:Out << "Instruction::URem"; break;
1194    case Instruction::SRem:Out << "Instruction::SRem"; break;
1195    case Instruction::FRem:Out << "Instruction::FRem"; break;
1196    case Instruction::And: Out << "Instruction::And"; break;
1197    case Instruction::Or:  Out << "Instruction::Or";  break;
1198    case Instruction::Xor: Out << "Instruction::Xor"; break;
1199    case Instruction::Shl: Out << "Instruction::Shl"; break;
1200    case Instruction::LShr:Out << "Instruction::LShr"; break;
1201    case Instruction::AShr:Out << "Instruction::AShr"; break;
1202    default: Out << "Instruction::BadOpCode"; break;
1203    }
1204    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1205    printEscapedString(I->getName());
1206    Out << "\", " << bbname << ");";
1207    break;
1208  }
1209  case Instruction::FCmp: {
1210    Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1211    switch (cast<FCmpInst>(I)->getPredicate()) {
1212    case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1213    case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
1214    case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
1215    case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
1216    case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
1217    case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
1218    case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
1219    case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
1220    case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
1221    case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
1222    case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
1223    case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
1224    case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
1225    case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
1226    case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
1227    case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1228    default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1229    }
1230    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1231    printEscapedString(I->getName());
1232    Out << "\");";
1233    break;
1234  }
1235  case Instruction::ICmp: {
1236    Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1237    switch (cast<ICmpInst>(I)->getPredicate()) {
1238    case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
1239    case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
1240    case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1241    case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1242    case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1243    case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1244    case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1245    case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1246    case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1247    case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1248    default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1249    }
1250    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1251    printEscapedString(I->getName());
1252    Out << "\");";
1253    break;
1254  }
1255  case Instruction::Alloca: {
1256    const AllocaInst* allocaI = cast<AllocaInst>(I);
1257    Out << "AllocaInst* " << iName << " = new AllocaInst("
1258        << getCppName(allocaI->getAllocatedType()) << ", ";
1259    if (allocaI->isArrayAllocation())
1260      Out << opNames[0] << ", ";
1261    Out << "\"";
1262    printEscapedString(allocaI->getName());
1263    Out << "\", " << bbname << ");";
1264    if (allocaI->getAlignment())
1265      nl(Out) << iName << "->setAlignment("
1266          << allocaI->getAlignment() << ");";
1267    break;
1268  }
1269  case Instruction::Load: {
1270    const LoadInst* load = cast<LoadInst>(I);
1271    Out << "LoadInst* " << iName << " = new LoadInst("
1272        << opNames[0] << ", \"";
1273    printEscapedString(load->getName());
1274    Out << "\", " << (load->isVolatile() ? "true" : "false" )
1275        << ", " << bbname << ");";
1276    if (load->getAlignment())
1277      nl(Out) << iName << "->setAlignment("
1278              << load->getAlignment() << ");";
1279    if (load->isAtomic()) {
1280      StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1281      StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1282      nl(Out) << iName << "->setAtomic("
1283              << Ordering << ", " << CrossThread << ");";
1284    }
1285    break;
1286  }
1287  case Instruction::Store: {
1288    const StoreInst* store = cast<StoreInst>(I);
1289    Out << "StoreInst* " << iName << " = new StoreInst("
1290        << opNames[0] << ", "
1291        << opNames[1] << ", "
1292        << (store->isVolatile() ? "true" : "false")
1293        << ", " << bbname << ");";
1294    if (store->getAlignment())
1295      nl(Out) << iName << "->setAlignment("
1296              << store->getAlignment() << ");";
1297    if (store->isAtomic()) {
1298      StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1299      StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1300      nl(Out) << iName << "->setAtomic("
1301              << Ordering << ", " << CrossThread << ");";
1302    }
1303    break;
