LLParser.cpp revision 249423
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/AutoUpgrade.h"
17#include "llvm/IR/CallingConv.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/InlineAsm.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/Module.h"
23#include "llvm/IR/Operator.h"
24#include "llvm/IR/ValueSymbolTable.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68  // Handle any function attribute group forward references.
69  for (std::map<Value*, std::vector<unsigned> >::iterator
70         I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
71         I != E; ++I) {
72    Value *V = I->first;
73    std::vector<unsigned> &Vec = I->second;
74    AttrBuilder B;
75
76    for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
77         VI != VE; ++VI)
78      B.merge(NumberedAttrBuilders[*VI]);
79
80    if (Function *Fn = dyn_cast<Function>(V)) {
81      AttributeSet AS = Fn->getAttributes();
82      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
83      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
84                               AS.getFnAttributes());
85
86      FnAttrs.merge(B);
87
88      // If the alignment was parsed as an attribute, move to the alignment
89      // field.
90      if (FnAttrs.hasAlignmentAttr()) {
91        Fn->setAlignment(FnAttrs.getAlignment());
92        FnAttrs.removeAttribute(Attribute::Alignment);
93      }
94
95      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
96                            AttributeSet::get(Context,
97                                              AttributeSet::FunctionIndex,
98                                              FnAttrs));
99      Fn->setAttributes(AS);
100    } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
101      AttributeSet AS = CI->getAttributes();
102      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
103      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
104                               AS.getFnAttributes());
105      FnAttrs.merge(B);
106      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
107                            AttributeSet::get(Context,
108                                              AttributeSet::FunctionIndex,
109                                              FnAttrs));
110      CI->setAttributes(AS);
111    } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
112      AttributeSet AS = II->getAttributes();
113      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
114      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
115                               AS.getFnAttributes());
116      FnAttrs.merge(B);
117      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
118                            AttributeSet::get(Context,
119                                              AttributeSet::FunctionIndex,
120                                              FnAttrs));
121      II->setAttributes(AS);
122    } else {
123      llvm_unreachable("invalid object with forward attribute group reference");
124    }
125  }
126
127  // If there are entries in ForwardRefBlockAddresses at this point, they are
128  // references after the function was defined.  Resolve those now.
129  while (!ForwardRefBlockAddresses.empty()) {
130    // Okay, we are referencing an already-parsed function, resolve them now.
131    Function *TheFn = 0;
132    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
133    if (Fn.Kind == ValID::t_GlobalName)
134      TheFn = M->getFunction(Fn.StrVal);
135    else if (Fn.UIntVal < NumberedVals.size())
136      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
137
138    if (TheFn == 0)
139      return Error(Fn.Loc, "unknown function referenced by blockaddress");
140
141    // Resolve all these references.
142    if (ResolveForwardRefBlockAddresses(TheFn,
143                                      ForwardRefBlockAddresses.begin()->second,
144                                        0))
145      return true;
146
147    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
148  }
149
150  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
151    if (NumberedTypes[i].second.isValid())
152      return Error(NumberedTypes[i].second,
153                   "use of undefined type '%" + Twine(i) + "'");
154
155  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157    if (I->second.second.isValid())
158      return Error(I->second.second,
159                   "use of undefined type named '" + I->getKey() + "'");
160
161  if (!ForwardRefVals.empty())
162    return Error(ForwardRefVals.begin()->second.second,
163                 "use of undefined value '@" + ForwardRefVals.begin()->first +
164                 "'");
165
166  if (!ForwardRefValIDs.empty())
167    return Error(ForwardRefValIDs.begin()->second.second,
168                 "use of undefined value '@" +
169                 Twine(ForwardRefValIDs.begin()->first) + "'");
170
171  if (!ForwardRefMDNodes.empty())
172    return Error(ForwardRefMDNodes.begin()->second.second,
173                 "use of undefined metadata '!" +
174                 Twine(ForwardRefMDNodes.begin()->first) + "'");
175
176
177  // Look for intrinsic functions and CallInst that need to be upgraded
178  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
179    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
180
181  return false;
182}
183
184bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
185                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
186                                               PerFunctionState *PFS) {
187  // Loop over all the references, resolving them.
188  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
189    BasicBlock *Res;
190    if (PFS) {
191      if (Refs[i].first.Kind == ValID::t_LocalName)
192        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
193      else
194        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
195    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
196      return Error(Refs[i].first.Loc,
197       "cannot take address of numeric label after the function is defined");
198    } else {
199      Res = dyn_cast_or_null<BasicBlock>(
200                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
201    }
202
203    if (Res == 0)
204      return Error(Refs[i].first.Loc,
205                   "referenced value is not a basic block");
206
207    // Get the BlockAddress for this and update references to use it.
208    BlockAddress *BA = BlockAddress::get(TheFn, Res);
209    Refs[i].second->replaceAllUsesWith(BA);
210    Refs[i].second->eraseFromParent();
211  }
212  return false;
213}
214
215
216//===----------------------------------------------------------------------===//
217// Top-Level Entities
218//===----------------------------------------------------------------------===//
219
220bool LLParser::ParseTopLevelEntities() {
221  while (1) {
222    switch (Lex.getKind()) {
223    default:         return TokError("expected top-level entity");
224    case lltok::Eof: return false;
225    case lltok::kw_declare: if (ParseDeclare()) return true; break;
226    case lltok::kw_define:  if (ParseDefine()) return true; break;
227    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
228    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
229    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
230    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
231    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
232    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
233    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
234    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
235    case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
236
237    // The Global variable production with no name can have many different
238    // optional leading prefixes, the production is:
239    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
240    //               OptionalAddrSpace OptionalUnNammedAddr
241    //               ('constant'|'global') ...
242    case lltok::kw_private:             // OptionalLinkage
243    case lltok::kw_linker_private:      // OptionalLinkage
244    case lltok::kw_linker_private_weak: // OptionalLinkage
245    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
246    case lltok::kw_internal:            // OptionalLinkage
247    case lltok::kw_weak:                // OptionalLinkage
248    case lltok::kw_weak_odr:            // OptionalLinkage
249    case lltok::kw_linkonce:            // OptionalLinkage
250    case lltok::kw_linkonce_odr:        // OptionalLinkage
251    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
252    case lltok::kw_appending:           // OptionalLinkage
253    case lltok::kw_dllexport:           // OptionalLinkage
254    case lltok::kw_common:              // OptionalLinkage
255    case lltok::kw_dllimport:           // OptionalLinkage
256    case lltok::kw_extern_weak:         // OptionalLinkage
257    case lltok::kw_external: {          // OptionalLinkage
258      unsigned Linkage, Visibility;
259      if (ParseOptionalLinkage(Linkage) ||
260          ParseOptionalVisibility(Visibility) ||
261          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
262        return true;
263      break;
264    }
265    case lltok::kw_default:       // OptionalVisibility
266    case lltok::kw_hidden:        // OptionalVisibility
267    case lltok::kw_protected: {   // OptionalVisibility
268      unsigned Visibility;
269      if (ParseOptionalVisibility(Visibility) ||
270          ParseGlobal("", SMLoc(), 0, false, Visibility))
271        return true;
272      break;
273    }
274
275    case lltok::kw_thread_local:  // OptionalThreadLocal
276    case lltok::kw_addrspace:     // OptionalAddrSpace
277    case lltok::kw_constant:      // GlobalType
278    case lltok::kw_global:        // GlobalType
279      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
280      break;
281
282    case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
283    }
284  }
285}
286
287
288/// toplevelentity
289///   ::= 'module' 'asm' STRINGCONSTANT
290bool LLParser::ParseModuleAsm() {
291  assert(Lex.getKind() == lltok::kw_module);
292  Lex.Lex();
293
294  std::string AsmStr;
295  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
296      ParseStringConstant(AsmStr)) return true;
297
298  M->appendModuleInlineAsm(AsmStr);
299  return false;
300}
301
302/// toplevelentity
303///   ::= 'target' 'triple' '=' STRINGCONSTANT
304///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
305bool LLParser::ParseTargetDefinition() {
306  assert(Lex.getKind() == lltok::kw_target);
307  std::string Str;
308  switch (Lex.Lex()) {
309  default: return TokError("unknown target property");
310  case lltok::kw_triple:
311    Lex.Lex();
312    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
313        ParseStringConstant(Str))
314      return true;
315    M->setTargetTriple(Str);
316    return false;
317  case lltok::kw_datalayout:
318    Lex.Lex();
319    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
320        ParseStringConstant(Str))
321      return true;
322    M->setDataLayout(Str);
323    return false;
324  }
325}
326
327/// toplevelentity
328///   ::= 'deplibs' '=' '[' ']'
329///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
330/// FIXME: Remove in 4.0. Currently parse, but ignore.
331bool LLParser::ParseDepLibs() {
332  assert(Lex.getKind() == lltok::kw_deplibs);
333  Lex.Lex();
334  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
335      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
336    return true;
337
338  if (EatIfPresent(lltok::rsquare))
339    return false;
340
341  do {
342    std::string Str;
343    if (ParseStringConstant(Str)) return true;
344  } while (EatIfPresent(lltok::comma));
345
346  return ParseToken(lltok::rsquare, "expected ']' at end of list");
347}
348
349/// ParseUnnamedType:
350///   ::= LocalVarID '=' 'type' type
351bool LLParser::ParseUnnamedType() {
352  LocTy TypeLoc = Lex.getLoc();
353  unsigned TypeID = Lex.getUIntVal();
354  Lex.Lex(); // eat LocalVarID;
355
356  if (ParseToken(lltok::equal, "expected '=' after name") ||
357      ParseToken(lltok::kw_type, "expected 'type' after '='"))
358    return true;
359
360  if (TypeID >= NumberedTypes.size())
361    NumberedTypes.resize(TypeID+1);
362
363  Type *Result = 0;
364  if (ParseStructDefinition(TypeLoc, "",
365                            NumberedTypes[TypeID], Result)) return true;
366
367  if (!isa<StructType>(Result)) {
368    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
369    if (Entry.first)
370      return Error(TypeLoc, "non-struct types may not be recursive");
371    Entry.first = Result;
372    Entry.second = SMLoc();
373  }
374
375  return false;
376}
377
378
379/// toplevelentity
380///   ::= LocalVar '=' 'type' type
381bool LLParser::ParseNamedType() {
382  std::string Name = Lex.getStrVal();
383  LocTy NameLoc = Lex.getLoc();
384  Lex.Lex();  // eat LocalVar.
385
386  if (ParseToken(lltok::equal, "expected '=' after name") ||
387      ParseToken(lltok::kw_type, "expected 'type' after name"))
388    return true;
389
390  Type *Result = 0;
391  if (ParseStructDefinition(NameLoc, Name,
392                            NamedTypes[Name], Result)) return true;
393
394  if (!isa<StructType>(Result)) {
395    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
396    if (Entry.first)
397      return Error(NameLoc, "non-struct types may not be recursive");
398    Entry.first = Result;
399    Entry.second = SMLoc();
400  }
401
402  return false;
403}
404
405
406/// toplevelentity
407///   ::= 'declare' FunctionHeader
408bool LLParser::ParseDeclare() {
409  assert(Lex.getKind() == lltok::kw_declare);
410  Lex.Lex();
411
412  Function *F;
413  return ParseFunctionHeader(F, false);
414}
415
416/// toplevelentity
417///   ::= 'define' FunctionHeader '{' ...
418bool LLParser::ParseDefine() {
419  assert(Lex.getKind() == lltok::kw_define);
420  Lex.Lex();
421
422  Function *F;
423  return ParseFunctionHeader(F, true) ||
424         ParseFunctionBody(*F);
425}
426
427/// ParseGlobalType
428///   ::= 'constant'
429///   ::= 'global'
430bool LLParser::ParseGlobalType(bool &IsConstant) {
431  if (Lex.getKind() == lltok::kw_constant)
432    IsConstant = true;
433  else if (Lex.getKind() == lltok::kw_global)
434    IsConstant = false;
435  else {
436    IsConstant = false;
437    return TokError("expected 'global' or 'constant'");
438  }
439  Lex.Lex();
440  return false;
441}
442
443/// ParseUnnamedGlobal:
444///   OptionalVisibility ALIAS ...
445///   OptionalLinkage OptionalVisibility ...   -> global variable
446///   GlobalID '=' OptionalVisibility ALIAS ...
447///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
448bool LLParser::ParseUnnamedGlobal() {
449  unsigned VarID = NumberedVals.size();
450  std::string Name;
451  LocTy NameLoc = Lex.getLoc();
452
453  // Handle the GlobalID form.
454  if (Lex.getKind() == lltok::GlobalID) {
455    if (Lex.getUIntVal() != VarID)
456      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
457                   Twine(VarID) + "'");
458    Lex.Lex(); // eat GlobalID;
459
460    if (ParseToken(lltok::equal, "expected '=' after name"))
461      return true;
462  }
463
464  bool HasLinkage;
465  unsigned Linkage, Visibility;
466  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
467      ParseOptionalVisibility(Visibility))
468    return true;
469
470  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
471    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
472  return ParseAlias(Name, NameLoc, Visibility);
473}
474
475/// ParseNamedGlobal:
476///   GlobalVar '=' OptionalVisibility ALIAS ...
477///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
478bool LLParser::ParseNamedGlobal() {
479  assert(Lex.getKind() == lltok::GlobalVar);
480  LocTy NameLoc = Lex.getLoc();
481  std::string Name = Lex.getStrVal();
482  Lex.Lex();
483
484  bool HasLinkage;
485  unsigned Linkage, Visibility;
486  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487      ParseOptionalLinkage(Linkage, HasLinkage) ||
488      ParseOptionalVisibility(Visibility))
489    return true;
490
491  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
492    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
493  return ParseAlias(Name, NameLoc, Visibility);
494}
495
496// MDString:
497//   ::= '!' STRINGCONSTANT
498bool LLParser::ParseMDString(MDString *&Result) {
499  std::string Str;
500  if (ParseStringConstant(Str)) return true;
501  Result = MDString::get(Context, Str);
502  return false;
503}
504
505// MDNode:
506//   ::= '!' MDNodeNumber
507//
508/// This version of ParseMDNodeID returns the slot number and null in the case
509/// of a forward reference.
510bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
511  // !{ ..., !42, ... }
512  if (ParseUInt32(SlotNo)) return true;
513
514  // Check existing MDNode.
515  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
516    Result = NumberedMetadata[SlotNo];
517  else
518    Result = 0;
519  return false;
520}
521
522bool LLParser::ParseMDNodeID(MDNode *&Result) {
523  // !{ ..., !42, ... }
524  unsigned MID = 0;
525  if (ParseMDNodeID(Result, MID)) return true;
526
527  // If not a forward reference, just return it now.
528  if (Result) return false;
529
530  // Otherwise, create MDNode forward reference.
531  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
532  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
533
534  if (NumberedMetadata.size() <= MID)
535    NumberedMetadata.resize(MID+1);
536  NumberedMetadata[MID] = FwdNode;
537  Result = FwdNode;
538  return false;
539}
540
541/// ParseNamedMetadata:
542///   !foo = !{ !1, !2 }
543bool LLParser::ParseNamedMetadata() {
544  assert(Lex.getKind() == lltok::MetadataVar);
545  std::string Name = Lex.getStrVal();
546  Lex.Lex();
547
548  if (ParseToken(lltok::equal, "expected '=' here") ||
549      ParseToken(lltok::exclaim, "Expected '!' here") ||
550      ParseToken(lltok::lbrace, "Expected '{' here"))
551    return true;
552
553  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
554  if (Lex.getKind() != lltok::rbrace)
555    do {
556      if (ParseToken(lltok::exclaim, "Expected '!' here"))
557        return true;
558
559      MDNode *N = 0;
560      if (ParseMDNodeID(N)) return true;
561      NMD->addOperand(N);
562    } while (EatIfPresent(lltok::comma));
563
564  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
565    return true;
566
567  return false;
568}
569
570/// ParseStandaloneMetadata:
571///   !42 = !{...}
572bool LLParser::ParseStandaloneMetadata() {
573  assert(Lex.getKind() == lltok::exclaim);
574  Lex.Lex();
575  unsigned MetadataID = 0;
576
577  LocTy TyLoc;
578  Type *Ty = 0;
579  SmallVector<Value *, 16> Elts;
580  if (ParseUInt32(MetadataID) ||
581      ParseToken(lltok::equal, "expected '=' here") ||
582      ParseType(Ty, TyLoc) ||
583      ParseToken(lltok::exclaim, "Expected '!' here") ||
584      ParseToken(lltok::lbrace, "Expected '{' here") ||
585      ParseMDNodeVector(Elts, NULL) ||
586      ParseToken(lltok::rbrace, "expected end of metadata node"))
587    return true;
588
589  MDNode *Init = MDNode::get(Context, Elts);
590
591  // See if this was forward referenced, if so, handle it.
