LLParser.cpp revision 251662
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/AutoUpgrade.h"
17#include "llvm/IR/CallingConv.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/InlineAsm.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/Module.h"
23#include "llvm/IR/Operator.h"
24#include "llvm/IR/ValueSymbolTable.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68  // Handle any function attribute group forward references.
69  for (std::map<Value*, std::vector<unsigned> >::iterator
70         I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
71         I != E; ++I) {
72    Value *V = I->first;
73    std::vector<unsigned> &Vec = I->second;
74    AttrBuilder B;
75
76    for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
77         VI != VE; ++VI)
78      B.merge(NumberedAttrBuilders[*VI]);
79
80    if (Function *Fn = dyn_cast<Function>(V)) {
81      AttributeSet AS = Fn->getAttributes();
82      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
83      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
84                               AS.getFnAttributes());
85
86      FnAttrs.merge(B);
87
88      // If the alignment was parsed as an attribute, move to the alignment
89      // field.
90      if (FnAttrs.hasAlignmentAttr()) {
91        Fn->setAlignment(FnAttrs.getAlignment());
92        FnAttrs.removeAttribute(Attribute::Alignment);
93      }
94
95      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
96                            AttributeSet::get(Context,
97                                              AttributeSet::FunctionIndex,
98                                              FnAttrs));
99      Fn->setAttributes(AS);
100    } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
101      AttributeSet AS = CI->getAttributes();
102      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
103      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
104                               AS.getFnAttributes());
105      FnAttrs.merge(B);
106      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
107                            AttributeSet::get(Context,
108                                              AttributeSet::FunctionIndex,
109                                              FnAttrs));
110      CI->setAttributes(AS);
111    } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
112      AttributeSet AS = II->getAttributes();
113      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
114      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
115                               AS.getFnAttributes());
116      FnAttrs.merge(B);
117      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
118                            AttributeSet::get(Context,
119                                              AttributeSet::FunctionIndex,
120                                              FnAttrs));
121      II->setAttributes(AS);
122    } else {
123      llvm_unreachable("invalid object with forward attribute group reference");
124    }
125  }
126
127  // If there are entries in ForwardRefBlockAddresses at this point, they are
128  // references after the function was defined.  Resolve those now.
129  while (!ForwardRefBlockAddresses.empty()) {
130    // Okay, we are referencing an already-parsed function, resolve them now.
131    Function *TheFn = 0;
132    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
133    if (Fn.Kind == ValID::t_GlobalName)
134      TheFn = M->getFunction(Fn.StrVal);
135    else if (Fn.UIntVal < NumberedVals.size())
136      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
137
138    if (TheFn == 0)
139      return Error(Fn.Loc, "unknown function referenced by blockaddress");
140
141    // Resolve all these references.
142    if (ResolveForwardRefBlockAddresses(TheFn,
143                                      ForwardRefBlockAddresses.begin()->second,
144                                        0))
145      return true;
146
147    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
148  }
149
150  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
151    if (NumberedTypes[i].second.isValid())
152      return Error(NumberedTypes[i].second,
153                   "use of undefined type '%" + Twine(i) + "'");
154
155  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157    if (I->second.second.isValid())
158      return Error(I->second.second,
159                   "use of undefined type named '" + I->getKey() + "'");
160
161  if (!ForwardRefVals.empty())
162    return Error(ForwardRefVals.begin()->second.second,
163                 "use of undefined value '@" + ForwardRefVals.begin()->first +
164                 "'");
165
166  if (!ForwardRefValIDs.empty())
167    return Error(ForwardRefValIDs.begin()->second.second,
168                 "use of undefined value '@" +
169                 Twine(ForwardRefValIDs.begin()->first) + "'");
170
171  if (!ForwardRefMDNodes.empty())
172    return Error(ForwardRefMDNodes.begin()->second.second,
173                 "use of undefined metadata '!" +
174                 Twine(ForwardRefMDNodes.begin()->first) + "'");
175
176
177  // Look for intrinsic functions and CallInst that need to be upgraded
178  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
179    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
180
181  return false;
182}
183
184bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
185                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
186                                               PerFunctionState *PFS) {
187  // Loop over all the references, resolving them.
188  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
189    BasicBlock *Res;
190    if (PFS) {
191      if (Refs[i].first.Kind == ValID::t_LocalName)
192        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
193      else
194        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
195    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
196      return Error(Refs[i].first.Loc,
197       "cannot take address of numeric label after the function is defined");
198    } else {
199      Res = dyn_cast_or_null<BasicBlock>(
200                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
201    }
202
203    if (Res == 0)
204      return Error(Refs[i].first.Loc,
205                   "referenced value is not a basic block");
206
207    // Get the BlockAddress for this and update references to use it.
208    BlockAddress *BA = BlockAddress::get(TheFn, Res);
209    Refs[i].second->replaceAllUsesWith(BA);
210    Refs[i].second->eraseFromParent();
211  }
212  return false;
213}
214
215
216//===----------------------------------------------------------------------===//
217// Top-Level Entities
218//===----------------------------------------------------------------------===//
219
220bool LLParser::ParseTopLevelEntities() {
221  while (1) {
222    switch (Lex.getKind()) {
223    default:         return TokError("expected top-level entity");
224    case lltok::Eof: return false;
225    case lltok::kw_declare: if (ParseDeclare()) return true; break;
226    case lltok::kw_define:  if (ParseDefine()) return true; break;
227    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
228    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
229    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
230    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
231    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
232    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
233    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
234    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
235    case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
236
237    // The Global variable production with no name can have many different
238    // optional leading prefixes, the production is:
239    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
240    //               OptionalAddrSpace OptionalUnNammedAddr
241    //               ('constant'|'global') ...
242    case lltok::kw_private:             // OptionalLinkage
243    case lltok::kw_linker_private:      // OptionalLinkage
244    case lltok::kw_linker_private_weak: // OptionalLinkage
245    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
246    case lltok::kw_internal:            // OptionalLinkage
247    case lltok::kw_weak:                // OptionalLinkage
248    case lltok::kw_weak_odr:            // OptionalLinkage
249    case lltok::kw_linkonce:            // OptionalLinkage
250    case lltok::kw_linkonce_odr:        // OptionalLinkage
251    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
252    case lltok::kw_appending:           // OptionalLinkage
253    case lltok::kw_dllexport:           // OptionalLinkage
254    case lltok::kw_common:              // OptionalLinkage
255    case lltok::kw_dllimport:           // OptionalLinkage
256    case lltok::kw_extern_weak:         // OptionalLinkage
257    case lltok::kw_external: {          // OptionalLinkage
258      unsigned Linkage, Visibility;
259      if (ParseOptionalLinkage(Linkage) ||
260          ParseOptionalVisibility(Visibility) ||
261          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
262        return true;
263      break;
264    }
265    case lltok::kw_default:       // OptionalVisibility
266    case lltok::kw_hidden:        // OptionalVisibility
267    case lltok::kw_protected: {   // OptionalVisibility
268      unsigned Visibility;
269      if (ParseOptionalVisibility(Visibility) ||
270          ParseGlobal("", SMLoc(), 0, false, Visibility))
271        return true;
272      break;
273    }
274
275    case lltok::kw_thread_local:  // OptionalThreadLocal
276    case lltok::kw_addrspace:     // OptionalAddrSpace
277    case lltok::kw_constant:      // GlobalType
278    case lltok::kw_global:        // GlobalType
279      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
280      break;
281
282    case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
283    }
284  }
285}
286
287
288/// toplevelentity
289///   ::= 'module' 'asm' STRINGCONSTANT
290bool LLParser::ParseModuleAsm() {
291  assert(Lex.getKind() == lltok::kw_module);
292  Lex.Lex();
293
294  std::string AsmStr;
295  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
296      ParseStringConstant(AsmStr)) return true;
297
298  M->appendModuleInlineAsm(AsmStr);
299  return false;
300}
301
302/// toplevelentity
303///   ::= 'target' 'triple' '=' STRINGCONSTANT
304///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
305bool LLParser::ParseTargetDefinition() {
306  assert(Lex.getKind() == lltok::kw_target);
307  std::string Str;
308  switch (Lex.Lex()) {
309  default: return TokError("unknown target property");
310  case lltok::kw_triple:
311    Lex.Lex();
312    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
313        ParseStringConstant(Str))
314      return true;
315    M->setTargetTriple(Str);
316    return false;
317  case lltok::kw_datalayout:
318    Lex.Lex();
319    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
320        ParseStringConstant(Str))
321      return true;
322    M->setDataLayout(Str);
323    return false;
324  }
325}
326
327/// toplevelentity
328///   ::= 'deplibs' '=' '[' ']'
329///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
330/// FIXME: Remove in 4.0. Currently parse, but ignore.
331bool LLParser::ParseDepLibs() {
332  assert(Lex.getKind() == lltok::kw_deplibs);
333  Lex.Lex();
334  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
335      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
336    return true;
337
338  if (EatIfPresent(lltok::rsquare))
339    return false;
340
341  do {
342    std::string Str;
343    if (ParseStringConstant(Str)) return true;
344  } while (EatIfPresent(lltok::comma));
345
346  return ParseToken(lltok::rsquare, "expected ']' at end of list");
347}
348
349/// ParseUnnamedType:
350///   ::= LocalVarID '=' 'type' type
351bool LLParser::ParseUnnamedType() {
352  LocTy TypeLoc = Lex.getLoc();
353  unsigned TypeID = Lex.getUIntVal();
354  Lex.Lex(); // eat LocalVarID;
355
356  if (ParseToken(lltok::equal, "expected '=' after name") ||
357      ParseToken(lltok::kw_type, "expected 'type' after '='"))
358    return true;
359
360  if (TypeID >= NumberedTypes.size())
361    NumberedTypes.resize(TypeID+1);
362
363  Type *Result = 0;
364  if (ParseStructDefinition(TypeLoc, "",
365                            NumberedTypes[TypeID], Result)) return true;
366
367  if (!isa<StructType>(Result)) {
368    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
369    if (Entry.first)
370      return Error(TypeLoc, "non-struct types may not be recursive");
371    Entry.first = Result;
372    Entry.second = SMLoc();
373  }
374
375  return false;
376}
377
378
379/// toplevelentity
380///   ::= LocalVar '=' 'type' type
381bool LLParser::ParseNamedType() {
382  std::string Name = Lex.getStrVal();
383  LocTy NameLoc = Lex.getLoc();
384  Lex.Lex();  // eat LocalVar.
385
386  if (ParseToken(lltok::equal, "expected '=' after name") ||
387      ParseToken(lltok::kw_type, "expected 'type' after name"))
388    return true;
389
390  Type *Result = 0;
391  if (ParseStructDefinition(NameLoc, Name,
392                            NamedTypes[Name], Result)) return true;
393
394  if (!isa<StructType>(Result)) {
395    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
396    if (Entry.first)
397      return Error(NameLoc, "non-struct types may not be recursive");
398    Entry.first = Result;
399    Entry.second = SMLoc();
400  }
401
402  return false;
403}
404
405
406/// toplevelentity
407///   ::= 'declare' FunctionHeader
408bool LLParser::ParseDeclare() {
409  assert(Lex.getKind() == lltok::kw_declare);
410  Lex.Lex();
411
412  Function *F;
413  return ParseFunctionHeader(F, false);
414}
415
416/// toplevelentity
417///   ::= 'define' FunctionHeader '{' ...
418bool LLParser::ParseDefine() {
419  assert(Lex.getKind() == lltok::kw_define);
420  Lex.Lex();
421
422  Function *F;
423  return ParseFunctionHeader(F, true) ||
424         ParseFunctionBody(*F);
425}
426
427/// ParseGlobalType
428///   ::= 'constant'
429///   ::= 'global'
430bool LLParser::ParseGlobalType(bool &IsConstant) {
431  if (Lex.getKind() == lltok::kw_constant)
432    IsConstant = true;
433  else if (Lex.getKind() == lltok::kw_global)
434    IsConstant = false;
435  else {
436    IsConstant = false;
437    return TokError("expected 'global' or 'constant'");
438  }
439  Lex.Lex();
440  return false;
441}
442
443/// ParseUnnamedGlobal:
444///   OptionalVisibility ALIAS ...
445///   OptionalLinkage OptionalVisibility ...   -> global variable
446///   GlobalID '=' OptionalVisibility ALIAS ...
447///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
448bool LLParser::ParseUnnamedGlobal() {
449  unsigned VarID = NumberedVals.size();
450  std::string Name;
451  LocTy NameLoc = Lex.getLoc();
452
453  // Handle the GlobalID form.
454  if (Lex.getKind() == lltok::GlobalID) {
455    if (Lex.getUIntVal() != VarID)
456      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
457                   Twine(VarID) + "'");
458    Lex.Lex(); // eat GlobalID;
459
460    if (ParseToken(lltok::equal, "expected '=' after name"))
461      return true;
462  }
463
464  bool HasLinkage;
465  unsigned Linkage, Visibility;
466  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
467      ParseOptionalVisibility(Visibility))
468    return true;
469
470  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
471    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
472  return ParseAlias(Name, NameLoc, Visibility);
473}
474
475/// ParseNamedGlobal:
476///   GlobalVar '=' OptionalVisibility ALIAS ...
477///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
478bool LLParser::ParseNamedGlobal() {
479  assert(Lex.getKind() == lltok::GlobalVar);
480  LocTy NameLoc = Lex.getLoc();
481  std::string Name = Lex.getStrVal();
482  Lex.Lex();
483
484  bool HasLinkage;
485  unsigned Linkage, Visibility;
486  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487      ParseOptionalLinkage(Linkage, HasLinkage) ||
488      ParseOptionalVisibility(Visibility))
489    return true;
490
491  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
492    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
493  return ParseAlias(Name, NameLoc, Visibility);
494}
495
496// MDString:
497//   ::= '!' STRINGCONSTANT
498bool LLParser::ParseMDString(MDString *&Result) {
499  std::string Str;
500  if (ParseStringConstant(Str)) return true;
501  Result = MDString::get(Context, Str);
502  return false;
503}
504
505// MDNode:
506//   ::= '!' MDNodeNumber
507//
508/// This version of ParseMDNodeID returns the slot number and null in the case
509/// of a forward reference.
510bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
511  // !{ ..., !42, ... }
512  if (ParseUInt32(SlotNo)) return true;
513
514  // Check existing MDNode.
515  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
516    Result = NumberedMetadata[SlotNo];
517  else
518    Result = 0;
519  return false;
520}
521
522bool LLParser::ParseMDNodeID(MDNode *&Result) {
523  // !{ ..., !42, ... }
524  unsigned MID = 0;
525  if (ParseMDNodeID(Result, MID)) return true;
526
527  // If not a forward reference, just return it now.
528  if (Result) return false;
529
530  // Otherwise, create MDNode forward reference.
531  MDNode *FwdNode = MDNode::getTemporary(Context, None);
532  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
533
534  if (NumberedMetadata.size() <= MID)
535    NumberedMetadata.resize(MID+1);
536  NumberedMetadata[MID] = FwdNode;
537  Result = FwdNode;
538  return false;
539}
540
541/// ParseNamedMetadata:
542///   !foo = !{ !1, !2 }
543bool LLParser::ParseNamedMetadata() {
544  assert(Lex.getKind() == lltok::MetadataVar);
545  std::string Name = Lex.getStrVal();
546  Lex.Lex();
547
548  if (ParseToken(lltok::equal, "expected '=' here") ||
549      ParseToken(lltok::exclaim, "Expected '!' here") ||
550      ParseToken(lltok::lbrace, "Expected '{' here"))
551    return true;
552
553  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
554  if (Lex.getKind() != lltok::rbrace)
555    do {
556      if (ParseToken(lltok::exclaim, "Expected '!' here"))
557        return true;
558
559      MDNode *N = 0;
560      if (ParseMDNodeID(N)) return true;
561      NMD->addOperand(N);
562    } while (EatIfPresent(lltok::comma));
563
564  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
565    return true;
566
567  return false;
568}
569
570/// ParseStandaloneMetadata:
571///   !42 = !{...}
572bool LLParser::ParseStandaloneMetadata() {
573  assert(Lex.getKind() == lltok::exclaim);
574  Lex.Lex();
575  unsigned MetadataID = 0;
576
577  LocTy TyLoc;
578  Type *Ty = 0;
579  SmallVector<Value *, 16> Elts;
580  if (ParseUInt32(MetadataID) ||
581      ParseToken(lltok::equal, "expected '=' here") ||
582      ParseType(Ty, TyLoc) ||
583      ParseToken(lltok::exclaim, "Expected '!' here") ||
584      ParseToken(lltok::lbrace, "Expected '{' here") ||
585      ParseMDNodeVector(Elts, NULL) ||
586      ParseToken(lltok::rbrace, "expected end of metadata node"))
587    return true;
588
589  MDNode *Init = MDNode::get(Context, Elts);
590
591  // See if this was forward referenced, if so, handle it.
