MachObjectWriter.cpp revision 212904
1//===- lib/MC/MachObjectWriter.cpp - Mach-O File Writer -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/MC/MachObjectWriter.h"
11#include "llvm/ADT/StringMap.h"
12#include "llvm/ADT/Twine.h"
13#include "llvm/MC/MCAssembler.h"
14#include "llvm/MC/MCAsmLayout.h"
15#include "llvm/MC/MCExpr.h"
16#include "llvm/MC/MCObjectWriter.h"
17#include "llvm/MC/MCSectionMachO.h"
18#include "llvm/MC/MCSymbol.h"
19#include "llvm/MC/MCMachOSymbolFlags.h"
20#include "llvm/MC/MCValue.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/MachO.h"
23#include "llvm/Target/TargetAsmBackend.h"
24
25// FIXME: Gross.
26#include "../Target/X86/X86FixupKinds.h"
27
28#include <vector>
29using namespace llvm;
30
31static unsigned getFixupKindLog2Size(unsigned Kind) {
32  switch (Kind) {
33  default: llvm_unreachable("invalid fixup kind!");
34  case X86::reloc_pcrel_1byte:
35  case FK_Data_1: return 0;
36  case X86::reloc_pcrel_2byte:
37  case FK_Data_2: return 1;
38  case X86::reloc_pcrel_4byte:
39  case X86::reloc_riprel_4byte:
40  case X86::reloc_riprel_4byte_movq_load:
41  case FK_Data_4: return 2;
42  case FK_Data_8: return 3;
43  }
44}
45
46static bool isFixupKindPCRel(unsigned Kind) {
47  switch (Kind) {
48  default:
49    return false;
50  case X86::reloc_pcrel_1byte:
51  case X86::reloc_pcrel_2byte:
52  case X86::reloc_pcrel_4byte:
53  case X86::reloc_riprel_4byte:
54  case X86::reloc_riprel_4byte_movq_load:
55    return true;
56  }
57}
58
59static bool isFixupKindRIPRel(unsigned Kind) {
60  return Kind == X86::reloc_riprel_4byte ||
61    Kind == X86::reloc_riprel_4byte_movq_load;
62}
63
64static bool doesSymbolRequireExternRelocation(MCSymbolData *SD) {
65  // Undefined symbols are always extern.
66  if (SD->Symbol->isUndefined())
67    return true;
68
69  // References to weak definitions require external relocation entries; the
70  // definition may not always be the one in the same object file.
71  if (SD->getFlags() & SF_WeakDefinition)
72    return true;
73
74  // Otherwise, we can use an internal relocation.
75  return false;
76}
77
78namespace {
79
80class MachObjectWriterImpl {
81  // See <mach-o/loader.h>.
82  enum {
83    Header_Magic32 = 0xFEEDFACE,
84    Header_Magic64 = 0xFEEDFACF
85  };
86
87  enum {
88    Header32Size = 28,
89    Header64Size = 32,
90    SegmentLoadCommand32Size = 56,
91    SegmentLoadCommand64Size = 72,
92    Section32Size = 68,
93    Section64Size = 80,
94    SymtabLoadCommandSize = 24,
95    DysymtabLoadCommandSize = 80,
96    Nlist32Size = 12,
97    Nlist64Size = 16,
98    RelocationInfoSize = 8
99  };
100
101  enum HeaderFileType {
102    HFT_Object = 0x1
103  };
104
105  enum HeaderFlags {
106    HF_SubsectionsViaSymbols = 0x2000
107  };
108
109  enum LoadCommandType {
110    LCT_Segment = 0x1,
111    LCT_Symtab = 0x2,
112    LCT_Dysymtab = 0xb,
113    LCT_Segment64 = 0x19
114  };
115
116  // See <mach-o/nlist.h>.
117  enum SymbolTypeType {
118    STT_Undefined = 0x00,
119    STT_Absolute  = 0x02,
120    STT_Section   = 0x0e
121  };
122
123  enum SymbolTypeFlags {
124    // If any of these bits are set, then the entry is a stab entry number (see
125    // <mach-o/stab.h>. Otherwise the other masks apply.
126    STF_StabsEntryMask = 0xe0,
127
128    STF_TypeMask       = 0x0e,
129    STF_External       = 0x01,
130    STF_PrivateExtern  = 0x10
131  };
132
133  /// IndirectSymbolFlags - Flags for encoding special values in the indirect
134  /// symbol entry.
135  enum IndirectSymbolFlags {
136    ISF_Local    = 0x80000000,
137    ISF_Absolute = 0x40000000
138  };
139
140  /// RelocationFlags - Special flags for addresses.
141  enum RelocationFlags {
142    RF_Scattered = 0x80000000
143  };
144
145  enum RelocationInfoType {
146    RIT_Vanilla             = 0,
147    RIT_Pair                = 1,
148    RIT_Difference          = 2,
149    RIT_PreboundLazyPointer = 3,
150    RIT_LocalDifference     = 4,
151    RIT_TLV                 = 5
152  };
153
154  /// X86_64 uses its own relocation types.
155  enum RelocationInfoTypeX86_64 {
156    RIT_X86_64_Unsigned   = 0,
157    RIT_X86_64_Signed     = 1,
158    RIT_X86_64_Branch     = 2,
159    RIT_X86_64_GOTLoad    = 3,
160    RIT_X86_64_GOT        = 4,
161    RIT_X86_64_Subtractor = 5,
162    RIT_X86_64_Signed1    = 6,
163    RIT_X86_64_Signed2    = 7,
164    RIT_X86_64_Signed4    = 8,
165    RIT_X86_64_TLV        = 9
166  };
167
168  /// MachSymbolData - Helper struct for containing some precomputed information
169  /// on symbols.
170  struct MachSymbolData {
171    MCSymbolData *SymbolData;
172    uint64_t StringIndex;
173    uint8_t SectionIndex;
174
175    // Support lexicographic sorting.