592  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593    FI = ForwardRefMDNodes.find(MetadataID);
594  if (FI != ForwardRefMDNodes.end()) {
595    MDNode *Temp = FI->second.first;
596    Temp->replaceAllUsesWith(Init);
597    MDNode::deleteTemporary(Temp);
598    ForwardRefMDNodes.erase(FI);
599
600    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
601  } else {
602    if (MetadataID >= NumberedMetadata.size())
603      NumberedMetadata.resize(MetadataID+1);
604
605    if (NumberedMetadata[MetadataID] != 0)
606      return TokError("Metadata id is already used");
607    NumberedMetadata[MetadataID] = Init;
608  }
609
610  return false;
611}
612
613/// ParseAlias:
614///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615/// Aliasee
616///   ::= TypeAndValue
617///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
619///
620/// Everything through visibility has already been parsed.
621///
622bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623                          unsigned Visibility) {
624  assert(Lex.getKind() == lltok::kw_alias);
625  Lex.Lex();
626  unsigned Linkage;
627  LocTy LinkageLoc = Lex.getLoc();
628  if (ParseOptionalLinkage(Linkage))
629    return true;
630
631  if (Linkage != GlobalValue::ExternalLinkage &&
632      Linkage != GlobalValue::WeakAnyLinkage &&
633      Linkage != GlobalValue::WeakODRLinkage &&
634      Linkage != GlobalValue::InternalLinkage &&
635      Linkage != GlobalValue::PrivateLinkage &&
636      Linkage != GlobalValue::LinkerPrivateLinkage &&
637      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
638    return Error(LinkageLoc, "invalid linkage type for alias");
639
640  Constant *Aliasee;
641  LocTy AliaseeLoc = Lex.getLoc();
642  if (Lex.getKind() != lltok::kw_bitcast &&
643      Lex.getKind() != lltok::kw_getelementptr) {
644    if (ParseGlobalTypeAndValue(Aliasee)) return true;
645  } else {
646    // The bitcast dest type is not present, it is implied by the dest type.
647    ValID ID;
648    if (ParseValID(ID)) return true;
649    if (ID.Kind != ValID::t_Constant)
650      return Error(AliaseeLoc, "invalid aliasee");
651    Aliasee = ID.ConstantVal;
652  }
653
654  if (!Aliasee->getType()->isPointerTy())
655    return Error(AliaseeLoc, "alias must have pointer type");
656
657  // Okay, create the alias but do not insert it into the module yet.
658  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659                                    (GlobalValue::LinkageTypes)Linkage, Name,
660                                    Aliasee);
661  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663  // See if this value already exists in the symbol table.  If so, it is either
664  // a redefinition or a definition of a forward reference.
665  if (GlobalValue *Val = M->getNamedValue(Name)) {
666    // See if this was a redefinition.  If so, there is no entry in
667    // ForwardRefVals.
668    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669      I = ForwardRefVals.find(Name);
670    if (I == ForwardRefVals.end())
671      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673    // Otherwise, this was a definition of forward ref.  Verify that types
674    // agree.
675    if (Val->getType() != GA->getType())
676      return Error(NameLoc,
677              "forward reference and definition of alias have different types");
678
679    // If they agree, just RAUW the old value with the alias and remove the
680    // forward ref info.
681    Val->replaceAllUsesWith(GA);
682    Val->eraseFromParent();
683    ForwardRefVals.erase(I);
684  }
685
686  // Insert into the module, we know its name won't collide now.
687  M->getAliasList().push_back(GA);
688  assert(GA->getName() == Name && "Should not be a name conflict!");
689
690  return false;
691}
692
693/// ParseGlobal
694///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695///       OptionalAddrSpace OptionalUnNammedAddr
696///       OptionalExternallyInitialized GlobalType Type Const
697///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698///       OptionalAddrSpace OptionalUnNammedAddr
699///       OptionalExternallyInitialized GlobalType Type Const
700///
701/// Everything through visibility has been parsed already.
702///
703bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704                           unsigned Linkage, bool HasLinkage,
705                           unsigned Visibility) {
706  unsigned AddrSpace;
707  bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708  GlobalVariable::ThreadLocalMode TLM;
709  LocTy UnnamedAddrLoc;
710  LocTy IsExternallyInitializedLoc;
711  LocTy TyLoc;
712
713  Type *Ty = 0;
714  if (ParseOptionalThreadLocal(TLM) ||
715      ParseOptionalAddrSpace(AddrSpace) ||
716      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717                         &UnnamedAddrLoc) ||
718      ParseOptionalToken(lltok::kw_externally_initialized,
719                         IsExternallyInitialized,
720                         &IsExternallyInitializedLoc) ||
721      ParseGlobalType(IsConstant) ||
722      ParseType(Ty, TyLoc))
723    return true;
724
725  // If the linkage is specified and is external, then no initializer is
726  // present.
727  Constant *Init = 0;
728  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729                      Linkage != GlobalValue::ExternalWeakLinkage &&
730                      Linkage != GlobalValue::ExternalLinkage)) {
731    if (ParseGlobalValue(Ty, Init))
732      return true;
733  }
734
735  if (Ty->isFunctionTy() || Ty->isLabelTy())
736    return Error(TyLoc, "invalid type for global variable");
737
738  GlobalVariable *GV = 0;
739
740  // See if the global was forward referenced, if so, use the global.
741  if (!Name.empty()) {
742    if (GlobalValue *GVal = M->getNamedValue(Name)) {
743      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744        return Error(NameLoc, "redefinition of global '@" + Name + "'");
745      GV = cast<GlobalVariable>(GVal);
746    }
747  } else {
748    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749      I = ForwardRefValIDs.find(NumberedVals.size());
750    if (I != ForwardRefValIDs.end()) {
751      GV = cast<GlobalVariable>(I->second.first);
752      ForwardRefValIDs.erase(I);
753    }
754  }
755
756  if (GV == 0) {
757    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758                            Name, 0, GlobalVariable::NotThreadLocal,
759                            AddrSpace);
760  } else {
761    if (GV->getType()->getElementType() != Ty)
762      return Error(TyLoc,
763            "forward reference and definition of global have different types");
764
765    // Move the forward-reference to the correct spot in the module.
766    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767  }
768
769  if (Name.empty())
770    NumberedVals.push_back(GV);
771
772  // Set the parsed properties on the global.
773  if (Init)
774    GV->setInitializer(Init);
775  GV->setConstant(IsConstant);
776  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778  GV->setExternallyInitialized(IsExternallyInitialized);
779  GV->setThreadLocalMode(TLM);
780  GV->setUnnamedAddr(UnnamedAddr);
781
782  // Parse attributes on the global.
783  while (Lex.getKind() == lltok::comma) {
784    Lex.Lex();
785
786    if (Lex.getKind() == lltok::kw_section) {
787      Lex.Lex();
788      GV->setSection(Lex.getStrVal());
789      if (ParseToken(lltok::StringConstant, "expected global section string"))
790        return true;
791    } else if (Lex.getKind() == lltok::kw_align) {
792      unsigned Alignment;
793      if (ParseOptionalAlignment(Alignment)) return true;
794      GV->setAlignment(Alignment);
795    } else {
796      TokError("unknown global variable property!");
797    }
798  }
799
800  return false;
801}
802
803/// ParseUnnamedAttrGrp
804///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
805bool LLParser::ParseUnnamedAttrGrp() {
806  assert(Lex.getKind() == lltok::kw_attributes);
807  LocTy AttrGrpLoc = Lex.getLoc();
808  Lex.Lex();
809
810  assert(Lex.getKind() == lltok::AttrGrpID);
811  unsigned VarID = Lex.getUIntVal();
812  std::vector<unsigned> unused;
813  LocTy NoBuiltinLoc;
814  Lex.Lex();
815
816  if (ParseToken(lltok::equal, "expected '=' here") ||
817      ParseToken(lltok::lbrace, "expected '{' here") ||
818      ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819                                 NoBuiltinLoc) ||
820      ParseToken(lltok::rbrace, "expected end of attribute group"))
821    return true;
822
823  if (!NumberedAttrBuilders[VarID].hasAttributes())
824    return Error(AttrGrpLoc, "attribute group has no attributes");
825
826  return false;
827}
828
829/// ParseFnAttributeValuePairs
830///   ::= <attr> | <attr> '=' <value>
831bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832                                          std::vector<unsigned> &FwdRefAttrGrps,
833                                          bool inAttrGrp, LocTy &NoBuiltinLoc) {
834  bool HaveError = false;
835
836  B.clear();
837
838  while (true) {
839    lltok::Kind Token = Lex.getKind();
840    if (Token == lltok::kw_nobuiltin)
841      NoBuiltinLoc = Lex.getLoc();
842    switch (Token) {
843    default:
844      if (!inAttrGrp) return HaveError;
845      return Error(Lex.getLoc(), "unterminated attribute group");
846    case lltok::rbrace:
847      // Finished.
848      return false;
849
850    case lltok::AttrGrpID: {
851      // Allow a function to reference an attribute group:
852      //
853      //   define void @foo() #1 { ... }
854      if (inAttrGrp)
855        HaveError |=
856          Error(Lex.getLoc(),
857              "cannot have an attribute group reference in an attribute group");
858
859      unsigned AttrGrpNum = Lex.getUIntVal();
860      if (inAttrGrp) break;
861
862      // Save the reference to the attribute group. We'll fill it in later.
863      FwdRefAttrGrps.push_back(AttrGrpNum);
864      break;
865    }
866    // Target-dependent attributes:
867    case lltok::StringConstant: {
868      std::string Attr = Lex.getStrVal();
869      Lex.Lex();
870      std::string Val;
871      if (EatIfPresent(lltok::equal) &&
872          ParseStringConstant(Val))
873        return true;
874
875      B.addAttribute(Attr, Val);
876      continue;
877    }
878
879    // Target-independent attributes:
880    case lltok::kw_align: {
881      // As a hack, we allow "align 2" on functions as a synonym for "alignstack
882      // 2".
883      unsigned Alignment;
884      if (inAttrGrp) {
885        Lex.Lex();
886        if (ParseToken(lltok::equal, "expected '=' here") ||
887            ParseUInt32(Alignment))
888          return true;
889      } else {
890        if (ParseOptionalAlignment(Alignment))
891          return true;
892      }
893      B.addAlignmentAttr(Alignment);
894      continue;
895    }
896    case lltok::kw_alignstack: {
897      unsigned Alignment;
898      if (inAttrGrp) {
899        Lex.Lex();
900        if (ParseToken(lltok::equal, "expected '=' here") ||
901            ParseUInt32(Alignment))
902          return true;
903      } else {
904        if (ParseOptionalStackAlignment(Alignment))
905          return true;
906      }
907      B.addStackAlignmentAttr(Alignment);
908      continue;
909    }
910    case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
911    case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
912    case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
913    case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
914    case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
915    case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
916    case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
917    case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
918    case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
919    case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
920    case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
921    case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
922    case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
923    case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
924    case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
925    case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
926    case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
927    case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
928    case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
929    case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
930    case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
931    case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
932    case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
933
934    // Error handling.
935    case lltok::kw_inreg:
936    case lltok::kw_signext:
937    case lltok::kw_zeroext:
938      HaveError |=
939        Error(Lex.getLoc(),
940              "invalid use of attribute on a function");
941      break;
942    case lltok::kw_byval:
943    case lltok::kw_nest:
944    case lltok::kw_noalias:
945    case lltok::kw_nocapture:
946    case lltok::kw_sret:
947      HaveError |=
948        Error(Lex.getLoc(),
949              "invalid use of parameter-only attribute on a function");
950      break;
951    }
952
953    Lex.Lex();
954  }
955}
956
957//===----------------------------------------------------------------------===//
958// GlobalValue Reference/Resolution Routines.
959//===----------------------------------------------------------------------===//
960
961/// GetGlobalVal - Get a value with the specified name or ID, creating a
962/// forward reference record if needed.  This can return null if the value
963/// exists but does not have the right type.
964GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
965                                    LocTy Loc) {
966  PointerType *PTy = dyn_cast<PointerType>(Ty);
967  if (PTy == 0) {
968    Error(Loc, "global variable reference must have pointer type");
969    return 0;
970  }
971
972  // Look this name up in the normal function symbol table.
973  GlobalValue *Val =
974    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
975
976  // If this is a forward reference for the value, see if we already created a
977  // forward ref record.
978  if (Val == 0) {
979    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
980      I = ForwardRefVals.find(Name);
981    if (I != ForwardRefVals.end())
982      Val = I->second.first;
983  }
984
985  // If we have the value in the symbol table or fwd-ref table, return it.
986  if (Val) {
987    if (Val->getType() == Ty) return Val;
988    Error(Loc, "'@" + Name + "' defined with type '" +
989          getTypeString(Val->getType()) + "'");
990    return 0;
991  }
992
993  // Otherwise, create a new forward reference for this value and remember it.
994  GlobalValue *FwdVal;
995  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
996    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
997  else
998    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
999                                GlobalValue::ExternalWeakLinkage, 0, Name,
1000                                0, GlobalVariable::NotThreadLocal,
1001                                PTy->getAddressSpace());
1002
1003  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1004  return FwdVal;
1005}
1006
1007GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1008  PointerType *PTy = dyn_cast<PointerType>(Ty);
1009  if (PTy == 0) {
1010    Error(Loc, "global variable reference must have pointer type");
1011    return 0;
1012  }
1013
1014  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1015
1016  // If this is a forward reference for the value, see if we already created a
1017  // forward ref record.
1018  if (Val == 0) {
1019    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1020      I = ForwardRefValIDs.find(ID);
1021    if (I != ForwardRefValIDs.end())
1022      Val = I->second.first;
1023  }
1024
1025  // If we have the value in the symbol table or fwd-ref table, return it.
1026  if (Val) {
1027    if (Val->getType() == Ty) return Val;
1028    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1029          getTypeString(Val->getType()) + "'");
1030    return 0;
1031  }
1032
1033  // Otherwise, create a new forward reference for this value and remember it.
1034  GlobalValue *FwdVal;
1035  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1036    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1037  else
1038    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1039                                GlobalValue::ExternalWeakLinkage, 0, "");
1040
1041  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1042  return FwdVal;
1043}
1044
1045
1046//===----------------------------------------------------------------------===//
1047// Helper Routines.
1048//===----------------------------------------------------------------------===//
1049
1050/// ParseToken - If the current token has the specified kind, eat it and return
1051/// success.  Otherwise, emit the specified error and return failure.
1052bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1053  if (Lex.getKind() != T)
1054    return TokError(ErrMsg);
1055  Lex.Lex();
1056  return false;
1057}
1058
1059/// ParseStringConstant
1060///   ::= StringConstant
1061bool LLParser::ParseStringConstant(std::string &Result) {
1062  if (Lex.getKind() != lltok::StringConstant)
1063    return TokError("expected string constant");
1064  Result = Lex.getStrVal();
1065  Lex.Lex();
1066  return false;
1067}
1068
1069/// ParseUInt32
1070///   ::= uint32
1071bool LLParser::ParseUInt32(unsigned &Val) {
1072  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1073    return TokError("expected integer");
1074  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1075  if (Val64 != unsigned(Val64))
1076    return TokError("expected 32-bit integer (too large)");
1077  Val = Val64;
1078  Lex.Lex();
1079  return false;
1080}
1081
1082/// ParseTLSModel
1083///   := 'localdynamic'
1084///   := 'initialexec'
1085///   := 'localexec'
1086bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1087  switch (Lex.getKind()) {
1088    default:
1089      return TokError("expected localdynamic, initialexec or localexec");
1090    case lltok::kw_localdynamic:
1091      TLM = GlobalVariable::LocalDynamicTLSModel;
1092      break;
1093    case lltok::kw_initialexec:
1094      TLM = GlobalVariable::InitialExecTLSModel;
1095      break;
1096    case lltok::kw_localexec:
1097      TLM = GlobalVariable::LocalExecTLSModel;
1098      break;
1099  }
1100
1101  Lex.Lex();
1102  return false;
1103}
1104
1105/// ParseOptionalThreadLocal
1106///   := /*empty*/
1107///   := 'thread_local'
1108///   := 'thread_local' '(' tlsmodel ')'
1109bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1110  TLM = GlobalVariable::NotThreadLocal;
1111  if (!EatIfPresent(lltok::kw_thread_local))
1112    return false;
1113
1114  TLM = GlobalVariable::GeneralDynamicTLSModel;
1115  if (Lex.getKind() == lltok::lparen) {
1116    Lex.Lex();
1117    return ParseTLSModel(TLM) ||
1118      ParseToken(lltok::rparen, "expected ')' after thread local model");
1119  }
1120  return false;
1121}
1122
1123/// ParseOptionalAddrSpace
1124///   := /*empty*/
1125///   := 'addrspace' '(' uint32 ')'
1126bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1127  AddrSpace = 0;
1128  if (!EatIfPresent(lltok::kw_addrspace))
1129    return false;
1130  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1131         ParseUInt32(AddrSpace) ||
1132         ParseToken(lltok::rparen, "expected ')' in address space");
1133}
1134
1135/// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1136bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1137  bool HaveError = false;
1138
1139  B.clear();
1140
1141  while (1) {
1142    lltok::Kind Token = Lex.getKind();
1143    switch (Token) {
1144    default:  // End of attributes.
