LLParser.cpp revision 243830
1226586Sdim//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2226586Sdim//
3226586Sdim//                     The LLVM Compiler Infrastructure
4226586Sdim//
5226586Sdim// This file is distributed under the University of Illinois Open Source
6226586Sdim// License. See LICENSE.TXT for details.
7226586Sdim//
8226586Sdim//===----------------------------------------------------------------------===//
9226586Sdim//
10226586Sdim//  This file defines the parser class for .ll files.
11226586Sdim//
12226586Sdim//===----------------------------------------------------------------------===//
13226586Sdim
14226586Sdim#include "LLParser.h"
15226586Sdim#include "llvm/AutoUpgrade.h"
16226586Sdim#include "llvm/CallingConv.h"
17226586Sdim#include "llvm/Constants.h"
18226586Sdim#include "llvm/DerivedTypes.h"
19249423Sdim#include "llvm/InlineAsm.h"
20249423Sdim#include "llvm/Instructions.h"
21249423Sdim#include "llvm/Module.h"
22226586Sdim#include "llvm/Operator.h"
23226586Sdim#include "llvm/ValueSymbolTable.h"
24226586Sdim#include "llvm/ADT/SmallPtrSet.h"
25226586Sdim#include "llvm/Support/ErrorHandling.h"
26226586Sdim#include "llvm/Support/raw_ostream.h"
27226586Sdimusing namespace llvm;
28226586Sdim
29226586Sdimstatic std::string getTypeString(Type *T) {
30226586Sdim  std::string Result;
31226586Sdim  raw_string_ostream Tmp(Result);
32226586Sdim  Tmp << *T;
33226586Sdim  return Tmp.str();
34226586Sdim}
35226586Sdim
36226586Sdim/// Run: module ::= toplevelentity*
37226586Sdimbool LLParser::Run() {
38226586Sdim  // Prime the lexer.
39226586Sdim  Lex.Lex();
40226586Sdim
41226586Sdim  return ParseTopLevelEntities() ||
42226586Sdim         ValidateEndOfModule();
43226586Sdim}
44226586Sdim
45226586Sdim/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46226586Sdim/// module.
47226586Sdimbool LLParser::ValidateEndOfModule() {
48226586Sdim  // Handle any instruction metadata forward references.
49226586Sdim  if (!ForwardRefInstMetadata.empty()) {
50226586Sdim    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51226586Sdim         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52226586Sdim         I != E; ++I) {
53226586Sdim      Instruction *Inst = I->first;
54226586Sdim      const std::vector<MDRef> &MDList = I->second;
55226586Sdim
56226586Sdim      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57226586Sdim        unsigned SlotNo = MDList[i].MDSlot;
58226586Sdim
59226586Sdim        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60226586Sdim          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61226586Sdim                       Twine(SlotNo) + "'");
62226586Sdim        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63226586Sdim      }
64226586Sdim    }
65226586Sdim    ForwardRefInstMetadata.clear();
66226586Sdim  }
67226586Sdim
68226586Sdim
69226586Sdim  // If there are entries in ForwardRefBlockAddresses at this point, they are
70226586Sdim  // references after the function was defined.  Resolve those now.
71226586Sdim  while (!ForwardRefBlockAddresses.empty()) {
72226586Sdim    // Okay, we are referencing an already-parsed function, resolve them now.
73226586Sdim    Function *TheFn = 0;
74226586Sdim    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75226586Sdim    if (Fn.Kind == ValID::t_GlobalName)
76226586Sdim      TheFn = M->getFunction(Fn.StrVal);
77226586Sdim    else if (Fn.UIntVal < NumberedVals.size())
78226586Sdim      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79226586Sdim
80226586Sdim    if (TheFn == 0)
81249423Sdim      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82226586Sdim
83226586Sdim    // Resolve all these references.
84226586Sdim    if (ResolveForwardRefBlockAddresses(TheFn,
85226586Sdim                                      ForwardRefBlockAddresses.begin()->second,
86226586Sdim                                        0))
87226586Sdim      return true;
88226586Sdim
89226586Sdim    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90226586Sdim  }
91226586Sdim
92226586Sdim  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93226586Sdim    if (NumberedTypes[i].second.isValid())
94226586Sdim      return Error(NumberedTypes[i].second,
95226586Sdim                   "use of undefined type '%" + Twine(i) + "'");
96226586Sdim
97226586Sdim  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98226586Sdim       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99226586Sdim    if (I->second.second.isValid())
100226586Sdim      return Error(I->second.second,
101226586Sdim                   "use of undefined type named '" + I->getKey() + "'");
102226586Sdim
103226586Sdim  if (!ForwardRefVals.empty())
104226586Sdim    return Error(ForwardRefVals.begin()->second.second,
105226586Sdim                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106226586Sdim                 "'");
107249423Sdim
108226586Sdim  if (!ForwardRefValIDs.empty())
109226586Sdim    return Error(ForwardRefValIDs.begin()->second.second,
110226586Sdim                 "use of undefined value '@" +
111226586Sdim                 Twine(ForwardRefValIDs.begin()->first) + "'");
112226586Sdim
113226586Sdim  if (!ForwardRefMDNodes.empty())
114226586Sdim    return Error(ForwardRefMDNodes.begin()->second.second,
115226586Sdim                 "use of undefined metadata '!" +
116226586Sdim                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117249423Sdim
118226586Sdim
119226586Sdim  // Look for intrinsic functions and CallInst that need to be upgraded
120226586Sdim  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121226586Sdim    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122226586Sdim
123226586Sdim  return false;
124226586Sdim}
125226586Sdim
126bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128                                               PerFunctionState *PFS) {
129  // Loop over all the references, resolving them.
130  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131    BasicBlock *Res;
132    if (PFS) {
133      if (Refs[i].first.Kind == ValID::t_LocalName)
134        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135      else
136        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138      return Error(Refs[i].first.Loc,
139       "cannot take address of numeric label after the function is defined");
140    } else {
141      Res = dyn_cast_or_null<BasicBlock>(
142                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143    }
144
145    if (Res == 0)
146      return Error(Refs[i].first.Loc,
147                   "referenced value is not a basic block");
148
149    // Get the BlockAddress for this and update references to use it.
150    BlockAddress *BA = BlockAddress::get(TheFn, Res);
151    Refs[i].second->replaceAllUsesWith(BA);
152    Refs[i].second->eraseFromParent();
153  }
154  return false;
155}
156
157
158//===----------------------------------------------------------------------===//
159// Top-Level Entities
160//===----------------------------------------------------------------------===//
161
162bool LLParser::ParseTopLevelEntities() {
163  while (1) {
164    switch (Lex.getKind()) {
165    default:         return TokError("expected top-level entity");
166    case lltok::Eof: return false;
167    case lltok::kw_declare: if (ParseDeclare()) return true; break;
168    case lltok::kw_define:  if (ParseDefine()) return true; break;
169    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
170    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
171    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
174    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
175    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
176    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
177    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179    // The Global variable production with no name can have many different
180    // optional leading prefixes, the production is:
181    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182    //               OptionalAddrSpace OptionalUnNammedAddr
183    //               ('constant'|'global') ...
184    case lltok::kw_private:             // OptionalLinkage
185    case lltok::kw_linker_private:      // OptionalLinkage
186    case lltok::kw_linker_private_weak: // OptionalLinkage
187    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
188    case lltok::kw_internal:            // OptionalLinkage
189    case lltok::kw_weak:                // OptionalLinkage
190    case lltok::kw_weak_odr:            // OptionalLinkage
191    case lltok::kw_linkonce:            // OptionalLinkage
192    case lltok::kw_linkonce_odr:        // OptionalLinkage
193    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
194    case lltok::kw_appending:           // OptionalLinkage
195    case lltok::kw_dllexport:           // OptionalLinkage
196    case lltok::kw_common:              // OptionalLinkage
197    case lltok::kw_dllimport:           // OptionalLinkage
198    case lltok::kw_extern_weak:         // OptionalLinkage
199    case lltok::kw_external: {          // OptionalLinkage
200      unsigned Linkage, Visibility;
201      if (ParseOptionalLinkage(Linkage) ||
202          ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
204        return true;
205      break;
206    }
207    case lltok::kw_default:       // OptionalVisibility
208    case lltok::kw_hidden:        // OptionalVisibility
209    case lltok::kw_protected: {   // OptionalVisibility
210      unsigned Visibility;
211      if (ParseOptionalVisibility(Visibility) ||
212          ParseGlobal("", SMLoc(), 0, false, Visibility))
213        return true;
214      break;
215    }
216
217    case lltok::kw_thread_local:  // OptionalThreadLocal
218    case lltok::kw_addrspace:     // OptionalAddrSpace
219    case lltok::kw_constant:      // GlobalType
220    case lltok::kw_global:        // GlobalType
221      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
222      break;
223    }
224  }
225}
226
227
228/// toplevelentity
229///   ::= 'module' 'asm' STRINGCONSTANT
230bool LLParser::ParseModuleAsm() {
231  assert(Lex.getKind() == lltok::kw_module);
232  Lex.Lex();
233
234  std::string AsmStr;
235  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
236      ParseStringConstant(AsmStr)) return true;
237
238  M->appendModuleInlineAsm(AsmStr);
239  return false;
240}
241
242/// toplevelentity
243///   ::= 'target' 'triple' '=' STRINGCONSTANT
244///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
245bool LLParser::ParseTargetDefinition() {
246  assert(Lex.getKind() == lltok::kw_target);
247  std::string Str;
248  switch (Lex.Lex()) {
249  default: return TokError("unknown target property");
250  case lltok::kw_triple:
251    Lex.Lex();
252    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
253        ParseStringConstant(Str))
254      return true;
255    M->setTargetTriple(Str);
256    return false;
257  case lltok::kw_datalayout:
258    Lex.Lex();
259    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
260        ParseStringConstant(Str))
261      return true;
262    M->setDataLayout(Str);
263    return false;
264  }
265}
266
267/// toplevelentity
268///   ::= 'deplibs' '=' '[' ']'
269///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
270bool LLParser::ParseDepLibs() {
271  assert(Lex.getKind() == lltok::kw_deplibs);
272  Lex.Lex();
273  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
274      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
275    return true;
276
277  if (EatIfPresent(lltok::rsquare))
278    return false;
279
280  std::string Str;
281  if (ParseStringConstant(Str)) return true;
282  M->addLibrary(Str);
283
284  while (EatIfPresent(lltok::comma)) {
285    if (ParseStringConstant(Str)) return true;
286    M->addLibrary(Str);
287  }
288
289  return ParseToken(lltok::rsquare, "expected ']' at end of list");
290}
291
292/// ParseUnnamedType:
293///   ::= LocalVarID '=' 'type' type
294bool LLParser::ParseUnnamedType() {
295  LocTy TypeLoc = Lex.getLoc();
296  unsigned TypeID = Lex.getUIntVal();
297  Lex.Lex(); // eat LocalVarID;
298
299  if (ParseToken(lltok::equal, "expected '=' after name") ||
300      ParseToken(lltok::kw_type, "expected 'type' after '='"))
301    return true;
302
303  if (TypeID >= NumberedTypes.size())
304    NumberedTypes.resize(TypeID+1);
305
306  Type *Result = 0;
307  if (ParseStructDefinition(TypeLoc, "",
308                            NumberedTypes[TypeID], Result)) return true;
309
310  if (!isa<StructType>(Result)) {
311    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
312    if (Entry.first)
313      return Error(TypeLoc, "non-struct types may not be recursive");
314    Entry.first = Result;
315    Entry.second = SMLoc();
316  }
317
318  return false;
319}
320
321
322/// toplevelentity
323///   ::= LocalVar '=' 'type' type
324bool LLParser::ParseNamedType() {
325  std::string Name = Lex.getStrVal();
326  LocTy NameLoc = Lex.getLoc();
327  Lex.Lex();  // eat LocalVar.
328
329  if (ParseToken(lltok::equal, "expected '=' after name") ||
330      ParseToken(lltok::kw_type, "expected 'type' after name"))
331    return true;
332
333  Type *Result = 0;
334  if (ParseStructDefinition(NameLoc, Name,
335                            NamedTypes[Name], Result)) return true;
336
337  if (!isa<StructType>(Result)) {
338    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
339    if (Entry.first)
340      return Error(NameLoc, "non-struct types may not be recursive");
341    Entry.first = Result;
342    Entry.second = SMLoc();
343  }
344
345  return false;
346}
347
348
349/// toplevelentity
350///   ::= 'declare' FunctionHeader
351bool LLParser::ParseDeclare() {
352  assert(Lex.getKind() == lltok::kw_declare);
353  Lex.Lex();
354
355  Function *F;
356  return ParseFunctionHeader(F, false);
357}
358
359/// toplevelentity
360///   ::= 'define' FunctionHeader '{' ...
361bool LLParser::ParseDefine() {
362  assert(Lex.getKind() == lltok::kw_define);
363  Lex.Lex();
364
365  Function *F;
366  return ParseFunctionHeader(F, true) ||
367         ParseFunctionBody(*F);
368}
369
370/// ParseGlobalType
371///   ::= 'constant'
372///   ::= 'global'
373bool LLParser::ParseGlobalType(bool &IsConstant) {
374  if (Lex.getKind() == lltok::kw_constant)
375    IsConstant = true;
376  else if (Lex.getKind() == lltok::kw_global)
377    IsConstant = false;
378  else {
379    IsConstant = false;
380    return TokError("expected 'global' or 'constant'");
381  }
382  Lex.Lex();
383  return false;
384}
385
386/// ParseUnnamedGlobal:
387///   OptionalVisibility ALIAS ...
388///   OptionalLinkage OptionalVisibility ...   -> global variable
389///   GlobalID '=' OptionalVisibility ALIAS ...
390///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
391bool LLParser::ParseUnnamedGlobal() {
392  unsigned VarID = NumberedVals.size();
393  std::string Name;
394  LocTy NameLoc = Lex.getLoc();
395
396  // Handle the GlobalID form.
397  if (Lex.getKind() == lltok::GlobalID) {
398    if (Lex.getUIntVal() != VarID)
399      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
400                   Twine(VarID) + "'");
401    Lex.Lex(); // eat GlobalID;
402
403    if (ParseToken(lltok::equal, "expected '=' after name"))
404      return true;
405  }
406
407  bool HasLinkage;
408  unsigned Linkage, Visibility;
409  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
410      ParseOptionalVisibility(Visibility))
411    return true;
412
413  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
414    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
415  return ParseAlias(Name, NameLoc, Visibility);
416}
417
418/// ParseNamedGlobal:
419///   GlobalVar '=' OptionalVisibility ALIAS ...
420///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
421bool LLParser::ParseNamedGlobal() {
422  assert(Lex.getKind() == lltok::GlobalVar);
423  LocTy NameLoc = Lex.getLoc();
424  std::string Name = Lex.getStrVal();
425  Lex.Lex();
426
427  bool HasLinkage;
428  unsigned Linkage, Visibility;
429  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
430      ParseOptionalLinkage(Linkage, HasLinkage) ||
431      ParseOptionalVisibility(Visibility))
432    return true;
433
434  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
435    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
436  return ParseAlias(Name, NameLoc, Visibility);
437}
438
439// MDString:
440//   ::= '!' STRINGCONSTANT
441bool LLParser::ParseMDString(MDString *&Result) {
442  std::string Str;
443  if (ParseStringConstant(Str)) return true;
444  Result = MDString::get(Context, Str);
445  return false;
446}
447
448// MDNode:
449//   ::= '!' MDNodeNumber
450//
451/// This version of ParseMDNodeID returns the slot number and null in the case
452/// of a forward reference.
453bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
454  // !{ ..., !42, ... }
455  if (ParseUInt32(SlotNo)) return true;
456
457  // Check existing MDNode.
458  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
459    Result = NumberedMetadata[SlotNo];
460  else
461    Result = 0;
462  return false;
463}
464
465bool LLParser::ParseMDNodeID(MDNode *&Result) {
466  // !{ ..., !42, ... }
467  unsigned MID = 0;
468  if (ParseMDNodeID(Result, MID)) return true;
469
470  // If not a forward reference, just return it now.
471  if (Result) return false;
472
473  // Otherwise, create MDNode forward reference.