176    bool operator<(const MachSymbolData &RHS) const {
177      return SymbolData->getSymbol().getName() <
178             RHS.SymbolData->getSymbol().getName();
179    }
180  };
181
182  /// @name Relocation Data
183  /// @{
184
185  struct MachRelocationEntry {
186    uint32_t Word0;
187    uint32_t Word1;
188  };
189
190  llvm::DenseMap<const MCSectionData*,
191                 std::vector<MachRelocationEntry> > Relocations;
192  llvm::DenseMap<const MCSectionData*, unsigned> IndirectSymBase;
193
194  /// @}
195  /// @name Symbol Table Data
196  /// @{
197
198  SmallString<256> StringTable;
199  std::vector<MachSymbolData> LocalSymbolData;
200  std::vector<MachSymbolData> ExternalSymbolData;
201  std::vector<MachSymbolData> UndefinedSymbolData;
202
203  /// @}
204
205  MachObjectWriter *Writer;
206
207  raw_ostream &OS;
208
209  unsigned Is64Bit : 1;
210
211public:
212  MachObjectWriterImpl(MachObjectWriter *_Writer, bool _Is64Bit)
213    : Writer(_Writer), OS(Writer->getStream()), Is64Bit(_Is64Bit) {
214  }
215
216  void Write8(uint8_t Value) { Writer->Write8(Value); }
217  void Write16(uint16_t Value) { Writer->Write16(Value); }
218  void Write32(uint32_t Value) { Writer->Write32(Value); }
219  void Write64(uint64_t Value) { Writer->Write64(Value); }
220  void WriteZeros(unsigned N) { Writer->WriteZeros(N); }
221  void WriteBytes(StringRef Str, unsigned ZeroFillSize = 0) {
222    Writer->WriteBytes(Str, ZeroFillSize);
223  }
224
225  void WriteHeader(unsigned NumLoadCommands, unsigned LoadCommandsSize,
226                   bool SubsectionsViaSymbols) {
227    uint32_t Flags = 0;
228
229    if (SubsectionsViaSymbols)
230      Flags |= HF_SubsectionsViaSymbols;
231
232    // struct mach_header (28 bytes) or
233    // struct mach_header_64 (32 bytes)
234
235    uint64_t Start = OS.tell();
236    (void) Start;
237
238    Write32(Is64Bit ? Header_Magic64 : Header_Magic32);
239
240    // FIXME: Support cputype.
241    Write32(Is64Bit ? MachO::CPUTypeX86_64 : MachO::CPUTypeI386);
242    // FIXME: Support cpusubtype.
243    Write32(MachO::CPUSubType_I386_ALL);
244    Write32(HFT_Object);
245    Write32(NumLoadCommands);    // Object files have a single load command, the
246                                 // segment.
247    Write32(LoadCommandsSize);
248    Write32(Flags);
249    if (Is64Bit)
250      Write32(0); // reserved
251
252    assert(OS.tell() - Start == Is64Bit ? Header64Size : Header32Size);
253  }
254
255  /// WriteSegmentLoadCommand - Write a segment load command.
256  ///
257  /// \arg NumSections - The number of sections in this segment.
258  /// \arg SectionDataSize - The total size of the sections.
259  void WriteSegmentLoadCommand(unsigned NumSections,
260                               uint64_t VMSize,
261                               uint64_t SectionDataStartOffset,
262                               uint64_t SectionDataSize) {
263    // struct segment_command (56 bytes) or
264    // struct segment_command_64 (72 bytes)
265
266    uint64_t Start = OS.tell();
267    (void) Start;
268
269    unsigned SegmentLoadCommandSize = Is64Bit ? SegmentLoadCommand64Size :
270      SegmentLoadCommand32Size;
271    Write32(Is64Bit ? LCT_Segment64 : LCT_Segment);
272    Write32(SegmentLoadCommandSize +
273            NumSections * (Is64Bit ? Section64Size : Section32Size));
274
275    WriteBytes("", 16);
276    if (Is64Bit) {
277      Write64(0); // vmaddr
278      Write64(VMSize); // vmsize
279      Write64(SectionDataStartOffset); // file offset
280      Write64(SectionDataSize); // file size
281    } else {
282      Write32(0); // vmaddr
283      Write32(VMSize); // vmsize
284      Write32(SectionDataStartOffset); // file offset
285      Write32(SectionDataSize); // file size
286    }
287    Write32(0x7); // maxprot
288    Write32(0x7); // initprot
289    Write32(NumSections);
290    Write32(0); // flags
291
292    assert(OS.tell() - Start == SegmentLoadCommandSize);
293  }
294
295  void WriteSection(const MCAssembler &Asm, const MCAsmLayout &Layout,
296                    const MCSectionData &SD, uint64_t FileOffset,
297                    uint64_t RelocationsStart, unsigned NumRelocations) {
298    uint64_t SectionSize = Layout.getSectionSize(&SD);
299
300    // The offset is unused for virtual sections.