1145      return HaveError;
1146    case lltok::kw_align: {
1147      unsigned Alignment;
1148      if (ParseOptionalAlignment(Alignment))
1149        return true;
1150      B.addAlignmentAttr(Alignment);
1151      continue;
1152    }
1153    case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1154    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1155    case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1156    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1157    case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1158    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1159    case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1160    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1161
1162    case lltok::kw_alignstack:      case lltok::kw_nounwind:
1163    case lltok::kw_alwaysinline:    case lltok::kw_optsize:
1164    case lltok::kw_inlinehint:      case lltok::kw_readnone:
1165    case lltok::kw_minsize:         case lltok::kw_readonly:
1166    case lltok::kw_naked:           case lltok::kw_returns_twice:
1167    case lltok::kw_nobuiltin:       case lltok::kw_sanitize_address:
1168    case lltok::kw_noimplicitfloat: case lltok::kw_sanitize_memory:
1169    case lltok::kw_noinline:        case lltok::kw_sanitize_thread:
1170    case lltok::kw_nonlazybind:     case lltok::kw_ssp:
1171    case lltok::kw_noredzone:       case lltok::kw_sspreq:
1172    case lltok::kw_noreturn:        case lltok::kw_uwtable:
1173      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1174      break;
1175    }
1176
1177    Lex.Lex();
1178  }
1179}
1180
1181/// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1182bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1183  bool HaveError = false;
1184
1185  B.clear();
1186
1187  while (1) {
1188    lltok::Kind Token = Lex.getKind();
1189    switch (Token) {
1190    default:  // End of attributes.
1191      return HaveError;
1192    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1193    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1194    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1195    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1196
1197    // Error handling.
1198    case lltok::kw_sret:  case lltok::kw_nocapture:
1199    case lltok::kw_byval: case lltok::kw_nest:
1200      HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1201      break;
1202
1203    case lltok::kw_align:                 case lltok::kw_noreturn:
1204    case lltok::kw_alignstack:            case lltok::kw_nounwind:
1205    case lltok::kw_alwaysinline:          case lltok::kw_optsize:
1206    case lltok::kw_inlinehint:            case lltok::kw_readnone:
1207    case lltok::kw_minsize:               case lltok::kw_readonly:
1208    case lltok::kw_naked:                 case lltok::kw_returns_twice:
1209    case lltok::kw_nobuiltin:             case lltok::kw_sanitize_address:
1210    case lltok::kw_noduplicate:           case lltok::kw_sanitize_memory:
1211    case lltok::kw_noimplicitfloat:       case lltok::kw_sanitize_thread:
1212    case lltok::kw_noinline:              case lltok::kw_ssp:
1213    case lltok::kw_nonlazybind:           case lltok::kw_sspreq:
1214    case lltok::kw_noredzone:             case lltok::kw_sspstrong:
1215                                          case lltok::kw_uwtable:
1216      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1217      break;
1218    }
1219
1220    Lex.Lex();
1221  }
1222}
1223
1224/// ParseOptionalLinkage
1225///   ::= /*empty*/
1226///   ::= 'private'
1227///   ::= 'linker_private'
1228///   ::= 'linker_private_weak'
1229///   ::= 'internal'
1230///   ::= 'weak'
1231///   ::= 'weak_odr'
1232///   ::= 'linkonce'
1233///   ::= 'linkonce_odr'
1234///   ::= 'linkonce_odr_auto_hide'
1235///   ::= 'available_externally'
1236///   ::= 'appending'
1237///   ::= 'dllexport'
1238///   ::= 'common'
1239///   ::= 'dllimport'
1240///   ::= 'extern_weak'
1241///   ::= 'external'
1242bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1243  HasLinkage = false;
1244  switch (Lex.getKind()) {
1245  default:                       Res=GlobalValue::ExternalLinkage; return false;
1246  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1247  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1248  case lltok::kw_linker_private_weak:
1249    Res = GlobalValue::LinkerPrivateWeakLinkage;
1250    break;
1251  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1252  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1253  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1254  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1255  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1256  case lltok::kw_linkonce_odr_auto_hide:
1257  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1258    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1259    break;
1260  case lltok::kw_available_externally:
1261    Res = GlobalValue::AvailableExternallyLinkage;
1262    break;
1263  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1264  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1265  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1266  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1267  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1268  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1269  }
1270  Lex.Lex();
1271  HasLinkage = true;
1272  return false;
1273}
1274
1275/// ParseOptionalVisibility
1276///   ::= /*empty*/
1277///   ::= 'default'
1278///   ::= 'hidden'
1279///   ::= 'protected'
1280///
1281bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1282  switch (Lex.getKind()) {
1283  default:                  Res = GlobalValue::DefaultVisibility; return false;
1284  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1285  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1286  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1287  }
1288  Lex.Lex();
1289  return false;
1290}
1291
1292/// ParseOptionalCallingConv
1293///   ::= /*empty*/
1294///   ::= 'ccc'
1295///   ::= 'fastcc'
1296///   ::= 'kw_intel_ocl_bicc'
1297///   ::= 'coldcc'
1298///   ::= 'x86_stdcallcc'
1299///   ::= 'x86_fastcallcc'
1300///   ::= 'x86_thiscallcc'
1301///   ::= 'arm_apcscc'
1302///   ::= 'arm_aapcscc'
1303///   ::= 'arm_aapcs_vfpcc'
1304///   ::= 'msp430_intrcc'
1305///   ::= 'ptx_kernel'
1306///   ::= 'ptx_device'
1307///   ::= 'spir_func'
1308///   ::= 'spir_kernel'
1309///   ::= 'cc' UINT
1310///
1311bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1312  switch (Lex.getKind()) {
1313  default:                       CC = CallingConv::C; return false;
1314  case lltok::kw_ccc:            CC = CallingConv::C; break;
1315  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1316  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1317  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1318  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1319  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1320  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1321  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1322  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1323  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1324  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1325  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1326  case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1327  case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1328  case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1329  case lltok::kw_cc: {
1330      unsigned ArbitraryCC;
1331      Lex.Lex();
1332      if (ParseUInt32(ArbitraryCC))
1333        return true;
1334      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1335      return false;
1336    }
1337  }
1338
1339  Lex.Lex();
1340  return false;
1341}
1342
1343/// ParseInstructionMetadata
1344///   ::= !dbg !42 (',' !dbg !57)*
1345bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1346                                        PerFunctionState *PFS) {
1347  do {
1348    if (Lex.getKind() != lltok::MetadataVar)
1349      return TokError("expected metadata after comma");
1350
1351    std::string Name = Lex.getStrVal();
1352    unsigned MDK = M->getMDKindID(Name);
1353    Lex.Lex();
1354
1355    MDNode *Node;
1356    SMLoc Loc = Lex.getLoc();
1357
1358    if (ParseToken(lltok::exclaim, "expected '!' here"))
1359      return true;
1360
1361    // This code is similar to that of ParseMetadataValue, however it needs to
1362    // have special-case code for a forward reference; see the comments on
1363    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1364    // at the top level here.
1365    if (Lex.getKind() == lltok::lbrace) {
1366      ValID ID;
1367      if (ParseMetadataListValue(ID, PFS))
1368        return true;
1369      assert(ID.Kind == ValID::t_MDNode);
1370      Inst->setMetadata(MDK, ID.MDNodeVal);
1371    } else {
1372      unsigned NodeID = 0;
1373      if (ParseMDNodeID(Node, NodeID))
1374        return true;
1375      if (Node) {
1376        // If we got the node, add it to the instruction.
1377        Inst->setMetadata(MDK, Node);
1378      } else {
1379        MDRef R = { Loc, MDK, NodeID };
1380        // Otherwise, remember that this should be resolved later.
1381        ForwardRefInstMetadata[Inst].push_back(R);
1382      }
1383    }
1384
1385    // If this is the end of the list, we're done.
1386  } while (EatIfPresent(lltok::comma));
1387  return false;
1388}
1389
1390/// ParseOptionalAlignment
1391///   ::= /* empty */
1392///   ::= 'align' 4
1393bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1394  Alignment = 0;
1395  if (!EatIfPresent(lltok::kw_align))
1396    return false;
1397  LocTy AlignLoc = Lex.getLoc();
1398  if (ParseUInt32(Alignment)) return true;
1399  if (!isPowerOf2_32(Alignment))
1400    return Error(AlignLoc, "alignment is not a power of two");
1401  if (Alignment > Value::MaximumAlignment)
1402    return Error(AlignLoc, "huge alignments are not supported yet");
1403  return false;
1404}
1405
1406/// ParseOptionalCommaAlign
1407///   ::=
1408///   ::= ',' align 4
1409///
1410/// This returns with AteExtraComma set to true if it ate an excess comma at the
1411/// end.
1412bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1413                                       bool &AteExtraComma) {
1414  AteExtraComma = false;
1415  while (EatIfPresent(lltok::comma)) {
1416    // Metadata at the end is an early exit.
1417    if (Lex.getKind() == lltok::MetadataVar) {
1418      AteExtraComma = true;
1419      return false;
1420    }
1421
1422    if (Lex.getKind() != lltok::kw_align)
1423      return Error(Lex.getLoc(), "expected metadata or 'align'");
1424
1425    if (ParseOptionalAlignment(Alignment)) return true;
1426  }
1427
1428  return false;
1429}
1430
1431/// ParseScopeAndOrdering
1432///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1433///   else: ::=
1434///
1435/// This sets Scope and Ordering to the parsed values.
1436bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1437                                     AtomicOrdering &Ordering) {
1438  if (!isAtomic)
1439    return false;
1440
1441  Scope = CrossThread;
1442  if (EatIfPresent(lltok::kw_singlethread))
1443    Scope = SingleThread;
1444  switch (Lex.getKind()) {
1445  default: return TokError("Expected ordering on atomic instruction");
1446  case lltok::kw_unordered: Ordering = Unordered; break;
1447  case lltok::kw_monotonic: Ordering = Monotonic; break;
1448  case lltok::kw_acquire: Ordering = Acquire; break;
1449  case lltok::kw_release: Ordering = Release; break;
1450  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1451  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1452  }
1453  Lex.Lex();
1454  return false;
1455}
1456
1457/// ParseOptionalStackAlignment
1458///   ::= /* empty */
1459///   ::= 'alignstack' '(' 4 ')'
1460bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1461  Alignment = 0;
1462  if (!EatIfPresent(lltok::kw_alignstack))
1463    return false;
1464  LocTy ParenLoc = Lex.getLoc();
1465  if (!EatIfPresent(lltok::lparen))
1466    return Error(ParenLoc, "expected '('");
1467  LocTy AlignLoc = Lex.getLoc();
1468  if (ParseUInt32(Alignment)) return true;
1469  ParenLoc = Lex.getLoc();
1470  if (!EatIfPresent(lltok::rparen))
1471    return Error(ParenLoc, "expected ')'");
1472  if (!isPowerOf2_32(Alignment))
1473    return Error(AlignLoc, "stack alignment is not a power of two");
1474  return false;
1475}
1476
1477/// ParseIndexList - This parses the index list for an insert/extractvalue
1478/// instruction.  This sets AteExtraComma in the case where we eat an extra
1479/// comma at the end of the line and find that it is followed by metadata.
1480/// Clients that don't allow metadata can call the version of this function that
1481/// only takes one argument.
1482///
1483/// ParseIndexList
1484///    ::=  (',' uint32)+
1485///
1486bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1487                              bool &AteExtraComma) {
1488  AteExtraComma = false;
1489
1490  if (Lex.getKind() != lltok::comma)
1491    return TokError("expected ',' as start of index list");
1492
1493  while (EatIfPresent(lltok::comma)) {
1494    if (Lex.getKind() == lltok::MetadataVar) {
1495      AteExtraComma = true;
1496      return false;
1497    }
1498    unsigned Idx = 0;
1499    if (ParseUInt32(Idx)) return true;
1500    Indices.push_back(Idx);
1501  }
1502
1503  return false;
1504}
1505
1506//===----------------------------------------------------------------------===//
1507// Type Parsing.
1508//===----------------------------------------------------------------------===//
1509
1510/// ParseType - Parse a type.
1511bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1512  SMLoc TypeLoc = Lex.getLoc();
1513  switch (Lex.getKind()) {
1514  default:
1515    return TokError("expected type");
1516  case lltok::Type:
1517    // Type ::= 'float' | 'void' (etc)
1518    Result = Lex.getTyVal();
1519    Lex.Lex();
1520    break;
1521  case lltok::lbrace:
1522    // Type ::= StructType
1523    if (ParseAnonStructType(Result, false))
1524      return true;
1525    break;
1526  case lltok::lsquare:
1527    // Type ::= '[' ... ']'
1528    Lex.Lex(); // eat the lsquare.
1529    if (ParseArrayVectorType(Result, false))
1530      return true;
1531    break;
1532  case lltok::less: // Either vector or packed struct.
1533    // Type ::= '<' ... '>'
1534    Lex.Lex();
1535    if (Lex.getKind() == lltok::lbrace) {
1536      if (ParseAnonStructType(Result, true) ||
1537          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1538        return true;
1539    } else if (ParseArrayVectorType(Result, true))
1540      return true;
1541    break;
1542  case lltok::LocalVar: {
1543    // Type ::= %foo
1544    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1545
1546    // If the type hasn't been defined yet, create a forward definition and
1547    // remember where that forward def'n was seen (in case it never is defined).
1548    if (Entry.first == 0) {
1549      Entry.first = StructType::create(Context, Lex.getStrVal());
1550      Entry.second = Lex.getLoc();
1551    }
1552    Result = Entry.first;
1553    Lex.Lex();
1554    break;
1555  }
1556
1557  case lltok::LocalVarID: {
1558    // Type ::= %4
1559    if (Lex.getUIntVal() >= NumberedTypes.size())
1560      NumberedTypes.resize(Lex.getUIntVal()+1);
1561    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1562
1563    // If the type hasn't been defined yet, create a forward definition and
1564    // remember where that forward def'n was seen (in case it never is defined).
1565    if (Entry.first == 0) {
1566      Entry.first = StructType::create(Context);
1567      Entry.second = Lex.getLoc();
1568    }
1569    Result = Entry.first;
1570    Lex.Lex();
1571    break;
1572  }
1573  }
1574
1575  // Parse the type suffixes.
1576  while (1) {
1577    switch (Lex.getKind()) {
1578    // End of type.
1579    default:
1580      if (!AllowVoid && Result->isVoidTy())
1581        return Error(TypeLoc, "void type only allowed for function results");
1582      return false;
1583
1584    // Type ::= Type '*'
1585    case lltok::star:
1586      if (Result->isLabelTy())
1587        return TokError("basic block pointers are invalid");
1588      if (Result->isVoidTy())
1589        return TokError("pointers to void are invalid - use i8* instead");
1590      if (!PointerType::isValidElementType(Result))
1591        return TokError("pointer to this type is invalid");
1592      Result = PointerType::getUnqual(Result);
1593      Lex.Lex();
1594      break;
1595
1596    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1597    case lltok::kw_addrspace: {
1598      if (Result->isLabelTy())
1599        return TokError("basic block pointers are invalid");
1600      if (Result->isVoidTy())
1601        return TokError("pointers to void are invalid; use i8* instead");
1602      if (!PointerType::isValidElementType(Result))
1603        return TokError("pointer to this type is invalid");
1604      unsigned AddrSpace;
1605      if (ParseOptionalAddrSpace(AddrSpace) ||
1606          ParseToken(lltok::star, "expected '*' in address space"))
1607        return true;
1608
1609      Result = PointerType::get(Result, AddrSpace);
1610      break;
1611    }
1612
1613    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1614    case lltok::lparen:
1615      if (ParseFunctionType(Result))
1616        return true;
1617      break;
1618    }
1619  }
1620}
1621
1622/// ParseParameterList
1623///    ::= '(' ')'
1624///    ::= '(' Arg (',' Arg)* ')'
1625///  Arg
1626///    ::= Type OptionalAttributes Value OptionalAttributes
1627bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1628                                  PerFunctionState &PFS) {
1629  if (ParseToken(lltok::lparen, "expected '(' in call"))
1630    return true;
1631
1632  unsigned AttrIndex = 1;
1633  while (Lex.getKind() != lltok::rparen) {
1634    // If this isn't the first argument, we need a comma.
1635    if (!ArgList.empty() &&
1636        ParseToken(lltok::comma, "expected ',' in argument list"))
1637      return true;
1638
1639    // Parse the argument.
1640    LocTy ArgLoc;
1641    Type *ArgTy = 0;
1642    AttrBuilder ArgAttrs;
1643    Value *V;
1644    if (ParseType(ArgTy, ArgLoc))
1645      return true;
1646
1647    // Otherwise, handle normal operands.
1648    if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1649      return true;
1650    ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1651                                                             AttrIndex++,
1652                                                             ArgAttrs)));
1653  }
1654
1655  Lex.Lex();  // Lex the ')'.
1656  return false;
1657}
1658
1659
1660
1661/// ParseArgumentList - Parse the argument list for a function type or function
1662/// prototype.
1663///   ::= '(' ArgTypeListI ')'
1664/// ArgTypeListI
1665///   ::= /*empty*/
1666///   ::= '...'
1667///   ::= ArgTypeList ',' '...'