592  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593    FI = ForwardRefMDNodes.find(MetadataID);
594  if (FI != ForwardRefMDNodes.end()) {
595    MDNode *Temp = FI->second.first;
596    Temp->replaceAllUsesWith(Init);
597    MDNode::deleteTemporary(Temp);
598    ForwardRefMDNodes.erase(FI);
599
600    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
601  } else {
602    if (MetadataID >= NumberedMetadata.size())
603      NumberedMetadata.resize(MetadataID+1);
604
605    if (NumberedMetadata[MetadataID] != 0)
606      return TokError("Metadata id is already used");
607    NumberedMetadata[MetadataID] = Init;
608  }
609
610  return false;
611}
612
613/// ParseAlias:
614///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615/// Aliasee
616///   ::= TypeAndValue
617///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
619///
620/// Everything through visibility has already been parsed.
621///
622bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623                          unsigned Visibility) {
624  assert(Lex.getKind() == lltok::kw_alias);
625  Lex.Lex();
626  unsigned Linkage;
627  LocTy LinkageLoc = Lex.getLoc();
628  if (ParseOptionalLinkage(Linkage))
629    return true;
630
631  if (Linkage != GlobalValue::ExternalLinkage &&
632      Linkage != GlobalValue::WeakAnyLinkage &&
633      Linkage != GlobalValue::WeakODRLinkage &&
634      Linkage != GlobalValue::InternalLinkage &&
635      Linkage != GlobalValue::PrivateLinkage &&
636      Linkage != GlobalValue::LinkerPrivateLinkage &&
637      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
638    return Error(LinkageLoc, "invalid linkage type for alias");
639
640  Constant *Aliasee;
641  LocTy AliaseeLoc = Lex.getLoc();
642  if (Lex.getKind() != lltok::kw_bitcast &&
643      Lex.getKind() != lltok::kw_getelementptr) {
644    if (ParseGlobalTypeAndValue(Aliasee)) return true;
645  } else {
646    // The bitcast dest type is not present, it is implied by the dest type.
647    ValID ID;
648    if (ParseValID(ID)) return true;
649    if (ID.Kind != ValID::t_Constant)
650      return Error(AliaseeLoc, "invalid aliasee");
651    Aliasee = ID.ConstantVal;
652  }
653
654  if (!Aliasee->getType()->isPointerTy())
655    return Error(AliaseeLoc, "alias must have pointer type");
656
657  // Okay, create the alias but do not insert it into the module yet.
658  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659                                    (GlobalValue::LinkageTypes)Linkage, Name,
660                                    Aliasee);
661  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663  // See if this value already exists in the symbol table.  If so, it is either
664  // a redefinition or a definition of a forward reference.
665  if (GlobalValue *Val = M->getNamedValue(Name)) {
666    // See if this was a redefinition.  If so, there is no entry in
667    // ForwardRefVals.
668    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669      I = ForwardRefVals.find(Name);
670    if (I == ForwardRefVals.end())
671      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673    // Otherwise, this was a definition of forward ref.  Verify that types
674    // agree.
675    if (Val->getType() != GA->getType())
676      return Error(NameLoc,
677              "forward reference and definition of alias have different types");
678
679    // If they agree, just RAUW the old value with the alias and remove the
680    // forward ref info.
681    Val->replaceAllUsesWith(GA);
682    Val->eraseFromParent();
683    ForwardRefVals.erase(I);
684  }
685
686  // Insert into the module, we know its name won't collide now.
687  M->getAliasList().push_back(GA);
688  assert(GA->getName() == Name && "Should not be a name conflict!");
689
690  return false;
691}
692
693/// ParseGlobal
694///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695///       OptionalAddrSpace OptionalUnNammedAddr
696///       OptionalExternallyInitialized GlobalType Type Const
697///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698///       OptionalAddrSpace OptionalUnNammedAddr
699///       OptionalExternallyInitialized GlobalType Type Const
700///
701/// Everything through visibility has been parsed already.
702///
703bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704                           unsigned Linkage, bool HasLinkage,
705                           unsigned Visibility) {
706  unsigned AddrSpace;
707  bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708  GlobalVariable::ThreadLocalMode TLM;
709  LocTy UnnamedAddrLoc;
710  LocTy IsExternallyInitializedLoc;
711  LocTy TyLoc;
712
713  Type *Ty = 0;
714  if (ParseOptionalThreadLocal(TLM) ||
715      ParseOptionalAddrSpace(AddrSpace) ||
716      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717                         &UnnamedAddrLoc) ||
718      ParseOptionalToken(lltok::kw_externally_initialized,
719                         IsExternallyInitialized,
720                         &IsExternallyInitializedLoc) ||
721      ParseGlobalType(IsConstant) ||
722      ParseType(Ty, TyLoc))
723    return true;
724
725  // If the linkage is specified and is external, then no initializer is
726  // present.
727  Constant *Init = 0;
728  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729                      Linkage != GlobalValue::ExternalWeakLinkage &&
730                      Linkage != GlobalValue::ExternalLinkage)) {
731    if (ParseGlobalValue(Ty, Init))
732      return true;
733  }
734
735  if (Ty->isFunctionTy() || Ty->isLabelTy())
736    return Error(TyLoc, "invalid type for global variable");
737
738  GlobalVariable *GV = 0;
739
740  // See if the global was forward referenced, if so, use the global.
741  if (!Name.empty()) {
742    if (GlobalValue *GVal = M->getNamedValue(Name)) {
743      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744        return Error(NameLoc, "redefinition of global '@" + Name + "'");
745      GV = cast<GlobalVariable>(GVal);
746    }
747  } else {
748    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749      I = ForwardRefValIDs.find(NumberedVals.size());
750    if (I != ForwardRefValIDs.end()) {
751      GV = cast<GlobalVariable>(I->second.first);
752      ForwardRefValIDs.erase(I);
753    }
754  }
755
756  if (GV == 0) {
757    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758                            Name, 0, GlobalVariable::NotThreadLocal,
759                            AddrSpace);
760  } else {
761    if (GV->getType()->getElementType() != Ty)
762      return Error(TyLoc,
763            "forward reference and definition of global have different types");
764
765    // Move the forward-reference to the correct spot in the module.
766    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767  }
768
769  if (Name.empty())
770    NumberedVals.push_back(GV);
771
772  // Set the parsed properties on the global.
773  if (Init)
774    GV->setInitializer(Init);
775  GV->setConstant(IsConstant);
776  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778  GV->setExternallyInitialized(IsExternallyInitialized);
779  GV->setThreadLocalMode(TLM);
780  GV->setUnnamedAddr(UnnamedAddr);
781
782  // Parse attributes on the global.
783  while (Lex.getKind() == lltok::comma) {
784    Lex.Lex();
785
786    if (Lex.getKind() == lltok::kw_section) {
787      Lex.Lex();
788      GV->setSection(Lex.getStrVal());
789      if (ParseToken(lltok::StringConstant, "expected global section string"))
790        return true;
791    } else if (Lex.getKind() == lltok::kw_align) {
792      unsigned Alignment;
793      if (ParseOptionalAlignment(Alignment)) return true;
794      GV->setAlignment(Alignment);
795    } else {
796      TokError("unknown global variable property!");
797    }
798  }
799
800  return false;
801}
802
803/// ParseUnnamedAttrGrp
804///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
805bool LLParser::ParseUnnamedAttrGrp() {
806  assert(Lex.getKind() == lltok::kw_attributes);
807  LocTy AttrGrpLoc = Lex.getLoc();
808  Lex.Lex();
809
810  assert(Lex.getKind() == lltok::AttrGrpID);
811  unsigned VarID = Lex.getUIntVal();
812  std::vector<unsigned> unused;
813  LocTy NoBuiltinLoc;
814  Lex.Lex();
815
816  if (ParseToken(lltok::equal, "expected '=' here") ||
817      ParseToken(lltok::lbrace, "expected '{' here") ||
818      ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819                                 NoBuiltinLoc) ||
820      ParseToken(lltok::rbrace, "expected end of attribute group"))
821    return true;
822
823  if (!NumberedAttrBuilders[VarID].hasAttributes())
824    return Error(AttrGrpLoc, "attribute group has no attributes");
825
826  return false;
827}
828
829/// ParseFnAttributeValuePairs
830///   ::= <attr> | <attr> '=' <value>
831bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832                                          std::vector<unsigned> &FwdRefAttrGrps,
833                                          bool inAttrGrp, LocTy &NoBuiltinLoc) {
834  bool HaveError = false;
835
836  B.clear();
837
838  while (true) {
839    lltok::Kind Token = Lex.getKind();
840    if (Token == lltok::kw_nobuiltin)
841      NoBuiltinLoc = Lex.getLoc();
842    switch (Token) {
843    default:
844      if (!inAttrGrp) return HaveError;
845      return Error(Lex.getLoc(), "unterminated attribute group");
846    case lltok::rbrace:
847      // Finished.
848      return false;
849
850    case lltok::AttrGrpID: {
851      // Allow a function to reference an attribute group:
852      //
853      //   define void @foo() #1 { ... }
854      if (inAttrGrp)
855        HaveError |=
856          Error(Lex.getLoc(),
857              "cannot have an attribute group reference in an attribute group");
858
859      unsigned AttrGrpNum = Lex.getUIntVal();
860      if (inAttrGrp) break;
861
862      // Save the reference to the attribute group. We'll fill it in later.
863      FwdRefAttrGrps.push_back(AttrGrpNum);
864      break;
865    }
866    // Target-dependent attributes:
867    case lltok::StringConstant: {
868      std::string Attr = Lex.getStrVal();
869      Lex.Lex();
870      std::string Val;
871      if (EatIfPresent(lltok::equal) &&
872          ParseStringConstant(Val))
873        return true;
874
875      B.addAttribute(Attr, Val);
876      continue;
877    }
878
879    // Target-independent attributes:
880    case lltok::kw_align: {
881      // As a hack, we allow function alignment to be initially parsed as an
882      // attribute on a function declaration/definition or added to an attribute
883      // group and later moved to the alignment field.
884      unsigned Alignment;
885      if (inAttrGrp) {
886        Lex.Lex();
887        if (ParseToken(lltok::equal, "expected '=' here") ||
888            ParseUInt32(Alignment))
889          return true;
890      } else {
891        if (ParseOptionalAlignment(Alignment))
892          return true;
893      }
894      B.addAlignmentAttr(Alignment);
895      continue;
896    }
897    case lltok::kw_alignstack: {
898      unsigned Alignment;
899      if (inAttrGrp) {
900        Lex.Lex();
901        if (ParseToken(lltok::equal, "expected '=' here") ||
902            ParseUInt32(Alignment))
903          return true;
904      } else {
905        if (ParseOptionalStackAlignment(Alignment))
906          return true;
907      }
908      B.addStackAlignmentAttr(Alignment);
909      continue;
910    }
911    case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
912    case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
913    case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
914    case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
915    case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
916    case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
917    case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
918    case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
919    case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
920    case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
921    case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
922    case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
923    case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
924    case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
925    case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
926    case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
927    case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
928    case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
929    case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
930    case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
931    case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
932    case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
933    case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
934
935    // Error handling.
936    case lltok::kw_inreg:
937    case lltok::kw_signext:
938    case lltok::kw_zeroext:
939      HaveError |=
940        Error(Lex.getLoc(),
941              "invalid use of attribute on a function");
942      break;
943    case lltok::kw_byval:
944    case lltok::kw_nest:
945    case lltok::kw_noalias:
946    case lltok::kw_nocapture:
947    case lltok::kw_returned:
948    case lltok::kw_sret:
949      HaveError |=
950        Error(Lex.getLoc(),
951              "invalid use of parameter-only attribute on a function");
952      break;
953    }
954
955    Lex.Lex();
956  }
957}
958
959//===----------------------------------------------------------------------===//
960// GlobalValue Reference/Resolution Routines.
961//===----------------------------------------------------------------------===//
962
963/// GetGlobalVal - Get a value with the specified name or ID, creating a
964/// forward reference record if needed.  This can return null if the value
965/// exists but does not have the right type.
966GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
967                                    LocTy Loc) {
968  PointerType *PTy = dyn_cast<PointerType>(Ty);
969  if (PTy == 0) {
970    Error(Loc, "global variable reference must have pointer type");
971    return 0;
972  }
973
974  // Look this name up in the normal function symbol table.
975  GlobalValue *Val =
976    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
977
978  // If this is a forward reference for the value, see if we already created a
979  // forward ref record.
980  if (Val == 0) {
981    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
982      I = ForwardRefVals.find(Name);
983    if (I != ForwardRefVals.end())
984      Val = I->second.first;
985  }
986
987  // If we have the value in the symbol table or fwd-ref table, return it.
988  if (Val) {
989    if (Val->getType() == Ty) return Val;
990    Error(Loc, "'@" + Name + "' defined with type '" +
991          getTypeString(Val->getType()) + "'");
992    return 0;
993  }
994
995  // Otherwise, create a new forward reference for this value and remember it.
996  GlobalValue *FwdVal;
997  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
998    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
999  else
1000    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1001                                GlobalValue::ExternalWeakLinkage, 0, Name,
1002                                0, GlobalVariable::NotThreadLocal,
1003                                PTy->getAddressSpace());
1004
1005  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1006  return FwdVal;
1007}
1008
1009GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1010  PointerType *PTy = dyn_cast<PointerType>(Ty);
1011  if (PTy == 0) {
1012    Error(Loc, "global variable reference must have pointer type");
1013    return 0;
1014  }
1015
1016  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1017
1018  // If this is a forward reference for the value, see if we already created a
1019  // forward ref record.
1020  if (Val == 0) {
1021    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1022      I = ForwardRefValIDs.find(ID);
1023    if (I != ForwardRefValIDs.end())
1024      Val = I->second.first;
1025  }
1026
1027  // If we have the value in the symbol table or fwd-ref table, return it.
1028  if (Val) {
1029    if (Val->getType() == Ty) return Val;
1030    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1031          getTypeString(Val->getType()) + "'");
1032    return 0;
1033  }
1034
1035  // Otherwise, create a new forward reference for this value and remember it.
1036  GlobalValue *FwdVal;
1037  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1038    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1039  else
1040    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1041                                GlobalValue::ExternalWeakLinkage, 0, "");
1042
1043  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1044  return FwdVal;
1045}
1046
1047
1048//===----------------------------------------------------------------------===//
1049// Helper Routines.
1050//===----------------------------------------------------------------------===//
1051
1052/// ParseToken - If the current token has the specified kind, eat it and return
1053/// success.  Otherwise, emit the specified error and return failure.
1054bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1055  if (Lex.getKind() != T)
1056    return TokError(ErrMsg);
1057  Lex.Lex();
1058  return false;
1059}
1060
1061/// ParseStringConstant
1062///   ::= StringConstant
1063bool LLParser::ParseStringConstant(std::string &Result) {
1064  if (Lex.getKind() != lltok::StringConstant)
1065    return TokError("expected string constant");
1066  Result = Lex.getStrVal();
1067  Lex.Lex();
1068  return false;
1069}
1070
1071/// ParseUInt32
1072///   ::= uint32
1073bool LLParser::ParseUInt32(unsigned &Val) {
1074  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1075    return TokError("expected integer");
1076  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1077  if (Val64 != unsigned(Val64))
1078    return TokError("expected 32-bit integer (too large)");
1079  Val = Val64;
1080  Lex.Lex();
1081  return false;
1082}
1083
1084/// ParseTLSModel
1085///   := 'localdynamic'
1086///   := 'initialexec'
1087///   := 'localexec'
1088bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1089  switch (Lex.getKind()) {
1090    default:
1091      return TokError("expected localdynamic, initialexec or localexec");
1092    case lltok::kw_localdynamic:
1093      TLM = GlobalVariable::LocalDynamicTLSModel;
1094      break;
1095    case lltok::kw_initialexec:
1096      TLM = GlobalVariable::InitialExecTLSModel;
1097      break;
1098    case lltok::kw_localexec:
1099      TLM = GlobalVariable::LocalExecTLSModel;
1100      break;
1101  }
1102
1103  Lex.Lex();
1104  return false;
1105}
1106
1107/// ParseOptionalThreadLocal
1108///   := /*empty*/
1109///   := 'thread_local'
1110///   := 'thread_local' '(' tlsmodel ')'
1111bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1112  TLM = GlobalVariable::NotThreadLocal;
1113  if (!EatIfPresent(lltok::kw_thread_local))
1114    return false;
1115
1116  TLM = GlobalVariable::GeneralDynamicTLSModel;
1117  if (Lex.getKind() == lltok::lparen) {
1118    Lex.Lex();
1119    return ParseTLSModel(TLM) ||
1120      ParseToken(lltok::rparen, "expected ')' after thread local model");
1121  }
1122  return false;
1123}
1124
1125/// ParseOptionalAddrSpace
1126///   := /*empty*/
1127///   := 'addrspace' '(' uint32 ')'
1128bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1129  AddrSpace = 0;
1130  if (!EatIfPresent(lltok::kw_addrspace))
1131    return false;
1132  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1133         ParseUInt32(AddrSpace) ||
1134         ParseToken(lltok::rparen, "expected ')' in address space");
1135}
1136
1137/// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1138bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1139  bool HaveError = false;
1140
1141  B.clear();
1142
1143  while (1) {
1144    lltok::Kind Token = Lex.getKind();
1145    switch (Token) {
1146    default:  // End of attributes.