301    if (Asm.getBackend().isVirtualSection(SD.getSection())) {
302      assert(Layout.getSectionFileSize(&SD) == 0 && "Invalid file size!");
303      FileOffset = 0;
304    }
305
306    // struct section (68 bytes) or
307    // struct section_64 (80 bytes)
308
309    uint64_t Start = OS.tell();
310    (void) Start;
311
312    const MCSectionMachO &Section = cast<MCSectionMachO>(SD.getSection());
313    WriteBytes(Section.getSectionName(), 16);
314    WriteBytes(Section.getSegmentName(), 16);
315    if (Is64Bit) {
316      Write64(Layout.getSectionAddress(&SD)); // address
317      Write64(SectionSize); // size
318    } else {
319      Write32(Layout.getSectionAddress(&SD)); // address
320      Write32(SectionSize); // size
321    }
322    Write32(FileOffset);
323
324    unsigned Flags = Section.getTypeAndAttributes();
325    if (SD.hasInstructions())
326      Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS;
327
328    assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!");
329    Write32(Log2_32(SD.getAlignment()));
330    Write32(NumRelocations ? RelocationsStart : 0);
331    Write32(NumRelocations);
332    Write32(Flags);
333    Write32(IndirectSymBase.lookup(&SD)); // reserved1
334    Write32(Section.getStubSize()); // reserved2
335    if (Is64Bit)
336      Write32(0); // reserved3
337
338    assert(OS.tell() - Start == Is64Bit ? Section64Size : Section32Size);
339  }
340
341  void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols,
342                              uint32_t StringTableOffset,
343                              uint32_t StringTableSize) {
344    // struct symtab_command (24 bytes)
345
346    uint64_t Start = OS.tell();
347    (void) Start;
348
349    Write32(LCT_Symtab);
350    Write32(SymtabLoadCommandSize);
351    Write32(SymbolOffset);
352    Write32(NumSymbols);
353    Write32(StringTableOffset);
354    Write32(StringTableSize);
355
356    assert(OS.tell() - Start == SymtabLoadCommandSize);
357  }
358
359  void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol,
360                                uint32_t NumLocalSymbols,
361                                uint32_t FirstExternalSymbol,
362                                uint32_t NumExternalSymbols,
363                                uint32_t FirstUndefinedSymbol,
364                                uint32_t NumUndefinedSymbols,
365                                uint32_t IndirectSymbolOffset,
366                                uint32_t NumIndirectSymbols) {
367    // struct dysymtab_command (80 bytes)
368
369    uint64_t Start = OS.tell();
370    (void) Start;
371
372    Write32(LCT_Dysymtab);
373    Write32(DysymtabLoadCommandSize);
374    Write32(FirstLocalSymbol);
375    Write32(NumLocalSymbols);
376    Write32(FirstExternalSymbol);
377    Write32(NumExternalSymbols);
378    Write32(FirstUndefinedSymbol);
379    Write32(NumUndefinedSymbols);
380    Write32(0); // tocoff
381    Write32(0); // ntoc
382    Write32(0); // modtaboff
383    Write32(0); // nmodtab
384    Write32(0); // extrefsymoff
385    Write32(0); // nextrefsyms
386    Write32(IndirectSymbolOffset);
387    Write32(NumIndirectSymbols);
388    Write32(0); // extreloff
389    Write32(0); // nextrel
390    Write32(0); // locreloff
391    Write32(0); // nlocrel
392
393    assert(OS.tell() - Start == DysymtabLoadCommandSize);
394  }
395
396  void WriteNlist(MachSymbolData &MSD, const MCAsmLayout &Layout) {
397    MCSymbolData &Data = *MSD.SymbolData;
398    const MCSymbol &Symbol = Data.getSymbol();
399    uint8_t Type = 0;
400    uint16_t Flags = Data.getFlags();
401    uint32_t Address = 0;
402
403    // Set the N_TYPE bits. See <mach-o/nlist.h>.
404    //
405    // FIXME: Are the prebound or indirect fields possible here?
406    if (Symbol.isUndefined())
407      Type = STT_Undefined;
408    else if (Symbol.isAbsolute())
409      Type = STT_Absolute;
410    else
411      Type = STT_Section;
412
413    // FIXME: Set STAB bits.
414
415    if (Data.isPrivateExtern())
416      Type |= STF_PrivateExtern;
417
418    // Set external bit.
419    if (Data.isExternal() || Symbol.isUndefined())
420      Type |= STF_External;
421
422    // Compute the symbol address.
423    if (Symbol.isDefined()) {
424      if (Symbol.isAbsolute()) {
425        Address = cast<MCConstantExpr>(Symbol.getVariableValue())->getValue();
426      } else {
427        Address = Layout.getSymbolAddress(&Data);
428      }
429    } else if (Data.isCommon()) {
430      // Common symbols are encoded with the size in the address
431      // field, and their alignment in the flags.
432      Address = Data.getCommonSize();
433
434      // Common alignment is packed into the 'desc' bits.
435      if (unsigned Align = Data.getCommonAlignment()) {
436        unsigned Log2Size = Log2_32(Align);
437        assert((1U << Log2Size) == Align && "Invalid 'common' alignment!");
438        if (Log2Size > 15)
439          report_fatal_error("invalid 'common' alignment '" +
440                            Twine(Align) + "'");
441        // FIXME: Keep this mask with the SymbolFlags enumeration.
442        Flags = (Flags & 0xF0FF) | (Log2Size << 8);
443      }
444    }
445
446    // struct nlist (12 bytes)
447
448    Write32(MSD.StringIndex);
449    Write8(Type);
450    Write8(MSD.SectionIndex);
451
452    // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc'
453    // value.
454    Write16(Flags);
455    if (Is64Bit)
456      Write64(Address);
457    else
458      Write32(Address);
459  }
460
461  // FIXME: We really need to improve the relocation validation. Basically, we
462  // want to implement a separate computation which evaluates the relocation
463  // entry as the linker would, and verifies that the resultant fixup value is
464  // exactly what the encoder wanted. This will catch several classes of
465  // problems:
466  //
467  //  - Relocation entry bugs, the two algorithms are unlikely to have the same
468  //    exact bug.
469  //
470  //  - Relaxation issues, where we forget to relax something.
471  //
472  //  - Input errors, where something cannot be correctly encoded. 'as' allows
473  //    these through in many cases.
474
475  void RecordX86_64Relocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
476                              const MCFragment *Fragment,
477                              const MCFixup &Fixup, MCValue Target,
478                              uint64_t &FixedValue) {
479    unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind());
480    unsigned IsRIPRel = isFixupKindRIPRel(Fixup.getKind());
481    unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
482
483    // See <reloc.h>.