1668///   ::= ArgType (',' ArgType)*
1669///
1670bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1671                                 bool &isVarArg){
1672  isVarArg = false;
1673  assert(Lex.getKind() == lltok::lparen);
1674  Lex.Lex(); // eat the (.
1675
1676  if (Lex.getKind() == lltok::rparen) {
1677    // empty
1678  } else if (Lex.getKind() == lltok::dotdotdot) {
1679    isVarArg = true;
1680    Lex.Lex();
1681  } else {
1682    LocTy TypeLoc = Lex.getLoc();
1683    Type *ArgTy = 0;
1684    AttrBuilder Attrs;
1685    std::string Name;
1686
1687    if (ParseType(ArgTy) ||
1688        ParseOptionalParamAttrs(Attrs)) return true;
1689
1690    if (ArgTy->isVoidTy())
1691      return Error(TypeLoc, "argument can not have void type");
1692
1693    if (Lex.getKind() == lltok::LocalVar) {
1694      Name = Lex.getStrVal();
1695      Lex.Lex();
1696    }
1697
1698    if (!FunctionType::isValidArgumentType(ArgTy))
1699      return Error(TypeLoc, "invalid type for function argument");
1700
1701    unsigned AttrIndex = 1;
1702    ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1703                              AttributeSet::get(ArgTy->getContext(),
1704                                                AttrIndex++, Attrs), Name));
1705
1706    while (EatIfPresent(lltok::comma)) {
1707      // Handle ... at end of arg list.
1708      if (EatIfPresent(lltok::dotdotdot)) {
1709        isVarArg = true;
1710        break;
1711      }
1712
1713      // Otherwise must be an argument type.
1714      TypeLoc = Lex.getLoc();
1715      if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1716
1717      if (ArgTy->isVoidTy())
1718        return Error(TypeLoc, "argument can not have void type");
1719
1720      if (Lex.getKind() == lltok::LocalVar) {
1721        Name = Lex.getStrVal();
1722        Lex.Lex();
1723      } else {
1724        Name = "";
1725      }
1726
1727      if (!ArgTy->isFirstClassType())
1728        return Error(TypeLoc, "invalid type for function argument");
1729
1730      ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1731                                AttributeSet::get(ArgTy->getContext(),
1732                                                  AttrIndex++, Attrs),
1733                                Name));
1734    }
1735  }
1736
1737  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1738}
1739
1740/// ParseFunctionType
1741///  ::= Type ArgumentList OptionalAttrs
1742bool LLParser::ParseFunctionType(Type *&Result) {
1743  assert(Lex.getKind() == lltok::lparen);
1744
1745  if (!FunctionType::isValidReturnType(Result))
1746    return TokError("invalid function return type");
1747
1748  SmallVector<ArgInfo, 8> ArgList;
1749  bool isVarArg;
1750  if (ParseArgumentList(ArgList, isVarArg))
1751    return true;
1752
1753  // Reject names on the arguments lists.
1754  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1755    if (!ArgList[i].Name.empty())
1756      return Error(ArgList[i].Loc, "argument name invalid in function type");
1757    if (ArgList[i].Attrs.hasAttributes(i + 1))
1758      return Error(ArgList[i].Loc,
1759                   "argument attributes invalid in function type");
1760  }
1761
1762  SmallVector<Type*, 16> ArgListTy;
1763  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1764    ArgListTy.push_back(ArgList[i].Ty);
1765
1766  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1767  return false;
1768}
1769
1770/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1771/// other structs.
1772bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1773  SmallVector<Type*, 8> Elts;
1774  if (ParseStructBody(Elts)) return true;
1775
1776  Result = StructType::get(Context, Elts, Packed);
1777  return false;
1778}
1779
1780/// ParseStructDefinition - Parse a struct in a 'type' definition.
1781bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1782                                     std::pair<Type*, LocTy> &Entry,
1783                                     Type *&ResultTy) {
1784  // If the type was already defined, diagnose the redefinition.
1785  if (Entry.first && !Entry.second.isValid())
1786    return Error(TypeLoc, "redefinition of type");
1787
1788  // If we have opaque, just return without filling in the definition for the
1789  // struct.  This counts as a definition as far as the .ll file goes.
1790  if (EatIfPresent(lltok::kw_opaque)) {
1791    // This type is being defined, so clear the location to indicate this.
1792    Entry.second = SMLoc();
1793
1794    // If this type number has never been uttered, create it.
1795    if (Entry.first == 0)
1796      Entry.first = StructType::create(Context, Name);
1797    ResultTy = Entry.first;
1798    return false;
1799  }
1800
1801  // If the type starts with '<', then it is either a packed struct or a vector.
1802  bool isPacked = EatIfPresent(lltok::less);
1803
1804  // If we don't have a struct, then we have a random type alias, which we
1805  // accept for compatibility with old files.  These types are not allowed to be
1806  // forward referenced and not allowed to be recursive.
1807  if (Lex.getKind() != lltok::lbrace) {
1808    if (Entry.first)
1809      return Error(TypeLoc, "forward references to non-struct type");
1810
1811    ResultTy = 0;
1812    if (isPacked)
1813      return ParseArrayVectorType(ResultTy, true);
1814    return ParseType(ResultTy);
1815  }
1816
1817  // This type is being defined, so clear the location to indicate this.
1818  Entry.second = SMLoc();
1819
1820  // If this type number has never been uttered, create it.
1821  if (Entry.first == 0)
1822    Entry.first = StructType::create(Context, Name);
1823
1824  StructType *STy = cast<StructType>(Entry.first);
1825
1826  SmallVector<Type*, 8> Body;
1827  if (ParseStructBody(Body) ||
1828      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1829    return true;
1830
1831  STy->setBody(Body, isPacked);
1832  ResultTy = STy;
1833  return false;
1834}
1835
1836
1837/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1838///   StructType
1839///     ::= '{' '}'
1840///     ::= '{' Type (',' Type)* '}'
1841///     ::= '<' '{' '}' '>'
1842///     ::= '<' '{' Type (',' Type)* '}' '>'
1843bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1844  assert(Lex.getKind() == lltok::lbrace);
1845  Lex.Lex(); // Consume the '{'
1846
1847  // Handle the empty struct.
1848  if (EatIfPresent(lltok::rbrace))
1849    return false;
1850
1851  LocTy EltTyLoc = Lex.getLoc();
1852  Type *Ty = 0;
1853  if (ParseType(Ty)) return true;
1854  Body.push_back(Ty);
1855
1856  if (!StructType::isValidElementType(Ty))
1857    return Error(EltTyLoc, "invalid element type for struct");
1858
1859  while (EatIfPresent(lltok::comma)) {
1860    EltTyLoc = Lex.getLoc();
1861    if (ParseType(Ty)) return true;
1862
1863    if (!StructType::isValidElementType(Ty))
1864      return Error(EltTyLoc, "invalid element type for struct");
1865
1866    Body.push_back(Ty);
1867  }
1868
1869  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1870}
1871
1872/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1873/// token has already been consumed.
1874///   Type
1875///     ::= '[' APSINTVAL 'x' Types ']'
1876///     ::= '<' APSINTVAL 'x' Types '>'
1877bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1878  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1879      Lex.getAPSIntVal().getBitWidth() > 64)
1880    return TokError("expected number in address space");
1881
1882  LocTy SizeLoc = Lex.getLoc();
1883  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1884  Lex.Lex();
1885
1886  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1887      return true;
1888
1889  LocTy TypeLoc = Lex.getLoc();
1890  Type *EltTy = 0;
1891  if (ParseType(EltTy)) return true;
1892
1893  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1894                 "expected end of sequential type"))
1895    return true;
1896
1897  if (isVector) {
1898    if (Size == 0)
1899      return Error(SizeLoc, "zero element vector is illegal");
1900    if ((unsigned)Size != Size)
1901      return Error(SizeLoc, "size too large for vector");
1902    if (!VectorType::isValidElementType(EltTy))
1903      return Error(TypeLoc, "invalid vector element type");
1904    Result = VectorType::get(EltTy, unsigned(Size));
1905  } else {
1906    if (!ArrayType::isValidElementType(EltTy))
1907      return Error(TypeLoc, "invalid array element type");
1908    Result = ArrayType::get(EltTy, Size);
1909  }
1910  return false;
1911}
1912
1913//===----------------------------------------------------------------------===//
1914// Function Semantic Analysis.
1915//===----------------------------------------------------------------------===//
1916
1917LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1918                                             int functionNumber)
1919  : P(p), F(f), FunctionNumber(functionNumber) {
1920
1921  // Insert unnamed arguments into the NumberedVals list.
1922  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1923       AI != E; ++AI)
1924    if (!AI->hasName())
1925      NumberedVals.push_back(AI);
1926}
1927
1928LLParser::PerFunctionState::~PerFunctionState() {
1929  // If there were any forward referenced non-basicblock values, delete them.
1930  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1931       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1932    if (!isa<BasicBlock>(I->second.first)) {
1933      I->second.first->replaceAllUsesWith(
1934                           UndefValue::get(I->second.first->getType()));
1935      delete I->second.first;
1936      I->second.first = 0;
1937    }
1938
1939  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1940       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1941    if (!isa<BasicBlock>(I->second.first)) {
1942      I->second.first->replaceAllUsesWith(
1943                           UndefValue::get(I->second.first->getType()));
1944      delete I->second.first;
1945      I->second.first = 0;
1946    }
1947}
1948
1949bool LLParser::PerFunctionState::FinishFunction() {
1950  // Check to see if someone took the address of labels in this block.
1951  if (!P.ForwardRefBlockAddresses.empty()) {
1952    ValID FunctionID;
1953    if (!F.getName().empty()) {
1954      FunctionID.Kind = ValID::t_GlobalName;
1955      FunctionID.StrVal = F.getName();
1956    } else {
1957      FunctionID.Kind = ValID::t_GlobalID;
1958      FunctionID.UIntVal = FunctionNumber;
1959    }
1960
1961    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1962      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1963    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1964      // Resolve all these references.
1965      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1966        return true;
1967
1968      P.ForwardRefBlockAddresses.erase(FRBAI);
1969    }
1970  }
1971
1972  if (!ForwardRefVals.empty())
1973    return P.Error(ForwardRefVals.begin()->second.second,
1974                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1975                   "'");
1976  if (!ForwardRefValIDs.empty())
1977    return P.Error(ForwardRefValIDs.begin()->second.second,
1978                   "use of undefined value '%" +
1979                   Twine(ForwardRefValIDs.begin()->first) + "'");
1980  return false;
1981}
1982
1983
1984/// GetVal - Get a value with the specified name or ID, creating a
1985/// forward reference record if needed.  This can return null if the value
1986/// exists but does not have the right type.
1987Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1988                                          Type *Ty, LocTy Loc) {
1989  // Look this name up in the normal function symbol table.
1990  Value *Val = F.getValueSymbolTable().lookup(Name);
1991
1992  // If this is a forward reference for the value, see if we already created a
1993  // forward ref record.
1994  if (Val == 0) {
1995    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1996      I = ForwardRefVals.find(Name);
1997    if (I != ForwardRefVals.end())
1998      Val = I->second.first;
1999  }
2000
2001  // If we have the value in the symbol table or fwd-ref table, return it.
2002  if (Val) {
2003    if (Val->getType() == Ty) return Val;
2004    if (Ty->isLabelTy())
2005      P.Error(Loc, "'%" + Name + "' is not a basic block");
2006    else
2007      P.Error(Loc, "'%" + Name + "' defined with type '" +
2008              getTypeString(Val->getType()) + "'");
2009    return 0;
2010  }
2011
2012  // Don't make placeholders with invalid type.
2013  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2014    P.Error(Loc, "invalid use of a non-first-class type");
2015    return 0;
2016  }
2017
2018  // Otherwise, create a new forward reference for this value and remember it.
2019  Value *FwdVal;
2020  if (Ty->isLabelTy())
2021    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2022  else
2023    FwdVal = new Argument(Ty, Name);
2024
2025  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2026  return FwdVal;
2027}
2028
2029Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2030                                          LocTy Loc) {
2031  // Look this name up in the normal function symbol table.
2032  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2033
2034  // If this is a forward reference for the value, see if we already created a
2035  // forward ref record.
2036  if (Val == 0) {
2037    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2038      I = ForwardRefValIDs.find(ID);
2039    if (I != ForwardRefValIDs.end())
2040      Val = I->second.first;
2041  }
2042
2043  // If we have the value in the symbol table or fwd-ref table, return it.
2044  if (Val) {
2045    if (Val->getType() == Ty) return Val;
2046    if (Ty->isLabelTy())
2047      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2048    else
2049      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2050              getTypeString(Val->getType()) + "'");
2051    return 0;
2052  }
2053
2054  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2055    P.Error(Loc, "invalid use of a non-first-class type");
2056    return 0;
2057  }
2058
2059  // Otherwise, create a new forward reference for this value and remember it.
2060  Value *FwdVal;
2061  if (Ty->isLabelTy())
2062    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2063  else
2064    FwdVal = new Argument(Ty);
2065
2066  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2067  return FwdVal;
2068}
2069
2070/// SetInstName - After an instruction is parsed and inserted into its
2071/// basic block, this installs its name.
2072bool LLParser::PerFunctionState::SetInstName(int NameID,
2073                                             const std::string &NameStr,
2074                                             LocTy NameLoc, Instruction *Inst) {
2075  // If this instruction has void type, it cannot have a name or ID specified.
2076  if (Inst->getType()->isVoidTy()) {
2077    if (NameID != -1 || !NameStr.empty())
2078      return P.Error(NameLoc, "instructions returning void cannot have a name");
2079    return false;
2080  }
2081
2082  // If this was a numbered instruction, verify that the instruction is the
2083  // expected value and resolve any forward references.
2084  if (NameStr.empty()) {
2085    // If neither a name nor an ID was specified, just use the next ID.
2086    if (NameID == -1)
2087      NameID = NumberedVals.size();
2088
2089    if (unsigned(NameID) != NumberedVals.size())
2090      return P.Error(NameLoc, "instruction expected to be numbered '%" +
2091                     Twine(NumberedVals.size()) + "'");
2092
2093    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2094      ForwardRefValIDs.find(NameID);
2095    if (FI != ForwardRefValIDs.end()) {
2096      if (FI->second.first->getType() != Inst->getType())
2097        return P.Error(NameLoc, "instruction forward referenced with type '" +
2098                       getTypeString(FI->second.first->getType()) + "'");
2099      FI->second.first->replaceAllUsesWith(Inst);
2100      delete FI->second.first;
2101      ForwardRefValIDs.erase(FI);
2102    }
2103
2104    NumberedVals.push_back(Inst);
2105    return false;
2106  }
2107
2108  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2109  std::map<std::string, std::pair<Value*, LocTy> >::iterator
2110    FI = ForwardRefVals.find(NameStr);
2111  if (FI != ForwardRefVals.end()) {
2112    if (FI->second.first->getType() != Inst->getType())
2113      return P.Error(NameLoc, "instruction forward referenced with type '" +
2114                     getTypeString(FI->second.first->getType()) + "'");
2115    FI->second.first->replaceAllUsesWith(Inst);
2116    delete FI->second.first;
2117    ForwardRefVals.erase(FI);
2118  }
2119
2120  // Set the name on the instruction.
2121  Inst->setName(NameStr);
2122
2123  if (Inst->getName() != NameStr)
2124    return P.Error(NameLoc, "multiple definition of local value named '" +
2125                   NameStr + "'");
2126  return false;
2127}
2128
2129/// GetBB - Get a basic block with the specified name or ID, creating a
2130/// forward reference record if needed.
2131BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2132                                              LocTy Loc) {
2133  return cast_or_null<BasicBlock>(GetVal(Name,
2134                                        Type::getLabelTy(F.getContext()), Loc));
2135}
2136
2137BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2138  return cast_or_null<BasicBlock>(GetVal(ID,
2139                                        Type::getLabelTy(F.getContext()), Loc));
2140}
2141
2142/// DefineBB - Define the specified basic block, which is either named or
2143/// unnamed.  If there is an error, this returns null otherwise it returns
2144/// the block being defined.
2145BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2146                                                 LocTy Loc) {
2147  BasicBlock *BB;
2148  if (Name.empty())
2149    BB = GetBB(NumberedVals.size(), Loc);
2150  else
2151    BB = GetBB(Name, Loc);
2152  if (BB == 0) return 0; // Already diagnosed error.
2153
2154  // Move the block to the end of the function.  Forward ref'd blocks are
2155  // inserted wherever they happen to be referenced.
2156  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2157
2158  // Remove the block from forward ref sets.
2159  if (Name.empty()) {
2160    ForwardRefValIDs.erase(NumberedVals.size());
2161    NumberedVals.push_back(BB);
2162  } else {
2163    // BB forward references are already in the function symbol table.
2164    ForwardRefVals.erase(Name);
2165  }
2166
2167  return BB;
2168}
2169
2170//===----------------------------------------------------------------------===//
2171// Constants.
2172//===----------------------------------------------------------------------===//
2173
2174/// ParseValID - Parse an abstract value that doesn't necessarily have a
2175/// type implied.  For example, if we parse "4" we don't know what integer type
2176/// it has.  The value will later be combined with its type and checked for
2177/// sanity.  PFS is used to convert function-local operands of metadata (since
2178/// metadata operands are not just parsed here but also converted to values).
2179/// PFS can be null when we are not parsing metadata values inside a function.
