LLParser.cpp revision 256281
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/AutoUpgrade.h"
17#include "llvm/IR/CallingConv.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/InlineAsm.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/Module.h"
23#include "llvm/IR/Operator.h"
24#include "llvm/IR/ValueSymbolTable.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68  // Handle any function attribute group forward references.
69  for (std::map<Value*, std::vector<unsigned> >::iterator
70         I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
71         I != E; ++I) {
72    Value *V = I->first;
73    std::vector<unsigned> &Vec = I->second;
74    AttrBuilder B;
75
76    for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
77         VI != VE; ++VI)
78      B.merge(NumberedAttrBuilders[*VI]);
79
80    if (Function *Fn = dyn_cast<Function>(V)) {
81      AttributeSet AS = Fn->getAttributes();
82      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
83      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
84                               AS.getFnAttributes());
85
86      FnAttrs.merge(B);
87
88      // If the alignment was parsed as an attribute, move to the alignment
89      // field.
90      if (FnAttrs.hasAlignmentAttr()) {
91        Fn->setAlignment(FnAttrs.getAlignment());
92        FnAttrs.removeAttribute(Attribute::Alignment);
93      }
94
95      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
96                            AttributeSet::get(Context,
97                                              AttributeSet::FunctionIndex,
98                                              FnAttrs));
99      Fn->setAttributes(AS);
100    } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
101      AttributeSet AS = CI->getAttributes();
102      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
103      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
104                               AS.getFnAttributes());
105      FnAttrs.merge(B);
106      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
107                            AttributeSet::get(Context,
108                                              AttributeSet::FunctionIndex,
109                                              FnAttrs));
110      CI->setAttributes(AS);
111    } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
112      AttributeSet AS = II->getAttributes();
113      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
114      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
115                               AS.getFnAttributes());
116      FnAttrs.merge(B);
117      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
118                            AttributeSet::get(Context,
119                                              AttributeSet::FunctionIndex,
120                                              FnAttrs));
121      II->setAttributes(AS);
122    } else {
123      llvm_unreachable("invalid object with forward attribute group reference");
124    }
125  }
126
127  // If there are entries in ForwardRefBlockAddresses at this point, they are
128  // references after the function was defined.  Resolve those now.
129  while (!ForwardRefBlockAddresses.empty()) {
130    // Okay, we are referencing an already-parsed function, resolve them now.
131    Function *TheFn = 0;
132    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
133    if (Fn.Kind == ValID::t_GlobalName)
134      TheFn = M->getFunction(Fn.StrVal);
135    else if (Fn.UIntVal < NumberedVals.size())
136      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
137
138    if (TheFn == 0)
139      return Error(Fn.Loc, "unknown function referenced by blockaddress");
140
141    // Resolve all these references.
142    if (ResolveForwardRefBlockAddresses(TheFn,
143                                      ForwardRefBlockAddresses.begin()->second,
144                                        0))
145      return true;
146
147    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
148  }
149
150  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
151    if (NumberedTypes[i].second.isValid())
152      return Error(NumberedTypes[i].second,
153                   "use of undefined type '%" + Twine(i) + "'");
154
155  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157    if (I->second.second.isValid())
158      return Error(I->second.second,
159                   "use of undefined type named '" + I->getKey() + "'");
160
161  if (!ForwardRefVals.empty())
162    return Error(ForwardRefVals.begin()->second.second,
163                 "use of undefined value '@" + ForwardRefVals.begin()->first +
164                 "'");
165
166  if (!ForwardRefValIDs.empty())
167    return Error(ForwardRefValIDs.begin()->second.second,
168                 "use of undefined value '@" +
169                 Twine(ForwardRefValIDs.begin()->first) + "'");
170
171  if (!ForwardRefMDNodes.empty())
172    return Error(ForwardRefMDNodes.begin()->second.second,
173                 "use of undefined metadata '!" +
174                 Twine(ForwardRefMDNodes.begin()->first) + "'");
175
176
177  // Look for intrinsic functions and CallInst that need to be upgraded
178  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
179    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
180
181  return false;
182}
183
184bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
185                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
186                                               PerFunctionState *PFS) {
187  // Loop over all the references, resolving them.
188  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
189    BasicBlock *Res;
190    if (PFS) {
191      if (Refs[i].first.Kind == ValID::t_LocalName)
192        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
193      else
194        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
195    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
196      return Error(Refs[i].first.Loc,
197       "cannot take address of numeric label after the function is defined");
198    } else {
199      Res = dyn_cast_or_null<BasicBlock>(
200                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
201    }
202
203    if (Res == 0)
204      return Error(Refs[i].first.Loc,
205                   "referenced value is not a basic block");
206
207    // Get the BlockAddress for this and update references to use it.
208    BlockAddress *BA = BlockAddress::get(TheFn, Res);
209    Refs[i].second->replaceAllUsesWith(BA);
210    Refs[i].second->eraseFromParent();
211  }
212  return false;
213}
214
215
216//===----------------------------------------------------------------------===//
217// Top-Level Entities
218//===----------------------------------------------------------------------===//
219
220bool LLParser::ParseTopLevelEntities() {
221  while (1) {
222    switch (Lex.getKind()) {
223    default:         return TokError("expected top-level entity");
224    case lltok::Eof: return false;
225    case lltok::kw_declare: if (ParseDeclare()) return true; break;
226    case lltok::kw_define:  if (ParseDefine()) return true; break;
227    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
228    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
229    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
230    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
231    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
232    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
233    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
234    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
235    case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
236
237    // The Global variable production with no name can have many different
238    // optional leading prefixes, the production is:
239    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
240    //               OptionalAddrSpace OptionalUnNammedAddr
241    //               ('constant'|'global') ...
242    case lltok::kw_private:             // OptionalLinkage
243    case lltok::kw_linker_private:      // OptionalLinkage
244    case lltok::kw_linker_private_weak: // OptionalLinkage
245    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
246    case lltok::kw_internal:            // OptionalLinkage
247    case lltok::kw_weak:                // OptionalLinkage
248    case lltok::kw_weak_odr:            // OptionalLinkage
249    case lltok::kw_linkonce:            // OptionalLinkage
250    case lltok::kw_linkonce_odr:        // OptionalLinkage
251    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
252    case lltok::kw_appending:           // OptionalLinkage
253    case lltok::kw_dllexport:           // OptionalLinkage
254    case lltok::kw_common:              // OptionalLinkage
255    case lltok::kw_dllimport:           // OptionalLinkage
256    case lltok::kw_extern_weak:         // OptionalLinkage
257    case lltok::kw_external: {          // OptionalLinkage
258      unsigned Linkage, Visibility;
259      if (ParseOptionalLinkage(Linkage) ||
260          ParseOptionalVisibility(Visibility) ||
261          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
262        return true;
263      break;
264    }
265    case lltok::kw_default:       // OptionalVisibility
266    case lltok::kw_hidden:        // OptionalVisibility
267    case lltok::kw_protected: {   // OptionalVisibility
268      unsigned Visibility;
269      if (ParseOptionalVisibility(Visibility) ||
270          ParseGlobal("", SMLoc(), 0, false, Visibility))
271        return true;
272      break;
273    }
274
275    case lltok::kw_thread_local:  // OptionalThreadLocal
276    case lltok::kw_addrspace:     // OptionalAddrSpace
277    case lltok::kw_constant:      // GlobalType
278    case lltok::kw_global:        // GlobalType
279      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
280      break;
281
282    case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
283    }
284  }
285}
286
287
288/// toplevelentity
289///   ::= 'module' 'asm' STRINGCONSTANT
290bool LLParser::ParseModuleAsm() {
291  assert(Lex.getKind() == lltok::kw_module);
292  Lex.Lex();
293
294  std::string AsmStr;
295  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
296      ParseStringConstant(AsmStr)) return true;
297
298  M->appendModuleInlineAsm(AsmStr);
299  return false;
300}
301
302/// toplevelentity
303///   ::= 'target' 'triple' '=' STRINGCONSTANT
304///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
305bool LLParser::ParseTargetDefinition() {
306  assert(Lex.getKind() == lltok::kw_target);
307  std::string Str;
308  switch (Lex.Lex()) {
309  default: return TokError("unknown target property");
310  case lltok::kw_triple:
311    Lex.Lex();
312    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
313        ParseStringConstant(Str))
314      return true;
315    M->setTargetTriple(Str);
316    return false;
317  case lltok::kw_datalayout:
318    Lex.Lex();
319    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
320        ParseStringConstant(Str))
321      return true;
322    M->setDataLayout(Str);
323    return false;
324  }
325}
326
327/// toplevelentity
328///   ::= 'deplibs' '=' '[' ']'
329///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
330/// FIXME: Remove in 4.0. Currently parse, but ignore.
331bool LLParser::ParseDepLibs() {
332  assert(Lex.getKind() == lltok::kw_deplibs);
333  Lex.Lex();
334  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
335      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
336    return true;
337
338  if (EatIfPresent(lltok::rsquare))
339    return false;
340
341  do {
342    std::string Str;
343    if (ParseStringConstant(Str)) return true;
344  } while (EatIfPresent(lltok::comma));
345
346  return ParseToken(lltok::rsquare, "expected ']' at end of list");
347}
348
349/// ParseUnnamedType:
350///   ::= LocalVarID '=' 'type' type
351bool LLParser::ParseUnnamedType() {
352  LocTy TypeLoc = Lex.getLoc();
353  unsigned TypeID = Lex.getUIntVal();
354  Lex.Lex(); // eat LocalVarID;
355
356  if (ParseToken(lltok::equal, "expected '=' after name") ||
357      ParseToken(lltok::kw_type, "expected 'type' after '='"))
358    return true;
359
360  if (TypeID >= NumberedTypes.size())
361    NumberedTypes.resize(TypeID+1);
362
363  Type *Result = 0;
364  if (ParseStructDefinition(TypeLoc, "",
365                            NumberedTypes[TypeID], Result)) return true;
366
367  if (!isa<StructType>(Result)) {
368    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
369    if (Entry.first)
370      return Error(TypeLoc, "non-struct types may not be recursive");
371    Entry.first = Result;
372    Entry.second = SMLoc();
373  }
374
375  return false;
376}
377
378
379/// toplevelentity
380///   ::= LocalVar '=' 'type' type
381bool LLParser::ParseNamedType() {
382  std::string Name = Lex.getStrVal();
383  LocTy NameLoc = Lex.getLoc();
384  Lex.Lex();  // eat LocalVar.
385
386  if (ParseToken(lltok::equal, "expected '=' after name") ||
387      ParseToken(lltok::kw_type, "expected 'type' after name"))
388    return true;
389
390  Type *Result = 0;
391  if (ParseStructDefinition(NameLoc, Name,
392                            NamedTypes[Name], Result)) return true;
393
394  if (!isa<StructType>(Result)) {
395    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
396    if (Entry.first)
397      return Error(NameLoc, "non-struct types may not be recursive");
398    Entry.first = Result;
399    Entry.second = SMLoc();
400  }
401
402  return false;
403}
404
405
406/// toplevelentity
407///   ::= 'declare' FunctionHeader
408bool LLParser::ParseDeclare() {
409  assert(Lex.getKind() == lltok::kw_declare);
410  Lex.Lex();
411
412  Function *F;
413  return ParseFunctionHeader(F, false);
414}
415
416/// toplevelentity
417///   ::= 'define' FunctionHeader '{' ...
418bool LLParser::ParseDefine() {
419  assert(Lex.getKind() == lltok::kw_define);
420  Lex.Lex();
421
422  Function *F;
423  return ParseFunctionHeader(F, true) ||
424         ParseFunctionBody(*F);
425}
426
427/// ParseGlobalType
428///   ::= 'constant'
429///   ::= 'global'
430bool LLParser::ParseGlobalType(bool &IsConstant) {
431  if (Lex.getKind() == lltok::kw_constant)
432    IsConstant = true;
433  else if (Lex.getKind() == lltok::kw_global)
434    IsConstant = false;
435  else {
436    IsConstant = false;
437    return TokError("expected 'global' or 'constant'");
438  }
439  Lex.Lex();
440  return false;
441}
442
443/// ParseUnnamedGlobal:
444///   OptionalVisibility ALIAS ...
445///   OptionalLinkage OptionalVisibility ...   -> global variable
446///   GlobalID '=' OptionalVisibility ALIAS ...
447///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
448bool LLParser::ParseUnnamedGlobal() {
449  unsigned VarID = NumberedVals.size();
450  std::string Name;
451  LocTy NameLoc = Lex.getLoc();
452
453  // Handle the GlobalID form.
454  if (Lex.getKind() == lltok::GlobalID) {
455    if (Lex.getUIntVal() != VarID)
456      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
457                   Twine(VarID) + "'");
458    Lex.Lex(); // eat GlobalID;
459
460    if (ParseToken(lltok::equal, "expected '=' after name"))
461      return true;
462  }
463
464  bool HasLinkage;
465  unsigned Linkage, Visibility;
466  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
467      ParseOptionalVisibility(Visibility))
468    return true;
469
470  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
471    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
472  return ParseAlias(Name, NameLoc, Visibility);
473}
474
475/// ParseNamedGlobal:
476///   GlobalVar '=' OptionalVisibility ALIAS ...
477///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
478bool LLParser::ParseNamedGlobal() {
479  assert(Lex.getKind() == lltok::GlobalVar);
480  LocTy NameLoc = Lex.getLoc();
481  std::string Name = Lex.getStrVal();
482  Lex.Lex();
483
484  bool HasLinkage;
485  unsigned Linkage, Visibility;
486  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487      ParseOptionalLinkage(Linkage, HasLinkage) ||
488      ParseOptionalVisibility(Visibility))
489    return true;
490
491  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
492    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
493  return ParseAlias(Name, NameLoc, Visibility);
494}
495
496// MDString:
497//   ::= '!' STRINGCONSTANT
498bool LLParser::ParseMDString(MDString *&Result) {
499  std::string Str;
500  if (ParseStringConstant(Str)) return true;
501  Result = MDString::get(Context, Str);
502  return false;
503}
504
505// MDNode:
506//   ::= '!' MDNodeNumber
507//
508/// This version of ParseMDNodeID returns the slot number and null in the case
509/// of a forward reference.
510bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
511  // !{ ..., !42, ... }
512  if (ParseUInt32(SlotNo)) return true;
513
514  // Check existing MDNode.
515  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
516    Result = NumberedMetadata[SlotNo];
517  else
518    Result = 0;
519  return false;
520}
521
522bool LLParser::ParseMDNodeID(MDNode *&Result) {
523  // !{ ..., !42, ... }
524  unsigned MID = 0;
525  if (ParseMDNodeID(Result, MID)) return true;
526
527  // If not a forward reference, just return it now.
528  if (Result) return false;
529
530  // Otherwise, create MDNode forward reference.
531  MDNode *FwdNode = MDNode::getTemporary(Context, None);
532  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
533
534  if (NumberedMetadata.size() <= MID)
535    NumberedMetadata.resize(MID+1);
536  NumberedMetadata[MID] = FwdNode;
537  Result = FwdNode;
538  return false;
539}
540
541/// ParseNamedMetadata:
542///   !foo = !{ !1, !2 }
543bool LLParser::ParseNamedMetadata() {
544  assert(Lex.getKind() == lltok::MetadataVar);
545  std::string Name = Lex.getStrVal();
546  Lex.Lex();
547
548  if (ParseToken(lltok::equal, "expected '=' here") ||
549      ParseToken(lltok::exclaim, "Expected '!' here") ||
550      ParseToken(lltok::lbrace, "Expected '{' here"))
551    return true;
552
553  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
554  if (Lex.getKind() != lltok::rbrace)
555    do {
556      if (ParseToken(lltok::exclaim, "Expected '!' here"))
557        return true;
558
559      MDNode *N = 0;
560      if (ParseMDNodeID(N)) return true;
561      NMD->addOperand(N);
562    } while (EatIfPresent(lltok::comma));
563
564  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
565    return true;
566
567  return false;
568}
569
570/// ParseStandaloneMetadata:
571///   !42 = !{...}
572bool LLParser::ParseStandaloneMetadata() {
573  assert(Lex.getKind() == lltok::exclaim);
574  Lex.Lex();
575  unsigned MetadataID = 0;
576
577  LocTy TyLoc;
578  Type *Ty = 0;
579  SmallVector<Value *, 16> Elts;
580  if (ParseUInt32(MetadataID) ||
581      ParseToken(lltok::equal, "expected '=' here") ||
582      ParseType(Ty, TyLoc) ||
583      ParseToken(lltok::exclaim, "Expected '!' here") ||
584      ParseToken(lltok::lbrace, "Expected '{' here") ||
585      ParseMDNodeVector(Elts, NULL) ||
586      ParseToken(lltok::rbrace, "expected end of metadata node"))
587    return true;
588
589  MDNode *Init = MDNode::get(Context, Elts);
590
591  // See if this was forward referenced, if so, handle it.
592  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593    FI = ForwardRefMDNodes.find(MetadataID);
594  if (FI != ForwardRefMDNodes.end()) {
595    MDNode *Temp = FI->second.first;
596    Temp->replaceAllUsesWith(Init);
597    MDNode::deleteTemporary(Temp);
598    ForwardRefMDNodes.erase(FI);
599
600    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
601  } else {
602    if (MetadataID >= NumberedMetadata.size())
603      NumberedMetadata.resize(MetadataID+1);
604
605    if (NumberedMetadata[MetadataID] != 0)
606      return TokError("Metadata id is already used");
607    NumberedMetadata[MetadataID] = Init;
608  }
609
610  return false;
611}
612
613/// ParseAlias:
614///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615/// Aliasee
616///   ::= TypeAndValue
617///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
619///
620/// Everything through visibility has already been parsed.
