LLParser.cpp revision 223017
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29/// Run: module ::= toplevelentity*
30bool LLParser::Run() {
31  // Prime the lexer.
32  Lex.Lex();
33
34  return ParseTopLevelEntities() ||
35         ValidateEndOfModule();
36}
37
38/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
39/// module.
40bool LLParser::ValidateEndOfModule() {
41  // Handle any instruction metadata forward references.
42  if (!ForwardRefInstMetadata.empty()) {
43    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
44         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
45         I != E; ++I) {
46      Instruction *Inst = I->first;
47      const std::vector<MDRef> &MDList = I->second;
48
49      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
50        unsigned SlotNo = MDList[i].MDSlot;
51
52        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
53          return Error(MDList[i].Loc, "use of undefined metadata '!" +
54                       Twine(SlotNo) + "'");
55        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
56      }
57    }
58    ForwardRefInstMetadata.clear();
59  }
60
61
62  // Update auto-upgraded malloc calls to "malloc".
63  // FIXME: Remove in LLVM 3.0.
64  if (MallocF) {
65    MallocF->setName("malloc");
66    // If setName() does not set the name to "malloc", then there is already a
67    // declaration of "malloc".  In that case, iterate over all calls to MallocF
68    // and get them to call the declared "malloc" instead.
69    if (MallocF->getName() != "malloc") {
70      Constant *RealMallocF = M->getFunction("malloc");
71      if (RealMallocF->getType() != MallocF->getType())
72        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
73      MallocF->replaceAllUsesWith(RealMallocF);
74      MallocF->eraseFromParent();
75      MallocF = NULL;
76    }
77  }
78
79
80  // If there are entries in ForwardRefBlockAddresses at this point, they are
81  // references after the function was defined.  Resolve those now.
82  while (!ForwardRefBlockAddresses.empty()) {
83    // Okay, we are referencing an already-parsed function, resolve them now.
84    Function *TheFn = 0;
85    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
86    if (Fn.Kind == ValID::t_GlobalName)
87      TheFn = M->getFunction(Fn.StrVal);
88    else if (Fn.UIntVal < NumberedVals.size())
89      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
90
91    if (TheFn == 0)
92      return Error(Fn.Loc, "unknown function referenced by blockaddress");
93
94    // Resolve all these references.
95    if (ResolveForwardRefBlockAddresses(TheFn,
96                                      ForwardRefBlockAddresses.begin()->second,
97                                        0))
98      return true;
99
100    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
101  }
102
103
104  if (!ForwardRefTypes.empty())
105    return Error(ForwardRefTypes.begin()->second.second,
106                 "use of undefined type named '" +
107                 ForwardRefTypes.begin()->first + "'");
108  if (!ForwardRefTypeIDs.empty())
109    return Error(ForwardRefTypeIDs.begin()->second.second,
110                 "use of undefined type '%" +
111                 Twine(ForwardRefTypeIDs.begin()->first) + "'");
112
113  if (!ForwardRefVals.empty())
114    return Error(ForwardRefVals.begin()->second.second,
115                 "use of undefined value '@" + ForwardRefVals.begin()->first +
116                 "'");
117
118  if (!ForwardRefValIDs.empty())
119    return Error(ForwardRefValIDs.begin()->second.second,
120                 "use of undefined value '@" +
121                 Twine(ForwardRefValIDs.begin()->first) + "'");
122
123  if (!ForwardRefMDNodes.empty())
124    return Error(ForwardRefMDNodes.begin()->second.second,
125                 "use of undefined metadata '!" +
126                 Twine(ForwardRefMDNodes.begin()->first) + "'");
127
128
129  // Look for intrinsic functions and CallInst that need to be upgraded
130  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
131    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
132
133  // Check debug info intrinsics.
134  CheckDebugInfoIntrinsics(M);
135  return false;
136}
137
138bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
139                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
140                                               PerFunctionState *PFS) {
141  // Loop over all the references, resolving them.
142  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
143    BasicBlock *Res;
144    if (PFS) {
145      if (Refs[i].first.Kind == ValID::t_LocalName)
146        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
147      else
148        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
149    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
150      return Error(Refs[i].first.Loc,
151       "cannot take address of numeric label after the function is defined");
152    } else {
153      Res = dyn_cast_or_null<BasicBlock>(
154                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
155    }
156
157    if (Res == 0)
158      return Error(Refs[i].first.Loc,
159                   "referenced value is not a basic block");
160
161    // Get the BlockAddress for this and update references to use it.
162    BlockAddress *BA = BlockAddress::get(TheFn, Res);
163    Refs[i].second->replaceAllUsesWith(BA);
164    Refs[i].second->eraseFromParent();
165  }
166  return false;
167}
168
169
170//===----------------------------------------------------------------------===//
171// Top-Level Entities
172//===----------------------------------------------------------------------===//
173
174bool LLParser::ParseTopLevelEntities() {
175  while (1) {
176    switch (Lex.getKind()) {
177    default:         return TokError("expected top-level entity");
178    case lltok::Eof: return false;
179    //case lltok::kw_define:
180    case lltok::kw_declare: if (ParseDeclare()) return true; break;
181    case lltok::kw_define:  if (ParseDefine()) return true; break;
182    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
183    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
184    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
185    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
186    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
187    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
188    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
189    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
190    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
191    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
192    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
193
194    // The Global variable production with no name can have many different
195    // optional leading prefixes, the production is:
196    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
197    //               OptionalAddrSpace OptionalUnNammedAddr
198    //               ('constant'|'global') ...