2180bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2181  ID.Loc = Lex.getLoc();
2182  switch (Lex.getKind()) {
2183  default: return TokError("expected value token");
2184  case lltok::GlobalID:  // @42
2185    ID.UIntVal = Lex.getUIntVal();
2186    ID.Kind = ValID::t_GlobalID;
2187    break;
2188  case lltok::GlobalVar:  // @foo
2189    ID.StrVal = Lex.getStrVal();
2190    ID.Kind = ValID::t_GlobalName;
2191    break;
2192  case lltok::LocalVarID:  // %42
2193    ID.UIntVal = Lex.getUIntVal();
2194    ID.Kind = ValID::t_LocalID;
2195    break;
2196  case lltok::LocalVar:  // %foo
2197    ID.StrVal = Lex.getStrVal();
2198    ID.Kind = ValID::t_LocalName;
2199    break;
2200  case lltok::exclaim:   // !42, !{...}, or !"foo"
2201    return ParseMetadataValue(ID, PFS);
2202  case lltok::APSInt:
2203    ID.APSIntVal = Lex.getAPSIntVal();
2204    ID.Kind = ValID::t_APSInt;
2205    break;
2206  case lltok::APFloat:
2207    ID.APFloatVal = Lex.getAPFloatVal();
2208    ID.Kind = ValID::t_APFloat;
2209    break;
2210  case lltok::kw_true:
2211    ID.ConstantVal = ConstantInt::getTrue(Context);
2212    ID.Kind = ValID::t_Constant;
2213    break;
2214  case lltok::kw_false:
2215    ID.ConstantVal = ConstantInt::getFalse(Context);
2216    ID.Kind = ValID::t_Constant;
2217    break;
2218  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2219  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2220  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2221
2222  case lltok::lbrace: {
2223    // ValID ::= '{' ConstVector '}'
2224    Lex.Lex();
2225    SmallVector<Constant*, 16> Elts;
2226    if (ParseGlobalValueVector(Elts) ||
2227        ParseToken(lltok::rbrace, "expected end of struct constant"))
2228      return true;
2229
2230    ID.ConstantStructElts = new Constant*[Elts.size()];
2231    ID.UIntVal = Elts.size();
2232    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2233    ID.Kind = ValID::t_ConstantStruct;
2234    return false;
2235  }
2236  case lltok::less: {
2237    // ValID ::= '<' ConstVector '>'         --> Vector.
2238    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2239    Lex.Lex();
2240    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2241
2242    SmallVector<Constant*, 16> Elts;
2243    LocTy FirstEltLoc = Lex.getLoc();
2244    if (ParseGlobalValueVector(Elts) ||
2245        (isPackedStruct &&
2246         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2247        ParseToken(lltok::greater, "expected end of constant"))
2248      return true;
2249
2250    if (isPackedStruct) {
2251      ID.ConstantStructElts = new Constant*[Elts.size()];
2252      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2253      ID.UIntVal = Elts.size();
2254      ID.Kind = ValID::t_PackedConstantStruct;
2255      return false;
2256    }
2257
2258    if (Elts.empty())
2259      return Error(ID.Loc, "constant vector must not be empty");
2260
2261    if (!Elts[0]->getType()->isIntegerTy() &&
2262        !Elts[0]->getType()->isFloatingPointTy() &&
2263        !Elts[0]->getType()->isPointerTy())
2264      return Error(FirstEltLoc,
2265            "vector elements must have integer, pointer or floating point type");
2266
2267    // Verify that all the vector elements have the same type.
2268    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2269      if (Elts[i]->getType() != Elts[0]->getType())
2270        return Error(FirstEltLoc,
2271                     "vector element #" + Twine(i) +
2272                    " is not of type '" + getTypeString(Elts[0]->getType()));
2273
2274    ID.ConstantVal = ConstantVector::get(Elts);
2275    ID.Kind = ValID::t_Constant;
2276    return false;
2277  }
2278  case lltok::lsquare: {   // Array Constant
2279    Lex.Lex();
2280    SmallVector<Constant*, 16> Elts;
2281    LocTy FirstEltLoc = Lex.getLoc();
2282    if (ParseGlobalValueVector(Elts) ||
2283        ParseToken(lltok::rsquare, "expected end of array constant"))
2284      return true;
2285
2286    // Handle empty element.
2287    if (Elts.empty()) {
2288      // Use undef instead of an array because it's inconvenient to determine
2289      // the element type at this point, there being no elements to examine.
2290      ID.Kind = ValID::t_EmptyArray;
2291      return false;
2292    }
2293
2294    if (!Elts[0]->getType()->isFirstClassType())
2295      return Error(FirstEltLoc, "invalid array element type: " +
2296                   getTypeString(Elts[0]->getType()));
2297
2298    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2299
2300    // Verify all elements are correct type!
2301    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2302      if (Elts[i]->getType() != Elts[0]->getType())
2303        return Error(FirstEltLoc,
2304                     "array element #" + Twine(i) +
2305                     " is not of type '" + getTypeString(Elts[0]->getType()));
2306    }
2307
2308    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2309    ID.Kind = ValID::t_Constant;
2310    return false;
2311  }
2312  case lltok::kw_c:  // c "foo"
2313    Lex.Lex();
2314    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2315                                                  false);
2316    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2317    ID.Kind = ValID::t_Constant;
2318    return false;
2319
2320  case lltok::kw_asm: {
2321    // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2322    //             STRINGCONSTANT
2323    bool HasSideEffect, AlignStack, AsmDialect;
2324    Lex.Lex();
2325    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2326        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2327        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2328        ParseStringConstant(ID.StrVal) ||
2329        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2330        ParseToken(lltok::StringConstant, "expected constraint string"))
2331      return true;
2332    ID.StrVal2 = Lex.getStrVal();
2333    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2334      (unsigned(AsmDialect)<<2);
2335    ID.Kind = ValID::t_InlineAsm;
2336    return false;
2337  }
2338
2339  case lltok::kw_blockaddress: {
2340    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2341    Lex.Lex();
2342
2343    ValID Fn, Label;
2344    LocTy FnLoc, LabelLoc;
2345
2346    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2347        ParseValID(Fn) ||
2348        ParseToken(lltok::comma, "expected comma in block address expression")||
2349        ParseValID(Label) ||
2350        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2351      return true;
2352
2353    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2354      return Error(Fn.Loc, "expected function name in blockaddress");
2355    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2356      return Error(Label.Loc, "expected basic block name in blockaddress");
2357
2358    // Make a global variable as a placeholder for this reference.
2359    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2360                                           false, GlobalValue::InternalLinkage,
2361                                                0, "");
2362    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2363    ID.ConstantVal = FwdRef;
2364    ID.Kind = ValID::t_Constant;
2365    return false;
2366  }
2367
2368  case lltok::kw_trunc:
2369  case lltok::kw_zext:
2370  case lltok::kw_sext:
2371  case lltok::kw_fptrunc:
2372  case lltok::kw_fpext:
2373  case lltok::kw_bitcast:
2374  case lltok::kw_uitofp:
2375  case lltok::kw_sitofp:
2376  case lltok::kw_fptoui:
2377  case lltok::kw_fptosi:
2378  case lltok::kw_inttoptr:
2379  case lltok::kw_ptrtoint: {
2380    unsigned Opc = Lex.getUIntVal();
2381    Type *DestTy = 0;
2382    Constant *SrcVal;
2383    Lex.Lex();
2384    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2385        ParseGlobalTypeAndValue(SrcVal) ||
2386        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2387        ParseType(DestTy) ||
2388        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2389      return true;
2390    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2391      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2392                   getTypeString(SrcVal->getType()) + "' to '" +
2393                   getTypeString(DestTy) + "'");
2394    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2395                                                 SrcVal, DestTy);
2396    ID.Kind = ValID::t_Constant;
2397    return false;
2398  }
2399  case lltok::kw_extractvalue: {
2400    Lex.Lex();
2401    Constant *Val;
2402    SmallVector<unsigned, 4> Indices;
2403    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2404        ParseGlobalTypeAndValue(Val) ||
2405        ParseIndexList(Indices) ||
2406        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2407      return true;
2408
2409    if (!Val->getType()->isAggregateType())
2410      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2411    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2412      return Error(ID.Loc, "invalid indices for extractvalue");
2413    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2414    ID.Kind = ValID::t_Constant;
2415    return false;
2416  }
2417  case lltok::kw_insertvalue: {
2418    Lex.Lex();
2419    Constant *Val0, *Val1;
2420    SmallVector<unsigned, 4> Indices;
2421    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2422        ParseGlobalTypeAndValue(Val0) ||
2423        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2424        ParseGlobalTypeAndValue(Val1) ||
2425        ParseIndexList(Indices) ||
2426        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2427      return true;
2428    if (!Val0->getType()->isAggregateType())
2429      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2430    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2431      return Error(ID.Loc, "invalid indices for insertvalue");
2432    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2433    ID.Kind = ValID::t_Constant;
2434    return false;
2435  }
2436  case lltok::kw_icmp:
2437  case lltok::kw_fcmp: {
2438    unsigned PredVal, Opc = Lex.getUIntVal();
2439    Constant *Val0, *Val1;
2440    Lex.Lex();
2441    if (ParseCmpPredicate(PredVal, Opc) ||
2442        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2443        ParseGlobalTypeAndValue(Val0) ||
2444        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2445        ParseGlobalTypeAndValue(Val1) ||
2446        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2447      return true;
2448
2449    if (Val0->getType() != Val1->getType())
2450      return Error(ID.Loc, "compare operands must have the same type");
2451
2452    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2453
2454    if (Opc == Instruction::FCmp) {
2455      if (!Val0->getType()->isFPOrFPVectorTy())
2456        return Error(ID.Loc, "fcmp requires floating point operands");
2457      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2458    } else {
2459      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2460      if (!Val0->getType()->isIntOrIntVectorTy() &&
2461          !Val0->getType()->getScalarType()->isPointerTy())
2462        return Error(ID.Loc, "icmp requires pointer or integer operands");
2463      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2464    }
2465    ID.Kind = ValID::t_Constant;
2466    return false;
2467  }
2468
2469  // Binary Operators.
2470  case lltok::kw_add:
2471  case lltok::kw_fadd:
2472  case lltok::kw_sub:
2473  case lltok::kw_fsub:
2474  case lltok::kw_mul:
2475  case lltok::kw_fmul:
2476  case lltok::kw_udiv:
2477  case lltok::kw_sdiv:
2478  case lltok::kw_fdiv:
2479  case lltok::kw_urem:
2480  case lltok::kw_srem:
2481  case lltok::kw_frem:
2482  case lltok::kw_shl:
2483  case lltok::kw_lshr:
2484  case lltok::kw_ashr: {
2485    bool NUW = false;
2486    bool NSW = false;
2487    bool Exact = false;
2488    unsigned Opc = Lex.getUIntVal();
2489    Constant *Val0, *Val1;
2490    Lex.Lex();
2491    LocTy ModifierLoc = Lex.getLoc();
2492    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2493        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2494      if (EatIfPresent(lltok::kw_nuw))
2495        NUW = true;
2496      if (EatIfPresent(lltok::kw_nsw)) {
2497        NSW = true;
2498        if (EatIfPresent(lltok::kw_nuw))
2499          NUW = true;
2500      }
2501    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2502               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2503      if (EatIfPresent(lltok::kw_exact))
2504        Exact = true;
2505    }
2506    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2507        ParseGlobalTypeAndValue(Val0) ||
2508        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2509        ParseGlobalTypeAndValue(Val1) ||
2510        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2511      return true;
2512    if (Val0->getType() != Val1->getType())
2513      return Error(ID.Loc, "operands of constexpr must have same type");
2514    if (!Val0->getType()->isIntOrIntVectorTy()) {
2515      if (NUW)
2516        return Error(ModifierLoc, "nuw only applies to integer operations");
2517      if (NSW)
2518        return Error(ModifierLoc, "nsw only applies to integer operations");
2519    }
2520    // Check that the type is valid for the operator.
2521    switch (Opc) {
2522    case Instruction::Add:
2523    case Instruction::Sub:
2524    case Instruction::Mul:
2525    case Instruction::UDiv:
2526    case Instruction::SDiv:
2527    case Instruction::URem:
2528    case Instruction::SRem:
2529    case Instruction::Shl:
2530    case Instruction::AShr:
2531    case Instruction::LShr:
2532      if (!Val0->getType()->isIntOrIntVectorTy())
2533        return Error(ID.Loc, "constexpr requires integer operands");
2534      break;
2535    case Instruction::FAdd:
2536    case Instruction::FSub:
2537    case Instruction::FMul:
2538    case Instruction::FDiv:
2539    case Instruction::FRem:
2540      if (!Val0->getType()->isFPOrFPVectorTy())
2541        return Error(ID.Loc, "constexpr requires fp operands");
2542      break;
2543    default: llvm_unreachable("Unknown binary operator!");
2544    }
2545    unsigned Flags = 0;
2546    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2547    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2548    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2549    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2550    ID.ConstantVal = C;
2551    ID.Kind = ValID::t_Constant;
2552    return false;
2553  }
2554
2555  // Logical Operations
2556  case lltok::kw_and:
2557  case lltok::kw_or:
2558  case lltok::kw_xor: {
2559    unsigned Opc = Lex.getUIntVal();
2560    Constant *Val0, *Val1;
2561    Lex.Lex();
2562    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2563        ParseGlobalTypeAndValue(Val0) ||
2564        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2565        ParseGlobalTypeAndValue(Val1) ||
2566        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2567      return true;
2568    if (Val0->getType() != Val1->getType())
2569      return Error(ID.Loc, "operands of constexpr must have same type");
2570    if (!Val0->getType()->isIntOrIntVectorTy())
2571      return Error(ID.Loc,
2572                   "constexpr requires integer or integer vector operands");
2573    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2574    ID.Kind = ValID::t_Constant;
2575    return false;
2576  }
2577
2578  case lltok::kw_getelementptr:
2579  case lltok::kw_shufflevector:
2580  case lltok::kw_insertelement:
2581  case lltok::kw_extractelement:
2582  case lltok::kw_select: {
2583    unsigned Opc = Lex.getUIntVal();
2584    SmallVector<Constant*, 16> Elts;
2585    bool InBounds = false;
2586    Lex.Lex();
2587    if (Opc == Instruction::GetElementPtr)
2588      InBounds = EatIfPresent(lltok::kw_inbounds);
2589    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2590        ParseGlobalValueVector(Elts) ||
2591        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2592      return true;
2593
2594    if (Opc == Instruction::GetElementPtr) {
2595      if (Elts.size() == 0 ||
2596          !Elts[0]->getType()->getScalarType()->isPointerTy())
2597        return Error(ID.Loc, "getelementptr requires pointer operand");
2598
2599      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2600      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2601        return Error(ID.Loc, "invalid indices for getelementptr");
2602      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2603                                                      InBounds);
2604    } else if (Opc == Instruction::Select) {
2605      if (Elts.size() != 3)
2606        return Error(ID.Loc, "expected three operands to select");
2607      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2608                                                              Elts[2]))
2609        return Error(ID.Loc, Reason);
2610      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2611    } else if (Opc == Instruction::ShuffleVector) {
2612      if (Elts.size() != 3)
2613        return Error(ID.Loc, "expected three operands to shufflevector");
2614      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2615        return Error(ID.Loc, "invalid operands to shufflevector");
2616      ID.ConstantVal =
2617                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2618    } else if (Opc == Instruction::ExtractElement) {
2619      if (Elts.size() != 2)
2620        return Error(ID.Loc, "expected two operands to extractelement");
2621      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2622        return Error(ID.Loc, "invalid extractelement operands");
2623      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2624    } else {
2625      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2626      if (Elts.size() != 3)
2627      return Error(ID.Loc, "expected three operands to insertelement");
2628      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2629        return Error(ID.Loc, "invalid insertelement operands");
2630      ID.ConstantVal =
2631                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2632    }
2633
2634    ID.Kind = ValID::t_Constant;
2635    return false;
2636  }
2637  }
2638
2639  Lex.Lex();
2640  return false;
2641}
2642
2643/// ParseGlobalValue - Parse a global value with the specified type.
2644bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2645  C = 0;
2646  ValID ID;
2647  Value *V = NULL;
2648  bool Parsed = ParseValID(ID) ||
2649                ConvertValIDToValue(Ty, ID, V, NULL);
2650  if (V && !(C = dyn_cast<Constant>(V)))
2651    return Error(ID.Loc, "global values must be constants");
2652  return Parsed;
2653}
2654
2655bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2656  Type *Ty = 0;
2657  return ParseType(Ty) ||
2658         ParseGlobalValue(Ty, V);
2659}
2660
2661/// ParseGlobalValueVector
2662///   ::= /*empty*/
2663///   ::= TypeAndValue (',' TypeAndValue)*
2664bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2665  // Empty list.