1304  }
1305  case Instruction::GetElementPtr: {
1306    const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1307    if (gep->getNumOperands() <= 2) {
1308      Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1309          << opNames[0];
1310      if (gep->getNumOperands() == 2)
1311        Out << ", " << opNames[1];
1312    } else {
1313      Out << "std::vector<Value*> " << iName << "_indices;";
1314      nl(Out);
1315      for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1316        Out << iName << "_indices.push_back("
1317            << opNames[i] << ");";
1318        nl(Out);
1319      }
1320      Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1321          << opNames[0] << ", " << iName << "_indices";
1322    }
1323    Out << ", \"";
1324    printEscapedString(gep->getName());
1325    Out << "\", " << bbname << ");";
1326    break;
1327  }
1328  case Instruction::PHI: {
1329    const PHINode* phi = cast<PHINode>(I);
1330
1331    Out << "PHINode* " << iName << " = PHINode::Create("
1332        << getCppName(phi->getType()) << ", "
1333        << phi->getNumIncomingValues() << ", \"";
1334    printEscapedString(phi->getName());
1335    Out << "\", " << bbname << ");";
1336    nl(Out);
1337    for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1338      Out << iName << "->addIncoming("
1339          << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1340          << getOpName(phi->getIncomingBlock(i)) << ");";
1341      nl(Out);
1342    }
1343    break;
1344  }
1345  case Instruction::Trunc:
1346  case Instruction::ZExt:
1347  case Instruction::SExt:
1348  case Instruction::FPTrunc:
1349  case Instruction::FPExt:
1350  case Instruction::FPToUI:
1351  case Instruction::FPToSI:
1352  case Instruction::UIToFP:
1353  case Instruction::SIToFP:
1354  case Instruction::PtrToInt:
1355  case Instruction::IntToPtr:
1356  case Instruction::BitCast: {
1357    const CastInst* cst = cast<CastInst>(I);
1358    Out << "CastInst* " << iName << " = new ";
1359    switch (I->getOpcode()) {
1360    case Instruction::Trunc:    Out << "TruncInst"; break;
1361    case Instruction::ZExt:     Out << "ZExtInst"; break;
1362    case Instruction::SExt:     Out << "SExtInst"; break;
1363    case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
1364    case Instruction::FPExt:    Out << "FPExtInst"; break;
1365    case Instruction::FPToUI:   Out << "FPToUIInst"; break;
1366    case Instruction::FPToSI:   Out << "FPToSIInst"; break;
1367    case Instruction::UIToFP:   Out << "UIToFPInst"; break;
1368    case Instruction::SIToFP:   Out << "SIToFPInst"; break;
1369    case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1370    case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1371    case Instruction::BitCast:  Out << "BitCastInst"; break;
1372    default: llvm_unreachable("Unreachable");
1373    }
1374    Out << "(" << opNames[0] << ", "
1375        << getCppName(cst->getType()) << ", \"";
1376    printEscapedString(cst->getName());
1377    Out << "\", " << bbname << ");";
1378    break;
1379  }
1380  case Instruction::Call: {
1381    const CallInst* call = cast<CallInst>(I);
1382    if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1383      Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1384          << getCppName(ila->getFunctionType()) << ", \""
1385          << ila->getAsmString() << "\", \""
1386          << ila->getConstraintString() << "\","
1387          << (ila->hasSideEffects() ? "true" : "false") << ");";
1388      nl(Out);
1389    }
1390    if (call->getNumArgOperands() > 1) {
1391      Out << "std::vector<Value*> " << iName << "_params;";
1392      nl(Out);
1393      for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1394        Out << iName << "_params.push_back(" << opNames[i] << ");";
1395        nl(Out);
1396      }
1397      Out << "CallInst* " << iName << " = CallInst::Create("
1398          << opNames[call->getNumArgOperands()] << ", "
1399          << iName << "_params, \"";
1400    } else if (call->getNumArgOperands() == 1) {
1401      Out << "CallInst* " << iName << " = CallInst::Create("
1402          << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1403    } else {
1404      Out << "CallInst* " << iName << " = CallInst::Create("
1405          << opNames[call->getNumArgOperands()] << ", \"";
1406    }
1407    printEscapedString(call->getName());
1408    Out << "\", " << bbname << ");";
1409    nl(Out) << iName << "->setCallingConv(";
1410    printCallingConv(call->getCallingConv());
1411    Out << ");";
1412    nl(Out) << iName << "->setTailCall("
1413        << (call->isTailCall() ? "true" : "false");
1414    Out << ");";
1415    nl(Out);
1416    printAttributes(call->getAttributes(), iName);
1417    Out << iName << "->setAttributes(" << iName << "_PAL);";
1418    nl(Out);
1419    break;
1420  }
1421  case Instruction::Select: {
1422    const SelectInst* sel = cast<SelectInst>(I);
1423    Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1424    Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1425    printEscapedString(sel->getName());
1426    Out << "\", " << bbname << ");";
1427    break;
1428  }
1429  case Instruction::UserOp1:
1430    /// FALL THROUGH
1431  case Instruction::UserOp2: {
1432    /// FIXME: What should be done here?
