LLParser.cpp revision 239462
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  return false;
124}
125
126bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128                                               PerFunctionState *PFS) {
129  // Loop over all the references, resolving them.
130  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131    BasicBlock *Res;
132    if (PFS) {
133      if (Refs[i].first.Kind == ValID::t_LocalName)
134        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135      else
136        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138      return Error(Refs[i].first.Loc,
139       "cannot take address of numeric label after the function is defined");
140    } else {
141      Res = dyn_cast_or_null<BasicBlock>(
142                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143    }
144
145    if (Res == 0)
146      return Error(Refs[i].first.Loc,
147                   "referenced value is not a basic block");
148
149    // Get the BlockAddress for this and update references to use it.
150    BlockAddress *BA = BlockAddress::get(TheFn, Res);
151    Refs[i].second->replaceAllUsesWith(BA);
152    Refs[i].second->eraseFromParent();
153  }
154  return false;
155}
156
157
158//===----------------------------------------------------------------------===//
159// Top-Level Entities
160//===----------------------------------------------------------------------===//
161
162bool LLParser::ParseTopLevelEntities() {
163  while (1) {
164    switch (Lex.getKind()) {
165    default:         return TokError("expected top-level entity");
166    case lltok::Eof: return false;
167    case lltok::kw_declare: if (ParseDeclare()) return true; break;
168    case lltok::kw_define:  if (ParseDefine()) return true; break;
169    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
170    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
171    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
174    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
175    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
176    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
177    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179    // The Global variable production with no name can have many different
180    // optional leading prefixes, the production is:
181    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182    //               OptionalAddrSpace OptionalUnNammedAddr
183    //               ('constant'|'global') ...
184    case lltok::kw_private:             // OptionalLinkage
185    case lltok::kw_linker_private:      // OptionalLinkage
186    case lltok::kw_linker_private_weak: // OptionalLinkage
187    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
188    case lltok::kw_internal:            // OptionalLinkage
189    case lltok::kw_weak:                // OptionalLinkage
190    case lltok::kw_weak_odr:            // OptionalLinkage
191    case lltok::kw_linkonce:            // OptionalLinkage
192    case lltok::kw_linkonce_odr:        // OptionalLinkage
193    case lltok::kw_appending:           // OptionalLinkage
194    case lltok::kw_dllexport:           // OptionalLinkage
195    case lltok::kw_common:              // OptionalLinkage
196    case lltok::kw_dllimport:           // OptionalLinkage
197    case lltok::kw_extern_weak:         // OptionalLinkage
198    case lltok::kw_external: {          // OptionalLinkage
199      unsigned Linkage, Visibility;
200      if (ParseOptionalLinkage(Linkage) ||
201          ParseOptionalVisibility(Visibility) ||
202          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
203        return true;
204      break;
205    }
206    case lltok::kw_default:       // OptionalVisibility
207    case lltok::kw_hidden:        // OptionalVisibility
208    case lltok::kw_protected: {   // OptionalVisibility
209      unsigned Visibility;
210      if (ParseOptionalVisibility(Visibility) ||
211          ParseGlobal("", SMLoc(), 0, false, Visibility))
212        return true;
213      break;
214    }
215
216    case lltok::kw_thread_local:  // OptionalThreadLocal
217    case lltok::kw_addrspace:     // OptionalAddrSpace
218    case lltok::kw_constant:      // GlobalType
219    case lltok::kw_global:        // GlobalType
220      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
221      break;
222    }
223  }
224}
225
226
227/// toplevelentity
228///   ::= 'module' 'asm' STRINGCONSTANT
229bool LLParser::ParseModuleAsm() {
230  assert(Lex.getKind() == lltok::kw_module);
231  Lex.Lex();
232
233  std::string AsmStr;
234  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
235      ParseStringConstant(AsmStr)) return true;
236
237  M->appendModuleInlineAsm(AsmStr);
238  return false;
239}
240
241/// toplevelentity
242///   ::= 'target' 'triple' '=' STRINGCONSTANT
243///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
244bool LLParser::ParseTargetDefinition() {
245  assert(Lex.getKind() == lltok::kw_target);
246  std::string Str;
247  switch (Lex.Lex()) {
248  default: return TokError("unknown target property");
249  case lltok::kw_triple:
250    Lex.Lex();
251    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
252        ParseStringConstant(Str))
253      return true;
254    M->setTargetTriple(Str);
255    return false;
256  case lltok::kw_datalayout:
257    Lex.Lex();
258    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
259        ParseStringConstant(Str))
260      return true;
261    M->setDataLayout(Str);
262    return false;
263  }
264}
265
266/// toplevelentity
267///   ::= 'deplibs' '=' '[' ']'
268///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
269bool LLParser::ParseDepLibs() {
270  assert(Lex.getKind() == lltok::kw_deplibs);
271  Lex.Lex();
272  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
273      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
274    return true;
275
276  if (EatIfPresent(lltok::rsquare))
277    return false;
278
279  std::string Str;
280  if (ParseStringConstant(Str)) return true;
281  M->addLibrary(Str);
282
283  while (EatIfPresent(lltok::comma)) {
284    if (ParseStringConstant(Str)) return true;
285    M->addLibrary(Str);
286  }
287
288  return ParseToken(lltok::rsquare, "expected ']' at end of list");
289}
290
291/// ParseUnnamedType:
292///   ::= LocalVarID '=' 'type' type
293bool LLParser::ParseUnnamedType() {
294  LocTy TypeLoc = Lex.getLoc();
295  unsigned TypeID = Lex.getUIntVal();
296  Lex.Lex(); // eat LocalVarID;
297
298  if (ParseToken(lltok::equal, "expected '=' after name") ||
299      ParseToken(lltok::kw_type, "expected 'type' after '='"))
300    return true;
301
302  if (TypeID >= NumberedTypes.size())
303    NumberedTypes.resize(TypeID+1);
304
305  Type *Result = 0;
306  if (ParseStructDefinition(TypeLoc, "",
307                            NumberedTypes[TypeID], Result)) return true;
308
309  if (!isa<StructType>(Result)) {
310    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
311    if (Entry.first)
312      return Error(TypeLoc, "non-struct types may not be recursive");
313    Entry.first = Result;
314    Entry.second = SMLoc();
315  }
316
317  return false;
318}
319
320
321/// toplevelentity
322///   ::= LocalVar '=' 'type' type
323bool LLParser::ParseNamedType() {
324  std::string Name = Lex.getStrVal();
325  LocTy NameLoc = Lex.getLoc();
326  Lex.Lex();  // eat LocalVar.
327
328  if (ParseToken(lltok::equal, "expected '=' after name") ||
329      ParseToken(lltok::kw_type, "expected 'type' after name"))
330    return true;
331
332  Type *Result = 0;
333  if (ParseStructDefinition(NameLoc, Name,
334                            NamedTypes[Name], Result)) return true;
335
336  if (!isa<StructType>(Result)) {
337    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
338    if (Entry.first)
339      return Error(NameLoc, "non-struct types may not be recursive");
340    Entry.first = Result;
341    Entry.second = SMLoc();
342  }
343
344  return false;
345}
346
347
348/// toplevelentity
349///   ::= 'declare' FunctionHeader
350bool LLParser::ParseDeclare() {
351  assert(Lex.getKind() == lltok::kw_declare);
352  Lex.Lex();
353
354  Function *F;
355  return ParseFunctionHeader(F, false);
356}
357
358/// toplevelentity
359///   ::= 'define' FunctionHeader '{' ...
360bool LLParser::ParseDefine() {
361  assert(Lex.getKind() == lltok::kw_define);
362  Lex.Lex();
363
364  Function *F;
365  return ParseFunctionHeader(F, true) ||
366         ParseFunctionBody(*F);
367}
368
369/// ParseGlobalType
370///   ::= 'constant'
371///   ::= 'global'
372bool LLParser::ParseGlobalType(bool &IsConstant) {
373  if (Lex.getKind() == lltok::kw_constant)
374    IsConstant = true;
375  else if (Lex.getKind() == lltok::kw_global)
376    IsConstant = false;
377  else {
378    IsConstant = false;
379    return TokError("expected 'global' or 'constant'");
380  }
381  Lex.Lex();
382  return false;
383}
384
385/// ParseUnnamedGlobal:
386///   OptionalVisibility ALIAS ...
387///   OptionalLinkage OptionalVisibility ...   -> global variable
388///   GlobalID '=' OptionalVisibility ALIAS ...
389///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
390bool LLParser::ParseUnnamedGlobal() {
391  unsigned VarID = NumberedVals.size();
392  std::string Name;
393  LocTy NameLoc = Lex.getLoc();
394
395  // Handle the GlobalID form.
396  if (Lex.getKind() == lltok::GlobalID) {
397    if (Lex.getUIntVal() != VarID)
398      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
399                   Twine(VarID) + "'");
400    Lex.Lex(); // eat GlobalID;
401
402    if (ParseToken(lltok::equal, "expected '=' after name"))
403      return true;
404  }
405
406  bool HasLinkage;
407  unsigned Linkage, Visibility;
408  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
409      ParseOptionalVisibility(Visibility))
410    return true;
411
412  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
413    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
414  return ParseAlias(Name, NameLoc, Visibility);
415}
416
417/// ParseNamedGlobal:
418///   GlobalVar '=' OptionalVisibility ALIAS ...
419///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
420bool LLParser::ParseNamedGlobal() {
421  assert(Lex.getKind() == lltok::GlobalVar);
422  LocTy NameLoc = Lex.getLoc();
423  std::string Name = Lex.getStrVal();
424  Lex.Lex();
425
426  bool HasLinkage;
427  unsigned Linkage, Visibility;
428  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
429      ParseOptionalLinkage(Linkage, HasLinkage) ||
430      ParseOptionalVisibility(Visibility))
431    return true;
432
433  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
434    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
435  return ParseAlias(Name, NameLoc, Visibility);
436}
437
438// MDString:
439//   ::= '!' STRINGCONSTANT
440bool LLParser::ParseMDString(MDString *&Result) {
441  std::string Str;
442  if (ParseStringConstant(Str)) return true;
443  Result = MDString::get(Context, Str);
444  return false;
445}
446
447// MDNode:
448//   ::= '!' MDNodeNumber
449//
450/// This version of ParseMDNodeID returns the slot number and null in the case
451/// of a forward reference.
452bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
453  // !{ ..., !42, ... }
454  if (ParseUInt32(SlotNo)) return true;
455
456  // Check existing MDNode.
457  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
458    Result = NumberedMetadata[SlotNo];
459  else
460    Result = 0;
461  return false;
462}
463
464bool LLParser::ParseMDNodeID(MDNode *&Result) {
465  // !{ ..., !42, ... }
466  unsigned MID = 0;
467  if (ParseMDNodeID(Result, MID)) return true;
468
469  // If not a forward reference, just return it now.
470  if (Result) return false;
471
472  // Otherwise, create MDNode forward reference.
473  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
474  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
475
476  if (NumberedMetadata.size() <= MID)
477    NumberedMetadata.resize(MID+1);
478  NumberedMetadata[MID] = FwdNode;
479  Result = FwdNode;
480  return false;
481}
482
483/// ParseNamedMetadata:
484///   !foo = !{ !1, !2 }
485bool LLParser::ParseNamedMetadata() {
486  assert(Lex.getKind() == lltok::MetadataVar);
487  std::string Name = Lex.getStrVal();
488  Lex.Lex();
489
490  if (ParseToken(lltok::equal, "expected '=' here") ||
491      ParseToken(lltok::exclaim, "Expected '!' here") ||
492      ParseToken(lltok::lbrace, "Expected '{' here"))
493    return true;
494
495  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
496  if (Lex.getKind() != lltok::rbrace)
497    do {
498      if (ParseToken(lltok::exclaim, "Expected '!' here"))
499        return true;
500
501      MDNode *N = 0;
502      if (ParseMDNodeID(N)) return true;
503      NMD->addOperand(N);
504    } while (EatIfPresent(lltok::comma));
505
506  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
507    return true;
508
509  return false;
510}
511
512/// ParseStandaloneMetadata:
513///   !42 = !{...}
514bool LLParser::ParseStandaloneMetadata() {
515  assert(Lex.getKind() == lltok::exclaim);
516  Lex.Lex();
517  unsigned MetadataID = 0;
518
519  LocTy TyLoc;
520  Type *Ty = 0;
521  SmallVector<Value *, 16> Elts;
522  if (ParseUInt32(MetadataID) ||
523      ParseToken(lltok::equal, "expected '=' here") ||
524      ParseType(Ty, TyLoc) ||
525      ParseToken(lltok::exclaim, "Expected '!' here") ||
526      ParseToken(lltok::lbrace, "Expected '{' here") ||
527      ParseMDNodeVector(Elts, NULL) ||
528      ParseToken(lltok::rbrace, "expected end of metadata node"))
529    return true;
530
531  MDNode *Init = MDNode::get(Context, Elts);
532
533  // See if this was forward referenced, if so, handle it.
534  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
535    FI = ForwardRefMDNodes.find(MetadataID);
536  if (FI != ForwardRefMDNodes.end()) {
537    MDNode *Temp = FI->second.first;
538    Temp->replaceAllUsesWith(Init);
539    MDNode::deleteTemporary(Temp);
540    ForwardRefMDNodes.erase(FI);
541
542    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
543  } else {
544    if (MetadataID >= NumberedMetadata.size())
545      NumberedMetadata.resize(MetadataID+1);
546
547    if (NumberedMetadata[MetadataID] != 0)
548      return TokError("Metadata id is already used");
549    NumberedMetadata[MetadataID] = Init;
550  }
551
552  return false;
553}
554
555/// ParseAlias:
556///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
557/// Aliasee
558///   ::= TypeAndValue
559///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
560///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
561///
562/// Everything through visibility has already been parsed.
563///
564bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
565                          unsigned Visibility) {
566  assert(Lex.getKind() == lltok::kw_alias);
567  Lex.Lex();
568  unsigned Linkage;
569  LocTy LinkageLoc = Lex.getLoc();
570  if (ParseOptionalLinkage(Linkage))
571    return true;
572
573  if (Linkage != GlobalValue::ExternalLinkage &&
574      Linkage != GlobalValue::WeakAnyLinkage &&
575      Linkage != GlobalValue::WeakODRLinkage &&
576      Linkage != GlobalValue::InternalLinkage &&
577      Linkage != GlobalValue::PrivateLinkage &&
578      Linkage != GlobalValue::LinkerPrivateLinkage &&
579      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
580      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
581    return Error(LinkageLoc, "invalid linkage type for alias");
582
583  Constant *Aliasee;
584  LocTy AliaseeLoc = Lex.getLoc();
585  if (Lex.getKind() != lltok::kw_bitcast &&
586      Lex.getKind() != lltok::kw_getelementptr) {
587    if (ParseGlobalTypeAndValue(Aliasee)) return true;
588  } else {
589    // The bitcast dest type is not present, it is implied by the dest type.
590    ValID ID;
591    if (ParseValID(ID)) return true;
592    if (ID.Kind != ValID::t_Constant)
593      return Error(AliaseeLoc, "invalid aliasee");
594    Aliasee = ID.ConstantVal;
595  }
596
597  if (!Aliasee->getType()->isPointerTy())
598    return Error(AliaseeLoc, "alias must have pointer type");
599
600  // Okay, create the alias but do not insert it into the module yet.
601  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602                                    (GlobalValue::LinkageTypes)Linkage, Name,
603                                    Aliasee);
604  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606  // See if this value already exists in the symbol table.  If so, it is either
607  // a redefinition or a definition of a forward reference.