199    case lltok::kw_private:             // OptionalLinkage
200    case lltok::kw_linker_private:      // OptionalLinkage
201    case lltok::kw_linker_private_weak: // OptionalLinkage
202    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
203    case lltok::kw_internal:            // OptionalLinkage
204    case lltok::kw_weak:                // OptionalLinkage
205    case lltok::kw_weak_odr:            // OptionalLinkage
206    case lltok::kw_linkonce:            // OptionalLinkage
207    case lltok::kw_linkonce_odr:        // OptionalLinkage
208    case lltok::kw_appending:           // OptionalLinkage
209    case lltok::kw_dllexport:           // OptionalLinkage
210    case lltok::kw_common:              // OptionalLinkage
211    case lltok::kw_dllimport:           // OptionalLinkage
212    case lltok::kw_extern_weak:         // OptionalLinkage
213    case lltok::kw_external: {          // OptionalLinkage
214      unsigned Linkage, Visibility;
215      if (ParseOptionalLinkage(Linkage) ||
216          ParseOptionalVisibility(Visibility) ||
217          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
218        return true;
219      break;
220    }
221    case lltok::kw_default:       // OptionalVisibility
222    case lltok::kw_hidden:        // OptionalVisibility
223    case lltok::kw_protected: {   // OptionalVisibility
224      unsigned Visibility;
225      if (ParseOptionalVisibility(Visibility) ||
226          ParseGlobal("", SMLoc(), 0, false, Visibility))
227        return true;
228      break;
229    }
230
231    case lltok::kw_thread_local:  // OptionalThreadLocal
232    case lltok::kw_addrspace:     // OptionalAddrSpace
233    case lltok::kw_constant:      // GlobalType
234    case lltok::kw_global:        // GlobalType
235      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
236      break;
237    }
238  }
239}
240
241
242/// toplevelentity
243///   ::= 'module' 'asm' STRINGCONSTANT
244bool LLParser::ParseModuleAsm() {
245  assert(Lex.getKind() == lltok::kw_module);
246  Lex.Lex();
247
248  std::string AsmStr;
249  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
250      ParseStringConstant(AsmStr)) return true;
251
252  M->appendModuleInlineAsm(AsmStr);
253  return false;
254}
255
256/// toplevelentity
257///   ::= 'target' 'triple' '=' STRINGCONSTANT
258///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
259bool LLParser::ParseTargetDefinition() {
260  assert(Lex.getKind() == lltok::kw_target);
261  std::string Str;
262  switch (Lex.Lex()) {
263  default: return TokError("unknown target property");
264  case lltok::kw_triple:
265    Lex.Lex();
266    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
267        ParseStringConstant(Str))
268      return true;
269    M->setTargetTriple(Str);
270    return false;
271  case lltok::kw_datalayout:
272    Lex.Lex();
273    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
274        ParseStringConstant(Str))
275      return true;
276    M->setDataLayout(Str);
277    return false;
278  }
279}
280
281/// toplevelentity
282///   ::= 'deplibs' '=' '[' ']'
283///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
284bool LLParser::ParseDepLibs() {
285  assert(Lex.getKind() == lltok::kw_deplibs);
286  Lex.Lex();
287  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
288      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
289    return true;
290
291  if (EatIfPresent(lltok::rsquare))
292    return false;
293
294  std::string Str;
295  if (ParseStringConstant(Str)) return true;
296  M->addLibrary(Str);
297
298  while (EatIfPresent(lltok::comma)) {
299    if (ParseStringConstant(Str)) return true;
300    M->addLibrary(Str);
301  }
302
303  return ParseToken(lltok::rsquare, "expected ']' at end of list");
304}
305
306/// ParseUnnamedType:
307///   ::= 'type' type
308///   ::= LocalVarID '=' 'type' type
309bool LLParser::ParseUnnamedType() {
310  unsigned TypeID = NumberedTypes.size();
311
312  // Handle the LocalVarID form.
313  if (Lex.getKind() == lltok::LocalVarID) {
314    if (Lex.getUIntVal() != TypeID)
315      return Error(Lex.getLoc(), "type expected to be numbered '%" +
316                   Twine(TypeID) + "'");
317    Lex.Lex(); // eat LocalVarID;
318
319    if (ParseToken(lltok::equal, "expected '=' after name"))
320      return true;
321  }
322
323  LocTy TypeLoc = Lex.getLoc();
324  if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true;
325
326  PATypeHolder Ty(Type::getVoidTy(Context));
327  if (ParseType(Ty)) return true;
328
329  // See if this type was previously referenced.
330  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
331    FI = ForwardRefTypeIDs.find(TypeID);
332  if (FI != ForwardRefTypeIDs.end()) {
333    if (FI->second.first.get() == Ty)
334      return Error(TypeLoc, "self referential type is invalid");
335
336    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
337    Ty = FI->second.first.get();
338    ForwardRefTypeIDs.erase(FI);
339  }
340
341  NumberedTypes.push_back(Ty);
342
343  return false;
344}
345
346/// toplevelentity
347///   ::= LocalVar '=' 'type' type
348bool LLParser::ParseNamedType() {
349  std::string Name = Lex.getStrVal();
350  LocTy NameLoc = Lex.getLoc();
351  Lex.Lex();  // eat LocalVar.
352
353  PATypeHolder Ty(Type::getVoidTy(Context));
354
355  if (ParseToken(lltok::equal, "expected '=' after name") ||
356      ParseToken(lltok::kw_type, "expected 'type' after name") ||
357      ParseType(Ty))
358    return true;
359
360  // Set the type name, checking for conflicts as we do so.
361  bool AlreadyExists = M->addTypeName(Name, Ty);
362  if (!AlreadyExists) return false;
363
364  // See if this type is a forward reference.  We need to eagerly resolve
365  // types to allow recursive type redefinitions below.
366  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
367  FI = ForwardRefTypes.find(Name);
368  if (FI != ForwardRefTypes.end()) {
369    if (FI->second.first.get() == Ty)
370      return Error(NameLoc, "self referential type is invalid");
371
372    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
373    Ty = FI->second.first.get();
374    ForwardRefTypes.erase(FI);
375  }
376
377  // Inserting a name that is already defined, get the existing name.
378  const Type *Existing = M->getTypeByName(Name);
379  assert(Existing && "Conflict but no matching type?!");
380
381  // Otherwise, this is an attempt to redefine a type. That's okay if
382  // the redefinition is identical to the original.
383  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
384  if (Existing == Ty) return false;
385
386  // Any other kind of (non-equivalent) redefinition is an error.
387  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
388               Ty->getDescription() + "'");
389}
390
391
392/// toplevelentity
393///   ::= 'declare' FunctionHeader
394bool LLParser::ParseDeclare() {
395  assert(Lex.getKind() == lltok::kw_declare);
396  Lex.Lex();
397
398  Function *F;
399  return ParseFunctionHeader(F, false);
400}
401
402/// toplevelentity
403///   ::= 'define' FunctionHeader '{' ...
404bool LLParser::ParseDefine() {
405  assert(Lex.getKind() == lltok::kw_define);
406  Lex.Lex();
407
408  Function *F;
409  return ParseFunctionHeader(F, true) ||
410         ParseFunctionBody(*F);
411}
412
413/// ParseGlobalType
414///   ::= 'constant'
415///   ::= 'global'
416bool LLParser::ParseGlobalType(bool &IsConstant) {
417  if (Lex.getKind() == lltok::kw_constant)
418    IsConstant = true;
419  else if (Lex.getKind() == lltok::kw_global)
420    IsConstant = false;
421  else {
422    IsConstant = false;
423    return TokError("expected 'global' or 'constant'");
424  }
425  Lex.Lex();
426  return false;
427}
428
429/// ParseUnnamedGlobal:
430///   OptionalVisibility ALIAS ...
431///   OptionalLinkage OptionalVisibility ...   -> global variable
432///   GlobalID '=' OptionalVisibility ALIAS ...
433///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
434bool LLParser::ParseUnnamedGlobal() {
435  unsigned VarID = NumberedVals.size();
436  std::string Name;
437  LocTy NameLoc = Lex.getLoc();
438
439  // Handle the GlobalID form.
440  if (Lex.getKind() == lltok::GlobalID) {
441    if (Lex.getUIntVal() != VarID)
442      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
443                   Twine(VarID) + "'");
444    Lex.Lex(); // eat GlobalID;
445
446    if (ParseToken(lltok::equal, "expected '=' after name"))
447      return true;
448  }
449
450  bool HasLinkage;
451  unsigned Linkage, Visibility;
452  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
453      ParseOptionalVisibility(Visibility))
454    return true;
455
456  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
457    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
458  return ParseAlias(Name, NameLoc, Visibility);
459}
460
461/// ParseNamedGlobal:
462///   GlobalVar '=' OptionalVisibility ALIAS ...
