1193323Sed//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file implements the LatencyPriorityQueue class, which is a
11193323Sed// SchedulingPriorityQueue that schedules using latency information to
12193323Sed// reduce the length of the critical path through the basic block.
13193323Sed//
14193323Sed//===----------------------------------------------------------------------===//
15193323Sed
16193323Sed#define DEBUG_TYPE "scheduler"
17193323Sed#include "llvm/CodeGen/LatencyPriorityQueue.h"
18193323Sed#include "llvm/Support/Debug.h"
19218893Sdim#include "llvm/Support/raw_ostream.h"
20193323Sedusing namespace llvm;
21193323Sed
22193323Sedbool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
23193323Sed  // The isScheduleHigh flag allows nodes with wraparound dependencies that
24193323Sed  // cannot easily be modeled as edges with latencies to be scheduled as
25193323Sed  // soon as possible in a top-down schedule.
26193323Sed  if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
27193323Sed    return false;
28193323Sed  if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
29193323Sed    return true;
30193323Sed
31193323Sed  unsigned LHSNum = LHS->NodeNum;
32193323Sed  unsigned RHSNum = RHS->NodeNum;
33193323Sed
34193323Sed  // The most important heuristic is scheduling the critical path.
35193323Sed  unsigned LHSLatency = PQ->getLatency(LHSNum);
36193323Sed  unsigned RHSLatency = PQ->getLatency(RHSNum);
37193323Sed  if (LHSLatency < RHSLatency) return true;
38193323Sed  if (LHSLatency > RHSLatency) return false;
39218893Sdim
40193323Sed  // After that, if two nodes have identical latencies, look to see if one will
41193323Sed  // unblock more other nodes than the other.
42193323Sed  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
43193323Sed  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
44193323Sed  if (LHSBlocked < RHSBlocked) return true;
45193323Sed  if (LHSBlocked > RHSBlocked) return false;
46218893Sdim
47193323Sed  // Finally, just to provide a stable ordering, use the node number as a
48193323Sed  // deciding factor.
49234353Sdim  return RHSNum < LHSNum;
50193323Sed}
51193323Sed
52193323Sed
53193323Sed/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
54193323Sed/// of SU, return it, otherwise return null.
55193323SedSUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
56193323Sed  SUnit *OnlyAvailablePred = 0;
57193323Sed  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
58193323Sed       I != E; ++I) {
59193323Sed    SUnit &Pred = *I->getSUnit();
60193323Sed    if (!Pred.isScheduled) {
61193323Sed      // We found an available, but not scheduled, predecessor.  If it's the
62193323Sed      // only one we have found, keep track of it... otherwise give up.
63193323Sed      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
64193323Sed        return 0;
65193323Sed      OnlyAvailablePred = &Pred;
66193323Sed    }
67193323Sed  }
68218893Sdim
69193323Sed  return OnlyAvailablePred;
70193323Sed}
71193323Sed
72208599Srdivackyvoid LatencyPriorityQueue::push(SUnit *SU) {
73193323Sed  // Look at all of the successors of this node.  Count the number of nodes that
74193323Sed  // this node is the sole unscheduled node for.
75193323Sed  unsigned NumNodesBlocking = 0;
76193323Sed  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
77198892Srdivacky       I != E; ++I) {
78193323Sed    if (getSingleUnscheduledPred(I->getSUnit()) == SU)
79193323Sed      ++NumNodesBlocking;
80198892Srdivacky  }
81193323Sed  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
82218893Sdim
83208599Srdivacky  Queue.push_back(SU);
84193323Sed}
85193323Sed
86193323Sed
87234353Sdim// scheduledNode - As nodes are scheduled, we look to see if there are any
88193323Sed// successor nodes that have a single unscheduled predecessor.  If so, that
89193323Sed// single predecessor has a higher priority, since scheduling it will make
90193323Sed// the node available.
91234353Sdimvoid LatencyPriorityQueue::scheduledNode(SUnit *SU) {
92193323Sed  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
93198892Srdivacky       I != E; ++I) {
94193323Sed    AdjustPriorityOfUnscheduledPreds(I->getSUnit());
95198892Srdivacky  }
96193323Sed}
97193323Sed
98193323Sed/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
99193323Sed/// scheduled.  If SU is not itself available, then there is at least one
100193323Sed/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
101193323Sed/// unscheduled predecessor, we want to increase its priority: it getting
102193323Sed/// scheduled will make this node available, so it is better than some other
103193323Sed/// node of the same priority that will not make a node available.
104193323Sedvoid LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
105193323Sed  if (SU->isAvailable) return;  // All preds scheduled.
106218893Sdim
107193323Sed  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
108193323Sed  if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
109218893Sdim
110193323Sed  // Okay, we found a single predecessor that is available, but not scheduled.
111193323Sed  // Since it is available, it must be in the priority queue.  First remove it.
112193323Sed  remove(OnlyAvailablePred);
113193323Sed
114193323Sed  // Reinsert the node into the priority queue, which recomputes its
115193323Sed  // NumNodesSolelyBlocking value.
116193323Sed  push(OnlyAvailablePred);
117193323Sed}
118208599Srdivacky
119208599SrdivackySUnit *LatencyPriorityQueue::pop() {
120208599Srdivacky  if (empty()) return NULL;
121208599Srdivacky  std::vector<SUnit *>::iterator Best = Queue.begin();
122210299Sed  for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()),
123208599Srdivacky       E = Queue.end(); I != E; ++I)
124208599Srdivacky    if (Picker(*Best, *I))
125208599Srdivacky      Best = I;
126208599Srdivacky  SUnit *V = *Best;
127208599Srdivacky  if (Best != prior(Queue.end()))
128208599Srdivacky    std::swap(*Best, Queue.back());
129208599Srdivacky  Queue.pop_back();
130208599Srdivacky  return V;
131208599Srdivacky}
132208599Srdivacky
133208599Srdivackyvoid LatencyPriorityQueue::remove(SUnit *SU) {
134208599Srdivacky  assert(!Queue.empty() && "Queue is empty!");
135208599Srdivacky  std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
136208599Srdivacky  if (I != prior(Queue.end()))
137208599Srdivacky    std::swap(*I, Queue.back());
138208599Srdivacky  Queue.pop_back();
139208599Srdivacky}
140218893Sdim
141218893Sdim#ifdef NDEBUG
142218893Sdimvoid LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {}
143218893Sdim#else
144218893Sdimvoid LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {
145218893Sdim  LatencyPriorityQueue q = *this;
146218893Sdim  while (!q.empty()) {
147218893Sdim    SUnit *su = q.pop();
148218893Sdim    dbgs() << "Height " << su->getHeight() << ": ";
149218893Sdim    su->dump(DAG);
150218893Sdim  }
151218893Sdim}
152218893Sdim#endif
153