SelectionDAGBuilder.h revision 206274
1//===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SELECTIONDAGBUILDER_H
15#define SELECTIONDAGBUILDER_H
16
17#include "llvm/Constants.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/DenseMap.h"
21#ifndef NDEBUG
22#include "llvm/ADT/SmallSet.h"
23#endif
24#include "llvm/CodeGen/SelectionDAGNodes.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <vector>
29#include <set>
30
31namespace llvm {
32
33class AliasAnalysis;
34class AllocaInst;
35class BasicBlock;
36class BitCastInst;
37class BranchInst;
38class CallInst;
39class ExtractElementInst;
40class ExtractValueInst;
41class FCmpInst;
42class FPExtInst;
43class FPToSIInst;
44class FPToUIInst;
45class FPTruncInst;
46class Function;
47class FunctionLoweringInfo;
48class GetElementPtrInst;
49class GCFunctionInfo;
50class ICmpInst;
51class IntToPtrInst;
52class IndirectBrInst;
53class InvokeInst;
54class InsertElementInst;
55class InsertValueInst;
56class Instruction;
57class LoadInst;
58class MachineBasicBlock;
59class MachineInstr;
60class MachineRegisterInfo;
61class PHINode;
62class PtrToIntInst;
63class ReturnInst;
64class SDISelAsmOperandInfo;
65class SExtInst;
66class SelectInst;
67class ShuffleVectorInst;
68class SIToFPInst;
69class StoreInst;
70class SwitchInst;
71class TargetData;
72class TargetLowering;
73class TruncInst;
74class UIToFPInst;
75class UnreachableInst;
76class UnwindInst;
77class VAArgInst;
78class ZExtInst;
79
80//===----------------------------------------------------------------------===//
81/// SelectionDAGBuilder - This is the common target-independent lowering
82/// implementation that is parameterized by a TargetLowering object.
83/// Also, targets can overload any lowering method.
84///
85class SelectionDAGBuilder {
86  MachineBasicBlock *CurMBB;
87
88  /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
89  DebugLoc CurDebugLoc;
90
91  DenseMap<const Value*, SDValue> NodeMap;
92
93public:
94  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
95  /// them up and then emit token factor nodes when possible.  This allows us to
96  /// get simple disambiguation between loads without worrying about alias
97  /// analysis.
98  SmallVector<SDValue, 8> PendingLoads;
99private:
100
101  /// PendingExports - CopyToReg nodes that copy values to virtual registers
102  /// for export to other blocks need to be emitted before any terminator
103  /// instruction, but they have no other ordering requirements. We bunch them
104  /// up and the emit a single tokenfactor for them just before terminator
105  /// instructions.
106  SmallVector<SDValue, 8> PendingExports;
107
108  /// SDNodeOrder - A unique monotonically increasing number used to order the
109  /// SDNodes we create.
110  unsigned SDNodeOrder;
111
112  /// Case - A struct to record the Value for a switch case, and the
113  /// case's target basic block.
114  struct Case {
115    Constant* Low;
116    Constant* High;
117    MachineBasicBlock* BB;
118
119    Case() : Low(0), High(0), BB(0) { }
120    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
121      Low(low), High(high), BB(bb) { }
122    APInt size() const {
123      const APInt &rHigh = cast<ConstantInt>(High)->getValue();
124      const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
125      return (rHigh - rLow + 1ULL);
126    }
127  };
128
129  struct CaseBits {
130    uint64_t Mask;
131    MachineBasicBlock* BB;
132    unsigned Bits;
133
134    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
135      Mask(mask), BB(bb), Bits(bits) { }
136  };
137
138  typedef std::vector<Case>           CaseVector;
139  typedef std::vector<CaseBits>       CaseBitsVector;
140  typedef CaseVector::iterator        CaseItr;
141  typedef std::pair<CaseItr, CaseItr> CaseRange;
142
143  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
144  /// of conditional branches.
145  struct CaseRec {
146    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
147    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
148
149    /// CaseBB - The MBB in which to emit the compare and branch
150    MachineBasicBlock *CaseBB;
151    /// LT, GE - If nonzero, we know the current case value must be less-than or
152    /// greater-than-or-equal-to these Constants.