1433    break;
1434  }
1435  case Instruction::VAArg: {
1436    const VAArgInst* va = cast<VAArgInst>(I);
1437    Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1438        << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1439    printEscapedString(va->getName());
1440    Out << "\", " << bbname << ");";
1441    break;
1442  }
1443  case Instruction::ExtractElement: {
1444    const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1445    Out << "ExtractElementInst* " << getCppName(eei)
1446        << " = new ExtractElementInst(" << opNames[0]
1447        << ", " << opNames[1] << ", \"";
1448    printEscapedString(eei->getName());
1449    Out << "\", " << bbname << ");";
1450    break;
1451  }
1452  case Instruction::InsertElement: {
1453    const InsertElementInst* iei = cast<InsertElementInst>(I);
1454    Out << "InsertElementInst* " << getCppName(iei)
1455        << " = InsertElementInst::Create(" << opNames[0]
1456        << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1457    printEscapedString(iei->getName());
1458    Out << "\", " << bbname << ");";
1459    break;
1460  }
1461  case Instruction::ShuffleVector: {
1462    const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1463    Out << "ShuffleVectorInst* " << getCppName(svi)
1464        << " = new ShuffleVectorInst(" << opNames[0]
1465        << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1466    printEscapedString(svi->getName());
1467    Out << "\", " << bbname << ");";
1468    break;
1469  }
1470  case Instruction::ExtractValue: {
1471    const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1472    Out << "std::vector<unsigned> " << iName << "_indices;";
1473    nl(Out);
1474    for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1475      Out << iName << "_indices.push_back("
1476          << evi->idx_begin()[i] << ");";
1477      nl(Out);
1478    }
1479    Out << "ExtractValueInst* " << getCppName(evi)
1480        << " = ExtractValueInst::Create(" << opNames[0]
1481        << ", "
1482        << iName << "_indices, \"";
1483    printEscapedString(evi->getName());
1484    Out << "\", " << bbname << ");";
1485    break;
1486  }
1487  case Instruction::InsertValue: {
1488    const InsertValueInst *ivi = cast<InsertValueInst>(I);
1489    Out << "std::vector<unsigned> " << iName << "_indices;";
1490    nl(Out);
1491    for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1492      Out << iName << "_indices.push_back("
1493          << ivi->idx_begin()[i] << ");";
1494      nl(Out);
1495    }
1496    Out << "InsertValueInst* " << getCppName(ivi)
1497        << " = InsertValueInst::Create(" << opNames[0]
1498        << ", " << opNames[1] << ", "
1499        << iName << "_indices, \"";
1500    printEscapedString(ivi->getName());
1501    Out << "\", " << bbname << ");";
1502    break;
1503  }
1504  case Instruction::Fence: {
1505    const FenceInst *fi = cast<FenceInst>(I);
1506    StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1507    StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1508    Out << "FenceInst* " << iName
1509        << " = new FenceInst(mod->getContext(), "
1510        << Ordering << ", " << CrossThread << ", " << bbname
1511        << ");";
1512    break;
1513  }
1514  case Instruction::AtomicCmpXchg: {
1515    const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1516    StringRef Ordering = ConvertAtomicOrdering(cxi->getOrdering());
1517    StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1518    Out << "AtomicCmpXchgInst* " << iName
1519        << " = new AtomicCmpXchgInst("
1520        << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1521        << Ordering << ", " << CrossThread << ", " << bbname
1522        << ");";
1523    nl(Out) << iName << "->setName(\"";
1524    printEscapedString(cxi->getName());
1525    Out << "\");";
1526    break;
1527  }
1528  case Instruction::AtomicRMW: {
1529    const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1530    StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1531    StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1532    StringRef Operation;
1533    switch (rmwi->getOperation()) {
1534      case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1535      case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
1536      case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
1537      case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
1538      case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1539      case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