474  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
475  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
476
477  if (NumberedMetadata.size() <= MID)
478    NumberedMetadata.resize(MID+1);
479  NumberedMetadata[MID] = FwdNode;
480  Result = FwdNode;
481  return false;
482}
483
484/// ParseNamedMetadata:
485///   !foo = !{ !1, !2 }
486bool LLParser::ParseNamedMetadata() {
487  assert(Lex.getKind() == lltok::MetadataVar);
488  std::string Name = Lex.getStrVal();
489  Lex.Lex();
490
491  if (ParseToken(lltok::equal, "expected '=' here") ||
492      ParseToken(lltok::exclaim, "Expected '!' here") ||
493      ParseToken(lltok::lbrace, "Expected '{' here"))
494    return true;
495
496  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
497  if (Lex.getKind() != lltok::rbrace)
498    do {
499      if (ParseToken(lltok::exclaim, "Expected '!' here"))
500        return true;
501
502      MDNode *N = 0;
503      if (ParseMDNodeID(N)) return true;
504      NMD->addOperand(N);
505    } while (EatIfPresent(lltok::comma));
506
507  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
508    return true;
509
510  return false;
511}
512
513/// ParseStandaloneMetadata:
514///   !42 = !{...}
515bool LLParser::ParseStandaloneMetadata() {
516  assert(Lex.getKind() == lltok::exclaim);
517  Lex.Lex();
518  unsigned MetadataID = 0;
519
520  LocTy TyLoc;
521  Type *Ty = 0;
522  SmallVector<Value *, 16> Elts;
523  if (ParseUInt32(MetadataID) ||
524      ParseToken(lltok::equal, "expected '=' here") ||
525      ParseType(Ty, TyLoc) ||
526      ParseToken(lltok::exclaim, "Expected '!' here") ||
527      ParseToken(lltok::lbrace, "Expected '{' here") ||
528      ParseMDNodeVector(Elts, NULL) ||
529      ParseToken(lltok::rbrace, "expected end of metadata node"))
530    return true;
531
532  MDNode *Init = MDNode::get(Context, Elts);
533
534  // See if this was forward referenced, if so, handle it.
535  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
536    FI = ForwardRefMDNodes.find(MetadataID);
537  if (FI != ForwardRefMDNodes.end()) {
538    MDNode *Temp = FI->second.first;
539    Temp->replaceAllUsesWith(Init);
540    MDNode::deleteTemporary(Temp);
541    ForwardRefMDNodes.erase(FI);
542
543    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
544  } else {
545    if (MetadataID >= NumberedMetadata.size())
546      NumberedMetadata.resize(MetadataID+1);
547
548    if (NumberedMetadata[MetadataID] != 0)
549      return TokError("Metadata id is already used");
550    NumberedMetadata[MetadataID] = Init;
551  }
552
553  return false;
554}
555
556/// ParseAlias:
557///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
558/// Aliasee
559///   ::= TypeAndValue
560///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
561///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
562///
563/// Everything through visibility has already been parsed.
564///
565bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
566                          unsigned Visibility) {
567  assert(Lex.getKind() == lltok::kw_alias);
568  Lex.Lex();
569  unsigned Linkage;
570  LocTy LinkageLoc = Lex.getLoc();
571  if (ParseOptionalLinkage(Linkage))
572    return true;
573
574  if (Linkage != GlobalValue::ExternalLinkage &&
575      Linkage != GlobalValue::WeakAnyLinkage &&
576      Linkage != GlobalValue::WeakODRLinkage &&
577      Linkage != GlobalValue::InternalLinkage &&
578      Linkage != GlobalValue::PrivateLinkage &&
579      Linkage != GlobalValue::LinkerPrivateLinkage &&
580      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
581    return Error(LinkageLoc, "invalid linkage type for alias");
582
583  Constant *Aliasee;
584  LocTy AliaseeLoc = Lex.getLoc();
585  if (Lex.getKind() != lltok::kw_bitcast &&
586      Lex.getKind() != lltok::kw_getelementptr) {
587    if (ParseGlobalTypeAndValue(Aliasee)) return true;
588  } else {
589    // The bitcast dest type is not present, it is implied by the dest type.
590    ValID ID;
591    if (ParseValID(ID)) return true;
592    if (ID.Kind != ValID::t_Constant)
593      return Error(AliaseeLoc, "invalid aliasee");
594    Aliasee = ID.ConstantVal;
595  }
596
597  if (!Aliasee->getType()->isPointerTy())
598    return Error(AliaseeLoc, "alias must have pointer type");
599
600  // Okay, create the alias but do not insert it into the module yet.
601  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602                                    (GlobalValue::LinkageTypes)Linkage, Name,
603                                    Aliasee);
604  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606  // See if this value already exists in the symbol table.  If so, it is either
607  // a redefinition or a definition of a forward reference.
608  if (GlobalValue *Val = M->getNamedValue(Name)) {
609    // See if this was a redefinition.  If so, there is no entry in
610    // ForwardRefVals.
611    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612      I = ForwardRefVals.find(Name);
613    if (I == ForwardRefVals.end())
614      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616    // Otherwise, this was a definition of forward ref.  Verify that types
617    // agree.
618    if (Val->getType() != GA->getType())
619      return Error(NameLoc,
620              "forward reference and definition of alias have different types");
621
622    // If they agree, just RAUW the old value with the alias and remove the
623    // forward ref info.
624    Val->replaceAllUsesWith(GA);
625    Val->eraseFromParent();
626    ForwardRefVals.erase(I);
627  }
628
629  // Insert into the module, we know its name won't collide now.
630  M->getAliasList().push_back(GA);
631  assert(GA->getName() == Name && "Should not be a name conflict!");
632
633  return false;
634}
635
636/// ParseGlobal
637///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///
642/// Everything through visibility has been parsed already.
643///
644bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645                           unsigned Linkage, bool HasLinkage,
646                           unsigned Visibility) {
647  unsigned AddrSpace;
648  bool IsConstant, UnnamedAddr;
649  GlobalVariable::ThreadLocalMode TLM;
650  LocTy UnnamedAddrLoc;
651  LocTy TyLoc;
652
653  Type *Ty = 0;
654  if (ParseOptionalThreadLocal(TLM) ||
655      ParseOptionalAddrSpace(AddrSpace) ||
656      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
657                         &UnnamedAddrLoc) ||
658      ParseGlobalType(IsConstant) ||
659      ParseType(Ty, TyLoc))
660    return true;
661
662  // If the linkage is specified and is external, then no initializer is
663  // present.
664  Constant *Init = 0;
665  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
666                      Linkage != GlobalValue::ExternalWeakLinkage &&
667                      Linkage != GlobalValue::ExternalLinkage)) {
668    if (ParseGlobalValue(Ty, Init))
669      return true;
670  }
671
672  if (Ty->isFunctionTy() || Ty->isLabelTy())
673    return Error(TyLoc, "invalid type for global variable");
674
675  GlobalVariable *GV = 0;
676
677  // See if the global was forward referenced, if so, use the global.
678  if (!Name.empty()) {
679    if (GlobalValue *GVal = M->getNamedValue(Name)) {
680      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
681        return Error(NameLoc, "redefinition of global '@" + Name + "'");
682      GV = cast<GlobalVariable>(GVal);
683    }
684  } else {
685    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
686      I = ForwardRefValIDs.find(NumberedVals.size());
687    if (I != ForwardRefValIDs.end()) {
688      GV = cast<GlobalVariable>(I->second.first);
689      ForwardRefValIDs.erase(I);
690    }
691  }
692
693  if (GV == 0) {
694    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
695                            Name, 0, GlobalVariable::NotThreadLocal,
696                            AddrSpace);
697  } else {
698    if (GV->getType()->getElementType() != Ty)
699      return Error(TyLoc,
700            "forward reference and definition of global have different types");
701
702    // Move the forward-reference to the correct spot in the module.
703    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
704  }
705
706  if (Name.empty())
707    NumberedVals.push_back(GV);
708
709  // Set the parsed properties on the global.
710  if (Init)
711    GV->setInitializer(Init);
712  GV->setConstant(IsConstant);
713  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
714  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
715  GV->setThreadLocalMode(TLM);
716  GV->setUnnamedAddr(UnnamedAddr);
717
718  // Parse attributes on the global.
719  while (Lex.getKind() == lltok::comma) {
720    Lex.Lex();
721
722    if (Lex.getKind() == lltok::kw_section) {
723      Lex.Lex();
724      GV->setSection(Lex.getStrVal());
725      if (ParseToken(lltok::StringConstant, "expected global section string"))
726        return true;
727    } else if (Lex.getKind() == lltok::kw_align) {
728      unsigned Alignment;
729      if (ParseOptionalAlignment(Alignment)) return true;
730      GV->setAlignment(Alignment);
731    } else {
732      TokError("unknown global variable property!");
733    }
734  }
735
736  return false;
737}
738
739
740//===----------------------------------------------------------------------===//
741// GlobalValue Reference/Resolution Routines.
742//===----------------------------------------------------------------------===//
743
744/// GetGlobalVal - Get a value with the specified name or ID, creating a
745/// forward reference record if needed.  This can return null if the value
746/// exists but does not have the right type.
747GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
748                                    LocTy Loc) {
749  PointerType *PTy = dyn_cast<PointerType>(Ty);
750  if (PTy == 0) {
751    Error(Loc, "global variable reference must have pointer type");
752    return 0;
753  }
754
755  // Look this name up in the normal function symbol table.
756  GlobalValue *Val =
757    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
758
759  // If this is a forward reference for the value, see if we already created a
760  // forward ref record.
761  if (Val == 0) {
762    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
763      I = ForwardRefVals.find(Name);
764    if (I != ForwardRefVals.end())
765      Val = I->second.first;
766  }
767
768  // If we have the value in the symbol table or fwd-ref table, return it.
769  if (Val) {
770    if (Val->getType() == Ty) return Val;
771    Error(Loc, "'@" + Name + "' defined with type '" +
772          getTypeString(Val->getType()) + "'");
773    return 0;
774  }
775
776  // Otherwise, create a new forward reference for this value and remember it.
777  GlobalValue *FwdVal;
778  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
779    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
780  else
781    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
782                                GlobalValue::ExternalWeakLinkage, 0, Name,
783                                0, GlobalVariable::NotThreadLocal,
784                                PTy->getAddressSpace());
785
786  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
787  return FwdVal;
788}
789
790GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
791  PointerType *PTy = dyn_cast<PointerType>(Ty);
792  if (PTy == 0) {
793    Error(Loc, "global variable reference must have pointer type");
794    return 0;
795  }
796
797  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
798
799  // If this is a forward reference for the value, see if we already created a
800  // forward ref record.
801  if (Val == 0) {
802    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
803      I = ForwardRefValIDs.find(ID);
804    if (I != ForwardRefValIDs.end())
805      Val = I->second.first;
806  }
807
808  // If we have the value in the symbol table or fwd-ref table, return it.
809  if (Val) {
810    if (Val->getType() == Ty) return Val;
811    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
812          getTypeString(Val->getType()) + "'");
813    return 0;
814  }
815
816  // Otherwise, create a new forward reference for this value and remember it.
817  GlobalValue *FwdVal;
818  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
819    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
820  else
821    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
822                                GlobalValue::ExternalWeakLinkage, 0, "");
823
824  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
825  return FwdVal;
826}
827
828
829//===----------------------------------------------------------------------===//
830// Helper Routines.
831//===----------------------------------------------------------------------===//
832
833/// ParseToken - If the current token has the specified kind, eat it and return
834/// success.  Otherwise, emit the specified error and return failure.
835bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
836  if (Lex.getKind() != T)
837    return TokError(ErrMsg);
838  Lex.Lex();
839  return false;
840}
841
842/// ParseStringConstant
843///   ::= StringConstant
844bool LLParser::ParseStringConstant(std::string &Result) {
845  if (Lex.getKind() != lltok::StringConstant)
846    return TokError("expected string constant");
847  Result = Lex.getStrVal();
848  Lex.Lex();
849  return false;
850}
851
852/// ParseUInt32
853///   ::= uint32
854bool LLParser::ParseUInt32(unsigned &Val) {
855  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
856    return TokError("expected integer");
857  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
858  if (Val64 != unsigned(Val64))
859    return TokError("expected 32-bit integer (too large)");
860  Val = Val64;
861  Lex.Lex();
862  return false;
863}
864
865/// ParseTLSModel
866///   := 'localdynamic'
867///   := 'initialexec'
868///   := 'localexec'
869bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
870  switch (Lex.getKind()) {
871    default:
872      return TokError("expected localdynamic, initialexec or localexec");
873    case lltok::kw_localdynamic:
874      TLM = GlobalVariable::LocalDynamicTLSModel;
875      break;
876    case lltok::kw_initialexec:
877      TLM = GlobalVariable::InitialExecTLSModel;
878      break;
879    case lltok::kw_localexec:
880      TLM = GlobalVariable::LocalExecTLSModel;
881      break;
882  }
883
884  Lex.Lex();
885  return false;
886}
887
888/// ParseOptionalThreadLocal
889///   := /*empty*/
890///   := 'thread_local'
891///   := 'thread_local' '(' tlsmodel ')'
892bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
893  TLM = GlobalVariable::NotThreadLocal;
894  if (!EatIfPresent(lltok::kw_thread_local))
895    return false;
896
897  TLM = GlobalVariable::GeneralDynamicTLSModel;
898  if (Lex.getKind() == lltok::lparen) {
899    Lex.Lex();
900    return ParseTLSModel(TLM) ||
901      ParseToken(lltok::rparen, "expected ')' after thread local model");
902  }
903  return false;
904}
905
906/// ParseOptionalAddrSpace
907///   := /*empty*/
908///   := 'addrspace' '(' uint32 ')'
909bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
910  AddrSpace = 0;
911  if (!EatIfPresent(lltok::kw_addrspace))
912    return false;
913  return ParseToken(lltok::lparen, "expected '(' in address space") ||
914         ParseUInt32(AddrSpace) ||
915         ParseToken(lltok::rparen, "expected ')' in address space");
916}
917
918/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
919/// indicates what kind of attribute list this is: 0: function arg, 1: result,
920/// 2: function attr.
921bool LLParser::ParseOptionalAttrs(AttrBuilder &B, unsigned AttrKind) {
922  LocTy AttrLoc = Lex.getLoc();
923  bool HaveError = false;
924
925  B.clear();
926
927  while (1) {
928    lltok::Kind Token = Lex.getKind();
929    switch (Token) {
930    default:  // End of attributes.
931      return HaveError;
932    case lltok::kw_zeroext:         B.addAttribute(Attributes::ZExt); break;
933    case lltok::kw_signext:         B.addAttribute(Attributes::SExt); break;
934    case lltok::kw_inreg:           B.addAttribute(Attributes::InReg); break;
935    case lltok::kw_sret:            B.addAttribute(Attributes::StructRet); break;
936    case lltok::kw_noalias:         B.addAttribute(Attributes::NoAlias); break;
937    case lltok::kw_nocapture:       B.addAttribute(Attributes::NoCapture); break;
938    case lltok::kw_byval:           B.addAttribute(Attributes::ByVal); break;
939    case lltok::kw_nest:            B.addAttribute(Attributes::Nest); break;
940
941    case lltok::kw_noreturn:        B.addAttribute(Attributes::NoReturn); break;
942    case lltok::kw_nounwind:        B.addAttribute(Attributes::NoUnwind); break;
943    case lltok::kw_uwtable:         B.addAttribute(Attributes::UWTable); break;
944    case lltok::kw_returns_twice:   B.addAttribute(Attributes::ReturnsTwice); break;
945    case lltok::kw_noinline:        B.addAttribute(Attributes::NoInline); break;
946    case lltok::kw_readnone:        B.addAttribute(Attributes::ReadNone); break;
947    case lltok::kw_readonly:        B.addAttribute(Attributes::ReadOnly); break;
948    case lltok::kw_inlinehint:      B.addAttribute(Attributes::InlineHint); break;
949    case lltok::kw_alwaysinline:    B.addAttribute(Attributes::AlwaysInline); break;
950    case lltok::kw_optsize:         B.addAttribute(Attributes::OptimizeForSize); break;
951    case lltok::kw_ssp:             B.addAttribute(Attributes::StackProtect); break;
952    case lltok::kw_sspreq:          B.addAttribute(Attributes::StackProtectReq); break;
953    case lltok::kw_noredzone:       B.addAttribute(Attributes::NoRedZone); break;
954    case lltok::kw_noimplicitfloat: B.addAttribute(Attributes::NoImplicitFloat); break;
955    case lltok::kw_naked:           B.addAttribute(Attributes::Naked); break;
956    case lltok::kw_nonlazybind:     B.addAttribute(Attributes::NonLazyBind); break;
957    case lltok::kw_address_safety:  B.addAttribute(Attributes::AddressSafety); break;
958    case lltok::kw_minsize:         B.addAttribute(Attributes::MinSize); break;
959
960    case lltok::kw_alignstack: {
961      unsigned Alignment;
962      if (ParseOptionalStackAlignment(Alignment))
963        return true;
964      B.addStackAlignmentAttr(Alignment);
965      continue;
966    }
967
968    case lltok::kw_align: {
969      unsigned Alignment;
970      if (ParseOptionalAlignment(Alignment))
971        return true;
972      B.addAlignmentAttr(Alignment);
973      continue;
974    }
975
976    }
977
978    // Perform some error checking.
979    switch (Token) {
980    default:
981      if (AttrKind == 2)
982        HaveError |= Error(AttrLoc, "invalid use of attribute on a function");
983      break;
984    case lltok::kw_align:
985      // As a hack, we allow "align 2" on functions as a synonym for
986      // "alignstack 2".