153    Constant *LT;
154    Constant *GE;
155    /// Range - A pair of iterators representing the range of case values to be
156    /// processed at this point in the binary search tree.
157    CaseRange Range;
158  };
159
160  typedef std::vector<CaseRec> CaseRecVector;
161
162  /// The comparison function for sorting the switch case values in the vector.
163  /// WARNING: Case ranges should be disjoint!
164  struct CaseCmp {
165    bool operator()(const Case &C1, const Case &C2) {
166      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
167      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
168      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
169      return CI1->getValue().slt(CI2->getValue());
170    }
171  };
172
173  struct CaseBitsCmp {
174    bool operator()(const CaseBits &C1, const CaseBits &C2) {
175      return C1.Bits > C2.Bits;
176    }
177  };
178
179  size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
180
181  /// CaseBlock - This structure is used to communicate between
182  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
183  /// blocks needed by multi-case switch statements.
184  struct CaseBlock {
185    CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle,
186              MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
187              MachineBasicBlock *me)
188      : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
189        TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
190    // CC - the condition code to use for the case block's setcc node
191    ISD::CondCode CC;
192    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
193    // Emit by default LHS op RHS. MHS is used for range comparisons:
194    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
195    Value *CmpLHS, *CmpMHS, *CmpRHS;
196    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
197    MachineBasicBlock *TrueBB, *FalseBB;
198    // ThisBB - the block into which to emit the code for the setcc and branches
199    MachineBasicBlock *ThisBB;
200  };
201  struct JumpTable {
202    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
203              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
204
205    /// Reg - the virtual register containing the index of the jump table entry
206    //. to jump to.
207    unsigned Reg;
208    /// JTI - the JumpTableIndex for this jump table in the function.
209    unsigned JTI;
210    /// MBB - the MBB into which to emit the code for the indirect jump.
211    MachineBasicBlock *MBB;
212    /// Default - the MBB of the default bb, which is a successor of the range
213    /// check MBB.  This is when updating PHI nodes in successors.
214    MachineBasicBlock *Default;
215  };
216  struct JumpTableHeader {
217    JumpTableHeader(APInt F, APInt L, Value *SV, MachineBasicBlock *H,
218                    bool E = false):
219      First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
220    APInt First;
221    APInt Last;
222    Value *SValue;
223    MachineBasicBlock *HeaderBB;
224    bool Emitted;
225  };
226  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
227
228  struct BitTestCase {
229    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
230      Mask(M), ThisBB(T), TargetBB(Tr) { }
231    uint64_t Mask;
232    MachineBasicBlock *ThisBB;
233    MachineBasicBlock *TargetBB;
234  };
235
236  typedef SmallVector<BitTestCase, 3> BitTestInfo;
237
238  struct BitTestBlock {
239    BitTestBlock(APInt F, APInt R, Value* SV,
240                 unsigned Rg, bool E,
241                 MachineBasicBlock* P, MachineBasicBlock* D,
242                 const BitTestInfo& C):
243      First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
244      Parent(P), Default(D), Cases(C) { }
245    APInt First;
246    APInt Range;
247    Value  *SValue;
248    unsigned Reg;
249    bool Emitted;
250    MachineBasicBlock *Parent;
251    MachineBasicBlock *Default;
252    BitTestInfo Cases;
253  };
254
255public:
256  // TLI - This is information that describes the available target features we
257  // need for lowering.  This indicates when operations are unavailable,
258  // implemented with a libcall, etc.
259  TargetLowering &TLI;
260  SelectionDAG &DAG;
261  const TargetData *TD;
262  AliasAnalysis *AA;
263
264  /// SwitchCases - Vector of CaseBlock structures used to communicate
265  /// SwitchInst code generation information.
266  std::vector<CaseBlock> SwitchCases;
267  /// JTCases - Vector of JumpTable structures used to communicate
268  /// SwitchInst code generation information.