2666  if (Lex.getKind() == lltok::rbrace ||
2667      Lex.getKind() == lltok::rsquare ||
2668      Lex.getKind() == lltok::greater ||
2669      Lex.getKind() == lltok::rparen)
2670    return false;
2671
2672  Constant *C;
2673  if (ParseGlobalTypeAndValue(C)) return true;
2674  Elts.push_back(C);
2675
2676  while (EatIfPresent(lltok::comma)) {
2677    if (ParseGlobalTypeAndValue(C)) return true;
2678    Elts.push_back(C);
2679  }
2680
2681  return false;
2682}
2683
2684bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2685  assert(Lex.getKind() == lltok::lbrace);
2686  Lex.Lex();
2687
2688  SmallVector<Value*, 16> Elts;
2689  if (ParseMDNodeVector(Elts, PFS) ||
2690      ParseToken(lltok::rbrace, "expected end of metadata node"))
2691    return true;
2692
2693  ID.MDNodeVal = MDNode::get(Context, Elts);
2694  ID.Kind = ValID::t_MDNode;
2695  return false;
2696}
2697
2698/// ParseMetadataValue
2699///  ::= !42
2700///  ::= !{...}
2701///  ::= !"string"
2702bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2703  assert(Lex.getKind() == lltok::exclaim);
2704  Lex.Lex();
2705
2706  // MDNode:
2707  // !{ ... }
2708  if (Lex.getKind() == lltok::lbrace)
2709    return ParseMetadataListValue(ID, PFS);
2710
2711  // Standalone metadata reference
2712  // !42
2713  if (Lex.getKind() == lltok::APSInt) {
2714    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2715    ID.Kind = ValID::t_MDNode;
2716    return false;
2717  }
2718
2719  // MDString:
2720  //   ::= '!' STRINGCONSTANT
2721  if (ParseMDString(ID.MDStringVal)) return true;
2722  ID.Kind = ValID::t_MDString;
2723  return false;
2724}
2725
2726
2727//===----------------------------------------------------------------------===//
2728// Function Parsing.
2729//===----------------------------------------------------------------------===//
2730
2731bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2732                                   PerFunctionState *PFS) {
2733  if (Ty->isFunctionTy())
2734    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2735
2736  switch (ID.Kind) {
2737  case ValID::t_LocalID:
2738    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2739    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2740    return (V == 0);
2741  case ValID::t_LocalName:
2742    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2743    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2744    return (V == 0);
2745  case ValID::t_InlineAsm: {
2746    PointerType *PTy = dyn_cast<PointerType>(Ty);
2747    FunctionType *FTy =
2748      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2749    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2750      return Error(ID.Loc, "invalid type for inline asm constraint string");
2751    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2752                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2753    return false;
2754  }
2755  case ValID::t_MDNode:
2756    if (!Ty->isMetadataTy())
2757      return Error(ID.Loc, "metadata value must have metadata type");
2758    V = ID.MDNodeVal;
2759    return false;
2760  case ValID::t_MDString:
2761    if (!Ty->isMetadataTy())
2762      return Error(ID.Loc, "metadata value must have metadata type");
2763    V = ID.MDStringVal;
2764    return false;
2765  case ValID::t_GlobalName:
2766    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2767    return V == 0;
2768  case ValID::t_GlobalID:
2769    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2770    return V == 0;
2771  case ValID::t_APSInt:
2772    if (!Ty->isIntegerTy())
2773      return Error(ID.Loc, "integer constant must have integer type");
2774    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2775    V = ConstantInt::get(Context, ID.APSIntVal);
2776    return false;
2777  case ValID::t_APFloat:
2778    if (!Ty->isFloatingPointTy() ||
2779        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2780      return Error(ID.Loc, "floating point constant invalid for type");
2781
2782    // The lexer has no type info, so builds all half, float, and double FP
2783    // constants as double.  Fix this here.  Long double does not need this.
2784    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2785      bool Ignored;
2786      if (Ty->isHalfTy())
2787        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2788                              &Ignored);
2789      else if (Ty->isFloatTy())
2790        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2791                              &Ignored);
2792    }
2793    V = ConstantFP::get(Context, ID.APFloatVal);
2794
2795    if (V->getType() != Ty)
2796      return Error(ID.Loc, "floating point constant does not have type '" +
2797                   getTypeString(Ty) + "'");
2798
2799    return false;
2800  case ValID::t_Null:
2801    if (!Ty->isPointerTy())
2802      return Error(ID.Loc, "null must be a pointer type");
2803    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2804    return false;
2805  case ValID::t_Undef:
2806    // FIXME: LabelTy should not be a first-class type.
2807    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2808      return Error(ID.Loc, "invalid type for undef constant");
2809    V = UndefValue::get(Ty);
2810    return false;
2811  case ValID::t_EmptyArray:
2812    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2813      return Error(ID.Loc, "invalid empty array initializer");
2814    V = UndefValue::get(Ty);
2815    return false;
2816  case ValID::t_Zero:
2817    // FIXME: LabelTy should not be a first-class type.
2818    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2819      return Error(ID.Loc, "invalid type for null constant");
2820    V = Constant::getNullValue(Ty);
2821    return false;
2822  case ValID::t_Constant:
2823    if (ID.ConstantVal->getType() != Ty)
2824      return Error(ID.Loc, "constant expression type mismatch");
2825
2826    V = ID.ConstantVal;
2827    return false;
2828  case ValID::t_ConstantStruct:
2829  case ValID::t_PackedConstantStruct:
2830    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2831      if (ST->getNumElements() != ID.UIntVal)
2832        return Error(ID.Loc,
2833                     "initializer with struct type has wrong # elements");
2834      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2835        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2836
2837      // Verify that the elements are compatible with the structtype.
2838      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2839        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2840          return Error(ID.Loc, "element " + Twine(i) +
2841                    " of struct initializer doesn't match struct element type");
2842
2843      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2844                                               ID.UIntVal));
2845    } else
2846      return Error(ID.Loc, "constant expression type mismatch");
2847    return false;
2848  }
2849  llvm_unreachable("Invalid ValID");
2850}
2851
2852bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2853  V = 0;
2854  ValID ID;
2855  return ParseValID(ID, PFS) ||
2856         ConvertValIDToValue(Ty, ID, V, PFS);
2857}
2858
2859bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2860  Type *Ty = 0;
2861  return ParseType(Ty) ||
2862         ParseValue(Ty, V, PFS);
2863}
2864
2865bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2866                                      PerFunctionState &PFS) {
2867  Value *V;
2868  Loc = Lex.getLoc();
2869  if (ParseTypeAndValue(V, PFS)) return true;
2870  if (!isa<BasicBlock>(V))
2871    return Error(Loc, "expected a basic block");
2872  BB = cast<BasicBlock>(V);
2873  return false;
2874}
2875
2876
2877/// FunctionHeader
2878///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2879///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2880///       OptionalAlign OptGC
2881bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2882  // Parse the linkage.
2883  LocTy LinkageLoc = Lex.getLoc();
2884  unsigned Linkage;
2885
2886  unsigned Visibility;
2887  AttrBuilder RetAttrs;
2888  CallingConv::ID CC;
2889  Type *RetType = 0;
2890  LocTy RetTypeLoc = Lex.getLoc();
2891  if (ParseOptionalLinkage(Linkage) ||
2892      ParseOptionalVisibility(Visibility) ||
2893      ParseOptionalCallingConv(CC) ||
2894      ParseOptionalReturnAttrs(RetAttrs) ||
2895      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2896    return true;
2897
2898  // Verify that the linkage is ok.
2899  switch ((GlobalValue::LinkageTypes)Linkage) {
2900  case GlobalValue::ExternalLinkage:
2901    break; // always ok.
2902  case GlobalValue::DLLImportLinkage:
2903  case GlobalValue::ExternalWeakLinkage:
2904    if (isDefine)
2905      return Error(LinkageLoc, "invalid linkage for function definition");
2906    break;
2907  case GlobalValue::PrivateLinkage:
2908  case GlobalValue::LinkerPrivateLinkage:
2909  case GlobalValue::LinkerPrivateWeakLinkage:
2910  case GlobalValue::InternalLinkage:
2911  case GlobalValue::AvailableExternallyLinkage:
2912  case GlobalValue::LinkOnceAnyLinkage:
2913  case GlobalValue::LinkOnceODRLinkage:
2914  case GlobalValue::LinkOnceODRAutoHideLinkage:
2915  case GlobalValue::WeakAnyLinkage:
2916  case GlobalValue::WeakODRLinkage:
2917  case GlobalValue::DLLExportLinkage:
2918    if (!isDefine)
2919      return Error(LinkageLoc, "invalid linkage for function declaration");
2920    break;
2921  case GlobalValue::AppendingLinkage:
2922  case GlobalValue::CommonLinkage:
2923    return Error(LinkageLoc, "invalid function linkage type");
2924  }
2925
2926  if (!FunctionType::isValidReturnType(RetType))
2927    return Error(RetTypeLoc, "invalid function return type");
2928
2929  LocTy NameLoc = Lex.getLoc();
2930
2931  std::string FunctionName;
2932  if (Lex.getKind() == lltok::GlobalVar) {
2933    FunctionName = Lex.getStrVal();
2934  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2935    unsigned NameID = Lex.getUIntVal();
2936
2937    if (NameID != NumberedVals.size())
2938      return TokError("function expected to be numbered '%" +
2939                      Twine(NumberedVals.size()) + "'");
2940  } else {
2941    return TokError("expected function name");
2942  }
2943
2944  Lex.Lex();
2945
2946  if (Lex.getKind() != lltok::lparen)
2947    return TokError("expected '(' in function argument list");
2948
2949  SmallVector<ArgInfo, 8> ArgList;
2950  bool isVarArg;
2951  AttrBuilder FuncAttrs;
2952  std::vector<unsigned> FwdRefAttrGrps;
2953  LocTy NoBuiltinLoc;
2954  std::string Section;
2955  unsigned Alignment;
2956  std::string GC;
2957  bool UnnamedAddr;
2958  LocTy UnnamedAddrLoc;
2959
2960  if (ParseArgumentList(ArgList, isVarArg) ||
2961      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2962                         &UnnamedAddrLoc) ||
2963      ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
2964                                 NoBuiltinLoc) ||
2965      (EatIfPresent(lltok::kw_section) &&
2966       ParseStringConstant(Section)) ||
2967      ParseOptionalAlignment(Alignment) ||
2968      (EatIfPresent(lltok::kw_gc) &&
2969       ParseStringConstant(GC)))
2970    return true;
2971
2972  if (FuncAttrs.contains(Attribute::NoBuiltin))
2973    return Error(NoBuiltinLoc, "'nobuiltin' attribute not valid on function");
2974
2975  // If the alignment was parsed as an attribute, move to the alignment field.
2976  if (FuncAttrs.hasAlignmentAttr()) {
2977    Alignment = FuncAttrs.getAlignment();
2978    FuncAttrs.removeAttribute(Attribute::Alignment);
2979  }
2980
2981  // Okay, if we got here, the function is syntactically valid.  Convert types
2982  // and do semantic checks.
2983  std::vector<Type*> ParamTypeList;
2984  SmallVector<AttributeSet, 8> Attrs;
2985
2986  if (RetAttrs.hasAttributes())
2987    Attrs.push_back(AttributeSet::get(RetType->getContext(),
2988                                      AttributeSet::ReturnIndex,
2989                                      RetAttrs));
2990
2991  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2992    ParamTypeList.push_back(ArgList[i].Ty);
2993    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
2994      AttrBuilder B(ArgList[i].Attrs, i + 1);
2995      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
2996    }
2997  }
2998
2999  if (FuncAttrs.hasAttributes())
3000    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3001                                      AttributeSet::FunctionIndex,
3002                                      FuncAttrs));
3003
3004  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3005
3006  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3007    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3008
3009  FunctionType *FT =
3010    FunctionType::get(RetType, ParamTypeList, isVarArg);
3011  PointerType *PFT = PointerType::getUnqual(FT);
3012
3013  Fn = 0;
3014  if (!FunctionName.empty()) {
3015    // If this was a definition of a forward reference, remove the definition
3016    // from the forward reference table and fill in the forward ref.
3017    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3018      ForwardRefVals.find(FunctionName);
3019    if (FRVI != ForwardRefVals.end()) {
3020      Fn = M->getFunction(FunctionName);
3021      if (!Fn)
3022        return Error(FRVI->second.second, "invalid forward reference to "
3023                     "function as global value!");
3024      if (Fn->getType() != PFT)
3025        return Error(FRVI->second.second, "invalid forward reference to "
3026                     "function '" + FunctionName + "' with wrong type!");
3027
3028      ForwardRefVals.erase(FRVI);
3029    } else if ((Fn = M->getFunction(FunctionName))) {
3030      // Reject redefinitions.
3031      return Error(NameLoc, "invalid redefinition of function '" +
3032                   FunctionName + "'");
3033    } else if (M->getNamedValue(FunctionName)) {
3034      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3035    }
3036
3037  } else {
3038    // If this is a definition of a forward referenced function, make sure the
3039    // types agree.
3040    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3041      = ForwardRefValIDs.find(NumberedVals.size());
3042    if (I != ForwardRefValIDs.end()) {
3043      Fn = cast<Function>(I->second.first);
3044      if (Fn->getType() != PFT)
3045        return Error(NameLoc, "type of definition and forward reference of '@" +
3046                     Twine(NumberedVals.size()) + "' disagree");
3047      ForwardRefValIDs.erase(I);
3048    }
3049  }
3050
3051  if (Fn == 0)
3052    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3053  else // Move the forward-reference to the correct spot in the module.
3054    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3055
3056  if (FunctionName.empty())
3057    NumberedVals.push_back(Fn);
3058
3059  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3060  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3061  Fn->setCallingConv(CC);
3062  Fn->setAttributes(PAL);
3063  Fn->setUnnamedAddr(UnnamedAddr);
3064  Fn->setAlignment(Alignment);
3065  Fn->setSection(Section);
3066  if (!GC.empty()) Fn->setGC(GC.c_str());
3067  ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3068
3069  // Add all of the arguments we parsed to the function.
3070  Function::arg_iterator ArgIt = Fn->arg_begin();
3071  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3072    // If the argument has a name, insert it into the argument symbol table.
3073    if (ArgList[i].Name.empty()) continue;
3074
3075    // Set the name, if it conflicted, it will be auto-renamed.
3076    ArgIt->setName(ArgList[i].Name);
3077
3078    if (ArgIt->getName() != ArgList[i].Name)
3079      return Error(ArgList[i].Loc, "redefinition of argument '%" +
3080                   ArgList[i].Name + "'");
3081  }
3082
3083  return false;
3084}
3085
3086
3087/// ParseFunctionBody
3088///   ::= '{' BasicBlock+ '}'
3089///
3090bool LLParser::ParseFunctionBody(Function &Fn) {
3091  if (Lex.getKind() != lltok::lbrace)
3092    return TokError("expected '{' in function body");
3093  Lex.Lex();  // eat the {.
3094
3095  int FunctionNumber = -1;
3096  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3097
3098  PerFunctionState PFS(*this, Fn, FunctionNumber);
3099
3100  // We need at least one basic block.
3101  if (Lex.getKind() == lltok::rbrace)
3102    return TokError("function body requires at least one basic block");
3103
3104  while (Lex.getKind() != lltok::rbrace)
3105    if (ParseBasicBlock(PFS)) return true;
3106
3107  // Eat the }.
3108  Lex.Lex();
3109
3110  // Verify function is ok.
3111  return PFS.FinishFunction();
3112}
3113
3114/// ParseBasicBlock
3115///   ::= LabelStr? Instruction*
3116bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3117  // If this basic block starts out with a name, remember it.
3118  std::string Name;
3119  LocTy NameLoc = Lex.getLoc();
3120  if (Lex.getKind() == lltok::LabelStr) {
3121    Name = Lex.getStrVal();
3122    Lex.Lex();
3123  }
3124
3125  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3126  if (BB == 0) return true;
3127
3128  std::string NameStr;
3129
3130  // Parse the instructions in this block until we get a terminator.
3131  Instruction *Inst;
3132  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
3133  do {
3134    // This instruction may have three possibilities for a name: a) none
3135    // specified, b) name specified "%foo =", c) number specified: "%4 =".
3136    LocTy NameLoc = Lex.getLoc();
3137    int NameID = -1;
3138    NameStr = "";
3139
3140    if (Lex.getKind() == lltok::LocalVarID) {
3141      NameID = Lex.getUIntVal();
3142      Lex.Lex();
3143      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3144        return true;
3145    } else if (Lex.getKind() == lltok::LocalVar) {
3146      NameStr = Lex.getStrVal();
3147      Lex.Lex();
3148      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3149        return true;
3150    }
3151
3152    switch (ParseInstruction(Inst, BB, PFS)) {
3153    default: llvm_unreachable("Unknown ParseInstruction result!");
3154    case InstError: return true;
3155    case InstNormal:
3156      BB->getInstList().push_back(Inst);
3157
3158      // With a normal result, we check to see if the instruction is followed by
3159      // a comma and metadata.
3160      if (EatIfPresent(lltok::comma))
3161        if (ParseInstructionMetadata(Inst, &PFS))
3162          return true;
3163      break;
3164    case InstExtraComma:
3165      BB->getInstList().push_back(Inst);
3166
3167      // If the instruction parser ate an extra comma at the end of it, it
3168      // *must* be followed by metadata.
3169      if (ParseInstructionMetadata(Inst, &PFS))
3170        return true;
3171      break;
3172    }
3173
3174    // Set the name on the instruction.
