• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /macosx-10.9.5/files-638.1.4/System/Library/DirectoryServices/DefaultLocalDB/Default/users/
Constants.cpp revision 249259
1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Constants.h"
15#include "ConstantFold.h"
16#include "LLVMContextImpl.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalValue.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48    return CFP->isZero() && CFP->isNegative();
49
50  // Equivalent for a vector of -0.0's.
51  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54        return true;
55
56  // We've already handled true FP case; any other FP vectors can't represent -0.0.
57  if (getType()->isFPOrFPVectorTy())
58    return false;
59
60  // Otherwise, just use +0.0.
61  return isNullValue();
62}
63
64// Return true iff this constant is positive zero (floating point), negative
65// zero (floating point), or a null value.
66bool Constant::isZeroValue() const {
67  // Floating point values have an explicit -0.0 value.
68  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69    return CFP->isZero();
70
71  // Otherwise, just use +0.0.
72  return isNullValue();
73}
74
75bool Constant::isNullValue() const {
76  // 0 is null.
77  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78    return CI->isZero();
79
80  // +0.0 is null.
81  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82    return CFP->isZero() && !CFP->isNegative();
83
84  // constant zero is zero for aggregates and cpnull is null for pointers.
85  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86}
87
88bool Constant::isAllOnesValue() const {
89  // Check for -1 integers
90  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91    return CI->isMinusOne();
92
93  // Check for FP which are bitcasted from -1 integers
94  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97  // Check for constant vectors which are splats of -1 values.
98  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99    if (Constant *Splat = CV->getSplatValue())
100      return Splat->isAllOnesValue();
101
102  // Check for constant vectors which are splats of -1 values.
103  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104    if (Constant *Splat = CV->getSplatValue())
105      return Splat->isAllOnesValue();
106
107  return false;
108}
109
110// Constructor to create a '0' constant of arbitrary type...
111Constant *Constant::getNullValue(Type *Ty) {
112  switch (Ty->getTypeID()) {
113  case Type::IntegerTyID:
114    return ConstantInt::get(Ty, 0);
115  case Type::HalfTyID:
116    return ConstantFP::get(Ty->getContext(),
117                           APFloat::getZero(APFloat::IEEEhalf));
118  case Type::FloatTyID:
119    return ConstantFP::get(Ty->getContext(),
120                           APFloat::getZero(APFloat::IEEEsingle));
121  case Type::DoubleTyID:
122    return ConstantFP::get(Ty->getContext(),
123                           APFloat::getZero(APFloat::IEEEdouble));
124  case Type::X86_FP80TyID:
125    return ConstantFP::get(Ty->getContext(),
126                           APFloat::getZero(APFloat::x87DoubleExtended));
127  case Type::FP128TyID:
128    return ConstantFP::get(Ty->getContext(),
129                           APFloat::getZero(APFloat::IEEEquad));
130  case Type::PPC_FP128TyID:
131    return ConstantFP::get(Ty->getContext(),
132                           APFloat(APFloat::PPCDoubleDouble,
133                                   APInt::getNullValue(128)));
134  case Type::PointerTyID:
135    return ConstantPointerNull::get(cast<PointerType>(Ty));
136  case Type::StructTyID:
137  case Type::ArrayTyID:
138  case Type::VectorTyID:
139    return ConstantAggregateZero::get(Ty);
140  default:
141    // Function, Label, or Opaque type?
142    llvm_unreachable("Cannot create a null constant of that type!");
143  }
144}
145
146Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
147  Type *ScalarTy = Ty->getScalarType();
148
149  // Create the base integer constant.
150  Constant *C = ConstantInt::get(Ty->getContext(), V);
151
152  // Convert an integer to a pointer, if necessary.
153  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
154    C = ConstantExpr::getIntToPtr(C, PTy);
155
156  // Broadcast a scalar to a vector, if necessary.
157  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
158    C = ConstantVector::getSplat(VTy->getNumElements(), C);
159
160  return C;
161}
162
163Constant *Constant::getAllOnesValue(Type *Ty) {
164  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
165    return ConstantInt::get(Ty->getContext(),
166                            APInt::getAllOnesValue(ITy->getBitWidth()));
167
168  if (Ty->isFloatingPointTy()) {
169    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
170                                          !Ty->isPPC_FP128Ty());
171    return ConstantFP::get(Ty->getContext(), FL);
172  }
173
174  VectorType *VTy = cast<VectorType>(Ty);
175  return ConstantVector::getSplat(VTy->getNumElements(),
176                                  getAllOnesValue(VTy->getElementType()));
177}
178
179/// getAggregateElement - For aggregates (struct/array/vector) return the
180/// constant that corresponds to the specified element if possible, or null if
181/// not.  This can return null if the element index is a ConstantExpr, or if
182/// 'this' is a constant expr.
183Constant *Constant::getAggregateElement(unsigned Elt) const {
184  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
185    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
186
187  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
188    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
189
190  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
191    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
192
193  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
194    return CAZ->getElementValue(Elt);
195
196  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
197    return UV->getElementValue(Elt);
198
199  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
200    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
201  return 0;
202}
203
204Constant *Constant::getAggregateElement(Constant *Elt) const {
205  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
206  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
207    return getAggregateElement(CI->getZExtValue());
208  return 0;
209}
210
211
212void Constant::destroyConstantImpl() {
213  // When a Constant is destroyed, there may be lingering
214  // references to the constant by other constants in the constant pool.  These
215  // constants are implicitly dependent on the module that is being deleted,
216  // but they don't know that.  Because we only find out when the CPV is
217  // deleted, we must now notify all of our users (that should only be
218  // Constants) that they are, in fact, invalid now and should be deleted.
219  //
220  while (!use_empty()) {
221    Value *V = use_back();
222#ifndef NDEBUG      // Only in -g mode...
223    if (!isa<Constant>(V)) {
224      dbgs() << "While deleting: " << *this
225             << "\n\nUse still stuck around after Def is destroyed: "
226             << *V << "\n\n";
227    }
228#endif
229    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
230    cast<Constant>(V)->destroyConstant();
231
232    // The constant should remove itself from our use list...
233    assert((use_empty() || use_back() != V) && "Constant not removed!");
234  }
235
236  // Value has no outstanding references it is safe to delete it now...
237  delete this;
238}
239
240/// canTrap - Return true if evaluation of this constant could trap.  This is
241/// true for things like constant expressions that could divide by zero.
242bool Constant::canTrap() const {
243  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
244  // The only thing that could possibly trap are constant exprs.
245  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
246  if (!CE) return false;
247
248  // ConstantExpr traps if any operands can trap.
249  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
250    if (CE->getOperand(i)->canTrap())
251      return true;
252
253  // Otherwise, only specific operations can trap.
254  switch (CE->getOpcode()) {
255  default:
256    return false;
257  case Instruction::UDiv:
258  case Instruction::SDiv:
259  case Instruction::FDiv:
260  case Instruction::URem:
261  case Instruction::SRem:
262  case Instruction::FRem:
263    // Div and rem can trap if the RHS is not known to be non-zero.
264    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
265      return true;
266    return false;
267  }
268}
269
270/// isThreadDependent - Return true if the value can vary between threads.
271bool Constant::isThreadDependent() const {
272  SmallPtrSet<const Constant*, 64> Visited;
273  SmallVector<const Constant*, 64> WorkList;
274  WorkList.push_back(this);
275  Visited.insert(this);
276
277  while (!WorkList.empty()) {
278    const Constant *C = WorkList.pop_back_val();
279
280    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
281      if (GV->isThreadLocal())
282        return true;
283    }
284
285    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
286      const Constant *D = dyn_cast<Constant>(C->getOperand(I));
287      if (!D)
288        continue;
289      if (Visited.insert(D))
290        WorkList.push_back(D);
291    }
292  }
293
294  return false;
295}
296
297/// isConstantUsed - Return true if the constant has users other than constant
298/// exprs and other dangling things.
299bool Constant::isConstantUsed() const {
300  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
301    const Constant *UC = dyn_cast<Constant>(*UI);
302    if (UC == 0 || isa<GlobalValue>(UC))
303      return true;
304
305    if (UC->isConstantUsed())
306      return true;
307  }
308  return false;
309}
310
311
312
313/// getRelocationInfo - This method classifies the entry according to
314/// whether or not it may generate a relocation entry.  This must be
315/// conservative, so if it might codegen to a relocatable entry, it should say
316/// so.  The return values are:
317///
318///  NoRelocation: This constant pool entry is guaranteed to never have a
319///     relocation applied to it (because it holds a simple constant like
320///     '4').
321///  LocalRelocation: This entry has relocations, but the entries are
322///     guaranteed to be resolvable by the static linker, so the dynamic
323///     linker will never see them.
324///  GlobalRelocations: This entry may have arbitrary relocations.
325///
326/// FIXME: This really should not be in IR.
327Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
328  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
329    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
330      return LocalRelocation;  // Local to this file/library.
331    return GlobalRelocations;    // Global reference.
332  }
333
334  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
335    return BA->getFunction()->getRelocationInfo();
336
337  // While raw uses of blockaddress need to be relocated, differences between
338  // two of them don't when they are for labels in the same function.  This is a
339  // common idiom when creating a table for the indirect goto extension, so we
340  // handle it efficiently here.
341  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
342    if (CE->getOpcode() == Instruction::Sub) {
343      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
344      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
345      if (LHS && RHS &&
346          LHS->getOpcode() == Instruction::PtrToInt &&
347          RHS->getOpcode() == Instruction::PtrToInt &&
348          isa<BlockAddress>(LHS->getOperand(0)) &&
349          isa<BlockAddress>(RHS->getOperand(0)) &&
350          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
351            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
352        return NoRelocation;
353    }
354
355  PossibleRelocationsTy Result = NoRelocation;
356  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
357    Result = std::max(Result,
358                      cast<Constant>(getOperand(i))->getRelocationInfo());
359
360  return Result;
361}
362
363/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
364/// it.  This involves recursively eliminating any dead users of the
365/// constantexpr.
366static bool removeDeadUsersOfConstant(const Constant *C) {
367  if (isa<GlobalValue>(C)) return false; // Cannot remove this
368
369  while (!C->use_empty()) {
370    const Constant *User = dyn_cast<Constant>(C->use_back());
371    if (!User) return false; // Non-constant usage;
372    if (!removeDeadUsersOfConstant(User))
373      return false; // Constant wasn't dead
374  }
375
376  const_cast<Constant*>(C)->destroyConstant();
377  return true;
378}
379
380
381/// removeDeadConstantUsers - If there are any dead constant users dangling
382/// off of this constant, remove them.  This method is useful for clients
383/// that want to check to see if a global is unused, but don't want to deal
384/// with potentially dead constants hanging off of the globals.