621///
622bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623                          unsigned Visibility) {
624  assert(Lex.getKind() == lltok::kw_alias);
625  Lex.Lex();
626  unsigned Linkage;
627  LocTy LinkageLoc = Lex.getLoc();
628  if (ParseOptionalLinkage(Linkage))
629    return true;
630
631  if (Linkage != GlobalValue::ExternalLinkage &&
632      Linkage != GlobalValue::WeakAnyLinkage &&
633      Linkage != GlobalValue::WeakODRLinkage &&
634      Linkage != GlobalValue::InternalLinkage &&
635      Linkage != GlobalValue::PrivateLinkage &&
636      Linkage != GlobalValue::LinkerPrivateLinkage &&
637      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
638    return Error(LinkageLoc, "invalid linkage type for alias");
639
640  Constant *Aliasee;
641  LocTy AliaseeLoc = Lex.getLoc();
642  if (Lex.getKind() != lltok::kw_bitcast &&
643      Lex.getKind() != lltok::kw_getelementptr) {
644    if (ParseGlobalTypeAndValue(Aliasee)) return true;
645  } else {
646    // The bitcast dest type is not present, it is implied by the dest type.
647    ValID ID;
648    if (ParseValID(ID)) return true;
649    if (ID.Kind != ValID::t_Constant)
650      return Error(AliaseeLoc, "invalid aliasee");
651    Aliasee = ID.ConstantVal;
652  }
653
654  if (!Aliasee->getType()->isPointerTy())
655    return Error(AliaseeLoc, "alias must have pointer type");
656
657  // Okay, create the alias but do not insert it into the module yet.
658  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659                                    (GlobalValue::LinkageTypes)Linkage, Name,
660                                    Aliasee);
661  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663  // See if this value already exists in the symbol table.  If so, it is either
664  // a redefinition or a definition of a forward reference.
665  if (GlobalValue *Val = M->getNamedValue(Name)) {
666    // See if this was a redefinition.  If so, there is no entry in
667    // ForwardRefVals.
668    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669      I = ForwardRefVals.find(Name);
670    if (I == ForwardRefVals.end())
671      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673    // Otherwise, this was a definition of forward ref.  Verify that types
674    // agree.
675    if (Val->getType() != GA->getType())
676      return Error(NameLoc,
677              "forward reference and definition of alias have different types");
678
679    // If they agree, just RAUW the old value with the alias and remove the
680    // forward ref info.
681    Val->replaceAllUsesWith(GA);
682    Val->eraseFromParent();
683    ForwardRefVals.erase(I);
684  }
685
686  // Insert into the module, we know its name won't collide now.
687  M->getAliasList().push_back(GA);
688  assert(GA->getName() == Name && "Should not be a name conflict!");
689
690  return false;
691}
692
693/// ParseGlobal
694///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695///       OptionalAddrSpace OptionalUnNammedAddr
696///       OptionalExternallyInitialized GlobalType Type Const
697///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698///       OptionalAddrSpace OptionalUnNammedAddr
699///       OptionalExternallyInitialized GlobalType Type Const
700///
701/// Everything through visibility has been parsed already.
702///
703bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704                           unsigned Linkage, bool HasLinkage,
705                           unsigned Visibility) {
706  unsigned AddrSpace;
707  bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708  GlobalVariable::ThreadLocalMode TLM;
709  LocTy UnnamedAddrLoc;
710  LocTy IsExternallyInitializedLoc;
711  LocTy TyLoc;
712
713  Type *Ty = 0;
714  if (ParseOptionalThreadLocal(TLM) ||
715      ParseOptionalAddrSpace(AddrSpace) ||
716      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717                         &UnnamedAddrLoc) ||
718      ParseOptionalToken(lltok::kw_externally_initialized,
719                         IsExternallyInitialized,
720                         &IsExternallyInitializedLoc) ||
721      ParseGlobalType(IsConstant) ||
722      ParseType(Ty, TyLoc))
723    return true;
724
725  // If the linkage is specified and is external, then no initializer is
726  // present.
727  Constant *Init = 0;
728  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729                      Linkage != GlobalValue::ExternalWeakLinkage &&
730                      Linkage != GlobalValue::ExternalLinkage)) {
731    if (ParseGlobalValue(Ty, Init))
732      return true;
733  }
734
735  if (Ty->isFunctionTy() || Ty->isLabelTy())
736    return Error(TyLoc, "invalid type for global variable");
737
738  GlobalVariable *GV = 0;
739
740  // See if the global was forward referenced, if so, use the global.
741  if (!Name.empty()) {
742    if (GlobalValue *GVal = M->getNamedValue(Name)) {
743      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744        return Error(NameLoc, "redefinition of global '@" + Name + "'");
745      GV = cast<GlobalVariable>(GVal);
746    }
747  } else {
748    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749      I = ForwardRefValIDs.find(NumberedVals.size());
750    if (I != ForwardRefValIDs.end()) {
751      GV = cast<GlobalVariable>(I->second.first);
752      ForwardRefValIDs.erase(I);
753    }
754  }
755
756  if (GV == 0) {
757    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758                            Name, 0, GlobalVariable::NotThreadLocal,
759                            AddrSpace);
760  } else {
761    if (GV->getType()->getElementType() != Ty)
762      return Error(TyLoc,
763            "forward reference and definition of global have different types");
764
765    // Move the forward-reference to the correct spot in the module.
766    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767  }
768
769  if (Name.empty())
770    NumberedVals.push_back(GV);
771
772  // Set the parsed properties on the global.
773  if (Init)
774    GV->setInitializer(Init);
775  GV->setConstant(IsConstant);
776  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778  GV->setExternallyInitialized(IsExternallyInitialized);
779  GV->setThreadLocalMode(TLM);
780  GV->setUnnamedAddr(UnnamedAddr);
781
782  // Parse attributes on the global.
783  while (Lex.getKind() == lltok::comma) {
784    Lex.Lex();
785
786    if (Lex.getKind() == lltok::kw_section) {
787      Lex.Lex();
788      GV->setSection(Lex.getStrVal());
789      if (ParseToken(lltok::StringConstant, "expected global section string"))
790        return true;
791    } else if (Lex.getKind() == lltok::kw_align) {
792      unsigned Alignment;
793      if (ParseOptionalAlignment(Alignment)) return true;
794      GV->setAlignment(Alignment);
795    } else {
796      TokError("unknown global variable property!");
797    }
798  }
799
800  return false;
801}
802
803/// ParseUnnamedAttrGrp
804///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
805bool LLParser::ParseUnnamedAttrGrp() {
806  assert(Lex.getKind() == lltok::kw_attributes);
807  LocTy AttrGrpLoc = Lex.getLoc();
808  Lex.Lex();
809
810  assert(Lex.getKind() == lltok::AttrGrpID);
811  unsigned VarID = Lex.getUIntVal();
812  std::vector<unsigned> unused;
813  LocTy NoBuiltinLoc;
814  Lex.Lex();
815
816  if (ParseToken(lltok::equal, "expected '=' here") ||
817      ParseToken(lltok::lbrace, "expected '{' here") ||
818      ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819                                 NoBuiltinLoc) ||
820      ParseToken(lltok::rbrace, "expected end of attribute group"))
821    return true;
822
823  if (!NumberedAttrBuilders[VarID].hasAttributes())
824    return Error(AttrGrpLoc, "attribute group has no attributes");
825
826  return false;
827}
828
829/// ParseFnAttributeValuePairs
830///   ::= <attr> | <attr> '=' <value>
831bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832                                          std::vector<unsigned> &FwdRefAttrGrps,
833                                          bool inAttrGrp, LocTy &NoBuiltinLoc) {
834  bool HaveError = false;
835
836  B.clear();
837
838  while (true) {
839    lltok::Kind Token = Lex.getKind();
840    if (Token == lltok::kw_nobuiltin)
841      NoBuiltinLoc = Lex.getLoc();
842    switch (Token) {
843    default:
844      if (!inAttrGrp) return HaveError;
845      return Error(Lex.getLoc(), "unterminated attribute group");
846    case lltok::rbrace:
847      // Finished.
848      return false;
849
850    case lltok::AttrGrpID: {
851      // Allow a function to reference an attribute group:
852      //
853      //   define void @foo() #1 { ... }
854      if (inAttrGrp)
855        HaveError |=
856          Error(Lex.getLoc(),
857              "cannot have an attribute group reference in an attribute group");
858
859      unsigned AttrGrpNum = Lex.getUIntVal();
860      if (inAttrGrp) break;
861
862      // Save the reference to the attribute group. We'll fill it in later.
863      FwdRefAttrGrps.push_back(AttrGrpNum);
864      break;
865    }
866    // Target-dependent attributes:
867    case lltok::StringConstant: {
868      std::string Attr = Lex.getStrVal();
869      Lex.Lex();
870      std::string Val;
871      if (EatIfPresent(lltok::equal) &&
872          ParseStringConstant(Val))
873        return true;
874
875      B.addAttribute(Attr, Val);
876      continue;
877    }
878
879    // Target-independent attributes:
880    case lltok::kw_align: {
881      // As a hack, we allow function alignment to be initially parsed as an
882      // attribute on a function declaration/definition or added to an attribute
883      // group and later moved to the alignment field.
884      unsigned Alignment;
885      if (inAttrGrp) {
886        Lex.Lex();
887        if (ParseToken(lltok::equal, "expected '=' here") ||
888            ParseUInt32(Alignment))
889          return true;
890      } else {
891        if (ParseOptionalAlignment(Alignment))
892          return true;
893      }
894      B.addAlignmentAttr(Alignment);
895      continue;
896    }
897    case lltok::kw_alignstack: {
898      unsigned Alignment;
899      if (inAttrGrp) {
900        Lex.Lex();
901        if (ParseToken(lltok::equal, "expected '=' here") ||
902            ParseUInt32(Alignment))
903          return true;
904      } else {
905        if (ParseOptionalStackAlignment(Alignment))
906          return true;
907      }
908      B.addStackAlignmentAttr(Alignment);
909      continue;
910    }
911    case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
912    case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
913    case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
914    case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
915    case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
916    case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
917    case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
918    case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
919    case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
920    case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
921    case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
922    case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
923    case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
924    case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
925    case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
926    case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
927    case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
928    case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
929    case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
930    case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
931    case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
932    case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
933    case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
934
935    // Error handling.
936    case lltok::kw_inreg:
937    case lltok::kw_signext:
938    case lltok::kw_zeroext:
939      HaveError |=
940        Error(Lex.getLoc(),
941              "invalid use of attribute on a function");
942      break;
943    case lltok::kw_byval:
944    case lltok::kw_nest:
945    case lltok::kw_noalias:
946    case lltok::kw_nocapture:
947    case lltok::kw_returned:
948    case lltok::kw_sret:
949      HaveError |=
950        Error(Lex.getLoc(),
951              "invalid use of parameter-only attribute on a function");
952      break;
953    }
954
955    Lex.Lex();
956  }
957}
958
959//===----------------------------------------------------------------------===//
960// GlobalValue Reference/Resolution Routines.
961//===----------------------------------------------------------------------===//
962
963/// GetGlobalVal - Get a value with the specified name or ID, creating a
964/// forward reference record if needed.  This can return null if the value
965/// exists but does not have the right type.
966GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
967                                    LocTy Loc) {
968  PointerType *PTy = dyn_cast<PointerType>(Ty);
969  if (PTy == 0) {
970    Error(Loc, "global variable reference must have pointer type");
971    return 0;
972  }
973
974  // Look this name up in the normal function symbol table.
975  GlobalValue *Val =
976    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
977
978  // If this is a forward reference for the value, see if we already created a
979  // forward ref record.
980  if (Val == 0) {
981    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
982      I = ForwardRefVals.find(Name);
983    if (I != ForwardRefVals.end())
984      Val = I->second.first;
985  }
986
987  // If we have the value in the symbol table or fwd-ref table, return it.
988  if (Val) {
989    if (Val->getType() == Ty) return Val;
990    Error(Loc, "'@" + Name + "' defined with type '" +
991          getTypeString(Val->getType()) + "'");
992    return 0;
993  }
994
995  // Otherwise, create a new forward reference for this value and remember it.
996  GlobalValue *FwdVal;
997  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
998    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
999  else
1000    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1001                                GlobalValue::ExternalWeakLinkage, 0, Name,
1002                                0, GlobalVariable::NotThreadLocal,
1003                                PTy->getAddressSpace());
1004
1005  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1006  return FwdVal;
1007}
1008
1009GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1010  PointerType *PTy = dyn_cast<PointerType>(Ty);
1011  if (PTy == 0) {
1012    Error(Loc, "global variable reference must have pointer type");
1013    return 0;
1014  }
1015
1016  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1017
1018  // If this is a forward reference for the value, see if we already created a
1019  // forward ref record.
1020  if (Val == 0) {
1021    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1022      I = ForwardRefValIDs.find(ID);
1023    if (I != ForwardRefValIDs.end())
1024      Val = I->second.first;
1025  }
1026
1027  // If we have the value in the symbol table or fwd-ref table, return it.
1028  if (Val) {
1029    if (Val->getType() == Ty) return Val;
1030    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1031          getTypeString(Val->getType()) + "'");
1032    return 0;
1033  }
1034
1035  // Otherwise, create a new forward reference for this value and remember it.
1036  GlobalValue *FwdVal;
1037  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1038    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1039  else
1040    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1041                                GlobalValue::ExternalWeakLinkage, 0, "");
1042
1043  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1044  return FwdVal;
1045}
1046
1047
1048//===----------------------------------------------------------------------===//
1049// Helper Routines.
1050//===----------------------------------------------------------------------===//
1051
1052/// ParseToken - If the current token has the specified kind, eat it and return
1053/// success.  Otherwise, emit the specified error and return failure.
1054bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1055  if (Lex.getKind() != T)
1056    return TokError(ErrMsg);
1057  Lex.Lex();
1058  return false;
1059}
1060
1061/// ParseStringConstant
1062///   ::= StringConstant
1063bool LLParser::ParseStringConstant(std::string &Result) {
1064  if (Lex.getKind() != lltok::StringConstant)
1065    return TokError("expected string constant");
1066  Result = Lex.getStrVal();
1067  Lex.Lex();
1068  return false;
1069}
1070
1071/// ParseUInt32
1072///   ::= uint32
1073bool LLParser::ParseUInt32(unsigned &Val) {
1074  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1075    return TokError("expected integer");
1076  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1077  if (Val64 != unsigned(Val64))
1078    return TokError("expected 32-bit integer (too large)");
1079  Val = Val64;
1080  Lex.Lex();
1081  return false;
1082}
1083
1084/// ParseTLSModel
1085///   := 'localdynamic'
1086///   := 'initialexec'
1087///   := 'localexec'
1088bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1089  switch (Lex.getKind()) {
1090    default:
1091      return TokError("expected localdynamic, initialexec or localexec");
1092    case lltok::kw_localdynamic:
1093      TLM = GlobalVariable::LocalDynamicTLSModel;
1094      break;
1095    case lltok::kw_initialexec:
1096      TLM = GlobalVariable::InitialExecTLSModel;
1097      break;
1098    case lltok::kw_localexec:
1099      TLM = GlobalVariable::LocalExecTLSModel;
1100      break;
1101  }
1102
1103  Lex.Lex();
1104  return false;
1105}
1106
1107/// ParseOptionalThreadLocal
1108///   := /*empty*/
1109///   := 'thread_local'
1110///   := 'thread_local' '(' tlsmodel ')'
1111bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1112  TLM = GlobalVariable::NotThreadLocal;
1113  if (!EatIfPresent(lltok::kw_thread_local))
1114    return false;
1115
1116  TLM = GlobalVariable::GeneralDynamicTLSModel;
1117  if (Lex.getKind() == lltok::lparen) {
1118    Lex.Lex();
1119    return ParseTLSModel(TLM) ||
1120      ParseToken(lltok::rparen, "expected ')' after thread local model");
1121  }
1122  return false;
1123}
1124
1125/// ParseOptionalAddrSpace
1126///   := /*empty*/
1127///   := 'addrspace' '(' uint32 ')'
1128bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1129  AddrSpace = 0;
1130  if (!EatIfPresent(lltok::kw_addrspace))
1131    return false;
1132  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1133         ParseUInt32(AddrSpace) ||
1134         ParseToken(lltok::rparen, "expected ')' in address space");
1135}
1136
1137/// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1138bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1139  bool HaveError = false;
1140
1141  B.clear();
1142
1143  while (1) {
1144    lltok::Kind Token = Lex.getKind();
1145    switch (Token) {
1146    default:  // End of attributes.