1147      return HaveError;
1148    case lltok::kw_align: {
1149      unsigned Alignment;
1150      if (ParseOptionalAlignment(Alignment))
1151        return true;
1152      B.addAlignmentAttr(Alignment);
1153      continue;
1154    }
1155    case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1156    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1157    case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1158    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1159    case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1160    case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1161    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1162    case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1163    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1164
1165    case lltok::kw_alignstack:
1166    case lltok::kw_alwaysinline:
1167    case lltok::kw_inlinehint:
1168    case lltok::kw_minsize:
1169    case lltok::kw_naked:
1170    case lltok::kw_nobuiltin:
1171    case lltok::kw_noduplicate:
1172    case lltok::kw_noimplicitfloat:
1173    case lltok::kw_noinline:
1174    case lltok::kw_nonlazybind:
1175    case lltok::kw_noredzone:
1176    case lltok::kw_noreturn:
1177    case lltok::kw_nounwind:
1178    case lltok::kw_optsize:
1179    case lltok::kw_readnone:
1180    case lltok::kw_readonly:
1181    case lltok::kw_returns_twice:
1182    case lltok::kw_sanitize_address:
1183    case lltok::kw_sanitize_memory:
1184    case lltok::kw_sanitize_thread:
1185    case lltok::kw_ssp:
1186    case lltok::kw_sspreq:
1187    case lltok::kw_sspstrong:
1188    case lltok::kw_uwtable:
1189      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1190      break;
1191    }
1192
1193    Lex.Lex();
1194  }
1195}
1196
1197/// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1198bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1199  bool HaveError = false;
1200
1201  B.clear();
1202
1203  while (1) {
1204    lltok::Kind Token = Lex.getKind();
1205    switch (Token) {
1206    default:  // End of attributes.
1207      return HaveError;
1208    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1209    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1210    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1211    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1212
1213    // Error handling.
1214    case lltok::kw_align:
1215    case lltok::kw_byval:
1216    case lltok::kw_nest:
1217    case lltok::kw_nocapture:
1218    case lltok::kw_returned:
1219    case lltok::kw_sret:
1220      HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1221      break;
1222
1223    case lltok::kw_alignstack:
1224    case lltok::kw_alwaysinline:
1225    case lltok::kw_inlinehint:
1226    case lltok::kw_minsize:
1227    case lltok::kw_naked:
1228    case lltok::kw_nobuiltin:
1229    case lltok::kw_noduplicate:
1230    case lltok::kw_noimplicitfloat:
1231    case lltok::kw_noinline:
1232    case lltok::kw_nonlazybind:
1233    case lltok::kw_noredzone:
1234    case lltok::kw_noreturn:
1235    case lltok::kw_nounwind:
1236    case lltok::kw_optsize:
1237    case lltok::kw_readnone:
1238    case lltok::kw_readonly:
1239    case lltok::kw_returns_twice:
1240    case lltok::kw_sanitize_address:
1241    case lltok::kw_sanitize_memory:
1242    case lltok::kw_sanitize_thread:
1243    case lltok::kw_ssp:
1244    case lltok::kw_sspreq:
1245    case lltok::kw_sspstrong:
1246    case lltok::kw_uwtable:
1247      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1248      break;
1249    }
1250
1251    Lex.Lex();
1252  }
1253}
1254
1255/// ParseOptionalLinkage
1256///   ::= /*empty*/
1257///   ::= 'private'
1258///   ::= 'linker_private'
1259///   ::= 'linker_private_weak'
1260///   ::= 'internal'
1261///   ::= 'weak'
1262///   ::= 'weak_odr'
1263///   ::= 'linkonce'
1264///   ::= 'linkonce_odr'
1265///   ::= 'linkonce_odr_auto_hide'
1266///   ::= 'available_externally'
1267///   ::= 'appending'
1268///   ::= 'dllexport'
1269///   ::= 'common'
1270///   ::= 'dllimport'
1271///   ::= 'extern_weak'
1272///   ::= 'external'
1273bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1274  HasLinkage = false;
1275  switch (Lex.getKind()) {
1276  default:                       Res=GlobalValue::ExternalLinkage; return false;
1277  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1278  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1279  case lltok::kw_linker_private_weak:
1280    Res = GlobalValue::LinkerPrivateWeakLinkage;
1281    break;
1282  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1283  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1284  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1285  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1286  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1287  case lltok::kw_linkonce_odr_auto_hide:
1288  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1289    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1290    break;
1291  case lltok::kw_available_externally:
1292    Res = GlobalValue::AvailableExternallyLinkage;
1293    break;
1294  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1295  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1296  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1297  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1298  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1299  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1300  }
1301  Lex.Lex();
1302  HasLinkage = true;
1303  return false;
1304}
1305
1306/// ParseOptionalVisibility
1307///   ::= /*empty*/
1308///   ::= 'default'
1309///   ::= 'hidden'
1310///   ::= 'protected'
1311///
1312bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1313  switch (Lex.getKind()) {
1314  default:                  Res = GlobalValue::DefaultVisibility; return false;
1315  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1316  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1317  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1318  }
1319  Lex.Lex();
1320  return false;
1321}
1322
1323/// ParseOptionalCallingConv
1324///   ::= /*empty*/
1325///   ::= 'ccc'
1326///   ::= 'fastcc'
1327///   ::= 'kw_intel_ocl_bicc'
1328///   ::= 'coldcc'
1329///   ::= 'x86_stdcallcc'
1330///   ::= 'x86_fastcallcc'
1331///   ::= 'x86_thiscallcc'
1332///   ::= 'arm_apcscc'
1333///   ::= 'arm_aapcscc'
1334///   ::= 'arm_aapcs_vfpcc'
1335///   ::= 'msp430_intrcc'
1336///   ::= 'ptx_kernel'
1337///   ::= 'ptx_device'
1338///   ::= 'spir_func'
1339///   ::= 'spir_kernel'
1340///   ::= 'cc' UINT
1341///
1342bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1343  switch (Lex.getKind()) {
1344  default:                       CC = CallingConv::C; return false;
1345  case lltok::kw_ccc:            CC = CallingConv::C; break;
1346  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1347  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1348  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1349  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1350  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1351  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1352  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1353  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1354  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1355  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1356  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1357  case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1358  case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1359  case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1360  case lltok::kw_cc: {
1361      unsigned ArbitraryCC;
1362      Lex.Lex();
1363      if (ParseUInt32(ArbitraryCC))
1364        return true;
1365      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1366      return false;
1367    }
1368  }
1369
1370  Lex.Lex();
1371  return false;
1372}
1373
1374/// ParseInstructionMetadata
1375///   ::= !dbg !42 (',' !dbg !57)*
1376bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1377                                        PerFunctionState *PFS) {
1378  do {
1379    if (Lex.getKind() != lltok::MetadataVar)
1380      return TokError("expected metadata after comma");
1381
1382    std::string Name = Lex.getStrVal();
1383    unsigned MDK = M->getMDKindID(Name);
1384    Lex.Lex();
1385
1386    MDNode *Node;
1387    SMLoc Loc = Lex.getLoc();
1388
1389    if (ParseToken(lltok::exclaim, "expected '!' here"))
1390      return true;
1391
1392    // This code is similar to that of ParseMetadataValue, however it needs to
1393    // have special-case code for a forward reference; see the comments on
1394    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1395    // at the top level here.
1396    if (Lex.getKind() == lltok::lbrace) {
1397      ValID ID;
1398      if (ParseMetadataListValue(ID, PFS))
1399        return true;
1400      assert(ID.Kind == ValID::t_MDNode);
1401      Inst->setMetadata(MDK, ID.MDNodeVal);
1402    } else {
1403      unsigned NodeID = 0;
1404      if (ParseMDNodeID(Node, NodeID))
1405        return true;
1406      if (Node) {
1407        // If we got the node, add it to the instruction.
1408        Inst->setMetadata(MDK, Node);
1409      } else {
1410        MDRef R = { Loc, MDK, NodeID };
1411        // Otherwise, remember that this should be resolved later.
1412        ForwardRefInstMetadata[Inst].push_back(R);
1413      }
1414    }
1415
1416    // If this is the end of the list, we're done.
1417  } while (EatIfPresent(lltok::comma));
1418  return false;
1419}
1420
1421/// ParseOptionalAlignment
1422///   ::= /* empty */
1423///   ::= 'align' 4
1424bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1425  Alignment = 0;
1426  if (!EatIfPresent(lltok::kw_align))
1427    return false;
1428  LocTy AlignLoc = Lex.getLoc();
1429  if (ParseUInt32(Alignment)) return true;
1430  if (!isPowerOf2_32(Alignment))
1431    return Error(AlignLoc, "alignment is not a power of two");
1432  if (Alignment > Value::MaximumAlignment)
1433    return Error(AlignLoc, "huge alignments are not supported yet");
1434  return false;
1435}
1436
1437/// ParseOptionalCommaAlign
1438///   ::=
1439///   ::= ',' align 4
1440///
1441/// This returns with AteExtraComma set to true if it ate an excess comma at the
1442/// end.
1443bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1444                                       bool &AteExtraComma) {
1445  AteExtraComma = false;
1446  while (EatIfPresent(lltok::comma)) {
1447    // Metadata at the end is an early exit.
1448    if (Lex.getKind() == lltok::MetadataVar) {
1449      AteExtraComma = true;
1450      return false;
1451    }
1452
1453    if (Lex.getKind() != lltok::kw_align)
1454      return Error(Lex.getLoc(), "expected metadata or 'align'");
1455
1456    if (ParseOptionalAlignment(Alignment)) return true;
1457  }
1458
1459  return false;
1460}
1461
1462/// ParseScopeAndOrdering
1463///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1464///   else: ::=
1465///
1466/// This sets Scope and Ordering to the parsed values.
1467bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1468                                     AtomicOrdering &Ordering) {
1469  if (!isAtomic)
1470    return false;
1471
1472  Scope = CrossThread;
1473  if (EatIfPresent(lltok::kw_singlethread))
1474    Scope = SingleThread;
1475  switch (Lex.getKind()) {
1476  default: return TokError("Expected ordering on atomic instruction");
1477  case lltok::kw_unordered: Ordering = Unordered; break;
1478  case lltok::kw_monotonic: Ordering = Monotonic; break;
1479  case lltok::kw_acquire: Ordering = Acquire; break;
1480  case lltok::kw_release: Ordering = Release; break;
1481  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1482  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1483  }
1484  Lex.Lex();
1485  return false;
1486}
1487
1488/// ParseOptionalStackAlignment
1489///   ::= /* empty */
1490///   ::= 'alignstack' '(' 4 ')'
1491bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1492  Alignment = 0;
1493  if (!EatIfPresent(lltok::kw_alignstack))
1494    return false;
1495  LocTy ParenLoc = Lex.getLoc();
1496  if (!EatIfPresent(lltok::lparen))
1497    return Error(ParenLoc, "expected '('");
1498  LocTy AlignLoc = Lex.getLoc();
1499  if (ParseUInt32(Alignment)) return true;
1500  ParenLoc = Lex.getLoc();
1501  if (!EatIfPresent(lltok::rparen))
1502    return Error(ParenLoc, "expected ')'");
1503  if (!isPowerOf2_32(Alignment))
1504    return Error(AlignLoc, "stack alignment is not a power of two");
1505  return false;
1506}
1507
1508/// ParseIndexList - This parses the index list for an insert/extractvalue
1509/// instruction.  This sets AteExtraComma in the case where we eat an extra
1510/// comma at the end of the line and find that it is followed by metadata.
1511/// Clients that don't allow metadata can call the version of this function that
1512/// only takes one argument.
1513///
1514/// ParseIndexList
1515///    ::=  (',' uint32)+
1516///
1517bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1518                              bool &AteExtraComma) {
1519  AteExtraComma = false;
1520
1521  if (Lex.getKind() != lltok::comma)
1522    return TokError("expected ',' as start of index list");
1523
1524  while (EatIfPresent(lltok::comma)) {
1525    if (Lex.getKind() == lltok::MetadataVar) {
1526      AteExtraComma = true;
1527      return false;
1528    }
1529    unsigned Idx = 0;
1530    if (ParseUInt32(Idx)) return true;
1531    Indices.push_back(Idx);
1532  }
1533
1534  return false;
1535}
1536
1537//===----------------------------------------------------------------------===//
1538// Type Parsing.
1539//===----------------------------------------------------------------------===//
1540
1541/// ParseType - Parse a type.
1542bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1543  SMLoc TypeLoc = Lex.getLoc();
1544  switch (Lex.getKind()) {
1545  default:
1546    return TokError("expected type");
1547  case lltok::Type:
1548    // Type ::= 'float' | 'void' (etc)
1549    Result = Lex.getTyVal();
1550    Lex.Lex();
1551    break;
1552  case lltok::lbrace:
1553    // Type ::= StructType
1554    if (ParseAnonStructType(Result, false))
1555      return true;
1556    break;
1557  case lltok::lsquare:
1558    // Type ::= '[' ... ']'
1559    Lex.Lex(); // eat the lsquare.
1560    if (ParseArrayVectorType(Result, false))
1561      return true;
1562    break;
1563  case lltok::less: // Either vector or packed struct.
1564    // Type ::= '<' ... '>'
1565    Lex.Lex();
1566    if (Lex.getKind() == lltok::lbrace) {
1567      if (ParseAnonStructType(Result, true) ||
1568          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1569        return true;
1570    } else if (ParseArrayVectorType(Result, true))
1571      return true;
1572    break;
1573  case lltok::LocalVar: {
1574    // Type ::= %foo
1575    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1576
1577    // If the type hasn't been defined yet, create a forward definition and
1578    // remember where that forward def'n was seen (in case it never is defined).
1579    if (Entry.first == 0) {
1580      Entry.first = StructType::create(Context, Lex.getStrVal());
1581      Entry.second = Lex.getLoc();
1582    }
1583    Result = Entry.first;
1584    Lex.Lex();
1585    break;
1586  }
1587
1588  case lltok::LocalVarID: {
1589    // Type ::= %4
1590    if (Lex.getUIntVal() >= NumberedTypes.size())
1591      NumberedTypes.resize(Lex.getUIntVal()+1);
1592    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1593
1594    // If the type hasn't been defined yet, create a forward definition and
1595    // remember where that forward def'n was seen (in case it never is defined).
1596    if (Entry.first == 0) {
1597      Entry.first = StructType::create(Context);
1598      Entry.second = Lex.getLoc();
1599    }
1600    Result = Entry.first;
1601    Lex.Lex();
1602    break;
1603  }
1604  }
1605
1606  // Parse the type suffixes.
1607  while (1) {
1608    switch (Lex.getKind()) {
1609    // End of type.
1610    default:
1611      if (!AllowVoid && Result->isVoidTy())
1612        return Error(TypeLoc, "void type only allowed for function results");
1613      return false;
1614
1615    // Type ::= Type '*'
1616    case lltok::star:
1617      if (Result->isLabelTy())
1618        return TokError("basic block pointers are invalid");
1619      if (Result->isVoidTy())
1620        return TokError("pointers to void are invalid - use i8* instead");
1621      if (!PointerType::isValidElementType(Result))
1622        return TokError("pointer to this type is invalid");
1623      Result = PointerType::getUnqual(Result);
1624      Lex.Lex();
1625      break;
1626
1627    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1628    case lltok::kw_addrspace: {
1629      if (Result->isLabelTy())
1630        return TokError("basic block pointers are invalid");
1631      if (Result->isVoidTy())
1632        return TokError("pointers to void are invalid; use i8* instead");
1633      if (!PointerType::isValidElementType(Result))
1634        return TokError("pointer to this type is invalid");
1635      unsigned AddrSpace;
1636      if (ParseOptionalAddrSpace(AddrSpace) ||
1637          ParseToken(lltok::star, "expected '*' in address space"))
1638        return true;
1639
1640      Result = PointerType::get(Result, AddrSpace);
1641      break;
1642    }
1643
1644    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1645    case lltok::lparen:
1646      if (ParseFunctionType(Result))
1647        return true;
1648      break;
1649    }
1650  }
1651}
1652
1653/// ParseParameterList
1654///    ::= '(' ')'
1655///    ::= '(' Arg (',' Arg)* ')'
1656///  Arg
1657///    ::= Type OptionalAttributes Value OptionalAttributes
1658bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1659                                  PerFunctionState &PFS) {
1660  if (ParseToken(lltok::lparen, "expected '(' in call"))
1661    return true;
1662
1663  unsigned AttrIndex = 1;
1664  while (Lex.getKind() != lltok::rparen) {
1665    // If this isn't the first argument, we need a comma.
1666    if (!ArgList.empty() &&
1667        ParseToken(lltok::comma, "expected ',' in argument list"))
1668      return true;
1669
1670    // Parse the argument.
1671    LocTy ArgLoc;
1672    Type *ArgTy = 0;
1673    AttrBuilder ArgAttrs;
1674    Value *V;
1675    if (ParseType(ArgTy, ArgLoc))
1676      return true;
1677
1678    // Otherwise, handle normal operands.
1679    if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1680      return true;
1681    ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1682                                                             AttrIndex++,
1683                                                             ArgAttrs)));
1684  }
1685
1686  Lex.Lex();  // Lex the ')'.
1687  return false;
1688}
1689
1690
1691
1692/// ParseArgumentList - Parse the argument list for a function type or function
1693/// prototype.
1694///   ::= '(' ArgTypeListI ')'
1695/// ArgTypeListI
1696///   ::= /*empty*/
1697///   ::= '...'
1698///   ::= ArgTypeList ',' '...'