385void Constant::removeDeadConstantUsers() const {
386  Value::const_use_iterator I = use_begin(), E = use_end();
387  Value::const_use_iterator LastNonDeadUser = E;
388  while (I != E) {
389    const Constant *User = dyn_cast<Constant>(*I);
390    if (User == 0) {
391      LastNonDeadUser = I;
392      ++I;
393      continue;
394    }
395
396    if (!removeDeadUsersOfConstant(User)) {
397      // If the constant wasn't dead, remember that this was the last live use
398      // and move on to the next constant.
399      LastNonDeadUser = I;
400      ++I;
401      continue;
402    }
403
404    // If the constant was dead, then the iterator is invalidated.
405    if (LastNonDeadUser == E) {
406      I = use_begin();
407      if (I == E) break;
408    } else {
409      I = LastNonDeadUser;
410      ++I;
411    }
412  }
413}
414
415
416
417//===----------------------------------------------------------------------===//
418//                                ConstantInt
419//===----------------------------------------------------------------------===//
420
421void ConstantInt::anchor() { }
422
423ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
424  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
425  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
426}
427
428ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
429  LLVMContextImpl *pImpl = Context.pImpl;
430  if (!pImpl->TheTrueVal)
431    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
432  return pImpl->TheTrueVal;
433}
434
435ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
436  LLVMContextImpl *pImpl = Context.pImpl;
437  if (!pImpl->TheFalseVal)
438    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
439  return pImpl->TheFalseVal;
440}
441
442Constant *ConstantInt::getTrue(Type *Ty) {
443  VectorType *VTy = dyn_cast<VectorType>(Ty);
444  if (!VTy) {
445    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
446    return ConstantInt::getTrue(Ty->getContext());
447  }
448  assert(VTy->getElementType()->isIntegerTy(1) &&
449         "True must be vector of i1 or i1.");
450  return ConstantVector::getSplat(VTy->getNumElements(),
451                                  ConstantInt::getTrue(Ty->getContext()));
452}
453
454Constant *ConstantInt::getFalse(Type *Ty) {
455  VectorType *VTy = dyn_cast<VectorType>(Ty);
456  if (!VTy) {
457    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
458    return ConstantInt::getFalse(Ty->getContext());
459  }
460  assert(VTy->getElementType()->isIntegerTy(1) &&
461         "False must be vector of i1 or i1.");
462  return ConstantVector::getSplat(VTy->getNumElements(),
463                                  ConstantInt::getFalse(Ty->getContext()));
464}
465
466
467// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
468// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
469// operator== and operator!= to ensure that the DenseMap doesn't attempt to
470// compare APInt's of different widths, which would violate an APInt class
471// invariant which generates an assertion.
472ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
473  // Get the corresponding integer type for the bit width of the value.
474  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
475  // get an existing value or the insertion position
476  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
477  ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
478  if (!Slot) Slot = new ConstantInt(ITy, V);
479  return Slot;
480}
481
482Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
483  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
484
485  // For vectors, broadcast the value.
486  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
487    return ConstantVector::getSplat(VTy->getNumElements(), C);
488
489  return C;
490}
491
492ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
493                              bool isSigned) {
494  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
495}
496
497ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
498  return get(Ty, V, true);
499}
500
501Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
502  return get(Ty, V, true);
503}
504
505Constant *ConstantInt::get(Type *Ty, const APInt& V) {
506  ConstantInt *C = get(Ty->getContext(), V);
507  assert(C->getType() == Ty->getScalarType() &&
508         "ConstantInt type doesn't match the type implied by its value!");
509
510  // For vectors, broadcast the value.
511  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
512    return ConstantVector::getSplat(VTy->getNumElements(), C);
513
514  return C;
515}
516
517ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
518                              uint8_t radix) {
519  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
520}
521
522//===----------------------------------------------------------------------===//
523//                                ConstantFP
524//===----------------------------------------------------------------------===//
525
526static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
527  if (Ty->isHalfTy())
528    return &APFloat::IEEEhalf;
529  if (Ty->isFloatTy())
530    return &APFloat::IEEEsingle;
531  if (Ty->isDoubleTy())
532    return &APFloat::IEEEdouble;
533  if (Ty->isX86_FP80Ty())
534    return &APFloat::x87DoubleExtended;
535  else if (Ty->isFP128Ty())
536    return &APFloat::IEEEquad;
537
538  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
539  return &APFloat::PPCDoubleDouble;
540}
541
542void ConstantFP::anchor() { }
543
544/// get() - This returns a constant fp for the specified value in the
545/// specified type.  This should only be used for simple constant values like
546/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
547Constant *ConstantFP::get(Type *Ty, double V) {
548  LLVMContext &Context = Ty->getContext();
549
550  APFloat FV(V);
551  bool ignored;
552  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
553             APFloat::rmNearestTiesToEven, &ignored);
554  Constant *C = get(Context, FV);
555
556  // For vectors, broadcast the value.
557  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
558    return ConstantVector::getSplat(VTy->getNumElements(), C);
559
560  return C;
561}
562
563
564Constant *ConstantFP::get(Type *Ty, StringRef Str) {
565  LLVMContext &Context = Ty->getContext();
566
567  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
568  Constant *C = get(Context, FV);
569
570  // For vectors, broadcast the value.
571  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
572    return ConstantVector::getSplat(VTy->getNumElements(), C);
573
574  return C;
575}
576
577
578ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
579  LLVMContext &Context = Ty->getContext();
580  APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
581  apf.changeSign();
582  return get(Context, apf);
583}
584
585
586Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
587  Type *ScalarTy = Ty->getScalarType();
588  if (ScalarTy->isFloatingPointTy()) {
589    Constant *C = getNegativeZero(ScalarTy);
590    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
591      return ConstantVector::getSplat(VTy->getNumElements(), C);
592    return C;
593  }
594
595  return Constant::getNullValue(Ty);
596}
597
598
599// ConstantFP accessors.
600ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
601  DenseMapAPFloatKeyInfo::KeyTy Key(V);
602
603  LLVMContextImpl* pImpl = Context.pImpl;
604
605  ConstantFP *&Slot = pImpl->FPConstants[Key];
606
607  if (!Slot) {
608    Type *Ty;
609    if (&V.getSemantics() == &APFloat::IEEEhalf)
610      Ty = Type::getHalfTy(Context);
611    else if (&V.getSemantics() == &APFloat::IEEEsingle)
612      Ty = Type::getFloatTy(Context);
613    else if (&V.getSemantics() == &APFloat::IEEEdouble)
614      Ty = Type::getDoubleTy(Context);
615    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
616      Ty = Type::getX86_FP80Ty(Context);
617    else if (&V.getSemantics() == &APFloat::IEEEquad)
618      Ty = Type::getFP128Ty(Context);
619    else {
620      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
621             "Unknown FP format");
622      Ty = Type::getPPC_FP128Ty(Context);
623    }
624    Slot = new ConstantFP(Ty, V);
625  }
626
627  return Slot;
628}
629
630ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
631  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
632  return ConstantFP::get(Ty->getContext(),
633                         APFloat::getInf(Semantics, Negative));
634}
635
636ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
637  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
638  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
639         "FP type Mismatch");
640}
641
642bool ConstantFP::isExactlyValue(const APFloat &V) const {
643  return Val.bitwiseIsEqual(V);
644}
645
646//===----------------------------------------------------------------------===//
647//                   ConstantAggregateZero Implementation
648//===----------------------------------------------------------------------===//
649
650/// getSequentialElement - If this CAZ has array or vector type, return a zero
651/// with the right element type.
652Constant *ConstantAggregateZero::getSequentialElement() const {
653  return Constant::getNullValue(getType()->getSequentialElementType());
654}
655
656/// getStructElement - If this CAZ has struct type, return a zero with the
657/// right element type for the specified element.
658Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
659  return Constant::getNullValue(getType()->getStructElementType(Elt));
660}
661
662/// getElementValue - Return a zero of the right value for the specified GEP
663/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
664Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
665  if (isa<SequentialType>(getType()))
666    return getSequentialElement();
667  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
668}
669
670/// getElementValue - Return a zero of the right value for the specified GEP
671/// index.
672Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
673  if (isa<SequentialType>(getType()))
674    return getSequentialElement();
675  return getStructElement(Idx);
676}
677
678
679//===----------------------------------------------------------------------===//
680//                         UndefValue Implementation
681//===----------------------------------------------------------------------===//
682
683/// getSequentialElement - If this undef has array or vector type, return an
684/// undef with the right element type.
685UndefValue *UndefValue::getSequentialElement() const {
686  return UndefValue::get(getType()->getSequentialElementType());
687}
688
689/// getStructElement - If this undef has struct type, return a zero with the
690/// right element type for the specified element.
691UndefValue *UndefValue::getStructElement(unsigned Elt) const {
692  return UndefValue::get(getType()->getStructElementType(Elt));
693}
694
695/// getElementValue - Return an undef of the right value for the specified GEP
696/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
697UndefValue *UndefValue::getElementValue(Constant *C) const {
698  if (isa<SequentialType>(getType()))
699    return getSequentialElement();
700  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
701}
702
703/// getElementValue - Return an undef of the right value for the specified GEP
704/// index.
705UndefValue *UndefValue::getElementValue(unsigned Idx) const {
706  if (isa<SequentialType>(getType()))
707    return getSequentialElement();
708  return getStructElement(Idx);
709}
710
711
712
713//===----------------------------------------------------------------------===//
714//                            ConstantXXX Classes
715//===----------------------------------------------------------------------===//
716
717template <typename ItTy, typename EltTy>
718static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
719  for (; Start != End; ++Start)
720    if (*Start != Elt)
721      return false;
722  return true;
723}
724
725ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
726  : Constant(T, ConstantArrayVal,
727             OperandTraits<ConstantArray>::op_end(this) - V.size(),
728             V.size()) {
729  assert(V.size() == T->getNumElements() &&
730         "Invalid initializer vector for constant array");
731  for (unsigned i = 0, e = V.size(); i != e; ++i)
732    assert(V[i]->getType() == T->getElementType() &&
733           "Initializer for array element doesn't match array element type!");
734  std::copy(V.begin(), V.end(), op_begin());
735}
736
737Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
738  // Empty arrays are canonicalized to ConstantAggregateZero.