484    uint32_t FixupOffset =
485      Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
486    uint32_t FixupAddress =
487      Layout.getFragmentAddress(Fragment) + Fixup.getOffset();
488    int64_t Value = 0;
489    unsigned Index = 0;
490    unsigned IsExtern = 0;
491    unsigned Type = 0;
492
493    Value = Target.getConstant();
494
495    if (IsPCRel) {
496      // Compensate for the relocation offset, Darwin x86_64 relocations only
497      // have the addend and appear to have attempted to define it to be the
498      // actual expression addend without the PCrel bias. However, instructions
499      // with data following the relocation are not accomodated for (see comment
500      // below regarding SIGNED{1,2,4}), so it isn't exactly that either.
501      Value += 1LL << Log2Size;
502    }
503
504    if (Target.isAbsolute()) { // constant
505      // SymbolNum of 0 indicates the absolute section.
506      Type = RIT_X86_64_Unsigned;
507      Index = 0;
508
509      // FIXME: I believe this is broken, I don't think the linker can
510      // understand it. I think it would require a local relocation, but I'm not
511      // sure if that would work either. The official way to get an absolute
512      // PCrel relocation is to use an absolute symbol (which we don't support
513      // yet).
514      if (IsPCRel) {
515        IsExtern = 1;
516        Type = RIT_X86_64_Branch;
517      }
518    } else if (Target.getSymB()) { // A - B + constant
519      const MCSymbol *A = &Target.getSymA()->getSymbol();
520      MCSymbolData &A_SD = Asm.getSymbolData(*A);
521      const MCSymbolData *A_Base = Asm.getAtom(Layout, &A_SD);
522
523      const MCSymbol *B = &Target.getSymB()->getSymbol();
524      MCSymbolData &B_SD = Asm.getSymbolData(*B);
525      const MCSymbolData *B_Base = Asm.getAtom(Layout, &B_SD);
526
527      // Neither symbol can be modified.
528      if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None ||
529          Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None)
530        report_fatal_error("unsupported relocation of modified symbol");
531
532      // We don't support PCrel relocations of differences. Darwin 'as' doesn't
533      // implement most of these correctly.
534      if (IsPCRel)
535        report_fatal_error("unsupported pc-relative relocation of difference");
536
537      // We don't currently support any situation where one or both of the
538      // symbols would require a local relocation. This is almost certainly
539      // unused and may not be possible to encode correctly.
540      if (!A_Base || !B_Base)
541        report_fatal_error("unsupported local relocations in difference");
542
543      // Darwin 'as' doesn't emit correct relocations for this (it ends up with
544      // a single SIGNED relocation); reject it for now.
545      if (A_Base == B_Base)
546        report_fatal_error("unsupported relocation with identical base");
547
548      Value += Layout.getSymbolAddress(&A_SD) - Layout.getSymbolAddress(A_Base);
549      Value -= Layout.getSymbolAddress(&B_SD) - Layout.getSymbolAddress(B_Base);
550
551      Index = A_Base->getIndex();
552      IsExtern = 1;
553      Type = RIT_X86_64_Unsigned;
554
555      MachRelocationEntry MRE;
556      MRE.Word0 = FixupOffset;
557      MRE.Word1 = ((Index     <<  0) |
558                   (IsPCRel   << 24) |
559                   (Log2Size  << 25) |
560                   (IsExtern  << 27) |
561                   (Type      << 28));
562      Relocations[Fragment->getParent()].push_back(MRE);
563
564      Index = B_Base->getIndex();
565      IsExtern = 1;
566      Type = RIT_X86_64_Subtractor;
567    } else {
568      const MCSymbol *Symbol = &Target.getSymA()->getSymbol();
569      MCSymbolData &SD = Asm.getSymbolData(*Symbol);
570      const MCSymbolData *Base = Asm.getAtom(Layout, &SD);
571
572      // Relocations inside debug sections always use local relocations when
573      // possible. This seems to be done because the debugger doesn't fully
574      // understand x86_64 relocation entries, and expects to find values that
575      // have already been fixed up.
576      if (Symbol->isInSection()) {
577        const MCSectionMachO &Section = static_cast<const MCSectionMachO&>(
578          Fragment->getParent()->getSection());
579        if (Section.hasAttribute(MCSectionMachO::S_ATTR_DEBUG))
580          Base = 0;
581      }
582
583      // x86_64 almost always uses external relocations, except when there is no
584      // symbol to use as a base address (a local symbol with no preceeding
585      // non-local symbol).
586      if (Base) {
587        Index = Base->getIndex();
588        IsExtern = 1;
589
590        // Add the local offset, if needed.
591        if (Base != &SD)
592          Value += Layout.getSymbolAddress(&SD) - Layout.getSymbolAddress(Base);
593      } else if (Symbol->isInSection()) {
594        // The index is the section ordinal (1-based).
595        Index = SD.getFragment()->getParent()->getOrdinal() + 1;
596        IsExtern = 0;
597        Value += Layout.getSymbolAddress(&SD);
598
599        if (IsPCRel)
600          Value -= FixupAddress + (1 << Log2Size);
601      } else {
602        report_fatal_error("unsupported relocation of undefined symbol '" +
603                           Symbol->getName() + "'");
604      }
605
606      MCSymbolRefExpr::VariantKind Modifier = Target.getSymA()->getKind();
607      if (IsPCRel) {
608        if (IsRIPRel) {
609          if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
610            // x86_64 distinguishes movq foo@GOTPCREL so that the linker can
611            // rewrite the movq to an leaq at link time if the symbol ends up in
612            // the same linkage unit.
613            if (unsigned(Fixup.getKind()) == X86::reloc_riprel_4byte_movq_load)
614              Type = RIT_X86_64_GOTLoad;
615            else
616              Type = RIT_X86_64_GOT;
617          }  else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
618            Type = RIT_X86_64_TLV;
619          }  else if (Modifier != MCSymbolRefExpr::VK_None) {
620            report_fatal_error("unsupported symbol modifier in relocation");
621          } else {
622            Type = RIT_X86_64_Signed;
623
624            // The Darwin x86_64 relocation format has a problem where it cannot
625            // encode an address (L<foo> + <constant>) which is outside the atom
626            // containing L<foo>. Generally, this shouldn't occur but it does
627            // happen when we have a RIPrel instruction with data following the
628            // relocation entry (e.g., movb $012, L0(%rip)). Even with the PCrel
629            // adjustment Darwin x86_64 uses, the offset is still negative and
630            // the linker has no way to recognize this.