1699///   ::= ArgType (',' ArgType)*
1700///
1701bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1702                                 bool &isVarArg){
1703  isVarArg = false;
1704  assert(Lex.getKind() == lltok::lparen);
1705  Lex.Lex(); // eat the (.
1706
1707  if (Lex.getKind() == lltok::rparen) {
1708    // empty
1709  } else if (Lex.getKind() == lltok::dotdotdot) {
1710    isVarArg = true;
1711    Lex.Lex();
1712  } else {
1713    LocTy TypeLoc = Lex.getLoc();
1714    Type *ArgTy = 0;
1715    AttrBuilder Attrs;
1716    std::string Name;
1717
1718    if (ParseType(ArgTy) ||
1719        ParseOptionalParamAttrs(Attrs)) return true;
1720
1721    if (ArgTy->isVoidTy())
1722      return Error(TypeLoc, "argument can not have void type");
1723
1724    if (Lex.getKind() == lltok::LocalVar) {
1725      Name = Lex.getStrVal();
1726      Lex.Lex();
1727    }
1728
1729    if (!FunctionType::isValidArgumentType(ArgTy))
1730      return Error(TypeLoc, "invalid type for function argument");
1731
1732    unsigned AttrIndex = 1;
1733    ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1734                              AttributeSet::get(ArgTy->getContext(),
1735                                                AttrIndex++, Attrs), Name));
1736
1737    while (EatIfPresent(lltok::comma)) {
1738      // Handle ... at end of arg list.
1739      if (EatIfPresent(lltok::dotdotdot)) {
1740        isVarArg = true;
1741        break;
1742      }
1743
1744      // Otherwise must be an argument type.
1745      TypeLoc = Lex.getLoc();
1746      if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1747
1748      if (ArgTy->isVoidTy())
1749        return Error(TypeLoc, "argument can not have void type");
1750
1751      if (Lex.getKind() == lltok::LocalVar) {
1752        Name = Lex.getStrVal();
1753        Lex.Lex();
1754      } else {
1755        Name = "";
1756      }
1757
1758      if (!ArgTy->isFirstClassType())
1759        return Error(TypeLoc, "invalid type for function argument");
1760
1761      ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1762                                AttributeSet::get(ArgTy->getContext(),
1763                                                  AttrIndex++, Attrs),
1764                                Name));
1765    }
1766  }
1767
1768  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1769}
1770
1771/// ParseFunctionType
1772///  ::= Type ArgumentList OptionalAttrs
1773bool LLParser::ParseFunctionType(Type *&Result) {
1774  assert(Lex.getKind() == lltok::lparen);
1775
1776  if (!FunctionType::isValidReturnType(Result))
1777    return TokError("invalid function return type");
1778
1779  SmallVector<ArgInfo, 8> ArgList;
1780  bool isVarArg;
1781  if (ParseArgumentList(ArgList, isVarArg))
1782    return true;
1783
1784  // Reject names on the arguments lists.
1785  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1786    if (!ArgList[i].Name.empty())
1787      return Error(ArgList[i].Loc, "argument name invalid in function type");
1788    if (ArgList[i].Attrs.hasAttributes(i + 1))
1789      return Error(ArgList[i].Loc,
1790                   "argument attributes invalid in function type");
1791  }
1792
1793  SmallVector<Type*, 16> ArgListTy;
1794  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1795    ArgListTy.push_back(ArgList[i].Ty);
1796
1797  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1798  return false;
1799}
1800
1801/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1802/// other structs.
1803bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1804  SmallVector<Type*, 8> Elts;
1805  if (ParseStructBody(Elts)) return true;
1806
1807  Result = StructType::get(Context, Elts, Packed);
1808  return false;
1809}
1810
1811/// ParseStructDefinition - Parse a struct in a 'type' definition.
1812bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1813                                     std::pair<Type*, LocTy> &Entry,
1814                                     Type *&ResultTy) {
1815  // If the type was already defined, diagnose the redefinition.
1816  if (Entry.first && !Entry.second.isValid())
1817    return Error(TypeLoc, "redefinition of type");
1818
1819  // If we have opaque, just return without filling in the definition for the
1820  // struct.  This counts as a definition as far as the .ll file goes.
1821  if (EatIfPresent(lltok::kw_opaque)) {
1822    // This type is being defined, so clear the location to indicate this.
1823    Entry.second = SMLoc();
1824
1825    // If this type number has never been uttered, create it.
1826    if (Entry.first == 0)
1827      Entry.first = StructType::create(Context, Name);
1828    ResultTy = Entry.first;
1829    return false;
1830  }
1831
1832  // If the type starts with '<', then it is either a packed struct or a vector.
1833  bool isPacked = EatIfPresent(lltok::less);
1834
1835  // If we don't have a struct, then we have a random type alias, which we
1836  // accept for compatibility with old files.  These types are not allowed to be
1837  // forward referenced and not allowed to be recursive.
1838  if (Lex.getKind() != lltok::lbrace) {
1839    if (Entry.first)
1840      return Error(TypeLoc, "forward references to non-struct type");
1841
1842    ResultTy = 0;
1843    if (isPacked)
1844      return ParseArrayVectorType(ResultTy, true);
1845    return ParseType(ResultTy);
1846  }
1847
1848  // This type is being defined, so clear the location to indicate this.
1849  Entry.second = SMLoc();
1850
1851  // If this type number has never been uttered, create it.
1852  if (Entry.first == 0)
1853    Entry.first = StructType::create(Context, Name);
1854
1855  StructType *STy = cast<StructType>(Entry.first);
1856
1857  SmallVector<Type*, 8> Body;
1858  if (ParseStructBody(Body) ||
1859      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1860    return true;
1861
1862  STy->setBody(Body, isPacked);
1863  ResultTy = STy;
1864  return false;
1865}
1866
1867
1868/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1869///   StructType
1870///     ::= '{' '}'
1871///     ::= '{' Type (',' Type)* '}'
1872///     ::= '<' '{' '}' '>'
1873///     ::= '<' '{' Type (',' Type)* '}' '>'
1874bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1875  assert(Lex.getKind() == lltok::lbrace);
1876  Lex.Lex(); // Consume the '{'
1877
1878  // Handle the empty struct.
1879  if (EatIfPresent(lltok::rbrace))
1880    return false;
1881
1882  LocTy EltTyLoc = Lex.getLoc();
1883  Type *Ty = 0;
1884  if (ParseType(Ty)) return true;
1885  Body.push_back(Ty);
1886
1887  if (!StructType::isValidElementType(Ty))
1888    return Error(EltTyLoc, "invalid element type for struct");
1889
1890  while (EatIfPresent(lltok::comma)) {
1891    EltTyLoc = Lex.getLoc();
1892    if (ParseType(Ty)) return true;
1893
1894    if (!StructType::isValidElementType(Ty))
1895      return Error(EltTyLoc, "invalid element type for struct");
1896
1897    Body.push_back(Ty);
1898  }
1899
1900  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1901}
1902
1903/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1904/// token has already been consumed.
1905///   Type
1906///     ::= '[' APSINTVAL 'x' Types ']'
1907///     ::= '<' APSINTVAL 'x' Types '>'
1908bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1909  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1910      Lex.getAPSIntVal().getBitWidth() > 64)
1911    return TokError("expected number in address space");
1912
1913  LocTy SizeLoc = Lex.getLoc();
1914  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1915  Lex.Lex();
1916
1917  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1918      return true;
1919
1920  LocTy TypeLoc = Lex.getLoc();
1921  Type *EltTy = 0;
1922  if (ParseType(EltTy)) return true;
1923
1924  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1925                 "expected end of sequential type"))
1926    return true;
1927
1928  if (isVector) {
1929    if (Size == 0)
1930      return Error(SizeLoc, "zero element vector is illegal");
1931    if ((unsigned)Size != Size)
1932      return Error(SizeLoc, "size too large for vector");
1933    if (!VectorType::isValidElementType(EltTy))
1934      return Error(TypeLoc, "invalid vector element type");
1935    Result = VectorType::get(EltTy, unsigned(Size));
1936  } else {
1937    if (!ArrayType::isValidElementType(EltTy))
1938      return Error(TypeLoc, "invalid array element type");
1939    Result = ArrayType::get(EltTy, Size);
1940  }
1941  return false;
1942}
1943
1944//===----------------------------------------------------------------------===//
1945// Function Semantic Analysis.
1946//===----------------------------------------------------------------------===//
1947
1948LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1949                                             int functionNumber)
1950  : P(p), F(f), FunctionNumber(functionNumber) {
1951
1952  // Insert unnamed arguments into the NumberedVals list.
1953  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1954       AI != E; ++AI)
1955    if (!AI->hasName())
1956      NumberedVals.push_back(AI);
1957}
1958
1959LLParser::PerFunctionState::~PerFunctionState() {
1960  // If there were any forward referenced non-basicblock values, delete them.
1961  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1962       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1963    if (!isa<BasicBlock>(I->second.first)) {
1964      I->second.first->replaceAllUsesWith(
1965                           UndefValue::get(I->second.first->getType()));
1966      delete I->second.first;
1967      I->second.first = 0;
1968    }
1969
1970  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1971       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1972    if (!isa<BasicBlock>(I->second.first)) {
1973      I->second.first->replaceAllUsesWith(
1974                           UndefValue::get(I->second.first->getType()));
1975      delete I->second.first;
1976      I->second.first = 0;
1977    }
1978}
1979
1980bool LLParser::PerFunctionState::FinishFunction() {
1981  // Check to see if someone took the address of labels in this block.
1982  if (!P.ForwardRefBlockAddresses.empty()) {
1983    ValID FunctionID;
1984    if (!F.getName().empty()) {
1985      FunctionID.Kind = ValID::t_GlobalName;
1986      FunctionID.StrVal = F.getName();
1987    } else {
1988      FunctionID.Kind = ValID::t_GlobalID;
1989      FunctionID.UIntVal = FunctionNumber;
1990    }
1991
1992    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1993      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1994    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1995      // Resolve all these references.
1996      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1997        return true;
1998
1999      P.ForwardRefBlockAddresses.erase(FRBAI);
2000    }
2001  }
2002
2003  if (!ForwardRefVals.empty())
2004    return P.Error(ForwardRefVals.begin()->second.second,
2005                   "use of undefined value '%" + ForwardRefVals.begin()->first +
2006                   "'");
2007  if (!ForwardRefValIDs.empty())
2008    return P.Error(ForwardRefValIDs.begin()->second.second,
2009                   "use of undefined value '%" +
2010                   Twine(ForwardRefValIDs.begin()->first) + "'");
2011  return false;
2012}
2013
2014
2015/// GetVal - Get a value with the specified name or ID, creating a
2016/// forward reference record if needed.  This can return null if the value
2017/// exists but does not have the right type.
2018Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2019                                          Type *Ty, LocTy Loc) {
2020  // Look this name up in the normal function symbol table.
2021  Value *Val = F.getValueSymbolTable().lookup(Name);
2022
2023  // If this is a forward reference for the value, see if we already created a
2024  // forward ref record.
2025  if (Val == 0) {
2026    std::map<std::string, std::pair<Value*, LocTy> >::iterator
2027      I = ForwardRefVals.find(Name);
2028    if (I != ForwardRefVals.end())
2029      Val = I->second.first;
2030  }
2031
2032  // If we have the value in the symbol table or fwd-ref table, return it.
2033  if (Val) {
2034    if (Val->getType() == Ty) return Val;
2035    if (Ty->isLabelTy())
2036      P.Error(Loc, "'%" + Name + "' is not a basic block");
2037    else
2038      P.Error(Loc, "'%" + Name + "' defined with type '" +
2039              getTypeString(Val->getType()) + "'");
2040    return 0;
2041  }
2042
2043  // Don't make placeholders with invalid type.
2044  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2045    P.Error(Loc, "invalid use of a non-first-class type");
2046    return 0;
2047  }
2048
2049  // Otherwise, create a new forward reference for this value and remember it.
2050  Value *FwdVal;
2051  if (Ty->isLabelTy())
2052    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2053  else
2054    FwdVal = new Argument(Ty, Name);
2055
2056  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2057  return FwdVal;
2058}
2059
2060Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2061                                          LocTy Loc) {
2062  // Look this name up in the normal function symbol table.
2063  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2064
2065  // If this is a forward reference for the value, see if we already created a
2066  // forward ref record.
2067  if (Val == 0) {
2068    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2069      I = ForwardRefValIDs.find(ID);
2070    if (I != ForwardRefValIDs.end())
2071      Val = I->second.first;
2072  }
2073
2074  // If we have the value in the symbol table or fwd-ref table, return it.
2075  if (Val) {
2076    if (Val->getType() == Ty) return Val;
2077    if (Ty->isLabelTy())
2078      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2079    else
2080      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2081              getTypeString(Val->getType()) + "'");
2082    return 0;
2083  }
2084
2085  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2086    P.Error(Loc, "invalid use of a non-first-class type");
2087    return 0;
2088  }
2089
2090  // Otherwise, create a new forward reference for this value and remember it.
2091  Value *FwdVal;
2092  if (Ty->isLabelTy())
2093    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2094  else
2095    FwdVal = new Argument(Ty);
2096
2097  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2098  return FwdVal;
2099}
2100
2101/// SetInstName - After an instruction is parsed and inserted into its
2102/// basic block, this installs its name.
2103bool LLParser::PerFunctionState::SetInstName(int NameID,
2104                                             const std::string &NameStr,
2105                                             LocTy NameLoc, Instruction *Inst) {
2106  // If this instruction has void type, it cannot have a name or ID specified.
2107  if (Inst->getType()->isVoidTy()) {
2108    if (NameID != -1 || !NameStr.empty())
2109      return P.Error(NameLoc, "instructions returning void cannot have a name");
2110    return false;
2111  }
2112
2113  // If this was a numbered instruction, verify that the instruction is the
2114  // expected value and resolve any forward references.
2115  if (NameStr.empty()) {
2116    // If neither a name nor an ID was specified, just use the next ID.
2117    if (NameID == -1)
2118      NameID = NumberedVals.size();
2119
2120    if (unsigned(NameID) != NumberedVals.size())
2121      return P.Error(NameLoc, "instruction expected to be numbered '%" +
2122                     Twine(NumberedVals.size()) + "'");
2123
2124    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2125      ForwardRefValIDs.find(NameID);
2126    if (FI != ForwardRefValIDs.end()) {
2127      if (FI->second.first->getType() != Inst->getType())
2128        return P.Error(NameLoc, "instruction forward referenced with type '" +
2129                       getTypeString(FI->second.first->getType()) + "'");
2130      FI->second.first->replaceAllUsesWith(Inst);
2131      delete FI->second.first;
2132      ForwardRefValIDs.erase(FI);
2133    }
2134
2135    NumberedVals.push_back(Inst);
2136    return false;
2137  }
2138
2139  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2140  std::map<std::string, std::pair<Value*, LocTy> >::iterator
2141    FI = ForwardRefVals.find(NameStr);
2142  if (FI != ForwardRefVals.end()) {
2143    if (FI->second.first->getType() != Inst->getType())
2144      return P.Error(NameLoc, "instruction forward referenced with type '" +
2145                     getTypeString(FI->second.first->getType()) + "'");
2146    FI->second.first->replaceAllUsesWith(Inst);
2147    delete FI->second.first;
2148    ForwardRefVals.erase(FI);
2149  }
2150
2151  // Set the name on the instruction.
2152  Inst->setName(NameStr);
2153
2154  if (Inst->getName() != NameStr)
2155    return P.Error(NameLoc, "multiple definition of local value named '" +
2156                   NameStr + "'");
2157  return false;
2158}
2159
2160/// GetBB - Get a basic block with the specified name or ID, creating a
2161/// forward reference record if needed.
2162BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2163                                              LocTy Loc) {
2164  return cast_or_null<BasicBlock>(GetVal(Name,
2165                                        Type::getLabelTy(F.getContext()), Loc));
2166}
2167
2168BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2169  return cast_or_null<BasicBlock>(GetVal(ID,
2170                                        Type::getLabelTy(F.getContext()), Loc));
2171}
2172
2173/// DefineBB - Define the specified basic block, which is either named or
2174/// unnamed.  If there is an error, this returns null otherwise it returns
2175/// the block being defined.
2176BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2177                                                 LocTy Loc) {
2178  BasicBlock *BB;
2179  if (Name.empty())
2180    BB = GetBB(NumberedVals.size(), Loc);
2181  else
2182    BB = GetBB(Name, Loc);
2183  if (BB == 0) return 0; // Already diagnosed error.
2184
2185  // Move the block to the end of the function.  Forward ref'd blocks are
2186  // inserted wherever they happen to be referenced.
2187  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2188
2189  // Remove the block from forward ref sets.
2190  if (Name.empty()) {
2191    ForwardRefValIDs.erase(NumberedVals.size());
2192    NumberedVals.push_back(BB);
2193  } else {
2194    // BB forward references are already in the function symbol table.
2195    ForwardRefVals.erase(Name);
2196  }
2197
2198  return BB;
2199}
2200
2201//===----------------------------------------------------------------------===//
2202// Constants.
2203//===----------------------------------------------------------------------===//
2204
2205/// ParseValID - Parse an abstract value that doesn't necessarily have a
2206/// type implied.  For example, if we parse "4" we don't know what integer type
2207/// it has.  The value will later be combined with its type and checked for
2208/// sanity.  PFS is used to convert function-local operands of metadata (since
2209/// metadata operands are not just parsed here but also converted to values).