1540      case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
1541      case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
1542      case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
1543      case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1544      case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1545      case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1546    }
1547    Out << "AtomicRMWInst* " << iName
1548        << " = new AtomicRMWInst("
1549        << Operation << ", "
1550        << opNames[0] << ", " << opNames[1] << ", "
1551        << Ordering << ", " << CrossThread << ", " << bbname
1552        << ");";
1553    nl(Out) << iName << "->setName(\"";
1554    printEscapedString(rmwi->getName());
1555    Out << "\");";
1556    break;
1557  }
1558  }
1559  DefinedValues.insert(I);
1560  nl(Out);
1561  delete [] opNames;
1562}
1563
1564// Print out the types, constants and declarations needed by one function
1565void CppWriter::printFunctionUses(const Function* F) {
1566  nl(Out) << "// Type Definitions"; nl(Out);
1567  if (!is_inline) {
1568    // Print the function's return type
1569    printType(F->getReturnType());
1570
1571    // Print the function's function type
1572    printType(F->getFunctionType());
1573
1574    // Print the types of each of the function's arguments
1575    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1576         AI != AE; ++AI) {
1577      printType(AI->getType());
1578    }
1579  }
1580
1581  // Print type definitions for every type referenced by an instruction and
1582  // make a note of any global values or constants that are referenced
1583  SmallPtrSet<GlobalValue*,64> gvs;
1584  SmallPtrSet<Constant*,64> consts;
1585  for (Function::const_iterator BB = F->begin(), BE = F->end();
1586       BB != BE; ++BB){
1587    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1588         I != E; ++I) {
1589      // Print the type of the instruction itself
1590      printType(I->getType());
1591
1592      // Print the type of each of the instruction's operands
1593      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1594        Value* operand = I->getOperand(i);
1595        printType(operand->getType());
1596
1597        // If the operand references a GVal or Constant, make a note of it
1598        if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1599          gvs.insert(GV);
1600          if (GenerationType != GenFunction)
1601            if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1602              if (GVar->hasInitializer())
1603                consts.insert(GVar->getInitializer());
1604        } else if (Constant* C = dyn_cast<Constant>(operand)) {
1605          consts.insert(C);
1606          for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1607            // If the operand references a GVal or Constant, make a note of it
1608            Value* operand = C->getOperand(j);
1609            printType(operand->getType());
1610            if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1611              gvs.insert(GV);
1612              if (GenerationType != GenFunction)
1613                if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1614                  if (GVar->hasInitializer())
1615                    consts.insert(GVar->getInitializer());
1616            }
1617          }
1618        }
1619      }
1620    }
1621  }
1622
1623  // Print the function declarations for any functions encountered
1624  nl(Out) << "// Function Declarations"; nl(Out);
1625  for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1626       I != E; ++I) {
1627    if (Function* Fun = dyn_cast<Function>(*I)) {
1628      if (!is_inline || Fun != F)
1629        printFunctionHead(Fun);
1630    }
1631  }
1632
1633  // Print the global variable declarations for any variables encountered
1634  nl(Out) << "// Global Variable Declarations"; nl(Out);
1635  for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1636       I != E; ++I) {
1637    if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1638      printVariableHead(F);
1639  }
1640
1641  // Print the constants found
1642  nl(Out) << "// Constant Definitions"; nl(Out);
1643  for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1644         E = consts.end(); I != E; ++I) {
1645    printConstant(*I);
1646  }
1647
1648  // Process the global variables definitions now that all the constants have
1649  // been emitted. These definitions just couple the gvars with their constant
1650  // initializers.