608  if (GlobalValue *Val = M->getNamedValue(Name)) {
609    // See if this was a redefinition.  If so, there is no entry in
610    // ForwardRefVals.
611    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612      I = ForwardRefVals.find(Name);
613    if (I == ForwardRefVals.end())
614      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616    // Otherwise, this was a definition of forward ref.  Verify that types
617    // agree.
618    if (Val->getType() != GA->getType())
619      return Error(NameLoc,
620              "forward reference and definition of alias have different types");
621
622    // If they agree, just RAUW the old value with the alias and remove the
623    // forward ref info.
624    Val->replaceAllUsesWith(GA);
625    Val->eraseFromParent();
626    ForwardRefVals.erase(I);
627  }
628
629  // Insert into the module, we know its name won't collide now.
630  M->getAliasList().push_back(GA);
631  assert(GA->getName() == Name && "Should not be a name conflict!");
632
633  return false;
634}
635
636/// ParseGlobal
637///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///
642/// Everything through visibility has been parsed already.
643///
644bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645                           unsigned Linkage, bool HasLinkage,
646                           unsigned Visibility) {
647  unsigned AddrSpace;
648  bool IsConstant, UnnamedAddr;
649  GlobalVariable::ThreadLocalMode TLM;
650  LocTy UnnamedAddrLoc;
651  LocTy TyLoc;
652
653  Type *Ty = 0;
654  if (ParseOptionalThreadLocal(TLM) ||
655      ParseOptionalAddrSpace(AddrSpace) ||
656      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
657                         &UnnamedAddrLoc) ||
658      ParseGlobalType(IsConstant) ||
659      ParseType(Ty, TyLoc))
660    return true;
661
662  // If the linkage is specified and is external, then no initializer is
663  // present.
664  Constant *Init = 0;
665  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
666                      Linkage != GlobalValue::ExternalWeakLinkage &&
667                      Linkage != GlobalValue::ExternalLinkage)) {
668    if (ParseGlobalValue(Ty, Init))
669      return true;
670  }
671
672  if (Ty->isFunctionTy() || Ty->isLabelTy())
673    return Error(TyLoc, "invalid type for global variable");
674
675  GlobalVariable *GV = 0;
676
677  // See if the global was forward referenced, if so, use the global.
678  if (!Name.empty()) {
679    if (GlobalValue *GVal = M->getNamedValue(Name)) {
680      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
681        return Error(NameLoc, "redefinition of global '@" + Name + "'");
682      GV = cast<GlobalVariable>(GVal);
683    }
684  } else {
685    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
686      I = ForwardRefValIDs.find(NumberedVals.size());
687    if (I != ForwardRefValIDs.end()) {
688      GV = cast<GlobalVariable>(I->second.first);
689      ForwardRefValIDs.erase(I);
690    }
691  }
692
693  if (GV == 0) {
694    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
695                            Name, 0, GlobalVariable::NotThreadLocal,
696                            AddrSpace);
697  } else {
698    if (GV->getType()->getElementType() != Ty)
699      return Error(TyLoc,
700            "forward reference and definition of global have different types");
701
702    // Move the forward-reference to the correct spot in the module.
703    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
704  }
705
706  if (Name.empty())
707    NumberedVals.push_back(GV);
708
709  // Set the parsed properties on the global.
710  if (Init)
711    GV->setInitializer(Init);
712  GV->setConstant(IsConstant);
713  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
714  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
715  GV->setThreadLocalMode(TLM);
716  GV->setUnnamedAddr(UnnamedAddr);
717
718  // Parse attributes on the global.
719  while (Lex.getKind() == lltok::comma) {
720    Lex.Lex();
721
722    if (Lex.getKind() == lltok::kw_section) {
723      Lex.Lex();
724      GV->setSection(Lex.getStrVal());
725      if (ParseToken(lltok::StringConstant, "expected global section string"))
726        return true;
727    } else if (Lex.getKind() == lltok::kw_align) {
728      unsigned Alignment;
729      if (ParseOptionalAlignment(Alignment)) return true;
730      GV->setAlignment(Alignment);
731    } else {
732      TokError("unknown global variable property!");
733    }
734  }
735
736  return false;
737}
738
739
740//===----------------------------------------------------------------------===//
741// GlobalValue Reference/Resolution Routines.
742//===----------------------------------------------------------------------===//
743
744/// GetGlobalVal - Get a value with the specified name or ID, creating a
745/// forward reference record if needed.  This can return null if the value
746/// exists but does not have the right type.
747GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
748                                    LocTy Loc) {
749  PointerType *PTy = dyn_cast<PointerType>(Ty);
750  if (PTy == 0) {
751    Error(Loc, "global variable reference must have pointer type");
752    return 0;
753  }
754
755  // Look this name up in the normal function symbol table.
756  GlobalValue *Val =
757    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
758
759  // If this is a forward reference for the value, see if we already created a
760  // forward ref record.
761  if (Val == 0) {
762    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
763      I = ForwardRefVals.find(Name);
764    if (I != ForwardRefVals.end())
765      Val = I->second.first;
766  }
767
768  // If we have the value in the symbol table or fwd-ref table, return it.
769  if (Val) {
770    if (Val->getType() == Ty) return Val;
771    Error(Loc, "'@" + Name + "' defined with type '" +
772          getTypeString(Val->getType()) + "'");
773    return 0;
774  }
775
776  // Otherwise, create a new forward reference for this value and remember it.
777  GlobalValue *FwdVal;
778  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
779    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
780  else
781    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
782                                GlobalValue::ExternalWeakLinkage, 0, Name);
783
784  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
785  return FwdVal;
786}
787
788GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
789  PointerType *PTy = dyn_cast<PointerType>(Ty);
790  if (PTy == 0) {
791    Error(Loc, "global variable reference must have pointer type");
792    return 0;
793  }
794
795  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
796
797  // If this is a forward reference for the value, see if we already created a
798  // forward ref record.
799  if (Val == 0) {
800    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
801      I = ForwardRefValIDs.find(ID);
802    if (I != ForwardRefValIDs.end())
803      Val = I->second.first;
804  }
805
806  // If we have the value in the symbol table or fwd-ref table, return it.
807  if (Val) {
808    if (Val->getType() == Ty) return Val;
809    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
810          getTypeString(Val->getType()) + "'");
811    return 0;
812  }
813
814  // Otherwise, create a new forward reference for this value and remember it.
815  GlobalValue *FwdVal;
816  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
817    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
818  else
819    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
820                                GlobalValue::ExternalWeakLinkage, 0, "");
821
822  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
823  return FwdVal;
824}
825
826
827//===----------------------------------------------------------------------===//
828// Helper Routines.
829//===----------------------------------------------------------------------===//
830
831/// ParseToken - If the current token has the specified kind, eat it and return
832/// success.  Otherwise, emit the specified error and return failure.
833bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
834  if (Lex.getKind() != T)
835    return TokError(ErrMsg);
836  Lex.Lex();
837  return false;
838}
839
840/// ParseStringConstant
841///   ::= StringConstant
842bool LLParser::ParseStringConstant(std::string &Result) {
843  if (Lex.getKind() != lltok::StringConstant)
844    return TokError("expected string constant");
845  Result = Lex.getStrVal();
846  Lex.Lex();
847  return false;
848}
849
850/// ParseUInt32
851///   ::= uint32
852bool LLParser::ParseUInt32(unsigned &Val) {
853  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
854    return TokError("expected integer");
855  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
856  if (Val64 != unsigned(Val64))
857    return TokError("expected 32-bit integer (too large)");
858  Val = Val64;
859  Lex.Lex();
860  return false;
861}
862
863/// ParseTLSModel
864///   := 'localdynamic'
865///   := 'initialexec'
866///   := 'localexec'
867bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
868  switch (Lex.getKind()) {
869    default:
870      return TokError("expected localdynamic, initialexec or localexec");
871    case lltok::kw_localdynamic:
872      TLM = GlobalVariable::LocalDynamicTLSModel;
873      break;
874    case lltok::kw_initialexec:
875      TLM = GlobalVariable::InitialExecTLSModel;
876      break;
877    case lltok::kw_localexec:
878      TLM = GlobalVariable::LocalExecTLSModel;
879      break;
880  }
881
882  Lex.Lex();
883  return false;
884}
885
886/// ParseOptionalThreadLocal
887///   := /*empty*/
888///   := 'thread_local'
889///   := 'thread_local' '(' tlsmodel ')'
890bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
891  TLM = GlobalVariable::NotThreadLocal;
892  if (!EatIfPresent(lltok::kw_thread_local))
893    return false;
894
895  TLM = GlobalVariable::GeneralDynamicTLSModel;
896  if (Lex.getKind() == lltok::lparen) {
897    Lex.Lex();
898    return ParseTLSModel(TLM) ||
899      ParseToken(lltok::rparen, "expected ')' after thread local model");
900  }
901  return false;
902}
903
904/// ParseOptionalAddrSpace
905///   := /*empty*/
906///   := 'addrspace' '(' uint32 ')'
907bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
908  AddrSpace = 0;
909  if (!EatIfPresent(lltok::kw_addrspace))
910    return false;
911  return ParseToken(lltok::lparen, "expected '(' in address space") ||
912         ParseUInt32(AddrSpace) ||
913         ParseToken(lltok::rparen, "expected ')' in address space");
914}
915
916/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
917/// indicates what kind of attribute list this is: 0: function arg, 1: result,
918/// 2: function attr.
919bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
920  Attrs = Attribute::None;
921  LocTy AttrLoc = Lex.getLoc();
922
923  while (1) {
924    switch (Lex.getKind()) {
925    default:  // End of attributes.
926      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
927        return Error(AttrLoc, "invalid use of function-only attribute");
928
929      // As a hack, we allow "align 2" on functions as a synonym for
930      // "alignstack 2".
931      if (AttrKind == 2 &&
932          (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
933        return Error(AttrLoc, "invalid use of attribute on a function");
934
935      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
936        return Error(AttrLoc, "invalid use of parameter-only attribute");
937
938      return false;
939    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
940    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
941    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
942    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
943    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
944    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
945    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
946    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
947
948    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
949    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
950    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
951    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
952    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
953    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
954    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
955    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
956    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
957    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
958    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
959    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
960    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
961    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
962    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
963    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
964    case lltok::kw_address_safety:  Attrs |= Attribute::AddressSafety; break;
965    case lltok::kw_ia_nsdialect:    Attrs |= Attribute::IANSDialect; break;
966
967    case lltok::kw_alignstack: {
968      unsigned Alignment;
969      if (ParseOptionalStackAlignment(Alignment))
970        return true;
971      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
972      continue;
973    }
974
975    case lltok::kw_align: {
976      unsigned Alignment;
977      if (ParseOptionalAlignment(Alignment))
978        return true;
979      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
980      continue;
981    }
982
983    }
984    Lex.Lex();
985  }
986}
987
988/// ParseOptionalLinkage
989///   ::= /*empty*/
990///   ::= 'private'
991///   ::= 'linker_private'
992///   ::= 'linker_private_weak'
993///   ::= 'linker_private_weak_def_auto'
994///   ::= 'internal'
995///   ::= 'weak'
996///   ::= 'weak_odr'
997///   ::= 'linkonce'
998///   ::= 'linkonce_odr'
999///   ::= 'available_externally'
1000///   ::= 'appending'
1001///   ::= 'dllexport'
1002///   ::= 'common'
1003///   ::= 'dllimport'
1004///   ::= 'extern_weak'
1005///   ::= 'external'
1006bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1007  HasLinkage = false;
1008  switch (Lex.getKind()) {
1009  default:                       Res=GlobalValue::ExternalLinkage; return false;
1010  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1011  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1012  case lltok::kw_linker_private_weak:
1013    Res = GlobalValue::LinkerPrivateWeakLinkage;
1014    break;
1015  case lltok::kw_linker_private_weak_def_auto:
1016    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
1017    break;
1018  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1019  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1020  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1021  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1022  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1023  case lltok::kw_available_externally:
1024    Res = GlobalValue::AvailableExternallyLinkage;
1025    break;
1026  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1027  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1028  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1029  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1030  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1031  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1032  }
1033  Lex.Lex();
1034  HasLinkage = true;
1035  return false;
1036}
1037
1038/// ParseOptionalVisibility
1039///   ::= /*empty*/
1040///   ::= 'default'
1041///   ::= 'hidden'
1042///   ::= 'protected'
1043///
1044bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1045  switch (Lex.getKind()) {
1046  default:                  Res = GlobalValue::DefaultVisibility; return false;
1047  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1048  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1049  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1050  }
1051  Lex.Lex();
1052  return false;
1053}
1054
1055/// ParseOptionalCallingConv
1056///   ::= /*empty*/
1057///   ::= 'ccc'
1058///   ::= 'fastcc'
1059///   ::= 'coldcc'
1060///   ::= 'x86_stdcallcc'
1061///   ::= 'x86_fastcallcc'
1062///   ::= 'x86_thiscallcc'
1063///   ::= 'arm_apcscc'
1064///   ::= 'arm_aapcscc'
1065///   ::= 'arm_aapcs_vfpcc'
1066///   ::= 'msp430_intrcc'
1067///   ::= 'ptx_kernel'
1068///   ::= 'ptx_device'
1069///   ::= 'cc' UINT
1070///
1071bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1072  switch (Lex.getKind()) {
1073  default:                       CC = CallingConv::C; return false;
1074  case lltok::kw_ccc:            CC = CallingConv::C; break;
1075  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1076  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1077  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1078  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1079  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1080  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1081  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1082  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1083  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1084  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1085  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1086  case lltok::kw_cc: {
1087      unsigned ArbitraryCC;
1088      Lex.Lex();
1089      if (ParseUInt32(ArbitraryCC))
1090        return true;
1091      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1092      return false;
1093    }
1094  }
1095
1096  Lex.Lex();
1097  return false;
1098}
1099
1100/// ParseInstructionMetadata
1101///   ::= !dbg !42 (',' !dbg !57)*
1102bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1103                                        PerFunctionState *PFS) {
1104  do {
1105    if (Lex.getKind() != lltok::MetadataVar)
1106      return TokError("expected metadata after comma");
1107
1108    std::string Name = Lex.getStrVal();
1109    unsigned MDK = M->getMDKindID(Name);
1110    Lex.Lex();
1111
1112    MDNode *Node;
1113    SMLoc Loc = Lex.getLoc();
1114
1115    if (ParseToken(lltok::exclaim, "expected '!' here"))
1116      return true;
1117
1118    // This code is similar to that of ParseMetadataValue, however it needs to
1119    // have special-case code for a forward reference; see the comments on
1120    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1121    // at the top level here.
1122    if (Lex.getKind() == lltok::lbrace) {
1123      ValID ID;
1124      if (ParseMetadataListValue(ID, PFS))
1125        return true;
1126      assert(ID.Kind == ValID::t_MDNode);
1127      Inst->setMetadata(MDK, ID.MDNodeVal);
1128    } else {
1129      unsigned NodeID = 0;
1130      if (ParseMDNodeID(Node, NodeID))
1131        return true;
1132      if (Node) {
1133        // If we got the node, add it to the instruction.
1134        Inst->setMetadata(MDK, Node);
1135      } else {
1136        MDRef R = { Loc, MDK, NodeID };
1137        // Otherwise, remember that this should be resolved later.
1138        ForwardRefInstMetadata[Inst].push_back(R);
1139      }
1140    }
1141
1142    // If this is the end of the list, we're done.