3175    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3176  } while (!isa<TerminatorInst>(Inst));
3177
3178  return false;
3179}
3180
3181//===----------------------------------------------------------------------===//
3182// Instruction Parsing.
3183//===----------------------------------------------------------------------===//
3184
3185/// ParseInstruction - Parse one of the many different instructions.
3186///
3187int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3188                               PerFunctionState &PFS) {
3189  lltok::Kind Token = Lex.getKind();
3190  if (Token == lltok::Eof)
3191    return TokError("found end of file when expecting more instructions");
3192  LocTy Loc = Lex.getLoc();
3193  unsigned KeywordVal = Lex.getUIntVal();
3194  Lex.Lex();  // Eat the keyword.
3195
3196  switch (Token) {
3197  default:                    return Error(Loc, "expected instruction opcode");
3198  // Terminator Instructions.
3199  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3200  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
3201  case lltok::kw_br:          return ParseBr(Inst, PFS);
3202  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3203  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3204  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3205  case lltok::kw_resume:      return ParseResume(Inst, PFS);
3206  // Binary Operators.
3207  case lltok::kw_add:
3208  case lltok::kw_sub:
3209  case lltok::kw_mul:
3210  case lltok::kw_shl: {
3211    bool NUW = EatIfPresent(lltok::kw_nuw);
3212    bool NSW = EatIfPresent(lltok::kw_nsw);
3213    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3214
3215    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3216
3217    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3218    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3219    return false;
3220  }
3221  case lltok::kw_fadd:
3222  case lltok::kw_fsub:
3223  case lltok::kw_fmul:
3224  case lltok::kw_fdiv:
3225  case lltok::kw_frem: {
3226    FastMathFlags FMF = EatFastMathFlagsIfPresent();
3227    int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3228    if (Res != 0)
3229      return Res;
3230    if (FMF.any())
3231      Inst->setFastMathFlags(FMF);
3232    return 0;
3233  }
3234
3235  case lltok::kw_sdiv:
3236  case lltok::kw_udiv:
3237  case lltok::kw_lshr:
3238  case lltok::kw_ashr: {
3239    bool Exact = EatIfPresent(lltok::kw_exact);
3240
3241    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3242    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3243    return false;
3244  }
3245
3246  case lltok::kw_urem:
3247  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3248  case lltok::kw_and:
3249  case lltok::kw_or:
3250  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3251  case lltok::kw_icmp:
3252  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3253  // Casts.
3254  case lltok::kw_trunc:
3255  case lltok::kw_zext:
3256  case lltok::kw_sext:
3257  case lltok::kw_fptrunc:
3258  case lltok::kw_fpext:
3259  case lltok::kw_bitcast:
3260  case lltok::kw_uitofp:
3261  case lltok::kw_sitofp:
3262  case lltok::kw_fptoui:
3263  case lltok::kw_fptosi:
3264  case lltok::kw_inttoptr:
3265  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3266  // Other.
3267  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3268  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3269  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3270  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3271  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3272  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3273  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3274  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3275  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3276  // Memory.
3277  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3278  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3279  case lltok::kw_store:          return ParseStore(Inst, PFS);
3280  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3281  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3282  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3283  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3284  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3285  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3286  }
3287}
3288
3289/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3290bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3291  if (Opc == Instruction::FCmp) {
3292    switch (Lex.getKind()) {
3293    default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3294    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3295    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3296    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3297    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3298    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3299    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3300    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3301    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3302    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3303    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3304    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3305    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3306    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3307    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3308    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3309    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3310    }
3311  } else {
3312    switch (Lex.getKind()) {
3313    default: return TokError("expected icmp predicate (e.g. 'eq')");
3314    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3315    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3316    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3317    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3318    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3319    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3320    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3321    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3322    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3323    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3324    }
3325  }
3326  Lex.Lex();
3327  return false;
3328}
3329
3330//===----------------------------------------------------------------------===//
3331// Terminator Instructions.
3332//===----------------------------------------------------------------------===//
3333
3334/// ParseRet - Parse a return instruction.
3335///   ::= 'ret' void (',' !dbg, !1)*
3336///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3337bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3338                        PerFunctionState &PFS) {
3339  SMLoc TypeLoc = Lex.getLoc();
3340  Type *Ty = 0;
3341  if (ParseType(Ty, true /*void allowed*/)) return true;
3342
3343  Type *ResType = PFS.getFunction().getReturnType();
3344
3345  if (Ty->isVoidTy()) {
3346    if (!ResType->isVoidTy())
3347      return Error(TypeLoc, "value doesn't match function result type '" +
3348                   getTypeString(ResType) + "'");
3349
3350    Inst = ReturnInst::Create(Context);
3351    return false;
3352  }
3353
3354  Value *RV;
3355  if (ParseValue(Ty, RV, PFS)) return true;
3356
3357  if (ResType != RV->getType())
3358    return Error(TypeLoc, "value doesn't match function result type '" +
3359                 getTypeString(ResType) + "'");
3360
3361  Inst = ReturnInst::Create(Context, RV);
3362  return false;
3363}
3364
3365
3366/// ParseBr
3367///   ::= 'br' TypeAndValue
3368///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3369bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3370  LocTy Loc, Loc2;
3371  Value *Op0;
3372  BasicBlock *Op1, *Op2;
3373  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3374
3375  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3376    Inst = BranchInst::Create(BB);
3377    return false;
3378  }
3379
3380  if (Op0->getType() != Type::getInt1Ty(Context))
3381    return Error(Loc, "branch condition must have 'i1' type");
3382
3383  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3384      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3385      ParseToken(lltok::comma, "expected ',' after true destination") ||
3386      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3387    return true;
3388
3389  Inst = BranchInst::Create(Op1, Op2, Op0);
3390  return false;
3391}
3392
3393/// ParseSwitch
3394///  Instruction
3395///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3396///  JumpTable
3397///    ::= (TypeAndValue ',' TypeAndValue)*
3398bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3399  LocTy CondLoc, BBLoc;
3400  Value *Cond;
3401  BasicBlock *DefaultBB;
3402  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3403      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3404      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3405      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3406    return true;
3407
3408  if (!Cond->getType()->isIntegerTy())
3409    return Error(CondLoc, "switch condition must have integer type");
3410
3411  // Parse the jump table pairs.
3412  SmallPtrSet<Value*, 32> SeenCases;
3413  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3414  while (Lex.getKind() != lltok::rsquare) {
3415    Value *Constant;
3416    BasicBlock *DestBB;
3417
3418    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3419        ParseToken(lltok::comma, "expected ',' after case value") ||
3420        ParseTypeAndBasicBlock(DestBB, PFS))
3421      return true;
3422
3423    if (!SeenCases.insert(Constant))
3424      return Error(CondLoc, "duplicate case value in switch");
3425    if (!isa<ConstantInt>(Constant))
3426      return Error(CondLoc, "case value is not a constant integer");
3427
3428    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3429  }
3430
3431  Lex.Lex();  // Eat the ']'.
3432
3433  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3434  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3435    SI->addCase(Table[i].first, Table[i].second);
3436  Inst = SI;
3437  return false;
3438}
3439
3440/// ParseIndirectBr
3441///  Instruction
3442///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3443bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3444  LocTy AddrLoc;
3445  Value *Address;
3446  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3447      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3448      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3449    return true;
3450
3451  if (!Address->getType()->isPointerTy())
3452    return Error(AddrLoc, "indirectbr address must have pointer type");
3453
3454  // Parse the destination list.
3455  SmallVector<BasicBlock*, 16> DestList;
3456
3457  if (Lex.getKind() != lltok::rsquare) {
3458    BasicBlock *DestBB;
3459    if (ParseTypeAndBasicBlock(DestBB, PFS))
3460      return true;
3461    DestList.push_back(DestBB);
3462
3463    while (EatIfPresent(lltok::comma)) {
3464      if (ParseTypeAndBasicBlock(DestBB, PFS))
3465        return true;
3466      DestList.push_back(DestBB);
3467    }
3468  }
3469
3470  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3471    return true;
3472
3473  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3474  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3475    IBI->addDestination(DestList[i]);
3476  Inst = IBI;
3477  return false;
3478}
3479
3480
3481/// ParseInvoke
3482///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3483///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3484bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3485  LocTy CallLoc = Lex.getLoc();
3486  AttrBuilder RetAttrs, FnAttrs;
3487  std::vector<unsigned> FwdRefAttrGrps;
3488  LocTy NoBuiltinLoc;
3489  CallingConv::ID CC;
3490  Type *RetType = 0;
3491  LocTy RetTypeLoc;
3492  ValID CalleeID;
3493  SmallVector<ParamInfo, 16> ArgList;
3494
3495  BasicBlock *NormalBB, *UnwindBB;
3496  if (ParseOptionalCallingConv(CC) ||
3497      ParseOptionalReturnAttrs(RetAttrs) ||
3498      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3499      ParseValID(CalleeID) ||
3500      ParseParameterList(ArgList, PFS) ||
3501      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3502                                 NoBuiltinLoc) ||
3503      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3504      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3505      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3506      ParseTypeAndBasicBlock(UnwindBB, PFS))
3507    return true;
3508
3509  // If RetType is a non-function pointer type, then this is the short syntax
3510  // for the call, which means that RetType is just the return type.  Infer the
3511  // rest of the function argument types from the arguments that are present.
3512  PointerType *PFTy = 0;
3513  FunctionType *Ty = 0;
3514  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3515      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3516    // Pull out the types of all of the arguments...
3517    std::vector<Type*> ParamTypes;
3518    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3519      ParamTypes.push_back(ArgList[i].V->getType());
3520
3521    if (!FunctionType::isValidReturnType(RetType))
3522      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3523
3524    Ty = FunctionType::get(RetType, ParamTypes, false);
3525    PFTy = PointerType::getUnqual(Ty);
3526  }
3527
3528  // Look up the callee.
3529  Value *Callee;
3530  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3531
3532  // Set up the Attribute for the function.
3533  SmallVector<AttributeSet, 8> Attrs;
3534  if (RetAttrs.hasAttributes())
3535    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3536                                      AttributeSet::ReturnIndex,
3537                                      RetAttrs));
3538
3539  SmallVector<Value*, 8> Args;
3540
3541  // Loop through FunctionType's arguments and ensure they are specified
3542  // correctly.  Also, gather any parameter attributes.
3543  FunctionType::param_iterator I = Ty->param_begin();
3544  FunctionType::param_iterator E = Ty->param_end();
3545  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3546    Type *ExpectedTy = 0;
3547    if (I != E) {
3548      ExpectedTy = *I++;
3549    } else if (!Ty->isVarArg()) {
3550      return Error(ArgList[i].Loc, "too many arguments specified");
3551    }
3552
3553    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3554      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3555                   getTypeString(ExpectedTy) + "'");
3556    Args.push_back(ArgList[i].V);
3557    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3558      AttrBuilder B(ArgList[i].Attrs, i + 1);
3559      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3560    }
3561  }
3562
3563  if (I != E)
3564    return Error(CallLoc, "not enough parameters specified for call");
3565
3566  if (FnAttrs.hasAttributes())
3567    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3568                                      AttributeSet::FunctionIndex,
3569                                      FnAttrs));
3570
3571  // Finish off the Attribute and check them
3572  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3573
3574  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3575  II->setCallingConv(CC);
3576  II->setAttributes(PAL);
3577  ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3578  Inst = II;
3579  return false;
3580}
3581
3582/// ParseResume
3583///   ::= 'resume' TypeAndValue
3584bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3585  Value *Exn; LocTy ExnLoc;
3586  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3587    return true;
3588
3589  ResumeInst *RI = ResumeInst::Create(Exn);
3590  Inst = RI;
3591  return false;
3592}
3593
3594//===----------------------------------------------------------------------===//
3595// Binary Operators.
3596//===----------------------------------------------------------------------===//
3597
3598/// ParseArithmetic
3599///  ::= ArithmeticOps TypeAndValue ',' Value
3600///
3601/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3602/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3603bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3604                               unsigned Opc, unsigned OperandType) {
3605  LocTy Loc; Value *LHS, *RHS;
3606  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3607      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3608      ParseValue(LHS->getType(), RHS, PFS))
3609    return true;
3610
3611  bool Valid;
3612  switch (OperandType) {
3613  default: llvm_unreachable("Unknown operand type!");
3614  case 0: // int or FP.
3615    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3616            LHS->getType()->isFPOrFPVectorTy();
3617    break;
3618  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3619  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3620  }
3621
3622  if (!Valid)
3623    return Error(Loc, "invalid operand type for instruction");
3624
3625  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3626  return false;
3627}
3628
3629/// ParseLogical
3630///  ::= ArithmeticOps TypeAndValue ',' Value {
3631bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3632                            unsigned Opc) {
3633  LocTy Loc; Value *LHS, *RHS;
3634  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3635      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3636      ParseValue(LHS->getType(), RHS, PFS))
3637    return true;
3638
3639  if (!LHS->getType()->isIntOrIntVectorTy())
3640    return Error(Loc,"instruction requires integer or integer vector operands");
3641
3642  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3643  return false;
3644}
3645
3646
3647/// ParseCompare
3648///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3649///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3650bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3651                            unsigned Opc) {
3652  // Parse the integer/fp comparison predicate.
3653  LocTy Loc;
3654  unsigned Pred;
3655  Value *LHS, *RHS;
3656  if (ParseCmpPredicate(Pred, Opc) ||
3657      ParseTypeAndValue(LHS, Loc, PFS) ||
3658      ParseToken(lltok::comma, "expected ',' after compare value") ||
3659      ParseValue(LHS->getType(), RHS, PFS))
3660    return true;
3661
3662  if (Opc == Instruction::FCmp) {
3663    if (!LHS->getType()->isFPOrFPVectorTy())
3664      return Error(Loc, "fcmp requires floating point operands");
3665    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3666  } else {
3667    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3668    if (!LHS->getType()->isIntOrIntVectorTy() &&
3669        !LHS->getType()->getScalarType()->isPointerTy())
3670      return Error(Loc, "icmp requires integer operands");
3671    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3672  }
3673  return false;
3674}
3675
3676//===----------------------------------------------------------------------===//
3677// Other Instructions.
3678//===----------------------------------------------------------------------===//
3679
3680
3681/// ParseCast
3682///   ::= CastOpc TypeAndValue 'to' Type
3683bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3684                         unsigned Opc) {
3685  LocTy Loc;
3686  Value *Op;
3687  Type *DestTy = 0;
3688  if (ParseTypeAndValue(Op, Loc, PFS) ||
3689      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3690      ParseType(DestTy))
3691    return true;
3692
3693  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3694    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3695    return Error(Loc, "invalid cast opcode for cast from '" +
3696                 getTypeString(Op->getType()) + "' to '" +
3697                 getTypeString(DestTy) + "'");
3698  }
3699  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3700  return false;
3701}
3702
3703/// ParseSelect
3704///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3705bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3706  LocTy Loc;
3707  Value *Op0, *Op1, *Op2;
3708  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3709      ParseToken(lltok::comma, "expected ',' after select condition") ||
3710      ParseTypeAndValue(Op1, PFS) ||
3711      ParseToken(lltok::comma, "expected ',' after select value") ||
3712      ParseTypeAndValue(Op2, PFS))
3713    return true;
3714
3715  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3716    return Error(Loc, Reason);
3717
3718  Inst = SelectInst::Create(Op0, Op1, Op2);
3719  return false;
3720}
3721
3722/// ParseVA_Arg
3723///   ::= 'va_arg' TypeAndValue ',' Type
3724bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3725  Value *Op;
3726  Type *EltTy = 0;
3727  LocTy TypeLoc;
3728  if (ParseTypeAndValue(Op, PFS) ||
3729      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3730      ParseType(EltTy, TypeLoc))
3731    return true;
3732
3733  if (!EltTy->isFirstClassType())
3734    return Error(TypeLoc, "va_arg requires operand with first class type");
3735
3736  Inst = new VAArgInst(Op, EltTy);
3737  return false;
3738}
3739
3740/// ParseExtractElement
3741///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3742bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3743  LocTy Loc;
3744  Value *Op0, *Op1;
3745  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3746      ParseToken(lltok::comma, "expected ',' after extract value") ||
3747      ParseTypeAndValue(Op1, PFS))
3748    return true;
3749
3750  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3751    return Error(Loc, "invalid extractelement operands");
3752
3753  Inst = ExtractElementInst::Create(Op0, Op1);
3754  return false;
3755}
3756
3757/// ParseInsertElement
3758///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3759bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3760  LocTy Loc;
3761  Value *Op0, *Op1, *Op2;
3762  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3763      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3764      ParseTypeAndValue(Op1, PFS) ||
3765      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3766      ParseTypeAndValue(Op2, PFS))
3767    return true;
3768
3769  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3770    return Error(Loc, "invalid insertelement operands");
3771
3772  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3773  return false;
3774}
3775
3776/// ParseShuffleVector
3777///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3778bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3779  LocTy Loc;
3780  Value *Op0, *Op1, *Op2;
3781  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3782      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3783      ParseTypeAndValue(Op1, PFS) ||
3784      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3785      ParseTypeAndValue(Op2, PFS))
3786    return true;
3787
3788  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3789    return Error(Loc, "invalid shufflevector operands");
3790
3791  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3792  return false;
3793}
3794
3795/// ParsePHI
3796///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3797int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3798  Type *Ty = 0;  LocTy TypeLoc;
3799  Value *Op0, *Op1;
3800
3801  if (ParseType(Ty, TypeLoc) ||
3802      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3803      ParseValue(Ty, Op0, PFS) ||
3804      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3805      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3806      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3807    return true;
3808
3809  bool AteExtraComma = false;
3810  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3811  while (1) {
3812    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3813
3814    if (!EatIfPresent(lltok::comma))
3815      break;
3816
3817    if (Lex.getKind() == lltok::MetadataVar) {
3818      AteExtraComma = true;
3819      break;
3820    }
3821
3822    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3823        ParseValue(Ty, Op0, PFS) ||
3824        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3825        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3826        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3827      return true;
3828  }
3829
3830  if (!Ty->isFirstClassType())
3831    return Error(TypeLoc, "phi node must have first class type");
3832
3833  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3834  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3835    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3836  Inst = PN;
3837  return AteExtraComma ? InstExtraComma : InstNormal;
3838}
3839
3840/// ParseLandingPad
3841///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3842/// Clause
3843///   ::= 'catch' TypeAndValue
3844///   ::= 'filter'
3845///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3846bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3847  Type *Ty = 0; LocTy TyLoc;
3848  Value *PersFn; LocTy PersFnLoc;
3849
3850  if (ParseType(Ty, TyLoc) ||
3851      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3852      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3853    return true;
3854
3855  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3856  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3857
3858  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3859    LandingPadInst::ClauseType CT;
3860    if (EatIfPresent(lltok::kw_catch))
3861      CT = LandingPadInst::Catch;
3862    else if (EatIfPresent(lltok::kw_filter))
3863      CT = LandingPadInst::Filter;
3864    else
3865      return TokError("expected 'catch' or 'filter' clause type");
3866
3867    Value *V; LocTy VLoc;
3868    if (ParseTypeAndValue(V, VLoc, PFS)) {
3869      delete LP;
3870      return true;
3871    }
3872
3873    // A 'catch' type expects a non-array constant. A filter clause expects an
3874    // array constant.