1147      return HaveError;
1148    case lltok::kw_align: {
1149      unsigned Alignment;
1150      if (ParseOptionalAlignment(Alignment))
1151        return true;
1152      B.addAlignmentAttr(Alignment);
1153      continue;
1154    }
1155    case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1156    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1157    case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1158    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1159    case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1160    case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1161    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1162    case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1163    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1164
1165    case lltok::kw_alignstack:
1166    case lltok::kw_alwaysinline:
1167    case lltok::kw_inlinehint:
1168    case lltok::kw_minsize:
1169    case lltok::kw_naked:
1170    case lltok::kw_nobuiltin:
1171    case lltok::kw_noduplicate:
1172    case lltok::kw_noimplicitfloat:
1173    case lltok::kw_noinline:
1174    case lltok::kw_nonlazybind:
1175    case lltok::kw_noredzone:
1176    case lltok::kw_noreturn:
1177    case lltok::kw_nounwind:
1178    case lltok::kw_optsize:
1179    case lltok::kw_readnone:
1180    case lltok::kw_readonly:
1181    case lltok::kw_returns_twice:
1182    case lltok::kw_sanitize_address:
1183    case lltok::kw_sanitize_memory:
1184    case lltok::kw_sanitize_thread:
1185    case lltok::kw_ssp:
1186    case lltok::kw_sspreq:
1187    case lltok::kw_sspstrong:
1188    case lltok::kw_uwtable:
1189      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1190      break;
1191    }
1192
1193    Lex.Lex();
1194  }
1195}
1196
1197/// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1198bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1199  bool HaveError = false;
1200
1201  B.clear();
1202
1203  while (1) {
1204    lltok::Kind Token = Lex.getKind();
1205    switch (Token) {
1206    default:  // End of attributes.
1207      return HaveError;
1208    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1209    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1210    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1211    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1212
1213    // Error handling.
1214    case lltok::kw_align:
1215    case lltok::kw_byval:
1216    case lltok::kw_nest:
1217    case lltok::kw_nocapture:
1218    case lltok::kw_returned:
1219    case lltok::kw_sret:
1220      HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1221      break;
1222
1223    case lltok::kw_alignstack:
1224    case lltok::kw_alwaysinline:
1225    case lltok::kw_inlinehint:
1226    case lltok::kw_minsize:
1227    case lltok::kw_naked:
1228    case lltok::kw_nobuiltin:
1229    case lltok::kw_noduplicate:
1230    case lltok::kw_noimplicitfloat:
1231    case lltok::kw_noinline:
1232    case lltok::kw_nonlazybind:
1233    case lltok::kw_noredzone:
1234    case lltok::kw_noreturn:
1235    case lltok::kw_nounwind:
1236    case lltok::kw_optsize:
1237    case lltok::kw_readnone:
1238    case lltok::kw_readonly:
1239    case lltok::kw_returns_twice:
1240    case lltok::kw_sanitize_address:
1241    case lltok::kw_sanitize_memory:
1242    case lltok::kw_sanitize_thread:
1243    case lltok::kw_ssp:
1244    case lltok::kw_sspreq:
1245    case lltok::kw_sspstrong:
1246    case lltok::kw_uwtable:
1247      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1248      break;
1249    }
1250
1251    Lex.Lex();
1252  }
1253}
1254
1255/// ParseOptionalLinkage
1256///   ::= /*empty*/
1257///   ::= 'private'
1258///   ::= 'linker_private'
1259///   ::= 'linker_private_weak'
1260///   ::= 'internal'
1261///   ::= 'weak'
1262///   ::= 'weak_odr'
1263///   ::= 'linkonce'
1264///   ::= 'linkonce_odr'
1265///   ::= 'linkonce_odr_auto_hide'
1266///   ::= 'available_externally'
1267///   ::= 'appending'
1268///   ::= 'dllexport'
1269///   ::= 'common'
1270///   ::= 'dllimport'
1271///   ::= 'extern_weak'
1272///   ::= 'external'
1273bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1274  HasLinkage = false;
1275  switch (Lex.getKind()) {
1276  default:                       Res=GlobalValue::ExternalLinkage; return false;
1277  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1278  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1279  case lltok::kw_linker_private_weak:
1280    Res = GlobalValue::LinkerPrivateWeakLinkage;
1281    break;
1282  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1283  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1284  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1285  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1286  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1287  case lltok::kw_linkonce_odr_auto_hide:
1288  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1289    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1290    break;
1291  case lltok::kw_available_externally:
1292    Res = GlobalValue::AvailableExternallyLinkage;
1293    break;
1294  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1295  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1296  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1297  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1298  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1299  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1300  }
1301  Lex.Lex();
1302  HasLinkage = true;
1303  return false;
1304}
1305
1306/// ParseOptionalVisibility
1307///   ::= /*empty*/
1308///   ::= 'default'
1309///   ::= 'hidden'
1310///   ::= 'protected'
1311///
1312bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1313  switch (Lex.getKind()) {
1314  default:                  Res = GlobalValue::DefaultVisibility; return false;
1315  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1316  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1317  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1318  }
1319  Lex.Lex();
1320  return false;
1321}
1322
1323/// ParseOptionalCallingConv
1324///   ::= /*empty*/
1325///   ::= 'ccc'
1326///   ::= 'fastcc'
1327///   ::= 'kw_intel_ocl_bicc'
1328///   ::= 'coldcc'
1329///   ::= 'x86_stdcallcc'
1330///   ::= 'x86_fastcallcc'
1331///   ::= 'x86_thiscallcc'
1332///   ::= 'arm_apcscc'
1333///   ::= 'arm_aapcscc'
1334///   ::= 'arm_aapcs_vfpcc'
1335///   ::= 'msp430_intrcc'
1336///   ::= 'ptx_kernel'
1337///   ::= 'ptx_device'
1338///   ::= 'spir_func'
1339///   ::= 'spir_kernel'
1340///   ::= 'x86_64_sysvcc'
1341///   ::= 'x86_64_win64cc'
1342///   ::= 'cc' UINT
1343///
1344bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1345  switch (Lex.getKind()) {
1346  default:                       CC = CallingConv::C; return false;
1347  case lltok::kw_ccc:            CC = CallingConv::C; break;
1348  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1349  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1350  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1351  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1352  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1353  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1354  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1355  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1356  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1357  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1358  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1359  case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1360  case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1361  case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1362  case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1363  case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1364  case lltok::kw_cc: {
1365      unsigned ArbitraryCC;
1366      Lex.Lex();
1367      if (ParseUInt32(ArbitraryCC))
1368        return true;
1369      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1370      return false;
1371    }
1372  }
1373
1374  Lex.Lex();
1375  return false;
1376}
1377
1378/// ParseInstructionMetadata
1379///   ::= !dbg !42 (',' !dbg !57)*
1380bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1381                                        PerFunctionState *PFS) {
1382  do {
1383    if (Lex.getKind() != lltok::MetadataVar)
1384      return TokError("expected metadata after comma");
1385
1386    std::string Name = Lex.getStrVal();
1387    unsigned MDK = M->getMDKindID(Name);
1388    Lex.Lex();
1389
1390    MDNode *Node;
1391    SMLoc Loc = Lex.getLoc();
1392
1393    if (ParseToken(lltok::exclaim, "expected '!' here"))
1394      return true;
1395
1396    // This code is similar to that of ParseMetadataValue, however it needs to
1397    // have special-case code for a forward reference; see the comments on
1398    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1399    // at the top level here.
1400    if (Lex.getKind() == lltok::lbrace) {
1401      ValID ID;
1402      if (ParseMetadataListValue(ID, PFS))
1403        return true;
1404      assert(ID.Kind == ValID::t_MDNode);
1405      Inst->setMetadata(MDK, ID.MDNodeVal);
1406    } else {
1407      unsigned NodeID = 0;
1408      if (ParseMDNodeID(Node, NodeID))
1409        return true;
1410      if (Node) {
1411        // If we got the node, add it to the instruction.
1412        Inst->setMetadata(MDK, Node);
1413      } else {
1414        MDRef R = { Loc, MDK, NodeID };
1415        // Otherwise, remember that this should be resolved later.
1416        ForwardRefInstMetadata[Inst].push_back(R);
1417      }
1418    }
1419
1420    // If this is the end of the list, we're done.
1421  } while (EatIfPresent(lltok::comma));
1422  return false;
1423}
1424
1425/// ParseOptionalAlignment
1426///   ::= /* empty */
1427///   ::= 'align' 4
1428bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1429  Alignment = 0;
1430  if (!EatIfPresent(lltok::kw_align))
1431    return false;
1432  LocTy AlignLoc = Lex.getLoc();
1433  if (ParseUInt32(Alignment)) return true;
1434  if (!isPowerOf2_32(Alignment))
1435    return Error(AlignLoc, "alignment is not a power of two");
1436  if (Alignment > Value::MaximumAlignment)
1437    return Error(AlignLoc, "huge alignments are not supported yet");
1438  return false;
1439}
1440
1441/// ParseOptionalCommaAlign
1442///   ::=
1443///   ::= ',' align 4
1444///
1445/// This returns with AteExtraComma set to true if it ate an excess comma at the
1446/// end.
1447bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1448                                       bool &AteExtraComma) {
1449  AteExtraComma = false;
1450  while (EatIfPresent(lltok::comma)) {
1451    // Metadata at the end is an early exit.
1452    if (Lex.getKind() == lltok::MetadataVar) {
1453      AteExtraComma = true;
1454      return false;
1455    }
1456
1457    if (Lex.getKind() != lltok::kw_align)
1458      return Error(Lex.getLoc(), "expected metadata or 'align'");
1459
1460    if (ParseOptionalAlignment(Alignment)) return true;
1461  }
1462
1463  return false;
1464}
1465
1466/// ParseScopeAndOrdering
1467///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1468///   else: ::=
1469///
1470/// This sets Scope and Ordering to the parsed values.
1471bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1472                                     AtomicOrdering &Ordering) {
1473  if (!isAtomic)
1474    return false;
1475
1476  Scope = CrossThread;
1477  if (EatIfPresent(lltok::kw_singlethread))
1478    Scope = SingleThread;
1479  switch (Lex.getKind()) {
1480  default: return TokError("Expected ordering on atomic instruction");
1481  case lltok::kw_unordered: Ordering = Unordered; break;
1482  case lltok::kw_monotonic: Ordering = Monotonic; break;
1483  case lltok::kw_acquire: Ordering = Acquire; break;
1484  case lltok::kw_release: Ordering = Release; break;
1485  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1486  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1487  }
1488  Lex.Lex();
1489  return false;
1490}
1491
1492/// ParseOptionalStackAlignment
1493///   ::= /* empty */
1494///   ::= 'alignstack' '(' 4 ')'
1495bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1496  Alignment = 0;
1497  if (!EatIfPresent(lltok::kw_alignstack))
1498    return false;
1499  LocTy ParenLoc = Lex.getLoc();
1500  if (!EatIfPresent(lltok::lparen))
1501    return Error(ParenLoc, "expected '('");
1502  LocTy AlignLoc = Lex.getLoc();
1503  if (ParseUInt32(Alignment)) return true;
1504  ParenLoc = Lex.getLoc();
1505  if (!EatIfPresent(lltok::rparen))
1506    return Error(ParenLoc, "expected ')'");
1507  if (!isPowerOf2_32(Alignment))
1508    return Error(AlignLoc, "stack alignment is not a power of two");
1509  return false;
1510}
1511
1512/// ParseIndexList - This parses the index list for an insert/extractvalue
1513/// instruction.  This sets AteExtraComma in the case where we eat an extra
1514/// comma at the end of the line and find that it is followed by metadata.
1515/// Clients that don't allow metadata can call the version of this function that
1516/// only takes one argument.
1517///
1518/// ParseIndexList
1519///    ::=  (',' uint32)+
1520///
1521bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1522                              bool &AteExtraComma) {
1523  AteExtraComma = false;
1524
1525  if (Lex.getKind() != lltok::comma)
1526    return TokError("expected ',' as start of index list");
1527
1528  while (EatIfPresent(lltok::comma)) {
1529    if (Lex.getKind() == lltok::MetadataVar) {
1530      AteExtraComma = true;
1531      return false;
1532    }
1533    unsigned Idx = 0;
1534    if (ParseUInt32(Idx)) return true;
1535    Indices.push_back(Idx);
1536  }
1537
1538  return false;
1539}
1540
1541//===----------------------------------------------------------------------===//
1542// Type Parsing.
1543//===----------------------------------------------------------------------===//
1544
1545/// ParseType - Parse a type.
1546bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1547  SMLoc TypeLoc = Lex.getLoc();
1548  switch (Lex.getKind()) {
1549  default:
1550    return TokError("expected type");
1551  case lltok::Type:
1552    // Type ::= 'float' | 'void' (etc)
1553    Result = Lex.getTyVal();
1554    Lex.Lex();
1555    break;
1556  case lltok::lbrace:
1557    // Type ::= StructType
1558    if (ParseAnonStructType(Result, false))
1559      return true;
1560    break;
1561  case lltok::lsquare:
1562    // Type ::= '[' ... ']'
1563    Lex.Lex(); // eat the lsquare.
1564    if (ParseArrayVectorType(Result, false))
1565      return true;
1566    break;
1567  case lltok::less: // Either vector or packed struct.
1568    // Type ::= '<' ... '>'
1569    Lex.Lex();
1570    if (Lex.getKind() == lltok::lbrace) {
1571      if (ParseAnonStructType(Result, true) ||
1572          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1573        return true;
1574    } else if (ParseArrayVectorType(Result, true))
1575      return true;
1576    break;
1577  case lltok::LocalVar: {
1578    // Type ::= %foo
1579    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1580
1581    // If the type hasn't been defined yet, create a forward definition and
1582    // remember where that forward def'n was seen (in case it never is defined).
1583    if (Entry.first == 0) {
1584      Entry.first = StructType::create(Context, Lex.getStrVal());
1585      Entry.second = Lex.getLoc();
1586    }
1587    Result = Entry.first;
1588    Lex.Lex();
1589    break;
1590  }
1591
1592  case lltok::LocalVarID: {
1593    // Type ::= %4
1594    if (Lex.getUIntVal() >= NumberedTypes.size())
1595      NumberedTypes.resize(Lex.getUIntVal()+1);
1596    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1597
1598    // If the type hasn't been defined yet, create a forward definition and
1599    // remember where that forward def'n was seen (in case it never is defined).
1600    if (Entry.first == 0) {
1601      Entry.first = StructType::create(Context);
1602      Entry.second = Lex.getLoc();
1603    }
1604    Result = Entry.first;
1605    Lex.Lex();
1606    break;
1607  }
1608  }
1609
1610  // Parse the type suffixes.
1611  while (1) {
1612    switch (Lex.getKind()) {
1613    // End of type.
1614    default:
1615      if (!AllowVoid && Result->isVoidTy())
1616        return Error(TypeLoc, "void type only allowed for function results");
1617      return false;
1618
1619    // Type ::= Type '*'
1620    case lltok::star:
1621      if (Result->isLabelTy())
1622        return TokError("basic block pointers are invalid");
1623      if (Result->isVoidTy())
1624        return TokError("pointers to void are invalid - use i8* instead");
1625      if (!PointerType::isValidElementType(Result))
1626        return TokError("pointer to this type is invalid");
1627      Result = PointerType::getUnqual(Result);
1628      Lex.Lex();
1629      break;
1630
1631    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1632    case lltok::kw_addrspace: {
1633      if (Result->isLabelTy())
1634        return TokError("basic block pointers are invalid");
1635      if (Result->isVoidTy())
1636        return TokError("pointers to void are invalid; use i8* instead");
1637      if (!PointerType::isValidElementType(Result))
1638        return TokError("pointer to this type is invalid");
1639      unsigned AddrSpace;
1640      if (ParseOptionalAddrSpace(AddrSpace) ||
1641          ParseToken(lltok::star, "expected '*' in address space"))
1642        return true;
1643
1644      Result = PointerType::get(Result, AddrSpace);
1645      break;
1646    }
1647
1648    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1649    case lltok::lparen:
1650      if (ParseFunctionType(Result))
1651        return true;
1652      break;
1653    }
1654  }
1655}
1656
1657/// ParseParameterList
1658///    ::= '(' ')'
1659///    ::= '(' Arg (',' Arg)* ')'
1660///  Arg
1661///    ::= Type OptionalAttributes Value OptionalAttributes
1662bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1663                                  PerFunctionState &PFS) {
1664  if (ParseToken(lltok::lparen, "expected '(' in call"))
1665    return true;
1666
1667  unsigned AttrIndex = 1;
1668  while (Lex.getKind() != lltok::rparen) {
1669    // If this isn't the first argument, we need a comma.
1670    if (!ArgList.empty() &&
1671        ParseToken(lltok::comma, "expected ',' in argument list"))
1672      return true;
1673
1674    // Parse the argument.
1675    LocTy ArgLoc;
1676    Type *ArgTy = 0;
1677    AttrBuilder ArgAttrs;
1678    Value *V;
1679    if (ParseType(ArgTy, ArgLoc))
1680      return true;
1681
1682    // Otherwise, handle normal operands.
1683    if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1684      return true;
1685    ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1686                                                             AttrIndex++,
1687                                                             ArgAttrs)));
1688  }
1689
1690  Lex.Lex();  // Lex the ')'.
1691  return false;
1692}
1693
1694
1695
1696/// ParseArgumentList - Parse the argument list for a function type or function
1697/// prototype.
1698///   ::= '(' ArgTypeListI ')'
1699/// ArgTypeListI
1700///   ::= /*empty*/
1701///   ::= '...'
1702///   ::= ArgTypeList ',' '...'