2210/// PFS can be null when we are not parsing metadata values inside a function.
2211bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2212  ID.Loc = Lex.getLoc();
2213  switch (Lex.getKind()) {
2214  default: return TokError("expected value token");
2215  case lltok::GlobalID:  // @42
2216    ID.UIntVal = Lex.getUIntVal();
2217    ID.Kind = ValID::t_GlobalID;
2218    break;
2219  case lltok::GlobalVar:  // @foo
2220    ID.StrVal = Lex.getStrVal();
2221    ID.Kind = ValID::t_GlobalName;
2222    break;
2223  case lltok::LocalVarID:  // %42
2224    ID.UIntVal = Lex.getUIntVal();
2225    ID.Kind = ValID::t_LocalID;
2226    break;
2227  case lltok::LocalVar:  // %foo
2228    ID.StrVal = Lex.getStrVal();
2229    ID.Kind = ValID::t_LocalName;
2230    break;
2231  case lltok::exclaim:   // !42, !{...}, or !"foo"
2232    return ParseMetadataValue(ID, PFS);
2233  case lltok::APSInt:
2234    ID.APSIntVal = Lex.getAPSIntVal();
2235    ID.Kind = ValID::t_APSInt;
2236    break;
2237  case lltok::APFloat:
2238    ID.APFloatVal = Lex.getAPFloatVal();
2239    ID.Kind = ValID::t_APFloat;
2240    break;
2241  case lltok::kw_true:
2242    ID.ConstantVal = ConstantInt::getTrue(Context);
2243    ID.Kind = ValID::t_Constant;
2244    break;
2245  case lltok::kw_false:
2246    ID.ConstantVal = ConstantInt::getFalse(Context);
2247    ID.Kind = ValID::t_Constant;
2248    break;
2249  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2250  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2251  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2252
2253  case lltok::lbrace: {
2254    // ValID ::= '{' ConstVector '}'
2255    Lex.Lex();
2256    SmallVector<Constant*, 16> Elts;
2257    if (ParseGlobalValueVector(Elts) ||
2258        ParseToken(lltok::rbrace, "expected end of struct constant"))
2259      return true;
2260
2261    ID.ConstantStructElts = new Constant*[Elts.size()];
2262    ID.UIntVal = Elts.size();
2263    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2264    ID.Kind = ValID::t_ConstantStruct;
2265    return false;
2266  }
2267  case lltok::less: {
2268    // ValID ::= '<' ConstVector '>'         --> Vector.
2269    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2270    Lex.Lex();
2271    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2272
2273    SmallVector<Constant*, 16> Elts;
2274    LocTy FirstEltLoc = Lex.getLoc();
2275    if (ParseGlobalValueVector(Elts) ||
2276        (isPackedStruct &&
2277         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2278        ParseToken(lltok::greater, "expected end of constant"))
2279      return true;
2280
2281    if (isPackedStruct) {
2282      ID.ConstantStructElts = new Constant*[Elts.size()];
2283      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2284      ID.UIntVal = Elts.size();
2285      ID.Kind = ValID::t_PackedConstantStruct;
2286      return false;
2287    }
2288
2289    if (Elts.empty())
2290      return Error(ID.Loc, "constant vector must not be empty");
2291
2292    if (!Elts[0]->getType()->isIntegerTy() &&
2293        !Elts[0]->getType()->isFloatingPointTy() &&
2294        !Elts[0]->getType()->isPointerTy())
2295      return Error(FirstEltLoc,
2296            "vector elements must have integer, pointer or floating point type");
2297
2298    // Verify that all the vector elements have the same type.
2299    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2300      if (Elts[i]->getType() != Elts[0]->getType())
2301        return Error(FirstEltLoc,
2302                     "vector element #" + Twine(i) +
2303                    " is not of type '" + getTypeString(Elts[0]->getType()));
2304
2305    ID.ConstantVal = ConstantVector::get(Elts);
2306    ID.Kind = ValID::t_Constant;
2307    return false;
2308  }
2309  case lltok::lsquare: {   // Array Constant
2310    Lex.Lex();
2311    SmallVector<Constant*, 16> Elts;
2312    LocTy FirstEltLoc = Lex.getLoc();
2313    if (ParseGlobalValueVector(Elts) ||
2314        ParseToken(lltok::rsquare, "expected end of array constant"))
2315      return true;
2316
2317    // Handle empty element.
2318    if (Elts.empty()) {
2319      // Use undef instead of an array because it's inconvenient to determine
2320      // the element type at this point, there being no elements to examine.
2321      ID.Kind = ValID::t_EmptyArray;
2322      return false;
2323    }
2324
2325    if (!Elts[0]->getType()->isFirstClassType())
2326      return Error(FirstEltLoc, "invalid array element type: " +
2327                   getTypeString(Elts[0]->getType()));
2328
2329    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2330
2331    // Verify all elements are correct type!
2332    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2333      if (Elts[i]->getType() != Elts[0]->getType())
2334        return Error(FirstEltLoc,
2335                     "array element #" + Twine(i) +
2336                     " is not of type '" + getTypeString(Elts[0]->getType()));
2337    }
2338
2339    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2340    ID.Kind = ValID::t_Constant;
2341    return false;
2342  }
2343  case lltok::kw_c:  // c "foo"
2344    Lex.Lex();
2345    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2346                                                  false);
2347    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2348    ID.Kind = ValID::t_Constant;
2349    return false;
2350
2351  case lltok::kw_asm: {
2352    // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2353    //             STRINGCONSTANT
2354    bool HasSideEffect, AlignStack, AsmDialect;
2355    Lex.Lex();
2356    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2357        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2358        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2359        ParseStringConstant(ID.StrVal) ||
2360        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2361        ParseToken(lltok::StringConstant, "expected constraint string"))
2362      return true;
2363    ID.StrVal2 = Lex.getStrVal();
2364    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2365      (unsigned(AsmDialect)<<2);
2366    ID.Kind = ValID::t_InlineAsm;
2367    return false;
2368  }
2369
2370  case lltok::kw_blockaddress: {
2371    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2372    Lex.Lex();
2373
2374    ValID Fn, Label;
2375    LocTy FnLoc, LabelLoc;
2376
2377    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2378        ParseValID(Fn) ||
2379        ParseToken(lltok::comma, "expected comma in block address expression")||
2380        ParseValID(Label) ||
2381        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2382      return true;
2383
2384    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2385      return Error(Fn.Loc, "expected function name in blockaddress");
2386    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2387      return Error(Label.Loc, "expected basic block name in blockaddress");
2388
2389    // Make a global variable as a placeholder for this reference.
2390    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2391                                           false, GlobalValue::InternalLinkage,
2392                                                0, "");
2393    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2394    ID.ConstantVal = FwdRef;
2395    ID.Kind = ValID::t_Constant;
2396    return false;
2397  }
2398
2399  case lltok::kw_trunc:
2400  case lltok::kw_zext:
2401  case lltok::kw_sext:
2402  case lltok::kw_fptrunc:
2403  case lltok::kw_fpext:
2404  case lltok::kw_bitcast:
2405  case lltok::kw_uitofp:
2406  case lltok::kw_sitofp:
2407  case lltok::kw_fptoui:
2408  case lltok::kw_fptosi:
2409  case lltok::kw_inttoptr:
2410  case lltok::kw_ptrtoint: {
2411    unsigned Opc = Lex.getUIntVal();
2412    Type *DestTy = 0;
2413    Constant *SrcVal;
2414    Lex.Lex();
2415    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2416        ParseGlobalTypeAndValue(SrcVal) ||
2417        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2418        ParseType(DestTy) ||
2419        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2420      return true;
2421    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2422      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2423                   getTypeString(SrcVal->getType()) + "' to '" +
2424                   getTypeString(DestTy) + "'");
2425    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2426                                                 SrcVal, DestTy);
2427    ID.Kind = ValID::t_Constant;
2428    return false;
2429  }
2430  case lltok::kw_extractvalue: {
2431    Lex.Lex();
2432    Constant *Val;
2433    SmallVector<unsigned, 4> Indices;
2434    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2435        ParseGlobalTypeAndValue(Val) ||
2436        ParseIndexList(Indices) ||
2437        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2438      return true;
2439
2440    if (!Val->getType()->isAggregateType())
2441      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2442    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2443      return Error(ID.Loc, "invalid indices for extractvalue");
2444    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2445    ID.Kind = ValID::t_Constant;
2446    return false;
2447  }
2448  case lltok::kw_insertvalue: {
2449    Lex.Lex();
2450    Constant *Val0, *Val1;
2451    SmallVector<unsigned, 4> Indices;
2452    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2453        ParseGlobalTypeAndValue(Val0) ||
2454        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2455        ParseGlobalTypeAndValue(Val1) ||
2456        ParseIndexList(Indices) ||
2457        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2458      return true;
2459    if (!Val0->getType()->isAggregateType())
2460      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2461    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2462      return Error(ID.Loc, "invalid indices for insertvalue");
2463    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2464    ID.Kind = ValID::t_Constant;
2465    return false;
2466  }
2467  case lltok::kw_icmp:
2468  case lltok::kw_fcmp: {
2469    unsigned PredVal, Opc = Lex.getUIntVal();
2470    Constant *Val0, *Val1;
2471    Lex.Lex();
2472    if (ParseCmpPredicate(PredVal, Opc) ||
2473        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2474        ParseGlobalTypeAndValue(Val0) ||
2475        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2476        ParseGlobalTypeAndValue(Val1) ||
2477        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2478      return true;
2479
2480    if (Val0->getType() != Val1->getType())
2481      return Error(ID.Loc, "compare operands must have the same type");
2482
2483    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2484
2485    if (Opc == Instruction::FCmp) {
2486      if (!Val0->getType()->isFPOrFPVectorTy())
2487        return Error(ID.Loc, "fcmp requires floating point operands");
2488      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2489    } else {
2490      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2491      if (!Val0->getType()->isIntOrIntVectorTy() &&
2492          !Val0->getType()->getScalarType()->isPointerTy())
2493        return Error(ID.Loc, "icmp requires pointer or integer operands");
2494      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2495    }
2496    ID.Kind = ValID::t_Constant;
2497    return false;
2498  }
2499
2500  // Binary Operators.
2501  case lltok::kw_add:
2502  case lltok::kw_fadd:
2503  case lltok::kw_sub:
2504  case lltok::kw_fsub:
2505  case lltok::kw_mul:
2506  case lltok::kw_fmul:
2507  case lltok::kw_udiv:
2508  case lltok::kw_sdiv:
2509  case lltok::kw_fdiv:
2510  case lltok::kw_urem:
2511  case lltok::kw_srem:
2512  case lltok::kw_frem:
2513  case lltok::kw_shl:
2514  case lltok::kw_lshr:
2515  case lltok::kw_ashr: {
2516    bool NUW = false;
2517    bool NSW = false;
2518    bool Exact = false;
2519    unsigned Opc = Lex.getUIntVal();
2520    Constant *Val0, *Val1;
2521    Lex.Lex();
2522    LocTy ModifierLoc = Lex.getLoc();
2523    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2524        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2525      if (EatIfPresent(lltok::kw_nuw))
2526        NUW = true;
2527      if (EatIfPresent(lltok::kw_nsw)) {
2528        NSW = true;
2529        if (EatIfPresent(lltok::kw_nuw))
2530          NUW = true;
2531      }
2532    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2533               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2534      if (EatIfPresent(lltok::kw_exact))
2535        Exact = true;
2536    }
2537    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2538        ParseGlobalTypeAndValue(Val0) ||
2539        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2540        ParseGlobalTypeAndValue(Val1) ||
2541        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2542      return true;
2543    if (Val0->getType() != Val1->getType())
2544      return Error(ID.Loc, "operands of constexpr must have same type");
2545    if (!Val0->getType()->isIntOrIntVectorTy()) {
2546      if (NUW)
2547        return Error(ModifierLoc, "nuw only applies to integer operations");
2548      if (NSW)
2549        return Error(ModifierLoc, "nsw only applies to integer operations");
2550    }
2551    // Check that the type is valid for the operator.
2552    switch (Opc) {
2553    case Instruction::Add:
2554    case Instruction::Sub:
2555    case Instruction::Mul:
2556    case Instruction::UDiv:
2557    case Instruction::SDiv:
2558    case Instruction::URem:
2559    case Instruction::SRem:
2560    case Instruction::Shl:
2561    case Instruction::AShr:
2562    case Instruction::LShr:
2563      if (!Val0->getType()->isIntOrIntVectorTy())
2564        return Error(ID.Loc, "constexpr requires integer operands");
2565      break;
2566    case Instruction::FAdd:
2567    case Instruction::FSub:
2568    case Instruction::FMul:
2569    case Instruction::FDiv:
2570    case Instruction::FRem:
2571      if (!Val0->getType()->isFPOrFPVectorTy())
2572        return Error(ID.Loc, "constexpr requires fp operands");
2573      break;
2574    default: llvm_unreachable("Unknown binary operator!");
2575    }
2576    unsigned Flags = 0;
2577    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2578    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2579    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2580    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2581    ID.ConstantVal = C;
2582    ID.Kind = ValID::t_Constant;
2583    return false;
2584  }
2585
2586  // Logical Operations
2587  case lltok::kw_and:
2588  case lltok::kw_or:
2589  case lltok::kw_xor: {
2590    unsigned Opc = Lex.getUIntVal();
2591    Constant *Val0, *Val1;
2592    Lex.Lex();
2593    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2594        ParseGlobalTypeAndValue(Val0) ||
2595        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2596        ParseGlobalTypeAndValue(Val1) ||
2597        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2598      return true;
2599    if (Val0->getType() != Val1->getType())
2600      return Error(ID.Loc, "operands of constexpr must have same type");
2601    if (!Val0->getType()->isIntOrIntVectorTy())
2602      return Error(ID.Loc,
2603                   "constexpr requires integer or integer vector operands");
2604    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2605    ID.Kind = ValID::t_Constant;
2606    return false;
2607  }
2608
2609  case lltok::kw_getelementptr:
2610  case lltok::kw_shufflevector:
2611  case lltok::kw_insertelement:
2612  case lltok::kw_extractelement:
2613  case lltok::kw_select: {
2614    unsigned Opc = Lex.getUIntVal();
2615    SmallVector<Constant*, 16> Elts;
2616    bool InBounds = false;
2617    Lex.Lex();
2618    if (Opc == Instruction::GetElementPtr)
2619      InBounds = EatIfPresent(lltok::kw_inbounds);
2620    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2621        ParseGlobalValueVector(Elts) ||
2622        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2623      return true;
2624
2625    if (Opc == Instruction::GetElementPtr) {
2626      if (Elts.size() == 0 ||
2627          !Elts[0]->getType()->getScalarType()->isPointerTy())
2628        return Error(ID.Loc, "getelementptr requires pointer operand");
2629
2630      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2631      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2632        return Error(ID.Loc, "invalid indices for getelementptr");
2633      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2634                                                      InBounds);
2635    } else if (Opc == Instruction::Select) {
2636      if (Elts.size() != 3)
2637        return Error(ID.Loc, "expected three operands to select");
2638      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2639                                                              Elts[2]))
2640        return Error(ID.Loc, Reason);
2641      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2642    } else if (Opc == Instruction::ShuffleVector) {
2643      if (Elts.size() != 3)
2644        return Error(ID.Loc, "expected three operands to shufflevector");
2645      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2646        return Error(ID.Loc, "invalid operands to shufflevector");
2647      ID.ConstantVal =
2648                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2649    } else if (Opc == Instruction::ExtractElement) {
2650      if (Elts.size() != 2)
2651        return Error(ID.Loc, "expected two operands to extractelement");
2652      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2653        return Error(ID.Loc, "invalid extractelement operands");
2654      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2655    } else {
2656      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2657      if (Elts.size() != 3)
2658      return Error(ID.Loc, "expected three operands to insertelement");
2659      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2660        return Error(ID.Loc, "invalid insertelement operands");
2661      ID.ConstantVal =
2662                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2663    }
2664
2665    ID.Kind = ValID::t_Constant;
2666    return false;
2667  }
2668  }
2669
2670  Lex.Lex();
2671  return false;
2672}
2673
2674/// ParseGlobalValue - Parse a global value with the specified type.
2675bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2676  C = 0;
2677  ValID ID;
2678  Value *V = NULL;
2679  bool Parsed = ParseValID(ID) ||
2680                ConvertValIDToValue(Ty, ID, V, NULL);
2681  if (V && !(C = dyn_cast<Constant>(V)))
2682    return Error(ID.Loc, "global values must be constants");
2683  return Parsed;
2684}
2685
2686bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2687  Type *Ty = 0;
2688  return ParseType(Ty) ||
2689         ParseGlobalValue(Ty, V);
2690}
2691
2692/// ParseGlobalValueVector
2693///   ::= /*empty*/
2694///   ::= TypeAndValue (',' TypeAndValue)*
2695bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2696  // Empty list.