987      break;
988
989    // Parameter Only:
990    case lltok::kw_sret:
991    case lltok::kw_nocapture:
992    case lltok::kw_byval:
993    case lltok::kw_nest:
994      if (AttrKind != 0)
995        HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute");
996      break;
997
998    // Function Only:
999    case lltok::kw_noreturn:
1000    case lltok::kw_nounwind:
1001    case lltok::kw_readnone:
1002    case lltok::kw_readonly:
1003    case lltok::kw_noinline:
1004    case lltok::kw_alwaysinline:
1005    case lltok::kw_optsize:
1006    case lltok::kw_ssp:
1007    case lltok::kw_sspreq:
1008    case lltok::kw_noredzone:
1009    case lltok::kw_noimplicitfloat:
1010    case lltok::kw_naked:
1011    case lltok::kw_inlinehint:
1012    case lltok::kw_alignstack:
1013    case lltok::kw_uwtable:
1014    case lltok::kw_nonlazybind:
1015    case lltok::kw_returns_twice:
1016    case lltok::kw_address_safety:
1017    case lltok::kw_minsize:
1018      if (AttrKind != 2)
1019        HaveError |= Error(AttrLoc, "invalid use of function-only attribute");
1020      break;
1021    }
1022
1023    Lex.Lex();
1024  }
1025}
1026
1027/// ParseOptionalLinkage
1028///   ::= /*empty*/
1029///   ::= 'private'
1030///   ::= 'linker_private'
1031///   ::= 'linker_private_weak'
1032///   ::= 'internal'
1033///   ::= 'weak'
1034///   ::= 'weak_odr'
1035///   ::= 'linkonce'
1036///   ::= 'linkonce_odr'
1037///   ::= 'linkonce_odr_auto_hide'
1038///   ::= 'available_externally'
1039///   ::= 'appending'
1040///   ::= 'dllexport'
1041///   ::= 'common'
1042///   ::= 'dllimport'
1043///   ::= 'extern_weak'
1044///   ::= 'external'
1045bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1046  HasLinkage = false;
1047  switch (Lex.getKind()) {
1048  default:                       Res=GlobalValue::ExternalLinkage; return false;
1049  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1050  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1051  case lltok::kw_linker_private_weak:
1052    Res = GlobalValue::LinkerPrivateWeakLinkage;
1053    break;
1054  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1055  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1056  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1057  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1058  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1059  case lltok::kw_linkonce_odr_auto_hide:
1060  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1061    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1062    break;
1063  case lltok::kw_available_externally:
1064    Res = GlobalValue::AvailableExternallyLinkage;
1065    break;
1066  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1067  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1068  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1069  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1070  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1071  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1072  }
1073  Lex.Lex();
1074  HasLinkage = true;
1075  return false;
1076}
1077
1078/// ParseOptionalVisibility
1079///   ::= /*empty*/
1080///   ::= 'default'
1081///   ::= 'hidden'
1082///   ::= 'protected'
1083///
1084bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1085  switch (Lex.getKind()) {
1086  default:                  Res = GlobalValue::DefaultVisibility; return false;
1087  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1088  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1089  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1090  }
1091  Lex.Lex();
1092  return false;
1093}
1094
1095/// ParseOptionalCallingConv
1096///   ::= /*empty*/
1097///   ::= 'ccc'
1098///   ::= 'fastcc'
1099///   ::= 'kw_intel_ocl_bicc'
1100///   ::= 'coldcc'
1101///   ::= 'x86_stdcallcc'
1102///   ::= 'x86_fastcallcc'
1103///   ::= 'x86_thiscallcc'
1104///   ::= 'arm_apcscc'
1105///   ::= 'arm_aapcscc'
1106///   ::= 'arm_aapcs_vfpcc'
1107///   ::= 'msp430_intrcc'
1108///   ::= 'ptx_kernel'
1109///   ::= 'ptx_device'
1110///   ::= 'spir_func'
1111///   ::= 'spir_kernel'
1112///   ::= 'cc' UINT
1113///
1114bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1115  switch (Lex.getKind()) {
1116  default:                       CC = CallingConv::C; return false;
1117  case lltok::kw_ccc:            CC = CallingConv::C; break;
1118  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1119  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1120  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1121  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1122  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1123  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1124  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1125  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1126  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1127  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1128  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1129  case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1130  case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1131  case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1132  case lltok::kw_cc: {
1133      unsigned ArbitraryCC;
1134      Lex.Lex();
1135      if (ParseUInt32(ArbitraryCC))
1136        return true;
1137      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1138      return false;
1139    }
1140  }
1141
1142  Lex.Lex();
1143  return false;
1144}
1145
1146/// ParseInstructionMetadata
1147///   ::= !dbg !42 (',' !dbg !57)*
1148bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1149                                        PerFunctionState *PFS) {
1150  do {
1151    if (Lex.getKind() != lltok::MetadataVar)
1152      return TokError("expected metadata after comma");
1153
1154    std::string Name = Lex.getStrVal();
1155    unsigned MDK = M->getMDKindID(Name);
1156    Lex.Lex();
1157
1158    MDNode *Node;
1159    SMLoc Loc = Lex.getLoc();
1160
1161    if (ParseToken(lltok::exclaim, "expected '!' here"))
1162      return true;
1163
1164    // This code is similar to that of ParseMetadataValue, however it needs to
1165    // have special-case code for a forward reference; see the comments on
1166    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1167    // at the top level here.
1168    if (Lex.getKind() == lltok::lbrace) {
1169      ValID ID;
1170      if (ParseMetadataListValue(ID, PFS))
1171        return true;
1172      assert(ID.Kind == ValID::t_MDNode);
1173      Inst->setMetadata(MDK, ID.MDNodeVal);
1174    } else {
1175      unsigned NodeID = 0;
1176      if (ParseMDNodeID(Node, NodeID))
1177        return true;
1178      if (Node) {
1179        // If we got the node, add it to the instruction.
1180        Inst->setMetadata(MDK, Node);
1181      } else {
1182        MDRef R = { Loc, MDK, NodeID };
1183        // Otherwise, remember that this should be resolved later.
1184        ForwardRefInstMetadata[Inst].push_back(R);
1185      }
1186    }
1187
1188    // If this is the end of the list, we're done.
1189  } while (EatIfPresent(lltok::comma));
1190  return false;
1191}
1192
1193/// ParseOptionalAlignment
1194///   ::= /* empty */
1195///   ::= 'align' 4
1196bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1197  Alignment = 0;
1198  if (!EatIfPresent(lltok::kw_align))
1199    return false;
1200  LocTy AlignLoc = Lex.getLoc();
1201  if (ParseUInt32(Alignment)) return true;
1202  if (!isPowerOf2_32(Alignment))
1203    return Error(AlignLoc, "alignment is not a power of two");
1204  if (Alignment > Value::MaximumAlignment)
1205    return Error(AlignLoc, "huge alignments are not supported yet");
1206  return false;
1207}
1208
1209/// ParseOptionalCommaAlign
1210///   ::=
1211///   ::= ',' align 4
1212///
1213/// This returns with AteExtraComma set to true if it ate an excess comma at the
1214/// end.
1215bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1216                                       bool &AteExtraComma) {
1217  AteExtraComma = false;
1218  while (EatIfPresent(lltok::comma)) {
1219    // Metadata at the end is an early exit.
1220    if (Lex.getKind() == lltok::MetadataVar) {
1221      AteExtraComma = true;
1222      return false;
1223    }
1224
1225    if (Lex.getKind() != lltok::kw_align)
1226      return Error(Lex.getLoc(), "expected metadata or 'align'");
1227
1228    if (ParseOptionalAlignment(Alignment)) return true;
1229  }
1230
1231  return false;
1232}
1233
1234/// ParseScopeAndOrdering
1235///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1236///   else: ::=
1237///
1238/// This sets Scope and Ordering to the parsed values.
1239bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1240                                     AtomicOrdering &Ordering) {
1241  if (!isAtomic)
1242    return false;
1243
1244  Scope = CrossThread;
1245  if (EatIfPresent(lltok::kw_singlethread))
1246    Scope = SingleThread;
1247  switch (Lex.getKind()) {
1248  default: return TokError("Expected ordering on atomic instruction");
1249  case lltok::kw_unordered: Ordering = Unordered; break;
1250  case lltok::kw_monotonic: Ordering = Monotonic; break;
1251  case lltok::kw_acquire: Ordering = Acquire; break;
1252  case lltok::kw_release: Ordering = Release; break;
1253  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1254  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1255  }
1256  Lex.Lex();
1257  return false;
1258}
1259
1260/// ParseOptionalStackAlignment
1261///   ::= /* empty */
1262///   ::= 'alignstack' '(' 4 ')'
1263bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1264  Alignment = 0;
1265  if (!EatIfPresent(lltok::kw_alignstack))
1266    return false;
1267  LocTy ParenLoc = Lex.getLoc();
1268  if (!EatIfPresent(lltok::lparen))
1269    return Error(ParenLoc, "expected '('");
1270  LocTy AlignLoc = Lex.getLoc();
1271  if (ParseUInt32(Alignment)) return true;
1272  ParenLoc = Lex.getLoc();
1273  if (!EatIfPresent(lltok::rparen))
1274    return Error(ParenLoc, "expected ')'");
1275  if (!isPowerOf2_32(Alignment))
1276    return Error(AlignLoc, "stack alignment is not a power of two");
1277  return false;
1278}
1279
1280/// ParseIndexList - This parses the index list for an insert/extractvalue
1281/// instruction.  This sets AteExtraComma in the case where we eat an extra
1282/// comma at the end of the line and find that it is followed by metadata.
1283/// Clients that don't allow metadata can call the version of this function that
1284/// only takes one argument.
1285///
1286/// ParseIndexList
1287///    ::=  (',' uint32)+
1288///
1289bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1290                              bool &AteExtraComma) {
1291  AteExtraComma = false;
1292
1293  if (Lex.getKind() != lltok::comma)
1294    return TokError("expected ',' as start of index list");
1295
1296  while (EatIfPresent(lltok::comma)) {
1297    if (Lex.getKind() == lltok::MetadataVar) {
1298      AteExtraComma = true;
1299      return false;
1300    }
1301    unsigned Idx = 0;
1302    if (ParseUInt32(Idx)) return true;
1303    Indices.push_back(Idx);
1304  }
1305
1306  return false;
1307}
1308
1309//===----------------------------------------------------------------------===//
1310// Type Parsing.
1311//===----------------------------------------------------------------------===//
1312
1313/// ParseType - Parse a type.
1314bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1315  SMLoc TypeLoc = Lex.getLoc();
1316  switch (Lex.getKind()) {
1317  default:
1318    return TokError("expected type");
1319  case lltok::Type:
1320    // Type ::= 'float' | 'void' (etc)
1321    Result = Lex.getTyVal();
1322    Lex.Lex();
1323    break;
1324  case lltok::lbrace:
1325    // Type ::= StructType
1326    if (ParseAnonStructType(Result, false))
1327      return true;
1328    break;
1329  case lltok::lsquare:
1330    // Type ::= '[' ... ']'
1331    Lex.Lex(); // eat the lsquare.
1332    if (ParseArrayVectorType(Result, false))
1333      return true;
1334    break;
1335  case lltok::less: // Either vector or packed struct.
1336    // Type ::= '<' ... '>'
1337    Lex.Lex();
1338    if (Lex.getKind() == lltok::lbrace) {
1339      if (ParseAnonStructType(Result, true) ||
1340          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1341        return true;
1342    } else if (ParseArrayVectorType(Result, true))
1343      return true;
1344    break;
1345  case lltok::LocalVar: {
1346    // Type ::= %foo
1347    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1348
1349    // If the type hasn't been defined yet, create a forward definition and
1350    // remember where that forward def'n was seen (in case it never is defined).
1351    if (Entry.first == 0) {
1352      Entry.first = StructType::create(Context, Lex.getStrVal());
1353      Entry.second = Lex.getLoc();
1354    }
1355    Result = Entry.first;
1356    Lex.Lex();
1357    break;
1358  }
1359
1360  case lltok::LocalVarID: {
1361    // Type ::= %4
1362    if (Lex.getUIntVal() >= NumberedTypes.size())
1363      NumberedTypes.resize(Lex.getUIntVal()+1);
1364    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1365
1366    // If the type hasn't been defined yet, create a forward definition and
1367    // remember where that forward def'n was seen (in case it never is defined).
1368    if (Entry.first == 0) {
1369      Entry.first = StructType::create(Context);
1370      Entry.second = Lex.getLoc();
1371    }
1372    Result = Entry.first;
1373    Lex.Lex();
1374    break;
1375  }
1376  }
1377
1378  // Parse the type suffixes.
1379  while (1) {
1380    switch (Lex.getKind()) {
1381    // End of type.
1382    default:
1383      if (!AllowVoid && Result->isVoidTy())
1384        return Error(TypeLoc, "void type only allowed for function results");
1385      return false;
1386
1387    // Type ::= Type '*'
1388    case lltok::star:
1389      if (Result->isLabelTy())
1390        return TokError("basic block pointers are invalid");
1391      if (Result->isVoidTy())
1392        return TokError("pointers to void are invalid - use i8* instead");
1393      if (!PointerType::isValidElementType(Result))
1394        return TokError("pointer to this type is invalid");
1395      Result = PointerType::getUnqual(Result);
1396      Lex.Lex();
1397      break;
1398
1399    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1400    case lltok::kw_addrspace: {
1401      if (Result->isLabelTy())
1402        return TokError("basic block pointers are invalid");
1403      if (Result->isVoidTy())
1404        return TokError("pointers to void are invalid; use i8* instead");
1405      if (!PointerType::isValidElementType(Result))
1406        return TokError("pointer to this type is invalid");
1407      unsigned AddrSpace;
1408      if (ParseOptionalAddrSpace(AddrSpace) ||
1409          ParseToken(lltok::star, "expected '*' in address space"))
1410        return true;
1411
1412      Result = PointerType::get(Result, AddrSpace);
1413      break;
1414    }
1415
1416    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1417    case lltok::lparen:
1418      if (ParseFunctionType(Result))
1419        return true;
1420      break;
1421    }
1422  }
1423}
1424
1425/// ParseParameterList
1426///    ::= '(' ')'
1427///    ::= '(' Arg (',' Arg)* ')'
1428///  Arg
1429///    ::= Type OptionalAttributes Value OptionalAttributes
1430bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1431                                  PerFunctionState &PFS) {
1432  if (ParseToken(lltok::lparen, "expected '(' in call"))
1433    return true;
1434
1435  while (Lex.getKind() != lltok::rparen) {
1436    // If this isn't the first argument, we need a comma.
1437    if (!ArgList.empty() &&
1438        ParseToken(lltok::comma, "expected ',' in argument list"))
1439      return true;
1440
1441    // Parse the argument.
1442    LocTy ArgLoc;
1443    Type *ArgTy = 0;
1444    AttrBuilder ArgAttrs;
1445    Value *V;
1446    if (ParseType(ArgTy, ArgLoc))
1447      return true;
1448
1449    // Otherwise, handle normal operands.
1450    if (ParseOptionalAttrs(ArgAttrs, 0) || ParseValue(ArgTy, V, PFS))
1451      return true;
1452    ArgList.push_back(ParamInfo(ArgLoc, V, Attributes::get(V->getContext(),
1453                                                           ArgAttrs)));
1454  }
1455
1456  Lex.Lex();  // Lex the ')'.
1457  return false;
1458}
1459
1460
1461
1462/// ParseArgumentList - Parse the argument list for a function type or function
1463/// prototype.
1464///   ::= '(' ArgTypeListI ')'
1465/// ArgTypeListI
1466///   ::= /*empty*/
1467///   ::= '...'
1468///   ::= ArgTypeList ',' '...'
1469///   ::= ArgType (',' ArgType)*
1470///
1471bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1472                                 bool &isVarArg){
1473  isVarArg = false;
1474  assert(Lex.getKind() == lltok::lparen);
1475  Lex.Lex(); // eat the (.
1476
1477  if (Lex.getKind() == lltok::rparen) {
1478    // empty
1479  } else if (Lex.getKind() == lltok::dotdotdot) {
1480    isVarArg = true;
1481    Lex.Lex();
1482  } else {
1483    LocTy TypeLoc = Lex.getLoc();
1484    Type *ArgTy = 0;
1485    AttrBuilder Attrs;
1486    std::string Name;
1487
1488    if (ParseType(ArgTy) ||
1489        ParseOptionalAttrs(Attrs, 0)) return true;
1490
1491    if (ArgTy->isVoidTy())
1492      return Error(TypeLoc, "argument can not have void type");
1493
1494    if (Lex.getKind() == lltok::LocalVar) {
1495      Name = Lex.getStrVal();
1496      Lex.Lex();
1497    }
1498
1499    if (!FunctionType::isValidArgumentType(ArgTy))
1500      return Error(TypeLoc, "invalid type for function argument");
1501
1502    ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1503                              Attributes::get(ArgTy->getContext(),
1504                                              Attrs), Name));
1505
1506    while (EatIfPresent(lltok::comma)) {
1507      // Handle ... at end of arg list.