1703///   ::= ArgType (',' ArgType)*
1704///
1705bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1706                                 bool &isVarArg){
1707  isVarArg = false;
1708  assert(Lex.getKind() == lltok::lparen);
1709  Lex.Lex(); // eat the (.
1710
1711  if (Lex.getKind() == lltok::rparen) {
1712    // empty
1713  } else if (Lex.getKind() == lltok::dotdotdot) {
1714    isVarArg = true;
1715    Lex.Lex();
1716  } else {
1717    LocTy TypeLoc = Lex.getLoc();
1718    Type *ArgTy = 0;
1719    AttrBuilder Attrs;
1720    std::string Name;
1721
1722    if (ParseType(ArgTy) ||
1723        ParseOptionalParamAttrs(Attrs)) return true;
1724
1725    if (ArgTy->isVoidTy())
1726      return Error(TypeLoc, "argument can not have void type");
1727
1728    if (Lex.getKind() == lltok::LocalVar) {
1729      Name = Lex.getStrVal();
1730      Lex.Lex();
1731    }
1732
1733    if (!FunctionType::isValidArgumentType(ArgTy))
1734      return Error(TypeLoc, "invalid type for function argument");
1735
1736    unsigned AttrIndex = 1;
1737    ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1738                              AttributeSet::get(ArgTy->getContext(),
1739                                                AttrIndex++, Attrs), Name));
1740
1741    while (EatIfPresent(lltok::comma)) {
1742      // Handle ... at end of arg list.
1743      if (EatIfPresent(lltok::dotdotdot)) {
1744        isVarArg = true;
1745        break;
1746      }
1747
1748      // Otherwise must be an argument type.
1749      TypeLoc = Lex.getLoc();
1750      if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1751
1752      if (ArgTy->isVoidTy())
1753        return Error(TypeLoc, "argument can not have void type");
1754
1755      if (Lex.getKind() == lltok::LocalVar) {
1756        Name = Lex.getStrVal();
1757        Lex.Lex();
1758      } else {
1759        Name = "";
1760      }
1761
1762      if (!ArgTy->isFirstClassType())
1763        return Error(TypeLoc, "invalid type for function argument");
1764
1765      ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1766                                AttributeSet::get(ArgTy->getContext(),
1767                                                  AttrIndex++, Attrs),
1768                                Name));
1769    }
1770  }
1771
1772  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1773}
1774
1775/// ParseFunctionType
1776///  ::= Type ArgumentList OptionalAttrs
1777bool LLParser::ParseFunctionType(Type *&Result) {
1778  assert(Lex.getKind() == lltok::lparen);
1779
1780  if (!FunctionType::isValidReturnType(Result))
1781    return TokError("invalid function return type");
1782
1783  SmallVector<ArgInfo, 8> ArgList;
1784  bool isVarArg;
1785  if (ParseArgumentList(ArgList, isVarArg))
1786    return true;
1787
1788  // Reject names on the arguments lists.
1789  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1790    if (!ArgList[i].Name.empty())
1791      return Error(ArgList[i].Loc, "argument name invalid in function type");
1792    if (ArgList[i].Attrs.hasAttributes(i + 1))
1793      return Error(ArgList[i].Loc,
1794                   "argument attributes invalid in function type");
1795  }
1796
1797  SmallVector<Type*, 16> ArgListTy;
1798  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1799    ArgListTy.push_back(ArgList[i].Ty);
1800
1801  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1802  return false;
1803}
1804
1805/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1806/// other structs.
1807bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1808  SmallVector<Type*, 8> Elts;
1809  if (ParseStructBody(Elts)) return true;
1810
1811  Result = StructType::get(Context, Elts, Packed);
1812  return false;
1813}
1814
1815/// ParseStructDefinition - Parse a struct in a 'type' definition.
1816bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1817                                     std::pair<Type*, LocTy> &Entry,
1818                                     Type *&ResultTy) {
1819  // If the type was already defined, diagnose the redefinition.
1820  if (Entry.first && !Entry.second.isValid())
1821    return Error(TypeLoc, "redefinition of type");
1822
1823  // If we have opaque, just return without filling in the definition for the
1824  // struct.  This counts as a definition as far as the .ll file goes.
1825  if (EatIfPresent(lltok::kw_opaque)) {
1826    // This type is being defined, so clear the location to indicate this.
1827    Entry.second = SMLoc();
1828
1829    // If this type number has never been uttered, create it.
1830    if (Entry.first == 0)
1831      Entry.first = StructType::create(Context, Name);
1832    ResultTy = Entry.first;
1833    return false;
1834  }
1835
1836  // If the type starts with '<', then it is either a packed struct or a vector.
1837  bool isPacked = EatIfPresent(lltok::less);
1838
1839  // If we don't have a struct, then we have a random type alias, which we
1840  // accept for compatibility with old files.  These types are not allowed to be
1841  // forward referenced and not allowed to be recursive.
1842  if (Lex.getKind() != lltok::lbrace) {
1843    if (Entry.first)
1844      return Error(TypeLoc, "forward references to non-struct type");
1845
1846    ResultTy = 0;
1847    if (isPacked)
1848      return ParseArrayVectorType(ResultTy, true);
1849    return ParseType(ResultTy);
1850  }
1851
1852  // This type is being defined, so clear the location to indicate this.
1853  Entry.second = SMLoc();
1854
1855  // If this type number has never been uttered, create it.
1856  if (Entry.first == 0)
1857    Entry.first = StructType::create(Context, Name);
1858
1859  StructType *STy = cast<StructType>(Entry.first);
1860
1861  SmallVector<Type*, 8> Body;
1862  if (ParseStructBody(Body) ||
1863      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1864    return true;
1865
1866  STy->setBody(Body, isPacked);
1867  ResultTy = STy;
1868  return false;
1869}
1870
1871
1872/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1873///   StructType
1874///     ::= '{' '}'
1875///     ::= '{' Type (',' Type)* '}'
1876///     ::= '<' '{' '}' '>'
1877///     ::= '<' '{' Type (',' Type)* '}' '>'
1878bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1879  assert(Lex.getKind() == lltok::lbrace);
1880  Lex.Lex(); // Consume the '{'
1881
1882  // Handle the empty struct.
1883  if (EatIfPresent(lltok::rbrace))
1884    return false;
1885
1886  LocTy EltTyLoc = Lex.getLoc();
1887  Type *Ty = 0;
1888  if (ParseType(Ty)) return true;
1889  Body.push_back(Ty);
1890
1891  if (!StructType::isValidElementType(Ty))
1892    return Error(EltTyLoc, "invalid element type for struct");
1893
1894  while (EatIfPresent(lltok::comma)) {
1895    EltTyLoc = Lex.getLoc();
1896    if (ParseType(Ty)) return true;
1897
1898    if (!StructType::isValidElementType(Ty))
1899      return Error(EltTyLoc, "invalid element type for struct");
1900
1901    Body.push_back(Ty);
1902  }
1903
1904  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1905}
1906
1907/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1908/// token has already been consumed.
1909///   Type
1910///     ::= '[' APSINTVAL 'x' Types ']'
1911///     ::= '<' APSINTVAL 'x' Types '>'
1912bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1913  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1914      Lex.getAPSIntVal().getBitWidth() > 64)
1915    return TokError("expected number in address space");
1916
1917  LocTy SizeLoc = Lex.getLoc();
1918  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1919  Lex.Lex();
1920
1921  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1922      return true;
1923
1924  LocTy TypeLoc = Lex.getLoc();
1925  Type *EltTy = 0;
1926  if (ParseType(EltTy)) return true;
1927
1928  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1929                 "expected end of sequential type"))
1930    return true;
1931
1932  if (isVector) {
1933    if (Size == 0)
1934      return Error(SizeLoc, "zero element vector is illegal");
1935    if ((unsigned)Size != Size)
1936      return Error(SizeLoc, "size too large for vector");
1937    if (!VectorType::isValidElementType(EltTy))
1938      return Error(TypeLoc, "invalid vector element type");
1939    Result = VectorType::get(EltTy, unsigned(Size));
1940  } else {
1941    if (!ArrayType::isValidElementType(EltTy))
1942      return Error(TypeLoc, "invalid array element type");
1943    Result = ArrayType::get(EltTy, Size);
1944  }
1945  return false;
1946}
1947
1948//===----------------------------------------------------------------------===//
1949// Function Semantic Analysis.
1950//===----------------------------------------------------------------------===//
1951
1952LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1953                                             int functionNumber)
1954  : P(p), F(f), FunctionNumber(functionNumber) {
1955
1956  // Insert unnamed arguments into the NumberedVals list.
1957  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1958       AI != E; ++AI)
1959    if (!AI->hasName())
1960      NumberedVals.push_back(AI);
1961}
1962
1963LLParser::PerFunctionState::~PerFunctionState() {
1964  // If there were any forward referenced non-basicblock values, delete them.
1965  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1966       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1967    if (!isa<BasicBlock>(I->second.first)) {
1968      I->second.first->replaceAllUsesWith(
1969                           UndefValue::get(I->second.first->getType()));
1970      delete I->second.first;
1971      I->second.first = 0;
1972    }
1973
1974  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1975       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1976    if (!isa<BasicBlock>(I->second.first)) {
1977      I->second.first->replaceAllUsesWith(
1978                           UndefValue::get(I->second.first->getType()));
1979      delete I->second.first;
1980      I->second.first = 0;
1981    }
1982}
1983
1984bool LLParser::PerFunctionState::FinishFunction() {
1985  // Check to see if someone took the address of labels in this block.
1986  if (!P.ForwardRefBlockAddresses.empty()) {
1987    ValID FunctionID;
1988    if (!F.getName().empty()) {
1989      FunctionID.Kind = ValID::t_GlobalName;
1990      FunctionID.StrVal = F.getName();
1991    } else {
1992      FunctionID.Kind = ValID::t_GlobalID;
1993      FunctionID.UIntVal = FunctionNumber;
1994    }
1995
1996    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1997      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1998    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1999      // Resolve all these references.
2000      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
2001        return true;
2002
2003      P.ForwardRefBlockAddresses.erase(FRBAI);
2004    }
2005  }
2006
2007  if (!ForwardRefVals.empty())
2008    return P.Error(ForwardRefVals.begin()->second.second,
2009                   "use of undefined value '%" + ForwardRefVals.begin()->first +
2010                   "'");
2011  if (!ForwardRefValIDs.empty())
2012    return P.Error(ForwardRefValIDs.begin()->second.second,
2013                   "use of undefined value '%" +
2014                   Twine(ForwardRefValIDs.begin()->first) + "'");
2015  return false;
2016}
2017
2018
2019/// GetVal - Get a value with the specified name or ID, creating a
2020/// forward reference record if needed.  This can return null if the value
2021/// exists but does not have the right type.
2022Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2023                                          Type *Ty, LocTy Loc) {
2024  // Look this name up in the normal function symbol table.
2025  Value *Val = F.getValueSymbolTable().lookup(Name);
2026
2027  // If this is a forward reference for the value, see if we already created a
2028  // forward ref record.
2029  if (Val == 0) {
2030    std::map<std::string, std::pair<Value*, LocTy> >::iterator
2031      I = ForwardRefVals.find(Name);
2032    if (I != ForwardRefVals.end())
2033      Val = I->second.first;
2034  }
2035
2036  // If we have the value in the symbol table or fwd-ref table, return it.
2037  if (Val) {
2038    if (Val->getType() == Ty) return Val;
2039    if (Ty->isLabelTy())
2040      P.Error(Loc, "'%" + Name + "' is not a basic block");
2041    else
2042      P.Error(Loc, "'%" + Name + "' defined with type '" +
2043              getTypeString(Val->getType()) + "'");
2044    return 0;
2045  }
2046
2047  // Don't make placeholders with invalid type.
2048  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2049    P.Error(Loc, "invalid use of a non-first-class type");
2050    return 0;
2051  }
2052
2053  // Otherwise, create a new forward reference for this value and remember it.
2054  Value *FwdVal;
2055  if (Ty->isLabelTy())
2056    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2057  else
2058    FwdVal = new Argument(Ty, Name);
2059
2060  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2061  return FwdVal;
2062}
2063
2064Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2065                                          LocTy Loc) {
2066  // Look this name up in the normal function symbol table.
2067  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2068
2069  // If this is a forward reference for the value, see if we already created a
2070  // forward ref record.
2071  if (Val == 0) {
2072    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2073      I = ForwardRefValIDs.find(ID);
2074    if (I != ForwardRefValIDs.end())
2075      Val = I->second.first;
2076  }
2077
2078  // If we have the value in the symbol table or fwd-ref table, return it.
2079  if (Val) {
2080    if (Val->getType() == Ty) return Val;
2081    if (Ty->isLabelTy())
2082      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2083    else
2084      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2085              getTypeString(Val->getType()) + "'");
2086    return 0;
2087  }
2088
2089  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2090    P.Error(Loc, "invalid use of a non-first-class type");
2091    return 0;
2092  }
2093
2094  // Otherwise, create a new forward reference for this value and remember it.
2095  Value *FwdVal;
2096  if (Ty->isLabelTy())
2097    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2098  else
2099    FwdVal = new Argument(Ty);
2100
2101  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2102  return FwdVal;
2103}
2104
2105/// SetInstName - After an instruction is parsed and inserted into its
2106/// basic block, this installs its name.
2107bool LLParser::PerFunctionState::SetInstName(int NameID,
2108                                             const std::string &NameStr,
2109                                             LocTy NameLoc, Instruction *Inst) {
2110  // If this instruction has void type, it cannot have a name or ID specified.
2111  if (Inst->getType()->isVoidTy()) {
2112    if (NameID != -1 || !NameStr.empty())
2113      return P.Error(NameLoc, "instructions returning void cannot have a name");
2114    return false;
2115  }
2116
2117  // If this was a numbered instruction, verify that the instruction is the
2118  // expected value and resolve any forward references.
2119  if (NameStr.empty()) {
2120    // If neither a name nor an ID was specified, just use the next ID.
2121    if (NameID == -1)
2122      NameID = NumberedVals.size();
2123
2124    if (unsigned(NameID) != NumberedVals.size())
2125      return P.Error(NameLoc, "instruction expected to be numbered '%" +
2126                     Twine(NumberedVals.size()) + "'");
2127
2128    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2129      ForwardRefValIDs.find(NameID);
2130    if (FI != ForwardRefValIDs.end()) {
2131      if (FI->second.first->getType() != Inst->getType())
2132        return P.Error(NameLoc, "instruction forward referenced with type '" +
2133                       getTypeString(FI->second.first->getType()) + "'");
2134      FI->second.first->replaceAllUsesWith(Inst);
2135      delete FI->second.first;
2136      ForwardRefValIDs.erase(FI);
2137    }
2138
2139    NumberedVals.push_back(Inst);
2140    return false;
2141  }
2142
2143  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2144  std::map<std::string, std::pair<Value*, LocTy> >::iterator
2145    FI = ForwardRefVals.find(NameStr);
2146  if (FI != ForwardRefVals.end()) {
2147    if (FI->second.first->getType() != Inst->getType())
2148      return P.Error(NameLoc, "instruction forward referenced with type '" +
2149                     getTypeString(FI->second.first->getType()) + "'");
2150    FI->second.first->replaceAllUsesWith(Inst);
2151    delete FI->second.first;
2152    ForwardRefVals.erase(FI);
2153  }
2154
2155  // Set the name on the instruction.
2156  Inst->setName(NameStr);
2157
2158  if (Inst->getName() != NameStr)
2159    return P.Error(NameLoc, "multiple definition of local value named '" +
2160                   NameStr + "'");
2161  return false;
2162}
2163
2164/// GetBB - Get a basic block with the specified name or ID, creating a
2165/// forward reference record if needed.
2166BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2167                                              LocTy Loc) {
2168  return cast_or_null<BasicBlock>(GetVal(Name,
2169                                        Type::getLabelTy(F.getContext()), Loc));
2170}
2171
2172BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2173  return cast_or_null<BasicBlock>(GetVal(ID,
2174                                        Type::getLabelTy(F.getContext()), Loc));
2175}
2176
2177/// DefineBB - Define the specified basic block, which is either named or
2178/// unnamed.  If there is an error, this returns null otherwise it returns
2179/// the block being defined.
2180BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2181                                                 LocTy Loc) {
2182  BasicBlock *BB;
2183  if (Name.empty())
2184    BB = GetBB(NumberedVals.size(), Loc);
2185  else
2186    BB = GetBB(Name, Loc);
2187  if (BB == 0) return 0; // Already diagnosed error.
2188
2189  // Move the block to the end of the function.  Forward ref'd blocks are
2190  // inserted wherever they happen to be referenced.
2191  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2192
2193  // Remove the block from forward ref sets.
2194  if (Name.empty()) {
2195    ForwardRefValIDs.erase(NumberedVals.size());
2196    NumberedVals.push_back(BB);
2197  } else {
2198    // BB forward references are already in the function symbol table.
2199    ForwardRefVals.erase(Name);
2200  }
2201
2202  return BB;
2203}
2204
2205//===----------------------------------------------------------------------===//
2206// Constants.
2207//===----------------------------------------------------------------------===//
2208
2209/// ParseValID - Parse an abstract value that doesn't necessarily have a
2210/// type implied.  For example, if we parse "4" we don't know what integer type
2211/// it has.  The value will later be combined with its type and checked for
2212/// sanity.  PFS is used to convert function-local operands of metadata (since
2213/// metadata operands are not just parsed here but also converted to values).