2697  if (Lex.getKind() == lltok::rbrace ||
2698      Lex.getKind() == lltok::rsquare ||
2699      Lex.getKind() == lltok::greater ||
2700      Lex.getKind() == lltok::rparen)
2701    return false;
2702
2703  Constant *C;
2704  if (ParseGlobalTypeAndValue(C)) return true;
2705  Elts.push_back(C);
2706
2707  while (EatIfPresent(lltok::comma)) {
2708    if (ParseGlobalTypeAndValue(C)) return true;
2709    Elts.push_back(C);
2710  }
2711
2712  return false;
2713}
2714
2715bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2716  assert(Lex.getKind() == lltok::lbrace);
2717  Lex.Lex();
2718
2719  SmallVector<Value*, 16> Elts;
2720  if (ParseMDNodeVector(Elts, PFS) ||
2721      ParseToken(lltok::rbrace, "expected end of metadata node"))
2722    return true;
2723
2724  ID.MDNodeVal = MDNode::get(Context, Elts);
2725  ID.Kind = ValID::t_MDNode;
2726  return false;
2727}
2728
2729/// ParseMetadataValue
2730///  ::= !42
2731///  ::= !{...}
2732///  ::= !"string"
2733bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2734  assert(Lex.getKind() == lltok::exclaim);
2735  Lex.Lex();
2736
2737  // MDNode:
2738  // !{ ... }
2739  if (Lex.getKind() == lltok::lbrace)
2740    return ParseMetadataListValue(ID, PFS);
2741
2742  // Standalone metadata reference
2743  // !42
2744  if (Lex.getKind() == lltok::APSInt) {
2745    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2746    ID.Kind = ValID::t_MDNode;
2747    return false;
2748  }
2749
2750  // MDString:
2751  //   ::= '!' STRINGCONSTANT
2752  if (ParseMDString(ID.MDStringVal)) return true;
2753  ID.Kind = ValID::t_MDString;
2754  return false;
2755}
2756
2757
2758//===----------------------------------------------------------------------===//
2759// Function Parsing.
2760//===----------------------------------------------------------------------===//
2761
2762bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2763                                   PerFunctionState *PFS) {
2764  if (Ty->isFunctionTy())
2765    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2766
2767  switch (ID.Kind) {
2768  case ValID::t_LocalID:
2769    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2770    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2771    return (V == 0);
2772  case ValID::t_LocalName:
2773    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2774    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2775    return (V == 0);
2776  case ValID::t_InlineAsm: {
2777    PointerType *PTy = dyn_cast<PointerType>(Ty);
2778    FunctionType *FTy =
2779      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2780    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2781      return Error(ID.Loc, "invalid type for inline asm constraint string");
2782    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2783                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2784    return false;
2785  }
2786  case ValID::t_MDNode:
2787    if (!Ty->isMetadataTy())
2788      return Error(ID.Loc, "metadata value must have metadata type");
2789    V = ID.MDNodeVal;
2790    return false;
2791  case ValID::t_MDString:
2792    if (!Ty->isMetadataTy())
2793      return Error(ID.Loc, "metadata value must have metadata type");
2794    V = ID.MDStringVal;
2795    return false;
2796  case ValID::t_GlobalName:
2797    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2798    return V == 0;
2799  case ValID::t_GlobalID:
2800    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2801    return V == 0;
2802  case ValID::t_APSInt:
2803    if (!Ty->isIntegerTy())
2804      return Error(ID.Loc, "integer constant must have integer type");
2805    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2806    V = ConstantInt::get(Context, ID.APSIntVal);
2807    return false;
2808  case ValID::t_APFloat:
2809    if (!Ty->isFloatingPointTy() ||
2810        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2811      return Error(ID.Loc, "floating point constant invalid for type");
2812
2813    // The lexer has no type info, so builds all half, float, and double FP
2814    // constants as double.  Fix this here.  Long double does not need this.
2815    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2816      bool Ignored;
2817      if (Ty->isHalfTy())
2818        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2819                              &Ignored);
2820      else if (Ty->isFloatTy())
2821        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2822                              &Ignored);
2823    }
2824    V = ConstantFP::get(Context, ID.APFloatVal);
2825
2826    if (V->getType() != Ty)
2827      return Error(ID.Loc, "floating point constant does not have type '" +
2828                   getTypeString(Ty) + "'");
2829
2830    return false;
2831  case ValID::t_Null:
2832    if (!Ty->isPointerTy())
2833      return Error(ID.Loc, "null must be a pointer type");
2834    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2835    return false;
2836  case ValID::t_Undef:
2837    // FIXME: LabelTy should not be a first-class type.
2838    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2839      return Error(ID.Loc, "invalid type for undef constant");
2840    V = UndefValue::get(Ty);
2841    return false;
2842  case ValID::t_EmptyArray:
2843    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2844      return Error(ID.Loc, "invalid empty array initializer");
2845    V = UndefValue::get(Ty);
2846    return false;
2847  case ValID::t_Zero:
2848    // FIXME: LabelTy should not be a first-class type.
2849    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2850      return Error(ID.Loc, "invalid type for null constant");
2851    V = Constant::getNullValue(Ty);
2852    return false;
2853  case ValID::t_Constant:
2854    if (ID.ConstantVal->getType() != Ty)
2855      return Error(ID.Loc, "constant expression type mismatch");
2856
2857    V = ID.ConstantVal;
2858    return false;
2859  case ValID::t_ConstantStruct:
2860  case ValID::t_PackedConstantStruct:
2861    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2862      if (ST->getNumElements() != ID.UIntVal)
2863        return Error(ID.Loc,
2864                     "initializer with struct type has wrong # elements");
2865      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2866        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2867
2868      // Verify that the elements are compatible with the structtype.
2869      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2870        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2871          return Error(ID.Loc, "element " + Twine(i) +
2872                    " of struct initializer doesn't match struct element type");
2873
2874      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2875                                               ID.UIntVal));
2876    } else
2877      return Error(ID.Loc, "constant expression type mismatch");
2878    return false;
2879  }
2880  llvm_unreachable("Invalid ValID");
2881}
2882
2883bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2884  V = 0;
2885  ValID ID;
2886  return ParseValID(ID, PFS) ||
2887         ConvertValIDToValue(Ty, ID, V, PFS);
2888}
2889
2890bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2891  Type *Ty = 0;
2892  return ParseType(Ty) ||
2893         ParseValue(Ty, V, PFS);
2894}
2895
2896bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2897                                      PerFunctionState &PFS) {
2898  Value *V;
2899  Loc = Lex.getLoc();
2900  if (ParseTypeAndValue(V, PFS)) return true;
2901  if (!isa<BasicBlock>(V))
2902    return Error(Loc, "expected a basic block");
2903  BB = cast<BasicBlock>(V);
2904  return false;
2905}
2906
2907
2908/// FunctionHeader
2909///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2910///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2911///       OptionalAlign OptGC
2912bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2913  // Parse the linkage.
2914  LocTy LinkageLoc = Lex.getLoc();
2915  unsigned Linkage;
2916
2917  unsigned Visibility;
2918  AttrBuilder RetAttrs;
2919  CallingConv::ID CC;
2920  Type *RetType = 0;
2921  LocTy RetTypeLoc = Lex.getLoc();
2922  if (ParseOptionalLinkage(Linkage) ||
2923      ParseOptionalVisibility(Visibility) ||
2924      ParseOptionalCallingConv(CC) ||
2925      ParseOptionalReturnAttrs(RetAttrs) ||
2926      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2927    return true;
2928
2929  // Verify that the linkage is ok.
2930  switch ((GlobalValue::LinkageTypes)Linkage) {
2931  case GlobalValue::ExternalLinkage:
2932    break; // always ok.
2933  case GlobalValue::DLLImportLinkage:
2934  case GlobalValue::ExternalWeakLinkage:
2935    if (isDefine)
2936      return Error(LinkageLoc, "invalid linkage for function definition");
2937    break;
2938  case GlobalValue::PrivateLinkage:
2939  case GlobalValue::LinkerPrivateLinkage:
2940  case GlobalValue::LinkerPrivateWeakLinkage:
2941  case GlobalValue::InternalLinkage:
2942  case GlobalValue::AvailableExternallyLinkage:
2943  case GlobalValue::LinkOnceAnyLinkage:
2944  case GlobalValue::LinkOnceODRLinkage:
2945  case GlobalValue::LinkOnceODRAutoHideLinkage:
2946  case GlobalValue::WeakAnyLinkage:
2947  case GlobalValue::WeakODRLinkage:
2948  case GlobalValue::DLLExportLinkage:
2949    if (!isDefine)
2950      return Error(LinkageLoc, "invalid linkage for function declaration");
2951    break;
2952  case GlobalValue::AppendingLinkage:
2953  case GlobalValue::CommonLinkage:
2954    return Error(LinkageLoc, "invalid function linkage type");
2955  }
2956
2957  if (!FunctionType::isValidReturnType(RetType))
2958    return Error(RetTypeLoc, "invalid function return type");
2959
2960  LocTy NameLoc = Lex.getLoc();
2961
2962  std::string FunctionName;
2963  if (Lex.getKind() == lltok::GlobalVar) {
2964    FunctionName = Lex.getStrVal();
2965  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2966    unsigned NameID = Lex.getUIntVal();
2967
2968    if (NameID != NumberedVals.size())
2969      return TokError("function expected to be numbered '%" +
2970                      Twine(NumberedVals.size()) + "'");
2971  } else {
2972    return TokError("expected function name");
2973  }
2974
2975  Lex.Lex();
2976
2977  if (Lex.getKind() != lltok::lparen)
2978    return TokError("expected '(' in function argument list");
2979
2980  SmallVector<ArgInfo, 8> ArgList;
2981  bool isVarArg;
2982  AttrBuilder FuncAttrs;
2983  std::vector<unsigned> FwdRefAttrGrps;
2984  LocTy NoBuiltinLoc;
2985  std::string Section;
2986  unsigned Alignment;
2987  std::string GC;
2988  bool UnnamedAddr;
2989  LocTy UnnamedAddrLoc;
2990
2991  if (ParseArgumentList(ArgList, isVarArg) ||
2992      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2993                         &UnnamedAddrLoc) ||
2994      ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
2995                                 NoBuiltinLoc) ||
2996      (EatIfPresent(lltok::kw_section) &&
2997       ParseStringConstant(Section)) ||
2998      ParseOptionalAlignment(Alignment) ||
2999      (EatIfPresent(lltok::kw_gc) &&
3000       ParseStringConstant(GC)))
3001    return true;
3002
3003  if (FuncAttrs.contains(Attribute::NoBuiltin))
3004    return Error(NoBuiltinLoc, "'nobuiltin' attribute not valid on function");
3005
3006  // If the alignment was parsed as an attribute, move to the alignment field.
3007  if (FuncAttrs.hasAlignmentAttr()) {
3008    Alignment = FuncAttrs.getAlignment();
3009    FuncAttrs.removeAttribute(Attribute::Alignment);
3010  }
3011
3012  // Okay, if we got here, the function is syntactically valid.  Convert types
3013  // and do semantic checks.
3014  std::vector<Type*> ParamTypeList;
3015  SmallVector<AttributeSet, 8> Attrs;
3016
3017  if (RetAttrs.hasAttributes())
3018    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3019                                      AttributeSet::ReturnIndex,
3020                                      RetAttrs));
3021
3022  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3023    ParamTypeList.push_back(ArgList[i].Ty);
3024    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3025      AttrBuilder B(ArgList[i].Attrs, i + 1);
3026      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3027    }
3028  }
3029
3030  if (FuncAttrs.hasAttributes())
3031    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3032                                      AttributeSet::FunctionIndex,
3033                                      FuncAttrs));
3034
3035  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3036
3037  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3038    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3039
3040  FunctionType *FT =
3041    FunctionType::get(RetType, ParamTypeList, isVarArg);
3042  PointerType *PFT = PointerType::getUnqual(FT);
3043
3044  Fn = 0;
3045  if (!FunctionName.empty()) {
3046    // If this was a definition of a forward reference, remove the definition
3047    // from the forward reference table and fill in the forward ref.
3048    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3049      ForwardRefVals.find(FunctionName);
3050    if (FRVI != ForwardRefVals.end()) {
3051      Fn = M->getFunction(FunctionName);
3052      if (!Fn)
3053        return Error(FRVI->second.second, "invalid forward reference to "
3054                     "function as global value!");
3055      if (Fn->getType() != PFT)
3056        return Error(FRVI->second.second, "invalid forward reference to "
3057                     "function '" + FunctionName + "' with wrong type!");
3058
3059      ForwardRefVals.erase(FRVI);
3060    } else if ((Fn = M->getFunction(FunctionName))) {
3061      // Reject redefinitions.
3062      return Error(NameLoc, "invalid redefinition of function '" +
3063                   FunctionName + "'");
3064    } else if (M->getNamedValue(FunctionName)) {
3065      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3066    }
3067
3068  } else {
3069    // If this is a definition of a forward referenced function, make sure the
3070    // types agree.
3071    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3072      = ForwardRefValIDs.find(NumberedVals.size());
3073    if (I != ForwardRefValIDs.end()) {
3074      Fn = cast<Function>(I->second.first);
3075      if (Fn->getType() != PFT)
3076        return Error(NameLoc, "type of definition and forward reference of '@" +
3077                     Twine(NumberedVals.size()) + "' disagree");
3078      ForwardRefValIDs.erase(I);
3079    }
3080  }
3081
3082  if (Fn == 0)
3083    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3084  else // Move the forward-reference to the correct spot in the module.
3085    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3086
3087  if (FunctionName.empty())
3088    NumberedVals.push_back(Fn);
3089
3090  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3091  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3092  Fn->setCallingConv(CC);
3093  Fn->setAttributes(PAL);
3094  Fn->setUnnamedAddr(UnnamedAddr);
3095  Fn->setAlignment(Alignment);
3096  Fn->setSection(Section);
3097  if (!GC.empty()) Fn->setGC(GC.c_str());
3098  ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3099
3100  // Add all of the arguments we parsed to the function.
3101  Function::arg_iterator ArgIt = Fn->arg_begin();
3102  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3103    // If the argument has a name, insert it into the argument symbol table.
3104    if (ArgList[i].Name.empty()) continue;
3105
3106    // Set the name, if it conflicted, it will be auto-renamed.
3107    ArgIt->setName(ArgList[i].Name);
3108
3109    if (ArgIt->getName() != ArgList[i].Name)
3110      return Error(ArgList[i].Loc, "redefinition of argument '%" +
3111                   ArgList[i].Name + "'");
3112  }
3113
3114  return false;
3115}
3116
3117
3118/// ParseFunctionBody
3119///   ::= '{' BasicBlock+ '}'
3120///
3121bool LLParser::ParseFunctionBody(Function &Fn) {
3122  if (Lex.getKind() != lltok::lbrace)
3123    return TokError("expected '{' in function body");
3124  Lex.Lex();  // eat the {.
3125
3126  int FunctionNumber = -1;
3127  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3128
3129  PerFunctionState PFS(*this, Fn, FunctionNumber);
3130
3131  // We need at least one basic block.
3132  if (Lex.getKind() == lltok::rbrace)
3133    return TokError("function body requires at least one basic block");
3134
3135  while (Lex.getKind() != lltok::rbrace)
3136    if (ParseBasicBlock(PFS)) return true;
3137
3138  // Eat the }.
3139  Lex.Lex();
3140
3141  // Verify function is ok.
3142  return PFS.FinishFunction();
3143}
3144
3145/// ParseBasicBlock
3146///   ::= LabelStr? Instruction*
3147bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3148  // If this basic block starts out with a name, remember it.
3149  std::string Name;
3150  LocTy NameLoc = Lex.getLoc();
3151  if (Lex.getKind() == lltok::LabelStr) {
3152    Name = Lex.getStrVal();
3153    Lex.Lex();
3154  }
3155
3156  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3157  if (BB == 0) return true;
3158
3159  std::string NameStr;
3160
3161  // Parse the instructions in this block until we get a terminator.
3162  Instruction *Inst;
3163  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
3164  do {
3165    // This instruction may have three possibilities for a name: a) none
3166    // specified, b) name specified "%foo =", c) number specified: "%4 =".
3167    LocTy NameLoc = Lex.getLoc();
3168    int NameID = -1;
3169    NameStr = "";
3170
3171    if (Lex.getKind() == lltok::LocalVarID) {
3172      NameID = Lex.getUIntVal();
3173      Lex.Lex();
3174      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3175        return true;
3176    } else if (Lex.getKind() == lltok::LocalVar) {
3177      NameStr = Lex.getStrVal();
3178      Lex.Lex();
3179      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3180        return true;
3181    }
3182
3183    switch (ParseInstruction(Inst, BB, PFS)) {
3184    default: llvm_unreachable("Unknown ParseInstruction result!");
3185    case InstError: return true;
3186    case InstNormal:
3187      BB->getInstList().push_back(Inst);
3188
3189      // With a normal result, we check to see if the instruction is followed by
3190      // a comma and metadata.
3191      if (EatIfPresent(lltok::comma))
3192        if (ParseInstructionMetadata(Inst, &PFS))
3193          return true;
3194      break;
3195    case InstExtraComma:
3196      BB->getInstList().push_back(Inst);
3197
3198      // If the instruction parser ate an extra comma at the end of it, it
3199      // *must* be followed by metadata.
3200      if (ParseInstructionMetadata(Inst, &PFS))
3201        return true;
3202      break;
3203    }
3204
3205    // Set the name on the instruction.
3206    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3207  } while (!isa<TerminatorInst>(Inst));
3208
3209  return false;
3210}
3211
3212//===----------------------------------------------------------------------===//
3213// Instruction Parsing.