1651  if (GenerationType != GenFunction) {
1652    nl(Out) << "// Global Variable Definitions"; nl(Out);
1653    for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1654         I != E; ++I) {
1655      if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1656        printVariableBody(GV);
1657    }
1658  }
1659}
1660
1661void CppWriter::printFunctionHead(const Function* F) {
1662  nl(Out) << "Function* " << getCppName(F);
1663  Out << " = mod->getFunction(\"";
1664  printEscapedString(F->getName());
1665  Out << "\");";
1666  nl(Out) << "if (!" << getCppName(F) << ") {";
1667  nl(Out) << getCppName(F);
1668
1669  Out<< " = Function::Create(";
1670  nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1671  nl(Out) << "/*Linkage=*/";
1672  printLinkageType(F->getLinkage());
1673  Out << ",";
1674  nl(Out) << "/*Name=*/\"";
1675  printEscapedString(F->getName());
1676  Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1677  nl(Out,-1);
1678  printCppName(F);
1679  Out << "->setCallingConv(";
1680  printCallingConv(F->getCallingConv());
1681  Out << ");";
1682  nl(Out);
1683  if (F->hasSection()) {
1684    printCppName(F);
1685    Out << "->setSection(\"" << F->getSection() << "\");";
1686    nl(Out);
1687  }
1688  if (F->getAlignment()) {
1689    printCppName(F);
1690    Out << "->setAlignment(" << F->getAlignment() << ");";
1691    nl(Out);
1692  }
1693  if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1694    printCppName(F);
1695    Out << "->setVisibility(";
1696    printVisibilityType(F->getVisibility());
1697    Out << ");";
1698    nl(Out);
1699  }
1700  if (F->hasGC()) {
1701    printCppName(F);
1702    Out << "->setGC(\"" << F->getGC() << "\");";
1703    nl(Out);
1704  }
1705  Out << "}";
1706  nl(Out);
1707  printAttributes(F->getAttributes(), getCppName(F));
1708  printCppName(F);
1709  Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1710  nl(Out);
1711}
1712
1713void CppWriter::printFunctionBody(const Function *F) {
1714  if (F->isDeclaration())
1715    return; // external functions have no bodies.
1716
1717  // Clear the DefinedValues and ForwardRefs maps because we can't have
1718  // cross-function forward refs
1719  ForwardRefs.clear();
1720  DefinedValues.clear();
1721
1722  // Create all the argument values
1723  if (!is_inline) {
1724    if (!F->arg_empty()) {
1725      Out << "Function::arg_iterator args = " << getCppName(F)
1726          << "->arg_begin();";
1727      nl(Out);
1728    }
1729    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1730         AI != AE; ++AI) {
1731      Out << "Value* " << getCppName(AI) << " = args++;";
1732      nl(Out);
1733      if (AI->hasName()) {
1734        Out << getCppName(AI) << "->setName(\"";
1735        printEscapedString(AI->getName());
1736        Out << "\");";
1737        nl(Out);
1738      }
1739    }
1740  }
1741
1742  // Create all the basic blocks
1743  nl(Out);
1744  for (Function::const_iterator BI = F->begin(), BE = F->end();
1745       BI != BE; ++BI) {
1746    std::string bbname(getCppName(BI));
1747    Out << "BasicBlock* " << bbname <<
1748           " = BasicBlock::Create(mod->getContext(), \"";
1749    if (BI->hasName())
1750      printEscapedString(BI->getName());
1751    Out << "\"," << getCppName(BI->getParent()) << ",0);";
1752    nl(Out);
1753  }
1754
1755  // Output all of its basic blocks... for the function
1756  for (Function::const_iterator BI = F->begin(), BE = F->end();
1757       BI != BE; ++BI) {
1758    std::string bbname(getCppName(BI));
1759    nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1760    nl(Out);
1761
1762    // Output all of the instructions in the basic block...