739  if (V.empty())
740    return ConstantAggregateZero::get(Ty);
741
742  for (unsigned i = 0, e = V.size(); i != e; ++i) {
743    assert(V[i]->getType() == Ty->getElementType() &&
744           "Wrong type in array element initializer");
745  }
746  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
747
748  // If this is an all-zero array, return a ConstantAggregateZero object.  If
749  // all undef, return an UndefValue, if "all simple", then return a
750  // ConstantDataArray.
751  Constant *C = V[0];
752  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
753    return UndefValue::get(Ty);
754
755  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
756    return ConstantAggregateZero::get(Ty);
757
758  // Check to see if all of the elements are ConstantFP or ConstantInt and if
759  // the element type is compatible with ConstantDataVector.  If so, use it.
760  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
761    // We speculatively build the elements here even if it turns out that there
762    // is a constantexpr or something else weird in the array, since it is so
763    // uncommon for that to happen.
764    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
765      if (CI->getType()->isIntegerTy(8)) {
766        SmallVector<uint8_t, 16> Elts;
767        for (unsigned i = 0, e = V.size(); i != e; ++i)
768          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
769            Elts.push_back(CI->getZExtValue());
770          else
771            break;
772        if (Elts.size() == V.size())
773          return ConstantDataArray::get(C->getContext(), Elts);
774      } else if (CI->getType()->isIntegerTy(16)) {
775        SmallVector<uint16_t, 16> Elts;
776        for (unsigned i = 0, e = V.size(); i != e; ++i)
777          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
778            Elts.push_back(CI->getZExtValue());
779          else
780            break;
781        if (Elts.size() == V.size())
782          return ConstantDataArray::get(C->getContext(), Elts);
783      } else if (CI->getType()->isIntegerTy(32)) {
784        SmallVector<uint32_t, 16> Elts;
785        for (unsigned i = 0, e = V.size(); i != e; ++i)
786          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
787            Elts.push_back(CI->getZExtValue());
788          else
789            break;
790        if (Elts.size() == V.size())
791          return ConstantDataArray::get(C->getContext(), Elts);
792      } else if (CI->getType()->isIntegerTy(64)) {
793        SmallVector<uint64_t, 16> Elts;
794        for (unsigned i = 0, e = V.size(); i != e; ++i)
795          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
796            Elts.push_back(CI->getZExtValue());
797          else
798            break;
799        if (Elts.size() == V.size())
800          return ConstantDataArray::get(C->getContext(), Elts);
801      }
802    }
803
804    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
805      if (CFP->getType()->isFloatTy()) {
806        SmallVector<float, 16> Elts;
807        for (unsigned i = 0, e = V.size(); i != e; ++i)
808          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
809            Elts.push_back(CFP->getValueAPF().convertToFloat());
810          else
811            break;
812        if (Elts.size() == V.size())
813          return ConstantDataArray::get(C->getContext(), Elts);
814      } else if (CFP->getType()->isDoubleTy()) {
815        SmallVector<double, 16> Elts;
816        for (unsigned i = 0, e = V.size(); i != e; ++i)
817          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
818            Elts.push_back(CFP->getValueAPF().convertToDouble());
819          else
820            break;
821        if (Elts.size() == V.size())
822          return ConstantDataArray::get(C->getContext(), Elts);
823      }
824    }
825  }
826
827  // Otherwise, we really do want to create a ConstantArray.
828  return pImpl->ArrayConstants.getOrCreate(Ty, V);
829}
830
831/// getTypeForElements - Return an anonymous struct type to use for a constant
832/// with the specified set of elements.  The list must not be empty.
833StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
834                                               ArrayRef<Constant*> V,
835                                               bool Packed) {
836  unsigned VecSize = V.size();
837  SmallVector<Type*, 16> EltTypes(VecSize);
838  for (unsigned i = 0; i != VecSize; ++i)
839    EltTypes[i] = V[i]->getType();
840
841  return StructType::get(Context, EltTypes, Packed);
842}
843
844
845StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
846                                               bool Packed) {
847  assert(!V.empty() &&
848         "ConstantStruct::getTypeForElements cannot be called on empty list");
849  return getTypeForElements(V[0]->getContext(), V, Packed);
850}
851
852
853ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
854  : Constant(T, ConstantStructVal,
855             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
856             V.size()) {
857  assert(V.size() == T->getNumElements() &&
858         "Invalid initializer vector for constant structure");
859  for (unsigned i = 0, e = V.size(); i != e; ++i)
860    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
861           "Initializer for struct element doesn't match struct element type!");
862  std::copy(V.begin(), V.end(), op_begin());
863}
864
865// ConstantStruct accessors.
866Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
867  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
868         "Incorrect # elements specified to ConstantStruct::get");
869
870  // Create a ConstantAggregateZero value if all elements are zeros.
871  bool isZero = true;
872  bool isUndef = false;
873
874  if (!V.empty()) {
875    isUndef = isa<UndefValue>(V[0]);
876    isZero = V[0]->isNullValue();
877    if (isUndef || isZero) {
878      for (unsigned i = 0, e = V.size(); i != e; ++i) {
879        if (!V[i]->isNullValue())
880          isZero = false;
881        if (!isa<UndefValue>(V[i]))
882          isUndef = false;
883      }
884    }
885  }
886  if (isZero)
887    return ConstantAggregateZero::get(ST);
888  if (isUndef)
889    return UndefValue::get(ST);
890
891  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
892}
893
894Constant *ConstantStruct::get(StructType *T, ...) {
895  va_list ap;
896  SmallVector<Constant*, 8> Values;
897  va_start(ap, T);
898  while (Constant *Val = va_arg(ap, llvm::Constant*))
899    Values.push_back(Val);
900  va_end(ap);
901  return get(T, Values);
902}
903
904ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
905  : Constant(T, ConstantVectorVal,
906             OperandTraits<ConstantVector>::op_end(this) - V.size(),
907             V.size()) {
908  for (size_t i = 0, e = V.size(); i != e; i++)
909    assert(V[i]->getType() == T->getElementType() &&
910           "Initializer for vector element doesn't match vector element type!");
911  std::copy(V.begin(), V.end(), op_begin());
912}
913
914// ConstantVector accessors.
915Constant *ConstantVector::get(ArrayRef<Constant*> V) {
916  assert(!V.empty() && "Vectors can't be empty");
917  VectorType *T = VectorType::get(V.front()->getType(), V.size());
918  LLVMContextImpl *pImpl = T->getContext().pImpl;
919
920  // If this is an all-undef or all-zero vector, return a
921  // ConstantAggregateZero or UndefValue.
922  Constant *C = V[0];
923  bool isZero = C->isNullValue();
924  bool isUndef = isa<UndefValue>(C);
925
926  if (isZero || isUndef) {
927    for (unsigned i = 1, e = V.size(); i != e; ++i)
928      if (V[i] != C) {
929        isZero = isUndef = false;
930        break;
931      }
932  }
933
934  if (isZero)
935    return ConstantAggregateZero::get(T);
936  if (isUndef)
937    return UndefValue::get(T);
938
939  // Check to see if all of the elements are ConstantFP or ConstantInt and if
940  // the element type is compatible with ConstantDataVector.  If so, use it.
941  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
942    // We speculatively build the elements here even if it turns out that there
943    // is a constantexpr or something else weird in the array, since it is so
944    // uncommon for that to happen.
945    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
946      if (CI->getType()->isIntegerTy(8)) {
947        SmallVector<uint8_t, 16> Elts;
948        for (unsigned i = 0, e = V.size(); i != e; ++i)
949          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
950            Elts.push_back(CI->getZExtValue());
951          else
952            break;
953        if (Elts.size() == V.size())
954          return ConstantDataVector::get(C->getContext(), Elts);
955      } else if (CI->getType()->isIntegerTy(16)) {
956        SmallVector<uint16_t, 16> Elts;
957        for (unsigned i = 0, e = V.size(); i != e; ++i)
958          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
959            Elts.push_back(CI->getZExtValue());
960          else
961            break;
962        if (Elts.size() == V.size())
963          return ConstantDataVector::get(C->getContext(), Elts);
964      } else if (CI->getType()->isIntegerTy(32)) {
965        SmallVector<uint32_t, 16> Elts;
966        for (unsigned i = 0, e = V.size(); i != e; ++i)
967          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
968            Elts.push_back(CI->getZExtValue());
969          else
970            break;
971        if (Elts.size() == V.size())
972          return ConstantDataVector::get(C->getContext(), Elts);
973      } else if (CI->getType()->isIntegerTy(64)) {
974        SmallVector<uint64_t, 16> Elts;
975        for (unsigned i = 0, e = V.size(); i != e; ++i)
976          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
977            Elts.push_back(CI->getZExtValue());
978          else
979            break;
980        if (Elts.size() == V.size())
981          return ConstantDataVector::get(C->getContext(), Elts);
982      }
983    }
984
985    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
986      if (CFP->getType()->isFloatTy()) {
987        SmallVector<float, 16> Elts;
988        for (unsigned i = 0, e = V.size(); i != e; ++i)
989          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
990            Elts.push_back(CFP->getValueAPF().convertToFloat());
991          else
992            break;
993        if (Elts.size() == V.size())
994          return ConstantDataVector::get(C->getContext(), Elts);
995      } else if (CFP->getType()->isDoubleTy()) {
996        SmallVector<double, 16> Elts;
997        for (unsigned i = 0, e = V.size(); i != e; ++i)
998          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
999            Elts.push_back(CFP->getValueAPF().convertToDouble());
1000          else
1001            break;
1002        if (Elts.size() == V.size())
1003          return ConstantDataVector::get(C->getContext(), Elts);
1004      }
1005    }
1006  }
1007
1008  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1009  // the operand list constants a ConstantExpr or something else strange.
1010  return pImpl->VectorConstants.getOrCreate(T, V);
1011}
1012
1013Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1014  // If this splat is compatible with ConstantDataVector, use it instead of
1015  // ConstantVector.
1016  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1017      ConstantDataSequential::isElementTypeCompatible(V->getType()))
1018    return ConstantDataVector::getSplat(NumElts, V);
1019
1020  SmallVector<Constant*, 32> Elts(NumElts, V);
1021  return get(Elts);
1022}
1023
1024
1025// Utility function for determining if a ConstantExpr is a CastOp or not. This
1026// can't be inline because we don't want to #include Instruction.h into
1027// Constant.h
1028bool ConstantExpr::isCast() const {
1029  return Instruction::isCast(getOpcode());
1030}
1031
1032bool ConstantExpr::isCompare() const {
1033  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1034}
1035
1036bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1037  if (getOpcode() != Instruction::GetElementPtr) return false;
1038
1039  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1040  User::const_op_iterator OI = llvm::next(this->op_begin());
1041
1042  // Skip the first index, as it has no static limit.