1143  } while (EatIfPresent(lltok::comma));
1144  return false;
1145}
1146
1147/// ParseOptionalAlignment
1148///   ::= /* empty */
1149///   ::= 'align' 4
1150bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1151  Alignment = 0;
1152  if (!EatIfPresent(lltok::kw_align))
1153    return false;
1154  LocTy AlignLoc = Lex.getLoc();
1155  if (ParseUInt32(Alignment)) return true;
1156  if (!isPowerOf2_32(Alignment))
1157    return Error(AlignLoc, "alignment is not a power of two");
1158  if (Alignment > Value::MaximumAlignment)
1159    return Error(AlignLoc, "huge alignments are not supported yet");
1160  return false;
1161}
1162
1163/// ParseOptionalCommaAlign
1164///   ::=
1165///   ::= ',' align 4
1166///
1167/// This returns with AteExtraComma set to true if it ate an excess comma at the
1168/// end.
1169bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1170                                       bool &AteExtraComma) {
1171  AteExtraComma = false;
1172  while (EatIfPresent(lltok::comma)) {
1173    // Metadata at the end is an early exit.
1174    if (Lex.getKind() == lltok::MetadataVar) {
1175      AteExtraComma = true;
1176      return false;
1177    }
1178
1179    if (Lex.getKind() != lltok::kw_align)
1180      return Error(Lex.getLoc(), "expected metadata or 'align'");
1181
1182    if (ParseOptionalAlignment(Alignment)) return true;
1183  }
1184
1185  return false;
1186}
1187
1188/// ParseScopeAndOrdering
1189///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1190///   else: ::=
1191///
1192/// This sets Scope and Ordering to the parsed values.
1193bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1194                                     AtomicOrdering &Ordering) {
1195  if (!isAtomic)
1196    return false;
1197
1198  Scope = CrossThread;
1199  if (EatIfPresent(lltok::kw_singlethread))
1200    Scope = SingleThread;
1201  switch (Lex.getKind()) {
1202  default: return TokError("Expected ordering on atomic instruction");
1203  case lltok::kw_unordered: Ordering = Unordered; break;
1204  case lltok::kw_monotonic: Ordering = Monotonic; break;
1205  case lltok::kw_acquire: Ordering = Acquire; break;
1206  case lltok::kw_release: Ordering = Release; break;
1207  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1208  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1209  }
1210  Lex.Lex();
1211  return false;
1212}
1213
1214/// ParseOptionalStackAlignment
1215///   ::= /* empty */
1216///   ::= 'alignstack' '(' 4 ')'
1217bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1218  Alignment = 0;
1219  if (!EatIfPresent(lltok::kw_alignstack))
1220    return false;
1221  LocTy ParenLoc = Lex.getLoc();
1222  if (!EatIfPresent(lltok::lparen))
1223    return Error(ParenLoc, "expected '('");
1224  LocTy AlignLoc = Lex.getLoc();
1225  if (ParseUInt32(Alignment)) return true;
1226  ParenLoc = Lex.getLoc();
1227  if (!EatIfPresent(lltok::rparen))
1228    return Error(ParenLoc, "expected ')'");
1229  if (!isPowerOf2_32(Alignment))
1230    return Error(AlignLoc, "stack alignment is not a power of two");
1231  return false;
1232}
1233
1234/// ParseIndexList - This parses the index list for an insert/extractvalue
1235/// instruction.  This sets AteExtraComma in the case where we eat an extra
1236/// comma at the end of the line and find that it is followed by metadata.
1237/// Clients that don't allow metadata can call the version of this function that
1238/// only takes one argument.
1239///
1240/// ParseIndexList
1241///    ::=  (',' uint32)+
1242///
1243bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1244                              bool &AteExtraComma) {
1245  AteExtraComma = false;
1246
1247  if (Lex.getKind() != lltok::comma)
1248    return TokError("expected ',' as start of index list");
1249
1250  while (EatIfPresent(lltok::comma)) {
1251    if (Lex.getKind() == lltok::MetadataVar) {
1252      AteExtraComma = true;
1253      return false;
1254    }
1255    unsigned Idx = 0;
1256    if (ParseUInt32(Idx)) return true;
1257    Indices.push_back(Idx);
1258  }
1259
1260  return false;
1261}
1262
1263//===----------------------------------------------------------------------===//
1264// Type Parsing.
1265//===----------------------------------------------------------------------===//
1266
1267/// ParseType - Parse a type.
1268bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1269  SMLoc TypeLoc = Lex.getLoc();
1270  switch (Lex.getKind()) {
1271  default:
1272    return TokError("expected type");
1273  case lltok::Type:
1274    // Type ::= 'float' | 'void' (etc)
1275    Result = Lex.getTyVal();
1276    Lex.Lex();
1277    break;
1278  case lltok::lbrace:
1279    // Type ::= StructType
1280    if (ParseAnonStructType(Result, false))
1281      return true;
1282    break;
1283  case lltok::lsquare:
1284    // Type ::= '[' ... ']'
1285    Lex.Lex(); // eat the lsquare.
1286    if (ParseArrayVectorType(Result, false))
1287      return true;
1288    break;
1289  case lltok::less: // Either vector or packed struct.
1290    // Type ::= '<' ... '>'
1291    Lex.Lex();
1292    if (Lex.getKind() == lltok::lbrace) {
1293      if (ParseAnonStructType(Result, true) ||
1294          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1295        return true;
1296    } else if (ParseArrayVectorType(Result, true))
1297      return true;
1298    break;
1299  case lltok::LocalVar: {
1300    // Type ::= %foo
1301    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1302
1303    // If the type hasn't been defined yet, create a forward definition and
1304    // remember where that forward def'n was seen (in case it never is defined).
1305    if (Entry.first == 0) {
1306      Entry.first = StructType::create(Context, Lex.getStrVal());
1307      Entry.second = Lex.getLoc();
1308    }
1309    Result = Entry.first;
1310    Lex.Lex();
1311    break;
1312  }
1313
1314  case lltok::LocalVarID: {
1315    // Type ::= %4
1316    if (Lex.getUIntVal() >= NumberedTypes.size())
1317      NumberedTypes.resize(Lex.getUIntVal()+1);
1318    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1319
1320    // If the type hasn't been defined yet, create a forward definition and
1321    // remember where that forward def'n was seen (in case it never is defined).
1322    if (Entry.first == 0) {
1323      Entry.first = StructType::create(Context);
1324      Entry.second = Lex.getLoc();
1325    }
1326    Result = Entry.first;
1327    Lex.Lex();
1328    break;
1329  }
1330  }
1331
1332  // Parse the type suffixes.
1333  while (1) {
1334    switch (Lex.getKind()) {
1335    // End of type.
1336    default:
1337      if (!AllowVoid && Result->isVoidTy())
1338        return Error(TypeLoc, "void type only allowed for function results");
1339      return false;
1340
1341    // Type ::= Type '*'
1342    case lltok::star:
1343      if (Result->isLabelTy())
1344        return TokError("basic block pointers are invalid");
1345      if (Result->isVoidTy())
1346        return TokError("pointers to void are invalid - use i8* instead");
1347      if (!PointerType::isValidElementType(Result))
1348        return TokError("pointer to this type is invalid");
1349      Result = PointerType::getUnqual(Result);
1350      Lex.Lex();
1351      break;
1352
1353    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1354    case lltok::kw_addrspace: {
1355      if (Result->isLabelTy())
1356        return TokError("basic block pointers are invalid");
1357      if (Result->isVoidTy())
1358        return TokError("pointers to void are invalid; use i8* instead");
1359      if (!PointerType::isValidElementType(Result))
1360        return TokError("pointer to this type is invalid");
1361      unsigned AddrSpace;
1362      if (ParseOptionalAddrSpace(AddrSpace) ||
1363          ParseToken(lltok::star, "expected '*' in address space"))
1364        return true;
1365
1366      Result = PointerType::get(Result, AddrSpace);
1367      break;
1368    }
1369
1370    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1371    case lltok::lparen:
1372      if (ParseFunctionType(Result))
1373        return true;
1374      break;
1375    }
1376  }
1377}
1378
1379/// ParseParameterList
1380///    ::= '(' ')'
1381///    ::= '(' Arg (',' Arg)* ')'
1382///  Arg
1383///    ::= Type OptionalAttributes Value OptionalAttributes
1384bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1385                                  PerFunctionState &PFS) {
1386  if (ParseToken(lltok::lparen, "expected '(' in call"))
1387    return true;
1388
1389  while (Lex.getKind() != lltok::rparen) {
1390    // If this isn't the first argument, we need a comma.
1391    if (!ArgList.empty() &&
1392        ParseToken(lltok::comma, "expected ',' in argument list"))
1393      return true;
1394
1395    // Parse the argument.
1396    LocTy ArgLoc;
1397    Type *ArgTy = 0;
1398    Attributes ArgAttrs1;
1399    Attributes ArgAttrs2;
1400    Value *V;
1401    if (ParseType(ArgTy, ArgLoc))
1402      return true;
1403
1404    // Otherwise, handle normal operands.
1405    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1406      return true;
1407    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1408  }
1409
1410  Lex.Lex();  // Lex the ')'.
1411  return false;
1412}
1413
1414
1415
1416/// ParseArgumentList - Parse the argument list for a function type or function
1417/// prototype.
1418///   ::= '(' ArgTypeListI ')'
1419/// ArgTypeListI
1420///   ::= /*empty*/
1421///   ::= '...'
1422///   ::= ArgTypeList ',' '...'
1423///   ::= ArgType (',' ArgType)*
1424///
1425bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1426                                 bool &isVarArg){
1427  isVarArg = false;
1428  assert(Lex.getKind() == lltok::lparen);
1429  Lex.Lex(); // eat the (.
1430
1431  if (Lex.getKind() == lltok::rparen) {
1432    // empty
1433  } else if (Lex.getKind() == lltok::dotdotdot) {
1434    isVarArg = true;
1435    Lex.Lex();
1436  } else {
1437    LocTy TypeLoc = Lex.getLoc();
1438    Type *ArgTy = 0;
1439    Attributes Attrs;
1440    std::string Name;
1441
1442    if (ParseType(ArgTy) ||
1443        ParseOptionalAttrs(Attrs, 0)) return true;
1444
1445    if (ArgTy->isVoidTy())
1446      return Error(TypeLoc, "argument can not have void type");
1447
1448    if (Lex.getKind() == lltok::LocalVar) {
1449      Name = Lex.getStrVal();
1450      Lex.Lex();
1451    }
1452
1453    if (!FunctionType::isValidArgumentType(ArgTy))
1454      return Error(TypeLoc, "invalid type for function argument");
1455
1456    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1457
1458    while (EatIfPresent(lltok::comma)) {
1459      // Handle ... at end of arg list.
1460      if (EatIfPresent(lltok::dotdotdot)) {
1461        isVarArg = true;
1462        break;
1463      }
1464
1465      // Otherwise must be an argument type.
1466      TypeLoc = Lex.getLoc();
1467      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1468
1469      if (ArgTy->isVoidTy())
1470        return Error(TypeLoc, "argument can not have void type");
1471
1472      if (Lex.getKind() == lltok::LocalVar) {
1473        Name = Lex.getStrVal();
1474        Lex.Lex();
1475      } else {
1476        Name = "";
1477      }
1478
1479      if (!ArgTy->isFirstClassType())
1480        return Error(TypeLoc, "invalid type for function argument");
1481
1482      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1483    }
1484  }
1485
1486  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1487}
1488
1489/// ParseFunctionType
1490///  ::= Type ArgumentList OptionalAttrs
1491bool LLParser::ParseFunctionType(Type *&Result) {
1492  assert(Lex.getKind() == lltok::lparen);
1493
1494  if (!FunctionType::isValidReturnType(Result))
1495    return TokError("invalid function return type");
1496
1497  SmallVector<ArgInfo, 8> ArgList;
1498  bool isVarArg;
1499  if (ParseArgumentList(ArgList, isVarArg))
1500    return true;
1501
1502  // Reject names on the arguments lists.
1503  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1504    if (!ArgList[i].Name.empty())
1505      return Error(ArgList[i].Loc, "argument name invalid in function type");
1506    if (ArgList[i].Attrs)
1507      return Error(ArgList[i].Loc,
1508                   "argument attributes invalid in function type");
1509  }
1510
1511  SmallVector<Type*, 16> ArgListTy;
1512  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1513    ArgListTy.push_back(ArgList[i].Ty);
1514
1515  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1516  return false;
1517}
1518
1519/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1520/// other structs.
1521bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1522  SmallVector<Type*, 8> Elts;
1523  if (ParseStructBody(Elts)) return true;
1524
1525  Result = StructType::get(Context, Elts, Packed);
1526  return false;
1527}
1528
1529/// ParseStructDefinition - Parse a struct in a 'type' definition.
1530bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1531                                     std::pair<Type*, LocTy> &Entry,
1532                                     Type *&ResultTy) {
1533  // If the type was already defined, diagnose the redefinition.
1534  if (Entry.first && !Entry.second.isValid())
1535    return Error(TypeLoc, "redefinition of type");
1536
1537  // If we have opaque, just return without filling in the definition for the
1538  // struct.  This counts as a definition as far as the .ll file goes.
1539  if (EatIfPresent(lltok::kw_opaque)) {
1540    // This type is being defined, so clear the location to indicate this.
1541    Entry.second = SMLoc();
1542
1543    // If this type number has never been uttered, create it.
1544    if (Entry.first == 0)
1545      Entry.first = StructType::create(Context, Name);
1546    ResultTy = Entry.first;
1547    return false;
1548  }
1549
1550  // If the type starts with '<', then it is either a packed struct or a vector.
1551  bool isPacked = EatIfPresent(lltok::less);
1552
1553  // If we don't have a struct, then we have a random type alias, which we
1554  // accept for compatibility with old files.  These types are not allowed to be
1555  // forward referenced and not allowed to be recursive.
1556  if (Lex.getKind() != lltok::lbrace) {
1557    if (Entry.first)
1558      return Error(TypeLoc, "forward references to non-struct type");
1559
1560    ResultTy = 0;
1561    if (isPacked)
1562      return ParseArrayVectorType(ResultTy, true);
1563    return ParseType(ResultTy);
1564  }
1565
1566  // This type is being defined, so clear the location to indicate this.
1567  Entry.second = SMLoc();
1568
1569  // If this type number has never been uttered, create it.
1570  if (Entry.first == 0)
1571    Entry.first = StructType::create(Context, Name);
1572
1573  StructType *STy = cast<StructType>(Entry.first);
1574
1575  SmallVector<Type*, 8> Body;
1576  if (ParseStructBody(Body) ||
1577      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1578    return true;
1579
1580  STy->setBody(Body, isPacked);
1581  ResultTy = STy;
1582  return false;
1583}
1584
1585
1586/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1587///   StructType
1588///     ::= '{' '}'
1589///     ::= '{' Type (',' Type)* '}'
1590///     ::= '<' '{' '}' '>'
1591///     ::= '<' '{' Type (',' Type)* '}' '>'
1592bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1593  assert(Lex.getKind() == lltok::lbrace);
1594  Lex.Lex(); // Consume the '{'
1595
1596  // Handle the empty struct.