631            //
632            // To work around this, Darwin uses several special relocation types
633            // to indicate the offsets. However, the specification or
634            // implementation of these seems to also be incomplete; they should
635            // adjust the addend as well based on the actual encoded instruction
636            // (the additional bias), but instead appear to just look at the
637            // final offset.
638            switch (-(Target.getConstant() + (1LL << Log2Size))) {
639            case 1: Type = RIT_X86_64_Signed1; break;
640            case 2: Type = RIT_X86_64_Signed2; break;
641            case 4: Type = RIT_X86_64_Signed4; break;
642            }
643          }
644        } else {
645          if (Modifier != MCSymbolRefExpr::VK_None)
646            report_fatal_error("unsupported symbol modifier in branch "
647                              "relocation");
648
649          Type = RIT_X86_64_Branch;
650        }
651      } else {
652        if (Modifier == MCSymbolRefExpr::VK_GOT) {
653          Type = RIT_X86_64_GOT;
654        } else if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
655          // GOTPCREL is allowed as a modifier on non-PCrel instructions, in
656          // which case all we do is set the PCrel bit in the relocation entry;
657          // this is used with exception handling, for example. The source is
658          // required to include any necessary offset directly.
659          Type = RIT_X86_64_GOT;
660          IsPCRel = 1;
661        } else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
662          report_fatal_error("TLVP symbol modifier should have been rip-rel");
663        } else if (Modifier != MCSymbolRefExpr::VK_None)
664          report_fatal_error("unsupported symbol modifier in relocation");
665        else
666          Type = RIT_X86_64_Unsigned;
667      }
668    }
669
670    // x86_64 always writes custom values into the fixups.
671    FixedValue = Value;
672
673    // struct relocation_info (8 bytes)
674    MachRelocationEntry MRE;
675    MRE.Word0 = FixupOffset;
676    MRE.Word1 = ((Index     <<  0) |
677                 (IsPCRel   << 24) |
678                 (Log2Size  << 25) |
679                 (IsExtern  << 27) |
680                 (Type      << 28));
681    Relocations[Fragment->getParent()].push_back(MRE);
682  }
683
684  void RecordScatteredRelocation(const MCAssembler &Asm,
685                                 const MCAsmLayout &Layout,
686                                 const MCFragment *Fragment,
687                                 const MCFixup &Fixup, MCValue Target,
688                                 uint64_t &FixedValue) {
689    uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
690    unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind());
691    unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
692    unsigned Type = RIT_Vanilla;
693
694    // See <reloc.h>.
695    const MCSymbol *A = &Target.getSymA()->getSymbol();
696    MCSymbolData *A_SD = &Asm.getSymbolData(*A);
697
698    if (!A_SD->getFragment())
699      report_fatal_error("symbol '" + A->getName() +
700                        "' can not be undefined in a subtraction expression");
701
702    uint32_t Value = Layout.getSymbolAddress(A_SD);
703    uint32_t Value2 = 0;
704
705    if (const MCSymbolRefExpr *B = Target.getSymB()) {
706      MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
707
708      if (!B_SD->getFragment())
709        report_fatal_error("symbol '" + B->getSymbol().getName() +
710                          "' can not be undefined in a subtraction expression");
711
712      // Select the appropriate difference relocation type.
713      //
714      // Note that there is no longer any semantic difference between these two
715      // relocation types from the linkers point of view, this is done solely
716      // for pedantic compatibility with 'as'.
717      Type = A_SD->isExternal() ? RIT_Difference : RIT_LocalDifference;
718      Value2 = Layout.getSymbolAddress(B_SD);
719    }
720
721    // Relocations are written out in reverse order, so the PAIR comes first.
722    if (Type == RIT_Difference || Type == RIT_LocalDifference) {
723      MachRelocationEntry MRE;
724      MRE.Word0 = ((0         <<  0) |
725                   (RIT_Pair  << 24) |
726                   (Log2Size  << 28) |
727                   (IsPCRel   << 30) |
728                   RF_Scattered);
729      MRE.Word1 = Value2;
730      Relocations[Fragment->getParent()].push_back(MRE);
731    }
732
733    MachRelocationEntry MRE;
734    MRE.Word0 = ((FixupOffset <<  0) |
735                 (Type        << 24) |
736                 (Log2Size    << 28) |
737                 (IsPCRel     << 30) |
738                 RF_Scattered);
739    MRE.Word1 = Value;
740    Relocations[Fragment->getParent()].push_back(MRE);
741  }
742
743  void RecordTLVPRelocation(const MCAssembler &Asm,
744                            const MCAsmLayout &Layout,
745                            const MCFragment *Fragment,
746                            const MCFixup &Fixup, MCValue Target,
747                            uint64_t &FixedValue) {
748    assert(Target.getSymA()->getKind() == MCSymbolRefExpr::VK_TLVP &&
749           !Is64Bit &&
750           "Should only be called with a 32-bit TLVP relocation!");
751
752    unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
753    uint32_t Value = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
754    unsigned IsPCRel = 0;
755
756    // Get the symbol data.
757    MCSymbolData *SD_A = &Asm.getSymbolData(Target.getSymA()->getSymbol());
758    unsigned Index = SD_A->getIndex();
759
760    // We're only going to have a second symbol in pic mode and it'll be a
761    // subtraction from the picbase. For 32-bit pic the addend is the difference
762    // between the picbase and the next address.  For 32-bit static the addend
763    // is zero.
764    if (Target.getSymB()) {
765      // If this is a subtraction then we're pcrel.