1763    for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1764         I != E; ++I) {
1765      printInstruction(I,bbname);
1766    }
1767  }
1768
1769  // Loop over the ForwardRefs and resolve them now that all instructions
1770  // are generated.
1771  if (!ForwardRefs.empty()) {
1772    nl(Out) << "// Resolve Forward References";
1773    nl(Out);
1774  }
1775
1776  while (!ForwardRefs.empty()) {
1777    ForwardRefMap::iterator I = ForwardRefs.begin();
1778    Out << I->second << "->replaceAllUsesWith("
1779        << getCppName(I->first) << "); delete " << I->second << ";";
1780    nl(Out);
1781    ForwardRefs.erase(I);
1782  }
1783}
1784
1785void CppWriter::printInline(const std::string& fname,
1786                            const std::string& func) {
1787  const Function* F = TheModule->getFunction(func);
1788  if (!F) {
1789    error(std::string("Function '") + func + "' not found in input module");
1790    return;
1791  }
1792  if (F->isDeclaration()) {
1793    error(std::string("Function '") + func + "' is external!");
1794    return;
1795  }
1796  nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1797          << getCppName(F);
1798  unsigned arg_count = 1;
1799  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1800       AI != AE; ++AI) {
1801    Out << ", Value* arg_" << arg_count;
1802  }
1803  Out << ") {";
1804  nl(Out);
1805  is_inline = true;
1806  printFunctionUses(F);
1807  printFunctionBody(F);
1808  is_inline = false;
1809  Out << "return " << getCppName(F->begin()) << ";";
1810  nl(Out) << "}";
1811  nl(Out);
1812}
1813
1814void CppWriter::printModuleBody() {
1815  // Print out all the type definitions
1816  nl(Out) << "// Type Definitions"; nl(Out);
1817  printTypes(TheModule);
1818
1819  // Functions can call each other and global variables can reference them so
1820  // define all the functions first before emitting their function bodies.
1821  nl(Out) << "// Function Declarations"; nl(Out);
1822  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1823       I != E; ++I)
1824    printFunctionHead(I);
1825
1826  // Process the global variables declarations. We can't initialze them until
1827  // after the constants are printed so just print a header for each global
1828  nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1829  for (Module::const_global_iterator I = TheModule->global_begin(),
1830         E = TheModule->global_end(); I != E; ++I) {
1831    printVariableHead(I);
1832  }
1833
1834  // Print out all the constants definitions. Constants don't recurse except
1835  // through GlobalValues. All GlobalValues have been declared at this point
1836  // so we can proceed to generate the constants.
1837  nl(Out) << "// Constant Definitions"; nl(Out);
1838  printConstants(TheModule);
1839
1840  // Process the global variables definitions now that all the constants have
1841  // been emitted. These definitions just couple the gvars with their constant
1842  // initializers.
1843  nl(Out) << "// Global Variable Definitions"; nl(Out);
1844  for (Module::const_global_iterator I = TheModule->global_begin(),
1845         E = TheModule->global_end(); I != E; ++I) {
1846    printVariableBody(I);
1847  }
1848
1849  // Finally, we can safely put out all of the function bodies.