1597  if (EatIfPresent(lltok::rbrace))
1598    return false;
1599
1600  LocTy EltTyLoc = Lex.getLoc();
1601  Type *Ty = 0;
1602  if (ParseType(Ty)) return true;
1603  Body.push_back(Ty);
1604
1605  if (!StructType::isValidElementType(Ty))
1606    return Error(EltTyLoc, "invalid element type for struct");
1607
1608  while (EatIfPresent(lltok::comma)) {
1609    EltTyLoc = Lex.getLoc();
1610    if (ParseType(Ty)) return true;
1611
1612    if (!StructType::isValidElementType(Ty))
1613      return Error(EltTyLoc, "invalid element type for struct");
1614
1615    Body.push_back(Ty);
1616  }
1617
1618  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1619}
1620
1621/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1622/// token has already been consumed.
1623///   Type
1624///     ::= '[' APSINTVAL 'x' Types ']'
1625///     ::= '<' APSINTVAL 'x' Types '>'
1626bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1627  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1628      Lex.getAPSIntVal().getBitWidth() > 64)
1629    return TokError("expected number in address space");
1630
1631  LocTy SizeLoc = Lex.getLoc();
1632  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1633  Lex.Lex();
1634
1635  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1636      return true;
1637
1638  LocTy TypeLoc = Lex.getLoc();
1639  Type *EltTy = 0;
1640  if (ParseType(EltTy)) return true;
1641
1642  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1643                 "expected end of sequential type"))
1644    return true;
1645
1646  if (isVector) {
1647    if (Size == 0)
1648      return Error(SizeLoc, "zero element vector is illegal");
1649    if ((unsigned)Size != Size)
1650      return Error(SizeLoc, "size too large for vector");
1651    if (!VectorType::isValidElementType(EltTy))
1652      return Error(TypeLoc,
1653       "vector element type must be fp, integer or a pointer to these types");
1654    Result = VectorType::get(EltTy, unsigned(Size));
1655  } else {
1656    if (!ArrayType::isValidElementType(EltTy))
1657      return Error(TypeLoc, "invalid array element type");
1658    Result = ArrayType::get(EltTy, Size);
1659  }
1660  return false;
1661}
1662
1663//===----------------------------------------------------------------------===//
1664// Function Semantic Analysis.
1665//===----------------------------------------------------------------------===//
1666
1667LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1668                                             int functionNumber)
1669  : P(p), F(f), FunctionNumber(functionNumber) {
1670
1671  // Insert unnamed arguments into the NumberedVals list.
1672  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1673       AI != E; ++AI)
1674    if (!AI->hasName())
1675      NumberedVals.push_back(AI);
1676}
1677
1678LLParser::PerFunctionState::~PerFunctionState() {
1679  // If there were any forward referenced non-basicblock values, delete them.
1680  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1681       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1682    if (!isa<BasicBlock>(I->second.first)) {
1683      I->second.first->replaceAllUsesWith(
1684                           UndefValue::get(I->second.first->getType()));
1685      delete I->second.first;
1686      I->second.first = 0;
1687    }
1688
1689  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1690       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1691    if (!isa<BasicBlock>(I->second.first)) {
1692      I->second.first->replaceAllUsesWith(
1693                           UndefValue::get(I->second.first->getType()));
1694      delete I->second.first;
1695      I->second.first = 0;
1696    }
1697}
1698
1699bool LLParser::PerFunctionState::FinishFunction() {
1700  // Check to see if someone took the address of labels in this block.
1701  if (!P.ForwardRefBlockAddresses.empty()) {
1702    ValID FunctionID;
1703    if (!F.getName().empty()) {
1704      FunctionID.Kind = ValID::t_GlobalName;
1705      FunctionID.StrVal = F.getName();
1706    } else {
1707      FunctionID.Kind = ValID::t_GlobalID;
1708      FunctionID.UIntVal = FunctionNumber;
1709    }
1710
1711    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1712      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1713    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1714      // Resolve all these references.
1715      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1716        return true;
1717
1718      P.ForwardRefBlockAddresses.erase(FRBAI);
1719    }
1720  }
1721
1722  if (!ForwardRefVals.empty())
1723    return P.Error(ForwardRefVals.begin()->second.second,
1724                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1725                   "'");
1726  if (!ForwardRefValIDs.empty())
1727    return P.Error(ForwardRefValIDs.begin()->second.second,
1728                   "use of undefined value '%" +
1729                   Twine(ForwardRefValIDs.begin()->first) + "'");
1730  return false;
1731}
1732
1733
1734/// GetVal - Get a value with the specified name or ID, creating a
1735/// forward reference record if needed.  This can return null if the value
1736/// exists but does not have the right type.
1737Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1738                                          Type *Ty, LocTy Loc) {
1739  // Look this name up in the normal function symbol table.
1740  Value *Val = F.getValueSymbolTable().lookup(Name);
1741
1742  // If this is a forward reference for the value, see if we already created a
1743  // forward ref record.
1744  if (Val == 0) {
1745    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1746      I = ForwardRefVals.find(Name);
1747    if (I != ForwardRefVals.end())
1748      Val = I->second.first;
1749  }
1750
1751  // If we have the value in the symbol table or fwd-ref table, return it.
1752  if (Val) {
1753    if (Val->getType() == Ty) return Val;
1754    if (Ty->isLabelTy())
1755      P.Error(Loc, "'%" + Name + "' is not a basic block");
1756    else
1757      P.Error(Loc, "'%" + Name + "' defined with type '" +
1758              getTypeString(Val->getType()) + "'");
1759    return 0;
1760  }
1761
1762  // Don't make placeholders with invalid type.
1763  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1764    P.Error(Loc, "invalid use of a non-first-class type");
1765    return 0;
1766  }
1767
1768  // Otherwise, create a new forward reference for this value and remember it.
1769  Value *FwdVal;
1770  if (Ty->isLabelTy())
1771    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1772  else
1773    FwdVal = new Argument(Ty, Name);
1774
1775  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1776  return FwdVal;
1777}
1778
1779Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1780                                          LocTy Loc) {
1781  // Look this name up in the normal function symbol table.
1782  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1783
1784  // If this is a forward reference for the value, see if we already created a
1785  // forward ref record.
1786  if (Val == 0) {
1787    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1788      I = ForwardRefValIDs.find(ID);
1789    if (I != ForwardRefValIDs.end())
1790      Val = I->second.first;
1791  }
1792
1793  // If we have the value in the symbol table or fwd-ref table, return it.
1794  if (Val) {
1795    if (Val->getType() == Ty) return Val;
1796    if (Ty->isLabelTy())
1797      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1798    else
1799      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1800              getTypeString(Val->getType()) + "'");
1801    return 0;
1802  }
1803
1804  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1805    P.Error(Loc, "invalid use of a non-first-class type");
1806    return 0;
1807  }
1808
1809  // Otherwise, create a new forward reference for this value and remember it.
1810  Value *FwdVal;
1811  if (Ty->isLabelTy())
1812    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1813  else
1814    FwdVal = new Argument(Ty);
1815
1816  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1817  return FwdVal;
1818}
1819
1820/// SetInstName - After an instruction is parsed and inserted into its
1821/// basic block, this installs its name.
1822bool LLParser::PerFunctionState::SetInstName(int NameID,
1823                                             const std::string &NameStr,
1824                                             LocTy NameLoc, Instruction *Inst) {
1825  // If this instruction has void type, it cannot have a name or ID specified.
1826  if (Inst->getType()->isVoidTy()) {
1827    if (NameID != -1 || !NameStr.empty())
1828      return P.Error(NameLoc, "instructions returning void cannot have a name");
1829    return false;
1830  }
1831
1832  // If this was a numbered instruction, verify that the instruction is the
1833  // expected value and resolve any forward references.
1834  if (NameStr.empty()) {
1835    // If neither a name nor an ID was specified, just use the next ID.
1836    if (NameID == -1)
1837      NameID = NumberedVals.size();
1838
1839    if (unsigned(NameID) != NumberedVals.size())
1840      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1841                     Twine(NumberedVals.size()) + "'");
1842
1843    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1844      ForwardRefValIDs.find(NameID);
1845    if (FI != ForwardRefValIDs.end()) {
1846      if (FI->second.first->getType() != Inst->getType())
1847        return P.Error(NameLoc, "instruction forward referenced with type '" +
1848                       getTypeString(FI->second.first->getType()) + "'");
1849      FI->second.first->replaceAllUsesWith(Inst);
1850      delete FI->second.first;
1851      ForwardRefValIDs.erase(FI);
1852    }
1853
1854    NumberedVals.push_back(Inst);
1855    return false;
1856  }
1857
1858  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1859  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1860    FI = ForwardRefVals.find(NameStr);
1861  if (FI != ForwardRefVals.end()) {
1862    if (FI->second.first->getType() != Inst->getType())
1863      return P.Error(NameLoc, "instruction forward referenced with type '" +
1864                     getTypeString(FI->second.first->getType()) + "'");
1865    FI->second.first->replaceAllUsesWith(Inst);
1866    delete FI->second.first;
1867    ForwardRefVals.erase(FI);
1868  }
1869
1870  // Set the name on the instruction.
1871  Inst->setName(NameStr);
1872
1873  if (Inst->getName() != NameStr)
1874    return P.Error(NameLoc, "multiple definition of local value named '" +
1875                   NameStr + "'");
1876  return false;
1877}
1878
1879/// GetBB - Get a basic block with the specified name or ID, creating a
1880/// forward reference record if needed.
1881BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1882                                              LocTy Loc) {
1883  return cast_or_null<BasicBlock>(GetVal(Name,
1884                                        Type::getLabelTy(F.getContext()), Loc));
1885}
1886
1887BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1888  return cast_or_null<BasicBlock>(GetVal(ID,
1889                                        Type::getLabelTy(F.getContext()), Loc));
1890}
1891
1892/// DefineBB - Define the specified basic block, which is either named or
1893/// unnamed.  If there is an error, this returns null otherwise it returns
1894/// the block being defined.
1895BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1896                                                 LocTy Loc) {
1897  BasicBlock *BB;
1898  if (Name.empty())
1899    BB = GetBB(NumberedVals.size(), Loc);
1900  else
1901    BB = GetBB(Name, Loc);
1902  if (BB == 0) return 0; // Already diagnosed error.
1903
1904  // Move the block to the end of the function.  Forward ref'd blocks are
1905  // inserted wherever they happen to be referenced.
1906  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1907
1908  // Remove the block from forward ref sets.
1909  if (Name.empty()) {
1910    ForwardRefValIDs.erase(NumberedVals.size());
1911    NumberedVals.push_back(BB);
1912  } else {
1913    // BB forward references are already in the function symbol table.
1914    ForwardRefVals.erase(Name);
1915  }
1916
1917  return BB;
1918}
1919
1920//===----------------------------------------------------------------------===//
1921// Constants.
1922//===----------------------------------------------------------------------===//
1923
1924/// ParseValID - Parse an abstract value that doesn't necessarily have a
1925/// type implied.  For example, if we parse "4" we don't know what integer type
1926/// it has.  The value will later be combined with its type and checked for
1927/// sanity.  PFS is used to convert function-local operands of metadata (since
1928/// metadata operands are not just parsed here but also converted to values).
1929/// PFS can be null when we are not parsing metadata values inside a function.
1930bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1931  ID.Loc = Lex.getLoc();
1932  switch (Lex.getKind()) {
1933  default: return TokError("expected value token");
1934  case lltok::GlobalID:  // @42
1935    ID.UIntVal = Lex.getUIntVal();
1936    ID.Kind = ValID::t_GlobalID;
1937    break;
1938  case lltok::GlobalVar:  // @foo
1939    ID.StrVal = Lex.getStrVal();
1940    ID.Kind = ValID::t_GlobalName;
1941    break;
1942  case lltok::LocalVarID:  // %42
1943    ID.UIntVal = Lex.getUIntVal();
1944    ID.Kind = ValID::t_LocalID;
1945    break;
1946  case lltok::LocalVar:  // %foo
1947    ID.StrVal = Lex.getStrVal();
1948    ID.Kind = ValID::t_LocalName;
1949    break;
1950  case lltok::exclaim:   // !42, !{...}, or !"foo"
1951    return ParseMetadataValue(ID, PFS);
1952  case lltok::APSInt:
1953    ID.APSIntVal = Lex.getAPSIntVal();
1954    ID.Kind = ValID::t_APSInt;
1955    break;
1956  case lltok::APFloat:
1957    ID.APFloatVal = Lex.getAPFloatVal();
1958    ID.Kind = ValID::t_APFloat;
1959    break;
1960  case lltok::kw_true:
1961    ID.ConstantVal = ConstantInt::getTrue(Context);
1962    ID.Kind = ValID::t_Constant;
1963    break;
1964  case lltok::kw_false:
1965    ID.ConstantVal = ConstantInt::getFalse(Context);
1966    ID.Kind = ValID::t_Constant;
1967    break;
1968  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1969  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1970  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1971
1972  case lltok::lbrace: {
1973    // ValID ::= '{' ConstVector '}'
1974    Lex.Lex();
1975    SmallVector<Constant*, 16> Elts;
1976    if (ParseGlobalValueVector(Elts) ||
1977        ParseToken(lltok::rbrace, "expected end of struct constant"))
1978      return true;
1979
1980    ID.ConstantStructElts = new Constant*[Elts.size()];
1981    ID.UIntVal = Elts.size();
1982    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1983    ID.Kind = ValID::t_ConstantStruct;
1984    return false;
1985  }
1986  case lltok::less: {
1987    // ValID ::= '<' ConstVector '>'         --> Vector.
1988    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1989    Lex.Lex();
1990    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1991
1992    SmallVector<Constant*, 16> Elts;
1993    LocTy FirstEltLoc = Lex.getLoc();
1994    if (ParseGlobalValueVector(Elts) ||
1995        (isPackedStruct &&
1996         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1997        ParseToken(lltok::greater, "expected end of constant"))
1998      return true;
1999
2000    if (isPackedStruct) {
2001      ID.ConstantStructElts = new Constant*[Elts.size()];
2002      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2003      ID.UIntVal = Elts.size();
2004      ID.Kind = ValID::t_PackedConstantStruct;
2005      return false;
2006    }
2007
2008    if (Elts.empty())
2009      return Error(ID.Loc, "constant vector must not be empty");
2010
2011    if (!Elts[0]->getType()->isIntegerTy() &&
2012        !Elts[0]->getType()->isFloatingPointTy() &&
2013        !Elts[0]->getType()->isPointerTy())
2014      return Error(FirstEltLoc,
2015            "vector elements must have integer, pointer or floating point type");
2016
2017    // Verify that all the vector elements have the same type.
2018    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2019      if (Elts[i]->getType() != Elts[0]->getType())
2020        return Error(FirstEltLoc,
2021                     "vector element #" + Twine(i) +
2022                    " is not of type '" + getTypeString(Elts[0]->getType()));
2023
2024    ID.ConstantVal = ConstantVector::get(Elts);
2025    ID.Kind = ValID::t_Constant;
2026    return false;
2027  }
2028  case lltok::lsquare: {   // Array Constant
2029    Lex.Lex();
2030    SmallVector<Constant*, 16> Elts;
2031    LocTy FirstEltLoc = Lex.getLoc();
2032    if (ParseGlobalValueVector(Elts) ||
2033        ParseToken(lltok::rsquare, "expected end of array constant"))
2034      return true;
2035
2036    // Handle empty element.
2037    if (Elts.empty()) {
2038      // Use undef instead of an array because it's inconvenient to determine
2039      // the element type at this point, there being no elements to examine.
2040      ID.Kind = ValID::t_EmptyArray;
2041      return false;
2042    }
2043
2044    if (!Elts[0]->getType()->isFirstClassType())
2045      return Error(FirstEltLoc, "invalid array element type: " +
2046                   getTypeString(Elts[0]->getType()));
2047
2048    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2049
2050    // Verify all elements are correct type!