463///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
464bool LLParser::ParseNamedGlobal() {
465  assert(Lex.getKind() == lltok::GlobalVar);
466  LocTy NameLoc = Lex.getLoc();
467  std::string Name = Lex.getStrVal();
468  Lex.Lex();
469
470  bool HasLinkage;
471  unsigned Linkage, Visibility;
472  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
473      ParseOptionalLinkage(Linkage, HasLinkage) ||
474      ParseOptionalVisibility(Visibility))
475    return true;
476
477  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
478    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
479  return ParseAlias(Name, NameLoc, Visibility);
480}
481
482// MDString:
483//   ::= '!' STRINGCONSTANT
484bool LLParser::ParseMDString(MDString *&Result) {
485  std::string Str;
486  if (ParseStringConstant(Str)) return true;
487  Result = MDString::get(Context, Str);
488  return false;
489}
490
491// MDNode:
492//   ::= '!' MDNodeNumber
493//
494/// This version of ParseMDNodeID returns the slot number and null in the case
495/// of a forward reference.
496bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
497  // !{ ..., !42, ... }
498  if (ParseUInt32(SlotNo)) return true;
499
500  // Check existing MDNode.
501  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
502    Result = NumberedMetadata[SlotNo];
503  else
504    Result = 0;
505  return false;
506}
507
508bool LLParser::ParseMDNodeID(MDNode *&Result) {
509  // !{ ..., !42, ... }
510  unsigned MID = 0;
511  if (ParseMDNodeID(Result, MID)) return true;
512
513  // If not a forward reference, just return it now.
514  if (Result) return false;
515
516  // Otherwise, create MDNode forward reference.
517  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
518  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
519
520  if (NumberedMetadata.size() <= MID)
521    NumberedMetadata.resize(MID+1);
522  NumberedMetadata[MID] = FwdNode;
523  Result = FwdNode;
524  return false;
525}
526
527/// ParseNamedMetadata:
528///   !foo = !{ !1, !2 }
529bool LLParser::ParseNamedMetadata() {
530  assert(Lex.getKind() == lltok::MetadataVar);
531  std::string Name = Lex.getStrVal();
532  Lex.Lex();
533
534  if (ParseToken(lltok::equal, "expected '=' here") ||
535      ParseToken(lltok::exclaim, "Expected '!' here") ||
536      ParseToken(lltok::lbrace, "Expected '{' here"))
537    return true;
538
539  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
540  if (Lex.getKind() != lltok::rbrace)
541    do {
542      if (ParseToken(lltok::exclaim, "Expected '!' here"))
543        return true;
544
545      MDNode *N = 0;
546      if (ParseMDNodeID(N)) return true;
547      NMD->addOperand(N);
548    } while (EatIfPresent(lltok::comma));
549
550  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
551    return true;
552
553  return false;
554}
555
556/// ParseStandaloneMetadata:
557///   !42 = !{...}
558bool LLParser::ParseStandaloneMetadata() {
559  assert(Lex.getKind() == lltok::exclaim);
560  Lex.Lex();
561  unsigned MetadataID = 0;
562
563  LocTy TyLoc;
564  PATypeHolder Ty(Type::getVoidTy(Context));
565  SmallVector<Value *, 16> Elts;
566  if (ParseUInt32(MetadataID) ||
567      ParseToken(lltok::equal, "expected '=' here") ||
568      ParseType(Ty, TyLoc) ||
569      ParseToken(lltok::exclaim, "Expected '!' here") ||
570      ParseToken(lltok::lbrace, "Expected '{' here") ||
571      ParseMDNodeVector(Elts, NULL) ||
572      ParseToken(lltok::rbrace, "expected end of metadata node"))
573    return true;
574
575  MDNode *Init = MDNode::get(Context, Elts);
576
577  // See if this was forward referenced, if so, handle it.
578  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
579    FI = ForwardRefMDNodes.find(MetadataID);
580  if (FI != ForwardRefMDNodes.end()) {
581    MDNode *Temp = FI->second.first;
582    Temp->replaceAllUsesWith(Init);
583    MDNode::deleteTemporary(Temp);
584    ForwardRefMDNodes.erase(FI);
585
586    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
587  } else {
588    if (MetadataID >= NumberedMetadata.size())
589      NumberedMetadata.resize(MetadataID+1);
590
591    if (NumberedMetadata[MetadataID] != 0)
592      return TokError("Metadata id is already used");
593    NumberedMetadata[MetadataID] = Init;
594  }
595
596  return false;
597}
598
599/// ParseAlias:
600///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
601/// Aliasee
602///   ::= TypeAndValue
603///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
604///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
605///
606/// Everything through visibility has already been parsed.
607///
608bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
609                          unsigned Visibility) {
610  assert(Lex.getKind() == lltok::kw_alias);
611  Lex.Lex();
612  unsigned Linkage;
613  LocTy LinkageLoc = Lex.getLoc();
614  if (ParseOptionalLinkage(Linkage))
615    return true;
616
617  if (Linkage != GlobalValue::ExternalLinkage &&
618      Linkage != GlobalValue::WeakAnyLinkage &&
619      Linkage != GlobalValue::WeakODRLinkage &&
620      Linkage != GlobalValue::InternalLinkage &&
621      Linkage != GlobalValue::PrivateLinkage &&
622      Linkage != GlobalValue::LinkerPrivateLinkage &&
623      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
624      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
625    return Error(LinkageLoc, "invalid linkage type for alias");
626
627  Constant *Aliasee;
628  LocTy AliaseeLoc = Lex.getLoc();
629  if (Lex.getKind() != lltok::kw_bitcast &&
630      Lex.getKind() != lltok::kw_getelementptr) {
631    if (ParseGlobalTypeAndValue(Aliasee)) return true;
632  } else {
633    // The bitcast dest type is not present, it is implied by the dest type.
634    ValID ID;
635    if (ParseValID(ID)) return true;
636    if (ID.Kind != ValID::t_Constant)
637      return Error(AliaseeLoc, "invalid aliasee");
638    Aliasee = ID.ConstantVal;
639  }
640
641  if (!Aliasee->getType()->isPointerTy())
642    return Error(AliaseeLoc, "alias must have pointer type");
643
644  // Okay, create the alias but do not insert it into the module yet.
645  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
646                                    (GlobalValue::LinkageTypes)Linkage, Name,
647                                    Aliasee);
648  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
649
650  // See if this value already exists in the symbol table.  If so, it is either
651  // a redefinition or a definition of a forward reference.
652  if (GlobalValue *Val = M->getNamedValue(Name)) {
653    // See if this was a redefinition.  If so, there is no entry in
654    // ForwardRefVals.
655    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
656      I = ForwardRefVals.find(Name);
657    if (I == ForwardRefVals.end())
658      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
659
660    // Otherwise, this was a definition of forward ref.  Verify that types
661    // agree.
662    if (Val->getType() != GA->getType())
663      return Error(NameLoc,
664              "forward reference and definition of alias have different types");
665
666    // If they agree, just RAUW the old value with the alias and remove the
667    // forward ref info.