766      uint32_t FixupAddress =
767      Layout.getFragmentAddress(Fragment) + Fixup.getOffset();
768      MCSymbolData *SD_B = &Asm.getSymbolData(Target.getSymB()->getSymbol());
769      IsPCRel = 1;
770      FixedValue = (FixupAddress - Layout.getSymbolAddress(SD_B) +
771                    Target.getConstant());
772      FixedValue += 1ULL << Log2Size;
773    } else {
774      FixedValue = 0;
775    }
776
777    // struct relocation_info (8 bytes)
778    MachRelocationEntry MRE;
779    MRE.Word0 = Value;
780    MRE.Word1 = ((Index     <<  0) |
781                 (IsPCRel   << 24) |
782                 (Log2Size  << 25) |
783                 (1         << 27) | // Extern
784                 (RIT_TLV   << 28)); // Type
785    Relocations[Fragment->getParent()].push_back(MRE);
786  }
787
788  void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
789                        const MCFragment *Fragment, const MCFixup &Fixup,
790                        MCValue Target, uint64_t &FixedValue) {
791    if (Is64Bit) {
792      RecordX86_64Relocation(Asm, Layout, Fragment, Fixup, Target, FixedValue);
793      return;
794    }
795
796    unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind());
797    unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
798
799    // If this is a 32-bit TLVP reloc it's handled a bit differently.
800    if (Target.getSymA()->getKind() == MCSymbolRefExpr::VK_TLVP) {
801      RecordTLVPRelocation(Asm, Layout, Fragment, Fixup, Target, FixedValue);
802      return;
803    }
804
805    // If this is a difference or a defined symbol plus an offset, then we need
806    // a scattered relocation entry.
807    // Differences always require scattered relocations.
808    if (Target.getSymB())
809        return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup,
810                                         Target, FixedValue);
811
812    // Get the symbol data, if any.
813    MCSymbolData *SD = 0;
814    if (Target.getSymA())
815      SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());
816
817    // If this is an internal relocation with an offset, it also needs a
818    // scattered relocation entry.
819    uint32_t Offset = Target.getConstant();
820    if (IsPCRel)
821      Offset += 1 << Log2Size;
822    if (Offset && SD && !doesSymbolRequireExternRelocation(SD))
823      return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup,
824                                       Target, FixedValue);
825
826    // See <reloc.h>.
827    uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
828    unsigned Index = 0;
829    unsigned IsExtern = 0;
830    unsigned Type = 0;
831
832    if (Target.isAbsolute()) { // constant
833      // SymbolNum of 0 indicates the absolute section.
834      //
835      // FIXME: Currently, these are never generated (see code below). I cannot
836      // find a case where they are actually emitted.
837      Type = RIT_Vanilla;
838    } else {
839      // Check whether we need an external or internal relocation.
840      if (doesSymbolRequireExternRelocation(SD)) {
841        IsExtern = 1;
842        Index = SD->getIndex();
843        // For external relocations, make sure to offset the fixup value to
844        // compensate for the addend of the symbol address, if it was
845        // undefined. This occurs with weak definitions, for example.
846        if (!SD->Symbol->isUndefined())
847          FixedValue -= Layout.getSymbolAddress(SD);
848      } else {
849        // The index is the section ordinal (1-based).
850        Index = SD->getFragment()->getParent()->getOrdinal() + 1;
851      }
852
853      Type = RIT_Vanilla;
854    }
855
856    // struct relocation_info (8 bytes)
857    MachRelocationEntry MRE;
858    MRE.Word0 = FixupOffset;
859    MRE.Word1 = ((Index     <<  0) |
860                 (IsPCRel   << 24) |
861                 (Log2Size  << 25) |
862                 (IsExtern  << 27) |
863                 (Type      << 28));
864    Relocations[Fragment->getParent()].push_back(MRE);
865  }
866
867  void BindIndirectSymbols(MCAssembler &Asm) {
868    // This is the point where 'as' creates actual symbols for indirect symbols
869    // (in the following two passes). It would be easier for us to do this
870    // sooner when we see the attribute, but that makes getting the order in the
871    // symbol table much more complicated than it is worth.
872    //
873    // FIXME: Revisit this when the dust settles.
874
875    // Bind non lazy symbol pointers first.
876    unsigned IndirectIndex = 0;
877    for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
878           ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) {
879      const MCSectionMachO &Section =
880        cast<MCSectionMachO>(it->SectionData->getSection());
881
882      if (Section.getType() != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS)
883        continue;
884
885      // Initialize the section indirect symbol base, if necessary.
886      if (!IndirectSymBase.count(it->SectionData))
887        IndirectSymBase[it->SectionData] = IndirectIndex;
888
889      Asm.getOrCreateSymbolData(*it->Symbol);
890    }
891
892    // Then lazy symbol pointers and symbol stubs.
893    IndirectIndex = 0;
894    for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
895           ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) {
896      const MCSectionMachO &Section =
897        cast<MCSectionMachO>(it->SectionData->getSection());
898
899      if (Section.getType() != MCSectionMachO::S_LAZY_SYMBOL_POINTERS &&
900          Section.getType() != MCSectionMachO::S_SYMBOL_STUBS)
901        continue;
902
903      // Initialize the section indirect symbol base, if necessary.
904      if (!IndirectSymBase.count(it->SectionData))
905        IndirectSymBase[it->SectionData] = IndirectIndex;
906
907      // Set the symbol type to undefined lazy, but only on construction.
908      //
909      // FIXME: Do not hardcode.
910      bool Created;
911      MCSymbolData &Entry = Asm.getOrCreateSymbolData(*it->Symbol, &Created);
912      if (Created)
913        Entry.setFlags(Entry.getFlags() | 0x0001);
914    }
915  }
916
917  /// ComputeSymbolTable - Compute the symbol table data
918  ///
919  /// \param StringTable [out] - The string table data.
920  /// \param StringIndexMap [out] - Map from symbol names to offsets in the
921  /// string table.
922  void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
923                          std::vector<MachSymbolData> &LocalSymbolData,
924                          std::vector<MachSymbolData> &ExternalSymbolData,
925                          std::vector<MachSymbolData> &UndefinedSymbolData) {
926    // Build section lookup table.