2051    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2052      if (Elts[i]->getType() != Elts[0]->getType())
2053        return Error(FirstEltLoc,
2054                     "array element #" + Twine(i) +
2055                     " is not of type '" + getTypeString(Elts[0]->getType()));
2056    }
2057
2058    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2059    ID.Kind = ValID::t_Constant;
2060    return false;
2061  }
2062  case lltok::kw_c:  // c "foo"
2063    Lex.Lex();
2064    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2065                                                  false);
2066    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2067    ID.Kind = ValID::t_Constant;
2068    return false;
2069
2070  case lltok::kw_asm: {
2071    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2072    bool HasSideEffect, AlignStack;
2073    Lex.Lex();
2074    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2075        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2076        ParseStringConstant(ID.StrVal) ||
2077        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2078        ParseToken(lltok::StringConstant, "expected constraint string"))
2079      return true;
2080    ID.StrVal2 = Lex.getStrVal();
2081    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2082    ID.Kind = ValID::t_InlineAsm;
2083    return false;
2084  }
2085
2086  case lltok::kw_blockaddress: {
2087    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2088    Lex.Lex();
2089
2090    ValID Fn, Label;
2091    LocTy FnLoc, LabelLoc;
2092
2093    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2094        ParseValID(Fn) ||
2095        ParseToken(lltok::comma, "expected comma in block address expression")||
2096        ParseValID(Label) ||
2097        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2098      return true;
2099
2100    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2101      return Error(Fn.Loc, "expected function name in blockaddress");
2102    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2103      return Error(Label.Loc, "expected basic block name in blockaddress");
2104
2105    // Make a global variable as a placeholder for this reference.
2106    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2107                                           false, GlobalValue::InternalLinkage,
2108                                                0, "");
2109    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2110    ID.ConstantVal = FwdRef;
2111    ID.Kind = ValID::t_Constant;
2112    return false;
2113  }
2114
2115  case lltok::kw_trunc:
2116  case lltok::kw_zext:
2117  case lltok::kw_sext:
2118  case lltok::kw_fptrunc:
2119  case lltok::kw_fpext:
2120  case lltok::kw_bitcast:
2121  case lltok::kw_uitofp:
2122  case lltok::kw_sitofp:
2123  case lltok::kw_fptoui:
2124  case lltok::kw_fptosi:
2125  case lltok::kw_inttoptr:
2126  case lltok::kw_ptrtoint: {
2127    unsigned Opc = Lex.getUIntVal();
2128    Type *DestTy = 0;
2129    Constant *SrcVal;
2130    Lex.Lex();
2131    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2132        ParseGlobalTypeAndValue(SrcVal) ||
2133        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2134        ParseType(DestTy) ||
2135        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2136      return true;
2137    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2138      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2139                   getTypeString(SrcVal->getType()) + "' to '" +
2140                   getTypeString(DestTy) + "'");
2141    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2142                                                 SrcVal, DestTy);
2143    ID.Kind = ValID::t_Constant;
2144    return false;
2145  }
2146  case lltok::kw_extractvalue: {
2147    Lex.Lex();
2148    Constant *Val;
2149    SmallVector<unsigned, 4> Indices;
2150    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2151        ParseGlobalTypeAndValue(Val) ||
2152        ParseIndexList(Indices) ||
2153        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2154      return true;
2155
2156    if (!Val->getType()->isAggregateType())
2157      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2158    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2159      return Error(ID.Loc, "invalid indices for extractvalue");
2160    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2161    ID.Kind = ValID::t_Constant;
2162    return false;
2163  }
2164  case lltok::kw_insertvalue: {
2165    Lex.Lex();
2166    Constant *Val0, *Val1;
2167    SmallVector<unsigned, 4> Indices;
2168    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2169        ParseGlobalTypeAndValue(Val0) ||
2170        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2171        ParseGlobalTypeAndValue(Val1) ||
2172        ParseIndexList(Indices) ||
2173        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2174      return true;
2175    if (!Val0->getType()->isAggregateType())
2176      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2177    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2178      return Error(ID.Loc, "invalid indices for insertvalue");
2179    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2180    ID.Kind = ValID::t_Constant;
2181    return false;
2182  }
2183  case lltok::kw_icmp:
2184  case lltok::kw_fcmp: {
2185    unsigned PredVal, Opc = Lex.getUIntVal();
2186    Constant *Val0, *Val1;
2187    Lex.Lex();
2188    if (ParseCmpPredicate(PredVal, Opc) ||
2189        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2190        ParseGlobalTypeAndValue(Val0) ||
2191        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2192        ParseGlobalTypeAndValue(Val1) ||
2193        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2194      return true;
2195
2196    if (Val0->getType() != Val1->getType())
2197      return Error(ID.Loc, "compare operands must have the same type");
2198
2199    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2200
2201    if (Opc == Instruction::FCmp) {
2202      if (!Val0->getType()->isFPOrFPVectorTy())
2203        return Error(ID.Loc, "fcmp requires floating point operands");
2204      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2205    } else {
2206      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2207      if (!Val0->getType()->isIntOrIntVectorTy() &&
2208          !Val0->getType()->getScalarType()->isPointerTy())
2209        return Error(ID.Loc, "icmp requires pointer or integer operands");
2210      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2211    }
2212    ID.Kind = ValID::t_Constant;
2213    return false;
2214  }
2215
2216  // Binary Operators.
2217  case lltok::kw_add:
2218  case lltok::kw_fadd:
2219  case lltok::kw_sub:
2220  case lltok::kw_fsub:
2221  case lltok::kw_mul:
2222  case lltok::kw_fmul:
2223  case lltok::kw_udiv:
2224  case lltok::kw_sdiv:
2225  case lltok::kw_fdiv:
2226  case lltok::kw_urem:
2227  case lltok::kw_srem:
2228  case lltok::kw_frem:
2229  case lltok::kw_shl:
2230  case lltok::kw_lshr:
2231  case lltok::kw_ashr: {
2232    bool NUW = false;
2233    bool NSW = false;
2234    bool Exact = false;
2235    unsigned Opc = Lex.getUIntVal();
2236    Constant *Val0, *Val1;
2237    Lex.Lex();
2238    LocTy ModifierLoc = Lex.getLoc();
2239    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2240        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2241      if (EatIfPresent(lltok::kw_nuw))
2242        NUW = true;
2243      if (EatIfPresent(lltok::kw_nsw)) {
2244        NSW = true;
2245        if (EatIfPresent(lltok::kw_nuw))
2246          NUW = true;
2247      }
2248    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2249               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2250      if (EatIfPresent(lltok::kw_exact))
2251        Exact = true;
2252    }
2253    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2254        ParseGlobalTypeAndValue(Val0) ||
2255        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2256        ParseGlobalTypeAndValue(Val1) ||
2257        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2258      return true;
2259    if (Val0->getType() != Val1->getType())
2260      return Error(ID.Loc, "operands of constexpr must have same type");
2261    if (!Val0->getType()->isIntOrIntVectorTy()) {
2262      if (NUW)
2263        return Error(ModifierLoc, "nuw only applies to integer operations");
2264      if (NSW)
2265        return Error(ModifierLoc, "nsw only applies to integer operations");
2266    }
2267    // Check that the type is valid for the operator.
2268    switch (Opc) {
2269    case Instruction::Add:
2270    case Instruction::Sub:
2271    case Instruction::Mul:
2272    case Instruction::UDiv:
2273    case Instruction::SDiv:
2274    case Instruction::URem:
2275    case Instruction::SRem:
2276    case Instruction::Shl:
2277    case Instruction::AShr:
2278    case Instruction::LShr:
2279      if (!Val0->getType()->isIntOrIntVectorTy())
2280        return Error(ID.Loc, "constexpr requires integer operands");
2281      break;
2282    case Instruction::FAdd:
2283    case Instruction::FSub:
2284    case Instruction::FMul:
2285    case Instruction::FDiv:
2286    case Instruction::FRem:
2287      if (!Val0->getType()->isFPOrFPVectorTy())
2288        return Error(ID.Loc, "constexpr requires fp operands");
2289      break;
2290    default: llvm_unreachable("Unknown binary operator!");
2291    }
2292    unsigned Flags = 0;
2293    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2294    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2295    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2296    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2297    ID.ConstantVal = C;
2298    ID.Kind = ValID::t_Constant;
2299    return false;
2300  }
2301
2302  // Logical Operations
2303  case lltok::kw_and:
2304  case lltok::kw_or:
2305  case lltok::kw_xor: {
2306    unsigned Opc = Lex.getUIntVal();
2307    Constant *Val0, *Val1;
2308    Lex.Lex();
2309    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2310        ParseGlobalTypeAndValue(Val0) ||
2311        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2312        ParseGlobalTypeAndValue(Val1) ||
2313        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2314      return true;
2315    if (Val0->getType() != Val1->getType())
2316      return Error(ID.Loc, "operands of constexpr must have same type");
2317    if (!Val0->getType()->isIntOrIntVectorTy())
2318      return Error(ID.Loc,
2319                   "constexpr requires integer or integer vector operands");
2320    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2321    ID.Kind = ValID::t_Constant;
2322    return false;
2323  }
2324
2325  case lltok::kw_getelementptr:
2326  case lltok::kw_shufflevector:
2327  case lltok::kw_insertelement:
2328  case lltok::kw_extractelement:
2329  case lltok::kw_select: {
2330    unsigned Opc = Lex.getUIntVal();
2331    SmallVector<Constant*, 16> Elts;
2332    bool InBounds = false;
2333    Lex.Lex();
2334    if (Opc == Instruction::GetElementPtr)
2335      InBounds = EatIfPresent(lltok::kw_inbounds);
2336    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2337        ParseGlobalValueVector(Elts) ||
2338        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2339      return true;
2340
2341    if (Opc == Instruction::GetElementPtr) {
2342      if (Elts.size() == 0 ||
2343          !Elts[0]->getType()->getScalarType()->isPointerTy())
2344        return Error(ID.Loc, "getelementptr requires pointer operand");
2345
2346      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2347      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2348        return Error(ID.Loc, "invalid indices for getelementptr");
2349      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2350                                                      InBounds);
2351    } else if (Opc == Instruction::Select) {
2352      if (Elts.size() != 3)
2353        return Error(ID.Loc, "expected three operands to select");
2354      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2355                                                              Elts[2]))
2356        return Error(ID.Loc, Reason);
2357      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2358    } else if (Opc == Instruction::ShuffleVector) {
2359      if (Elts.size() != 3)
2360        return Error(ID.Loc, "expected three operands to shufflevector");
2361      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2362        return Error(ID.Loc, "invalid operands to shufflevector");
2363      ID.ConstantVal =
2364                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2365    } else if (Opc == Instruction::ExtractElement) {
2366      if (Elts.size() != 2)
2367        return Error(ID.Loc, "expected two operands to extractelement");
2368      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2369        return Error(ID.Loc, "invalid extractelement operands");
2370      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2371    } else {
2372      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2373      if (Elts.size() != 3)
2374      return Error(ID.Loc, "expected three operands to insertelement");
2375      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2376        return Error(ID.Loc, "invalid insertelement operands");
2377      ID.ConstantVal =
2378                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2379    }
2380
2381    ID.Kind = ValID::t_Constant;
2382    return false;
2383  }
2384  }
2385
2386  Lex.Lex();
2387  return false;
2388}
2389
2390/// ParseGlobalValue - Parse a global value with the specified type.
2391bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2392  C = 0;
2393  ValID ID;
2394  Value *V = NULL;
2395  bool Parsed = ParseValID(ID) ||
2396                ConvertValIDToValue(Ty, ID, V, NULL);
2397  if (V && !(C = dyn_cast<Constant>(V)))
2398    return Error(ID.Loc, "global values must be constants");
2399  return Parsed;
2400}
2401
2402bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2403  Type *Ty = 0;
2404  return ParseType(Ty) ||
2405         ParseGlobalValue(Ty, V);
2406}
2407
2408/// ParseGlobalValueVector
2409///   ::= /*empty*/
2410///   ::= TypeAndValue (',' TypeAndValue)*
2411bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2412  // Empty list.
2413  if (Lex.getKind() == lltok::rbrace ||
2414      Lex.getKind() == lltok::rsquare ||
2415      Lex.getKind() == lltok::greater ||
2416      Lex.getKind() == lltok::rparen)
2417    return false;
2418
2419  Constant *C;
2420  if (ParseGlobalTypeAndValue(C)) return true;
2421  Elts.push_back(C);
2422
2423  while (EatIfPresent(lltok::comma)) {
2424    if (ParseGlobalTypeAndValue(C)) return true;
2425    Elts.push_back(C);
2426  }
2427
2428  return false;
2429}
2430
2431bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2432  assert(Lex.getKind() == lltok::lbrace);
2433  Lex.Lex();
2434
2435  SmallVector<Value*, 16> Elts;
2436  if (ParseMDNodeVector(Elts, PFS) ||
2437      ParseToken(lltok::rbrace, "expected end of metadata node"))
2438    return true;
2439
2440  ID.MDNodeVal = MDNode::get(Context, Elts);
2441  ID.Kind = ValID::t_MDNode;
2442  return false;
2443}
2444
2445/// ParseMetadataValue
2446///  ::= !42
2447///  ::= !{...}
2448///  ::= !"string"
2449bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2450  assert(Lex.getKind() == lltok::exclaim);
2451  Lex.Lex();
2452
2453  // MDNode:
2454  // !{ ... }
2455  if (Lex.getKind() == lltok::lbrace)
2456    return ParseMetadataListValue(ID, PFS);
2457
2458  // Standalone metadata reference
2459  // !42
2460  if (Lex.getKind() == lltok::APSInt) {
2461    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2462    ID.Kind = ValID::t_MDNode;
2463    return false;
2464  }
2465
2466  // MDString:
2467  //   ::= '!' STRINGCONSTANT
2468  if (ParseMDString(ID.MDStringVal)) return true;
2469  ID.Kind = ValID::t_MDString;
2470  return false;
2471}
2472
2473
2474//===----------------------------------------------------------------------===//
2475// Function Parsing.
2476//===----------------------------------------------------------------------===//
2477
2478bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2479                                   PerFunctionState *PFS) {
2480  if (Ty->isFunctionTy())
2481    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2482
2483  switch (ID.Kind) {
2484  case ValID::t_LocalID:
2485    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2486    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2487    return (V == 0);
2488  case ValID::t_LocalName:
2489    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2490    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2491    return (V == 0);
2492  case ValID::t_InlineAsm: {
2493    PointerType *PTy = dyn_cast<PointerType>(Ty);
2494    FunctionType *FTy =
2495      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2496    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2497      return Error(ID.Loc, "invalid type for inline asm constraint string");
2498    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2499    return false;
2500  }
2501  case ValID::t_MDNode:
2502    if (!Ty->isMetadataTy())
2503      return Error(ID.Loc, "metadata value must have metadata type");
2504    V = ID.MDNodeVal;
2505    return false;
2506  case ValID::t_MDString:
2507    if (!Ty->isMetadataTy())
2508      return Error(ID.Loc, "metadata value must have metadata type");
2509    V = ID.MDStringVal;
2510    return false;
2511  case ValID::t_GlobalName:
2512    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2513    return V == 0;
2514  case ValID::t_GlobalID:
2515    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2516    return V == 0;
2517  case ValID::t_APSInt:
2518    if (!Ty->isIntegerTy())
2519      return Error(ID.Loc, "integer constant must have integer type");
2520    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2521    V = ConstantInt::get(Context, ID.APSIntVal);
2522    return false;
2523  case ValID::t_APFloat:
2524    if (!Ty->isFloatingPointTy() ||
2525        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2526      return Error(ID.Loc, "floating point constant invalid for type");
2527
2528    // The lexer has no type info, so builds all half, float, and double FP
2529    // constants as double.  Fix this here.  Long double does not need this.