1043  ++GEPI;
1044  ++OI;
1045
1046  // The remaining indices must be compile-time known integers within the
1047  // bounds of the corresponding notional static array types.
1048  for (; GEPI != E; ++GEPI, ++OI) {
1049    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1050    if (!CI) return false;
1051    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1052      if (CI->getValue().getActiveBits() > 64 ||
1053          CI->getZExtValue() >= ATy->getNumElements())
1054        return false;
1055  }
1056
1057  // All the indices checked out.
1058  return true;
1059}
1060
1061bool ConstantExpr::hasIndices() const {
1062  return getOpcode() == Instruction::ExtractValue ||
1063         getOpcode() == Instruction::InsertValue;
1064}
1065
1066ArrayRef<unsigned> ConstantExpr::getIndices() const {
1067  if (const ExtractValueConstantExpr *EVCE =
1068        dyn_cast<ExtractValueConstantExpr>(this))
1069    return EVCE->Indices;
1070
1071  return cast<InsertValueConstantExpr>(this)->Indices;
1072}
1073
1074unsigned ConstantExpr::getPredicate() const {
1075  assert(isCompare());
1076  return ((const CompareConstantExpr*)this)->predicate;
1077}
1078
1079/// getWithOperandReplaced - Return a constant expression identical to this
1080/// one, but with the specified operand set to the specified value.
1081Constant *
1082ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1083  assert(Op->getType() == getOperand(OpNo)->getType() &&
1084         "Replacing operand with value of different type!");
1085  if (getOperand(OpNo) == Op)
1086    return const_cast<ConstantExpr*>(this);
1087
1088  SmallVector<Constant*, 8> NewOps;
1089  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1090    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1091
1092  return getWithOperands(NewOps);
1093}
1094
1095/// getWithOperands - This returns the current constant expression with the
1096/// operands replaced with the specified values.  The specified array must
1097/// have the same number of operands as our current one.
1098Constant *ConstantExpr::
1099getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1100  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1101  bool AnyChange = Ty != getType();
1102  for (unsigned i = 0; i != Ops.size(); ++i)
1103    AnyChange |= Ops[i] != getOperand(i);
1104
1105  if (!AnyChange)  // No operands changed, return self.
1106    return const_cast<ConstantExpr*>(this);
1107
1108  switch (getOpcode()) {
1109  case Instruction::Trunc:
1110  case Instruction::ZExt:
1111  case Instruction::SExt:
1112  case Instruction::FPTrunc:
1113  case Instruction::FPExt:
1114  case Instruction::UIToFP:
1115  case Instruction::SIToFP:
1116  case Instruction::FPToUI:
1117  case Instruction::FPToSI:
1118  case Instruction::PtrToInt:
1119  case Instruction::IntToPtr:
1120  case Instruction::BitCast:
1121    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1122  case Instruction::Select:
1123    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1124  case Instruction::InsertElement:
1125    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1126  case Instruction::ExtractElement:
1127    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1128  case Instruction::InsertValue:
1129    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1130  case Instruction::ExtractValue:
1131    return ConstantExpr::getExtractValue(Ops[0], getIndices());
1132  case Instruction::ShuffleVector:
1133    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1134  case Instruction::GetElementPtr:
1135    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1136                                      cast<GEPOperator>(this)->isInBounds());
1137  case Instruction::ICmp:
1138  case Instruction::FCmp:
1139    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1140  default:
1141    assert(getNumOperands() == 2 && "Must be binary operator?");
1142    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1143  }
1144}
1145
1146
1147//===----------------------------------------------------------------------===//
1148//                      isValueValidForType implementations
1149
1150bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1151  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1152  if (Ty->isIntegerTy(1))
1153    return Val == 0 || Val == 1;
1154  if (NumBits >= 64)
1155    return true; // always true, has to fit in largest type
1156  uint64_t Max = (1ll << NumBits) - 1;
1157  return Val <= Max;
1158}
1159
1160bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1161  unsigned NumBits = Ty->getIntegerBitWidth();
1162  if (Ty->isIntegerTy(1))
1163    return Val == 0 || Val == 1 || Val == -1;
1164  if (NumBits >= 64)
1165    return true; // always true, has to fit in largest type
1166  int64_t Min = -(1ll << (NumBits-1));
1167  int64_t Max = (1ll << (NumBits-1)) - 1;
1168  return (Val >= Min && Val <= Max);
1169}
1170
1171bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1172  // convert modifies in place, so make a copy.
1173  APFloat Val2 = APFloat(Val);
1174  bool losesInfo;
1175  switch (Ty->getTypeID()) {
1176  default:
1177    return false;         // These can't be represented as floating point!
1178
1179  // FIXME rounding mode needs to be more flexible
1180  case Type::HalfTyID: {
1181    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1182      return true;
1183    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1184    return !losesInfo;
1185  }
1186  case Type::FloatTyID: {
1187    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1188      return true;
1189    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1190    return !losesInfo;
1191  }
1192  case Type::DoubleTyID: {
1193    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1194        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1195        &Val2.getSemantics() == &APFloat::IEEEdouble)
1196      return true;
1197    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1198    return !losesInfo;
1199  }
1200  case Type::X86_FP80TyID:
1201    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1202           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1203           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1204           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1205  case Type::FP128TyID:
1206    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1207           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1208           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1209           &Val2.getSemantics() == &APFloat::IEEEquad;
1210  case Type::PPC_FP128TyID:
1211    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1212           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1213           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1214           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1215  }
1216}
1217
1218
1219//===----------------------------------------------------------------------===//
1220//                      Factory Function Implementation
1221
1222ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1223  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1224         "Cannot create an aggregate zero of non-aggregate type!");
1225
1226  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1227  if (Entry == 0)
1228    Entry = new ConstantAggregateZero(Ty);
1229
1230  return Entry;
1231}
1232
1233/// destroyConstant - Remove the constant from the constant table.
1234///
1235void ConstantAggregateZero::destroyConstant() {
1236  getContext().pImpl->CAZConstants.erase(getType());
1237  destroyConstantImpl();
1238}
1239
1240/// destroyConstant - Remove the constant from the constant table...
1241///
1242void ConstantArray::destroyConstant() {
1243  getType()->getContext().pImpl->ArrayConstants.remove(this);
1244  destroyConstantImpl();
1245}
1246
1247
1248//---- ConstantStruct::get() implementation...
1249//
1250
1251// destroyConstant - Remove the constant from the constant table...
1252//
1253void ConstantStruct::destroyConstant() {
1254  getType()->getContext().pImpl->StructConstants.remove(this);
1255  destroyConstantImpl();
1256}
1257
1258// destroyConstant - Remove the constant from the constant table...
1259//
1260void ConstantVector::destroyConstant() {
1261  getType()->getContext().pImpl->VectorConstants.remove(this);
1262  destroyConstantImpl();
1263}
1264
1265/// getSplatValue - If this is a splat vector constant, meaning that all of
1266/// the elements have the same value, return that value. Otherwise return 0.
1267Constant *Constant::getSplatValue() const {
1268  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1269  if (isa<ConstantAggregateZero>(this))
1270    return getNullValue(this->getType()->getVectorElementType());
1271  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1272    return CV->getSplatValue();
1273  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1274    return CV->getSplatValue();
1275  return 0;
1276}
1277
1278/// getSplatValue - If this is a splat constant, where all of the
1279/// elements have the same value, return that value. Otherwise return null.
1280Constant *ConstantVector::getSplatValue() const {
1281  // Check out first element.
1282  Constant *Elt = getOperand(0);
1283  // Then make sure all remaining elements point to the same value.
1284  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1285    if (getOperand(I) != Elt)
1286      return 0;
1287  return Elt;
1288}
1289
1290/// If C is a constant integer then return its value, otherwise C must be a
1291/// vector of constant integers, all equal, and the common value is returned.
1292const APInt &Constant::getUniqueInteger() const {
1293  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1294    return CI->getValue();
1295  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1296  const Constant *C = this->getAggregateElement(0U);
1297  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1298  return cast<ConstantInt>(C)->getValue();
1299}
1300
1301
1302//---- ConstantPointerNull::get() implementation.
1303//
1304
1305ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1306  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1307  if (Entry == 0)
1308    Entry = new ConstantPointerNull(Ty);
1309
1310  return Entry;
1311}
1312
1313// destroyConstant - Remove the constant from the constant table...
1314//
1315void ConstantPointerNull::destroyConstant() {
1316  getContext().pImpl->CPNConstants.erase(getType());
1317  // Free the constant and any dangling references to it.
1318  destroyConstantImpl();
1319}
1320
1321
1322//---- UndefValue::get() implementation.
1323//
1324
1325UndefValue *UndefValue::get(Type *Ty) {
1326  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1327  if (Entry == 0)
1328    Entry = new UndefValue(Ty);
1329
1330  return Entry;
1331}
1332
1333// destroyConstant - Remove the constant from the constant table.
1334//
1335void UndefValue::destroyConstant() {
1336  // Free the constant and any dangling references to it.
1337  getContext().pImpl->UVConstants.erase(getType());
1338  destroyConstantImpl();
1339}
1340
1341//---- BlockAddress::get() implementation.
1342//
1343
1344BlockAddress *BlockAddress::get(BasicBlock *BB) {
1345  assert(BB->getParent() != 0 && "Block must have a parent");
1346  return get(BB->getParent(), BB);
1347}
1348
1349BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1350  BlockAddress *&BA =
1351    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1352  if (BA == 0)
1353    BA = new BlockAddress(F, BB);
1354
1355  assert(BA->getFunction() == F && "Basic block moved between functions");
1356  return BA;
1357}
1358
1359BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1360: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1361           &Op<0>(), 2) {
1362  setOperand(0, F);
1363  setOperand(1, BB);
1364  BB->AdjustBlockAddressRefCount(1);
1365}
1366
1367
1368// destroyConstant - Remove the constant from the constant table.
1369//
1370void BlockAddress::destroyConstant() {
1371  getFunction()->getType()->getContext().pImpl
1372    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1373  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1374  destroyConstantImpl();
1375}
1376
1377void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1378  // This could be replacing either the Basic Block or the Function.  In either
1379  // case, we have to remove the map entry.
1380  Function *NewF = getFunction();
1381  BasicBlock *NewBB = getBasicBlock();
1382
1383  if (U == &Op<0>())
1384    NewF = cast<Function>(To);
1385  else
1386    NewBB = cast<BasicBlock>(To);
1387
1388  // See if the 'new' entry already exists, if not, just update this in place
1389  // and return early.