668    Val->replaceAllUsesWith(GA);
669    Val->eraseFromParent();
670    ForwardRefVals.erase(I);
671  }
672
673  // Insert into the module, we know its name won't collide now.
674  M->getAliasList().push_back(GA);
675  assert(GA->getName() == Name && "Should not be a name conflict!");
676
677  return false;
678}
679
680/// ParseGlobal
681///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
682///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
683///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
684///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
685///
686/// Everything through visibility has been parsed already.
687///
688bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
689                           unsigned Linkage, bool HasLinkage,
690                           unsigned Visibility) {
691  unsigned AddrSpace;
692  bool ThreadLocal, IsConstant, UnnamedAddr;
693  LocTy UnnamedAddrLoc;
694  LocTy TyLoc;
695
696  PATypeHolder Ty(Type::getVoidTy(Context));
697  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
698      ParseOptionalAddrSpace(AddrSpace) ||
699      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
700                         &UnnamedAddrLoc) ||
701      ParseGlobalType(IsConstant) ||
702      ParseType(Ty, TyLoc))
703    return true;
704
705  // If the linkage is specified and is external, then no initializer is
706  // present.
707  Constant *Init = 0;
708  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
709                      Linkage != GlobalValue::ExternalWeakLinkage &&
710                      Linkage != GlobalValue::ExternalLinkage)) {
711    if (ParseGlobalValue(Ty, Init))
712      return true;
713  }
714
715  if (Ty->isFunctionTy() || Ty->isLabelTy())
716    return Error(TyLoc, "invalid type for global variable");
717
718  GlobalVariable *GV = 0;
719
720  // See if the global was forward referenced, if so, use the global.
721  if (!Name.empty()) {
722    if (GlobalValue *GVal = M->getNamedValue(Name)) {
723      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
724        return Error(NameLoc, "redefinition of global '@" + Name + "'");
725      GV = cast<GlobalVariable>(GVal);
726    }
727  } else {
728    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
729      I = ForwardRefValIDs.find(NumberedVals.size());
730    if (I != ForwardRefValIDs.end()) {
731      GV = cast<GlobalVariable>(I->second.first);
732      ForwardRefValIDs.erase(I);
733    }
734  }
735
736  if (GV == 0) {
737    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
738                            Name, 0, false, AddrSpace);
739  } else {
740    if (GV->getType()->getElementType() != Ty)
741      return Error(TyLoc,
742            "forward reference and definition of global have different types");
743
744    // Move the forward-reference to the correct spot in the module.
745    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
746  }
747
748  if (Name.empty())
749    NumberedVals.push_back(GV);
750
751  // Set the parsed properties on the global.
752  if (Init)
753    GV->setInitializer(Init);
754  GV->setConstant(IsConstant);
755  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
756  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
757  GV->setThreadLocal(ThreadLocal);
758  GV->setUnnamedAddr(UnnamedAddr);
759
760  // Parse attributes on the global.
761  while (Lex.getKind() == lltok::comma) {
762    Lex.Lex();
763
764    if (Lex.getKind() == lltok::kw_section) {
765      Lex.Lex();
766      GV->setSection(Lex.getStrVal());
767      if (ParseToken(lltok::StringConstant, "expected global section string"))
768        return true;
769    } else if (Lex.getKind() == lltok::kw_align) {
770      unsigned Alignment;
771      if (ParseOptionalAlignment(Alignment)) return true;
772      GV->setAlignment(Alignment);
773    } else {
774      TokError("unknown global variable property!");
775    }
776  }
777
778  return false;
779}
780
781
782//===----------------------------------------------------------------------===//
783// GlobalValue Reference/Resolution Routines.
784//===----------------------------------------------------------------------===//
785
786/// GetGlobalVal - Get a value with the specified name or ID, creating a
787/// forward reference record if needed.  This can return null if the value
788/// exists but does not have the right type.
789GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
790                                    LocTy Loc) {
791  const PointerType *PTy = dyn_cast<PointerType>(Ty);
792  if (PTy == 0) {
793    Error(Loc, "global variable reference must have pointer type");
794    return 0;
795  }
796
797  // Look this name up in the normal function symbol table.
798  GlobalValue *Val =
799    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
800
801  // If this is a forward reference for the value, see if we already created a
802  // forward ref record.
803  if (Val == 0) {
804    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
805      I = ForwardRefVals.find(Name);
806    if (I != ForwardRefVals.end())
807      Val = I->second.first;
808  }
809
810  // If we have the value in the symbol table or fwd-ref table, return it.
811  if (Val) {
812    if (Val->getType() == Ty) return Val;
813    Error(Loc, "'@" + Name + "' defined with type '" +
814          Val->getType()->getDescription() + "'");
815    return 0;
816  }
817
818  // Otherwise, create a new forward reference for this value and remember it.
819  GlobalValue *FwdVal;
820  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
821    // Function types can return opaque but functions can't.
822    if (FT->getReturnType()->isOpaqueTy()) {
823      Error(Loc, "function may not return opaque type");
824      return 0;
825    }
826
827    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
828  } else {
829    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
830                                GlobalValue::ExternalWeakLinkage, 0, Name);
831  }
832
833  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
834  return FwdVal;
835}
836
837GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
838  const PointerType *PTy = dyn_cast<PointerType>(Ty);
839  if (PTy == 0) {
840    Error(Loc, "global variable reference must have pointer type");
841    return 0;
842  }
843
844  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
845
846  // If this is a forward reference for the value, see if we already created a
847  // forward ref record.
848  if (Val == 0) {
849    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
850      I = ForwardRefValIDs.find(ID);
851    if (I != ForwardRefValIDs.end())
852      Val = I->second.first;
853  }
854
855  // If we have the value in the symbol table or fwd-ref table, return it.
856  if (Val) {
857    if (Val->getType() == Ty) return Val;
858    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
859          Val->getType()->getDescription() + "'");
860    return 0;
861  }
862
863  // Otherwise, create a new forward reference for this value and remember it.
864  GlobalValue *FwdVal;
865  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
866    // Function types can return opaque but functions can't.
867    if (FT->getReturnType()->isOpaqueTy()) {
868      Error(Loc, "function may not return opaque type");
869      return 0;
870    }
871    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
872  } else {
873    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
874                                GlobalValue::ExternalWeakLinkage, 0, "");
875  }
876
877  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
878  return FwdVal;
879}
880
881
882//===----------------------------------------------------------------------===//
883// Helper Routines.
884//===----------------------------------------------------------------------===//
885
886/// ParseToken - If the current token has the specified kind, eat it and return
887/// success.  Otherwise, emit the specified error and return failure.
888bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
889  if (Lex.getKind() != T)
890    return TokError(ErrMsg);
891  Lex.Lex();
892  return false;
893}
894
895/// ParseStringConstant
896///   ::= StringConstant
897bool LLParser::ParseStringConstant(std::string &Result) {
898  if (Lex.getKind() != lltok::StringConstant)
899    return TokError("expected string constant");
900  Result = Lex.getStrVal();
901  Lex.Lex();
902  return false;
903}
904
905/// ParseUInt32
906///   ::= uint32
907bool LLParser::ParseUInt32(unsigned &Val) {
908  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
909    return TokError("expected integer");
910  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
911  if (Val64 != unsigned(Val64))
912    return TokError("expected 32-bit integer (too large)");
913  Val = Val64;
914  Lex.Lex();
915  return false;
916}
917
918
919/// ParseOptionalAddrSpace
920///   := /*empty*/
921///   := 'addrspace' '(' uint32 ')'
922bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
923  AddrSpace = 0;
924  if (!EatIfPresent(lltok::kw_addrspace))
925    return false;
926  return ParseToken(lltok::lparen, "expected '(' in address space") ||
927         ParseUInt32(AddrSpace) ||
928         ParseToken(lltok::rparen, "expected ')' in address space");
929}
930
931/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
932/// indicates what kind of attribute list this is: 0: function arg, 1: result,
933/// 2: function attr.
934/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
935bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
936  Attrs = Attribute::None;
937  LocTy AttrLoc = Lex.getLoc();
938
939  while (1) {
940    switch (Lex.getKind()) {
941    case lltok::kw_sext:
942    case lltok::kw_zext:
943      // Treat these as signext/zeroext if they occur in the argument list after
944      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
945      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
946      // expr.
947      // FIXME: REMOVE THIS IN LLVM 3.0
948      if (AttrKind == 3) {
949        if (Lex.getKind() == lltok::kw_sext)
950          Attrs |= Attribute::SExt;
951        else
952          Attrs |= Attribute::ZExt;
953        break;
954      }
955      // FALL THROUGH.
956    default:  // End of attributes.
957      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
958        return Error(AttrLoc, "invalid use of function-only attribute");
959
960      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
961        return Error(AttrLoc, "invalid use of parameter-only attribute");
962
963      return false;
964    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
965    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
966    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
967    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
968    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
969    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
970    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
971    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
972
973    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
974    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
975    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
976    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
977    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
978    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
979    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
980    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
981    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
982    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
983    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
984    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
985    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
986    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
987    case lltok::kw_hotpatch:        Attrs |= Attribute::Hotpatch; break;
988
989    case lltok::kw_alignstack: {
990      unsigned Alignment;
991      if (ParseOptionalStackAlignment(Alignment))
992        return true;
993      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
994      continue;
995    }
996
997    case lltok::kw_align: {
998      unsigned Alignment;
999      if (ParseOptionalAlignment(Alignment))
1000        return true;
1001      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1002      continue;
1003    }
1004
1005    }
1006    Lex.Lex();
1007  }
1008}
1009
1010/// ParseOptionalLinkage
1011///   ::= /*empty*/
1012///   ::= 'private'
1013///   ::= 'linker_private'
1014///   ::= 'linker_private_weak'
1015///   ::= 'linker_private_weak_def_auto'
1016///   ::= 'internal'
1017///   ::= 'weak'
1018///   ::= 'weak_odr'
1019///   ::= 'linkonce'
1020///   ::= 'linkonce_odr'
1021///   ::= 'available_externally'
1022///   ::= 'appending'
1023///   ::= 'dllexport'
1024///   ::= 'common'
1025///   ::= 'dllimport'
1026///   ::= 'extern_weak'
1027///   ::= 'external'
1028bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1029  HasLinkage = false;
1030  switch (Lex.getKind()) {
1031  default:                       Res=GlobalValue::ExternalLinkage; return false;
1032  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1033  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1034  case lltok::kw_linker_private_weak:
1035    Res = GlobalValue::LinkerPrivateWeakLinkage;
1036    break;
1037  case lltok::kw_linker_private_weak_def_auto:
1038    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
1039    break;
1040  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1041  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1042  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1043  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1044  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1045  case lltok::kw_available_externally:
1046    Res = GlobalValue::AvailableExternallyLinkage;
1047    break;
1048  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1049  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1050  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1051  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1052  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1053  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1054  }
1055  Lex.Lex();
1056  HasLinkage = true;
1057  return false;
1058}
1059
1060/// ParseOptionalVisibility
1061///   ::= /*empty*/
1062///   ::= 'default'
1063///   ::= 'hidden'
1064///   ::= 'protected'
1065///
1066bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1067  switch (Lex.getKind()) {
1068  default:                  Res = GlobalValue::DefaultVisibility; return false;
1069  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1070  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1071  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1072  }
1073  Lex.Lex();
1074  return false;
1075}
1076
1077/// ParseOptionalCallingConv
1078///   ::= /*empty*/
1079///   ::= 'ccc'
1080///   ::= 'fastcc'
1081///   ::= 'coldcc'
1082///   ::= 'x86_stdcallcc'
1083///   ::= 'x86_fastcallcc'
1084///   ::= 'x86_thiscallcc'
1085///   ::= 'arm_apcscc'
1086///   ::= 'arm_aapcscc'
1087///   ::= 'arm_aapcs_vfpcc'
1088///   ::= 'msp430_intrcc'
1089///   ::= 'ptx_kernel'
1090///   ::= 'ptx_device'
1091///   ::= 'cc' UINT
1092///
1093bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1094  switch (Lex.getKind()) {
1095  default:                       CC = CallingConv::C; return false;
1096  case lltok::kw_ccc:            CC = CallingConv::C; break;
1097  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1098  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1099  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1100  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1101  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1102  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1103  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1104  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1105  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1106  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1107  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1108  case lltok::kw_cc: {
1109      unsigned ArbitraryCC;
1110      Lex.Lex();
1111      if (ParseUInt32(ArbitraryCC)) {
1112        return true;
1113      } else
1114        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1115        return false;
1116    }
1117    break;
1118  }
1119
1120  Lex.Lex();
1121  return false;
1122}
1123
1124/// ParseInstructionMetadata
1125///   ::= !dbg !42 (',' !dbg !57)*
1126bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1127                                        PerFunctionState *PFS) {
1128  do {
1129    if (Lex.getKind() != lltok::MetadataVar)
1130      return TokError("expected metadata after comma");
1131
1132    std::string Name = Lex.getStrVal();
1133    unsigned MDK = M->getMDKindID(Name.c_str());
1134    Lex.Lex();
1135
1136    MDNode *Node;
1137    SMLoc Loc = Lex.getLoc();
1138
1139    if (ParseToken(lltok::exclaim, "expected '!' here"))
1140      return true;
1141
1142    // This code is similar to that of ParseMetadataValue, however it needs to
1143    // have special-case code for a forward reference; see the comments on
1144    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1145    // at the top level here.
1146    if (Lex.getKind() == lltok::lbrace) {
1147      ValID ID;
1148      if (ParseMetadataListValue(ID, PFS))
1149        return true;
1150      assert(ID.Kind == ValID::t_MDNode);
1151      Inst->setMetadata(MDK, ID.MDNodeVal);
1152    } else {
1153      unsigned NodeID = 0;
1154      if (ParseMDNodeID(Node, NodeID))
1155        return true;
1156      if (Node) {
1157        // If we got the node, add it to the instruction.
1158        Inst->setMetadata(MDK, Node);
1159      } else {
1160        MDRef R = { Loc, MDK, NodeID };
1161        // Otherwise, remember that this should be resolved later.