1508      if (EatIfPresent(lltok::dotdotdot)) {
1509        isVarArg = true;
1510        break;
1511      }
1512
1513      // Otherwise must be an argument type.
1514      TypeLoc = Lex.getLoc();
1515      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1516
1517      if (ArgTy->isVoidTy())
1518        return Error(TypeLoc, "argument can not have void type");
1519
1520      if (Lex.getKind() == lltok::LocalVar) {
1521        Name = Lex.getStrVal();
1522        Lex.Lex();
1523      } else {
1524        Name = "";
1525      }
1526
1527      if (!ArgTy->isFirstClassType())
1528        return Error(TypeLoc, "invalid type for function argument");
1529
1530      ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1531                                Attributes::get(ArgTy->getContext(), Attrs),
1532                                Name));
1533    }
1534  }
1535
1536  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1537}
1538
1539/// ParseFunctionType
1540///  ::= Type ArgumentList OptionalAttrs
1541bool LLParser::ParseFunctionType(Type *&Result) {
1542  assert(Lex.getKind() == lltok::lparen);
1543
1544  if (!FunctionType::isValidReturnType(Result))
1545    return TokError("invalid function return type");
1546
1547  SmallVector<ArgInfo, 8> ArgList;
1548  bool isVarArg;
1549  if (ParseArgumentList(ArgList, isVarArg))
1550    return true;
1551
1552  // Reject names on the arguments lists.
1553  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1554    if (!ArgList[i].Name.empty())
1555      return Error(ArgList[i].Loc, "argument name invalid in function type");
1556    if (ArgList[i].Attrs.hasAttributes())
1557      return Error(ArgList[i].Loc,
1558                   "argument attributes invalid in function type");
1559  }
1560
1561  SmallVector<Type*, 16> ArgListTy;
1562  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1563    ArgListTy.push_back(ArgList[i].Ty);
1564
1565  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1566  return false;
1567}
1568
1569/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1570/// other structs.
1571bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1572  SmallVector<Type*, 8> Elts;
1573  if (ParseStructBody(Elts)) return true;
1574
1575  Result = StructType::get(Context, Elts, Packed);
1576  return false;
1577}
1578
1579/// ParseStructDefinition - Parse a struct in a 'type' definition.
1580bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1581                                     std::pair<Type*, LocTy> &Entry,
1582                                     Type *&ResultTy) {
1583  // If the type was already defined, diagnose the redefinition.
1584  if (Entry.first && !Entry.second.isValid())
1585    return Error(TypeLoc, "redefinition of type");
1586
1587  // If we have opaque, just return without filling in the definition for the
1588  // struct.  This counts as a definition as far as the .ll file goes.
1589  if (EatIfPresent(lltok::kw_opaque)) {
1590    // This type is being defined, so clear the location to indicate this.
1591    Entry.second = SMLoc();
1592
1593    // If this type number has never been uttered, create it.
1594    if (Entry.first == 0)
1595      Entry.first = StructType::create(Context, Name);
1596    ResultTy = Entry.first;
1597    return false;
1598  }
1599
1600  // If the type starts with '<', then it is either a packed struct or a vector.
1601  bool isPacked = EatIfPresent(lltok::less);
1602
1603  // If we don't have a struct, then we have a random type alias, which we
1604  // accept for compatibility with old files.  These types are not allowed to be
1605  // forward referenced and not allowed to be recursive.
1606  if (Lex.getKind() != lltok::lbrace) {
1607    if (Entry.first)
1608      return Error(TypeLoc, "forward references to non-struct type");
1609
1610    ResultTy = 0;
1611    if (isPacked)
1612      return ParseArrayVectorType(ResultTy, true);
1613    return ParseType(ResultTy);
1614  }
1615
1616  // This type is being defined, so clear the location to indicate this.
1617  Entry.second = SMLoc();
1618
1619  // If this type number has never been uttered, create it.
1620  if (Entry.first == 0)
1621    Entry.first = StructType::create(Context, Name);
1622
1623  StructType *STy = cast<StructType>(Entry.first);
1624
1625  SmallVector<Type*, 8> Body;
1626  if (ParseStructBody(Body) ||
1627      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1628    return true;
1629
1630  STy->setBody(Body, isPacked);
1631  ResultTy = STy;
1632  return false;
1633}
1634
1635
1636/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1637///   StructType
1638///     ::= '{' '}'
1639///     ::= '{' Type (',' Type)* '}'
1640///     ::= '<' '{' '}' '>'
1641///     ::= '<' '{' Type (',' Type)* '}' '>'
1642bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1643  assert(Lex.getKind() == lltok::lbrace);
1644  Lex.Lex(); // Consume the '{'
1645
1646  // Handle the empty struct.
1647  if (EatIfPresent(lltok::rbrace))
1648    return false;
1649
1650  LocTy EltTyLoc = Lex.getLoc();
1651  Type *Ty = 0;
1652  if (ParseType(Ty)) return true;
1653  Body.push_back(Ty);
1654
1655  if (!StructType::isValidElementType(Ty))
1656    return Error(EltTyLoc, "invalid element type for struct");
1657
1658  while (EatIfPresent(lltok::comma)) {
1659    EltTyLoc = Lex.getLoc();
1660    if (ParseType(Ty)) return true;
1661
1662    if (!StructType::isValidElementType(Ty))
1663      return Error(EltTyLoc, "invalid element type for struct");
1664
1665    Body.push_back(Ty);
1666  }
1667
1668  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1669}
1670
1671/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1672/// token has already been consumed.
1673///   Type
1674///     ::= '[' APSINTVAL 'x' Types ']'
1675///     ::= '<' APSINTVAL 'x' Types '>'
1676bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1677  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1678      Lex.getAPSIntVal().getBitWidth() > 64)
1679    return TokError("expected number in address space");
1680
1681  LocTy SizeLoc = Lex.getLoc();
1682  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1683  Lex.Lex();
1684
1685  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1686      return true;
1687
1688  LocTy TypeLoc = Lex.getLoc();
1689  Type *EltTy = 0;
1690  if (ParseType(EltTy)) return true;
1691
1692  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1693                 "expected end of sequential type"))
1694    return true;
1695
1696  if (isVector) {
1697    if (Size == 0)
1698      return Error(SizeLoc, "zero element vector is illegal");
1699    if ((unsigned)Size != Size)
1700      return Error(SizeLoc, "size too large for vector");
1701    if (!VectorType::isValidElementType(EltTy))
1702      return Error(TypeLoc,
1703       "vector element type must be fp, integer or a pointer to these types");
1704    Result = VectorType::get(EltTy, unsigned(Size));
1705  } else {
1706    if (!ArrayType::isValidElementType(EltTy))
1707      return Error(TypeLoc, "invalid array element type");
1708    Result = ArrayType::get(EltTy, Size);
1709  }
1710  return false;
1711}
1712
1713//===----------------------------------------------------------------------===//
1714// Function Semantic Analysis.
1715//===----------------------------------------------------------------------===//
1716
1717LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1718                                             int functionNumber)
1719  : P(p), F(f), FunctionNumber(functionNumber) {
1720
1721  // Insert unnamed arguments into the NumberedVals list.
1722  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1723       AI != E; ++AI)
1724    if (!AI->hasName())
1725      NumberedVals.push_back(AI);
1726}
1727
1728LLParser::PerFunctionState::~PerFunctionState() {
1729  // If there were any forward referenced non-basicblock values, delete them.
1730  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1731       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1732    if (!isa<BasicBlock>(I->second.first)) {
1733      I->second.first->replaceAllUsesWith(
1734                           UndefValue::get(I->second.first->getType()));
1735      delete I->second.first;
1736      I->second.first = 0;
1737    }
1738
1739  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1740       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1741    if (!isa<BasicBlock>(I->second.first)) {
1742      I->second.first->replaceAllUsesWith(
1743                           UndefValue::get(I->second.first->getType()));
1744      delete I->second.first;
1745      I->second.first = 0;
1746    }
1747}
1748
1749bool LLParser::PerFunctionState::FinishFunction() {
1750  // Check to see if someone took the address of labels in this block.
1751  if (!P.ForwardRefBlockAddresses.empty()) {
1752    ValID FunctionID;
1753    if (!F.getName().empty()) {
1754      FunctionID.Kind = ValID::t_GlobalName;
1755      FunctionID.StrVal = F.getName();
1756    } else {
1757      FunctionID.Kind = ValID::t_GlobalID;
1758      FunctionID.UIntVal = FunctionNumber;
1759    }
1760
1761    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1762      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1763    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1764      // Resolve all these references.
1765      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1766        return true;
1767
1768      P.ForwardRefBlockAddresses.erase(FRBAI);
1769    }
1770  }
1771
1772  if (!ForwardRefVals.empty())
1773    return P.Error(ForwardRefVals.begin()->second.second,
1774                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1775                   "'");
1776  if (!ForwardRefValIDs.empty())
1777    return P.Error(ForwardRefValIDs.begin()->second.second,
1778                   "use of undefined value '%" +
1779                   Twine(ForwardRefValIDs.begin()->first) + "'");
1780  return false;
1781}
1782
1783
1784/// GetVal - Get a value with the specified name or ID, creating a
1785/// forward reference record if needed.  This can return null if the value
1786/// exists but does not have the right type.
1787Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1788                                          Type *Ty, LocTy Loc) {
1789  // Look this name up in the normal function symbol table.
1790  Value *Val = F.getValueSymbolTable().lookup(Name);
1791
1792  // If this is a forward reference for the value, see if we already created a
1793  // forward ref record.
1794  if (Val == 0) {
1795    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1796      I = ForwardRefVals.find(Name);
1797    if (I != ForwardRefVals.end())
1798      Val = I->second.first;
1799  }
1800
1801  // If we have the value in the symbol table or fwd-ref table, return it.
1802  if (Val) {
1803    if (Val->getType() == Ty) return Val;
1804    if (Ty->isLabelTy())
1805      P.Error(Loc, "'%" + Name + "' is not a basic block");
1806    else
1807      P.Error(Loc, "'%" + Name + "' defined with type '" +
1808              getTypeString(Val->getType()) + "'");
1809    return 0;
1810  }
1811
1812  // Don't make placeholders with invalid type.
1813  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1814    P.Error(Loc, "invalid use of a non-first-class type");
1815    return 0;
1816  }
1817
1818  // Otherwise, create a new forward reference for this value and remember it.
1819  Value *FwdVal;
1820  if (Ty->isLabelTy())
1821    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1822  else
1823    FwdVal = new Argument(Ty, Name);
1824
1825  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1826  return FwdVal;
1827}
1828
1829Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1830                                          LocTy Loc) {
1831  // Look this name up in the normal function symbol table.
1832  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1833
1834  // If this is a forward reference for the value, see if we already created a
1835  // forward ref record.
1836  if (Val == 0) {
1837    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1838      I = ForwardRefValIDs.find(ID);
1839    if (I != ForwardRefValIDs.end())
1840      Val = I->second.first;
1841  }
1842
1843  // If we have the value in the symbol table or fwd-ref table, return it.
1844  if (Val) {
1845    if (Val->getType() == Ty) return Val;
1846    if (Ty->isLabelTy())
1847      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1848    else
1849      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1850              getTypeString(Val->getType()) + "'");
1851    return 0;
1852  }
1853
1854  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1855    P.Error(Loc, "invalid use of a non-first-class type");
1856    return 0;
1857  }
1858
1859  // Otherwise, create a new forward reference for this value and remember it.
1860  Value *FwdVal;
1861  if (Ty->isLabelTy())
1862    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1863  else
1864    FwdVal = new Argument(Ty);
1865
1866  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1867  return FwdVal;
1868}
1869
1870/// SetInstName - After an instruction is parsed and inserted into its
1871/// basic block, this installs its name.
1872bool LLParser::PerFunctionState::SetInstName(int NameID,
1873                                             const std::string &NameStr,
1874                                             LocTy NameLoc, Instruction *Inst) {
1875  // If this instruction has void type, it cannot have a name or ID specified.
1876  if (Inst->getType()->isVoidTy()) {
1877    if (NameID != -1 || !NameStr.empty())
1878      return P.Error(NameLoc, "instructions returning void cannot have a name");
1879    return false;
1880  }
1881
1882  // If this was a numbered instruction, verify that the instruction is the
1883  // expected value and resolve any forward references.
1884  if (NameStr.empty()) {
1885    // If neither a name nor an ID was specified, just use the next ID.
1886    if (NameID == -1)
1887      NameID = NumberedVals.size();
1888
1889    if (unsigned(NameID) != NumberedVals.size())
1890      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1891                     Twine(NumberedVals.size()) + "'");
1892
1893    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1894      ForwardRefValIDs.find(NameID);
1895    if (FI != ForwardRefValIDs.end()) {
1896      if (FI->second.first->getType() != Inst->getType())
1897        return P.Error(NameLoc, "instruction forward referenced with type '" +
1898                       getTypeString(FI->second.first->getType()) + "'");
1899      FI->second.first->replaceAllUsesWith(Inst);
1900      delete FI->second.first;
1901      ForwardRefValIDs.erase(FI);
1902    }
1903
1904    NumberedVals.push_back(Inst);
1905    return false;
1906  }
1907
1908  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1909  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1910    FI = ForwardRefVals.find(NameStr);
1911  if (FI != ForwardRefVals.end()) {
1912    if (FI->second.first->getType() != Inst->getType())
1913      return P.Error(NameLoc, "instruction forward referenced with type '" +
1914                     getTypeString(FI->second.first->getType()) + "'");
1915    FI->second.first->replaceAllUsesWith(Inst);
1916    delete FI->second.first;
1917    ForwardRefVals.erase(FI);
1918  }
1919
1920  // Set the name on the instruction.
1921  Inst->setName(NameStr);
1922
1923  if (Inst->getName() != NameStr)
1924    return P.Error(NameLoc, "multiple definition of local value named '" +
1925                   NameStr + "'");
1926  return false;
1927}
1928
1929/// GetBB - Get a basic block with the specified name or ID, creating a
1930/// forward reference record if needed.
1931BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1932                                              LocTy Loc) {
1933  return cast_or_null<BasicBlock>(GetVal(Name,
1934                                        Type::getLabelTy(F.getContext()), Loc));
1935}
1936
1937BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1938  return cast_or_null<BasicBlock>(GetVal(ID,
1939                                        Type::getLabelTy(F.getContext()), Loc));
1940}
1941
1942/// DefineBB - Define the specified basic block, which is either named or
1943/// unnamed.  If there is an error, this returns null otherwise it returns
1944/// the block being defined.
1945BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1946                                                 LocTy Loc) {
1947  BasicBlock *BB;
1948  if (Name.empty())
1949    BB = GetBB(NumberedVals.size(), Loc);
1950  else
1951    BB = GetBB(Name, Loc);
1952  if (BB == 0) return 0; // Already diagnosed error.
1953
1954  // Move the block to the end of the function.  Forward ref'd blocks are
1955  // inserted wherever they happen to be referenced.
1956  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1957
1958  // Remove the block from forward ref sets.
1959  if (Name.empty()) {
1960    ForwardRefValIDs.erase(NumberedVals.size());
1961    NumberedVals.push_back(BB);
1962  } else {
1963    // BB forward references are already in the function symbol table.
1964    ForwardRefVals.erase(Name);
1965  }
1966
1967  return BB;
1968}
1969
1970//===----------------------------------------------------------------------===//
1971// Constants.
1972//===----------------------------------------------------------------------===//
1973
1974/// ParseValID - Parse an abstract value that doesn't necessarily have a
1975/// type implied.  For example, if we parse "4" we don't know what integer type
1976/// it has.  The value will later be combined with its type and checked for
1977/// sanity.  PFS is used to convert function-local operands of metadata (since
1978/// metadata operands are not just parsed here but also converted to values).
1979/// PFS can be null when we are not parsing metadata values inside a function.