1390  BlockAddress *&NewBA =
1391    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1392  if (NewBA == 0) {
1393    getBasicBlock()->AdjustBlockAddressRefCount(-1);
1394
1395    // Remove the old entry, this can't cause the map to rehash (just a
1396    // tombstone will get added).
1397    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1398                                                            getBasicBlock()));
1399    NewBA = this;
1400    setOperand(0, NewF);
1401    setOperand(1, NewBB);
1402    getBasicBlock()->AdjustBlockAddressRefCount(1);
1403    return;
1404  }
1405
1406  // Otherwise, I do need to replace this with an existing value.
1407  assert(NewBA != this && "I didn't contain From!");
1408
1409  // Everyone using this now uses the replacement.
1410  replaceAllUsesWith(NewBA);
1411
1412  destroyConstant();
1413}
1414
1415//---- ConstantExpr::get() implementations.
1416//
1417
1418/// This is a utility function to handle folding of casts and lookup of the
1419/// cast in the ExprConstants map. It is used by the various get* methods below.
1420static inline Constant *getFoldedCast(
1421  Instruction::CastOps opc, Constant *C, Type *Ty) {
1422  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1423  // Fold a few common cases
1424  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1425    return FC;
1426
1427  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1428
1429  // Look up the constant in the table first to ensure uniqueness.
1430  ExprMapKeyType Key(opc, C);
1431
1432  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1433}
1434
1435Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1436  Instruction::CastOps opc = Instruction::CastOps(oc);
1437  assert(Instruction::isCast(opc) && "opcode out of range");
1438  assert(C && Ty && "Null arguments to getCast");
1439  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1440
1441  switch (opc) {
1442  default:
1443    llvm_unreachable("Invalid cast opcode");
1444  case Instruction::Trunc:    return getTrunc(C, Ty);
1445  case Instruction::ZExt:     return getZExt(C, Ty);
1446  case Instruction::SExt:     return getSExt(C, Ty);
1447  case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1448  case Instruction::FPExt:    return getFPExtend(C, Ty);
1449  case Instruction::UIToFP:   return getUIToFP(C, Ty);
1450  case Instruction::SIToFP:   return getSIToFP(C, Ty);
1451  case Instruction::FPToUI:   return getFPToUI(C, Ty);
1452  case Instruction::FPToSI:   return getFPToSI(C, Ty);
1453  case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1454  case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1455  case Instruction::BitCast:  return getBitCast(C, Ty);
1456  }
1457}
1458
1459Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1460  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1461    return getBitCast(C, Ty);
1462  return getZExt(C, Ty);
1463}
1464
1465Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1466  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1467    return getBitCast(C, Ty);
1468  return getSExt(C, Ty);
1469}
1470
1471Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1472  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1473    return getBitCast(C, Ty);
1474  return getTrunc(C, Ty);
1475}
1476
1477Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1478  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1479  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1480          "Invalid cast");
1481
1482  if (Ty->isIntOrIntVectorTy())
1483    return getPtrToInt(S, Ty);
1484  return getBitCast(S, Ty);
1485}
1486
1487Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1488                                       bool isSigned) {
1489  assert(C->getType()->isIntOrIntVectorTy() &&
1490         Ty->isIntOrIntVectorTy() && "Invalid cast");
1491  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1492  unsigned DstBits = Ty->getScalarSizeInBits();
1493  Instruction::CastOps opcode =
1494    (SrcBits == DstBits ? Instruction::BitCast :
1495     (SrcBits > DstBits ? Instruction::Trunc :
1496      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1497  return getCast(opcode, C, Ty);
1498}
1499
1500Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1501  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1502         "Invalid cast");
1503  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1504  unsigned DstBits = Ty->getScalarSizeInBits();
1505  if (SrcBits == DstBits)
1506    return C; // Avoid a useless cast
1507  Instruction::CastOps opcode =
1508    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1509  return getCast(opcode, C, Ty);
1510}
1511
1512Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1513#ifndef NDEBUG
1514  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1515  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1516#endif
1517  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1518  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1519  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1520  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1521         "SrcTy must be larger than DestTy for Trunc!");
1522
1523  return getFoldedCast(Instruction::Trunc, C, Ty);
1524}
1525
1526Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1527#ifndef NDEBUG
1528  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1529  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1530#endif
1531  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1532  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1533  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1534  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1535         "SrcTy must be smaller than DestTy for SExt!");
1536
1537  return getFoldedCast(Instruction::SExt, C, Ty);
1538}
1539
1540Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1541#ifndef NDEBUG
1542  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1543  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1544#endif
1545  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1546  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1547  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1548  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1549         "SrcTy must be smaller than DestTy for ZExt!");
1550
1551  return getFoldedCast(Instruction::ZExt, C, Ty);
1552}
1553
1554Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1555#ifndef NDEBUG
1556  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1557  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1558#endif
1559  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1560  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1561         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1562         "This is an illegal floating point truncation!");
1563  return getFoldedCast(Instruction::FPTrunc, C, Ty);
1564}
1565
1566Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1567#ifndef NDEBUG
1568  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1569  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1570#endif
1571  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1572  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1573         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1574         "This is an illegal floating point extension!");
1575  return getFoldedCast(Instruction::FPExt, C, Ty);
1576}
1577
1578Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1579#ifndef NDEBUG
1580  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1581  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1582#endif
1583  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1584  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1585         "This is an illegal uint to floating point cast!");
1586  return getFoldedCast(Instruction::UIToFP, C, Ty);
1587}
1588
1589Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1590#ifndef NDEBUG
1591  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1592  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1593#endif
1594  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1595  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1596         "This is an illegal sint to floating point cast!");
1597  return getFoldedCast(Instruction::SIToFP, C, Ty);
1598}
1599
1600Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1601#ifndef NDEBUG
1602  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1603  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1604#endif
1605  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1606  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1607         "This is an illegal floating point to uint cast!");
1608  return getFoldedCast(Instruction::FPToUI, C, Ty);
1609}
1610
1611Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1612#ifndef NDEBUG
1613  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1614  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1615#endif
1616  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1617  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1618         "This is an illegal floating point to sint cast!");
1619  return getFoldedCast(Instruction::FPToSI, C, Ty);
1620}
1621
1622Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1623  assert(C->getType()->getScalarType()->isPointerTy() &&
1624         "PtrToInt source must be pointer or pointer vector");
1625  assert(DstTy->getScalarType()->isIntegerTy() &&
1626         "PtrToInt destination must be integer or integer vector");
1627  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1628  if (isa<VectorType>(C->getType()))
1629    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1630           "Invalid cast between a different number of vector elements");
1631  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1632}
1633
1634Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1635  assert(C->getType()->getScalarType()->isIntegerTy() &&
1636         "IntToPtr source must be integer or integer vector");
1637  assert(DstTy->getScalarType()->isPointerTy() &&
1638         "IntToPtr destination must be a pointer or pointer vector");
1639  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1640  if (isa<VectorType>(C->getType()))
1641    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1642           "Invalid cast between a different number of vector elements");
1643  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1644}
1645
1646Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1647  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1648         "Invalid constantexpr bitcast!");
1649
1650  // It is common to ask for a bitcast of a value to its own type, handle this
1651  // speedily.
1652  if (C->getType() == DstTy) return C;
1653
1654  return getFoldedCast(Instruction::BitCast, C, DstTy);
1655}
1656
1657Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1658                            unsigned Flags) {
1659  // Check the operands for consistency first.
1660  assert(Opcode >= Instruction::BinaryOpsBegin &&
1661         Opcode <  Instruction::BinaryOpsEnd   &&
1662         "Invalid opcode in binary constant expression");
1663  assert(C1->getType() == C2->getType() &&
1664         "Operand types in binary constant expression should match");
1665
1666#ifndef NDEBUG
1667  switch (Opcode) {
1668  case Instruction::Add:
1669  case Instruction::Sub:
1670  case Instruction::Mul:
1671    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1672    assert(C1->getType()->isIntOrIntVectorTy() &&
1673           "Tried to create an integer operation on a non-integer type!");
1674    break;
1675  case Instruction::FAdd:
1676  case Instruction::FSub:
1677  case Instruction::FMul:
1678    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1679    assert(C1->getType()->isFPOrFPVectorTy() &&
1680           "Tried to create a floating-point operation on a "
1681           "non-floating-point type!");
1682    break;
1683  case Instruction::UDiv:
1684  case Instruction::SDiv:
1685    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1686    assert(C1->getType()->isIntOrIntVectorTy() &&
1687           "Tried to create an arithmetic operation on a non-arithmetic type!");
1688    break;
1689  case Instruction::FDiv:
1690    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1691    assert(C1->getType()->isFPOrFPVectorTy() &&
1692           "Tried to create an arithmetic operation on a non-arithmetic type!");
1693    break;
1694  case Instruction::URem:
1695  case Instruction::SRem:
1696    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1697    assert(C1->getType()->isIntOrIntVectorTy() &&
1698           "Tried to create an arithmetic operation on a non-arithmetic type!");
1699    break;
1700  case Instruction::FRem:
1701    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1702    assert(C1->getType()->isFPOrFPVectorTy() &&
1703           "Tried to create an arithmetic operation on a non-arithmetic type!");
1704    break;
1705  case Instruction::And:
1706  case Instruction::Or:
1707  case Instruction::Xor:
1708    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1709    assert(C1->getType()->isIntOrIntVectorTy() &&
1710           "Tried to create a logical operation on a non-integral type!");
1711    break;
1712  case Instruction::Shl:
1713  case Instruction::LShr:
1714  case Instruction::AShr:
1715    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1716    assert(C1->getType()->isIntOrIntVectorTy() &&
1717           "Tried to create a shift operation on a non-integer type!");
1718    break;
1719  default:
1720    break;
1721  }
1722#endif
1723
1724  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1725    return FC;          // Fold a few common cases.
1726
1727  Constant *ArgVec[] = { C1, C2 };
1728  ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1729
1730  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1731  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1732}
1733
1734Constant *ConstantExpr::getSizeOf(Type* Ty) {
1735  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1736  // Note that a non-inbounds gep is used, as null isn't within any object.
1737  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1738  Constant *GEP = getGetElementPtr(
1739                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1740  return getPtrToInt(GEP,
1741                     Type::getInt64Ty(Ty->getContext()));
1742}
1743
1744Constant *ConstantExpr::getAlignOf(Type* Ty) {
1745  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1746  // Note that a non-inbounds gep is used, as null isn't within any object.