269  std::vector<JumpTableBlock> JTCases;
270  /// BitTestCases - Vector of BitTestBlock structures used to communicate
271  /// SwitchInst code generation information.
272  std::vector<BitTestBlock> BitTestCases;
273
274  /// PHINodesToUpdate - A list of phi instructions whose operand list will
275  /// be updated after processing the current basic block.
276  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
277
278  /// EdgeMapping - If an edge from CurMBB to any MBB is changed (e.g. due to
279  /// scheduler custom lowering), track the change here.
280  DenseMap<MachineBasicBlock*, MachineBasicBlock*> EdgeMapping;
281
282  // Emit PHI-node-operand constants only once even if used by multiple
283  // PHI nodes.
284  DenseMap<Constant*, unsigned> ConstantsOut;
285
286  /// FuncInfo - Information about the function as a whole.
287  ///
288  FunctionLoweringInfo &FuncInfo;
289
290  /// OptLevel - What optimization level we're generating code for.
291  ///
292  CodeGenOpt::Level OptLevel;
293
294  /// GFI - Garbage collection metadata for the function.
295  GCFunctionInfo *GFI;
296
297  /// HasTailCall - This is set to true if a call in the current
298  /// block has been translated as a tail call. In this case,
299  /// no subsequent DAG nodes should be created.
300  ///
301  bool HasTailCall;
302
303  LLVMContext *Context;
304
305  SelectionDAGBuilder(SelectionDAG &dag, TargetLowering &tli,
306                      FunctionLoweringInfo &funcinfo,
307                      CodeGenOpt::Level ol)
308    : SDNodeOrder(0), TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
309      HasTailCall(false), Context(dag.getContext()) {
310  }
311
312  void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
313
314  /// clear - Clear out the curret SelectionDAG and the associated
315  /// state and prepare this SelectionDAGBuilder object to be used
316  /// for a new block. This doesn't clear out information about
317  /// additional blocks that are needed to complete switch lowering
318  /// or PHI node updating; that information is cleared out as it is
319  /// consumed.
320  void clear();
321
322  /// getRoot - Return the current virtual root of the Selection DAG,
323  /// flushing any PendingLoad items. This must be done before emitting
324  /// a store or any other node that may need to be ordered after any
325  /// prior load instructions.
326  ///
327  SDValue getRoot();
328
329  /// getControlRoot - Similar to getRoot, but instead of flushing all the
330  /// PendingLoad items, flush all the PendingExports items. It is necessary
331  /// to do this before emitting a terminator instruction.
332  ///
333  SDValue getControlRoot();
334
335  DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
336  void setCurDebugLoc(DebugLoc dl) { CurDebugLoc = dl; }
337
338  unsigned getSDNodeOrder() const { return SDNodeOrder; }
339
340  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
341
342  /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
343  /// from how the code appeared in the source. The ordering is used by the
344  /// scheduler to effectively turn off scheduling.
345  void AssignOrderingToNode(const SDNode *Node);
346
347  void visit(Instruction &I);
348
349  void visit(unsigned Opcode, User &I);
350
351  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
352
353  SDValue getValue(const Value *V);
354
355  void setValue(const Value *V, SDValue NewN) {
356    SDValue &N = NodeMap[V];
357    assert(N.getNode() == 0 && "Already set a value for this node!");
358    N = NewN;
359  }
360
361  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
362                            std::set<unsigned> &OutputRegs,
363                            std::set<unsigned> &InputRegs);
364
365  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
366                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
367                            unsigned Opc);
368  void EmitBranchForMergedCondition(Value *Cond, MachineBasicBlock *TBB,
369                                    MachineBasicBlock *FBB,
370                                    MachineBasicBlock *CurBB);
371  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
372  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
373  void CopyToExportRegsIfNeeded(Value *V);
374  void ExportFromCurrentBlock(Value *V);
375  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
376                   MachineBasicBlock *LandingPad = NULL);
377
378private:
379  // Terminator instructions.