1980bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1981  ID.Loc = Lex.getLoc();
1982  switch (Lex.getKind()) {
1983  default: return TokError("expected value token");
1984  case lltok::GlobalID:  // @42
1985    ID.UIntVal = Lex.getUIntVal();
1986    ID.Kind = ValID::t_GlobalID;
1987    break;
1988  case lltok::GlobalVar:  // @foo
1989    ID.StrVal = Lex.getStrVal();
1990    ID.Kind = ValID::t_GlobalName;
1991    break;
1992  case lltok::LocalVarID:  // %42
1993    ID.UIntVal = Lex.getUIntVal();
1994    ID.Kind = ValID::t_LocalID;
1995    break;
1996  case lltok::LocalVar:  // %foo
1997    ID.StrVal = Lex.getStrVal();
1998    ID.Kind = ValID::t_LocalName;
1999    break;
2000  case lltok::exclaim:   // !42, !{...}, or !"foo"
2001    return ParseMetadataValue(ID, PFS);
2002  case lltok::APSInt:
2003    ID.APSIntVal = Lex.getAPSIntVal();
2004    ID.Kind = ValID::t_APSInt;
2005    break;
2006  case lltok::APFloat:
2007    ID.APFloatVal = Lex.getAPFloatVal();
2008    ID.Kind = ValID::t_APFloat;
2009    break;
2010  case lltok::kw_true:
2011    ID.ConstantVal = ConstantInt::getTrue(Context);
2012    ID.Kind = ValID::t_Constant;
2013    break;
2014  case lltok::kw_false:
2015    ID.ConstantVal = ConstantInt::getFalse(Context);
2016    ID.Kind = ValID::t_Constant;
2017    break;
2018  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2019  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2020  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2021
2022  case lltok::lbrace: {
2023    // ValID ::= '{' ConstVector '}'
2024    Lex.Lex();
2025    SmallVector<Constant*, 16> Elts;
2026    if (ParseGlobalValueVector(Elts) ||
2027        ParseToken(lltok::rbrace, "expected end of struct constant"))
2028      return true;
2029
2030    ID.ConstantStructElts = new Constant*[Elts.size()];
2031    ID.UIntVal = Elts.size();
2032    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2033    ID.Kind = ValID::t_ConstantStruct;
2034    return false;
2035  }
2036  case lltok::less: {
2037    // ValID ::= '<' ConstVector '>'         --> Vector.
2038    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2039    Lex.Lex();
2040    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2041
2042    SmallVector<Constant*, 16> Elts;
2043    LocTy FirstEltLoc = Lex.getLoc();
2044    if (ParseGlobalValueVector(Elts) ||
2045        (isPackedStruct &&
2046         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2047        ParseToken(lltok::greater, "expected end of constant"))
2048      return true;
2049
2050    if (isPackedStruct) {
2051      ID.ConstantStructElts = new Constant*[Elts.size()];
2052      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2053      ID.UIntVal = Elts.size();
2054      ID.Kind = ValID::t_PackedConstantStruct;
2055      return false;
2056    }
2057
2058    if (Elts.empty())
2059      return Error(ID.Loc, "constant vector must not be empty");
2060
2061    if (!Elts[0]->getType()->isIntegerTy() &&
2062        !Elts[0]->getType()->isFloatingPointTy() &&
2063        !Elts[0]->getType()->isPointerTy())
2064      return Error(FirstEltLoc,
2065            "vector elements must have integer, pointer or floating point type");
2066
2067    // Verify that all the vector elements have the same type.
2068    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2069      if (Elts[i]->getType() != Elts[0]->getType())
2070        return Error(FirstEltLoc,
2071                     "vector element #" + Twine(i) +
2072                    " is not of type '" + getTypeString(Elts[0]->getType()));
2073
2074    ID.ConstantVal = ConstantVector::get(Elts);
2075    ID.Kind = ValID::t_Constant;
2076    return false;
2077  }
2078  case lltok::lsquare: {   // Array Constant
2079    Lex.Lex();
2080    SmallVector<Constant*, 16> Elts;
2081    LocTy FirstEltLoc = Lex.getLoc();
2082    if (ParseGlobalValueVector(Elts) ||
2083        ParseToken(lltok::rsquare, "expected end of array constant"))
2084      return true;
2085
2086    // Handle empty element.
2087    if (Elts.empty()) {
2088      // Use undef instead of an array because it's inconvenient to determine
2089      // the element type at this point, there being no elements to examine.
2090      ID.Kind = ValID::t_EmptyArray;
2091      return false;
2092    }
2093
2094    if (!Elts[0]->getType()->isFirstClassType())
2095      return Error(FirstEltLoc, "invalid array element type: " +
2096                   getTypeString(Elts[0]->getType()));
2097
2098    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2099
2100    // Verify all elements are correct type!
2101    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2102      if (Elts[i]->getType() != Elts[0]->getType())
2103        return Error(FirstEltLoc,
2104                     "array element #" + Twine(i) +
2105                     " is not of type '" + getTypeString(Elts[0]->getType()));
2106    }
2107
2108    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2109    ID.Kind = ValID::t_Constant;
2110    return false;
2111  }
2112  case lltok::kw_c:  // c "foo"
2113    Lex.Lex();
2114    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2115                                                  false);
2116    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2117    ID.Kind = ValID::t_Constant;
2118    return false;
2119
2120  case lltok::kw_asm: {
2121    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2122    bool HasSideEffect, AlignStack, AsmDialect;
2123    Lex.Lex();
2124    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2125        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2126        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2127        ParseStringConstant(ID.StrVal) ||
2128        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2129        ParseToken(lltok::StringConstant, "expected constraint string"))
2130      return true;
2131    ID.StrVal2 = Lex.getStrVal();
2132    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2133      (unsigned(AsmDialect)<<2);
2134    ID.Kind = ValID::t_InlineAsm;
2135    return false;
2136  }
2137
2138  case lltok::kw_blockaddress: {
2139    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2140    Lex.Lex();
2141
2142    ValID Fn, Label;
2143    LocTy FnLoc, LabelLoc;
2144
2145    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2146        ParseValID(Fn) ||
2147        ParseToken(lltok::comma, "expected comma in block address expression")||
2148        ParseValID(Label) ||
2149        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2150      return true;
2151
2152    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2153      return Error(Fn.Loc, "expected function name in blockaddress");
2154    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2155      return Error(Label.Loc, "expected basic block name in blockaddress");
2156
2157    // Make a global variable as a placeholder for this reference.
2158    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2159                                           false, GlobalValue::InternalLinkage,
2160                                                0, "");
2161    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2162    ID.ConstantVal = FwdRef;
2163    ID.Kind = ValID::t_Constant;
2164    return false;
2165  }
2166
2167  case lltok::kw_trunc:
2168  case lltok::kw_zext:
2169  case lltok::kw_sext:
2170  case lltok::kw_fptrunc:
2171  case lltok::kw_fpext:
2172  case lltok::kw_bitcast:
2173  case lltok::kw_uitofp:
2174  case lltok::kw_sitofp:
2175  case lltok::kw_fptoui:
2176  case lltok::kw_fptosi:
2177  case lltok::kw_inttoptr:
2178  case lltok::kw_ptrtoint: {
2179    unsigned Opc = Lex.getUIntVal();
2180    Type *DestTy = 0;
2181    Constant *SrcVal;
2182    Lex.Lex();
2183    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2184        ParseGlobalTypeAndValue(SrcVal) ||
2185        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2186        ParseType(DestTy) ||
2187        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2188      return true;
2189    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2190      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2191                   getTypeString(SrcVal->getType()) + "' to '" +
2192                   getTypeString(DestTy) + "'");
2193    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2194                                                 SrcVal, DestTy);
2195    ID.Kind = ValID::t_Constant;
2196    return false;
2197  }
2198  case lltok::kw_extractvalue: {
2199    Lex.Lex();
2200    Constant *Val;
2201    SmallVector<unsigned, 4> Indices;
2202    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2203        ParseGlobalTypeAndValue(Val) ||
2204        ParseIndexList(Indices) ||
2205        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2206      return true;
2207
2208    if (!Val->getType()->isAggregateType())
2209      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2210    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2211      return Error(ID.Loc, "invalid indices for extractvalue");
2212    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2213    ID.Kind = ValID::t_Constant;
2214    return false;
2215  }
2216  case lltok::kw_insertvalue: {
2217    Lex.Lex();
2218    Constant *Val0, *Val1;
2219    SmallVector<unsigned, 4> Indices;
2220    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2221        ParseGlobalTypeAndValue(Val0) ||
2222        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2223        ParseGlobalTypeAndValue(Val1) ||
2224        ParseIndexList(Indices) ||
2225        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2226      return true;
2227    if (!Val0->getType()->isAggregateType())
2228      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2229    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2230      return Error(ID.Loc, "invalid indices for insertvalue");
2231    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2232    ID.Kind = ValID::t_Constant;
2233    return false;
2234  }
2235  case lltok::kw_icmp:
2236  case lltok::kw_fcmp: {
2237    unsigned PredVal, Opc = Lex.getUIntVal();
2238    Constant *Val0, *Val1;
2239    Lex.Lex();
2240    if (ParseCmpPredicate(PredVal, Opc) ||
2241        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2242        ParseGlobalTypeAndValue(Val0) ||
2243        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2244        ParseGlobalTypeAndValue(Val1) ||
2245        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2246      return true;
2247
2248    if (Val0->getType() != Val1->getType())
2249      return Error(ID.Loc, "compare operands must have the same type");
2250
2251    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2252
2253    if (Opc == Instruction::FCmp) {
2254      if (!Val0->getType()->isFPOrFPVectorTy())
2255        return Error(ID.Loc, "fcmp requires floating point operands");
2256      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2257    } else {
2258      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2259      if (!Val0->getType()->isIntOrIntVectorTy() &&
2260          !Val0->getType()->getScalarType()->isPointerTy())
2261        return Error(ID.Loc, "icmp requires pointer or integer operands");
2262      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2263    }
2264    ID.Kind = ValID::t_Constant;
2265    return false;
2266  }
2267
2268  // Binary Operators.
2269  case lltok::kw_add:
2270  case lltok::kw_fadd:
2271  case lltok::kw_sub:
2272  case lltok::kw_fsub:
2273  case lltok::kw_mul:
2274  case lltok::kw_fmul:
2275  case lltok::kw_udiv:
2276  case lltok::kw_sdiv:
2277  case lltok::kw_fdiv:
2278  case lltok::kw_urem:
2279  case lltok::kw_srem:
2280  case lltok::kw_frem:
2281  case lltok::kw_shl:
2282  case lltok::kw_lshr:
2283  case lltok::kw_ashr: {
2284    bool NUW = false;
2285    bool NSW = false;
2286    bool Exact = false;
2287    unsigned Opc = Lex.getUIntVal();
2288    Constant *Val0, *Val1;
2289    Lex.Lex();
2290    LocTy ModifierLoc = Lex.getLoc();
2291    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2292        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2293      if (EatIfPresent(lltok::kw_nuw))
2294        NUW = true;
2295      if (EatIfPresent(lltok::kw_nsw)) {
2296        NSW = true;
2297        if (EatIfPresent(lltok::kw_nuw))
2298          NUW = true;
2299      }
2300    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2301               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2302      if (EatIfPresent(lltok::kw_exact))
2303        Exact = true;
2304    }
2305    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2306        ParseGlobalTypeAndValue(Val0) ||
2307        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2308        ParseGlobalTypeAndValue(Val1) ||
2309        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2310      return true;
2311    if (Val0->getType() != Val1->getType())
2312      return Error(ID.Loc, "operands of constexpr must have same type");
2313    if (!Val0->getType()->isIntOrIntVectorTy()) {
2314      if (NUW)
2315        return Error(ModifierLoc, "nuw only applies to integer operations");
2316      if (NSW)
2317        return Error(ModifierLoc, "nsw only applies to integer operations");
2318    }
2319    // Check that the type is valid for the operator.
2320    switch (Opc) {
2321    case Instruction::Add:
2322    case Instruction::Sub:
2323    case Instruction::Mul:
2324    case Instruction::UDiv:
2325    case Instruction::SDiv:
2326    case Instruction::URem:
2327    case Instruction::SRem:
2328    case Instruction::Shl:
2329    case Instruction::AShr:
2330    case Instruction::LShr:
2331      if (!Val0->getType()->isIntOrIntVectorTy())
2332        return Error(ID.Loc, "constexpr requires integer operands");
2333      break;
2334    case Instruction::FAdd:
2335    case Instruction::FSub:
2336    case Instruction::FMul:
2337    case Instruction::FDiv:
2338    case Instruction::FRem:
2339      if (!Val0->getType()->isFPOrFPVectorTy())
2340        return Error(ID.Loc, "constexpr requires fp operands");
2341      break;
2342    default: llvm_unreachable("Unknown binary operator!");
2343    }
2344    unsigned Flags = 0;
2345    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2346    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2347    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2348    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2349    ID.ConstantVal = C;
2350    ID.Kind = ValID::t_Constant;
2351    return false;
2352  }
2353
2354  // Logical Operations
2355  case lltok::kw_and:
2356  case lltok::kw_or:
2357  case lltok::kw_xor: {
2358    unsigned Opc = Lex.getUIntVal();
2359    Constant *Val0, *Val1;
2360    Lex.Lex();
2361    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2362        ParseGlobalTypeAndValue(Val0) ||
2363        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2364        ParseGlobalTypeAndValue(Val1) ||
2365        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2366      return true;
2367    if (Val0->getType() != Val1->getType())
2368      return Error(ID.Loc, "operands of constexpr must have same type");
2369    if (!Val0->getType()->isIntOrIntVectorTy())
2370      return Error(ID.Loc,
2371                   "constexpr requires integer or integer vector operands");
2372    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2373    ID.Kind = ValID::t_Constant;
2374    return false;
2375  }
2376
2377  case lltok::kw_getelementptr:
2378  case lltok::kw_shufflevector:
2379  case lltok::kw_insertelement:
2380  case lltok::kw_extractelement:
2381  case lltok::kw_select: {
2382    unsigned Opc = Lex.getUIntVal();
2383    SmallVector<Constant*, 16> Elts;
2384    bool InBounds = false;
2385    Lex.Lex();
2386    if (Opc == Instruction::GetElementPtr)
2387      InBounds = EatIfPresent(lltok::kw_inbounds);
2388    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2389        ParseGlobalValueVector(Elts) ||
2390        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2391      return true;
2392
2393    if (Opc == Instruction::GetElementPtr) {
2394      if (Elts.size() == 0 ||
2395          !Elts[0]->getType()->getScalarType()->isPointerTy())
2396        return Error(ID.Loc, "getelementptr requires pointer operand");
2397
2398      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2399      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2400        return Error(ID.Loc, "invalid indices for getelementptr");
2401      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2402                                                      InBounds);
2403    } else if (Opc == Instruction::Select) {
2404      if (Elts.size() != 3)
2405        return Error(ID.Loc, "expected three operands to select");
2406      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2407                                                              Elts[2]))
2408        return Error(ID.Loc, Reason);
2409      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2410    } else if (Opc == Instruction::ShuffleVector) {
2411      if (Elts.size() != 3)
2412        return Error(ID.Loc, "expected three operands to shufflevector");
2413      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2414        return Error(ID.Loc, "invalid operands to shufflevector");
2415      ID.ConstantVal =
2416                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2417    } else if (Opc == Instruction::ExtractElement) {
2418      if (Elts.size() != 2)
2419        return Error(ID.Loc, "expected two operands to extractelement");
2420      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2421        return Error(ID.Loc, "invalid extractelement operands");
2422      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2423    } else {
2424      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2425      if (Elts.size() != 3)
2426      return Error(ID.Loc, "expected three operands to insertelement");
2427      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2428        return Error(ID.Loc, "invalid insertelement operands");
2429      ID.ConstantVal =
2430                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2431    }
2432
2433    ID.Kind = ValID::t_Constant;
2434    return false;
2435  }
2436  }
2437
2438  Lex.Lex();
2439  return false;
2440}
2441
2442/// ParseGlobalValue - Parse a global value with the specified type.
2443bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2444  C = 0;
2445  ValID ID;
2446  Value *V = NULL;
2447  bool Parsed = ParseValID(ID) ||
2448                ConvertValIDToValue(Ty, ID, V, NULL);
2449  if (V && !(C = dyn_cast<Constant>(V)))
2450    return Error(ID.Loc, "global values must be constants");
2451  return Parsed;
2452}
2453
2454bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2455  Type *Ty = 0;
2456  return ParseType(Ty) ||
2457         ParseGlobalValue(Ty, V);
2458}
2459
2460/// ParseGlobalValueVector
2461///   ::= /*empty*/
2462///   ::= TypeAndValue (',' TypeAndValue)*
2463bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2464  // Empty list.