1747  Type *AligningTy =
1748    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1749  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1750  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1751  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1752  Constant *Indices[2] = { Zero, One };
1753  Constant *GEP = getGetElementPtr(NullPtr, Indices);
1754  return getPtrToInt(GEP,
1755                     Type::getInt64Ty(Ty->getContext()));
1756}
1757
1758Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1759  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1760                                           FieldNo));
1761}
1762
1763Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1764  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1765  // Note that a non-inbounds gep is used, as null isn't within any object.
1766  Constant *GEPIdx[] = {
1767    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1768    FieldNo
1769  };
1770  Constant *GEP = getGetElementPtr(
1771                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1772  return getPtrToInt(GEP,
1773                     Type::getInt64Ty(Ty->getContext()));
1774}
1775
1776Constant *ConstantExpr::getCompare(unsigned short Predicate,
1777                                   Constant *C1, Constant *C2) {
1778  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1779
1780  switch (Predicate) {
1781  default: llvm_unreachable("Invalid CmpInst predicate");
1782  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1783  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1784  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1785  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1786  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1787  case CmpInst::FCMP_TRUE:
1788    return getFCmp(Predicate, C1, C2);
1789
1790  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1791  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1792  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1793  case CmpInst::ICMP_SLE:
1794    return getICmp(Predicate, C1, C2);
1795  }
1796}
1797
1798Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1799  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1800
1801  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1802    return SC;        // Fold common cases
1803
1804  Constant *ArgVec[] = { C, V1, V2 };
1805  ExprMapKeyType Key(Instruction::Select, ArgVec);
1806
1807  LLVMContextImpl *pImpl = C->getContext().pImpl;
1808  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1809}
1810
1811Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1812                                         bool InBounds) {
1813  assert(C->getType()->isPtrOrPtrVectorTy() &&
1814         "Non-pointer type for constant GetElementPtr expression");
1815
1816  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1817    return FC;          // Fold a few common cases.
1818
1819  // Get the result type of the getelementptr!
1820  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1821  assert(Ty && "GEP indices invalid!");
1822  unsigned AS = C->getType()->getPointerAddressSpace();
1823  Type *ReqTy = Ty->getPointerTo(AS);
1824  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1825    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1826
1827  // Look up the constant in the table first to ensure uniqueness
1828  std::vector<Constant*> ArgVec;
1829  ArgVec.reserve(1 + Idxs.size());
1830  ArgVec.push_back(C);
1831  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1832    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1833           "getelementptr index type missmatch");
1834    assert((!Idxs[i]->getType()->isVectorTy() ||
1835            ReqTy->getVectorNumElements() ==
1836            Idxs[i]->getType()->getVectorNumElements()) &&
1837           "getelementptr index type missmatch");
1838    ArgVec.push_back(cast<Constant>(Idxs[i]));
1839  }
1840  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1841                           InBounds ? GEPOperator::IsInBounds : 0);
1842
1843  LLVMContextImpl *pImpl = C->getContext().pImpl;
1844  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1845}
1846
1847Constant *
1848ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1849  assert(LHS->getType() == RHS->getType());
1850  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1851         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1852
1853  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1854    return FC;          // Fold a few common cases...
1855
1856  // Look up the constant in the table first to ensure uniqueness
1857  Constant *ArgVec[] = { LHS, RHS };
1858  // Get the key type with both the opcode and predicate
1859  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1860
1861  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1862  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1863    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1864
1865  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1866  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1867}
1868
1869Constant *
1870ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1871  assert(LHS->getType() == RHS->getType());
1872  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1873
1874  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1875    return FC;          // Fold a few common cases...
1876
1877  // Look up the constant in the table first to ensure uniqueness
1878  Constant *ArgVec[] = { LHS, RHS };
1879  // Get the key type with both the opcode and predicate
1880  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1881
1882  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1883  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1884    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1885
1886  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1887  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1888}
1889
1890Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1891  assert(Val->getType()->isVectorTy() &&
1892         "Tried to create extractelement operation on non-vector type!");
1893  assert(Idx->getType()->isIntegerTy(32) &&
1894         "Extractelement index must be i32 type!");
1895
1896  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1897    return FC;          // Fold a few common cases.
1898
1899  // Look up the constant in the table first to ensure uniqueness
1900  Constant *ArgVec[] = { Val, Idx };
1901  const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1902
1903  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1904  Type *ReqTy = Val->getType()->getVectorElementType();
1905  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1906}
1907
1908Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1909                                         Constant *Idx) {
1910  assert(Val->getType()->isVectorTy() &&
1911         "Tried to create insertelement operation on non-vector type!");
1912  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1913         "Insertelement types must match!");
1914  assert(Idx->getType()->isIntegerTy(32) &&
1915         "Insertelement index must be i32 type!");
1916
1917  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1918    return FC;          // Fold a few common cases.
1919  // Look up the constant in the table first to ensure uniqueness
1920  Constant *ArgVec[] = { Val, Elt, Idx };
1921  const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1922
1923  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1924  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1925}
1926
1927Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1928                                         Constant *Mask) {
1929  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1930         "Invalid shuffle vector constant expr operands!");
1931
1932  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1933    return FC;          // Fold a few common cases.
1934
1935  unsigned NElts = Mask->getType()->getVectorNumElements();
1936  Type *EltTy = V1->getType()->getVectorElementType();
1937  Type *ShufTy = VectorType::get(EltTy, NElts);
1938
1939  // Look up the constant in the table first to ensure uniqueness
1940  Constant *ArgVec[] = { V1, V2, Mask };
1941  const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1942
1943  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1944  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1945}
1946
1947Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1948                                       ArrayRef<unsigned> Idxs) {
1949  assert(ExtractValueInst::getIndexedType(Agg->getType(),
1950                                          Idxs) == Val->getType() &&
1951         "insertvalue indices invalid!");
1952  assert(Agg->getType()->isFirstClassType() &&
1953         "Non-first-class type for constant insertvalue expression");
1954  Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1955  assert(FC && "insertvalue constant expr couldn't be folded!");
1956  return FC;
1957}
1958
1959Constant *ConstantExpr::getExtractValue(Constant *Agg,
1960                                        ArrayRef<unsigned> Idxs) {
1961  assert(Agg->getType()->isFirstClassType() &&
1962         "Tried to create extractelement operation on non-first-class type!");
1963
1964  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1965  (void)ReqTy;
1966  assert(ReqTy && "extractvalue indices invalid!");
1967
1968  assert(Agg->getType()->isFirstClassType() &&
1969         "Non-first-class type for constant extractvalue expression");
1970  Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1971  assert(FC && "ExtractValue constant expr couldn't be folded!");
1972  return FC;
1973}
1974
1975Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1976  assert(C->getType()->isIntOrIntVectorTy() &&
1977         "Cannot NEG a nonintegral value!");
1978  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1979                C, HasNUW, HasNSW);
1980}
1981
1982Constant *ConstantExpr::getFNeg(Constant *C) {
1983  assert(C->getType()->isFPOrFPVectorTy() &&
1984         "Cannot FNEG a non-floating-point value!");
1985  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1986}
1987
1988Constant *ConstantExpr::getNot(Constant *C) {
1989  assert(C->getType()->isIntOrIntVectorTy() &&
1990         "Cannot NOT a nonintegral value!");
1991  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1992}
1993
1994Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1995                               bool HasNUW, bool HasNSW) {
1996  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1997                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
1998  return get(Instruction::Add, C1, C2, Flags);
1999}
2000
2001Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2002  return get(Instruction::FAdd, C1, C2);
2003}
2004
2005Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2006                               bool HasNUW, bool HasNSW) {
2007  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2008                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2009  return get(Instruction::Sub, C1, C2, Flags);
2010}
2011
2012Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2013  return get(Instruction::FSub, C1, C2);
2014}
2015
2016Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2017                               bool HasNUW, bool HasNSW) {
2018  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2019                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2020  return get(Instruction::Mul, C1, C2, Flags);
2021}
2022
2023Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2024  return get(Instruction::FMul, C1, C2);
2025}
2026
2027Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2028  return get(Instruction::UDiv, C1, C2,
2029             isExact ? PossiblyExactOperator::IsExact : 0);
2030}
2031
2032Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2033  return get(Instruction::SDiv, C1, C2,
2034             isExact ? PossiblyExactOperator::IsExact : 0);
2035}
2036
2037Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2038  return get(Instruction::FDiv, C1, C2);
2039}
2040
2041Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2042  return get(Instruction::URem, C1, C2);
2043}
2044
2045Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2046  return get(Instruction::SRem, C1, C2);
2047}
2048
2049Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2050  return get(Instruction::FRem, C1, C2);
2051}
2052
2053Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2054  return get(Instruction::And, C1, C2);
2055}
2056
2057Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2058  return get(Instruction::Or, C1, C2);
2059}
2060
2061Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2062  return get(Instruction::Xor, C1, C2);
2063}
2064
2065Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2066                               bool HasNUW, bool HasNSW) {
2067  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2068                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2069  return get(Instruction::Shl, C1, C2, Flags);
2070}
2071
2072Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2073  return get(Instruction::LShr, C1, C2,
2074             isExact ? PossiblyExactOperator::IsExact : 0);
2075}
2076
2077Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2078  return get(Instruction::AShr, C1, C2,
2079             isExact ? PossiblyExactOperator::IsExact : 0);
2080}
2081
2082/// getBinOpIdentity - Return the identity for the given binary operation,
2083/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2084/// returns null if the operator doesn't have an identity.
2085Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2086  switch (Opcode) {
2087  default:
2088    // Doesn't have an identity.
2089    return 0;
2090
2091  case Instruction::Add:
2092  case Instruction::Or:
2093  case Instruction::Xor:
2094    return Constant::getNullValue(Ty);
2095
2096  case Instruction::Mul:
2097    return ConstantInt::get(Ty, 1);
2098
2099  case Instruction::And:
2100    return Constant::getAllOnesValue(Ty);
2101  }
2102}
2103
2104/// getBinOpAbsorber - Return the absorbing element for the given binary
2105/// operation, i.e. a constant C such that X op C = C and C op X = C for
2106/// every X.  For example, this returns zero for integer multiplication.
2107/// It returns null if the operator doesn't have an absorbing element.
2108Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2109  switch (Opcode) {
2110  default:
2111    // Doesn't have an absorber.
2112    return 0;
2113
2114  case Instruction::Or:
2115    return Constant::getAllOnesValue(Ty);
2116
2117  case Instruction::And:
2118  case Instruction::Mul:
2119    return Constant::getNullValue(Ty);
2120  }
2121}
2122
2123// destroyConstant - Remove the constant from the constant table...