3875    if (CT == LandingPadInst::Catch) {
3876      if (isa<ArrayType>(V->getType()))
3877        Error(VLoc, "'catch' clause has an invalid type");
3878    } else {
3879      if (!isa<ArrayType>(V->getType()))
3880        Error(VLoc, "'filter' clause has an invalid type");
3881    }
3882
3883    LP->addClause(V);
3884  }
3885
3886  Inst = LP;
3887  return false;
3888}
3889
3890/// ParseCall
3891///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3892///       ParameterList OptionalAttrs
3893bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3894                         bool isTail) {
3895  AttrBuilder RetAttrs, FnAttrs;
3896  std::vector<unsigned> FwdRefAttrGrps;
3897  LocTy NoBuiltinLoc;
3898  CallingConv::ID CC;
3899  Type *RetType = 0;
3900  LocTy RetTypeLoc;
3901  ValID CalleeID;
3902  SmallVector<ParamInfo, 16> ArgList;
3903  LocTy CallLoc = Lex.getLoc();
3904
3905  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3906      ParseOptionalCallingConv(CC) ||
3907      ParseOptionalReturnAttrs(RetAttrs) ||
3908      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3909      ParseValID(CalleeID) ||
3910      ParseParameterList(ArgList, PFS) ||
3911      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3912                                 NoBuiltinLoc))
3913    return true;
3914
3915  // If RetType is a non-function pointer type, then this is the short syntax
3916  // for the call, which means that RetType is just the return type.  Infer the
3917  // rest of the function argument types from the arguments that are present.
3918  PointerType *PFTy = 0;
3919  FunctionType *Ty = 0;
3920  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3921      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3922    // Pull out the types of all of the arguments...
3923    std::vector<Type*> ParamTypes;
3924    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3925      ParamTypes.push_back(ArgList[i].V->getType());
3926
3927    if (!FunctionType::isValidReturnType(RetType))
3928      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3929
3930    Ty = FunctionType::get(RetType, ParamTypes, false);
3931    PFTy = PointerType::getUnqual(Ty);
3932  }
3933
3934  // Look up the callee.
3935  Value *Callee;
3936  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3937
3938  // Set up the Attribute for the function.
3939  SmallVector<AttributeSet, 8> Attrs;
3940  if (RetAttrs.hasAttributes())
3941    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3942                                      AttributeSet::ReturnIndex,
3943                                      RetAttrs));
3944
3945  SmallVector<Value*, 8> Args;
3946
3947  // Loop through FunctionType's arguments and ensure they are specified
3948  // correctly.  Also, gather any parameter attributes.
3949  FunctionType::param_iterator I = Ty->param_begin();
3950  FunctionType::param_iterator E = Ty->param_end();
3951  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3952    Type *ExpectedTy = 0;
3953    if (I != E) {
3954      ExpectedTy = *I++;
3955    } else if (!Ty->isVarArg()) {
3956      return Error(ArgList[i].Loc, "too many arguments specified");
3957    }
3958
3959    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3960      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3961                   getTypeString(ExpectedTy) + "'");
3962    Args.push_back(ArgList[i].V);
3963    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3964      AttrBuilder B(ArgList[i].Attrs, i + 1);
3965      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3966    }
3967  }
3968
3969  if (I != E)
3970    return Error(CallLoc, "not enough parameters specified for call");
3971
3972  if (FnAttrs.hasAttributes())
3973    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3974                                      AttributeSet::FunctionIndex,
3975                                      FnAttrs));
3976
3977  // Finish off the Attribute and check them
3978  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3979
3980  CallInst *CI = CallInst::Create(Callee, Args);
3981  CI->setTailCall(isTail);
3982  CI->setCallingConv(CC);
3983  CI->setAttributes(PAL);
3984  ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
3985  Inst = CI;
3986  return false;
3987}
3988
3989//===----------------------------------------------------------------------===//
3990// Memory Instructions.
3991//===----------------------------------------------------------------------===//
3992
3993/// ParseAlloc
3994///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3995int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3996  Value *Size = 0;
3997  LocTy SizeLoc;
3998  unsigned Alignment = 0;
3999  Type *Ty = 0;
4000  if (ParseType(Ty)) return true;
4001
4002  bool AteExtraComma = false;
4003  if (EatIfPresent(lltok::comma)) {
4004    if (Lex.getKind() == lltok::kw_align) {
4005      if (ParseOptionalAlignment(Alignment)) return true;
4006    } else if (Lex.getKind() == lltok::MetadataVar) {
4007      AteExtraComma = true;
4008    } else {
4009      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4010          ParseOptionalCommaAlign(Alignment, AteExtraComma))
4011        return true;
4012    }
4013  }
4014
4015  if (Size && !Size->getType()->isIntegerTy())
4016    return Error(SizeLoc, "element count must have integer type");
4017
4018  Inst = new AllocaInst(Ty, Size, Alignment);
4019  return AteExtraComma ? InstExtraComma : InstNormal;
4020}
4021
4022/// ParseLoad
4023///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4024///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
4025///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4026int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4027  Value *Val; LocTy Loc;
4028  unsigned Alignment = 0;
4029  bool AteExtraComma = false;
4030  bool isAtomic = false;
4031  AtomicOrdering Ordering = NotAtomic;
4032  SynchronizationScope Scope = CrossThread;
4033
4034  if (Lex.getKind() == lltok::kw_atomic) {
4035    isAtomic = true;
4036    Lex.Lex();
4037  }
4038
4039  bool isVolatile = false;
4040  if (Lex.getKind() == lltok::kw_volatile) {
4041    isVolatile = true;
4042    Lex.Lex();
4043  }
4044
4045  if (ParseTypeAndValue(Val, Loc, PFS) ||
4046      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4047      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4048    return true;
4049
4050  if (!Val->getType()->isPointerTy() ||
4051      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4052    return Error(Loc, "load operand must be a pointer to a first class type");
4053  if (isAtomic && !Alignment)
4054    return Error(Loc, "atomic load must have explicit non-zero alignment");
4055  if (Ordering == Release || Ordering == AcquireRelease)
4056    return Error(Loc, "atomic load cannot use Release ordering");
4057
4058  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4059  return AteExtraComma ? InstExtraComma : InstNormal;
4060}
4061
4062/// ParseStore
4063
4064///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4065///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4066///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4067int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4068  Value *Val, *Ptr; LocTy Loc, PtrLoc;
4069  unsigned Alignment = 0;
4070  bool AteExtraComma = false;
4071  bool isAtomic = false;
4072  AtomicOrdering Ordering = NotAtomic;
4073  SynchronizationScope Scope = CrossThread;
4074
4075  if (Lex.getKind() == lltok::kw_atomic) {
4076    isAtomic = true;
4077    Lex.Lex();
4078  }
4079
4080  bool isVolatile = false;
4081  if (Lex.getKind() == lltok::kw_volatile) {
4082    isVolatile = true;
4083    Lex.Lex();
4084  }
4085
4086  if (ParseTypeAndValue(Val, Loc, PFS) ||
4087      ParseToken(lltok::comma, "expected ',' after store operand") ||
4088      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4089      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4090      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4091    return true;
4092
4093  if (!Ptr->getType()->isPointerTy())
4094    return Error(PtrLoc, "store operand must be a pointer");
4095  if (!Val->getType()->isFirstClassType())
4096    return Error(Loc, "store operand must be a first class value");
4097  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4098    return Error(Loc, "stored value and pointer type do not match");
4099  if (isAtomic && !Alignment)
4100    return Error(Loc, "atomic store must have explicit non-zero alignment");
4101  if (Ordering == Acquire || Ordering == AcquireRelease)
4102    return Error(Loc, "atomic store cannot use Acquire ordering");
4103
4104  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4105  return AteExtraComma ? InstExtraComma : InstNormal;
4106}
4107
4108/// ParseCmpXchg
4109///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4110///       'singlethread'? AtomicOrdering
4111int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4112  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4113  bool AteExtraComma = false;
4114  AtomicOrdering Ordering = NotAtomic;
4115  SynchronizationScope Scope = CrossThread;
4116  bool isVolatile = false;
4117
4118  if (EatIfPresent(lltok::kw_volatile))
4119    isVolatile = true;
4120
4121  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4122      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4123      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4124      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4125      ParseTypeAndValue(New, NewLoc, PFS) ||
4126      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4127    return true;
4128
4129  if (Ordering == Unordered)
4130    return TokError("cmpxchg cannot be unordered");
4131  if (!Ptr->getType()->isPointerTy())
4132    return Error(PtrLoc, "cmpxchg operand must be a pointer");
4133  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4134    return Error(CmpLoc, "compare value and pointer type do not match");
4135  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4136    return Error(NewLoc, "new value and pointer type do not match");
4137  if (!New->getType()->isIntegerTy())
4138    return Error(NewLoc, "cmpxchg operand must be an integer");
4139  unsigned Size = New->getType()->getPrimitiveSizeInBits();
4140  if (Size < 8 || (Size & (Size - 1)))
4141    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4142                         " integer");
4143
4144  AtomicCmpXchgInst *CXI =
4145    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4146  CXI->setVolatile(isVolatile);
4147  Inst = CXI;
4148  return AteExtraComma ? InstExtraComma : InstNormal;
4149}
4150
4151/// ParseAtomicRMW
4152///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4153///       'singlethread'? AtomicOrdering
4154int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4155  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4156  bool AteExtraComma = false;
4157  AtomicOrdering Ordering = NotAtomic;
4158  SynchronizationScope Scope = CrossThread;
4159  bool isVolatile = false;
4160  AtomicRMWInst::BinOp Operation;
4161
4162  if (EatIfPresent(lltok::kw_volatile))
4163    isVolatile = true;
4164
4165  switch (Lex.getKind()) {
4166  default: return TokError("expected binary operation in atomicrmw");
4167  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4168  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4169  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4170  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4171  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4172  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4173  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4174  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4175  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4176  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4177  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4178  }
4179  Lex.Lex();  // Eat the operation.
4180
4181  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4182      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4183      ParseTypeAndValue(Val, ValLoc, PFS) ||
4184      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4185    return true;
4186
4187  if (Ordering == Unordered)
4188    return TokError("atomicrmw cannot be unordered");
4189  if (!Ptr->getType()->isPointerTy())
4190    return Error(PtrLoc, "atomicrmw operand must be a pointer");
4191  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4192    return Error(ValLoc, "atomicrmw value and pointer type do not match");
4193  if (!Val->getType()->isIntegerTy())
4194    return Error(ValLoc, "atomicrmw operand must be an integer");
4195  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4196  if (Size < 8 || (Size & (Size - 1)))
4197    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4198                         " integer");
4199
4200  AtomicRMWInst *RMWI =
4201    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4202  RMWI->setVolatile(isVolatile);
4203  Inst = RMWI;
4204  return AteExtraComma ? InstExtraComma : InstNormal;
4205}
4206
4207/// ParseFence
4208///   ::= 'fence' 'singlethread'? AtomicOrdering
4209int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4210  AtomicOrdering Ordering = NotAtomic;
4211  SynchronizationScope Scope = CrossThread;
4212  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4213    return true;
4214
4215  if (Ordering == Unordered)
4216    return TokError("fence cannot be unordered");
4217  if (Ordering == Monotonic)
4218    return TokError("fence cannot be monotonic");
4219
4220  Inst = new FenceInst(Context, Ordering, Scope);
4221  return InstNormal;
4222}
4223
4224/// ParseGetElementPtr
4225///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4226int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4227  Value *Ptr = 0;
4228  Value *Val = 0;
4229  LocTy Loc, EltLoc;
4230
4231  bool InBounds = EatIfPresent(lltok::kw_inbounds);
4232
4233  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4234
4235  if (!Ptr->getType()->getScalarType()->isPointerTy())
4236    return Error(Loc, "base of getelementptr must be a pointer");
4237
4238  SmallVector<Value*, 16> Indices;
4239  bool AteExtraComma = false;
4240  while (EatIfPresent(lltok::comma)) {
4241    if (Lex.getKind() == lltok::MetadataVar) {
4242      AteExtraComma = true;
4243      break;
4244    }
4245    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4246    if (!Val->getType()->getScalarType()->isIntegerTy())
4247      return Error(EltLoc, "getelementptr index must be an integer");
4248    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4249      return Error(EltLoc, "getelementptr index type missmatch");
4250    if (Val->getType()->isVectorTy()) {
4251      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4252      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4253      if (ValNumEl != PtrNumEl)
4254        return Error(EltLoc,
4255          "getelementptr vector index has a wrong number of elements");
4256    }
4257    Indices.push_back(Val);
4258  }
4259
4260  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
4261    return Error(Loc, "invalid getelementptr indices");
4262  Inst = GetElementPtrInst::Create(Ptr, Indices);
4263  if (InBounds)
4264    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4265  return AteExtraComma ? InstExtraComma : InstNormal;
4266}
4267
4268/// ParseExtractValue
4269///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4270int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4271  Value *Val; LocTy Loc;
4272  SmallVector<unsigned, 4> Indices;
4273  bool AteExtraComma;
4274  if (ParseTypeAndValue(Val, Loc, PFS) ||
4275      ParseIndexList(Indices, AteExtraComma))
4276    return true;
4277
4278  if (!Val->getType()->isAggregateType())
4279    return Error(Loc, "extractvalue operand must be aggregate type");
4280
4281  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4282    return Error(Loc, "invalid indices for extractvalue");
4283  Inst = ExtractValueInst::Create(Val, Indices);
4284  return AteExtraComma ? InstExtraComma : InstNormal;
4285}
4286
4287/// ParseInsertValue
4288///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4289int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4290  Value *Val0, *Val1; LocTy Loc0, Loc1;
4291  SmallVector<unsigned, 4> Indices;
4292  bool AteExtraComma;
4293  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4294      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4295      ParseTypeAndValue(Val1, Loc1, PFS) ||
4296      ParseIndexList(Indices, AteExtraComma))
4297    return true;
4298
4299  if (!Val0->getType()->isAggregateType())
4300    return Error(Loc0, "insertvalue operand must be aggregate type");
4301
4302  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4303    return Error(Loc0, "invalid indices for insertvalue");
4304  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4305  return AteExtraComma ? InstExtraComma : InstNormal;
4306}
4307
4308//===----------------------------------------------------------------------===//
4309// Embedded metadata.
4310//===----------------------------------------------------------------------===//
4311
4312/// ParseMDNodeVector
4313///   ::= Element (',' Element)*
4314/// Element
4315///   ::= 'null' | TypeAndValue
4316bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4317                                 PerFunctionState *PFS) {
4318  // Check for an empty list.
4319  if (Lex.getKind() == lltok::rbrace)
4320    return false;
4321
4322  do {
4323    // Null is a special case since it is typeless.
4324    if (EatIfPresent(lltok::kw_null)) {
4325      Elts.push_back(0);
4326      continue;
4327    }
4328
4329    Value *V = 0;
4330    if (ParseTypeAndValue(V, PFS)) return true;
4331    Elts.push_back(V);
4332  } while (EatIfPresent(lltok::comma));
4333
4334  return false;
4335}
4336