2530    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2531      bool Ignored;
2532      if (Ty->isHalfTy())
2533        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2534                              &Ignored);
2535      else if (Ty->isFloatTy())
2536        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2537                              &Ignored);
2538    }
2539    V = ConstantFP::get(Context, ID.APFloatVal);
2540
2541    if (V->getType() != Ty)
2542      return Error(ID.Loc, "floating point constant does not have type '" +
2543                   getTypeString(Ty) + "'");
2544
2545    return false;
2546  case ValID::t_Null:
2547    if (!Ty->isPointerTy())
2548      return Error(ID.Loc, "null must be a pointer type");
2549    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2550    return false;
2551  case ValID::t_Undef:
2552    // FIXME: LabelTy should not be a first-class type.
2553    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2554      return Error(ID.Loc, "invalid type for undef constant");
2555    V = UndefValue::get(Ty);
2556    return false;
2557  case ValID::t_EmptyArray:
2558    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2559      return Error(ID.Loc, "invalid empty array initializer");
2560    V = UndefValue::get(Ty);
2561    return false;
2562  case ValID::t_Zero:
2563    // FIXME: LabelTy should not be a first-class type.
2564    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2565      return Error(ID.Loc, "invalid type for null constant");
2566    V = Constant::getNullValue(Ty);
2567    return false;
2568  case ValID::t_Constant:
2569    if (ID.ConstantVal->getType() != Ty)
2570      return Error(ID.Loc, "constant expression type mismatch");
2571
2572    V = ID.ConstantVal;
2573    return false;
2574  case ValID::t_ConstantStruct:
2575  case ValID::t_PackedConstantStruct:
2576    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2577      if (ST->getNumElements() != ID.UIntVal)
2578        return Error(ID.Loc,
2579                     "initializer with struct type has wrong # elements");
2580      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2581        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2582
2583      // Verify that the elements are compatible with the structtype.
2584      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2585        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2586          return Error(ID.Loc, "element " + Twine(i) +
2587                    " of struct initializer doesn't match struct element type");
2588
2589      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2590                                               ID.UIntVal));
2591    } else
2592      return Error(ID.Loc, "constant expression type mismatch");
2593    return false;
2594  }
2595  llvm_unreachable("Invalid ValID");
2596}
2597
2598bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2599  V = 0;
2600  ValID ID;
2601  return ParseValID(ID, PFS) ||
2602         ConvertValIDToValue(Ty, ID, V, PFS);
2603}
2604
2605bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2606  Type *Ty = 0;
2607  return ParseType(Ty) ||
2608         ParseValue(Ty, V, PFS);
2609}
2610
2611bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2612                                      PerFunctionState &PFS) {
2613  Value *V;
2614  Loc = Lex.getLoc();
2615  if (ParseTypeAndValue(V, PFS)) return true;
2616  if (!isa<BasicBlock>(V))
2617    return Error(Loc, "expected a basic block");
2618  BB = cast<BasicBlock>(V);
2619  return false;
2620}
2621
2622
2623/// FunctionHeader
2624///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2625///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2626///       OptionalAlign OptGC
2627bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2628  // Parse the linkage.
2629  LocTy LinkageLoc = Lex.getLoc();
2630  unsigned Linkage;
2631
2632  unsigned Visibility;
2633  Attributes RetAttrs;
2634  CallingConv::ID CC;
2635  Type *RetType = 0;
2636  LocTy RetTypeLoc = Lex.getLoc();
2637  if (ParseOptionalLinkage(Linkage) ||
2638      ParseOptionalVisibility(Visibility) ||
2639      ParseOptionalCallingConv(CC) ||
2640      ParseOptionalAttrs(RetAttrs, 1) ||
2641      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2642    return true;
2643
2644  // Verify that the linkage is ok.
2645  switch ((GlobalValue::LinkageTypes)Linkage) {
2646  case GlobalValue::ExternalLinkage:
2647    break; // always ok.
2648  case GlobalValue::DLLImportLinkage:
2649  case GlobalValue::ExternalWeakLinkage:
2650    if (isDefine)
2651      return Error(LinkageLoc, "invalid linkage for function definition");
2652    break;
2653  case GlobalValue::PrivateLinkage:
2654  case GlobalValue::LinkerPrivateLinkage:
2655  case GlobalValue::LinkerPrivateWeakLinkage:
2656  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2657  case GlobalValue::InternalLinkage:
2658  case GlobalValue::AvailableExternallyLinkage:
2659  case GlobalValue::LinkOnceAnyLinkage:
2660  case GlobalValue::LinkOnceODRLinkage:
2661  case GlobalValue::WeakAnyLinkage:
2662  case GlobalValue::WeakODRLinkage:
2663  case GlobalValue::DLLExportLinkage:
2664    if (!isDefine)
2665      return Error(LinkageLoc, "invalid linkage for function declaration");
2666    break;
2667  case GlobalValue::AppendingLinkage:
2668  case GlobalValue::CommonLinkage:
2669    return Error(LinkageLoc, "invalid function linkage type");
2670  }
2671
2672  if (!FunctionType::isValidReturnType(RetType))
2673    return Error(RetTypeLoc, "invalid function return type");
2674
2675  LocTy NameLoc = Lex.getLoc();
2676
2677  std::string FunctionName;
2678  if (Lex.getKind() == lltok::GlobalVar) {
2679    FunctionName = Lex.getStrVal();
2680  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2681    unsigned NameID = Lex.getUIntVal();
2682
2683    if (NameID != NumberedVals.size())
2684      return TokError("function expected to be numbered '%" +
2685                      Twine(NumberedVals.size()) + "'");
2686  } else {
2687    return TokError("expected function name");
2688  }
2689
2690  Lex.Lex();
2691
2692  if (Lex.getKind() != lltok::lparen)
2693    return TokError("expected '(' in function argument list");
2694
2695  SmallVector<ArgInfo, 8> ArgList;
2696  bool isVarArg;
2697  Attributes FuncAttrs;
2698  std::string Section;
2699  unsigned Alignment;
2700  std::string GC;
2701  bool UnnamedAddr;
2702  LocTy UnnamedAddrLoc;
2703
2704  if (ParseArgumentList(ArgList, isVarArg) ||
2705      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2706                         &UnnamedAddrLoc) ||
2707      ParseOptionalAttrs(FuncAttrs, 2) ||
2708      (EatIfPresent(lltok::kw_section) &&
2709       ParseStringConstant(Section)) ||
2710      ParseOptionalAlignment(Alignment) ||
2711      (EatIfPresent(lltok::kw_gc) &&
2712       ParseStringConstant(GC)))
2713    return true;
2714
2715  // If the alignment was parsed as an attribute, move to the alignment field.
2716  if (FuncAttrs & Attribute::Alignment) {
2717    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2718    FuncAttrs &= ~Attribute::Alignment;
2719  }
2720
2721  // Okay, if we got here, the function is syntactically valid.  Convert types
2722  // and do semantic checks.
2723  std::vector<Type*> ParamTypeList;
2724  SmallVector<AttributeWithIndex, 8> Attrs;
2725
2726  if (RetAttrs != Attribute::None)
2727    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2728
2729  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2730    ParamTypeList.push_back(ArgList[i].Ty);
2731    if (ArgList[i].Attrs != Attribute::None)
2732      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2733  }
2734
2735  if (FuncAttrs != Attribute::None)
2736    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2737
2738  AttrListPtr PAL = AttrListPtr::get(Attrs);
2739
2740  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2741    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2742
2743  FunctionType *FT =
2744    FunctionType::get(RetType, ParamTypeList, isVarArg);
2745  PointerType *PFT = PointerType::getUnqual(FT);
2746
2747  Fn = 0;
2748  if (!FunctionName.empty()) {
2749    // If this was a definition of a forward reference, remove the definition
2750    // from the forward reference table and fill in the forward ref.
2751    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2752      ForwardRefVals.find(FunctionName);
2753    if (FRVI != ForwardRefVals.end()) {
2754      Fn = M->getFunction(FunctionName);
2755      if (Fn->getType() != PFT)
2756        return Error(FRVI->second.second, "invalid forward reference to "
2757                     "function '" + FunctionName + "' with wrong type!");
2758
2759      ForwardRefVals.erase(FRVI);
2760    } else if ((Fn = M->getFunction(FunctionName))) {
2761      // Reject redefinitions.
2762      return Error(NameLoc, "invalid redefinition of function '" +
2763                   FunctionName + "'");
2764    } else if (M->getNamedValue(FunctionName)) {
2765      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2766    }
2767
2768  } else {
2769    // If this is a definition of a forward referenced function, make sure the
2770    // types agree.
2771    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2772      = ForwardRefValIDs.find(NumberedVals.size());
2773    if (I != ForwardRefValIDs.end()) {
2774      Fn = cast<Function>(I->second.first);
2775      if (Fn->getType() != PFT)
2776        return Error(NameLoc, "type of definition and forward reference of '@" +
2777                     Twine(NumberedVals.size()) + "' disagree");
2778      ForwardRefValIDs.erase(I);
2779    }
2780  }
2781
2782  if (Fn == 0)
2783    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2784  else // Move the forward-reference to the correct spot in the module.
2785    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2786
2787  if (FunctionName.empty())
2788    NumberedVals.push_back(Fn);
2789
2790  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2791  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2792  Fn->setCallingConv(CC);
2793  Fn->setAttributes(PAL);
2794  Fn->setUnnamedAddr(UnnamedAddr);
2795  Fn->setAlignment(Alignment);
2796  Fn->setSection(Section);
2797  if (!GC.empty()) Fn->setGC(GC.c_str());
2798
2799  // Add all of the arguments we parsed to the function.
2800  Function::arg_iterator ArgIt = Fn->arg_begin();
2801  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2802    // If the argument has a name, insert it into the argument symbol table.
2803    if (ArgList[i].Name.empty()) continue;
2804
2805    // Set the name, if it conflicted, it will be auto-renamed.
2806    ArgIt->setName(ArgList[i].Name);
2807
2808    if (ArgIt->getName() != ArgList[i].Name)
2809      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2810                   ArgList[i].Name + "'");
2811  }
2812
2813  return false;
2814}
2815
2816
2817/// ParseFunctionBody
2818///   ::= '{' BasicBlock+ '}'
2819///
2820bool LLParser::ParseFunctionBody(Function &Fn) {
2821  if (Lex.getKind() != lltok::lbrace)
2822    return TokError("expected '{' in function body");
2823  Lex.Lex();  // eat the {.
2824
2825  int FunctionNumber = -1;
2826  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2827
2828  PerFunctionState PFS(*this, Fn, FunctionNumber);
2829
2830  // We need at least one basic block.
2831  if (Lex.getKind() == lltok::rbrace)
2832    return TokError("function body requires at least one basic block");
2833
2834  while (Lex.getKind() != lltok::rbrace)
2835    if (ParseBasicBlock(PFS)) return true;
2836
2837  // Eat the }.
2838  Lex.Lex();
2839
2840  // Verify function is ok.
2841  return PFS.FinishFunction();
2842}
2843
2844/// ParseBasicBlock
2845///   ::= LabelStr? Instruction*
2846bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2847  // If this basic block starts out with a name, remember it.
2848  std::string Name;
2849  LocTy NameLoc = Lex.getLoc();
2850  if (Lex.getKind() == lltok::LabelStr) {
2851    Name = Lex.getStrVal();
2852    Lex.Lex();
2853  }
2854
2855  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2856  if (BB == 0) return true;
2857
2858  std::string NameStr;
2859
2860  // Parse the instructions in this block until we get a terminator.
2861  Instruction *Inst;
2862  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2863  do {
2864    // This instruction may have three possibilities for a name: a) none
2865    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2866    LocTy NameLoc = Lex.getLoc();
2867    int NameID = -1;
2868    NameStr = "";
2869
2870    if (Lex.getKind() == lltok::LocalVarID) {
2871      NameID = Lex.getUIntVal();
2872      Lex.Lex();
2873      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2874        return true;
2875    } else if (Lex.getKind() == lltok::LocalVar) {
2876      NameStr = Lex.getStrVal();
2877      Lex.Lex();
2878      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2879        return true;
2880    }
2881
2882    switch (ParseInstruction(Inst, BB, PFS)) {
2883    default: llvm_unreachable("Unknown ParseInstruction result!");
2884    case InstError: return true;
2885    case InstNormal:
2886      BB->getInstList().push_back(Inst);
2887
2888      // With a normal result, we check to see if the instruction is followed by
2889      // a comma and metadata.
2890      if (EatIfPresent(lltok::comma))
2891        if (ParseInstructionMetadata(Inst, &PFS))
2892          return true;
2893      break;
2894    case InstExtraComma:
2895      BB->getInstList().push_back(Inst);
2896
2897      // If the instruction parser ate an extra comma at the end of it, it
2898      // *must* be followed by metadata.
2899      if (ParseInstructionMetadata(Inst, &PFS))
2900        return true;
2901      break;
2902    }
2903
2904    // Set the name on the instruction.
2905    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2906  } while (!isa<TerminatorInst>(Inst));
2907
2908  return false;
2909}
2910
2911//===----------------------------------------------------------------------===//
2912// Instruction Parsing.
2913//===----------------------------------------------------------------------===//
2914
2915/// ParseInstruction - Parse one of the many different instructions.
2916///
2917int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2918                               PerFunctionState &PFS) {
2919  lltok::Kind Token = Lex.getKind();
2920  if (Token == lltok::Eof)
2921    return TokError("found end of file when expecting more instructions");
2922  LocTy Loc = Lex.getLoc();
2923  unsigned KeywordVal = Lex.getUIntVal();
2924  Lex.Lex();  // Eat the keyword.
2925
2926  switch (Token) {
2927  default:                    return Error(Loc, "expected instruction opcode");
2928  // Terminator Instructions.
2929  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2930  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2931  case lltok::kw_br:          return ParseBr(Inst, PFS);
2932  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2933  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2934  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2935  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2936  // Binary Operators.
2937  case lltok::kw_add:
2938  case lltok::kw_sub:
2939  case lltok::kw_mul:
2940  case lltok::kw_shl: {
2941    bool NUW = EatIfPresent(lltok::kw_nuw);
2942    bool NSW = EatIfPresent(lltok::kw_nsw);
2943    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2944
2945    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2946
2947    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2948    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2949    return false;
2950  }
2951  case lltok::kw_fadd:
2952  case lltok::kw_fsub:
2953  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2954
2955  case lltok::kw_sdiv:
2956  case lltok::kw_udiv:
2957  case lltok::kw_lshr:
2958  case lltok::kw_ashr: {
2959    bool Exact = EatIfPresent(lltok::kw_exact);
2960
2961    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2962    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2963    return false;
2964  }
2965
2966  case lltok::kw_urem:
2967  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2968  case lltok::kw_fdiv:
2969  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2970  case lltok::kw_and:
2971  case lltok::kw_or:
2972  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2973  case lltok::kw_icmp:
2974  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2975  // Casts.