927    DenseMap<const MCSection*, uint8_t> SectionIndexMap;
928    unsigned Index = 1;
929    for (MCAssembler::iterator it = Asm.begin(),
930           ie = Asm.end(); it != ie; ++it, ++Index)
931      SectionIndexMap[&it->getSection()] = Index;
932    assert(Index <= 256 && "Too many sections!");
933
934    // Index 0 is always the empty string.
935    StringMap<uint64_t> StringIndexMap;
936    StringTable += '\x00';
937
938    // Build the symbol arrays and the string table, but only for non-local
939    // symbols.
940    //
941    // The particular order that we collect the symbols and create the string
942    // table, then sort the symbols is chosen to match 'as'. Even though it
943    // doesn't matter for correctness, this is important for letting us diff .o
944    // files.
945    for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
946           ie = Asm.symbol_end(); it != ie; ++it) {
947      const MCSymbol &Symbol = it->getSymbol();
948
949      // Ignore non-linker visible symbols.
950      if (!Asm.isSymbolLinkerVisible(it->getSymbol()))
951        continue;
952
953      if (!it->isExternal() && !Symbol.isUndefined())
954        continue;
955
956      uint64_t &Entry = StringIndexMap[Symbol.getName()];
957      if (!Entry) {
958        Entry = StringTable.size();
959        StringTable += Symbol.getName();
960        StringTable += '\x00';
961      }
962
963      MachSymbolData MSD;
964      MSD.SymbolData = it;
965      MSD.StringIndex = Entry;
966
967      if (Symbol.isUndefined()) {
968        MSD.SectionIndex = 0;
969        UndefinedSymbolData.push_back(MSD);
970      } else if (Symbol.isAbsolute()) {
971        MSD.SectionIndex = 0;
972        ExternalSymbolData.push_back(MSD);
973      } else {
974        MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
975        assert(MSD.SectionIndex && "Invalid section index!");
976        ExternalSymbolData.push_back(MSD);
977      }
978    }
979
980    // Now add the data for local symbols.
981    for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
982           ie = Asm.symbol_end(); it != ie; ++it) {
983      const MCSymbol &Symbol = it->getSymbol();
984
985      // Ignore non-linker visible symbols.
986      if (!Asm.isSymbolLinkerVisible(it->getSymbol()))
987        continue;
988
989      if (it->isExternal() || Symbol.isUndefined())
990        continue;
991
992      uint64_t &Entry = StringIndexMap[Symbol.getName()];
993      if (!Entry) {
994        Entry = StringTable.size();
995        StringTable += Symbol.getName();
996        StringTable += '\x00';
997      }
998
999      MachSymbolData MSD;
1000      MSD.SymbolData = it;
1001      MSD.StringIndex = Entry;
1002
1003      if (Symbol.isAbsolute()) {
1004        MSD.SectionIndex = 0;
1005        LocalSymbolData.push_back(MSD);
1006      } else {
1007        MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
1008        assert(MSD.SectionIndex && "Invalid section index!");
1009        LocalSymbolData.push_back(MSD);
1010      }
1011    }
1012
1013    // External and undefined symbols are required to be in lexicographic order.
1014    std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
1015    std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
1016
1017    // Set the symbol indices.
1018    Index = 0;
1019    for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1020      LocalSymbolData[i].SymbolData->setIndex(Index++);
1021    for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1022      ExternalSymbolData[i].SymbolData->setIndex(Index++);
1023    for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1024      UndefinedSymbolData[i].SymbolData->setIndex(Index++);
1025
1026    // The string table is padded to a multiple of 4.
1027    while (StringTable.size() % 4)
1028      StringTable += '\x00';
1029  }
1030
1031  void ExecutePostLayoutBinding(MCAssembler &Asm) {
1032    // Create symbol data for any indirect symbols.
1033    BindIndirectSymbols(Asm);
1034
1035    // Compute symbol table information and bind symbol indices.
1036    ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData,
1037                       UndefinedSymbolData);
1038  }
1039
1040  void WriteObject(const MCAssembler &Asm, const MCAsmLayout &Layout) {
1041    unsigned NumSections = Asm.size();
1042
1043    // The section data starts after the header, the segment load command (and
1044    // section headers) and the symbol table.
1045    unsigned NumLoadCommands = 1;
1046    uint64_t LoadCommandsSize = Is64Bit ?
1047      SegmentLoadCommand64Size + NumSections * Section64Size :
1048      SegmentLoadCommand32Size + NumSections * Section32Size;
1049
1050    // Add the symbol table load command sizes, if used.
1051    unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() +
1052      UndefinedSymbolData.size();
1053    if (NumSymbols) {
1054      NumLoadCommands += 2;
1055      LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize;
1056    }
1057
1058    // Compute the total size of the section data, as well as its file size and
1059    // vm size.
1060    uint64_t SectionDataStart = (Is64Bit ? Header64Size : Header32Size)
1061      + LoadCommandsSize;
1062    uint64_t SectionDataSize = 0;
1063    uint64_t SectionDataFileSize = 0;
1064    uint64_t VMSize = 0;
1065    for (MCAssembler::const_iterator it = Asm.begin(),
1066           ie = Asm.end(); it != ie; ++it) {
1067      const MCSectionData &SD = *it;
1068      uint64_t Address = Layout.getSectionAddress(&SD);
1069      uint64_t Size = Layout.getSectionSize(&SD);
1070      uint64_t FileSize = Layout.getSectionFileSize(&SD);
1071
1072      VMSize = std::max(VMSize, Address + Size);
1073
1074      if (Asm.getBackend().isVirtualSection(SD.getSection()))
1075        continue;
1076
1077      SectionDataSize = std::max(SectionDataSize, Address + Size);
1078      SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize);
1079    }
1080
1081    // The section data is padded to 4 bytes.
1082    //
1083    // FIXME: Is this machine dependent?