2124//
2125void ConstantExpr::destroyConstant() {
2126  getType()->getContext().pImpl->ExprConstants.remove(this);
2127  destroyConstantImpl();
2128}
2129
2130const char *ConstantExpr::getOpcodeName() const {
2131  return Instruction::getOpcodeName(getOpcode());
2132}
2133
2134
2135
2136GetElementPtrConstantExpr::
2137GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2138                          Type *DestTy)
2139  : ConstantExpr(DestTy, Instruction::GetElementPtr,
2140                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2141                 - (IdxList.size()+1), IdxList.size()+1) {
2142  OperandList[0] = C;
2143  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2144    OperandList[i+1] = IdxList[i];
2145}
2146
2147//===----------------------------------------------------------------------===//
2148//                       ConstantData* implementations
2149
2150void ConstantDataArray::anchor() {}
2151void ConstantDataVector::anchor() {}
2152
2153/// getElementType - Return the element type of the array/vector.
2154Type *ConstantDataSequential::getElementType() const {
2155  return getType()->getElementType();
2156}
2157
2158StringRef ConstantDataSequential::getRawDataValues() const {
2159  return StringRef(DataElements, getNumElements()*getElementByteSize());
2160}
2161
2162/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2163/// formed with a vector or array of the specified element type.
2164/// ConstantDataArray only works with normal float and int types that are
2165/// stored densely in memory, not with things like i42 or x86_f80.
2166bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2167  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2168  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2169    switch (IT->getBitWidth()) {
2170    case 8:
2171    case 16:
2172    case 32:
2173    case 64:
2174      return true;
2175    default: break;
2176    }
2177  }
2178  return false;
2179}
2180
2181/// getNumElements - Return the number of elements in the array or vector.
2182unsigned ConstantDataSequential::getNumElements() const {
2183  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2184    return AT->getNumElements();
2185  return getType()->getVectorNumElements();
2186}
2187
2188
2189/// getElementByteSize - Return the size in bytes of the elements in the data.
2190uint64_t ConstantDataSequential::getElementByteSize() const {
2191  return getElementType()->getPrimitiveSizeInBits()/8;
2192}
2193
2194/// getElementPointer - Return the start of the specified element.
2195const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2196  assert(Elt < getNumElements() && "Invalid Elt");
2197  return DataElements+Elt*getElementByteSize();
2198}
2199
2200
2201/// isAllZeros - return true if the array is empty or all zeros.
2202static bool isAllZeros(StringRef Arr) {
2203  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2204    if (*I != 0)
2205      return false;
2206  return true;
2207}
2208
2209/// getImpl - This is the underlying implementation of all of the
2210/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2211/// the correct element type.  We take the bytes in as a StringRef because
2212/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2213Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2214  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2215  // If the elements are all zero or there are no elements, return a CAZ, which
2216  // is more dense and canonical.
2217  if (isAllZeros(Elements))
2218    return ConstantAggregateZero::get(Ty);
2219
2220  // Do a lookup to see if we have already formed one of these.
2221  StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2222    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2223
2224  // The bucket can point to a linked list of different CDS's that have the same
2225  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2226  // of i8, or a 1-element array of i32.  They'll both end up in the same
2227  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2228  ConstantDataSequential **Entry = &Slot.getValue();
2229  for (ConstantDataSequential *Node = *Entry; Node != 0;
2230       Entry = &Node->Next, Node = *Entry)
2231    if (Node->getType() == Ty)
2232      return Node;
2233
2234  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2235  // and return it.
2236  if (isa<ArrayType>(Ty))
2237    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2238
2239  assert(isa<VectorType>(Ty));
2240  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2241}
2242
2243void ConstantDataSequential::destroyConstant() {
2244  // Remove the constant from the StringMap.
2245  StringMap<ConstantDataSequential*> &CDSConstants =
2246    getType()->getContext().pImpl->CDSConstants;
2247
2248  StringMap<ConstantDataSequential*>::iterator Slot =
2249    CDSConstants.find(getRawDataValues());
2250
2251  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2252
2253  ConstantDataSequential **Entry = &Slot->getValue();
2254
2255  // Remove the entry from the hash table.
2256  if ((*Entry)->Next == 0) {
2257    // If there is only one value in the bucket (common case) it must be this
2258    // entry, and removing the entry should remove the bucket completely.
2259    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2260    getContext().pImpl->CDSConstants.erase(Slot);
2261  } else {
2262    // Otherwise, there are multiple entries linked off the bucket, unlink the
2263    // node we care about but keep the bucket around.
2264    for (ConstantDataSequential *Node = *Entry; ;
2265         Entry = &Node->Next, Node = *Entry) {
2266      assert(Node && "Didn't find entry in its uniquing hash table!");
2267      // If we found our entry, unlink it from the list and we're done.
2268      if (Node == this) {
2269        *Entry = Node->Next;
2270        break;
2271      }
2272    }
2273  }
2274
2275  // If we were part of a list, make sure that we don't delete the list that is
2276  // still owned by the uniquing map.
2277  Next = 0;
2278
2279  // Finally, actually delete it.
2280  destroyConstantImpl();
2281}
2282
2283/// get() constructors - Return a constant with array type with an element
2284/// count and element type matching the ArrayRef passed in.  Note that this
2285/// can return a ConstantAggregateZero object.
2286Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2287  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2288  const char *Data = reinterpret_cast<const char *>(Elts.data());
2289  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2290}
2291Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2292  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2293  const char *Data = reinterpret_cast<const char *>(Elts.data());
2294  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2295}
2296Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2297  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2298  const char *Data = reinterpret_cast<const char *>(Elts.data());
2299  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2300}
2301Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2302  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2303  const char *Data = reinterpret_cast<const char *>(Elts.data());
2304  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2305}
2306Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2307  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2308  const char *Data = reinterpret_cast<const char *>(Elts.data());
2309  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2310}
2311Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2312  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2313  const char *Data = reinterpret_cast<const char *>(Elts.data());
2314  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2315}
2316
2317/// getString - This method constructs a CDS and initializes it with a text
2318/// string. The default behavior (AddNull==true) causes a null terminator to
2319/// be placed at the end of the array (increasing the length of the string by
2320/// one more than the StringRef would normally indicate.  Pass AddNull=false
2321/// to disable this behavior.
2322Constant *ConstantDataArray::getString(LLVMContext &Context,
2323                                       StringRef Str, bool AddNull) {
2324  if (!AddNull) {
2325    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2326    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2327               Str.size()));
2328  }
2329
2330  SmallVector<uint8_t, 64> ElementVals;
2331  ElementVals.append(Str.begin(), Str.end());
2332  ElementVals.push_back(0);
2333  return get(Context, ElementVals);
2334}
2335
2336/// get() constructors - Return a constant with vector type with an element
2337/// count and element type matching the ArrayRef passed in.  Note that this
2338/// can return a ConstantAggregateZero object.
2339Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2340  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2341  const char *Data = reinterpret_cast<const char *>(Elts.data());
2342  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2343}
2344Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2345  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2346  const char *Data = reinterpret_cast<const char *>(Elts.data());
2347  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2348}
2349Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2350  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2351  const char *Data = reinterpret_cast<const char *>(Elts.data());
2352  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2353}
2354Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2355  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2356  const char *Data = reinterpret_cast<const char *>(Elts.data());
2357  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2358}
2359Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2360  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2361  const char *Data = reinterpret_cast<const char *>(Elts.data());
2362  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2363}
2364Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2365  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2366  const char *Data = reinterpret_cast<const char *>(Elts.data());
2367  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2368}
2369
2370Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2371  assert(isElementTypeCompatible(V->getType()) &&
2372         "Element type not compatible with ConstantData");
2373  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2374    if (CI->getType()->isIntegerTy(8)) {
2375      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2376      return get(V->getContext(), Elts);
2377    }
2378    if (CI->getType()->isIntegerTy(16)) {
2379      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2380      return get(V->getContext(), Elts);
2381    }
2382    if (CI->getType()->isIntegerTy(32)) {
2383      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2384      return get(V->getContext(), Elts);
2385    }
2386    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2387    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2388    return get(V->getContext(), Elts);
2389  }
2390
2391  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2392    if (CFP->getType()->isFloatTy()) {
2393      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2394      return get(V->getContext(), Elts);
2395    }
2396    if (CFP->getType()->isDoubleTy()) {
2397      SmallVector<double, 16> Elts(NumElts,
2398                                   CFP->getValueAPF().convertToDouble());
2399      return get(V->getContext(), Elts);
2400    }
2401  }
2402  return ConstantVector::getSplat(NumElts, V);
2403}
2404
2405
2406/// getElementAsInteger - If this is a sequential container of integers (of
2407/// any size), return the specified element in the low bits of a uint64_t.
2408uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2409  assert(isa<IntegerType>(getElementType()) &&
2410         "Accessor can only be used when element is an integer");
2411  const char *EltPtr = getElementPointer(Elt);
2412
2413  // The data is stored in host byte order, make sure to cast back to the right
2414  // type to load with the right endianness.
2415  switch (getElementType()->getIntegerBitWidth()) {
2416  default: llvm_unreachable("Invalid bitwidth for CDS");
2417  case 8:
2418    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2419  case 16:
2420    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2421  case 32:
2422    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2423  case 64:
2424    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2425  }
2426}
2427
2428/// getElementAsAPFloat - If this is a sequential container of floating point
2429/// type, return the specified element as an APFloat.
2430APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2431  const char *EltPtr = getElementPointer(Elt);
2432
2433  switch (getElementType()->getTypeID()) {
2434  default:
2435    llvm_unreachable("Accessor can only be used when element is float/double!");
2436  case Type::FloatTyID: {
2437      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2438      return APFloat(*const_cast<float *>(FloatPrt));
2439    }
2440  case Type::DoubleTyID: {
2441      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2442      return APFloat(*const_cast<double *>(DoublePtr));
2443    }
2444  }
2445}
2446
2447/// getElementAsFloat - If this is an sequential container of floats, return
2448/// the specified element as a float.
2449float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2450  assert(getElementType()->isFloatTy() &&
2451         "Accessor can only be used when element is a 'float'");
2452  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2453  return *const_cast<float *>(EltPtr);
2454}
2455
2456/// getElementAsDouble - If this is an sequential container of doubles, return
2457/// the specified element as a float.
2458double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2459  assert(getElementType()->isDoubleTy() &&
2460         "Accessor can only be used when element is a 'float'");
2461  const double *EltPtr =
2462      reinterpret_cast<const double *>(getElementPointer(Elt));
2463  return *const_cast<double *>(EltPtr);
2464}
2465
2466/// getElementAsConstant - Return a Constant for a specified index's element.