2214/// PFS can be null when we are not parsing metadata values inside a function.
2215bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2216  ID.Loc = Lex.getLoc();
2217  switch (Lex.getKind()) {
2218  default: return TokError("expected value token");
2219  case lltok::GlobalID:  // @42
2220    ID.UIntVal = Lex.getUIntVal();
2221    ID.Kind = ValID::t_GlobalID;
2222    break;
2223  case lltok::GlobalVar:  // @foo
2224    ID.StrVal = Lex.getStrVal();
2225    ID.Kind = ValID::t_GlobalName;
2226    break;
2227  case lltok::LocalVarID:  // %42
2228    ID.UIntVal = Lex.getUIntVal();
2229    ID.Kind = ValID::t_LocalID;
2230    break;
2231  case lltok::LocalVar:  // %foo
2232    ID.StrVal = Lex.getStrVal();
2233    ID.Kind = ValID::t_LocalName;
2234    break;
2235  case lltok::exclaim:   // !42, !{...}, or !"foo"
2236    return ParseMetadataValue(ID, PFS);
2237  case lltok::APSInt:
2238    ID.APSIntVal = Lex.getAPSIntVal();
2239    ID.Kind = ValID::t_APSInt;
2240    break;
2241  case lltok::APFloat:
2242    ID.APFloatVal = Lex.getAPFloatVal();
2243    ID.Kind = ValID::t_APFloat;
2244    break;
2245  case lltok::kw_true:
2246    ID.ConstantVal = ConstantInt::getTrue(Context);
2247    ID.Kind = ValID::t_Constant;
2248    break;
2249  case lltok::kw_false:
2250    ID.ConstantVal = ConstantInt::getFalse(Context);
2251    ID.Kind = ValID::t_Constant;
2252    break;
2253  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2254  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2255  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2256
2257  case lltok::lbrace: {
2258    // ValID ::= '{' ConstVector '}'
2259    Lex.Lex();
2260    SmallVector<Constant*, 16> Elts;
2261    if (ParseGlobalValueVector(Elts) ||
2262        ParseToken(lltok::rbrace, "expected end of struct constant"))
2263      return true;
2264
2265    ID.ConstantStructElts = new Constant*[Elts.size()];
2266    ID.UIntVal = Elts.size();
2267    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2268    ID.Kind = ValID::t_ConstantStruct;
2269    return false;
2270  }
2271  case lltok::less: {
2272    // ValID ::= '<' ConstVector '>'         --> Vector.
2273    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2274    Lex.Lex();
2275    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2276
2277    SmallVector<Constant*, 16> Elts;
2278    LocTy FirstEltLoc = Lex.getLoc();
2279    if (ParseGlobalValueVector(Elts) ||
2280        (isPackedStruct &&
2281         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2282        ParseToken(lltok::greater, "expected end of constant"))
2283      return true;
2284
2285    if (isPackedStruct) {
2286      ID.ConstantStructElts = new Constant*[Elts.size()];
2287      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2288      ID.UIntVal = Elts.size();
2289      ID.Kind = ValID::t_PackedConstantStruct;
2290      return false;
2291    }
2292
2293    if (Elts.empty())
2294      return Error(ID.Loc, "constant vector must not be empty");
2295
2296    if (!Elts[0]->getType()->isIntegerTy() &&
2297        !Elts[0]->getType()->isFloatingPointTy() &&
2298        !Elts[0]->getType()->isPointerTy())
2299      return Error(FirstEltLoc,
2300            "vector elements must have integer, pointer or floating point type");
2301
2302    // Verify that all the vector elements have the same type.
2303    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2304      if (Elts[i]->getType() != Elts[0]->getType())
2305        return Error(FirstEltLoc,
2306                     "vector element #" + Twine(i) +
2307                    " is not of type '" + getTypeString(Elts[0]->getType()));
2308
2309    ID.ConstantVal = ConstantVector::get(Elts);
2310    ID.Kind = ValID::t_Constant;
2311    return false;
2312  }
2313  case lltok::lsquare: {   // Array Constant
2314    Lex.Lex();
2315    SmallVector<Constant*, 16> Elts;
2316    LocTy FirstEltLoc = Lex.getLoc();
2317    if (ParseGlobalValueVector(Elts) ||
2318        ParseToken(lltok::rsquare, "expected end of array constant"))
2319      return true;
2320
2321    // Handle empty element.
2322    if (Elts.empty()) {
2323      // Use undef instead of an array because it's inconvenient to determine
2324      // the element type at this point, there being no elements to examine.
2325      ID.Kind = ValID::t_EmptyArray;
2326      return false;
2327    }
2328
2329    if (!Elts[0]->getType()->isFirstClassType())
2330      return Error(FirstEltLoc, "invalid array element type: " +
2331                   getTypeString(Elts[0]->getType()));
2332
2333    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2334
2335    // Verify all elements are correct type!
2336    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2337      if (Elts[i]->getType() != Elts[0]->getType())
2338        return Error(FirstEltLoc,
2339                     "array element #" + Twine(i) +
2340                     " is not of type '" + getTypeString(Elts[0]->getType()));
2341    }
2342
2343    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2344    ID.Kind = ValID::t_Constant;
2345    return false;
2346  }
2347  case lltok::kw_c:  // c "foo"
2348    Lex.Lex();
2349    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2350                                                  false);
2351    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2352    ID.Kind = ValID::t_Constant;
2353    return false;
2354
2355  case lltok::kw_asm: {
2356    // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2357    //             STRINGCONSTANT
2358    bool HasSideEffect, AlignStack, AsmDialect;
2359    Lex.Lex();
2360    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2361        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2362        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2363        ParseStringConstant(ID.StrVal) ||
2364        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2365        ParseToken(lltok::StringConstant, "expected constraint string"))
2366      return true;
2367    ID.StrVal2 = Lex.getStrVal();
2368    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2369      (unsigned(AsmDialect)<<2);
2370    ID.Kind = ValID::t_InlineAsm;
2371    return false;
2372  }
2373
2374  case lltok::kw_blockaddress: {
2375    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2376    Lex.Lex();
2377
2378    ValID Fn, Label;
2379    LocTy FnLoc, LabelLoc;
2380
2381    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2382        ParseValID(Fn) ||
2383        ParseToken(lltok::comma, "expected comma in block address expression")||
2384        ParseValID(Label) ||
2385        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2386      return true;
2387
2388    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2389      return Error(Fn.Loc, "expected function name in blockaddress");
2390    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2391      return Error(Label.Loc, "expected basic block name in blockaddress");
2392
2393    // Make a global variable as a placeholder for this reference.
2394    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2395                                           false, GlobalValue::InternalLinkage,
2396                                                0, "");
2397    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2398    ID.ConstantVal = FwdRef;
2399    ID.Kind = ValID::t_Constant;
2400    return false;
2401  }
2402
2403  case lltok::kw_trunc:
2404  case lltok::kw_zext:
2405  case lltok::kw_sext:
2406  case lltok::kw_fptrunc:
2407  case lltok::kw_fpext:
2408  case lltok::kw_bitcast:
2409  case lltok::kw_uitofp:
2410  case lltok::kw_sitofp:
2411  case lltok::kw_fptoui:
2412  case lltok::kw_fptosi:
2413  case lltok::kw_inttoptr:
2414  case lltok::kw_ptrtoint: {
2415    unsigned Opc = Lex.getUIntVal();
2416    Type *DestTy = 0;
2417    Constant *SrcVal;
2418    Lex.Lex();
2419    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2420        ParseGlobalTypeAndValue(SrcVal) ||
2421        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2422        ParseType(DestTy) ||
2423        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2424      return true;
2425    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2426      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2427                   getTypeString(SrcVal->getType()) + "' to '" +
2428                   getTypeString(DestTy) + "'");
2429    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2430                                                 SrcVal, DestTy);
2431    ID.Kind = ValID::t_Constant;
2432    return false;
2433  }
2434  case lltok::kw_extractvalue: {
2435    Lex.Lex();
2436    Constant *Val;
2437    SmallVector<unsigned, 4> Indices;
2438    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2439        ParseGlobalTypeAndValue(Val) ||
2440        ParseIndexList(Indices) ||
2441        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2442      return true;
2443
2444    if (!Val->getType()->isAggregateType())
2445      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2446    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2447      return Error(ID.Loc, "invalid indices for extractvalue");
2448    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2449    ID.Kind = ValID::t_Constant;
2450    return false;
2451  }
2452  case lltok::kw_insertvalue: {
2453    Lex.Lex();
2454    Constant *Val0, *Val1;
2455    SmallVector<unsigned, 4> Indices;
2456    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2457        ParseGlobalTypeAndValue(Val0) ||
2458        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2459        ParseGlobalTypeAndValue(Val1) ||
2460        ParseIndexList(Indices) ||
2461        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2462      return true;
2463    if (!Val0->getType()->isAggregateType())
2464      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2465    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2466      return Error(ID.Loc, "invalid indices for insertvalue");
2467    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2468    ID.Kind = ValID::t_Constant;
2469    return false;
2470  }
2471  case lltok::kw_icmp:
2472  case lltok::kw_fcmp: {
2473    unsigned PredVal, Opc = Lex.getUIntVal();
2474    Constant *Val0, *Val1;
2475    Lex.Lex();
2476    if (ParseCmpPredicate(PredVal, Opc) ||
2477        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2478        ParseGlobalTypeAndValue(Val0) ||
2479        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2480        ParseGlobalTypeAndValue(Val1) ||
2481        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2482      return true;
2483
2484    if (Val0->getType() != Val1->getType())
2485      return Error(ID.Loc, "compare operands must have the same type");
2486
2487    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2488
2489    if (Opc == Instruction::FCmp) {
2490      if (!Val0->getType()->isFPOrFPVectorTy())
2491        return Error(ID.Loc, "fcmp requires floating point operands");
2492      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2493    } else {
2494      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2495      if (!Val0->getType()->isIntOrIntVectorTy() &&
2496          !Val0->getType()->getScalarType()->isPointerTy())
2497        return Error(ID.Loc, "icmp requires pointer or integer operands");
2498      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2499    }
2500    ID.Kind = ValID::t_Constant;
2501    return false;
2502  }
2503
2504  // Binary Operators.
2505  case lltok::kw_add:
2506  case lltok::kw_fadd:
2507  case lltok::kw_sub:
2508  case lltok::kw_fsub:
2509  case lltok::kw_mul:
2510  case lltok::kw_fmul:
2511  case lltok::kw_udiv:
2512  case lltok::kw_sdiv:
2513  case lltok::kw_fdiv:
2514  case lltok::kw_urem:
2515  case lltok::kw_srem:
2516  case lltok::kw_frem:
2517  case lltok::kw_shl:
2518  case lltok::kw_lshr:
2519  case lltok::kw_ashr: {
2520    bool NUW = false;
2521    bool NSW = false;
2522    bool Exact = false;
2523    unsigned Opc = Lex.getUIntVal();
2524    Constant *Val0, *Val1;
2525    Lex.Lex();
2526    LocTy ModifierLoc = Lex.getLoc();
2527    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2528        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2529      if (EatIfPresent(lltok::kw_nuw))
2530        NUW = true;
2531      if (EatIfPresent(lltok::kw_nsw)) {
2532        NSW = true;
2533        if (EatIfPresent(lltok::kw_nuw))
2534          NUW = true;
2535      }
2536    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2537               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2538      if (EatIfPresent(lltok::kw_exact))
2539        Exact = true;
2540    }
2541    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2542        ParseGlobalTypeAndValue(Val0) ||
2543        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2544        ParseGlobalTypeAndValue(Val1) ||
2545        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2546      return true;
2547    if (Val0->getType() != Val1->getType())
2548      return Error(ID.Loc, "operands of constexpr must have same type");
2549    if (!Val0->getType()->isIntOrIntVectorTy()) {
2550      if (NUW)
2551        return Error(ModifierLoc, "nuw only applies to integer operations");
2552      if (NSW)
2553        return Error(ModifierLoc, "nsw only applies to integer operations");
2554    }
2555    // Check that the type is valid for the operator.
2556    switch (Opc) {
2557    case Instruction::Add:
2558    case Instruction::Sub:
2559    case Instruction::Mul:
2560    case Instruction::UDiv:
2561    case Instruction::SDiv:
2562    case Instruction::URem:
2563    case Instruction::SRem:
2564    case Instruction::Shl:
2565    case Instruction::AShr:
2566    case Instruction::LShr:
2567      if (!Val0->getType()->isIntOrIntVectorTy())
2568        return Error(ID.Loc, "constexpr requires integer operands");
2569      break;
2570    case Instruction::FAdd:
2571    case Instruction::FSub:
2572    case Instruction::FMul:
2573    case Instruction::FDiv:
2574    case Instruction::FRem:
2575      if (!Val0->getType()->isFPOrFPVectorTy())
2576        return Error(ID.Loc, "constexpr requires fp operands");
2577      break;
2578    default: llvm_unreachable("Unknown binary operator!");
2579    }
2580    unsigned Flags = 0;
2581    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2582    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2583    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2584    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2585    ID.ConstantVal = C;
2586    ID.Kind = ValID::t_Constant;
2587    return false;
2588  }
2589
2590  // Logical Operations
2591  case lltok::kw_and:
2592  case lltok::kw_or:
2593  case lltok::kw_xor: {
2594    unsigned Opc = Lex.getUIntVal();
2595    Constant *Val0, *Val1;
2596    Lex.Lex();
2597    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2598        ParseGlobalTypeAndValue(Val0) ||
2599        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2600        ParseGlobalTypeAndValue(Val1) ||
2601        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2602      return true;
2603    if (Val0->getType() != Val1->getType())
2604      return Error(ID.Loc, "operands of constexpr must have same type");
2605    if (!Val0->getType()->isIntOrIntVectorTy())
2606      return Error(ID.Loc,
2607                   "constexpr requires integer or integer vector operands");
2608    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2609    ID.Kind = ValID::t_Constant;
2610    return false;
2611  }
2612
2613  case lltok::kw_getelementptr:
2614  case lltok::kw_shufflevector:
2615  case lltok::kw_insertelement:
2616  case lltok::kw_extractelement:
2617  case lltok::kw_select: {
2618    unsigned Opc = Lex.getUIntVal();
2619    SmallVector<Constant*, 16> Elts;
2620    bool InBounds = false;
2621    Lex.Lex();
2622    if (Opc == Instruction::GetElementPtr)
2623      InBounds = EatIfPresent(lltok::kw_inbounds);
2624    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2625        ParseGlobalValueVector(Elts) ||
2626        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2627      return true;
2628
2629    if (Opc == Instruction::GetElementPtr) {
2630      if (Elts.size() == 0 ||
2631          !Elts[0]->getType()->getScalarType()->isPointerTy())
2632        return Error(ID.Loc, "getelementptr requires pointer operand");
2633
2634      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2635      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2636        return Error(ID.Loc, "invalid indices for getelementptr");
2637      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2638                                                      InBounds);
2639    } else if (Opc == Instruction::Select) {
2640      if (Elts.size() != 3)
2641        return Error(ID.Loc, "expected three operands to select");
2642      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2643                                                              Elts[2]))
2644        return Error(ID.Loc, Reason);
2645      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2646    } else if (Opc == Instruction::ShuffleVector) {
2647      if (Elts.size() != 3)
2648        return Error(ID.Loc, "expected three operands to shufflevector");
2649      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2650        return Error(ID.Loc, "invalid operands to shufflevector");
2651      ID.ConstantVal =
2652                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2653    } else if (Opc == Instruction::ExtractElement) {
2654      if (Elts.size() != 2)
2655        return Error(ID.Loc, "expected two operands to extractelement");
2656      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2657        return Error(ID.Loc, "invalid extractelement operands");
2658      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2659    } else {
2660      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2661      if (Elts.size() != 3)
2662      return Error(ID.Loc, "expected three operands to insertelement");
2663      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2664        return Error(ID.Loc, "invalid insertelement operands");
2665      ID.ConstantVal =
2666                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2667    }
2668
2669    ID.Kind = ValID::t_Constant;
2670    return false;
2671  }
2672  }
2673
2674  Lex.Lex();
2675  return false;
2676}
2677
2678/// ParseGlobalValue - Parse a global value with the specified type.
2679bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2680  C = 0;
2681  ValID ID;
2682  Value *V = NULL;
2683  bool Parsed = ParseValID(ID) ||
2684                ConvertValIDToValue(Ty, ID, V, NULL);
2685  if (V && !(C = dyn_cast<Constant>(V)))
2686    return Error(ID.Loc, "global values must be constants");
2687  return Parsed;
2688}
2689
2690bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2691  Type *Ty = 0;
2692  return ParseType(Ty) ||
2693         ParseGlobalValue(Ty, V);
2694}
2695
2696/// ParseGlobalValueVector
2697///   ::= /*empty*/
2698///   ::= TypeAndValue (',' TypeAndValue)*
2699bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2700  // Empty list.