380  void visitRet(ReturnInst &I);
381  void visitBr(BranchInst &I);
382  void visitSwitch(SwitchInst &I);
383  void visitIndirectBr(IndirectBrInst &I);
384  void visitUnreachable(UnreachableInst &I) { /* noop */ }
385
386  // Helpers for visitSwitch
387  bool handleSmallSwitchRange(CaseRec& CR,
388                              CaseRecVector& WorkList,
389                              Value* SV,
390                              MachineBasicBlock* Default);
391  bool handleJTSwitchCase(CaseRec& CR,
392                          CaseRecVector& WorkList,
393                          Value* SV,
394                          MachineBasicBlock* Default);
395  bool handleBTSplitSwitchCase(CaseRec& CR,
396                               CaseRecVector& WorkList,
397                               Value* SV,
398                               MachineBasicBlock* Default);
399  bool handleBitTestsSwitchCase(CaseRec& CR,
400                                CaseRecVector& WorkList,
401                                Value* SV,
402                                MachineBasicBlock* Default);
403public:
404  void visitSwitchCase(CaseBlock &CB);
405  void visitBitTestHeader(BitTestBlock &B);
406  void visitBitTestCase(MachineBasicBlock* NextMBB,
407                        unsigned Reg,
408                        BitTestCase &B);
409  void visitJumpTable(JumpTable &JT);
410  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH);
411
412private:
413  // These all get lowered before this pass.
414  void visitInvoke(InvokeInst &I);
415  void visitUnwind(UnwindInst &I);
416
417  void visitBinary(User &I, unsigned OpCode);
418  void visitShift(User &I, unsigned Opcode);
419  void visitAdd(User &I)  { visitBinary(I, ISD::ADD); }
420  void visitFAdd(User &I) { visitBinary(I, ISD::FADD); }
421  void visitSub(User &I)  { visitBinary(I, ISD::SUB); }
422  void visitFSub(User &I);
423  void visitMul(User &I)  { visitBinary(I, ISD::MUL); }
424  void visitFMul(User &I) { visitBinary(I, ISD::FMUL); }
425  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
426  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
427  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
428  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
429  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
430  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
431  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
432  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
433  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
434  void visitShl (User &I) { visitShift(I, ISD::SHL); }
435  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
436  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
437  void visitICmp(User &I);
438  void visitFCmp(User &I);
439  // Visit the conversion instructions
440  void visitTrunc(User &I);
441  void visitZExt(User &I);
442  void visitSExt(User &I);
443  void visitFPTrunc(User &I);
444  void visitFPExt(User &I);
445  void visitFPToUI(User &I);
446  void visitFPToSI(User &I);
447  void visitUIToFP(User &I);
448  void visitSIToFP(User &I);
449  void visitPtrToInt(User &I);
450  void visitIntToPtr(User &I);
451  void visitBitCast(User &I);
452
453  void visitExtractElement(User &I);
454  void visitInsertElement(User &I);
455  void visitShuffleVector(User &I);
456
457  void visitExtractValue(ExtractValueInst &I);
458  void visitInsertValue(InsertValueInst &I);
459
460  void visitGetElementPtr(User &I);
461  void visitSelect(User &I);
462
463  void visitAlloca(AllocaInst &I);
464  void visitLoad(LoadInst &I);
465  void visitStore(StoreInst &I);
466  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
467  void visitCall(CallInst &I);
468  bool visitMemCmpCall(CallInst &I);
469
470  void visitInlineAsm(CallSite CS);
471  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
472  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
473
474  void visitPow(CallInst &I);
475  void visitExp2(CallInst &I);
476  void visitExp(CallInst &I);
477  void visitLog(CallInst &I);
478  void visitLog2(CallInst &I);
479  void visitLog10(CallInst &I);
480
481  void visitVAStart(CallInst &I);
482  void visitVAArg(VAArgInst &I);
483  void visitVAEnd(CallInst &I);
484  void visitVACopy(CallInst &I);
485
486  void visitUserOp1(Instruction &I) {
487    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
488  }
489  void visitUserOp2(Instruction &I) {
490    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
491  }
492
493  const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
494  const char *implVisitAluOverflow(CallInst &I, ISD::NodeType Op);
495};
496
497} // end namespace llvm
498
499#endif
500