2467/// Note that this has to compute a new constant to return, so it isn't as
2468/// efficient as getElementAsInteger/Float/Double.
2469Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2470  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2471    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2472
2473  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2474}
2475
2476/// isString - This method returns true if this is an array of i8.
2477bool ConstantDataSequential::isString() const {
2478  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2479}
2480
2481/// isCString - This method returns true if the array "isString", ends with a
2482/// nul byte, and does not contains any other nul bytes.
2483bool ConstantDataSequential::isCString() const {
2484  if (!isString())
2485    return false;
2486
2487  StringRef Str = getAsString();
2488
2489  // The last value must be nul.
2490  if (Str.back() != 0) return false;
2491
2492  // Other elements must be non-nul.
2493  return Str.drop_back().find(0) == StringRef::npos;
2494}
2495
2496/// getSplatValue - If this is a splat constant, meaning that all of the
2497/// elements have the same value, return that value. Otherwise return NULL.
2498Constant *ConstantDataVector::getSplatValue() const {
2499  const char *Base = getRawDataValues().data();
2500
2501  // Compare elements 1+ to the 0'th element.
2502  unsigned EltSize = getElementByteSize();
2503  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2504    if (memcmp(Base, Base+i*EltSize, EltSize))
2505      return 0;
2506
2507  // If they're all the same, return the 0th one as a representative.
2508  return getElementAsConstant(0);
2509}
2510
2511//===----------------------------------------------------------------------===//
2512//                replaceUsesOfWithOnConstant implementations
2513
2514/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2515/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2516/// etc.
2517///
2518/// Note that we intentionally replace all uses of From with To here.  Consider
2519/// a large array that uses 'From' 1000 times.  By handling this case all here,
2520/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2521/// single invocation handles all 1000 uses.  Handling them one at a time would
2522/// work, but would be really slow because it would have to unique each updated
2523/// array instance.
2524///
2525void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2526                                                Use *U) {
2527  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2528  Constant *ToC = cast<Constant>(To);
2529
2530  LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2531
2532  SmallVector<Constant*, 8> Values;
2533  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2534  Lookup.first = cast<ArrayType>(getType());
2535  Values.reserve(getNumOperands());  // Build replacement array.
2536
2537  // Fill values with the modified operands of the constant array.  Also,
2538  // compute whether this turns into an all-zeros array.
2539  unsigned NumUpdated = 0;
2540
2541  // Keep track of whether all the values in the array are "ToC".
2542  bool AllSame = true;
2543  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2544    Constant *Val = cast<Constant>(O->get());
2545    if (Val == From) {
2546      Val = ToC;
2547      ++NumUpdated;
2548    }
2549    Values.push_back(Val);
2550    AllSame &= Val == ToC;
2551  }
2552
2553  Constant *Replacement = 0;
2554  if (AllSame && ToC->isNullValue()) {
2555    Replacement = ConstantAggregateZero::get(getType());
2556  } else if (AllSame && isa<UndefValue>(ToC)) {
2557    Replacement = UndefValue::get(getType());
2558  } else {
2559    // Check to see if we have this array type already.
2560    Lookup.second = makeArrayRef(Values);
2561    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2562      pImpl->ArrayConstants.find(Lookup);
2563
2564    if (I != pImpl->ArrayConstants.map_end()) {
2565      Replacement = I->first;
2566    } else {
2567      // Okay, the new shape doesn't exist in the system yet.  Instead of
2568      // creating a new constant array, inserting it, replaceallusesof'ing the
2569      // old with the new, then deleting the old... just update the current one
2570      // in place!
2571      pImpl->ArrayConstants.remove(this);
2572
2573      // Update to the new value.  Optimize for the case when we have a single
2574      // operand that we're changing, but handle bulk updates efficiently.
2575      if (NumUpdated == 1) {
2576        unsigned OperandToUpdate = U - OperandList;
2577        assert(getOperand(OperandToUpdate) == From &&
2578               "ReplaceAllUsesWith broken!");
2579        setOperand(OperandToUpdate, ToC);
2580      } else {
2581        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2582          if (getOperand(i) == From)
2583            setOperand(i, ToC);
2584      }
2585      pImpl->ArrayConstants.insert(this);
2586      return;
2587    }
2588  }
2589
2590  // Otherwise, I do need to replace this with an existing value.
2591  assert(Replacement != this && "I didn't contain From!");
2592
2593  // Everyone using this now uses the replacement.
2594  replaceAllUsesWith(Replacement);
2595
2596  // Delete the old constant!
2597  destroyConstant();
2598}
2599
2600void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2601                                                 Use *U) {
2602  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2603  Constant *ToC = cast<Constant>(To);
2604
2605  unsigned OperandToUpdate = U-OperandList;
2606  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2607
2608  SmallVector<Constant*, 8> Values;
2609  LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2610  Lookup.first = cast<StructType>(getType());
2611  Values.reserve(getNumOperands());  // Build replacement struct.
2612
2613  // Fill values with the modified operands of the constant struct.  Also,
2614  // compute whether this turns into an all-zeros struct.
2615  bool isAllZeros = false;
2616  bool isAllUndef = false;
2617  if (ToC->isNullValue()) {
2618    isAllZeros = true;
2619    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2620      Constant *Val = cast<Constant>(O->get());
2621      Values.push_back(Val);
2622      if (isAllZeros) isAllZeros = Val->isNullValue();
2623    }
2624  } else if (isa<UndefValue>(ToC)) {
2625    isAllUndef = true;
2626    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2627      Constant *Val = cast<Constant>(O->get());
2628      Values.push_back(Val);
2629      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2630    }
2631  } else {
2632    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2633      Values.push_back(cast<Constant>(O->get()));
2634  }
2635  Values[OperandToUpdate] = ToC;
2636
2637  LLVMContextImpl *pImpl = getContext().pImpl;
2638
2639  Constant *Replacement = 0;
2640  if (isAllZeros) {
2641    Replacement = ConstantAggregateZero::get(getType());
2642  } else if (isAllUndef) {
2643    Replacement = UndefValue::get(getType());
2644  } else {
2645    // Check to see if we have this struct type already.
2646    Lookup.second = makeArrayRef(Values);
2647    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2648      pImpl->StructConstants.find(Lookup);
2649
2650    if (I != pImpl->StructConstants.map_end()) {
2651      Replacement = I->first;
2652    } else {
2653      // Okay, the new shape doesn't exist in the system yet.  Instead of
2654      // creating a new constant struct, inserting it, replaceallusesof'ing the
2655      // old with the new, then deleting the old... just update the current one
2656      // in place!
2657      pImpl->StructConstants.remove(this);
2658
2659      // Update to the new value.
2660      setOperand(OperandToUpdate, ToC);
2661      pImpl->StructConstants.insert(this);
2662      return;
2663    }
2664  }
2665
2666  assert(Replacement != this && "I didn't contain From!");
2667
2668  // Everyone using this now uses the replacement.
2669  replaceAllUsesWith(Replacement);
2670
2671  // Delete the old constant!
2672  destroyConstant();
2673}
2674
2675void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2676                                                 Use *U) {
2677  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2678
2679  SmallVector<Constant*, 8> Values;
2680  Values.reserve(getNumOperands());  // Build replacement array...
2681  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2682    Constant *Val = getOperand(i);
2683    if (Val == From) Val = cast<Constant>(To);
2684    Values.push_back(Val);
2685  }
2686
2687  Constant *Replacement = get(Values);
2688  assert(Replacement != this && "I didn't contain From!");
2689
2690  // Everyone using this now uses the replacement.
2691  replaceAllUsesWith(Replacement);
2692
2693  // Delete the old constant!
2694  destroyConstant();
2695}
2696
2697void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2698                                               Use *U) {
2699  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2700  Constant *To = cast<Constant>(ToV);
2701
2702  SmallVector<Constant*, 8> NewOps;
2703  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2704    Constant *Op = getOperand(i);
2705    NewOps.push_back(Op == From ? To : Op);
2706  }
2707
2708  Constant *Replacement = getWithOperands(NewOps);
2709  assert(Replacement != this && "I didn't contain From!");
2710
2711  // Everyone using this now uses the replacement.
2712  replaceAllUsesWith(Replacement);
2713
2714  // Delete the old constant!
2715  destroyConstant();
2716}
2717
2718Instruction *ConstantExpr::getAsInstruction() {
2719  SmallVector<Value*,4> ValueOperands;
2720  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2721    ValueOperands.push_back(cast<Value>(I));
2722
2723  ArrayRef<Value*> Ops(ValueOperands);
2724
2725  switch (getOpcode()) {
2726  case Instruction::Trunc:
2727  case Instruction::ZExt:
2728  case Instruction::SExt:
2729  case Instruction::FPTrunc:
2730  case Instruction::FPExt:
2731  case Instruction::UIToFP:
2732  case Instruction::SIToFP:
2733  case Instruction::FPToUI:
2734  case Instruction::FPToSI:
2735  case Instruction::PtrToInt:
2736  case Instruction::IntToPtr:
2737  case Instruction::BitCast:
2738    return CastInst::Create((Instruction::CastOps)getOpcode(),
2739                            Ops[0], getType());
2740  case Instruction::Select:
2741    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2742  case Instruction::InsertElement:
2743    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2744  case Instruction::ExtractElement:
2745    return ExtractElementInst::Create(Ops[0], Ops[1]);
2746  case Instruction::InsertValue:
2747    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2748  case Instruction::ExtractValue:
2749    return ExtractValueInst::Create(Ops[0], getIndices());
2750  case Instruction::ShuffleVector:
2751    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2752
2753  case Instruction::GetElementPtr:
2754    if (cast<GEPOperator>(this)->isInBounds())
2755      return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2756    else
2757      return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2758
2759  case Instruction::ICmp:
2760  case Instruction::FCmp:
2761    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2762                           getPredicate(), Ops[0], Ops[1]);
2763
2764  default:
2765    assert(getNumOperands() == 2 && "Must be binary operator?");
2766    BinaryOperator *BO =
2767      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2768                             Ops[0], Ops[1]);
2769    if (isa<OverflowingBinaryOperator>(BO)) {
2770      BO->setHasNoUnsignedWrap(SubclassOptionalData &
2771                               OverflowingBinaryOperator::NoUnsignedWrap);
2772      BO->setHasNoSignedWrap(SubclassOptionalData &
2773                             OverflowingBinaryOperator::NoSignedWrap);
2774    }
2775    if (isa<PossiblyExactOperator>(BO))
2776      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2777    return BO;
2778  }
2779}
2780