1162        ForwardRefInstMetadata[Inst].push_back(R);
1163      }
1164    }
1165
1166    // If this is the end of the list, we're done.
1167  } while (EatIfPresent(lltok::comma));
1168  return false;
1169}
1170
1171/// ParseOptionalAlignment
1172///   ::= /* empty */
1173///   ::= 'align' 4
1174bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1175  Alignment = 0;
1176  if (!EatIfPresent(lltok::kw_align))
1177    return false;
1178  LocTy AlignLoc = Lex.getLoc();
1179  if (ParseUInt32(Alignment)) return true;
1180  if (!isPowerOf2_32(Alignment))
1181    return Error(AlignLoc, "alignment is not a power of two");
1182  if (Alignment > Value::MaximumAlignment)
1183    return Error(AlignLoc, "huge alignments are not supported yet");
1184  return false;
1185}
1186
1187/// ParseOptionalCommaAlign
1188///   ::=
1189///   ::= ',' align 4
1190///
1191/// This returns with AteExtraComma set to true if it ate an excess comma at the
1192/// end.
1193bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1194                                       bool &AteExtraComma) {
1195  AteExtraComma = false;
1196  while (EatIfPresent(lltok::comma)) {
1197    // Metadata at the end is an early exit.
1198    if (Lex.getKind() == lltok::MetadataVar) {
1199      AteExtraComma = true;
1200      return false;
1201    }
1202
1203    if (Lex.getKind() != lltok::kw_align)
1204      return Error(Lex.getLoc(), "expected metadata or 'align'");
1205
1206    if (ParseOptionalAlignment(Alignment)) return true;
1207  }
1208
1209  return false;
1210}
1211
1212/// ParseOptionalStackAlignment
1213///   ::= /* empty */
1214///   ::= 'alignstack' '(' 4 ')'
1215bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1216  Alignment = 0;
1217  if (!EatIfPresent(lltok::kw_alignstack))
1218    return false;
1219  LocTy ParenLoc = Lex.getLoc();
1220  if (!EatIfPresent(lltok::lparen))
1221    return Error(ParenLoc, "expected '('");
1222  LocTy AlignLoc = Lex.getLoc();
1223  if (ParseUInt32(Alignment)) return true;
1224  ParenLoc = Lex.getLoc();
1225  if (!EatIfPresent(lltok::rparen))
1226    return Error(ParenLoc, "expected ')'");
1227  if (!isPowerOf2_32(Alignment))
1228    return Error(AlignLoc, "stack alignment is not a power of two");
1229  return false;
1230}
1231
1232/// ParseIndexList - This parses the index list for an insert/extractvalue
1233/// instruction.  This sets AteExtraComma in the case where we eat an extra
1234/// comma at the end of the line and find that it is followed by metadata.
1235/// Clients that don't allow metadata can call the version of this function that
1236/// only takes one argument.
1237///
1238/// ParseIndexList
1239///    ::=  (',' uint32)+
1240///
1241bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1242                              bool &AteExtraComma) {
1243  AteExtraComma = false;
1244
1245  if (Lex.getKind() != lltok::comma)
1246    return TokError("expected ',' as start of index list");
1247
1248  while (EatIfPresent(lltok::comma)) {
1249    if (Lex.getKind() == lltok::MetadataVar) {
1250      AteExtraComma = true;
1251      return false;
1252    }
1253    unsigned Idx = 0;
1254    if (ParseUInt32(Idx)) return true;
1255    Indices.push_back(Idx);
1256  }
1257
1258  return false;
1259}
1260
1261//===----------------------------------------------------------------------===//
1262// Type Parsing.
1263//===----------------------------------------------------------------------===//
1264
1265/// ParseType - Parse and resolve a full type.
1266bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1267  LocTy TypeLoc = Lex.getLoc();
1268  if (ParseTypeRec(Result)) return true;
1269
1270  // Verify no unresolved uprefs.
1271  if (!UpRefs.empty())
1272    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1273
1274  if (!AllowVoid && Result.get()->isVoidTy())
1275    return Error(TypeLoc, "void type only allowed for function results");
1276
1277  return false;
1278}
1279
1280/// HandleUpRefs - Every time we finish a new layer of types, this function is
1281/// called.  It loops through the UpRefs vector, which is a list of the
1282/// currently active types.  For each type, if the up-reference is contained in
1283/// the newly completed type, we decrement the level count.  When the level
1284/// count reaches zero, the up-referenced type is the type that is passed in:
1285/// thus we can complete the cycle.
1286///
1287PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1288  // If Ty isn't abstract, or if there are no up-references in it, then there is
1289  // nothing to resolve here.
1290  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1291
1292  PATypeHolder Ty(ty);
1293#if 0
1294  dbgs() << "Type '" << Ty->getDescription()
1295         << "' newly formed.  Resolving upreferences.\n"
1296         << UpRefs.size() << " upreferences active!\n";
1297#endif
1298
1299  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1300  // to zero), we resolve them all together before we resolve them to Ty.  At
1301  // the end of the loop, if there is anything to resolve to Ty, it will be in
1302  // this variable.
1303  OpaqueType *TypeToResolve = 0;
1304
1305  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1306    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1307    bool ContainsType =
1308      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1309                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1310
1311#if 0
1312    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1313           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1314           << (ContainsType ? "true" : "false")
1315           << " level=" << UpRefs[i].NestingLevel << "\n";
1316#endif
1317    if (!ContainsType)
1318      continue;
1319
1320    // Decrement level of upreference
1321    unsigned Level = --UpRefs[i].NestingLevel;
1322    UpRefs[i].LastContainedTy = Ty;
1323
1324    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1325    if (Level != 0)
1326      continue;
1327
1328#if 0
1329    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1330#endif
1331    if (!TypeToResolve)
1332      TypeToResolve = UpRefs[i].UpRefTy;
1333    else
1334      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1335    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1336    --i;                                // Do not skip the next element.
1337  }
1338
1339  if (TypeToResolve)
1340    TypeToResolve->refineAbstractTypeTo(Ty);
1341
1342  return Ty;
1343}
1344
1345
1346/// ParseTypeRec - The recursive function used to process the internal
1347/// implementation details of types.
1348bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1349  switch (Lex.getKind()) {
1350  default:
1351    return TokError("expected type");
1352  case lltok::Type:
1353    // TypeRec ::= 'float' | 'void' (etc)
1354    Result = Lex.getTyVal();
1355    Lex.Lex();
1356    break;
1357  case lltok::kw_opaque:
1358    // TypeRec ::= 'opaque'
1359    Result = OpaqueType::get(Context);
1360    Lex.Lex();
1361    break;
1362  case lltok::lbrace:
1363    // TypeRec ::= '{' ... '}'
1364    if (ParseStructType(Result, false))
1365      return true;
1366    break;
1367  case lltok::lsquare:
1368    // TypeRec ::= '[' ... ']'
1369    Lex.Lex(); // eat the lsquare.
1370    if (ParseArrayVectorType(Result, false))
1371      return true;
1372    break;
1373  case lltok::less: // Either vector or packed struct.