3214//===----------------------------------------------------------------------===//
3215
3216/// ParseInstruction - Parse one of the many different instructions.
3217///
3218int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3219                               PerFunctionState &PFS) {
3220  lltok::Kind Token = Lex.getKind();
3221  if (Token == lltok::Eof)
3222    return TokError("found end of file when expecting more instructions");
3223  LocTy Loc = Lex.getLoc();
3224  unsigned KeywordVal = Lex.getUIntVal();
3225  Lex.Lex();  // Eat the keyword.
3226
3227  switch (Token) {
3228  default:                    return Error(Loc, "expected instruction opcode");
3229  // Terminator Instructions.
3230  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3231  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
3232  case lltok::kw_br:          return ParseBr(Inst, PFS);
3233  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3234  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3235  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3236  case lltok::kw_resume:      return ParseResume(Inst, PFS);
3237  // Binary Operators.
3238  case lltok::kw_add:
3239  case lltok::kw_sub:
3240  case lltok::kw_mul:
3241  case lltok::kw_shl: {
3242    bool NUW = EatIfPresent(lltok::kw_nuw);
3243    bool NSW = EatIfPresent(lltok::kw_nsw);
3244    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3245
3246    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3247
3248    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3249    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3250    return false;
3251  }
3252  case lltok::kw_fadd:
3253  case lltok::kw_fsub:
3254  case lltok::kw_fmul:
3255  case lltok::kw_fdiv:
3256  case lltok::kw_frem: {
3257    FastMathFlags FMF = EatFastMathFlagsIfPresent();
3258    int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3259    if (Res != 0)
3260      return Res;
3261    if (FMF.any())
3262      Inst->setFastMathFlags(FMF);
3263    return 0;
3264  }
3265
3266  case lltok::kw_sdiv:
3267  case lltok::kw_udiv:
3268  case lltok::kw_lshr:
3269  case lltok::kw_ashr: {
3270    bool Exact = EatIfPresent(lltok::kw_exact);
3271
3272    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3273    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3274    return false;
3275  }
3276
3277  case lltok::kw_urem:
3278  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3279  case lltok::kw_and:
3280  case lltok::kw_or:
3281  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3282  case lltok::kw_icmp:
3283  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3284  // Casts.
3285  case lltok::kw_trunc:
3286  case lltok::kw_zext:
3287  case lltok::kw_sext:
3288  case lltok::kw_fptrunc:
3289  case lltok::kw_fpext:
3290  case lltok::kw_bitcast:
3291  case lltok::kw_uitofp:
3292  case lltok::kw_sitofp:
3293  case lltok::kw_fptoui:
3294  case lltok::kw_fptosi:
3295  case lltok::kw_inttoptr:
3296  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3297  // Other.
3298  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3299  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3300  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3301  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3302  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3303  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3304  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3305  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3306  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3307  // Memory.
3308  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3309  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3310  case lltok::kw_store:          return ParseStore(Inst, PFS);
3311  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3312  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3313  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3314  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3315  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3316  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3317  }
3318}
3319
3320/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3321bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3322  if (Opc == Instruction::FCmp) {
3323    switch (Lex.getKind()) {
3324    default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3325    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3326    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3327    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3328    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3329    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3330    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3331    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3332    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3333    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3334    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3335    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3336    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3337    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3338    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3339    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3340    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3341    }
3342  } else {
3343    switch (Lex.getKind()) {
3344    default: return TokError("expected icmp predicate (e.g. 'eq')");
3345    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3346    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3347    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3348    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3349    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3350    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3351    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3352    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3353    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3354    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3355    }
3356  }
3357  Lex.Lex();
3358  return false;
3359}
3360
3361//===----------------------------------------------------------------------===//
3362// Terminator Instructions.
3363//===----------------------------------------------------------------------===//
3364
3365/// ParseRet - Parse a return instruction.
3366///   ::= 'ret' void (',' !dbg, !1)*
3367///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3368bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3369                        PerFunctionState &PFS) {
3370  SMLoc TypeLoc = Lex.getLoc();
3371  Type *Ty = 0;
3372  if (ParseType(Ty, true /*void allowed*/)) return true;
3373
3374  Type *ResType = PFS.getFunction().getReturnType();
3375
3376  if (Ty->isVoidTy()) {
3377    if (!ResType->isVoidTy())
3378      return Error(TypeLoc, "value doesn't match function result type '" +
3379                   getTypeString(ResType) + "'");
3380
3381    Inst = ReturnInst::Create(Context);
3382    return false;
3383  }
3384
3385  Value *RV;
3386  if (ParseValue(Ty, RV, PFS)) return true;
3387
3388  if (ResType != RV->getType())
3389    return Error(TypeLoc, "value doesn't match function result type '" +
3390                 getTypeString(ResType) + "'");
3391
3392  Inst = ReturnInst::Create(Context, RV);
3393  return false;
3394}
3395
3396
3397/// ParseBr
3398///   ::= 'br' TypeAndValue
3399///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3400bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3401  LocTy Loc, Loc2;
3402  Value *Op0;
3403  BasicBlock *Op1, *Op2;
3404  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3405
3406  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3407    Inst = BranchInst::Create(BB);
3408    return false;
3409  }
3410
3411  if (Op0->getType() != Type::getInt1Ty(Context))
3412    return Error(Loc, "branch condition must have 'i1' type");
3413
3414  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3415      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3416      ParseToken(lltok::comma, "expected ',' after true destination") ||
3417      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3418    return true;
3419
3420  Inst = BranchInst::Create(Op1, Op2, Op0);
3421  return false;
3422}
3423
3424/// ParseSwitch
3425///  Instruction
3426///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3427///  JumpTable
3428///    ::= (TypeAndValue ',' TypeAndValue)*
3429bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3430  LocTy CondLoc, BBLoc;
3431  Value *Cond;
3432  BasicBlock *DefaultBB;
3433  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3434      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3435      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3436      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3437    return true;
3438
3439  if (!Cond->getType()->isIntegerTy())
3440    return Error(CondLoc, "switch condition must have integer type");
3441
3442  // Parse the jump table pairs.
3443  SmallPtrSet<Value*, 32> SeenCases;
3444  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3445  while (Lex.getKind() != lltok::rsquare) {
3446    Value *Constant;
3447    BasicBlock *DestBB;
3448
3449    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3450        ParseToken(lltok::comma, "expected ',' after case value") ||
3451        ParseTypeAndBasicBlock(DestBB, PFS))
3452      return true;
3453
3454    if (!SeenCases.insert(Constant))
3455      return Error(CondLoc, "duplicate case value in switch");
3456    if (!isa<ConstantInt>(Constant))
3457      return Error(CondLoc, "case value is not a constant integer");
3458
3459    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3460  }
3461
3462  Lex.Lex();  // Eat the ']'.
3463
3464  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3465  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3466    SI->addCase(Table[i].first, Table[i].second);
3467  Inst = SI;
3468  return false;
3469}
3470
3471/// ParseIndirectBr
3472///  Instruction
3473///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3474bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3475  LocTy AddrLoc;
3476  Value *Address;
3477  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3478      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3479      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3480    return true;
3481
3482  if (!Address->getType()->isPointerTy())
3483    return Error(AddrLoc, "indirectbr address must have pointer type");
3484
3485  // Parse the destination list.
3486  SmallVector<BasicBlock*, 16> DestList;
3487
3488  if (Lex.getKind() != lltok::rsquare) {
3489    BasicBlock *DestBB;
3490    if (ParseTypeAndBasicBlock(DestBB, PFS))
3491      return true;
3492    DestList.push_back(DestBB);
3493
3494    while (EatIfPresent(lltok::comma)) {
3495      if (ParseTypeAndBasicBlock(DestBB, PFS))
3496        return true;
3497      DestList.push_back(DestBB);
3498    }
3499  }
3500
3501  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3502    return true;
3503
3504  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3505  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3506    IBI->addDestination(DestList[i]);
3507  Inst = IBI;
3508  return false;
3509}
3510
3511
3512/// ParseInvoke
3513///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3514///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3515bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3516  LocTy CallLoc = Lex.getLoc();
3517  AttrBuilder RetAttrs, FnAttrs;
3518  std::vector<unsigned> FwdRefAttrGrps;
3519  LocTy NoBuiltinLoc;
3520  CallingConv::ID CC;
3521  Type *RetType = 0;
3522  LocTy RetTypeLoc;
3523  ValID CalleeID;
3524  SmallVector<ParamInfo, 16> ArgList;
3525
3526  BasicBlock *NormalBB, *UnwindBB;
3527  if (ParseOptionalCallingConv(CC) ||
3528      ParseOptionalReturnAttrs(RetAttrs) ||
3529      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3530      ParseValID(CalleeID) ||
3531      ParseParameterList(ArgList, PFS) ||
3532      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3533                                 NoBuiltinLoc) ||
3534      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3535      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3536      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3537      ParseTypeAndBasicBlock(UnwindBB, PFS))
3538    return true;
3539
3540  // If RetType is a non-function pointer type, then this is the short syntax
3541  // for the call, which means that RetType is just the return type.  Infer the
3542  // rest of the function argument types from the arguments that are present.
3543  PointerType *PFTy = 0;
3544  FunctionType *Ty = 0;
3545  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3546      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3547    // Pull out the types of all of the arguments...
3548    std::vector<Type*> ParamTypes;
3549    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3550      ParamTypes.push_back(ArgList[i].V->getType());
3551
3552    if (!FunctionType::isValidReturnType(RetType))
3553      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3554
3555    Ty = FunctionType::get(RetType, ParamTypes, false);
3556    PFTy = PointerType::getUnqual(Ty);
3557  }
3558
3559  // Look up the callee.
3560  Value *Callee;
3561  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3562
3563  // Set up the Attribute for the function.
3564  SmallVector<AttributeSet, 8> Attrs;
3565  if (RetAttrs.hasAttributes())
3566    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3567                                      AttributeSet::ReturnIndex,
3568                                      RetAttrs));
3569
3570  SmallVector<Value*, 8> Args;
3571
3572  // Loop through FunctionType's arguments and ensure they are specified
3573  // correctly.  Also, gather any parameter attributes.
3574  FunctionType::param_iterator I = Ty->param_begin();
3575  FunctionType::param_iterator E = Ty->param_end();
3576  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3577    Type *ExpectedTy = 0;
3578    if (I != E) {
3579      ExpectedTy = *I++;
3580    } else if (!Ty->isVarArg()) {
3581      return Error(ArgList[i].Loc, "too many arguments specified");
3582    }
3583
3584    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3585      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3586                   getTypeString(ExpectedTy) + "'");
3587    Args.push_back(ArgList[i].V);
3588    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3589      AttrBuilder B(ArgList[i].Attrs, i + 1);
3590      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3591    }
3592  }
3593
3594  if (I != E)
3595    return Error(CallLoc, "not enough parameters specified for call");
3596
3597  if (FnAttrs.hasAttributes())
3598    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3599                                      AttributeSet::FunctionIndex,
3600                                      FnAttrs));
3601
3602  // Finish off the Attribute and check them
3603  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3604
3605  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3606  II->setCallingConv(CC);
3607  II->setAttributes(PAL);
3608  ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3609  Inst = II;
3610  return false;
3611}
3612
3613/// ParseResume
3614///   ::= 'resume' TypeAndValue
3615bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3616  Value *Exn; LocTy ExnLoc;
3617  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3618    return true;
3619
3620  ResumeInst *RI = ResumeInst::Create(Exn);
3621  Inst = RI;
3622  return false;
3623}
3624
3625//===----------------------------------------------------------------------===//
3626// Binary Operators.
3627//===----------------------------------------------------------------------===//
3628
3629/// ParseArithmetic
3630///  ::= ArithmeticOps TypeAndValue ',' Value
3631///
3632/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3633/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3634bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3635                               unsigned Opc, unsigned OperandType) {
3636  LocTy Loc; Value *LHS, *RHS;
3637  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3638      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3639      ParseValue(LHS->getType(), RHS, PFS))
3640    return true;
3641
3642  bool Valid;
3643  switch (OperandType) {
3644  default: llvm_unreachable("Unknown operand type!");
3645  case 0: // int or FP.
3646    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3647            LHS->getType()->isFPOrFPVectorTy();
3648    break;
3649  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3650  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3651  }
3652
3653  if (!Valid)
3654    return Error(Loc, "invalid operand type for instruction");
3655
3656  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3657  return false;
3658}
3659
3660/// ParseLogical
3661///  ::= ArithmeticOps TypeAndValue ',' Value {
3662bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3663                            unsigned Opc) {
3664  LocTy Loc; Value *LHS, *RHS;
3665  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3666      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3667      ParseValue(LHS->getType(), RHS, PFS))
3668    return true;
3669
3670  if (!LHS->getType()->isIntOrIntVectorTy())
3671    return Error(Loc,"instruction requires integer or integer vector operands");
3672
3673  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3674  return false;
3675}
3676
3677
3678/// ParseCompare
3679///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3680///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3681bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3682                            unsigned Opc) {
3683  // Parse the integer/fp comparison predicate.
3684  LocTy Loc;
3685  unsigned Pred;
3686  Value *LHS, *RHS;
3687  if (ParseCmpPredicate(Pred, Opc) ||
3688      ParseTypeAndValue(LHS, Loc, PFS) ||
3689      ParseToken(lltok::comma, "expected ',' after compare value") ||
3690      ParseValue(LHS->getType(), RHS, PFS))
3691    return true;
3692
3693  if (Opc == Instruction::FCmp) {
3694    if (!LHS->getType()->isFPOrFPVectorTy())
3695      return Error(Loc, "fcmp requires floating point operands");
3696    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3697  } else {
3698    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3699    if (!LHS->getType()->isIntOrIntVectorTy() &&
3700        !LHS->getType()->getScalarType()->isPointerTy())
3701      return Error(Loc, "icmp requires integer operands");
3702    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3703  }
3704  return false;
3705}
3706
3707//===----------------------------------------------------------------------===//
3708// Other Instructions.
3709//===----------------------------------------------------------------------===//
3710
3711
3712/// ParseCast
3713///   ::= CastOpc TypeAndValue 'to' Type
3714bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3715                         unsigned Opc) {
3716  LocTy Loc;
3717  Value *Op;
3718  Type *DestTy = 0;
3719  if (ParseTypeAndValue(Op, Loc, PFS) ||
3720      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3721      ParseType(DestTy))
3722    return true;
3723
3724  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3725    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3726    return Error(Loc, "invalid cast opcode for cast from '" +
3727                 getTypeString(Op->getType()) + "' to '" +
3728                 getTypeString(DestTy) + "'");
3729  }
3730  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3731  return false;
3732}
3733
3734/// ParseSelect
3735///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3736bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3737  LocTy Loc;
3738  Value *Op0, *Op1, *Op2;
3739  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3740      ParseToken(lltok::comma, "expected ',' after select condition") ||
3741      ParseTypeAndValue(Op1, PFS) ||
3742      ParseToken(lltok::comma, "expected ',' after select value") ||
3743      ParseTypeAndValue(Op2, PFS))
3744    return true;
3745
3746  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3747    return Error(Loc, Reason);
3748
3749  Inst = SelectInst::Create(Op0, Op1, Op2);
3750  return false;
3751}
3752
3753/// ParseVA_Arg
3754///   ::= 'va_arg' TypeAndValue ',' Type
3755bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3756  Value *Op;
3757  Type *EltTy = 0;
3758  LocTy TypeLoc;
3759  if (ParseTypeAndValue(Op, PFS) ||
3760      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3761      ParseType(EltTy, TypeLoc))
3762    return true;
3763
3764  if (!EltTy->isFirstClassType())
3765    return Error(TypeLoc, "va_arg requires operand with first class type");
3766
3767  Inst = new VAArgInst(Op, EltTy);
3768  return false;
3769}
3770
3771/// ParseExtractElement
3772///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3773bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3774  LocTy Loc;
3775  Value *Op0, *Op1;
3776  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3777      ParseToken(lltok::comma, "expected ',' after extract value") ||
3778      ParseTypeAndValue(Op1, PFS))
3779    return true;
3780
3781  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3782    return Error(Loc, "invalid extractelement operands");
3783
3784  Inst = ExtractElementInst::Create(Op0, Op1);
3785  return false;
3786}
3787
3788/// ParseInsertElement
3789///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3790bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3791  LocTy Loc;
3792  Value *Op0, *Op1, *Op2;
3793  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3794      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3795      ParseTypeAndValue(Op1, PFS) ||
3796      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3797      ParseTypeAndValue(Op2, PFS))
3798    return true;
3799
3800  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3801    return Error(Loc, "invalid insertelement operands");
3802
3803  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3804  return false;
3805}
3806
3807/// ParseShuffleVector
3808///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3809bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3810  LocTy Loc;
3811  Value *Op0, *Op1, *Op2;
3812  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3813      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3814      ParseTypeAndValue(Op1, PFS) ||
3815      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3816      ParseTypeAndValue(Op2, PFS))
3817    return true;
3818
3819  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3820    return Error(Loc, "invalid shufflevector operands");
3821
3822  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3823  return false;
3824}
3825
3826/// ParsePHI
3827///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3828int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3829  Type *Ty = 0;  LocTy TypeLoc;
3830  Value *Op0, *Op1;
3831
3832  if (ParseType(Ty, TypeLoc) ||
3833      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3834      ParseValue(Ty, Op0, PFS) ||
3835      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3836      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3837      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3838    return true;
3839
3840  bool AteExtraComma = false;
3841  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3842  while (1) {
3843    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3844
3845    if (!EatIfPresent(lltok::comma))
3846      break;
3847
3848    if (Lex.getKind() == lltok::MetadataVar) {
3849      AteExtraComma = true;
3850      break;
3851    }
3852
3853    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3854        ParseValue(Ty, Op0, PFS) ||
3855        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3856        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3857        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3858      return true;
3859  }
3860
3861  if (!Ty->isFirstClassType())
3862    return Error(TypeLoc, "phi node must have first class type");
3863
3864  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3865  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3866    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3867  Inst = PN;
3868  return AteExtraComma ? InstExtraComma : InstNormal;
3869}
3870
3871/// ParseLandingPad
3872///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3873/// Clause
3874///   ::= 'catch' TypeAndValue
3875///   ::= 'filter'
3876///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3877bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3878  Type *Ty = 0; LocTy TyLoc;
3879  Value *PersFn; LocTy PersFnLoc;
3880
3881  if (ParseType(Ty, TyLoc) ||
3882      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3883      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3884    return true;
3885
3886  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3887  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3888
3889  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3890    LandingPadInst::ClauseType CT;
3891    if (EatIfPresent(lltok::kw_catch))
3892      CT = LandingPadInst::Catch;
3893    else if (EatIfPresent(lltok::kw_filter))
3894      CT = LandingPadInst::Filter;
3895    else
3896      return TokError("expected 'catch' or 'filter' clause type");
3897
3898    Value *V; LocTy VLoc;
3899    if (ParseTypeAndValue(V, VLoc, PFS)) {
3900      delete LP;
3901      return true;
3902    }
3903
3904    // A 'catch' type expects a non-array constant. A filter clause expects an
3905    // array constant.