2701  if (Lex.getKind() == lltok::rbrace ||
2702      Lex.getKind() == lltok::rsquare ||
2703      Lex.getKind() == lltok::greater ||
2704      Lex.getKind() == lltok::rparen)
2705    return false;
2706
2707  Constant *C;
2708  if (ParseGlobalTypeAndValue(C)) return true;
2709  Elts.push_back(C);
2710
2711  while (EatIfPresent(lltok::comma)) {
2712    if (ParseGlobalTypeAndValue(C)) return true;
2713    Elts.push_back(C);
2714  }
2715
2716  return false;
2717}
2718
2719bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2720  assert(Lex.getKind() == lltok::lbrace);
2721  Lex.Lex();
2722
2723  SmallVector<Value*, 16> Elts;
2724  if (ParseMDNodeVector(Elts, PFS) ||
2725      ParseToken(lltok::rbrace, "expected end of metadata node"))
2726    return true;
2727
2728  ID.MDNodeVal = MDNode::get(Context, Elts);
2729  ID.Kind = ValID::t_MDNode;
2730  return false;
2731}
2732
2733/// ParseMetadataValue
2734///  ::= !42
2735///  ::= !{...}
2736///  ::= !"string"
2737bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2738  assert(Lex.getKind() == lltok::exclaim);
2739  Lex.Lex();
2740
2741  // MDNode:
2742  // !{ ... }
2743  if (Lex.getKind() == lltok::lbrace)
2744    return ParseMetadataListValue(ID, PFS);
2745
2746  // Standalone metadata reference
2747  // !42
2748  if (Lex.getKind() == lltok::APSInt) {
2749    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2750    ID.Kind = ValID::t_MDNode;
2751    return false;
2752  }
2753
2754  // MDString:
2755  //   ::= '!' STRINGCONSTANT
2756  if (ParseMDString(ID.MDStringVal)) return true;
2757  ID.Kind = ValID::t_MDString;
2758  return false;
2759}
2760
2761
2762//===----------------------------------------------------------------------===//
2763// Function Parsing.
2764//===----------------------------------------------------------------------===//
2765
2766bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2767                                   PerFunctionState *PFS) {
2768  if (Ty->isFunctionTy())
2769    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2770
2771  switch (ID.Kind) {
2772  case ValID::t_LocalID:
2773    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2774    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2775    return (V == 0);
2776  case ValID::t_LocalName:
2777    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2778    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2779    return (V == 0);
2780  case ValID::t_InlineAsm: {
2781    PointerType *PTy = dyn_cast<PointerType>(Ty);
2782    FunctionType *FTy =
2783      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2784    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2785      return Error(ID.Loc, "invalid type for inline asm constraint string");
2786    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2787                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2788    return false;
2789  }
2790  case ValID::t_MDNode:
2791    if (!Ty->isMetadataTy())
2792      return Error(ID.Loc, "metadata value must have metadata type");
2793    V = ID.MDNodeVal;
2794    return false;
2795  case ValID::t_MDString:
2796    if (!Ty->isMetadataTy())
2797      return Error(ID.Loc, "metadata value must have metadata type");
2798    V = ID.MDStringVal;
2799    return false;
2800  case ValID::t_GlobalName:
2801    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2802    return V == 0;
2803  case ValID::t_GlobalID:
2804    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2805    return V == 0;
2806  case ValID::t_APSInt:
2807    if (!Ty->isIntegerTy())
2808      return Error(ID.Loc, "integer constant must have integer type");
2809    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2810    V = ConstantInt::get(Context, ID.APSIntVal);
2811    return false;
2812  case ValID::t_APFloat:
2813    if (!Ty->isFloatingPointTy() ||
2814        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2815      return Error(ID.Loc, "floating point constant invalid for type");
2816
2817    // The lexer has no type info, so builds all half, float, and double FP
2818    // constants as double.  Fix this here.  Long double does not need this.
2819    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2820      bool Ignored;
2821      if (Ty->isHalfTy())
2822        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2823                              &Ignored);
2824      else if (Ty->isFloatTy())
2825        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2826                              &Ignored);
2827    }
2828    V = ConstantFP::get(Context, ID.APFloatVal);
2829
2830    if (V->getType() != Ty)
2831      return Error(ID.Loc, "floating point constant does not have type '" +
2832                   getTypeString(Ty) + "'");
2833
2834    return false;
2835  case ValID::t_Null:
2836    if (!Ty->isPointerTy())
2837      return Error(ID.Loc, "null must be a pointer type");
2838    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2839    return false;
2840  case ValID::t_Undef:
2841    // FIXME: LabelTy should not be a first-class type.
2842    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2843      return Error(ID.Loc, "invalid type for undef constant");
2844    V = UndefValue::get(Ty);
2845    return false;
2846  case ValID::t_EmptyArray:
2847    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2848      return Error(ID.Loc, "invalid empty array initializer");
2849    V = UndefValue::get(Ty);
2850    return false;
2851  case ValID::t_Zero:
2852    // FIXME: LabelTy should not be a first-class type.
2853    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2854      return Error(ID.Loc, "invalid type for null constant");
2855    V = Constant::getNullValue(Ty);
2856    return false;
2857  case ValID::t_Constant:
2858    if (ID.ConstantVal->getType() != Ty)
2859      return Error(ID.Loc, "constant expression type mismatch");
2860
2861    V = ID.ConstantVal;
2862    return false;
2863  case ValID::t_ConstantStruct:
2864  case ValID::t_PackedConstantStruct:
2865    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2866      if (ST->getNumElements() != ID.UIntVal)
2867        return Error(ID.Loc,
2868                     "initializer with struct type has wrong # elements");
2869      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2870        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2871
2872      // Verify that the elements are compatible with the structtype.
2873      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2874        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2875          return Error(ID.Loc, "element " + Twine(i) +
2876                    " of struct initializer doesn't match struct element type");
2877
2878      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2879                                               ID.UIntVal));
2880    } else
2881      return Error(ID.Loc, "constant expression type mismatch");
2882    return false;
2883  }
2884  llvm_unreachable("Invalid ValID");
2885}
2886
2887bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2888  V = 0;
2889  ValID ID;
2890  return ParseValID(ID, PFS) ||
2891         ConvertValIDToValue(Ty, ID, V, PFS);
2892}
2893
2894bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2895  Type *Ty = 0;
2896  return ParseType(Ty) ||
2897         ParseValue(Ty, V, PFS);
2898}
2899
2900bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2901                                      PerFunctionState &PFS) {
2902  Value *V;
2903  Loc = Lex.getLoc();
2904  if (ParseTypeAndValue(V, PFS)) return true;
2905  if (!isa<BasicBlock>(V))
2906    return Error(Loc, "expected a basic block");
2907  BB = cast<BasicBlock>(V);
2908  return false;
2909}
2910
2911
2912/// FunctionHeader
2913///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2914///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2915///       OptionalAlign OptGC
2916bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2917  // Parse the linkage.
2918  LocTy LinkageLoc = Lex.getLoc();
2919  unsigned Linkage;
2920
2921  unsigned Visibility;
2922  AttrBuilder RetAttrs;
2923  CallingConv::ID CC;
2924  Type *RetType = 0;
2925  LocTy RetTypeLoc = Lex.getLoc();
2926  if (ParseOptionalLinkage(Linkage) ||
2927      ParseOptionalVisibility(Visibility) ||
2928      ParseOptionalCallingConv(CC) ||
2929      ParseOptionalReturnAttrs(RetAttrs) ||
2930      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2931    return true;
2932
2933  // Verify that the linkage is ok.
2934  switch ((GlobalValue::LinkageTypes)Linkage) {
2935  case GlobalValue::ExternalLinkage:
2936    break; // always ok.
2937  case GlobalValue::DLLImportLinkage:
2938  case GlobalValue::ExternalWeakLinkage:
2939    if (isDefine)
2940      return Error(LinkageLoc, "invalid linkage for function definition");
2941    break;
2942  case GlobalValue::PrivateLinkage:
2943  case GlobalValue::LinkerPrivateLinkage:
2944  case GlobalValue::LinkerPrivateWeakLinkage:
2945  case GlobalValue::InternalLinkage:
2946  case GlobalValue::AvailableExternallyLinkage:
2947  case GlobalValue::LinkOnceAnyLinkage:
2948  case GlobalValue::LinkOnceODRLinkage:
2949  case GlobalValue::LinkOnceODRAutoHideLinkage:
2950  case GlobalValue::WeakAnyLinkage:
2951  case GlobalValue::WeakODRLinkage:
2952  case GlobalValue::DLLExportLinkage:
2953    if (!isDefine)
2954      return Error(LinkageLoc, "invalid linkage for function declaration");
2955    break;
2956  case GlobalValue::AppendingLinkage:
2957  case GlobalValue::CommonLinkage:
2958    return Error(LinkageLoc, "invalid function linkage type");
2959  }
2960
2961  if (!FunctionType::isValidReturnType(RetType))
2962    return Error(RetTypeLoc, "invalid function return type");
2963
2964  LocTy NameLoc = Lex.getLoc();
2965
2966  std::string FunctionName;
2967  if (Lex.getKind() == lltok::GlobalVar) {
2968    FunctionName = Lex.getStrVal();
2969  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2970    unsigned NameID = Lex.getUIntVal();
2971
2972    if (NameID != NumberedVals.size())
2973      return TokError("function expected to be numbered '%" +
2974                      Twine(NumberedVals.size()) + "'");
2975  } else {
2976    return TokError("expected function name");
2977  }
2978
2979  Lex.Lex();
2980
2981  if (Lex.getKind() != lltok::lparen)
2982    return TokError("expected '(' in function argument list");
2983
2984  SmallVector<ArgInfo, 8> ArgList;
2985  bool isVarArg;
2986  AttrBuilder FuncAttrs;
2987  std::vector<unsigned> FwdRefAttrGrps;
2988  LocTy NoBuiltinLoc;
2989  std::string Section;
2990  unsigned Alignment;
2991  std::string GC;
2992  bool UnnamedAddr;
2993  LocTy UnnamedAddrLoc;
2994
2995  if (ParseArgumentList(ArgList, isVarArg) ||
2996      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2997                         &UnnamedAddrLoc) ||
2998      ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
2999                                 NoBuiltinLoc) ||
3000      (EatIfPresent(lltok::kw_section) &&
3001       ParseStringConstant(Section)) ||
3002      ParseOptionalAlignment(Alignment) ||
3003      (EatIfPresent(lltok::kw_gc) &&
3004       ParseStringConstant(GC)))
3005    return true;
3006
3007  if (FuncAttrs.contains(Attribute::NoBuiltin))
3008    return Error(NoBuiltinLoc, "'nobuiltin' attribute not valid on function");
3009
3010  // If the alignment was parsed as an attribute, move to the alignment field.
3011  if (FuncAttrs.hasAlignmentAttr()) {
3012    Alignment = FuncAttrs.getAlignment();
3013    FuncAttrs.removeAttribute(Attribute::Alignment);
3014  }
3015
3016  // Okay, if we got here, the function is syntactically valid.  Convert types
3017  // and do semantic checks.
3018  std::vector<Type*> ParamTypeList;
3019  SmallVector<AttributeSet, 8> Attrs;
3020
3021  if (RetAttrs.hasAttributes())
3022    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3023                                      AttributeSet::ReturnIndex,
3024                                      RetAttrs));
3025
3026  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3027    ParamTypeList.push_back(ArgList[i].Ty);
3028    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3029      AttrBuilder B(ArgList[i].Attrs, i + 1);
3030      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3031    }
3032  }
3033
3034  if (FuncAttrs.hasAttributes())
3035    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3036                                      AttributeSet::FunctionIndex,
3037                                      FuncAttrs));
3038
3039  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3040
3041  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3042    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3043
3044  FunctionType *FT =
3045    FunctionType::get(RetType, ParamTypeList, isVarArg);
3046  PointerType *PFT = PointerType::getUnqual(FT);
3047
3048  Fn = 0;
3049  if (!FunctionName.empty()) {
3050    // If this was a definition of a forward reference, remove the definition
3051    // from the forward reference table and fill in the forward ref.
3052    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3053      ForwardRefVals.find(FunctionName);
3054    if (FRVI != ForwardRefVals.end()) {
3055      Fn = M->getFunction(FunctionName);
3056      if (!Fn)
3057        return Error(FRVI->second.second, "invalid forward reference to "
3058                     "function as global value!");
3059      if (Fn->getType() != PFT)
3060        return Error(FRVI->second.second, "invalid forward reference to "
3061                     "function '" + FunctionName + "' with wrong type!");
3062
3063      ForwardRefVals.erase(FRVI);
3064    } else if ((Fn = M->getFunction(FunctionName))) {
3065      // Reject redefinitions.
3066      return Error(NameLoc, "invalid redefinition of function '" +
3067                   FunctionName + "'");
3068    } else if (M->getNamedValue(FunctionName)) {
3069      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3070    }
3071
3072  } else {
3073    // If this is a definition of a forward referenced function, make sure the
3074    // types agree.
3075    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3076      = ForwardRefValIDs.find(NumberedVals.size());
3077    if (I != ForwardRefValIDs.end()) {
3078      Fn = cast<Function>(I->second.first);
3079      if (Fn->getType() != PFT)
3080        return Error(NameLoc, "type of definition and forward reference of '@" +
3081                     Twine(NumberedVals.size()) + "' disagree");
3082      ForwardRefValIDs.erase(I);
3083    }
3084  }
3085
3086  if (Fn == 0)
3087    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3088  else // Move the forward-reference to the correct spot in the module.
3089    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3090
3091  if (FunctionName.empty())
3092    NumberedVals.push_back(Fn);
3093
3094  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3095  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3096  Fn->setCallingConv(CC);
3097  Fn->setAttributes(PAL);
3098  Fn->setUnnamedAddr(UnnamedAddr);
3099  Fn->setAlignment(Alignment);
3100  Fn->setSection(Section);
3101  if (!GC.empty()) Fn->setGC(GC.c_str());
3102  ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3103
3104  // Add all of the arguments we parsed to the function.
3105  Function::arg_iterator ArgIt = Fn->arg_begin();
3106  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3107    // If the argument has a name, insert it into the argument symbol table.
3108    if (ArgList[i].Name.empty()) continue;
3109
3110    // Set the name, if it conflicted, it will be auto-renamed.
3111    ArgIt->setName(ArgList[i].Name);
3112
3113    if (ArgIt->getName() != ArgList[i].Name)
3114      return Error(ArgList[i].Loc, "redefinition of argument '%" +
3115                   ArgList[i].Name + "'");
3116  }
3117
3118  return false;
3119}
3120
3121
3122/// ParseFunctionBody
3123///   ::= '{' BasicBlock+ '}'
3124///
3125bool LLParser::ParseFunctionBody(Function &Fn) {
3126  if (Lex.getKind() != lltok::lbrace)
3127    return TokError("expected '{' in function body");
3128  Lex.Lex();  // eat the {.
3129
3130  int FunctionNumber = -1;
3131  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3132
3133  PerFunctionState PFS(*this, Fn, FunctionNumber);
3134
3135  // We need at least one basic block.
3136  if (Lex.getKind() == lltok::rbrace)
3137    return TokError("function body requires at least one basic block");
3138
3139  while (Lex.getKind() != lltok::rbrace)
3140    if (ParseBasicBlock(PFS)) return true;
3141
3142  // Eat the }.
3143  Lex.Lex();
3144
3145  // Verify function is ok.
3146  return PFS.FinishFunction();
3147}
3148
3149/// ParseBasicBlock
3150///   ::= LabelStr? Instruction*
3151bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3152  // If this basic block starts out with a name, remember it.
3153  std::string Name;
3154  LocTy NameLoc = Lex.getLoc();
3155  if (Lex.getKind() == lltok::LabelStr) {
3156    Name = Lex.getStrVal();
3157    Lex.Lex();
3158  }
3159
3160  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3161  if (BB == 0) return true;
3162
3163  std::string NameStr;
3164
3165  // Parse the instructions in this block until we get a terminator.
3166  Instruction *Inst;
3167  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
3168  do {
3169    // This instruction may have three possibilities for a name: a) none
3170    // specified, b) name specified "%foo =", c) number specified: "%4 =".
3171    LocTy NameLoc = Lex.getLoc();
3172    int NameID = -1;
3173    NameStr = "";
3174
3175    if (Lex.getKind() == lltok::LocalVarID) {
3176      NameID = Lex.getUIntVal();
3177      Lex.Lex();
3178      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3179        return true;
3180    } else if (Lex.getKind() == lltok::LocalVar) {
3181      NameStr = Lex.getStrVal();
3182      Lex.Lex();
3183      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3184        return true;
3185    }
3186
3187    switch (ParseInstruction(Inst, BB, PFS)) {
3188    default: llvm_unreachable("Unknown ParseInstruction result!");
3189    case InstError: return true;
3190    case InstNormal:
3191      BB->getInstList().push_back(Inst);
3192
3193      // With a normal result, we check to see if the instruction is followed by
3194      // a comma and metadata.
3195      if (EatIfPresent(lltok::comma))
3196        if (ParseInstructionMetadata(Inst, &PFS))
3197          return true;
3198      break;
3199    case InstExtraComma:
3200      BB->getInstList().push_back(Inst);
3201
3202      // If the instruction parser ate an extra comma at the end of it, it
3203      // *must* be followed by metadata.
3204      if (ParseInstructionMetadata(Inst, &PFS))
3205        return true;
3206      break;
3207    }
3208
3209    // Set the name on the instruction.
3210    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3211  } while (!isa<TerminatorInst>(Inst));
3212
3213  return false;
3214}
3215
3216//===----------------------------------------------------------------------===//
3217// Instruction Parsing.