1374    // TypeRec ::= '<' ... '>'
1375    Lex.Lex();
1376    if (Lex.getKind() == lltok::lbrace) {
1377      if (ParseStructType(Result, true) ||
1378          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1379        return true;
1380    } else if (ParseArrayVectorType(Result, true))
1381      return true;
1382    break;
1383  case lltok::LocalVar:
1384  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1385    // TypeRec ::= %foo
1386    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1387      Result = T;
1388    } else {
1389      Result = OpaqueType::get(Context);
1390      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1391                                            std::make_pair(Result,
1392                                                           Lex.getLoc())));
1393      M->addTypeName(Lex.getStrVal(), Result.get());
1394    }
1395    Lex.Lex();
1396    break;
1397
1398  case lltok::LocalVarID:
1399    // TypeRec ::= %4
1400    if (Lex.getUIntVal() < NumberedTypes.size())
1401      Result = NumberedTypes[Lex.getUIntVal()];
1402    else {
1403      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1404        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1405      if (I != ForwardRefTypeIDs.end())
1406        Result = I->second.first;
1407      else {
1408        Result = OpaqueType::get(Context);
1409        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1410                                                std::make_pair(Result,
1411                                                               Lex.getLoc())));
1412      }
1413    }
1414    Lex.Lex();
1415    break;
1416  case lltok::backslash: {
1417    // TypeRec ::= '\' 4
1418    Lex.Lex();
1419    unsigned Val;
1420    if (ParseUInt32(Val)) return true;
1421    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1422    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1423    Result = OT;
1424    break;
1425  }
1426  }
1427
1428  // Parse the type suffixes.
1429  while (1) {
1430    switch (Lex.getKind()) {
1431    // End of type.
1432    default: return false;
1433
1434    // TypeRec ::= TypeRec '*'
1435    case lltok::star:
1436      if (Result.get()->isLabelTy())
1437        return TokError("basic block pointers are invalid");
1438      if (Result.get()->isVoidTy())
1439        return TokError("pointers to void are invalid; use i8* instead");
1440      if (!PointerType::isValidElementType(Result.get()))
1441        return TokError("pointer to this type is invalid");
1442      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1443      Lex.Lex();
1444      break;
1445
1446    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1447    case lltok::kw_addrspace: {
1448      if (Result.get()->isLabelTy())
1449        return TokError("basic block pointers are invalid");
1450      if (Result.get()->isVoidTy())
1451        return TokError("pointers to void are invalid; use i8* instead");
1452      if (!PointerType::isValidElementType(Result.get()))
1453        return TokError("pointer to this type is invalid");
1454      unsigned AddrSpace;
1455      if (ParseOptionalAddrSpace(AddrSpace) ||
1456          ParseToken(lltok::star, "expected '*' in address space"))
1457        return true;
1458
1459      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1460      break;
1461    }
1462
1463    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1464    case lltok::lparen:
1465      if (ParseFunctionType(Result))
1466        return true;
1467      break;
1468    }
1469  }
1470}
1471
1472/// ParseParameterList
1473///    ::= '(' ')'
1474///    ::= '(' Arg (',' Arg)* ')'
1475///  Arg
1476///    ::= Type OptionalAttributes Value OptionalAttributes
1477bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1478                                  PerFunctionState &PFS) {
1479  if (ParseToken(lltok::lparen, "expected '(' in call"))
1480    return true;
1481
1482  while (Lex.getKind() != lltok::rparen) {
1483    // If this isn't the first argument, we need a comma.
1484    if (!ArgList.empty() &&
1485        ParseToken(lltok::comma, "expected ',' in argument list"))
1486      return true;
1487
1488    // Parse the argument.
1489    LocTy ArgLoc;
1490    PATypeHolder ArgTy(Type::getVoidTy(Context));
1491    unsigned ArgAttrs1 = Attribute::None;
1492    unsigned ArgAttrs2 = Attribute::None;
1493    Value *V;
1494    if (ParseType(ArgTy, ArgLoc))
1495      return true;
1496
1497    // Otherwise, handle normal operands.
1498    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1499        ParseValue(ArgTy, V, PFS) ||
1500        // FIXME: Should not allow attributes after the argument, remove this
1501        // in LLVM 3.0.
1502        ParseOptionalAttrs(ArgAttrs2, 3))
1503      return true;
1504    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1505  }
1506
1507  Lex.Lex();  // Lex the ')'.
1508  return false;
1509}
1510
1511
1512
1513/// ParseArgumentList - Parse the argument list for a function type or function
1514/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1515///   ::= '(' ArgTypeListI ')'
1516/// ArgTypeListI
1517///   ::= /*empty*/
1518///   ::= '...'
1519///   ::= ArgTypeList ',' '...'
1520///   ::= ArgType (',' ArgType)*
1521///
1522bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1523                                 bool &isVarArg, bool inType) {
1524  isVarArg = false;
1525  assert(Lex.getKind() == lltok::lparen);
1526  Lex.Lex(); // eat the (.
1527
1528  if (Lex.getKind() == lltok::rparen) {
1529    // empty
1530  } else if (Lex.getKind() == lltok::dotdotdot) {
1531    isVarArg = true;
1532    Lex.Lex();
1533  } else {
1534    LocTy TypeLoc = Lex.getLoc();
1535    PATypeHolder ArgTy(Type::getVoidTy(Context));
1536    unsigned Attrs;
1537    std::string Name;
1538
1539    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1540    // types (such as a function returning a pointer to itself).  If parsing a
1541    // function prototype, we require fully resolved types.
1542    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1543        ParseOptionalAttrs(Attrs, 0)) return true;
1544
1545    if (ArgTy->isVoidTy())
1546      return Error(TypeLoc, "argument can not have void type");
1547
1548    if (Lex.getKind() == lltok::LocalVar ||
1549        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1550      Name = Lex.getStrVal();
1551      Lex.Lex();
1552    }
1553
1554    if (!FunctionType::isValidArgumentType(ArgTy))
1555      return Error(TypeLoc, "invalid type for function argument");
1556
1557    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1558
1559    while (EatIfPresent(lltok::comma)) {
1560      // Handle ... at end of arg list.
1561      if (EatIfPresent(lltok::dotdotdot)) {
1562        isVarArg = true;
1563        break;
1564      }
1565
1566      // Otherwise must be an argument type.
1567      TypeLoc = Lex.getLoc();
1568      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1569          ParseOptionalAttrs(Attrs, 0)) return true;
1570
1571      if (ArgTy->isVoidTy())
1572        return Error(TypeLoc, "argument can not have void type");
1573
1574      if (Lex.getKind() == lltok::LocalVar ||
1575          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1576        Name = Lex.getStrVal();
1577        Lex.Lex();
1578      } else {
1579        Name = "";
1580      }
1581
1582      if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
1583        return Error(TypeLoc, "invalid type for function argument");
1584
1585      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1586    }
1587  }
1588
1589  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1590}
1591
1592/// ParseFunctionType
1593///  ::= Type ArgumentList OptionalAttrs
1594bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1595  assert(Lex.getKind() == lltok::lparen);
1596
1597  if (!FunctionType::isValidReturnType(Result))
1598    return TokError("invalid function return type");
1599
1600  std::vector<ArgInfo> ArgList;
1601  bool isVarArg;
1602  unsigned Attrs;
1603  if (ParseArgumentList(ArgList, isVarArg, true) ||
1604      // FIXME: Allow, but ignore attributes on function types!