2976  case lltok::kw_trunc:
2977  case lltok::kw_zext:
2978  case lltok::kw_sext:
2979  case lltok::kw_fptrunc:
2980  case lltok::kw_fpext:
2981  case lltok::kw_bitcast:
2982  case lltok::kw_uitofp:
2983  case lltok::kw_sitofp:
2984  case lltok::kw_fptoui:
2985  case lltok::kw_fptosi:
2986  case lltok::kw_inttoptr:
2987  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2988  // Other.
2989  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2990  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2991  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2992  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2993  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2994  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2995  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2996  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2997  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2998  // Memory.
2999  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3000  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3001  case lltok::kw_store:          return ParseStore(Inst, PFS);
3002  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3003  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3004  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3005  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3006  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3007  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3008  }
3009}
3010
3011/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3012bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3013  if (Opc == Instruction::FCmp) {
3014    switch (Lex.getKind()) {
3015    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3016    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3017    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3018    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3019    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3020    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3021    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3022    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3023    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3024    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3025    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3026    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3027    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3028    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3029    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3030    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3031    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3032    }
3033  } else {
3034    switch (Lex.getKind()) {
3035    default: TokError("expected icmp predicate (e.g. 'eq')");
3036    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3037    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3038    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3039    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3040    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3041    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3042    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3043    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3044    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3045    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3046    }
3047  }
3048  Lex.Lex();
3049  return false;
3050}
3051
3052//===----------------------------------------------------------------------===//
3053// Terminator Instructions.
3054//===----------------------------------------------------------------------===//
3055
3056/// ParseRet - Parse a return instruction.
3057///   ::= 'ret' void (',' !dbg, !1)*
3058///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3059bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3060                        PerFunctionState &PFS) {
3061  SMLoc TypeLoc = Lex.getLoc();
3062  Type *Ty = 0;
3063  if (ParseType(Ty, true /*void allowed*/)) return true;
3064
3065  Type *ResType = PFS.getFunction().getReturnType();
3066
3067  if (Ty->isVoidTy()) {
3068    if (!ResType->isVoidTy())
3069      return Error(TypeLoc, "value doesn't match function result type '" +
3070                   getTypeString(ResType) + "'");
3071
3072    Inst = ReturnInst::Create(Context);
3073    return false;
3074  }
3075
3076  Value *RV;
3077  if (ParseValue(Ty, RV, PFS)) return true;
3078
3079  if (ResType != RV->getType())
3080    return Error(TypeLoc, "value doesn't match function result type '" +
3081                 getTypeString(ResType) + "'");
3082
3083  Inst = ReturnInst::Create(Context, RV);
3084  return false;
3085}
3086
3087
3088/// ParseBr
3089///   ::= 'br' TypeAndValue
3090///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3091bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3092  LocTy Loc, Loc2;
3093  Value *Op0;
3094  BasicBlock *Op1, *Op2;
3095  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3096
3097  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3098    Inst = BranchInst::Create(BB);
3099    return false;
3100  }
3101
3102  if (Op0->getType() != Type::getInt1Ty(Context))
3103    return Error(Loc, "branch condition must have 'i1' type");
3104
3105  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3106      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3107      ParseToken(lltok::comma, "expected ',' after true destination") ||
3108      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3109    return true;
3110
3111  Inst = BranchInst::Create(Op1, Op2, Op0);
3112  return false;
3113}
3114
3115/// ParseSwitch
3116///  Instruction
3117///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3118///  JumpTable
3119///    ::= (TypeAndValue ',' TypeAndValue)*
3120bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3121  LocTy CondLoc, BBLoc;
3122  Value *Cond;
3123  BasicBlock *DefaultBB;
3124  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3125      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3126      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3127      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3128    return true;
3129
3130  if (!Cond->getType()->isIntegerTy())
3131    return Error(CondLoc, "switch condition must have integer type");
3132
3133  // Parse the jump table pairs.
3134  SmallPtrSet<Value*, 32> SeenCases;
3135  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3136  while (Lex.getKind() != lltok::rsquare) {
3137    Value *Constant;
3138    BasicBlock *DestBB;
3139
3140    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3141        ParseToken(lltok::comma, "expected ',' after case value") ||
3142        ParseTypeAndBasicBlock(DestBB, PFS))
3143      return true;
3144
3145    if (!SeenCases.insert(Constant))
3146      return Error(CondLoc, "duplicate case value in switch");
3147    if (!isa<ConstantInt>(Constant))
3148      return Error(CondLoc, "case value is not a constant integer");
3149
3150    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3151  }
3152
3153  Lex.Lex();  // Eat the ']'.
3154
3155  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3156  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3157    SI->addCase(Table[i].first, Table[i].second);
3158  Inst = SI;
3159  return false;
3160}
3161
3162/// ParseIndirectBr
3163///  Instruction
3164///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3165bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3166  LocTy AddrLoc;
3167  Value *Address;
3168  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3169      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3170      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3171    return true;
3172
3173  if (!Address->getType()->isPointerTy())
3174    return Error(AddrLoc, "indirectbr address must have pointer type");
3175
3176  // Parse the destination list.
3177  SmallVector<BasicBlock*, 16> DestList;
3178
3179  if (Lex.getKind() != lltok::rsquare) {
3180    BasicBlock *DestBB;
3181    if (ParseTypeAndBasicBlock(DestBB, PFS))
3182      return true;
3183    DestList.push_back(DestBB);
3184
3185    while (EatIfPresent(lltok::comma)) {
3186      if (ParseTypeAndBasicBlock(DestBB, PFS))
3187        return true;
3188      DestList.push_back(DestBB);
3189    }
3190  }
3191
3192  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3193    return true;
3194
3195  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3196  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3197    IBI->addDestination(DestList[i]);
3198  Inst = IBI;
3199  return false;
3200}
3201
3202
3203/// ParseInvoke
3204///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3205///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3206bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3207  LocTy CallLoc = Lex.getLoc();
3208  Attributes RetAttrs, FnAttrs;
3209  CallingConv::ID CC;
3210  Type *RetType = 0;
3211  LocTy RetTypeLoc;
3212  ValID CalleeID;
3213  SmallVector<ParamInfo, 16> ArgList;
3214
3215  BasicBlock *NormalBB, *UnwindBB;
3216  if (ParseOptionalCallingConv(CC) ||
3217      ParseOptionalAttrs(RetAttrs, 1) ||
3218      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3219      ParseValID(CalleeID) ||
3220      ParseParameterList(ArgList, PFS) ||
3221      ParseOptionalAttrs(FnAttrs, 2) ||
3222      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3223      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3224      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3225      ParseTypeAndBasicBlock(UnwindBB, PFS))
3226    return true;
3227
3228  // If RetType is a non-function pointer type, then this is the short syntax
3229  // for the call, which means that RetType is just the return type.  Infer the
3230  // rest of the function argument types from the arguments that are present.
3231  PointerType *PFTy = 0;
3232  FunctionType *Ty = 0;
3233  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3234      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3235    // Pull out the types of all of the arguments...
3236    std::vector<Type*> ParamTypes;
3237    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3238      ParamTypes.push_back(ArgList[i].V->getType());
3239
3240    if (!FunctionType::isValidReturnType(RetType))
3241      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3242
3243    Ty = FunctionType::get(RetType, ParamTypes, false);
3244    PFTy = PointerType::getUnqual(Ty);
3245  }
3246
3247  // Look up the callee.
3248  Value *Callee;
3249  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3250
3251  // Set up the Attributes for the function.
3252  SmallVector<AttributeWithIndex, 8> Attrs;
3253  if (RetAttrs != Attribute::None)
3254    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3255
3256  SmallVector<Value*, 8> Args;
3257
3258  // Loop through FunctionType's arguments and ensure they are specified
3259  // correctly.  Also, gather any parameter attributes.
3260  FunctionType::param_iterator I = Ty->param_begin();
3261  FunctionType::param_iterator E = Ty->param_end();
3262  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3263    Type *ExpectedTy = 0;
3264    if (I != E) {
3265      ExpectedTy = *I++;
3266    } else if (!Ty->isVarArg()) {
3267      return Error(ArgList[i].Loc, "too many arguments specified");
3268    }
3269
3270    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3271      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3272                   getTypeString(ExpectedTy) + "'");
3273    Args.push_back(ArgList[i].V);
3274    if (ArgList[i].Attrs != Attribute::None)
3275      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3276  }
3277
3278  if (I != E)
3279    return Error(CallLoc, "not enough parameters specified for call");
3280
3281  if (FnAttrs != Attribute::None)
3282    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3283
3284  // Finish off the Attributes and check them
3285  AttrListPtr PAL = AttrListPtr::get(Attrs);
3286
3287  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3288  II->setCallingConv(CC);
3289  II->setAttributes(PAL);
3290  Inst = II;
3291  return false;
3292}
3293
3294/// ParseResume
3295///   ::= 'resume' TypeAndValue
3296bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3297  Value *Exn; LocTy ExnLoc;
3298  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3299    return true;
3300
3301  ResumeInst *RI = ResumeInst::Create(Exn);
3302  Inst = RI;
3303  return false;
3304}
3305
3306//===----------------------------------------------------------------------===//
3307// Binary Operators.
3308//===----------------------------------------------------------------------===//
3309
3310/// ParseArithmetic
3311///  ::= ArithmeticOps TypeAndValue ',' Value
3312///
3313/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3314/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3315bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3316                               unsigned Opc, unsigned OperandType) {
3317  LocTy Loc; Value *LHS, *RHS;
3318  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3319      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3320      ParseValue(LHS->getType(), RHS, PFS))
3321    return true;
3322
3323  bool Valid;
3324  switch (OperandType) {
3325  default: llvm_unreachable("Unknown operand type!");
3326  case 0: // int or FP.
3327    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3328            LHS->getType()->isFPOrFPVectorTy();
3329    break;
3330  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3331  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3332  }
3333
3334  if (!Valid)
3335    return Error(Loc, "invalid operand type for instruction");
3336
3337  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3338  return false;
3339}
3340
3341/// ParseLogical
3342///  ::= ArithmeticOps TypeAndValue ',' Value {
3343bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3344                            unsigned Opc) {
3345  LocTy Loc; Value *LHS, *RHS;
3346  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3347      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3348      ParseValue(LHS->getType(), RHS, PFS))
3349    return true;
3350
3351  if (!LHS->getType()->isIntOrIntVectorTy())
3352    return Error(Loc,"instruction requires integer or integer vector operands");
3353
3354  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3355  return false;
3356}
3357
3358
3359/// ParseCompare
3360///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3361///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3362bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3363                            unsigned Opc) {
3364  // Parse the integer/fp comparison predicate.
3365  LocTy Loc;
3366  unsigned Pred;
3367  Value *LHS, *RHS;
3368  if (ParseCmpPredicate(Pred, Opc) ||
3369      ParseTypeAndValue(LHS, Loc, PFS) ||
3370      ParseToken(lltok::comma, "expected ',' after compare value") ||
3371      ParseValue(LHS->getType(), RHS, PFS))
3372    return true;
3373
3374  if (Opc == Instruction::FCmp) {
3375    if (!LHS->getType()->isFPOrFPVectorTy())
3376      return Error(Loc, "fcmp requires floating point operands");
3377    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3378  } else {
3379    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3380    if (!LHS->getType()->isIntOrIntVectorTy() &&
3381        !LHS->getType()->getScalarType()->isPointerTy())
3382      return Error(Loc, "icmp requires integer operands");
3383    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3384  }
3385  return false;
3386}
3387
3388//===----------------------------------------------------------------------===//
3389// Other Instructions.
3390//===----------------------------------------------------------------------===//
3391
3392
3393/// ParseCast
3394///   ::= CastOpc TypeAndValue 'to' Type
3395bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3396                         unsigned Opc) {
3397  LocTy Loc;
3398  Value *Op;
3399  Type *DestTy = 0;
3400  if (ParseTypeAndValue(Op, Loc, PFS) ||
3401      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3402      ParseType(DestTy))
3403    return true;
3404
3405  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3406    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3407    return Error(Loc, "invalid cast opcode for cast from '" +
3408                 getTypeString(Op->getType()) + "' to '" +
3409                 getTypeString(DestTy) + "'");
3410  }
3411  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3412  return false;
3413}
3414
3415/// ParseSelect
3416///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3417bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3418  LocTy Loc;
3419  Value *Op0, *Op1, *Op2;
3420  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3421      ParseToken(lltok::comma, "expected ',' after select condition") ||
3422      ParseTypeAndValue(Op1, PFS) ||
3423      ParseToken(lltok::comma, "expected ',' after select value") ||
3424      ParseTypeAndValue(Op2, PFS))
3425    return true;
3426
3427  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3428    return Error(Loc, Reason);
3429
3430  Inst = SelectInst::Create(Op0, Op1, Op2);
3431  return false;
3432}
3433
3434/// ParseVA_Arg
3435///   ::= 'va_arg' TypeAndValue ',' Type
3436bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3437  Value *Op;
3438  Type *EltTy = 0;
3439  LocTy TypeLoc;
3440  if (ParseTypeAndValue(Op, PFS) ||
3441      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3442      ParseType(EltTy, TypeLoc))
3443    return true;
3444
3445  if (!EltTy->isFirstClassType())
3446    return Error(TypeLoc, "va_arg requires operand with first class type");
3447
3448  Inst = new VAArgInst(Op, EltTy);
3449  return false;
3450}
3451
3452/// ParseExtractElement
3453///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3454bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3455  LocTy Loc;
3456  Value *Op0, *Op1;
3457  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3458      ParseToken(lltok::comma, "expected ',' after extract value") ||
3459      ParseTypeAndValue(Op1, PFS))
3460    return true;
3461
3462  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3463    return Error(Loc, "invalid extractelement operands");
3464
3465  Inst = ExtractElementInst::Create(Op0, Op1);
3466  return false;
3467}
3468
3469/// ParseInsertElement
3470///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3471bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3472  LocTy Loc;
3473  Value *Op0, *Op1, *Op2;
3474  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3475      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3476      ParseTypeAndValue(Op1, PFS) ||
3477      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3478      ParseTypeAndValue(Op2, PFS))
3479    return true;
3480
3481  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3482    return Error(Loc, "invalid insertelement operands");
3483
3484  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3485  return false;
3486}
3487
3488/// ParseShuffleVector
3489///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3490bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3491  LocTy Loc;
3492  Value *Op0, *Op1, *Op2;
3493  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3494      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3495      ParseTypeAndValue(Op1, PFS) ||
3496      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3497      ParseTypeAndValue(Op2, PFS))
3498    return true;
3499
3500  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3501    return Error(Loc, "invalid shufflevector operands");
3502
3503  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3504  return false;
3505}
3506
3507/// ParsePHI
3508///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3509int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3510  Type *Ty = 0;  LocTy TypeLoc;
3511  Value *Op0, *Op1;
3512
3513  if (ParseType(Ty, TypeLoc) ||
3514      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3515      ParseValue(Ty, Op0, PFS) ||
3516      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3517      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3518      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3519    return true;
3520
3521  bool AteExtraComma = false;
3522  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3523  while (1) {
3524    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3525
3526    if (!EatIfPresent(lltok::comma))
3527      break;
3528
3529    if (Lex.getKind() == lltok::MetadataVar) {
3530      AteExtraComma = true;
3531      break;
3532    }
3533
3534    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3535        ParseValue(Ty, Op0, PFS) ||
3536        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3537        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3538        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3539      return true;
3540  }
3541
3542  if (!Ty->isFirstClassType())
3543    return Error(TypeLoc, "phi node must have first class type");
3544
3545  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3546  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3547    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3548  Inst = PN;
3549  return AteExtraComma ? InstExtraComma : InstNormal;
3550}
3551
3552/// ParseLandingPad
3553///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3554/// Clause
3555///   ::= 'catch' TypeAndValue
3556///   ::= 'filter'
3557///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3558bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3559  Type *Ty = 0; LocTy TyLoc;
3560  Value *PersFn; LocTy PersFnLoc;
3561
3562  if (ParseType(Ty, TyLoc) ||
3563      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3564      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3565    return true;
3566
3567  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3568  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3569
3570  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3571    LandingPadInst::ClauseType CT;
3572    if (EatIfPresent(lltok::kw_catch))
3573      CT = LandingPadInst::Catch;
3574    else if (EatIfPresent(lltok::kw_filter))
3575      CT = LandingPadInst::Filter;
3576    else
3577      return TokError("expected 'catch' or 'filter' clause type");
3578
3579    Value *V; LocTy VLoc;
3580    if (ParseTypeAndValue(V, VLoc, PFS)) {
3581      delete LP;
3582      return true;
3583    }
3584
3585    // A 'catch' type expects a non-array constant. A filter clause expects an
3586    // array constant.