3906    if (CT == LandingPadInst::Catch) {
3907      if (isa<ArrayType>(V->getType()))
3908        Error(VLoc, "'catch' clause has an invalid type");
3909    } else {
3910      if (!isa<ArrayType>(V->getType()))
3911        Error(VLoc, "'filter' clause has an invalid type");
3912    }
3913
3914    LP->addClause(V);
3915  }
3916
3917  Inst = LP;
3918  return false;
3919}
3920
3921/// ParseCall
3922///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3923///       ParameterList OptionalAttrs
3924bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3925                         bool isTail) {
3926  AttrBuilder RetAttrs, FnAttrs;
3927  std::vector<unsigned> FwdRefAttrGrps;
3928  LocTy NoBuiltinLoc;
3929  CallingConv::ID CC;
3930  Type *RetType = 0;
3931  LocTy RetTypeLoc;
3932  ValID CalleeID;
3933  SmallVector<ParamInfo, 16> ArgList;
3934  LocTy CallLoc = Lex.getLoc();
3935
3936  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3937      ParseOptionalCallingConv(CC) ||
3938      ParseOptionalReturnAttrs(RetAttrs) ||
3939      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3940      ParseValID(CalleeID) ||
3941      ParseParameterList(ArgList, PFS) ||
3942      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3943                                 NoBuiltinLoc))
3944    return true;
3945
3946  // If RetType is a non-function pointer type, then this is the short syntax
3947  // for the call, which means that RetType is just the return type.  Infer the
3948  // rest of the function argument types from the arguments that are present.
3949  PointerType *PFTy = 0;
3950  FunctionType *Ty = 0;
3951  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3952      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3953    // Pull out the types of all of the arguments...
3954    std::vector<Type*> ParamTypes;
3955    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3956      ParamTypes.push_back(ArgList[i].V->getType());
3957
3958    if (!FunctionType::isValidReturnType(RetType))
3959      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3960
3961    Ty = FunctionType::get(RetType, ParamTypes, false);
3962    PFTy = PointerType::getUnqual(Ty);
3963  }
3964
3965  // Look up the callee.
3966  Value *Callee;
3967  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3968
3969  // Set up the Attribute for the function.
3970  SmallVector<AttributeSet, 8> Attrs;
3971  if (RetAttrs.hasAttributes())
3972    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3973                                      AttributeSet::ReturnIndex,
3974                                      RetAttrs));
3975
3976  SmallVector<Value*, 8> Args;
3977
3978  // Loop through FunctionType's arguments and ensure they are specified
3979  // correctly.  Also, gather any parameter attributes.
3980  FunctionType::param_iterator I = Ty->param_begin();
3981  FunctionType::param_iterator E = Ty->param_end();
3982  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3983    Type *ExpectedTy = 0;
3984    if (I != E) {
3985      ExpectedTy = *I++;
3986    } else if (!Ty->isVarArg()) {
3987      return Error(ArgList[i].Loc, "too many arguments specified");
3988    }
3989
3990    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3991      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3992                   getTypeString(ExpectedTy) + "'");
3993    Args.push_back(ArgList[i].V);
3994    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3995      AttrBuilder B(ArgList[i].Attrs, i + 1);
3996      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3997    }
3998  }
3999
4000  if (I != E)
4001    return Error(CallLoc, "not enough parameters specified for call");
4002
4003  if (FnAttrs.hasAttributes())
4004    Attrs.push_back(AttributeSet::get(RetType->getContext(),
4005                                      AttributeSet::FunctionIndex,
4006                                      FnAttrs));
4007
4008  // Finish off the Attribute and check them
4009  AttributeSet PAL = AttributeSet::get(Context, Attrs);
4010
4011  CallInst *CI = CallInst::Create(Callee, Args);
4012  CI->setTailCall(isTail);
4013  CI->setCallingConv(CC);
4014  CI->setAttributes(PAL);
4015  ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
4016  Inst = CI;
4017  return false;
4018}
4019
4020//===----------------------------------------------------------------------===//
4021// Memory Instructions.
4022//===----------------------------------------------------------------------===//
4023
4024/// ParseAlloc
4025///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
4026int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
4027  Value *Size = 0;
4028  LocTy SizeLoc;
4029  unsigned Alignment = 0;
4030  Type *Ty = 0;
4031  if (ParseType(Ty)) return true;
4032
4033  bool AteExtraComma = false;
4034  if (EatIfPresent(lltok::comma)) {
4035    if (Lex.getKind() == lltok::kw_align) {
4036      if (ParseOptionalAlignment(Alignment)) return true;
4037    } else if (Lex.getKind() == lltok::MetadataVar) {
4038      AteExtraComma = true;
4039    } else {
4040      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4041          ParseOptionalCommaAlign(Alignment, AteExtraComma))
4042        return true;
4043    }
4044  }
4045
4046  if (Size && !Size->getType()->isIntegerTy())
4047    return Error(SizeLoc, "element count must have integer type");
4048
4049  Inst = new AllocaInst(Ty, Size, Alignment);
4050  return AteExtraComma ? InstExtraComma : InstNormal;
4051}
4052
4053/// ParseLoad
4054///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4055///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
4056///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4057int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4058  Value *Val; LocTy Loc;
4059  unsigned Alignment = 0;
4060  bool AteExtraComma = false;
4061  bool isAtomic = false;
4062  AtomicOrdering Ordering = NotAtomic;
4063  SynchronizationScope Scope = CrossThread;
4064
4065  if (Lex.getKind() == lltok::kw_atomic) {
4066    isAtomic = true;
4067    Lex.Lex();
4068  }
4069
4070  bool isVolatile = false;
4071  if (Lex.getKind() == lltok::kw_volatile) {
4072    isVolatile = true;
4073    Lex.Lex();
4074  }
4075
4076  if (ParseTypeAndValue(Val, Loc, PFS) ||
4077      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4078      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4079    return true;
4080
4081  if (!Val->getType()->isPointerTy() ||
4082      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4083    return Error(Loc, "load operand must be a pointer to a first class type");
4084  if (isAtomic && !Alignment)
4085    return Error(Loc, "atomic load must have explicit non-zero alignment");
4086  if (Ordering == Release || Ordering == AcquireRelease)
4087    return Error(Loc, "atomic load cannot use Release ordering");
4088
4089  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4090  return AteExtraComma ? InstExtraComma : InstNormal;
4091}
4092
4093/// ParseStore
4094
4095///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4096///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4097///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4098int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4099  Value *Val, *Ptr; LocTy Loc, PtrLoc;
4100  unsigned Alignment = 0;
4101  bool AteExtraComma = false;
4102  bool isAtomic = false;
4103  AtomicOrdering Ordering = NotAtomic;
4104  SynchronizationScope Scope = CrossThread;
4105
4106  if (Lex.getKind() == lltok::kw_atomic) {
4107    isAtomic = true;
4108    Lex.Lex();
4109  }
4110
4111  bool isVolatile = false;
4112  if (Lex.getKind() == lltok::kw_volatile) {
4113    isVolatile = true;
4114    Lex.Lex();
4115  }
4116
4117  if (ParseTypeAndValue(Val, Loc, PFS) ||
4118      ParseToken(lltok::comma, "expected ',' after store operand") ||
4119      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4120      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4121      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4122    return true;
4123
4124  if (!Ptr->getType()->isPointerTy())
4125    return Error(PtrLoc, "store operand must be a pointer");
4126  if (!Val->getType()->isFirstClassType())
4127    return Error(Loc, "store operand must be a first class value");
4128  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4129    return Error(Loc, "stored value and pointer type do not match");
4130  if (isAtomic && !Alignment)
4131    return Error(Loc, "atomic store must have explicit non-zero alignment");
4132  if (Ordering == Acquire || Ordering == AcquireRelease)
4133    return Error(Loc, "atomic store cannot use Acquire ordering");
4134
4135  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4136  return AteExtraComma ? InstExtraComma : InstNormal;
4137}
4138
4139/// ParseCmpXchg
4140///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4141///       'singlethread'? AtomicOrdering
4142int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4143  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4144  bool AteExtraComma = false;
4145  AtomicOrdering Ordering = NotAtomic;
4146  SynchronizationScope Scope = CrossThread;
4147  bool isVolatile = false;
4148
4149  if (EatIfPresent(lltok::kw_volatile))
4150    isVolatile = true;
4151
4152  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4153      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4154      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4155      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4156      ParseTypeAndValue(New, NewLoc, PFS) ||
4157      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4158    return true;
4159
4160  if (Ordering == Unordered)
4161    return TokError("cmpxchg cannot be unordered");
4162  if (!Ptr->getType()->isPointerTy())
4163    return Error(PtrLoc, "cmpxchg operand must be a pointer");
4164  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4165    return Error(CmpLoc, "compare value and pointer type do not match");
4166  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4167    return Error(NewLoc, "new value and pointer type do not match");
4168  if (!New->getType()->isIntegerTy())
4169    return Error(NewLoc, "cmpxchg operand must be an integer");
4170  unsigned Size = New->getType()->getPrimitiveSizeInBits();
4171  if (Size < 8 || (Size & (Size - 1)))
4172    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4173                         " integer");
4174
4175  AtomicCmpXchgInst *CXI =
4176    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4177  CXI->setVolatile(isVolatile);
4178  Inst = CXI;
4179  return AteExtraComma ? InstExtraComma : InstNormal;
4180}
4181
4182/// ParseAtomicRMW
4183///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4184///       'singlethread'? AtomicOrdering
4185int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4186  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4187  bool AteExtraComma = false;
4188  AtomicOrdering Ordering = NotAtomic;
4189  SynchronizationScope Scope = CrossThread;
4190  bool isVolatile = false;
4191  AtomicRMWInst::BinOp Operation;
4192
4193  if (EatIfPresent(lltok::kw_volatile))
4194    isVolatile = true;
4195
4196  switch (Lex.getKind()) {
4197  default: return TokError("expected binary operation in atomicrmw");
4198  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4199  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4200  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4201  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4202  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4203  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4204  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4205  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4206  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4207  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4208  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4209  }
4210  Lex.Lex();  // Eat the operation.
4211
4212  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4213      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4214      ParseTypeAndValue(Val, ValLoc, PFS) ||
4215      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4216    return true;
4217
4218  if (Ordering == Unordered)
4219    return TokError("atomicrmw cannot be unordered");
4220  if (!Ptr->getType()->isPointerTy())
4221    return Error(PtrLoc, "atomicrmw operand must be a pointer");
4222  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4223    return Error(ValLoc, "atomicrmw value and pointer type do not match");
4224  if (!Val->getType()->isIntegerTy())
4225    return Error(ValLoc, "atomicrmw operand must be an integer");
4226  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4227  if (Size < 8 || (Size & (Size - 1)))
4228    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4229                         " integer");
4230
4231  AtomicRMWInst *RMWI =
4232    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4233  RMWI->setVolatile(isVolatile);
4234  Inst = RMWI;
4235  return AteExtraComma ? InstExtraComma : InstNormal;
4236}
4237
4238/// ParseFence
4239///   ::= 'fence' 'singlethread'? AtomicOrdering
4240int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4241  AtomicOrdering Ordering = NotAtomic;
4242  SynchronizationScope Scope = CrossThread;
4243  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4244    return true;
4245
4246  if (Ordering == Unordered)
4247    return TokError("fence cannot be unordered");
4248  if (Ordering == Monotonic)
4249    return TokError("fence cannot be monotonic");
4250
4251  Inst = new FenceInst(Context, Ordering, Scope);
4252  return InstNormal;
4253}
4254
4255/// ParseGetElementPtr
4256///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4257int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4258  Value *Ptr = 0;
4259  Value *Val = 0;
4260  LocTy Loc, EltLoc;
4261
4262  bool InBounds = EatIfPresent(lltok::kw_inbounds);
4263
4264  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4265
4266  Type *BaseType = Ptr->getType();
4267  PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
4268  if (!BasePointerType)
4269    return Error(Loc, "base of getelementptr must be a pointer");
4270
4271  SmallVector<Value*, 16> Indices;
4272  bool AteExtraComma = false;
4273  while (EatIfPresent(lltok::comma)) {
4274    if (Lex.getKind() == lltok::MetadataVar) {
4275      AteExtraComma = true;
4276      break;
4277    }
4278    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4279    if (!Val->getType()->getScalarType()->isIntegerTy())
4280      return Error(EltLoc, "getelementptr index must be an integer");
4281    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4282      return Error(EltLoc, "getelementptr index type missmatch");
4283    if (Val->getType()->isVectorTy()) {
4284      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4285      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4286      if (ValNumEl != PtrNumEl)
4287        return Error(EltLoc,
4288          "getelementptr vector index has a wrong number of elements");
4289    }
4290    Indices.push_back(Val);
4291  }
4292
4293  if (!Indices.empty() && !BasePointerType->getElementType()->isSized())
4294    return Error(Loc, "base element of getelementptr must be sized");
4295
4296  if (!GetElementPtrInst::getIndexedType(BaseType, Indices))
4297    return Error(Loc, "invalid getelementptr indices");
4298  Inst = GetElementPtrInst::Create(Ptr, Indices);
4299  if (InBounds)
4300    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4301  return AteExtraComma ? InstExtraComma : InstNormal;
4302}
4303
4304/// ParseExtractValue
4305///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4306int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4307  Value *Val; LocTy Loc;
4308  SmallVector<unsigned, 4> Indices;
4309  bool AteExtraComma;
4310  if (ParseTypeAndValue(Val, Loc, PFS) ||
4311      ParseIndexList(Indices, AteExtraComma))
4312    return true;
4313
4314  if (!Val->getType()->isAggregateType())
4315    return Error(Loc, "extractvalue operand must be aggregate type");
4316
4317  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4318    return Error(Loc, "invalid indices for extractvalue");
4319  Inst = ExtractValueInst::Create(Val, Indices);
4320  return AteExtraComma ? InstExtraComma : InstNormal;
4321}
4322
4323/// ParseInsertValue
4324///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4325int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4326  Value *Val0, *Val1; LocTy Loc0, Loc1;
4327  SmallVector<unsigned, 4> Indices;
4328  bool AteExtraComma;
4329  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4330      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4331      ParseTypeAndValue(Val1, Loc1, PFS) ||
4332      ParseIndexList(Indices, AteExtraComma))
4333    return true;
4334
4335  if (!Val0->getType()->isAggregateType())
4336    return Error(Loc0, "insertvalue operand must be aggregate type");
4337
4338  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4339    return Error(Loc0, "invalid indices for insertvalue");
4340  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4341  return AteExtraComma ? InstExtraComma : InstNormal;
4342}
4343
4344//===----------------------------------------------------------------------===//
4345// Embedded metadata.
4346//===----------------------------------------------------------------------===//
4347
4348/// ParseMDNodeVector
4349///   ::= Element (',' Element)*
4350/// Element
4351///   ::= 'null' | TypeAndValue
4352bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4353                                 PerFunctionState *PFS) {
4354  // Check for an empty list.
4355  if (Lex.getKind() == lltok::rbrace)
4356    return false;
4357
4358  do {
4359    // Null is a special case since it is typeless.
4360    if (EatIfPresent(lltok::kw_null)) {
4361      Elts.push_back(0);
4362      continue;
4363    }
4364
4365    Value *V = 0;
4366    if (ParseTypeAndValue(V, PFS)) return true;
4367    Elts.push_back(V);
4368  } while (EatIfPresent(lltok::comma));
4369
4370  return false;
4371}
4372