1850  nl(Out) << "// Function Definitions"; nl(Out);
1851  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1852       I != E; ++I) {
1853    if (!I->isDeclaration()) {
1854      nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1855              << ")";
1856      nl(Out) << "{";
1857      nl(Out,1);
1858      printFunctionBody(I);
1859      nl(Out,-1) << "}";
1860      nl(Out);
1861    }
1862  }
1863}
1864
1865void CppWriter::printProgram(const std::string& fname,
1866                             const std::string& mName) {
1867  Out << "#include <llvm/LLVMContext.h>\n";
1868  Out << "#include <llvm/Module.h>\n";
1869  Out << "#include <llvm/DerivedTypes.h>\n";
1870  Out << "#include <llvm/Constants.h>\n";
1871  Out << "#include <llvm/GlobalVariable.h>\n";
1872  Out << "#include <llvm/Function.h>\n";
1873  Out << "#include <llvm/CallingConv.h>\n";
1874  Out << "#include <llvm/BasicBlock.h>\n";
1875  Out << "#include <llvm/Instructions.h>\n";
1876  Out << "#include <llvm/InlineAsm.h>\n";
1877  Out << "#include <llvm/Support/FormattedStream.h>\n";
1878  Out << "#include <llvm/Support/MathExtras.h>\n";
1879  Out << "#include <llvm/Pass.h>\n";
1880  Out << "#include <llvm/PassManager.h>\n";
1881  Out << "#include <llvm/ADT/SmallVector.h>\n";
1882  Out << "#include <llvm/Analysis/Verifier.h>\n";
1883  Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1884  Out << "#include <algorithm>\n";
1885  Out << "using namespace llvm;\n\n";
1886  Out << "Module* " << fname << "();\n\n";
1887  Out << "int main(int argc, char**argv) {\n";
1888  Out << "  Module* Mod = " << fname << "();\n";
1889  Out << "  verifyModule(*Mod, PrintMessageAction);\n";
1890  Out << "  PassManager PM;\n";
1891  Out << "  PM.add(createPrintModulePass(&outs()));\n";
1892  Out << "  PM.run(*Mod);\n";
1893  Out << "  return 0;\n";
1894  Out << "}\n\n";
1895  printModule(fname,mName);
1896}
1897
1898void CppWriter::printModule(const std::string& fname,
1899                            const std::string& mName) {
1900  nl(Out) << "Module* " << fname << "() {";
1901  nl(Out,1) << "// Module Construction";
1902  nl(Out) << "Module* mod = new Module(\"";
1903  printEscapedString(mName);
1904  Out << "\", getGlobalContext());";
1905  if (!TheModule->getTargetTriple().empty()) {
1906    nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1907  }
1908  if (!TheModule->getTargetTriple().empty()) {
1909    nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1910            << "\");";
1911  }
1912
1913  if (!TheModule->getModuleInlineAsm().empty()) {
1914    nl(Out) << "mod->setModuleInlineAsm(\"";
1915    printEscapedString(TheModule->getModuleInlineAsm());
1916    Out << "\");";
1917  }
1918  nl(Out);
1919
1920  // Loop over the dependent libraries and emit them.
1921  Module::lib_iterator LI = TheModule->lib_begin();
1922  Module::lib_iterator LE = TheModule->lib_end();
1923  while (LI != LE) {
1924    Out << "mod->addLibrary(\"" << *LI << "\");";
1925    nl(Out);
1926    ++LI;
1927  }
1928  printModuleBody();
1929  nl(Out) << "return mod;";
1930  nl(Out,-1) << "}";
1931  nl(Out);
1932}
1933
1934void CppWriter::printContents(const std::string& fname,
1935                              const std::string& mName) {
1936  Out << "\nModule* " << fname << "(Module *mod) {\n";
1937  Out << "\nmod->setModuleIdentifier(\"";
1938  printEscapedString(mName);
1939  Out << "\");\n";
1940  printModuleBody();
1941  Out << "\nreturn mod;\n";
1942  Out << "\n}\n";
1943}
1944
1945void CppWriter::printFunction(const std::string& fname,
1946                              const std::string& funcName) {
1947  const Function* F = TheModule->getFunction(funcName);
1948  if (!F) {
1949    error(std::string("Function '") + funcName + "' not found in input module");
1950    return;
1951  }
1952  Out << "\nFunction* " << fname << "(Module *mod) {\n";
1953  printFunctionUses(F);
1954  printFunctionHead(F);
1955  printFunctionBody(F);
1956  Out << "return " << getCppName(F) << ";\n";
1957  Out << "}\n";
1958}
1959
1960void CppWriter::printFunctions() {