3587    if (CT == LandingPadInst::Catch) {
3588      if (isa<ArrayType>(V->getType()))
3589        Error(VLoc, "'catch' clause has an invalid type");
3590    } else {
3591      if (!isa<ArrayType>(V->getType()))
3592        Error(VLoc, "'filter' clause has an invalid type");
3593    }
3594
3595    LP->addClause(V);
3596  }
3597
3598  Inst = LP;
3599  return false;
3600}
3601
3602/// ParseCall
3603///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3604///       ParameterList OptionalAttrs
3605bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3606                         bool isTail) {
3607  Attributes RetAttrs, FnAttrs;
3608  CallingConv::ID CC;
3609  Type *RetType = 0;
3610  LocTy RetTypeLoc;
3611  ValID CalleeID;
3612  SmallVector<ParamInfo, 16> ArgList;
3613  LocTy CallLoc = Lex.getLoc();
3614
3615  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3616      ParseOptionalCallingConv(CC) ||
3617      ParseOptionalAttrs(RetAttrs, 1) ||
3618      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3619      ParseValID(CalleeID) ||
3620      ParseParameterList(ArgList, PFS) ||
3621      ParseOptionalAttrs(FnAttrs, 2))
3622    return true;
3623
3624  // If RetType is a non-function pointer type, then this is the short syntax
3625  // for the call, which means that RetType is just the return type.  Infer the
3626  // rest of the function argument types from the arguments that are present.
3627  PointerType *PFTy = 0;
3628  FunctionType *Ty = 0;
3629  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3630      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3631    // Pull out the types of all of the arguments...
3632    std::vector<Type*> ParamTypes;
3633    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3634      ParamTypes.push_back(ArgList[i].V->getType());
3635
3636    if (!FunctionType::isValidReturnType(RetType))
3637      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3638
3639    Ty = FunctionType::get(RetType, ParamTypes, false);
3640    PFTy = PointerType::getUnqual(Ty);
3641  }
3642
3643  // Look up the callee.
3644  Value *Callee;
3645  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3646
3647  // Set up the Attributes for the function.
3648  SmallVector<AttributeWithIndex, 8> Attrs;
3649  if (RetAttrs != Attribute::None)
3650    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3651
3652  SmallVector<Value*, 8> Args;
3653
3654  // Loop through FunctionType's arguments and ensure they are specified
3655  // correctly.  Also, gather any parameter attributes.
3656  FunctionType::param_iterator I = Ty->param_begin();
3657  FunctionType::param_iterator E = Ty->param_end();
3658  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3659    Type *ExpectedTy = 0;
3660    if (I != E) {
3661      ExpectedTy = *I++;
3662    } else if (!Ty->isVarArg()) {
3663      return Error(ArgList[i].Loc, "too many arguments specified");
3664    }
3665
3666    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3667      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3668                   getTypeString(ExpectedTy) + "'");
3669    Args.push_back(ArgList[i].V);
3670    if (ArgList[i].Attrs != Attribute::None)
3671      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3672  }
3673
3674  if (I != E)
3675    return Error(CallLoc, "not enough parameters specified for call");
3676
3677  if (FnAttrs != Attribute::None)
3678    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3679
3680  // Finish off the Attributes and check them
3681  AttrListPtr PAL = AttrListPtr::get(Attrs);
3682
3683  CallInst *CI = CallInst::Create(Callee, Args);
3684  CI->setTailCall(isTail);
3685  CI->setCallingConv(CC);
3686  CI->setAttributes(PAL);
3687  Inst = CI;
3688  return false;
3689}
3690
3691//===----------------------------------------------------------------------===//
3692// Memory Instructions.
3693//===----------------------------------------------------------------------===//
3694
3695/// ParseAlloc
3696///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3697int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3698  Value *Size = 0;
3699  LocTy SizeLoc;
3700  unsigned Alignment = 0;
3701  Type *Ty = 0;
3702  if (ParseType(Ty)) return true;
3703
3704  bool AteExtraComma = false;
3705  if (EatIfPresent(lltok::comma)) {
3706    if (Lex.getKind() == lltok::kw_align) {
3707      if (ParseOptionalAlignment(Alignment)) return true;
3708    } else if (Lex.getKind() == lltok::MetadataVar) {
3709      AteExtraComma = true;
3710    } else {
3711      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3712          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3713        return true;
3714    }
3715  }
3716
3717  if (Size && !Size->getType()->isIntegerTy())
3718    return Error(SizeLoc, "element count must have integer type");
3719
3720  Inst = new AllocaInst(Ty, Size, Alignment);
3721  return AteExtraComma ? InstExtraComma : InstNormal;
3722}
3723
3724/// ParseLoad
3725///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3726///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3727///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3728int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3729  Value *Val; LocTy Loc;
3730  unsigned Alignment = 0;
3731  bool AteExtraComma = false;
3732  bool isAtomic = false;
3733  AtomicOrdering Ordering = NotAtomic;
3734  SynchronizationScope Scope = CrossThread;
3735
3736  if (Lex.getKind() == lltok::kw_atomic) {
3737    isAtomic = true;
3738    Lex.Lex();
3739  }
3740
3741  bool isVolatile = false;
3742  if (Lex.getKind() == lltok::kw_volatile) {
3743    isVolatile = true;
3744    Lex.Lex();
3745  }
3746
3747  if (ParseTypeAndValue(Val, Loc, PFS) ||
3748      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3749      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3750    return true;
3751
3752  if (!Val->getType()->isPointerTy() ||
3753      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3754    return Error(Loc, "load operand must be a pointer to a first class type");
3755  if (isAtomic && !Alignment)
3756    return Error(Loc, "atomic load must have explicit non-zero alignment");
3757  if (Ordering == Release || Ordering == AcquireRelease)
3758    return Error(Loc, "atomic load cannot use Release ordering");
3759
3760  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3761  return AteExtraComma ? InstExtraComma : InstNormal;
3762}
3763
3764/// ParseStore
3765
3766///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3767///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3768///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3769int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3770  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3771  unsigned Alignment = 0;
3772  bool AteExtraComma = false;
3773  bool isAtomic = false;
3774  AtomicOrdering Ordering = NotAtomic;
3775  SynchronizationScope Scope = CrossThread;
3776
3777  if (Lex.getKind() == lltok::kw_atomic) {
3778    isAtomic = true;
3779    Lex.Lex();
3780  }
3781
3782  bool isVolatile = false;
3783  if (Lex.getKind() == lltok::kw_volatile) {
3784    isVolatile = true;
3785    Lex.Lex();
3786  }
3787
3788  if (ParseTypeAndValue(Val, Loc, PFS) ||
3789      ParseToken(lltok::comma, "expected ',' after store operand") ||
3790      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3791      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3792      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3793    return true;
3794
3795  if (!Ptr->getType()->isPointerTy())
3796    return Error(PtrLoc, "store operand must be a pointer");
3797  if (!Val->getType()->isFirstClassType())
3798    return Error(Loc, "store operand must be a first class value");
3799  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3800    return Error(Loc, "stored value and pointer type do not match");
3801  if (isAtomic && !Alignment)
3802    return Error(Loc, "atomic store must have explicit non-zero alignment");
3803  if (Ordering == Acquire || Ordering == AcquireRelease)
3804    return Error(Loc, "atomic store cannot use Acquire ordering");
3805
3806  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3807  return AteExtraComma ? InstExtraComma : InstNormal;
3808}
3809
3810/// ParseCmpXchg
3811///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3812///       'singlethread'? AtomicOrdering
3813int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3814  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3815  bool AteExtraComma = false;
3816  AtomicOrdering Ordering = NotAtomic;
3817  SynchronizationScope Scope = CrossThread;
3818  bool isVolatile = false;
3819
3820  if (EatIfPresent(lltok::kw_volatile))
3821    isVolatile = true;
3822
3823  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3824      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3825      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3826      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3827      ParseTypeAndValue(New, NewLoc, PFS) ||
3828      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3829    return true;
3830
3831  if (Ordering == Unordered)
3832    return TokError("cmpxchg cannot be unordered");
3833  if (!Ptr->getType()->isPointerTy())
3834    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3835  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3836    return Error(CmpLoc, "compare value and pointer type do not match");
3837  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3838    return Error(NewLoc, "new value and pointer type do not match");
3839  if (!New->getType()->isIntegerTy())
3840    return Error(NewLoc, "cmpxchg operand must be an integer");
3841  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3842  if (Size < 8 || (Size & (Size - 1)))
3843    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3844                         " integer");
3845
3846  AtomicCmpXchgInst *CXI =
3847    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3848  CXI->setVolatile(isVolatile);
3849  Inst = CXI;
3850  return AteExtraComma ? InstExtraComma : InstNormal;
3851}
3852
3853/// ParseAtomicRMW
3854///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3855///       'singlethread'? AtomicOrdering
3856int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3857  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3858  bool AteExtraComma = false;
3859  AtomicOrdering Ordering = NotAtomic;
3860  SynchronizationScope Scope = CrossThread;
3861  bool isVolatile = false;
3862  AtomicRMWInst::BinOp Operation;
3863
3864  if (EatIfPresent(lltok::kw_volatile))
3865    isVolatile = true;
3866
3867  switch (Lex.getKind()) {
3868  default: return TokError("expected binary operation in atomicrmw");
3869  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3870  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3871  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3872  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3873  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3874  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3875  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3876  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3877  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3878  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3879  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3880  }
3881  Lex.Lex();  // Eat the operation.
3882
3883  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3884      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3885      ParseTypeAndValue(Val, ValLoc, PFS) ||
3886      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3887    return true;
3888
3889  if (Ordering == Unordered)
3890    return TokError("atomicrmw cannot be unordered");
3891  if (!Ptr->getType()->isPointerTy())
3892    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3893  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3894    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3895  if (!Val->getType()->isIntegerTy())
3896    return Error(ValLoc, "atomicrmw operand must be an integer");
3897  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3898  if (Size < 8 || (Size & (Size - 1)))
3899    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3900                         " integer");
3901
3902  AtomicRMWInst *RMWI =
3903    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3904  RMWI->setVolatile(isVolatile);
3905  Inst = RMWI;
3906  return AteExtraComma ? InstExtraComma : InstNormal;
3907}
3908
3909/// ParseFence
3910///   ::= 'fence' 'singlethread'? AtomicOrdering
3911int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3912  AtomicOrdering Ordering = NotAtomic;
3913  SynchronizationScope Scope = CrossThread;
3914  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3915    return true;
3916
3917  if (Ordering == Unordered)
3918    return TokError("fence cannot be unordered");
3919  if (Ordering == Monotonic)
3920    return TokError("fence cannot be monotonic");
3921
3922  Inst = new FenceInst(Context, Ordering, Scope);
3923  return InstNormal;
3924}
3925
3926/// ParseGetElementPtr
3927///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3928int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3929  Value *Ptr = 0;
3930  Value *Val = 0;
3931  LocTy Loc, EltLoc;
3932
3933  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3934
3935  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3936
3937  if (!Ptr->getType()->getScalarType()->isPointerTy())
3938    return Error(Loc, "base of getelementptr must be a pointer");
3939
3940  SmallVector<Value*, 16> Indices;
3941  bool AteExtraComma = false;
3942  while (EatIfPresent(lltok::comma)) {
3943    if (Lex.getKind() == lltok::MetadataVar) {
3944      AteExtraComma = true;
3945      break;
3946    }
3947    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3948    if (!Val->getType()->getScalarType()->isIntegerTy())
3949      return Error(EltLoc, "getelementptr index must be an integer");
3950    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
3951      return Error(EltLoc, "getelementptr index type missmatch");
3952    if (Val->getType()->isVectorTy()) {
3953      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
3954      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
3955      if (ValNumEl != PtrNumEl)
3956        return Error(EltLoc,
3957          "getelementptr vector index has a wrong number of elements");
3958    }
3959    Indices.push_back(Val);
3960  }
3961
3962  if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
3963    return Error(EltLoc, "vector getelementptrs must have a single index");
3964
3965  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3966    return Error(Loc, "invalid getelementptr indices");
3967  Inst = GetElementPtrInst::Create(Ptr, Indices);
3968  if (InBounds)
3969    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3970  return AteExtraComma ? InstExtraComma : InstNormal;
3971}
3972
3973/// ParseExtractValue
3974///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3975int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3976  Value *Val; LocTy Loc;
3977  SmallVector<unsigned, 4> Indices;
3978  bool AteExtraComma;
3979  if (ParseTypeAndValue(Val, Loc, PFS) ||
3980      ParseIndexList(Indices, AteExtraComma))
3981    return true;
3982
3983  if (!Val->getType()->isAggregateType())
3984    return Error(Loc, "extractvalue operand must be aggregate type");
3985
3986  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3987    return Error(Loc, "invalid indices for extractvalue");
3988  Inst = ExtractValueInst::Create(Val, Indices);
3989  return AteExtraComma ? InstExtraComma : InstNormal;
3990}
3991
3992/// ParseInsertValue
3993///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3994int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3995  Value *Val0, *Val1; LocTy Loc0, Loc1;
3996  SmallVector<unsigned, 4> Indices;
3997  bool AteExtraComma;
3998  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3999      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4000      ParseTypeAndValue(Val1, Loc1, PFS) ||
4001      ParseIndexList(Indices, AteExtraComma))
4002    return true;
4003
4004  if (!Val0->getType()->isAggregateType())
4005    return Error(Loc0, "insertvalue operand must be aggregate type");
4006
4007  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4008    return Error(Loc0, "invalid indices for insertvalue");
4009  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4010  return AteExtraComma ? InstExtraComma : InstNormal;
4011}
4012
4013//===----------------------------------------------------------------------===//
4014// Embedded metadata.
4015//===----------------------------------------------------------------------===//
4016
4017/// ParseMDNodeVector
4018///   ::= Element (',' Element)*
4019/// Element
4020///   ::= 'null' | TypeAndValue
4021bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4022                                 PerFunctionState *PFS) {
4023  // Check for an empty list.
4024  if (Lex.getKind() == lltok::rbrace)
4025    return false;
4026
4027  do {
4028    // Null is a special case since it is typeless.
4029    if (EatIfPresent(lltok::kw_null)) {
4030      Elts.push_back(0);
4031      continue;
4032    }
4033
4034    Value *V = 0;
4035    if (ParseTypeAndValue(V, PFS)) return true;
4036    Elts.push_back(V);
4037  } while (EatIfPresent(lltok::comma));
4038
4039  return false;
4040}
4041