1084    unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
1085    SectionDataFileSize += SectionDataPadding;
1086
1087    // Write the prolog, starting with the header and load command...
1088    WriteHeader(NumLoadCommands, LoadCommandsSize,
1089                Asm.getSubsectionsViaSymbols());
1090    WriteSegmentLoadCommand(NumSections, VMSize,
1091                            SectionDataStart, SectionDataSize);
1092
1093    // ... and then the section headers.
1094    uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
1095    for (MCAssembler::const_iterator it = Asm.begin(),
1096           ie = Asm.end(); it != ie; ++it) {
1097      std::vector<MachRelocationEntry> &Relocs = Relocations[it];
1098      unsigned NumRelocs = Relocs.size();
1099      uint64_t SectionStart = SectionDataStart + Layout.getSectionAddress(it);
1100      WriteSection(Asm, Layout, *it, SectionStart, RelocTableEnd, NumRelocs);
1101      RelocTableEnd += NumRelocs * RelocationInfoSize;
1102    }
1103
1104    // Write the symbol table load command, if used.
1105    if (NumSymbols) {
1106      unsigned FirstLocalSymbol = 0;
1107      unsigned NumLocalSymbols = LocalSymbolData.size();
1108      unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
1109      unsigned NumExternalSymbols = ExternalSymbolData.size();
1110      unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
1111      unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
1112      unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
1113      unsigned NumSymTabSymbols =
1114        NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
1115      uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
1116      uint64_t IndirectSymbolOffset = 0;
1117
1118      // If used, the indirect symbols are written after the section data.
1119      if (NumIndirectSymbols)
1120        IndirectSymbolOffset = RelocTableEnd;
1121
1122      // The symbol table is written after the indirect symbol data.
1123      uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize;
1124
1125      // The string table is written after symbol table.
1126      uint64_t StringTableOffset =
1127        SymbolTableOffset + NumSymTabSymbols * (Is64Bit ? Nlist64Size :
1128                                                Nlist32Size);
1129      WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
1130                             StringTableOffset, StringTable.size());
1131
1132      WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
1133                               FirstExternalSymbol, NumExternalSymbols,
1134                               FirstUndefinedSymbol, NumUndefinedSymbols,
1135                               IndirectSymbolOffset, NumIndirectSymbols);
1136    }
1137
1138    // Write the actual section data.
1139    for (MCAssembler::const_iterator it = Asm.begin(),
1140           ie = Asm.end(); it != ie; ++it)
1141      Asm.WriteSectionData(it, Layout, Writer);
1142
1143    // Write the extra padding.
1144    WriteZeros(SectionDataPadding);
1145
1146    // Write the relocation entries.
1147    for (MCAssembler::const_iterator it = Asm.begin(),
1148           ie = Asm.end(); it != ie; ++it) {
1149      // Write the section relocation entries, in reverse order to match 'as'
1150      // (approximately, the exact algorithm is more complicated than this).
1151      std::vector<MachRelocationEntry> &Relocs = Relocations[it];
1152      for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1153        Write32(Relocs[e - i - 1].Word0);
1154        Write32(Relocs[e - i - 1].Word1);
1155      }
1156    }
1157
1158    // Write the symbol table data, if used.
1159    if (NumSymbols) {
1160      // Write the indirect symbol entries.
1161      for (MCAssembler::const_indirect_symbol_iterator
1162             it = Asm.indirect_symbol_begin(),
1163             ie = Asm.indirect_symbol_end(); it != ie; ++it) {
1164        // Indirect symbols in the non lazy symbol pointer section have some
1165        // special handling.
1166        const MCSectionMachO &Section =
1167          static_cast<const MCSectionMachO&>(it->SectionData->getSection());
1168        if (Section.getType() == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) {
1169          // If this symbol is defined and internal, mark it as such.
1170          if (it->Symbol->isDefined() &&
1171              !Asm.getSymbolData(*it->Symbol).isExternal()) {
1172            uint32_t Flags = ISF_Local;
1173            if (it->Symbol->isAbsolute())
1174              Flags |= ISF_Absolute;
1175            Write32(Flags);
1176            continue;
1177          }
1178        }
1179
1180        Write32(Asm.getSymbolData(*it->Symbol).getIndex());
1181      }
1182
1183      // FIXME: Check that offsets match computed ones.
1184
1185      // Write the symbol table entries.
1186      for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1187        WriteNlist(LocalSymbolData[i], Layout);
1188      for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1189        WriteNlist(ExternalSymbolData[i], Layout);
1190      for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1191        WriteNlist(UndefinedSymbolData[i], Layout);
1192
1193      // Write the string table.
1194      OS << StringTable.str();
1195    }
1196  }
1197};
1198
1199}
1200
1201MachObjectWriter::MachObjectWriter(raw_ostream &OS,
1202                                   bool Is64Bit,
1203                                   bool IsLittleEndian)
1204  : MCObjectWriter(OS, IsLittleEndian)
1205{
1206  Impl = new MachObjectWriterImpl(this, Is64Bit);
1207}
1208
1209MachObjectWriter::~MachObjectWriter() {
1210  delete (MachObjectWriterImpl*) Impl;
1211}
1212
1213void MachObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm) {
1214  ((MachObjectWriterImpl*) Impl)->ExecutePostLayoutBinding(Asm);
1215}
1216
1217void MachObjectWriter::RecordRelocation(const MCAssembler &Asm,
1218                                        const MCAsmLayout &Layout,
1219                                        const MCFragment *Fragment,
1220                                        const MCFixup &Fixup, MCValue Target,
1221                                        uint64_t &FixedValue) {
1222  ((MachObjectWriterImpl*) Impl)->RecordRelocation(Asm, Layout, Fragment, Fixup,
1223                                                   Target, FixedValue);
1224}
1225
1226void MachObjectWriter::WriteObject(const MCAssembler &Asm,
1227                                   const MCAsmLayout &Layout) {
1228  ((MachObjectWriterImpl*) Impl)->WriteObject(Asm, Layout);
1229}
1230