1961  const Module::FunctionListType &funcs = TheModule->getFunctionList();
1962  Module::const_iterator I  = funcs.begin();
1963  Module::const_iterator IE = funcs.end();
1964
1965  for (; I != IE; ++I) {
1966    const Function &func = *I;
1967    if (!func.isDeclaration()) {
1968      std::string name("define_");
1969      name += func.getName();
1970      printFunction(name, func.getName());
1971    }
1972  }
1973}
1974
1975void CppWriter::printVariable(const std::string& fname,
1976                              const std::string& varName) {
1977  const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1978
1979  if (!GV) {
1980    error(std::string("Variable '") + varName + "' not found in input module");
1981    return;
1982  }
1983  Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1984  printVariableUses(GV);
1985  printVariableHead(GV);
1986  printVariableBody(GV);
1987  Out << "return " << getCppName(GV) << ";\n";
1988  Out << "}\n";
1989}
1990
1991void CppWriter::printType(const std::string &fname,
1992                          const std::string &typeName) {
1993  Type* Ty = TheModule->getTypeByName(typeName);
1994  if (!Ty) {
1995    error(std::string("Type '") + typeName + "' not found in input module");
1996    return;
1997  }
1998  Out << "\nType* " << fname << "(Module *mod) {\n";
1999  printType(Ty);
2000  Out << "return " << getCppName(Ty) << ";\n";
2001  Out << "}\n";
2002}
2003
2004bool CppWriter::runOnModule(Module &M) {
2005  TheModule = &M;
2006
2007  // Emit a header
2008  Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2009
2010  // Get the name of the function we're supposed to generate
2011  std::string fname = FuncName.getValue();
2012
2013  // Get the name of the thing we are to generate
2014  std::string tgtname = NameToGenerate.getValue();
2015  if (GenerationType == GenModule ||
2016      GenerationType == GenContents ||
2017      GenerationType == GenProgram ||
2018      GenerationType == GenFunctions) {
2019    if (tgtname == "!bad!") {
2020      if (M.getModuleIdentifier() == "-")
2021        tgtname = "<stdin>";
2022      else
2023        tgtname = M.getModuleIdentifier();
2024    }
2025  } else if (tgtname == "!bad!")
2026    error("You must use the -for option with -gen-{function,variable,type}");
2027
2028  switch (WhatToGenerate(GenerationType)) {
2029   case GenProgram:
2030    if (fname.empty())
2031      fname = "makeLLVMModule";
2032    printProgram(fname,tgtname);
2033    break;
2034   case GenModule:
2035    if (fname.empty())
2036      fname = "makeLLVMModule";
2037    printModule(fname,tgtname);
2038    break;
2039   case GenContents:
2040    if (fname.empty())
2041      fname = "makeLLVMModuleContents";
2042    printContents(fname,tgtname);
2043    break;
2044   case GenFunction:
2045    if (fname.empty())
2046      fname = "makeLLVMFunction";
2047    printFunction(fname,tgtname);
2048    break;
2049   case GenFunctions:
2050    printFunctions();
2051    break;
2052   case GenInline:
2053    if (fname.empty())
2054      fname = "makeLLVMInline";
2055    printInline(fname,tgtname);
2056    break;
2057   case GenVariable:
2058    if (fname.empty())
2059      fname = "makeLLVMVariable";
2060    printVariable(fname,tgtname);
2061    break;
2062   case GenType:
2063    if (fname.empty())
2064      fname = "makeLLVMType";
2065    printType(fname,tgtname);
2066    break;
2067  }
2068
2069  return false;
2070}
2071
2072char CppWriter::ID = 0;
2073
2074//===----------------------------------------------------------------------===//
2075//                       External Interface declaration
2076//===----------------------------------------------------------------------===//
2077
2078bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
2079                                           formatted_raw_ostream &o,
2080                                           CodeGenFileType FileType,
2081                                           bool DisableVerify) {
2082  if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
2083  PM.add(new CppWriter(o));
2084  return false;
2085}
2086