2465  if (Lex.getKind() == lltok::rbrace ||
2466      Lex.getKind() == lltok::rsquare ||
2467      Lex.getKind() == lltok::greater ||
2468      Lex.getKind() == lltok::rparen)
2469    return false;
2470
2471  Constant *C;
2472  if (ParseGlobalTypeAndValue(C)) return true;
2473  Elts.push_back(C);
2474
2475  while (EatIfPresent(lltok::comma)) {
2476    if (ParseGlobalTypeAndValue(C)) return true;
2477    Elts.push_back(C);
2478  }
2479
2480  return false;
2481}
2482
2483bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2484  assert(Lex.getKind() == lltok::lbrace);
2485  Lex.Lex();
2486
2487  SmallVector<Value*, 16> Elts;
2488  if (ParseMDNodeVector(Elts, PFS) ||
2489      ParseToken(lltok::rbrace, "expected end of metadata node"))
2490    return true;
2491
2492  ID.MDNodeVal = MDNode::get(Context, Elts);
2493  ID.Kind = ValID::t_MDNode;
2494  return false;
2495}
2496
2497/// ParseMetadataValue
2498///  ::= !42
2499///  ::= !{...}
2500///  ::= !"string"
2501bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2502  assert(Lex.getKind() == lltok::exclaim);
2503  Lex.Lex();
2504
2505  // MDNode:
2506  // !{ ... }
2507  if (Lex.getKind() == lltok::lbrace)
2508    return ParseMetadataListValue(ID, PFS);
2509
2510  // Standalone metadata reference
2511  // !42
2512  if (Lex.getKind() == lltok::APSInt) {
2513    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2514    ID.Kind = ValID::t_MDNode;
2515    return false;
2516  }
2517
2518  // MDString:
2519  //   ::= '!' STRINGCONSTANT
2520  if (ParseMDString(ID.MDStringVal)) return true;
2521  ID.Kind = ValID::t_MDString;
2522  return false;
2523}
2524
2525
2526//===----------------------------------------------------------------------===//
2527// Function Parsing.
2528//===----------------------------------------------------------------------===//
2529
2530bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2531                                   PerFunctionState *PFS) {
2532  if (Ty->isFunctionTy())
2533    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2534
2535  switch (ID.Kind) {
2536  case ValID::t_LocalID:
2537    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2538    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2539    return (V == 0);
2540  case ValID::t_LocalName:
2541    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2542    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2543    return (V == 0);
2544  case ValID::t_InlineAsm: {
2545    PointerType *PTy = dyn_cast<PointerType>(Ty);
2546    FunctionType *FTy =
2547      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2548    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2549      return Error(ID.Loc, "invalid type for inline asm constraint string");
2550    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2551                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2552    return false;
2553  }
2554  case ValID::t_MDNode:
2555    if (!Ty->isMetadataTy())
2556      return Error(ID.Loc, "metadata value must have metadata type");
2557    V = ID.MDNodeVal;
2558    return false;
2559  case ValID::t_MDString:
2560    if (!Ty->isMetadataTy())
2561      return Error(ID.Loc, "metadata value must have metadata type");
2562    V = ID.MDStringVal;
2563    return false;
2564  case ValID::t_GlobalName:
2565    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2566    return V == 0;
2567  case ValID::t_GlobalID:
2568    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2569    return V == 0;
2570  case ValID::t_APSInt:
2571    if (!Ty->isIntegerTy())
2572      return Error(ID.Loc, "integer constant must have integer type");
2573    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2574    V = ConstantInt::get(Context, ID.APSIntVal);
2575    return false;
2576  case ValID::t_APFloat:
2577    if (!Ty->isFloatingPointTy() ||
2578        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2579      return Error(ID.Loc, "floating point constant invalid for type");
2580
2581    // The lexer has no type info, so builds all half, float, and double FP
2582    // constants as double.  Fix this here.  Long double does not need this.
2583    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2584      bool Ignored;
2585      if (Ty->isHalfTy())
2586        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2587                              &Ignored);
2588      else if (Ty->isFloatTy())
2589        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2590                              &Ignored);
2591    }
2592    V = ConstantFP::get(Context, ID.APFloatVal);
2593
2594    if (V->getType() != Ty)
2595      return Error(ID.Loc, "floating point constant does not have type '" +
2596                   getTypeString(Ty) + "'");
2597
2598    return false;
2599  case ValID::t_Null:
2600    if (!Ty->isPointerTy())
2601      return Error(ID.Loc, "null must be a pointer type");
2602    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2603    return false;
2604  case ValID::t_Undef:
2605    // FIXME: LabelTy should not be a first-class type.
2606    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2607      return Error(ID.Loc, "invalid type for undef constant");
2608    V = UndefValue::get(Ty);
2609    return false;
2610  case ValID::t_EmptyArray:
2611    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2612      return Error(ID.Loc, "invalid empty array initializer");
2613    V = UndefValue::get(Ty);
2614    return false;
2615  case ValID::t_Zero:
2616    // FIXME: LabelTy should not be a first-class type.
2617    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2618      return Error(ID.Loc, "invalid type for null constant");
2619    V = Constant::getNullValue(Ty);
2620    return false;
2621  case ValID::t_Constant:
2622    if (ID.ConstantVal->getType() != Ty)
2623      return Error(ID.Loc, "constant expression type mismatch");
2624
2625    V = ID.ConstantVal;
2626    return false;
2627  case ValID::t_ConstantStruct:
2628  case ValID::t_PackedConstantStruct:
2629    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2630      if (ST->getNumElements() != ID.UIntVal)
2631        return Error(ID.Loc,
2632                     "initializer with struct type has wrong # elements");
2633      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2634        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2635
2636      // Verify that the elements are compatible with the structtype.
2637      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2638        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2639          return Error(ID.Loc, "element " + Twine(i) +
2640                    " of struct initializer doesn't match struct element type");
2641
2642      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2643                                               ID.UIntVal));
2644    } else
2645      return Error(ID.Loc, "constant expression type mismatch");
2646    return false;
2647  }
2648  llvm_unreachable("Invalid ValID");
2649}
2650
2651bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2652  V = 0;
2653  ValID ID;
2654  return ParseValID(ID, PFS) ||
2655         ConvertValIDToValue(Ty, ID, V, PFS);
2656}
2657
2658bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2659  Type *Ty = 0;
2660  return ParseType(Ty) ||
2661         ParseValue(Ty, V, PFS);
2662}
2663
2664bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2665                                      PerFunctionState &PFS) {
2666  Value *V;
2667  Loc = Lex.getLoc();
2668  if (ParseTypeAndValue(V, PFS)) return true;
2669  if (!isa<BasicBlock>(V))
2670    return Error(Loc, "expected a basic block");
2671  BB = cast<BasicBlock>(V);
2672  return false;
2673}
2674
2675
2676/// FunctionHeader
2677///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2678///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2679///       OptionalAlign OptGC
2680bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2681  // Parse the linkage.
2682  LocTy LinkageLoc = Lex.getLoc();
2683  unsigned Linkage;
2684
2685  unsigned Visibility;
2686  AttrBuilder RetAttrs;
2687  CallingConv::ID CC;
2688  Type *RetType = 0;
2689  LocTy RetTypeLoc = Lex.getLoc();
2690  if (ParseOptionalLinkage(Linkage) ||
2691      ParseOptionalVisibility(Visibility) ||
2692      ParseOptionalCallingConv(CC) ||
2693      ParseOptionalAttrs(RetAttrs, 1) ||
2694      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2695    return true;
2696
2697  // Verify that the linkage is ok.
2698  switch ((GlobalValue::LinkageTypes)Linkage) {
2699  case GlobalValue::ExternalLinkage:
2700    break; // always ok.
2701  case GlobalValue::DLLImportLinkage:
2702  case GlobalValue::ExternalWeakLinkage:
2703    if (isDefine)
2704      return Error(LinkageLoc, "invalid linkage for function definition");
2705    break;
2706  case GlobalValue::PrivateLinkage:
2707  case GlobalValue::LinkerPrivateLinkage:
2708  case GlobalValue::LinkerPrivateWeakLinkage:
2709  case GlobalValue::InternalLinkage:
2710  case GlobalValue::AvailableExternallyLinkage:
2711  case GlobalValue::LinkOnceAnyLinkage:
2712  case GlobalValue::LinkOnceODRLinkage:
2713  case GlobalValue::LinkOnceODRAutoHideLinkage:
2714  case GlobalValue::WeakAnyLinkage:
2715  case GlobalValue::WeakODRLinkage:
2716  case GlobalValue::DLLExportLinkage:
2717    if (!isDefine)
2718      return Error(LinkageLoc, "invalid linkage for function declaration");
2719    break;
2720  case GlobalValue::AppendingLinkage:
2721  case GlobalValue::CommonLinkage:
2722    return Error(LinkageLoc, "invalid function linkage type");
2723  }
2724
2725  if (!FunctionType::isValidReturnType(RetType))
2726    return Error(RetTypeLoc, "invalid function return type");
2727
2728  LocTy NameLoc = Lex.getLoc();
2729
2730  std::string FunctionName;
2731  if (Lex.getKind() == lltok::GlobalVar) {
2732    FunctionName = Lex.getStrVal();
2733  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2734    unsigned NameID = Lex.getUIntVal();
2735
2736    if (NameID != NumberedVals.size())
2737      return TokError("function expected to be numbered '%" +
2738                      Twine(NumberedVals.size()) + "'");
2739  } else {
2740    return TokError("expected function name");
2741  }
2742
2743  Lex.Lex();
2744
2745  if (Lex.getKind() != lltok::lparen)
2746    return TokError("expected '(' in function argument list");
2747
2748  SmallVector<ArgInfo, 8> ArgList;
2749  bool isVarArg;
2750  AttrBuilder FuncAttrs;
2751  std::string Section;
2752  unsigned Alignment;
2753  std::string GC;
2754  bool UnnamedAddr;
2755  LocTy UnnamedAddrLoc;
2756
2757  if (ParseArgumentList(ArgList, isVarArg) ||
2758      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2759                         &UnnamedAddrLoc) ||
2760      ParseOptionalAttrs(FuncAttrs, 2) ||
2761      (EatIfPresent(lltok::kw_section) &&
2762       ParseStringConstant(Section)) ||
2763      ParseOptionalAlignment(Alignment) ||
2764      (EatIfPresent(lltok::kw_gc) &&
2765       ParseStringConstant(GC)))
2766    return true;
2767
2768  // If the alignment was parsed as an attribute, move to the alignment field.
2769  if (FuncAttrs.hasAlignmentAttr()) {
2770    Alignment = FuncAttrs.getAlignment();
2771    FuncAttrs.removeAttribute(Attributes::Alignment);
2772  }
2773
2774  // Okay, if we got here, the function is syntactically valid.  Convert types
2775  // and do semantic checks.
2776  std::vector<Type*> ParamTypeList;
2777  SmallVector<AttributeWithIndex, 8> Attrs;
2778
2779  if (RetAttrs.hasAttributes())
2780    Attrs.push_back(
2781      AttributeWithIndex::get(AttrListPtr::ReturnIndex,
2782                              Attributes::get(RetType->getContext(),
2783                                              RetAttrs)));
2784
2785  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2786    ParamTypeList.push_back(ArgList[i].Ty);
2787    if (ArgList[i].Attrs.hasAttributes())
2788      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2789  }
2790
2791  if (FuncAttrs.hasAttributes())
2792    Attrs.push_back(
2793      AttributeWithIndex::get(AttrListPtr::FunctionIndex,
2794                              Attributes::get(RetType->getContext(),
2795                                              FuncAttrs)));
2796
2797  AttrListPtr PAL = AttrListPtr::get(Context, Attrs);
2798
2799  if (PAL.getParamAttributes(1).hasAttribute(Attributes::StructRet) &&
2800      !RetType->isVoidTy())
2801    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2802
2803  FunctionType *FT =
2804    FunctionType::get(RetType, ParamTypeList, isVarArg);
2805  PointerType *PFT = PointerType::getUnqual(FT);
2806
2807  Fn = 0;
2808  if (!FunctionName.empty()) {
2809    // If this was a definition of a forward reference, remove the definition
2810    // from the forward reference table and fill in the forward ref.
2811    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2812      ForwardRefVals.find(FunctionName);
2813    if (FRVI != ForwardRefVals.end()) {
2814      Fn = M->getFunction(FunctionName);
2815      if (!Fn)
2816        return Error(FRVI->second.second, "invalid forward reference to "
2817                     "function as global value!");
2818      if (Fn->getType() != PFT)
2819        return Error(FRVI->second.second, "invalid forward reference to "
2820                     "function '" + FunctionName + "' with wrong type!");
2821
2822      ForwardRefVals.erase(FRVI);
2823    } else if ((Fn = M->getFunction(FunctionName))) {
2824      // Reject redefinitions.
2825      return Error(NameLoc, "invalid redefinition of function '" +
2826                   FunctionName + "'");
2827    } else if (M->getNamedValue(FunctionName)) {
2828      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2829    }
2830
2831  } else {
2832    // If this is a definition of a forward referenced function, make sure the
2833    // types agree.
2834    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2835      = ForwardRefValIDs.find(NumberedVals.size());
2836    if (I != ForwardRefValIDs.end()) {
2837      Fn = cast<Function>(I->second.first);
2838      if (Fn->getType() != PFT)
2839        return Error(NameLoc, "type of definition and forward reference of '@" +
2840                     Twine(NumberedVals.size()) + "' disagree");
2841      ForwardRefValIDs.erase(I);
2842    }
2843  }
2844
2845  if (Fn == 0)
2846    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2847  else // Move the forward-reference to the correct spot in the module.
2848    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2849
2850  if (FunctionName.empty())
2851    NumberedVals.push_back(Fn);
2852
2853  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2854  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2855  Fn->setCallingConv(CC);
2856  Fn->setAttributes(PAL);
2857  Fn->setUnnamedAddr(UnnamedAddr);
2858  Fn->setAlignment(Alignment);
2859  Fn->setSection(Section);
2860  if (!GC.empty()) Fn->setGC(GC.c_str());
2861
2862  // Add all of the arguments we parsed to the function.
2863  Function::arg_iterator ArgIt = Fn->arg_begin();
2864  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2865    // If the argument has a name, insert it into the argument symbol table.
2866    if (ArgList[i].Name.empty()) continue;
2867
2868    // Set the name, if it conflicted, it will be auto-renamed.
2869    ArgIt->setName(ArgList[i].Name);
2870
2871    if (ArgIt->getName() != ArgList[i].Name)
2872      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2873                   ArgList[i].Name + "'");
2874  }
2875
2876  return false;
2877}
2878
2879
2880/// ParseFunctionBody
2881///   ::= '{' BasicBlock+ '}'
2882///
2883bool LLParser::ParseFunctionBody(Function &Fn) {
2884  if (Lex.getKind() != lltok::lbrace)
2885    return TokError("expected '{' in function body");
2886  Lex.Lex();  // eat the {.
2887
2888  int FunctionNumber = -1;
2889  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2890
2891  PerFunctionState PFS(*this, Fn, FunctionNumber);
2892
2893  // We need at least one basic block.
2894  if (Lex.getKind() == lltok::rbrace)
2895    return TokError("function body requires at least one basic block");
2896
2897  while (Lex.getKind() != lltok::rbrace)
2898    if (ParseBasicBlock(PFS)) return true;
2899
2900  // Eat the }.
2901  Lex.Lex();
2902
2903  // Verify function is ok.
2904  return PFS.FinishFunction();
2905}
2906
2907/// ParseBasicBlock
2908///   ::= LabelStr? Instruction*
2909bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2910  // If this basic block starts out with a name, remember it.
2911  std::string Name;
2912  LocTy NameLoc = Lex.getLoc();
2913  if (Lex.getKind() == lltok::LabelStr) {
2914    Name = Lex.getStrVal();
2915    Lex.Lex();
2916  }
2917
2918  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2919  if (BB == 0) return true;
2920
2921  std::string NameStr;
2922
2923  // Parse the instructions in this block until we get a terminator.
2924  Instruction *Inst;
2925  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2926  do {
2927    // This instruction may have three possibilities for a name: a) none
2928    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2929    LocTy NameLoc = Lex.getLoc();
2930    int NameID = -1;
2931    NameStr = "";
2932
2933    if (Lex.getKind() == lltok::LocalVarID) {
2934      NameID = Lex.getUIntVal();
2935      Lex.Lex();
2936      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2937        return true;
2938    } else if (Lex.getKind() == lltok::LocalVar) {
2939      NameStr = Lex.getStrVal();
2940      Lex.Lex();
2941      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2942        return true;
2943    }
2944
2945    switch (ParseInstruction(Inst, BB, PFS)) {
2946    default: llvm_unreachable("Unknown ParseInstruction result!");
2947    case InstError: return true;
2948    case InstNormal:
2949      BB->getInstList().push_back(Inst);
2950
2951      // With a normal result, we check to see if the instruction is followed by
2952      // a comma and metadata.
2953      if (EatIfPresent(lltok::comma))
2954        if (ParseInstructionMetadata(Inst, &PFS))
2955          return true;
2956      break;
2957    case InstExtraComma:
2958      BB->getInstList().push_back(Inst);
2959
2960      // If the instruction parser ate an extra comma at the end of it, it
2961      // *must* be followed by metadata.
2962      if (ParseInstructionMetadata(Inst, &PFS))
2963        return true;
2964      break;
2965    }
2966
2967    // Set the name on the instruction.
2968    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2969  } while (!isa<TerminatorInst>(Inst));
2970
2971  return false;
2972}
2973
2974//===----------------------------------------------------------------------===//
2975// Instruction Parsing.