3218//===----------------------------------------------------------------------===//
3219
3220/// ParseInstruction - Parse one of the many different instructions.
3221///
3222int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3223                               PerFunctionState &PFS) {
3224  lltok::Kind Token = Lex.getKind();
3225  if (Token == lltok::Eof)
3226    return TokError("found end of file when expecting more instructions");
3227  LocTy Loc = Lex.getLoc();
3228  unsigned KeywordVal = Lex.getUIntVal();
3229  Lex.Lex();  // Eat the keyword.
3230
3231  switch (Token) {
3232  default:                    return Error(Loc, "expected instruction opcode");
3233  // Terminator Instructions.
3234  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3235  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
3236  case lltok::kw_br:          return ParseBr(Inst, PFS);
3237  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3238  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3239  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3240  case lltok::kw_resume:      return ParseResume(Inst, PFS);
3241  // Binary Operators.
3242  case lltok::kw_add:
3243  case lltok::kw_sub:
3244  case lltok::kw_mul:
3245  case lltok::kw_shl: {
3246    bool NUW = EatIfPresent(lltok::kw_nuw);
3247    bool NSW = EatIfPresent(lltok::kw_nsw);
3248    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3249
3250    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3251
3252    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3253    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3254    return false;
3255  }
3256  case lltok::kw_fadd:
3257  case lltok::kw_fsub:
3258  case lltok::kw_fmul:
3259  case lltok::kw_fdiv:
3260  case lltok::kw_frem: {
3261    FastMathFlags FMF = EatFastMathFlagsIfPresent();
3262    int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3263    if (Res != 0)
3264      return Res;
3265    if (FMF.any())
3266      Inst->setFastMathFlags(FMF);
3267    return 0;
3268  }
3269
3270  case lltok::kw_sdiv:
3271  case lltok::kw_udiv:
3272  case lltok::kw_lshr:
3273  case lltok::kw_ashr: {
3274    bool Exact = EatIfPresent(lltok::kw_exact);
3275
3276    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3277    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3278    return false;
3279  }
3280
3281  case lltok::kw_urem:
3282  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3283  case lltok::kw_and:
3284  case lltok::kw_or:
3285  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3286  case lltok::kw_icmp:
3287  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3288  // Casts.
3289  case lltok::kw_trunc:
3290  case lltok::kw_zext:
3291  case lltok::kw_sext:
3292  case lltok::kw_fptrunc:
3293  case lltok::kw_fpext:
3294  case lltok::kw_bitcast:
3295  case lltok::kw_uitofp:
3296  case lltok::kw_sitofp:
3297  case lltok::kw_fptoui:
3298  case lltok::kw_fptosi:
3299  case lltok::kw_inttoptr:
3300  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3301  // Other.
3302  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3303  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3304  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3305  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3306  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3307  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3308  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3309  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3310  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3311  // Memory.
3312  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3313  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3314  case lltok::kw_store:          return ParseStore(Inst, PFS);
3315  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3316  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3317  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3318  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3319  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3320  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3321  }
3322}
3323
3324/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3325bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3326  if (Opc == Instruction::FCmp) {
3327    switch (Lex.getKind()) {
3328    default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3329    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3330    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3331    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3332    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3333    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3334    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3335    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3336    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3337    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3338    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3339    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3340    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3341    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3342    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3343    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3344    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3345    }
3346  } else {
3347    switch (Lex.getKind()) {
3348    default: return TokError("expected icmp predicate (e.g. 'eq')");
3349    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3350    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3351    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3352    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3353    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3354    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3355    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3356    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3357    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3358    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3359    }
3360  }
3361  Lex.Lex();
3362  return false;
3363}
3364
3365//===----------------------------------------------------------------------===//
3366// Terminator Instructions.
3367//===----------------------------------------------------------------------===//
3368
3369/// ParseRet - Parse a return instruction.
3370///   ::= 'ret' void (',' !dbg, !1)*
3371///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3372bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3373                        PerFunctionState &PFS) {
3374  SMLoc TypeLoc = Lex.getLoc();
3375  Type *Ty = 0;
3376  if (ParseType(Ty, true /*void allowed*/)) return true;
3377
3378  Type *ResType = PFS.getFunction().getReturnType();
3379
3380  if (Ty->isVoidTy()) {
3381    if (!ResType->isVoidTy())
3382      return Error(TypeLoc, "value doesn't match function result type '" +
3383                   getTypeString(ResType) + "'");
3384
3385    Inst = ReturnInst::Create(Context);
3386    return false;
3387  }
3388
3389  Value *RV;
3390  if (ParseValue(Ty, RV, PFS)) return true;
3391
3392  if (ResType != RV->getType())
3393    return Error(TypeLoc, "value doesn't match function result type '" +
3394                 getTypeString(ResType) + "'");
3395
3396  Inst = ReturnInst::Create(Context, RV);
3397  return false;
3398}
3399
3400
3401/// ParseBr
3402///   ::= 'br' TypeAndValue
3403///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3404bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3405  LocTy Loc, Loc2;
3406  Value *Op0;
3407  BasicBlock *Op1, *Op2;
3408  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3409
3410  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3411    Inst = BranchInst::Create(BB);
3412    return false;
3413  }
3414
3415  if (Op0->getType() != Type::getInt1Ty(Context))
3416    return Error(Loc, "branch condition must have 'i1' type");
3417
3418  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3419      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3420      ParseToken(lltok::comma, "expected ',' after true destination") ||
3421      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3422    return true;
3423
3424  Inst = BranchInst::Create(Op1, Op2, Op0);
3425  return false;
3426}
3427
3428/// ParseSwitch
3429///  Instruction
3430///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3431///  JumpTable
3432///    ::= (TypeAndValue ',' TypeAndValue)*
3433bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3434  LocTy CondLoc, BBLoc;
3435  Value *Cond;
3436  BasicBlock *DefaultBB;
3437  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3438      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3439      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3440      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3441    return true;
3442
3443  if (!Cond->getType()->isIntegerTy())
3444    return Error(CondLoc, "switch condition must have integer type");
3445
3446  // Parse the jump table pairs.
3447  SmallPtrSet<Value*, 32> SeenCases;
3448  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3449  while (Lex.getKind() != lltok::rsquare) {
3450    Value *Constant;
3451    BasicBlock *DestBB;
3452
3453    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3454        ParseToken(lltok::comma, "expected ',' after case value") ||
3455        ParseTypeAndBasicBlock(DestBB, PFS))
3456      return true;
3457
3458    if (!SeenCases.insert(Constant))
3459      return Error(CondLoc, "duplicate case value in switch");
3460    if (!isa<ConstantInt>(Constant))
3461      return Error(CondLoc, "case value is not a constant integer");
3462
3463    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3464  }
3465
3466  Lex.Lex();  // Eat the ']'.
3467
3468  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3469  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3470    SI->addCase(Table[i].first, Table[i].second);
3471  Inst = SI;
3472  return false;
3473}
3474
3475/// ParseIndirectBr
3476///  Instruction
3477///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3478bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3479  LocTy AddrLoc;
3480  Value *Address;
3481  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3482      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3483      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3484    return true;
3485
3486  if (!Address->getType()->isPointerTy())
3487    return Error(AddrLoc, "indirectbr address must have pointer type");
3488
3489  // Parse the destination list.
3490  SmallVector<BasicBlock*, 16> DestList;
3491
3492  if (Lex.getKind() != lltok::rsquare) {
3493    BasicBlock *DestBB;
3494    if (ParseTypeAndBasicBlock(DestBB, PFS))
3495      return true;
3496    DestList.push_back(DestBB);
3497
3498    while (EatIfPresent(lltok::comma)) {
3499      if (ParseTypeAndBasicBlock(DestBB, PFS))
3500        return true;
3501      DestList.push_back(DestBB);
3502    }
3503  }
3504
3505  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3506    return true;
3507
3508  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3509  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3510    IBI->addDestination(DestList[i]);
3511  Inst = IBI;
3512  return false;
3513}
3514
3515
3516/// ParseInvoke
3517///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3518///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3519bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3520  LocTy CallLoc = Lex.getLoc();
3521  AttrBuilder RetAttrs, FnAttrs;
3522  std::vector<unsigned> FwdRefAttrGrps;
3523  LocTy NoBuiltinLoc;
3524  CallingConv::ID CC;
3525  Type *RetType = 0;
3526  LocTy RetTypeLoc;
3527  ValID CalleeID;
3528  SmallVector<ParamInfo, 16> ArgList;
3529
3530  BasicBlock *NormalBB, *UnwindBB;
3531  if (ParseOptionalCallingConv(CC) ||
3532      ParseOptionalReturnAttrs(RetAttrs) ||
3533      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3534      ParseValID(CalleeID) ||
3535      ParseParameterList(ArgList, PFS) ||
3536      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3537                                 NoBuiltinLoc) ||
3538      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3539      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3540      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3541      ParseTypeAndBasicBlock(UnwindBB, PFS))
3542    return true;
3543
3544  // If RetType is a non-function pointer type, then this is the short syntax
3545  // for the call, which means that RetType is just the return type.  Infer the
3546  // rest of the function argument types from the arguments that are present.
3547  PointerType *PFTy = 0;
3548  FunctionType *Ty = 0;
3549  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3550      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3551    // Pull out the types of all of the arguments...
3552    std::vector<Type*> ParamTypes;
3553    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3554      ParamTypes.push_back(ArgList[i].V->getType());
3555
3556    if (!FunctionType::isValidReturnType(RetType))
3557      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3558
3559    Ty = FunctionType::get(RetType, ParamTypes, false);
3560    PFTy = PointerType::getUnqual(Ty);
3561  }
3562
3563  // Look up the callee.
3564  Value *Callee;
3565  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3566
3567  // Set up the Attribute for the function.
3568  SmallVector<AttributeSet, 8> Attrs;
3569  if (RetAttrs.hasAttributes())
3570    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3571                                      AttributeSet::ReturnIndex,
3572                                      RetAttrs));
3573
3574  SmallVector<Value*, 8> Args;
3575
3576  // Loop through FunctionType's arguments and ensure they are specified
3577  // correctly.  Also, gather any parameter attributes.
3578  FunctionType::param_iterator I = Ty->param_begin();
3579  FunctionType::param_iterator E = Ty->param_end();
3580  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3581    Type *ExpectedTy = 0;
3582    if (I != E) {
3583      ExpectedTy = *I++;
3584    } else if (!Ty->isVarArg()) {
3585      return Error(ArgList[i].Loc, "too many arguments specified");
3586    }
3587
3588    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3589      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3590                   getTypeString(ExpectedTy) + "'");
3591    Args.push_back(ArgList[i].V);
3592    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3593      AttrBuilder B(ArgList[i].Attrs, i + 1);
3594      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3595    }
3596  }
3597
3598  if (I != E)
3599    return Error(CallLoc, "not enough parameters specified for call");
3600
3601  if (FnAttrs.hasAttributes())
3602    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3603                                      AttributeSet::FunctionIndex,
3604                                      FnAttrs));
3605
3606  // Finish off the Attribute and check them
3607  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3608
3609  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3610  II->setCallingConv(CC);
3611  II->setAttributes(PAL);
3612  ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3613  Inst = II;
3614  return false;
3615}
3616
3617/// ParseResume
3618///   ::= 'resume' TypeAndValue
3619bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3620  Value *Exn; LocTy ExnLoc;
3621  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3622    return true;
3623
3624  ResumeInst *RI = ResumeInst::Create(Exn);
3625  Inst = RI;
3626  return false;
3627}
3628
3629//===----------------------------------------------------------------------===//
3630// Binary Operators.
3631//===----------------------------------------------------------------------===//
3632
3633/// ParseArithmetic
3634///  ::= ArithmeticOps TypeAndValue ',' Value
3635///
3636/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3637/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3638bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3639                               unsigned Opc, unsigned OperandType) {
3640  LocTy Loc; Value *LHS, *RHS;
3641  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3642      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3643      ParseValue(LHS->getType(), RHS, PFS))
3644    return true;
3645
3646  bool Valid;
3647  switch (OperandType) {
3648  default: llvm_unreachable("Unknown operand type!");
3649  case 0: // int or FP.
3650    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3651            LHS->getType()->isFPOrFPVectorTy();
3652    break;
3653  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3654  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3655  }
3656
3657  if (!Valid)
3658    return Error(Loc, "invalid operand type for instruction");
3659
3660  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3661  return false;
3662}
3663
3664/// ParseLogical
3665///  ::= ArithmeticOps TypeAndValue ',' Value {
3666bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3667                            unsigned Opc) {
3668  LocTy Loc; Value *LHS, *RHS;
3669  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3670      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3671      ParseValue(LHS->getType(), RHS, PFS))
3672    return true;
3673
3674  if (!LHS->getType()->isIntOrIntVectorTy())
3675    return Error(Loc,"instruction requires integer or integer vector operands");
3676
3677  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3678  return false;
3679}
3680
3681
3682/// ParseCompare
3683///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3684///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3685bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3686                            unsigned Opc) {
3687  // Parse the integer/fp comparison predicate.
3688  LocTy Loc;
3689  unsigned Pred;
3690  Value *LHS, *RHS;
3691  if (ParseCmpPredicate(Pred, Opc) ||
3692      ParseTypeAndValue(LHS, Loc, PFS) ||
3693      ParseToken(lltok::comma, "expected ',' after compare value") ||
3694      ParseValue(LHS->getType(), RHS, PFS))
3695    return true;
3696
3697  if (Opc == Instruction::FCmp) {
3698    if (!LHS->getType()->isFPOrFPVectorTy())
3699      return Error(Loc, "fcmp requires floating point operands");
3700    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3701  } else {
3702    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3703    if (!LHS->getType()->isIntOrIntVectorTy() &&
3704        !LHS->getType()->getScalarType()->isPointerTy())
3705      return Error(Loc, "icmp requires integer operands");
3706    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3707  }
3708  return false;
3709}
3710
3711//===----------------------------------------------------------------------===//
3712// Other Instructions.
3713//===----------------------------------------------------------------------===//
3714
3715
3716/// ParseCast
3717///   ::= CastOpc TypeAndValue 'to' Type
3718bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3719                         unsigned Opc) {
3720  LocTy Loc;
3721  Value *Op;
3722  Type *DestTy = 0;
3723  if (ParseTypeAndValue(Op, Loc, PFS) ||
3724      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3725      ParseType(DestTy))
3726    return true;
3727
3728  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3729    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3730    return Error(Loc, "invalid cast opcode for cast from '" +
3731                 getTypeString(Op->getType()) + "' to '" +
3732                 getTypeString(DestTy) + "'");
3733  }
3734  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3735  return false;
3736}
3737
3738/// ParseSelect
3739///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3740bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3741  LocTy Loc;
3742  Value *Op0, *Op1, *Op2;
3743  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3744      ParseToken(lltok::comma, "expected ',' after select condition") ||
3745      ParseTypeAndValue(Op1, PFS) ||
3746      ParseToken(lltok::comma, "expected ',' after select value") ||
3747      ParseTypeAndValue(Op2, PFS))
3748    return true;
3749
3750  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3751    return Error(Loc, Reason);
3752
3753  Inst = SelectInst::Create(Op0, Op1, Op2);
3754  return false;
3755}
3756
3757/// ParseVA_Arg
3758///   ::= 'va_arg' TypeAndValue ',' Type
3759bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3760  Value *Op;
3761  Type *EltTy = 0;
3762  LocTy TypeLoc;
3763  if (ParseTypeAndValue(Op, PFS) ||
3764      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3765      ParseType(EltTy, TypeLoc))
3766    return true;
3767
3768  if (!EltTy->isFirstClassType())
3769    return Error(TypeLoc, "va_arg requires operand with first class type");
3770
3771  Inst = new VAArgInst(Op, EltTy);
3772  return false;
3773}
3774
3775/// ParseExtractElement
3776///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3777bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3778  LocTy Loc;
3779  Value *Op0, *Op1;
3780  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3781      ParseToken(lltok::comma, "expected ',' after extract value") ||
3782      ParseTypeAndValue(Op1, PFS))
3783    return true;
3784
3785  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3786    return Error(Loc, "invalid extractelement operands");
3787
3788  Inst = ExtractElementInst::Create(Op0, Op1);
3789  return false;
3790}
3791
3792/// ParseInsertElement
3793///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3794bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3795  LocTy Loc;
3796  Value *Op0, *Op1, *Op2;
3797  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3798      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3799      ParseTypeAndValue(Op1, PFS) ||
3800      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3801      ParseTypeAndValue(Op2, PFS))
3802    return true;
3803
3804  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3805    return Error(Loc, "invalid insertelement operands");
3806
3807  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3808  return false;
3809}
3810
3811/// ParseShuffleVector
3812///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3813bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3814  LocTy Loc;
3815  Value *Op0, *Op1, *Op2;
3816  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3817      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3818      ParseTypeAndValue(Op1, PFS) ||
3819      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3820      ParseTypeAndValue(Op2, PFS))
3821    return true;
3822
3823  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3824    return Error(Loc, "invalid shufflevector operands");
3825
3826  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3827  return false;
3828}
3829
3830/// ParsePHI
3831///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3832int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3833  Type *Ty = 0;  LocTy TypeLoc;
3834  Value *Op0, *Op1;
3835
3836  if (ParseType(Ty, TypeLoc) ||
3837      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3838      ParseValue(Ty, Op0, PFS) ||
3839      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3840      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3841      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3842    return true;
3843
3844  bool AteExtraComma = false;
3845  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3846  while (1) {
3847    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3848
3849    if (!EatIfPresent(lltok::comma))
3850      break;
3851
3852    if (Lex.getKind() == lltok::MetadataVar) {
3853      AteExtraComma = true;
3854      break;
3855    }
3856
3857    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3858        ParseValue(Ty, Op0, PFS) ||
3859        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3860        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3861        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3862      return true;
3863  }
3864
3865  if (!Ty->isFirstClassType())
3866    return Error(TypeLoc, "phi node must have first class type");
3867
3868  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3869  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3870    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3871  Inst = PN;
3872  return AteExtraComma ? InstExtraComma : InstNormal;
3873}
3874
3875/// ParseLandingPad
3876///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3877/// Clause
3878///   ::= 'catch' TypeAndValue
3879///   ::= 'filter'
3880///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3881bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3882  Type *Ty = 0; LocTy TyLoc;
3883  Value *PersFn; LocTy PersFnLoc;
3884
3885  if (ParseType(Ty, TyLoc) ||
3886      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3887      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3888    return true;
3889
3890  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3891  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3892
3893  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3894    LandingPadInst::ClauseType CT;
3895    if (EatIfPresent(lltok::kw_catch))
3896      CT = LandingPadInst::Catch;
3897    else if (EatIfPresent(lltok::kw_filter))
3898      CT = LandingPadInst::Filter;
3899    else
3900      return TokError("expected 'catch' or 'filter' clause type");
3901
3902    Value *V; LocTy VLoc;
3903    if (ParseTypeAndValue(V, VLoc, PFS)) {
3904      delete LP;
3905      return true;
3906    }
3907
3908    // A 'catch' type expects a non-array constant. A filter clause expects an
3909    // array constant.
3910    if (CT == LandingPadInst::Catch) {
3911      if (isa<ArrayType>(V->getType()))
3912        Error(VLoc, "'catch' clause has an invalid type");
3913    } else {
3914      if (!isa<ArrayType>(V->getType()))
3915        Error(VLoc, "'filter' clause has an invalid type");
3916    }
3917
3918    LP->addClause(V);
3919  }
3920
3921  Inst = LP;
3922  return false;
3923}
3924
3925/// ParseCall
3926///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3927///       ParameterList OptionalAttrs
3928bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3929                         bool isTail) {
3930  AttrBuilder RetAttrs, FnAttrs;
3931  std::vector<unsigned> FwdRefAttrGrps;
3932  LocTy NoBuiltinLoc;
3933  CallingConv::ID CC;
3934  Type *RetType = 0;
3935  LocTy RetTypeLoc;
3936  ValID CalleeID;
3937  SmallVector<ParamInfo, 16> ArgList;
3938  LocTy CallLoc = Lex.getLoc();
3939
3940  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3941      ParseOptionalCallingConv(CC) ||
3942      ParseOptionalReturnAttrs(RetAttrs) ||
3943      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3944      ParseValID(CalleeID) ||
3945      ParseParameterList(ArgList, PFS) ||
3946      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3947                                 NoBuiltinLoc))
3948    return true;
3949
3950  // If RetType is a non-function pointer type, then this is the short syntax
3951  // for the call, which means that RetType is just the return type.  Infer the
3952  // rest of the function argument types from the arguments that are present.
3953  PointerType *PFTy = 0;
3954  FunctionType *Ty = 0;
3955  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3956      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3957    // Pull out the types of all of the arguments...
3958    std::vector<Type*> ParamTypes;
3959    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3960      ParamTypes.push_back(ArgList[i].V->getType());
3961
3962    if (!FunctionType::isValidReturnType(RetType))
3963      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3964
3965    Ty = FunctionType::get(RetType, ParamTypes, false);
3966    PFTy = PointerType::getUnqual(Ty);
3967  }
3968
3969  // Look up the callee.
3970  Value *Callee;
3971  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3972
3973  // Set up the Attribute for the function.
3974  SmallVector<AttributeSet, 8> Attrs;
3975  if (RetAttrs.hasAttributes())
3976    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3977                                      AttributeSet::ReturnIndex,
3978                                      RetAttrs));
3979
3980  SmallVector<Value*, 8> Args;
3981
3982  // Loop through FunctionType's arguments and ensure they are specified
3983  // correctly.  Also, gather any parameter attributes.
3984  FunctionType::param_iterator I = Ty->param_begin();
3985  FunctionType::param_iterator E = Ty->param_end();
3986  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3987    Type *ExpectedTy = 0;
3988    if (I != E) {
3989      ExpectedTy = *I++;
3990    } else if (!Ty->isVarArg()) {
3991      return Error(ArgList[i].Loc, "too many arguments specified");
3992    }
3993
3994    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3995      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3996                   getTypeString(ExpectedTy) + "'");
3997    Args.push_back(ArgList[i].V);
3998    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3999      AttrBuilder B(ArgList[i].Attrs, i + 1);
4000      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4001    }
4002  }
4003
4004  if (I != E)
4005    return Error(CallLoc, "not enough parameters specified for call");
4006
4007  if (FnAttrs.hasAttributes())
4008    Attrs.push_back(AttributeSet::get(RetType->getContext(),
4009                                      AttributeSet::FunctionIndex,
4010                                      FnAttrs));
4011
4012  // Finish off the Attribute and check them
4013  AttributeSet PAL = AttributeSet::get(Context, Attrs);
4014
4015  CallInst *CI = CallInst::Create(Callee, Args);
4016  CI->setTailCall(isTail);
4017  CI->setCallingConv(CC);
4018  CI->setAttributes(PAL);
4019  ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
4020  Inst = CI;
4021  return false;
4022}
4023
4024//===----------------------------------------------------------------------===//
4025// Memory Instructions.
4026//===----------------------------------------------------------------------===//
4027
4028/// ParseAlloc
4029///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
4030int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
4031  Value *Size = 0;
4032  LocTy SizeLoc;
4033  unsigned Alignment = 0;
4034  Type *Ty = 0;
4035  if (ParseType(Ty)) return true;
4036
4037  bool AteExtraComma = false;
4038  if (EatIfPresent(lltok::comma)) {
4039    if (Lex.getKind() == lltok::kw_align) {
4040      if (ParseOptionalAlignment(Alignment)) return true;
4041    } else if (Lex.getKind() == lltok::MetadataVar) {
4042      AteExtraComma = true;
4043    } else {
4044      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4045          ParseOptionalCommaAlign(Alignment, AteExtraComma))
4046        return true;
4047    }
4048  }
4049
4050  if (Size && !Size->getType()->isIntegerTy())
4051    return Error(SizeLoc, "element count must have integer type");
4052
4053  Inst = new AllocaInst(Ty, Size, Alignment);
4054  return AteExtraComma ? InstExtraComma : InstNormal;
4055}
4056
4057/// ParseLoad
4058///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4059///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
4060///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4061int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4062  Value *Val; LocTy Loc;
4063  unsigned Alignment = 0;
4064  bool AteExtraComma = false;
4065  bool isAtomic = false;
4066  AtomicOrdering Ordering = NotAtomic;
4067  SynchronizationScope Scope = CrossThread;
4068
4069  if (Lex.getKind() == lltok::kw_atomic) {
4070    isAtomic = true;
4071    Lex.Lex();
4072  }
4073
4074  bool isVolatile = false;
4075  if (Lex.getKind() == lltok::kw_volatile) {
4076    isVolatile = true;
4077    Lex.Lex();
4078  }
4079
4080  if (ParseTypeAndValue(Val, Loc, PFS) ||
4081      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4082      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4083    return true;
4084
4085  if (!Val->getType()->isPointerTy() ||
4086      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4087    return Error(Loc, "load operand must be a pointer to a first class type");
4088  if (isAtomic && !Alignment)
4089    return Error(Loc, "atomic load must have explicit non-zero alignment");
4090  if (Ordering == Release || Ordering == AcquireRelease)
4091    return Error(Loc, "atomic load cannot use Release ordering");
4092
4093  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4094  return AteExtraComma ? InstExtraComma : InstNormal;
4095}
4096
4097/// ParseStore
4098
4099///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4100///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4101///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4102int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4103  Value *Val, *Ptr; LocTy Loc, PtrLoc;
4104  unsigned Alignment = 0;
4105  bool AteExtraComma = false;
4106  bool isAtomic = false;
4107  AtomicOrdering Ordering = NotAtomic;
4108  SynchronizationScope Scope = CrossThread;
4109
4110  if (Lex.getKind() == lltok::kw_atomic) {
4111    isAtomic = true;
4112    Lex.Lex();
4113  }
4114
4115  bool isVolatile = false;
4116  if (Lex.getKind() == lltok::kw_volatile) {
4117    isVolatile = true;
4118    Lex.Lex();
4119  }
4120
4121  if (ParseTypeAndValue(Val, Loc, PFS) ||
4122      ParseToken(lltok::comma, "expected ',' after store operand") ||
4123      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4124      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4125      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4126    return true;
4127
4128  if (!Ptr->getType()->isPointerTy())
4129    return Error(PtrLoc, "store operand must be a pointer");
4130  if (!Val->getType()->isFirstClassType())
4131    return Error(Loc, "store operand must be a first class value");
4132  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4133    return Error(Loc, "stored value and pointer type do not match");
4134  if (isAtomic && !Alignment)
4135    return Error(Loc, "atomic store must have explicit non-zero alignment");
4136  if (Ordering == Acquire || Ordering == AcquireRelease)
4137    return Error(Loc, "atomic store cannot use Acquire ordering");
4138
4139  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4140  return AteExtraComma ? InstExtraComma : InstNormal;
4141}
4142
4143/// ParseCmpXchg
4144///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4145///       'singlethread'? AtomicOrdering
4146int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4147  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4148  bool AteExtraComma = false;
4149  AtomicOrdering Ordering = NotAtomic;
4150  SynchronizationScope Scope = CrossThread;
4151  bool isVolatile = false;
4152
4153  if (EatIfPresent(lltok::kw_volatile))
4154    isVolatile = true;
4155
4156  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4157      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4158      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4159      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4160      ParseTypeAndValue(New, NewLoc, PFS) ||
4161      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4162    return true;
4163
4164  if (Ordering == Unordered)
4165    return TokError("cmpxchg cannot be unordered");
4166  if (!Ptr->getType()->isPointerTy())
4167    return Error(PtrLoc, "cmpxchg operand must be a pointer");
4168  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4169    return Error(CmpLoc, "compare value and pointer type do not match");
4170  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4171    return Error(NewLoc, "new value and pointer type do not match");
4172  if (!New->getType()->isIntegerTy())
4173    return Error(NewLoc, "cmpxchg operand must be an integer");
4174  unsigned Size = New->getType()->getPrimitiveSizeInBits();
4175  if (Size < 8 || (Size & (Size - 1)))
4176    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4177                         " integer");
4178
4179  AtomicCmpXchgInst *CXI =
4180    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4181  CXI->setVolatile(isVolatile);
4182  Inst = CXI;
4183  return AteExtraComma ? InstExtraComma : InstNormal;
4184}
4185
4186/// ParseAtomicRMW
4187///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4188///       'singlethread'? AtomicOrdering
4189int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4190  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4191  bool AteExtraComma = false;
4192  AtomicOrdering Ordering = NotAtomic;
4193  SynchronizationScope Scope = CrossThread;
4194  bool isVolatile = false;
4195  AtomicRMWInst::BinOp Operation;
4196
4197  if (EatIfPresent(lltok::kw_volatile))
4198    isVolatile = true;
4199
4200  switch (Lex.getKind()) {
4201  default: return TokError("expected binary operation in atomicrmw");
4202  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4203  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4204  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4205  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4206  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4207  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4208  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4209  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4210  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4211  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4212  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4213  }
4214  Lex.Lex();  // Eat the operation.
4215
4216  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4217      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4218      ParseTypeAndValue(Val, ValLoc, PFS) ||
4219      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4220    return true;
4221
4222  if (Ordering == Unordered)
4223    return TokError("atomicrmw cannot be unordered");
4224  if (!Ptr->getType()->isPointerTy())
4225    return Error(PtrLoc, "atomicrmw operand must be a pointer");
4226  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4227    return Error(ValLoc, "atomicrmw value and pointer type do not match");
4228  if (!Val->getType()->isIntegerTy())
4229    return Error(ValLoc, "atomicrmw operand must be an integer");
4230  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4231  if (Size < 8 || (Size & (Size - 1)))
4232    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4233                         " integer");
4234
4235  AtomicRMWInst *RMWI =
4236    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4237  RMWI->setVolatile(isVolatile);
4238  Inst = RMWI;
4239  return AteExtraComma ? InstExtraComma : InstNormal;
4240}
4241
4242/// ParseFence
4243///   ::= 'fence' 'singlethread'? AtomicOrdering
4244int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4245  AtomicOrdering Ordering = NotAtomic;
4246  SynchronizationScope Scope = CrossThread;
4247  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4248    return true;
4249
4250  if (Ordering == Unordered)
4251    return TokError("fence cannot be unordered");
4252  if (Ordering == Monotonic)
4253    return TokError("fence cannot be monotonic");
4254
4255  Inst = new FenceInst(Context, Ordering, Scope);
4256  return InstNormal;
4257}
4258
4259/// ParseGetElementPtr
4260///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4261int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4262  Value *Ptr = 0;
4263  Value *Val = 0;
4264  LocTy Loc, EltLoc;
4265
4266  bool InBounds = EatIfPresent(lltok::kw_inbounds);
4267
4268  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4269
4270  Type *BaseType = Ptr->getType();
4271  PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
4272  if (!BasePointerType)
4273    return Error(Loc, "base of getelementptr must be a pointer");
4274
4275  SmallVector<Value*, 16> Indices;
4276  bool AteExtraComma = false;
4277  while (EatIfPresent(lltok::comma)) {
4278    if (Lex.getKind() == lltok::MetadataVar) {
4279      AteExtraComma = true;
4280      break;
4281    }
4282    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4283    if (!Val->getType()->getScalarType()->isIntegerTy())
4284      return Error(EltLoc, "getelementptr index must be an integer");
4285    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4286      return Error(EltLoc, "getelementptr index type missmatch");
4287    if (Val->getType()->isVectorTy()) {
4288      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4289      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4290      if (ValNumEl != PtrNumEl)
4291        return Error(EltLoc,
4292          "getelementptr vector index has a wrong number of elements");
4293    }
4294    Indices.push_back(Val);
4295  }
4296
4297  if (!Indices.empty() && !BasePointerType->getElementType()->isSized())
4298    return Error(Loc, "base element of getelementptr must be sized");
4299
4300  if (!GetElementPtrInst::getIndexedType(BaseType, Indices))
4301    return Error(Loc, "invalid getelementptr indices");
4302  Inst = GetElementPtrInst::Create(Ptr, Indices);
4303  if (InBounds)
4304    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4305  return AteExtraComma ? InstExtraComma : InstNormal;
4306}
4307
4308/// ParseExtractValue
4309///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4310int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4311  Value *Val; LocTy Loc;
4312  SmallVector<unsigned, 4> Indices;
4313  bool AteExtraComma;
4314  if (ParseTypeAndValue(Val, Loc, PFS) ||
4315      ParseIndexList(Indices, AteExtraComma))
4316    return true;
4317
4318  if (!Val->getType()->isAggregateType())
4319    return Error(Loc, "extractvalue operand must be aggregate type");
4320
4321  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4322    return Error(Loc, "invalid indices for extractvalue");
4323  Inst = ExtractValueInst::Create(Val, Indices);
4324  return AteExtraComma ? InstExtraComma : InstNormal;
4325}
4326
4327/// ParseInsertValue
4328///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4329int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4330  Value *Val0, *Val1; LocTy Loc0, Loc1;
4331  SmallVector<unsigned, 4> Indices;
4332  bool AteExtraComma;
4333  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4334      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4335      ParseTypeAndValue(Val1, Loc1, PFS) ||
4336      ParseIndexList(Indices, AteExtraComma))
4337    return true;
4338
4339  if (!Val0->getType()->isAggregateType())
4340    return Error(Loc0, "insertvalue operand must be aggregate type");
4341
4342  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4343    return Error(Loc0, "invalid indices for insertvalue");
4344  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4345  return AteExtraComma ? InstExtraComma : InstNormal;
4346}
4347
4348//===----------------------------------------------------------------------===//
4349// Embedded metadata.
4350//===----------------------------------------------------------------------===//
4351
4352/// ParseMDNodeVector
4353///   ::= Element (',' Element)*
4354/// Element
4355///   ::= 'null' | TypeAndValue
4356bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4357                                 PerFunctionState *PFS) {
4358  // Check for an empty list.
4359  if (Lex.getKind() == lltok::rbrace)
4360    return false;
4361
4362  do {
4363    // Null is a special case since it is typeless.
4364    if (EatIfPresent(lltok::kw_null)) {
4365      Elts.push_back(0);
4366      continue;
4367    }
4368
4369    Value *V = 0;
4370    if (ParseTypeAndValue(V, PFS)) return true;
4371    Elts.push_back(V);
4372  } while (EatIfPresent(lltok::comma));
4373
4374  return false;
4375}
4376