2976//===----------------------------------------------------------------------===//
2977
2978/// ParseInstruction - Parse one of the many different instructions.
2979///
2980int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2981                               PerFunctionState &PFS) {
2982  lltok::Kind Token = Lex.getKind();
2983  if (Token == lltok::Eof)
2984    return TokError("found end of file when expecting more instructions");
2985  LocTy Loc = Lex.getLoc();
2986  unsigned KeywordVal = Lex.getUIntVal();
2987  Lex.Lex();  // Eat the keyword.
2988
2989  switch (Token) {
2990  default:                    return Error(Loc, "expected instruction opcode");
2991  // Terminator Instructions.
2992  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2993  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2994  case lltok::kw_br:          return ParseBr(Inst, PFS);
2995  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2996  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2997  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2998  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2999  // Binary Operators.
3000  case lltok::kw_add:
3001  case lltok::kw_sub:
3002  case lltok::kw_mul:
3003  case lltok::kw_shl: {
3004    bool NUW = EatIfPresent(lltok::kw_nuw);
3005    bool NSW = EatIfPresent(lltok::kw_nsw);
3006    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3007
3008    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3009
3010    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3011    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3012    return false;
3013  }
3014  case lltok::kw_fadd:
3015  case lltok::kw_fsub:
3016  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3017
3018  case lltok::kw_sdiv:
3019  case lltok::kw_udiv:
3020  case lltok::kw_lshr:
3021  case lltok::kw_ashr: {
3022    bool Exact = EatIfPresent(lltok::kw_exact);
3023
3024    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3025    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3026    return false;
3027  }
3028
3029  case lltok::kw_urem:
3030  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3031  case lltok::kw_fdiv:
3032  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3033  case lltok::kw_and:
3034  case lltok::kw_or:
3035  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3036  case lltok::kw_icmp:
3037  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3038  // Casts.
3039  case lltok::kw_trunc:
3040  case lltok::kw_zext:
3041  case lltok::kw_sext:
3042  case lltok::kw_fptrunc:
3043  case lltok::kw_fpext:
3044  case lltok::kw_bitcast:
3045  case lltok::kw_uitofp:
3046  case lltok::kw_sitofp:
3047  case lltok::kw_fptoui:
3048  case lltok::kw_fptosi:
3049  case lltok::kw_inttoptr:
3050  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3051  // Other.
3052  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3053  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3054  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3055  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3056  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3057  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3058  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3059  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3060  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3061  // Memory.
3062  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3063  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3064  case lltok::kw_store:          return ParseStore(Inst, PFS);
3065  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3066  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3067  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3068  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3069  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3070  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3071  }
3072}
3073
3074/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3075bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3076  if (Opc == Instruction::FCmp) {
3077    switch (Lex.getKind()) {
3078    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3079    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3080    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3081    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3082    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3083    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3084    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3085    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3086    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3087    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3088    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3089    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3090    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3091    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3092    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3093    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3094    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3095    }
3096  } else {
3097    switch (Lex.getKind()) {
3098    default: TokError("expected icmp predicate (e.g. 'eq')");
3099    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3100    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3101    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3102    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3103    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3104    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3105    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3106    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3107    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3108    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3109    }
3110  }
3111  Lex.Lex();
3112  return false;
3113}
3114
3115//===----------------------------------------------------------------------===//
3116// Terminator Instructions.
3117//===----------------------------------------------------------------------===//
3118
3119/// ParseRet - Parse a return instruction.
3120///   ::= 'ret' void (',' !dbg, !1)*
3121///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3122bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3123                        PerFunctionState &PFS) {
3124  SMLoc TypeLoc = Lex.getLoc();
3125  Type *Ty = 0;
3126  if (ParseType(Ty, true /*void allowed*/)) return true;
3127
3128  Type *ResType = PFS.getFunction().getReturnType();
3129
3130  if (Ty->isVoidTy()) {
3131    if (!ResType->isVoidTy())
3132      return Error(TypeLoc, "value doesn't match function result type '" +
3133                   getTypeString(ResType) + "'");
3134
3135    Inst = ReturnInst::Create(Context);
3136    return false;
3137  }
3138
3139  Value *RV;
3140  if (ParseValue(Ty, RV, PFS)) return true;
3141
3142  if (ResType != RV->getType())
3143    return Error(TypeLoc, "value doesn't match function result type '" +
3144                 getTypeString(ResType) + "'");
3145
3146  Inst = ReturnInst::Create(Context, RV);
3147  return false;
3148}
3149
3150
3151/// ParseBr
3152///   ::= 'br' TypeAndValue
3153///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3154bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3155  LocTy Loc, Loc2;
3156  Value *Op0;
3157  BasicBlock *Op1, *Op2;
3158  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3159
3160  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3161    Inst = BranchInst::Create(BB);
3162    return false;
3163  }
3164
3165  if (Op0->getType() != Type::getInt1Ty(Context))
3166    return Error(Loc, "branch condition must have 'i1' type");
3167
3168  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3169      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3170      ParseToken(lltok::comma, "expected ',' after true destination") ||
3171      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3172    return true;
3173
3174  Inst = BranchInst::Create(Op1, Op2, Op0);
3175  return false;
3176}
3177
3178/// ParseSwitch
3179///  Instruction
3180///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3181///  JumpTable
3182///    ::= (TypeAndValue ',' TypeAndValue)*
3183bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3184  LocTy CondLoc, BBLoc;
3185  Value *Cond;
3186  BasicBlock *DefaultBB;
3187  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3188      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3189      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3190      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3191    return true;
3192
3193  if (!Cond->getType()->isIntegerTy())
3194    return Error(CondLoc, "switch condition must have integer type");
3195
3196  // Parse the jump table pairs.
3197  SmallPtrSet<Value*, 32> SeenCases;
3198  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3199  while (Lex.getKind() != lltok::rsquare) {
3200    Value *Constant;
3201    BasicBlock *DestBB;
3202
3203    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3204        ParseToken(lltok::comma, "expected ',' after case value") ||
3205        ParseTypeAndBasicBlock(DestBB, PFS))
3206      return true;
3207
3208    if (!SeenCases.insert(Constant))
3209      return Error(CondLoc, "duplicate case value in switch");
3210    if (!isa<ConstantInt>(Constant))
3211      return Error(CondLoc, "case value is not a constant integer");
3212
3213    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3214  }
3215
3216  Lex.Lex();  // Eat the ']'.
3217
3218  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3219  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3220    SI->addCase(Table[i].first, Table[i].second);
3221  Inst = SI;
3222  return false;
3223}
3224
3225/// ParseIndirectBr
3226///  Instruction
3227///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3228bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3229  LocTy AddrLoc;
3230  Value *Address;
3231  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3232      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3233      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3234    return true;
3235
3236  if (!Address->getType()->isPointerTy())
3237    return Error(AddrLoc, "indirectbr address must have pointer type");
3238
3239  // Parse the destination list.
3240  SmallVector<BasicBlock*, 16> DestList;
3241
3242  if (Lex.getKind() != lltok::rsquare) {
3243    BasicBlock *DestBB;
3244    if (ParseTypeAndBasicBlock(DestBB, PFS))
3245      return true;
3246    DestList.push_back(DestBB);
3247
3248    while (EatIfPresent(lltok::comma)) {
3249      if (ParseTypeAndBasicBlock(DestBB, PFS))
3250        return true;
3251      DestList.push_back(DestBB);
3252    }
3253  }
3254
3255  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3256    return true;
3257
3258  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3259  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3260    IBI->addDestination(DestList[i]);
3261  Inst = IBI;
3262  return false;
3263}
3264
3265
3266/// ParseInvoke
3267///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3268///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3269bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3270  LocTy CallLoc = Lex.getLoc();
3271  AttrBuilder RetAttrs, FnAttrs;
3272  CallingConv::ID CC;
3273  Type *RetType = 0;
3274  LocTy RetTypeLoc;
3275  ValID CalleeID;
3276  SmallVector<ParamInfo, 16> ArgList;
3277
3278  BasicBlock *NormalBB, *UnwindBB;
3279  if (ParseOptionalCallingConv(CC) ||
3280      ParseOptionalAttrs(RetAttrs, 1) ||
3281      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3282      ParseValID(CalleeID) ||
3283      ParseParameterList(ArgList, PFS) ||
3284      ParseOptionalAttrs(FnAttrs, 2) ||
3285      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3286      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3287      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3288      ParseTypeAndBasicBlock(UnwindBB, PFS))
3289    return true;
3290
3291  // If RetType is a non-function pointer type, then this is the short syntax
3292  // for the call, which means that RetType is just the return type.  Infer the
3293  // rest of the function argument types from the arguments that are present.
3294  PointerType *PFTy = 0;
3295  FunctionType *Ty = 0;
3296  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3297      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3298    // Pull out the types of all of the arguments...
3299    std::vector<Type*> ParamTypes;
3300    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3301      ParamTypes.push_back(ArgList[i].V->getType());
3302
3303    if (!FunctionType::isValidReturnType(RetType))
3304      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3305
3306    Ty = FunctionType::get(RetType, ParamTypes, false);
3307    PFTy = PointerType::getUnqual(Ty);
3308  }
3309
3310  // Look up the callee.
3311  Value *Callee;
3312  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3313
3314  // Set up the Attributes for the function.
3315  SmallVector<AttributeWithIndex, 8> Attrs;
3316  if (RetAttrs.hasAttributes())
3317    Attrs.push_back(
3318      AttributeWithIndex::get(AttrListPtr::ReturnIndex,
3319                              Attributes::get(Callee->getContext(),
3320                                              RetAttrs)));
3321
3322  SmallVector<Value*, 8> Args;
3323
3324  // Loop through FunctionType's arguments and ensure they are specified
3325  // correctly.  Also, gather any parameter attributes.
3326  FunctionType::param_iterator I = Ty->param_begin();
3327  FunctionType::param_iterator E = Ty->param_end();
3328  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3329    Type *ExpectedTy = 0;
3330    if (I != E) {
3331      ExpectedTy = *I++;
3332    } else if (!Ty->isVarArg()) {
3333      return Error(ArgList[i].Loc, "too many arguments specified");
3334    }
3335
3336    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3337      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3338                   getTypeString(ExpectedTy) + "'");
3339    Args.push_back(ArgList[i].V);
3340    if (ArgList[i].Attrs.hasAttributes())
3341      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3342  }
3343
3344  if (I != E)
3345    return Error(CallLoc, "not enough parameters specified for call");
3346
3347  if (FnAttrs.hasAttributes())
3348    Attrs.push_back(
3349      AttributeWithIndex::get(AttrListPtr::FunctionIndex,
3350                              Attributes::get(Callee->getContext(),
3351                                              FnAttrs)));
3352
3353  // Finish off the Attributes and check them
3354  AttrListPtr PAL = AttrListPtr::get(Context, Attrs);
3355
3356  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3357  II->setCallingConv(CC);
3358  II->setAttributes(PAL);
3359  Inst = II;
3360  return false;
3361}
3362
3363/// ParseResume
3364///   ::= 'resume' TypeAndValue
3365bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3366  Value *Exn; LocTy ExnLoc;
3367  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3368    return true;
3369
3370  ResumeInst *RI = ResumeInst::Create(Exn);
3371  Inst = RI;
3372  return false;
3373}
3374
3375//===----------------------------------------------------------------------===//
3376// Binary Operators.
3377//===----------------------------------------------------------------------===//
3378
3379/// ParseArithmetic
3380///  ::= ArithmeticOps TypeAndValue ',' Value
3381///
3382/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3383/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3384bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3385                               unsigned Opc, unsigned OperandType) {
3386  LocTy Loc; Value *LHS, *RHS;
3387  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3388      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3389      ParseValue(LHS->getType(), RHS, PFS))
3390    return true;
3391
3392  bool Valid;
3393  switch (OperandType) {
3394  default: llvm_unreachable("Unknown operand type!");
3395  case 0: // int or FP.
3396    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3397            LHS->getType()->isFPOrFPVectorTy();
3398    break;
3399  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3400  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3401  }
3402
3403  if (!Valid)
3404    return Error(Loc, "invalid operand type for instruction");
3405
3406  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3407  return false;
3408}
3409
3410/// ParseLogical
3411///  ::= ArithmeticOps TypeAndValue ',' Value {
3412bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3413                            unsigned Opc) {
3414  LocTy Loc; Value *LHS, *RHS;
3415  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3416      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3417      ParseValue(LHS->getType(), RHS, PFS))
3418    return true;
3419
3420  if (!LHS->getType()->isIntOrIntVectorTy())
3421    return Error(Loc,"instruction requires integer or integer vector operands");
3422
3423  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3424  return false;
3425}
3426
3427
3428/// ParseCompare
3429///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3430///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3431bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3432                            unsigned Opc) {
3433  // Parse the integer/fp comparison predicate.
3434  LocTy Loc;
3435  unsigned Pred;
3436  Value *LHS, *RHS;
3437  if (ParseCmpPredicate(Pred, Opc) ||
3438      ParseTypeAndValue(LHS, Loc, PFS) ||
3439      ParseToken(lltok::comma, "expected ',' after compare value") ||
3440      ParseValue(LHS->getType(), RHS, PFS))
3441    return true;
3442
3443  if (Opc == Instruction::FCmp) {
3444    if (!LHS->getType()->isFPOrFPVectorTy())
3445      return Error(Loc, "fcmp requires floating point operands");
3446    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3447  } else {
3448    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3449    if (!LHS->getType()->isIntOrIntVectorTy() &&
3450        !LHS->getType()->getScalarType()->isPointerTy())
3451      return Error(Loc, "icmp requires integer operands");
3452    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3453  }
3454  return false;
3455}
3456
3457//===----------------------------------------------------------------------===//
3458// Other Instructions.
3459//===----------------------------------------------------------------------===//
3460
3461
3462/// ParseCast
3463///   ::= CastOpc TypeAndValue 'to' Type
3464bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3465                         unsigned Opc) {
3466  LocTy Loc;
3467  Value *Op;
3468  Type *DestTy = 0;
3469  if (ParseTypeAndValue(Op, Loc, PFS) ||
3470      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3471      ParseType(DestTy))
3472    return true;
3473
3474  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3475    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3476    return Error(Loc, "invalid cast opcode for cast from '" +
3477                 getTypeString(Op->getType()) + "' to '" +
3478                 getTypeString(DestTy) + "'");
3479  }
3480  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3481  return false;
3482}
3483
3484/// ParseSelect
3485///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3486bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3487  LocTy Loc;
3488  Value *Op0, *Op1, *Op2;
3489  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3490      ParseToken(lltok::comma, "expected ',' after select condition") ||
3491      ParseTypeAndValue(Op1, PFS) ||
3492      ParseToken(lltok::comma, "expected ',' after select value") ||
3493      ParseTypeAndValue(Op2, PFS))
3494    return true;
3495
3496  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3497    return Error(Loc, Reason);
3498
3499  Inst = SelectInst::Create(Op0, Op1, Op2);
3500  return false;
3501}
3502
3503/// ParseVA_Arg
3504///   ::= 'va_arg' TypeAndValue ',' Type
3505bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3506  Value *Op;
3507  Type *EltTy = 0;
3508  LocTy TypeLoc;
3509  if (ParseTypeAndValue(Op, PFS) ||
3510      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3511      ParseType(EltTy, TypeLoc))
3512    return true;
3513
3514  if (!EltTy->isFirstClassType())
3515    return Error(TypeLoc, "va_arg requires operand with first class type");
3516
3517  Inst = new VAArgInst(Op, EltTy);
3518  return false;
3519}
3520
3521/// ParseExtractElement
3522///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3523bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3524  LocTy Loc;
3525  Value *Op0, *Op1;
3526  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3527      ParseToken(lltok::comma, "expected ',' after extract value") ||
3528      ParseTypeAndValue(Op1, PFS))
3529    return true;
3530
3531  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3532    return Error(Loc, "invalid extractelement operands");
3533
3534  Inst = ExtractElementInst::Create(Op0, Op1);
3535  return false;
3536}
3537
3538/// ParseInsertElement
3539///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3540bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3541  LocTy Loc;
3542  Value *Op0, *Op1, *Op2;
3543  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3544      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3545      ParseTypeAndValue(Op1, PFS) ||
3546      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3547      ParseTypeAndValue(Op2, PFS))
3548    return true;
3549
3550  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3551    return Error(Loc, "invalid insertelement operands");
3552
3553  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3554  return false;
3555}
3556
3557/// ParseShuffleVector
3558///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3559bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3560  LocTy Loc;
3561  Value *Op0, *Op1, *Op2;
3562  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3563      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3564      ParseTypeAndValue(Op1, PFS) ||
3565      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3566      ParseTypeAndValue(Op2, PFS))
3567    return true;
3568
3569  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3570    return Error(Loc, "invalid shufflevector operands");
3571
3572  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3573  return false;
3574}
3575
3576/// ParsePHI
3577///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3578int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3579  Type *Ty = 0;  LocTy TypeLoc;
3580  Value *Op0, *Op1;
3581
3582  if (ParseType(Ty, TypeLoc) ||
3583      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3584      ParseValue(Ty, Op0, PFS) ||
3585      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3586      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3587      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3588    return true;
3589
3590  bool AteExtraComma = false;
3591  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3592  while (1) {
3593    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3594
3595    if (!EatIfPresent(lltok::comma))
3596      break;
3597
3598    if (Lex.getKind() == lltok::MetadataVar) {
3599      AteExtraComma = true;
3600      break;
3601    }
3602
3603    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3604        ParseValue(Ty, Op0, PFS) ||
3605        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3606        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3607        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3608      return true;
3609  }
3610
3611  if (!Ty->isFirstClassType())
3612    return Error(TypeLoc, "phi node must have first class type");
3613
3614  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3615  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3616    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3617  Inst = PN;
3618  return AteExtraComma ? InstExtraComma : InstNormal;
3619}
3620
3621/// ParseLandingPad
3622///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3623/// Clause
3624///   ::= 'catch' TypeAndValue
3625///   ::= 'filter'
3626///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3627bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3628  Type *Ty = 0; LocTy TyLoc;
3629  Value *PersFn; LocTy PersFnLoc;
3630
3631  if (ParseType(Ty, TyLoc) ||
3632      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3633      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3634    return true;
3635
3636  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3637  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3638
3639  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3640    LandingPadInst::ClauseType CT;
3641    if (EatIfPresent(lltok::kw_catch))
3642      CT = LandingPadInst::Catch;
3643    else if (EatIfPresent(lltok::kw_filter))
3644      CT = LandingPadInst::Filter;
3645    else
3646      return TokError("expected 'catch' or 'filter' clause type");
3647
3648    Value *V; LocTy VLoc;
3649    if (ParseTypeAndValue(V, VLoc, PFS)) {
3650      delete LP;
3651      return true;
3652    }
3653
3654    // A 'catch' type expects a non-array constant. A filter clause expects an
3655    // array constant.
3656    if (CT == LandingPadInst::Catch) {
3657      if (isa<ArrayType>(V->getType()))
3658        Error(VLoc, "'catch' clause has an invalid type");
3659    } else {
3660      if (!isa<ArrayType>(V->getType()))
3661        Error(VLoc, "'filter' clause has an invalid type");
3662    }
3663
3664    LP->addClause(V);
3665  }
3666
3667  Inst = LP;
3668  return false;
3669}
3670
3671/// ParseCall
3672///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3673///       ParameterList OptionalAttrs
3674bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3675                         bool isTail) {
3676  AttrBuilder RetAttrs, FnAttrs;
3677  CallingConv::ID CC;
3678  Type *RetType = 0;
3679  LocTy RetTypeLoc;
3680  ValID CalleeID;
3681  SmallVector<ParamInfo, 16> ArgList;
3682  LocTy CallLoc = Lex.getLoc();
3683
3684  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3685      ParseOptionalCallingConv(CC) ||
3686      ParseOptionalAttrs(RetAttrs, 1) ||
3687      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3688      ParseValID(CalleeID) ||
3689      ParseParameterList(ArgList, PFS) ||
3690      ParseOptionalAttrs(FnAttrs, 2))
3691    return true;
3692
3693  // If RetType is a non-function pointer type, then this is the short syntax
3694  // for the call, which means that RetType is just the return type.  Infer the
3695  // rest of the function argument types from the arguments that are present.
3696  PointerType *PFTy = 0;
3697  FunctionType *Ty = 0;
3698  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3699      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3700    // Pull out the types of all of the arguments...
3701    std::vector<Type*> ParamTypes;
3702    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3703      ParamTypes.push_back(ArgList[i].V->getType());
3704
3705    if (!FunctionType::isValidReturnType(RetType))
3706      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3707
3708    Ty = FunctionType::get(RetType, ParamTypes, false);
3709    PFTy = PointerType::getUnqual(Ty);
3710  }
3711
3712  // Look up the callee.
3713  Value *Callee;
3714  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3715
3716  // Set up the Attributes for the function.
3717  SmallVector<AttributeWithIndex, 8> Attrs;
3718  if (RetAttrs.hasAttributes())
3719    Attrs.push_back(
3720      AttributeWithIndex::get(AttrListPtr::ReturnIndex,
3721                              Attributes::get(Callee->getContext(),
3722                                              RetAttrs)));
3723
3724  SmallVector<Value*, 8> Args;
3725
3726  // Loop through FunctionType's arguments and ensure they are specified
3727  // correctly.  Also, gather any parameter attributes.
3728  FunctionType::param_iterator I = Ty->param_begin();
3729  FunctionType::param_iterator E = Ty->param_end();
3730  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3731    Type *ExpectedTy = 0;
3732    if (I != E) {
3733      ExpectedTy = *I++;
3734    } else if (!Ty->isVarArg()) {
3735      return Error(ArgList[i].Loc, "too many arguments specified");
3736    }
3737
3738    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3739      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3740                   getTypeString(ExpectedTy) + "'");
3741    Args.push_back(ArgList[i].V);
3742    if (ArgList[i].Attrs.hasAttributes())
3743      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3744  }
3745
3746  if (I != E)
3747    return Error(CallLoc, "not enough parameters specified for call");
3748
3749  if (FnAttrs.hasAttributes())
3750    Attrs.push_back(
3751      AttributeWithIndex::get(AttrListPtr::FunctionIndex,
3752                              Attributes::get(Callee->getContext(),
3753                                              FnAttrs)));
3754
3755  // Finish off the Attributes and check them
3756  AttrListPtr PAL = AttrListPtr::get(Context, Attrs);
3757
3758  CallInst *CI = CallInst::Create(Callee, Args);
3759  CI->setTailCall(isTail);
3760  CI->setCallingConv(CC);
3761  CI->setAttributes(PAL);
3762  Inst = CI;
3763  return false;
3764}
3765
3766//===----------------------------------------------------------------------===//
3767// Memory Instructions.
3768//===----------------------------------------------------------------------===//
3769
3770/// ParseAlloc
3771///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3772int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3773  Value *Size = 0;
3774  LocTy SizeLoc;
3775  unsigned Alignment = 0;
3776  Type *Ty = 0;
3777  if (ParseType(Ty)) return true;
3778
3779  bool AteExtraComma = false;
3780  if (EatIfPresent(lltok::comma)) {
3781    if (Lex.getKind() == lltok::kw_align) {
3782      if (ParseOptionalAlignment(Alignment)) return true;
3783    } else if (Lex.getKind() == lltok::MetadataVar) {
3784      AteExtraComma = true;
3785    } else {
3786      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3787          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3788        return true;
3789    }
3790  }
3791
3792  if (Size && !Size->getType()->isIntegerTy())
3793    return Error(SizeLoc, "element count must have integer type");
3794
3795  Inst = new AllocaInst(Ty, Size, Alignment);
3796  return AteExtraComma ? InstExtraComma : InstNormal;
3797}
3798
3799/// ParseLoad
3800///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3801///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3802///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3803int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3804  Value *Val; LocTy Loc;
3805  unsigned Alignment = 0;
3806  bool AteExtraComma = false;
3807  bool isAtomic = false;
3808  AtomicOrdering Ordering = NotAtomic;
3809  SynchronizationScope Scope = CrossThread;
3810
3811  if (Lex.getKind() == lltok::kw_atomic) {
3812    isAtomic = true;
3813    Lex.Lex();
3814  }
3815
3816  bool isVolatile = false;
3817  if (Lex.getKind() == lltok::kw_volatile) {
3818    isVolatile = true;
3819    Lex.Lex();
3820  }
3821
3822  if (ParseTypeAndValue(Val, Loc, PFS) ||
3823      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3824      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3825    return true;
3826
3827  if (!Val->getType()->isPointerTy() ||
3828      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3829    return Error(Loc, "load operand must be a pointer to a first class type");
3830  if (isAtomic && !Alignment)
3831    return Error(Loc, "atomic load must have explicit non-zero alignment");
3832  if (Ordering == Release || Ordering == AcquireRelease)
3833    return Error(Loc, "atomic load cannot use Release ordering");
3834
3835  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3836  return AteExtraComma ? InstExtraComma : InstNormal;
3837}
3838
3839/// ParseStore
3840
3841///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3842///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3843///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3844int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3845  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3846  unsigned Alignment = 0;
3847  bool AteExtraComma = false;
3848  bool isAtomic = false;
3849  AtomicOrdering Ordering = NotAtomic;
3850  SynchronizationScope Scope = CrossThread;
3851
3852  if (Lex.getKind() == lltok::kw_atomic) {
3853    isAtomic = true;
3854    Lex.Lex();
3855  }
3856
3857  bool isVolatile = false;
3858  if (Lex.getKind() == lltok::kw_volatile) {
3859    isVolatile = true;
3860    Lex.Lex();
3861  }
3862
3863  if (ParseTypeAndValue(Val, Loc, PFS) ||
3864      ParseToken(lltok::comma, "expected ',' after store operand") ||
3865      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3866      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3867      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3868    return true;
3869
3870  if (!Ptr->getType()->isPointerTy())
3871    return Error(PtrLoc, "store operand must be a pointer");
3872  if (!Val->getType()->isFirstClassType())
3873    return Error(Loc, "store operand must be a first class value");
3874  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3875    return Error(Loc, "stored value and pointer type do not match");
3876  if (isAtomic && !Alignment)
3877    return Error(Loc, "atomic store must have explicit non-zero alignment");
3878  if (Ordering == Acquire || Ordering == AcquireRelease)
3879    return Error(Loc, "atomic store cannot use Acquire ordering");
3880
3881  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3882  return AteExtraComma ? InstExtraComma : InstNormal;
3883}
3884
3885/// ParseCmpXchg
3886///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3887///       'singlethread'? AtomicOrdering
3888int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3889  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3890  bool AteExtraComma = false;
3891  AtomicOrdering Ordering = NotAtomic;
3892  SynchronizationScope Scope = CrossThread;
3893  bool isVolatile = false;
3894
3895  if (EatIfPresent(lltok::kw_volatile))
3896    isVolatile = true;
3897
3898  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3899      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3900      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3901      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3902      ParseTypeAndValue(New, NewLoc, PFS) ||
3903      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3904    return true;
3905
3906  if (Ordering == Unordered)
3907    return TokError("cmpxchg cannot be unordered");
3908  if (!Ptr->getType()->isPointerTy())
3909    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3910  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3911    return Error(CmpLoc, "compare value and pointer type do not match");
3912  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3913    return Error(NewLoc, "new value and pointer type do not match");
3914  if (!New->getType()->isIntegerTy())
3915    return Error(NewLoc, "cmpxchg operand must be an integer");
3916  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3917  if (Size < 8 || (Size & (Size - 1)))
3918    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3919                         " integer");
3920
3921  AtomicCmpXchgInst *CXI =
3922    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3923  CXI->setVolatile(isVolatile);
3924  Inst = CXI;
3925  return AteExtraComma ? InstExtraComma : InstNormal;
3926}
3927
3928/// ParseAtomicRMW
3929///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3930///       'singlethread'? AtomicOrdering
3931int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3932  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3933  bool AteExtraComma = false;
3934  AtomicOrdering Ordering = NotAtomic;
3935  SynchronizationScope Scope = CrossThread;
3936  bool isVolatile = false;
3937  AtomicRMWInst::BinOp Operation;
3938
3939  if (EatIfPresent(lltok::kw_volatile))
3940    isVolatile = true;
3941
3942  switch (Lex.getKind()) {
3943  default: return TokError("expected binary operation in atomicrmw");
3944  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3945  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3946  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3947  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3948  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3949  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3950  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3951  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3952  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3953  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3954  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3955  }
3956  Lex.Lex();  // Eat the operation.
3957
3958  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3959      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3960      ParseTypeAndValue(Val, ValLoc, PFS) ||
3961      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3962    return true;
3963
3964  if (Ordering == Unordered)
3965    return TokError("atomicrmw cannot be unordered");
3966  if (!Ptr->getType()->isPointerTy())
3967    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3968  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3969    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3970  if (!Val->getType()->isIntegerTy())
3971    return Error(ValLoc, "atomicrmw operand must be an integer");
3972  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3973  if (Size < 8 || (Size & (Size - 1)))
3974    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3975                         " integer");
3976
3977  AtomicRMWInst *RMWI =
3978    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3979  RMWI->setVolatile(isVolatile);
3980  Inst = RMWI;
3981  return AteExtraComma ? InstExtraComma : InstNormal;
3982}
3983
3984/// ParseFence
3985///   ::= 'fence' 'singlethread'? AtomicOrdering
3986int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3987  AtomicOrdering Ordering = NotAtomic;
3988  SynchronizationScope Scope = CrossThread;
3989  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3990    return true;
3991
3992  if (Ordering == Unordered)
3993    return TokError("fence cannot be unordered");
3994  if (Ordering == Monotonic)
3995    return TokError("fence cannot be monotonic");
3996
3997  Inst = new FenceInst(Context, Ordering, Scope);
3998  return InstNormal;
3999}
4000
4001/// ParseGetElementPtr
4002///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4003int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4004  Value *Ptr = 0;
4005  Value *Val = 0;
4006  LocTy Loc, EltLoc;
4007
4008  bool InBounds = EatIfPresent(lltok::kw_inbounds);
4009
4010  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4011
4012  if (!Ptr->getType()->getScalarType()->isPointerTy())
4013    return Error(Loc, "base of getelementptr must be a pointer");
4014
4015  SmallVector<Value*, 16> Indices;
4016  bool AteExtraComma = false;
4017  while (EatIfPresent(lltok::comma)) {
4018    if (Lex.getKind() == lltok::MetadataVar) {
4019      AteExtraComma = true;
4020      break;
4021    }
4022    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4023    if (!Val->getType()->getScalarType()->isIntegerTy())
4024      return Error(EltLoc, "getelementptr index must be an integer");
4025    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4026      return Error(EltLoc, "getelementptr index type missmatch");
4027    if (Val->getType()->isVectorTy()) {
4028      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4029      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4030      if (ValNumEl != PtrNumEl)
4031        return Error(EltLoc,
4032          "getelementptr vector index has a wrong number of elements");
4033    }
4034    Indices.push_back(Val);
4035  }
4036
4037  if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
4038    return Error(EltLoc, "vector getelementptrs must have a single index");
4039
4040  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
4041    return Error(Loc, "invalid getelementptr indices");
4042  Inst = GetElementPtrInst::Create(Ptr, Indices);
4043  if (InBounds)
4044    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4045  return AteExtraComma ? InstExtraComma : InstNormal;
4046}
4047
4048/// ParseExtractValue
4049///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4050int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4051  Value *Val; LocTy Loc;
4052  SmallVector<unsigned, 4> Indices;
4053  bool AteExtraComma;
4054  if (ParseTypeAndValue(Val, Loc, PFS) ||
4055      ParseIndexList(Indices, AteExtraComma))
4056    return true;
4057
4058  if (!Val->getType()->isAggregateType())
4059    return Error(Loc, "extractvalue operand must be aggregate type");
4060
4061  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4062    return Error(Loc, "invalid indices for extractvalue");
4063  Inst = ExtractValueInst::Create(Val, Indices);
4064  return AteExtraComma ? InstExtraComma : InstNormal;
4065}
4066
4067/// ParseInsertValue
4068///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4069int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4070  Value *Val0, *Val1; LocTy Loc0, Loc1;
4071  SmallVector<unsigned, 4> Indices;
4072  bool AteExtraComma;
4073  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4074      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4075      ParseTypeAndValue(Val1, Loc1, PFS) ||
4076      ParseIndexList(Indices, AteExtraComma))
4077    return true;
4078
4079  if (!Val0->getType()->isAggregateType())
4080    return Error(Loc0, "insertvalue operand must be aggregate type");
4081
4082  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4083    return Error(Loc0, "invalid indices for insertvalue");
4084  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4085  return AteExtraComma ? InstExtraComma : InstNormal;
4086}
4087
4088//===----------------------------------------------------------------------===//
4089// Embedded metadata.
4090//===----------------------------------------------------------------------===//
4091
4092/// ParseMDNodeVector
4093///   ::= Element (',' Element)*
4094/// Element
4095///   ::= 'null' | TypeAndValue
4096bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4097                                 PerFunctionState *PFS) {
4098  // Check for an empty list.
4099  if (Lex.getKind() == lltok::rbrace)
4100    return false;
4101
4102  do {
4103    // Null is a special case since it is typeless.
4104    if (EatIfPresent(lltok::kw_null)) {
4105      Elts.push_back(0);
4106      continue;
4107    }
4108
4109    Value *V = 0;
4110    if (ParseTypeAndValue(V, PFS)) return true;
4111    Elts.push_back(V);
4112  } while (EatIfPresent(lltok::comma));
4113
4114  return false;
4115}
4116