1605      // FIXME: Remove in LLVM 3.0
1606      ParseOptionalAttrs(Attrs, 2))
1607    return true;
1608
1609  // Reject names on the arguments lists.
1610  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1611    if (!ArgList[i].Name.empty())
1612      return Error(ArgList[i].Loc, "argument name invalid in function type");
1613    if (!ArgList[i].Attrs != 0) {
1614      // Allow but ignore attributes on function types; this permits
1615      // auto-upgrade.
1616      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1617    }
1618  }
1619
1620  std::vector<const Type*> ArgListTy;
1621  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1622    ArgListTy.push_back(ArgList[i].Type);
1623
1624  Result = HandleUpRefs(FunctionType::get(Result.get(),
1625                                                ArgListTy, isVarArg));
1626  return false;
1627}
1628
1629/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1630///   TypeRec
1631///     ::= '{' '}'
1632///     ::= '{' TypeRec (',' TypeRec)* '}'
1633///     ::= '<' '{' '}' '>'
1634///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1635bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1636  assert(Lex.getKind() == lltok::lbrace);
1637  Lex.Lex(); // Consume the '{'
1638
1639  if (EatIfPresent(lltok::rbrace)) {
1640    Result = StructType::get(Context, Packed);
1641    return false;
1642  }
1643
1644  std::vector<PATypeHolder> ParamsList;
1645  LocTy EltTyLoc = Lex.getLoc();
1646  if (ParseTypeRec(Result)) return true;
1647  ParamsList.push_back(Result);
1648
1649  if (Result->isVoidTy())
1650    return Error(EltTyLoc, "struct element can not have void type");
1651  if (!StructType::isValidElementType(Result))
1652    return Error(EltTyLoc, "invalid element type for struct");
1653
1654  while (EatIfPresent(lltok::comma)) {
1655    EltTyLoc = Lex.getLoc();
1656    if (ParseTypeRec(Result)) return true;
1657
1658    if (Result->isVoidTy())
1659      return Error(EltTyLoc, "struct element can not have void type");
1660    if (!StructType::isValidElementType(Result))
1661      return Error(EltTyLoc, "invalid element type for struct");
1662
1663    ParamsList.push_back(Result);
1664  }
1665
1666  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1667    return true;
1668
1669  std::vector<const Type*> ParamsListTy;
1670  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1671    ParamsListTy.push_back(ParamsList[i].get());
1672  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1673  return false;
1674}
1675
1676/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1677/// token has already been consumed.
1678///   TypeRec
1679///     ::= '[' APSINTVAL 'x' Types ']'
1680///     ::= '<' APSINTVAL 'x' Types '>'
1681bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1682  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1683      Lex.getAPSIntVal().getBitWidth() > 64)
1684    return TokError("expected number in address space");
1685
1686  LocTy SizeLoc = Lex.getLoc();
1687  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1688  Lex.Lex();
1689
1690  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1691      return true;
1692
1693  LocTy TypeLoc = Lex.getLoc();
1694  PATypeHolder EltTy(Type::getVoidTy(Context));
1695  if (ParseTypeRec(EltTy)) return true;
1696
1697  if (EltTy->isVoidTy())
1698    return Error(TypeLoc, "array and vector element type cannot be void");
1699
1700  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1701                 "expected end of sequential type"))
1702    return true;
1703
1704  if (isVector) {
1705    if (Size == 0)
1706      return Error(SizeLoc, "zero element vector is illegal");
1707    if ((unsigned)Size != Size)
1708      return Error(SizeLoc, "size too large for vector");
1709    if (!VectorType::isValidElementType(EltTy))
1710      return Error(TypeLoc, "vector element type must be fp or integer");
1711    Result = VectorType::get(EltTy, unsigned(Size));
1712  } else {
1713    if (!ArrayType::isValidElementType(EltTy))
1714      return Error(TypeLoc, "invalid array element type");
1715    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1716  }
1717  return false;
1718}
1719
1720//===----------------------------------------------------------------------===//
1721// Function Semantic Analysis.
1722//===----------------------------------------------------------------------===//
1723
1724LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1725                                             int functionNumber)
1726  : P(p), F(f), FunctionNumber(functionNumber) {
1727
1728  // Insert unnamed arguments into the NumberedVals list.
1729  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1730       AI != E; ++AI)
1731    if (!AI->hasName())
1732      NumberedVals.push_back(AI);
1733}
1734
1735LLParser::PerFunctionState::~PerFunctionState() {
1736  // If there were any forward referenced non-basicblock values, delete them.
1737  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1738       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1739    if (!isa<BasicBlock>(I->second.first)) {
1740      I->second.first->replaceAllUsesWith(
1741                           UndefValue::get(I->second.first->getType()));
1742      delete I->second.first;
1743      I->second.first = 0;
1744    }
1745
1746  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1747       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1748    if (!isa<BasicBlock>(I->second.first)) {
1749      I->second.first->replaceAllUsesWith(
1750                           UndefValue::get(I->second.first->getType()));
1751      delete I->second.first;
1752      I->second.first = 0;
1753    }
1754}
1755
1756bool LLParser::PerFunctionState::FinishFunction() {
1757  // Check to see if someone took the address of labels in this block.
1758  if (!P.ForwardRefBlockAddresses.empty()) {
1759    ValID FunctionID;
1760    if (!F.getName().empty()) {
1761      FunctionID.Kind = ValID::t_GlobalName;
1762      FunctionID.StrVal = F.getName();
1763    } else {
1764      FunctionID.Kind = ValID::t_GlobalID;
1765      FunctionID.UIntVal = FunctionNumber;
1766    }
1767
1768    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1769      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1770    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1771      // Resolve all these references.
1772      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1773        return true;
1774
1775      P.ForwardRefBlockAddresses.erase(FRBAI);
1776    }
1777  }
1778
1779  if (!ForwardRefVals.empty())
1780    return P.Error(ForwardRefVals.begin()->second.second,
1781                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1782                   "'");
1783  if (!ForwardRefValIDs.empty())
1784    return P.Error(ForwardRefValIDs.begin()->second.second,
1785                   "use of undefined value '%" +
1786                   Twine(ForwardRefValIDs.begin()->first) + "'");
1787  return false;
1788}
1789
1790
1791/// GetVal - Get a value with the specified name or ID, creating a
1792/// forward reference record if needed.  This can return null if the value
1793/// exists but does not have the right type.
1794Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1795                                          const Type *Ty, LocTy Loc) {
1796  // Look this name up in the normal function symbol table.
1797  Value *Val = F.getValueSymbolTable().lookup(Name);
1798
1799  // If this is a forward reference for the value, see if we already created a
1800  // forward ref record.
1801  if (Val == 0) {
1802    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1803      I = ForwardRefVals.find(Name);
1804    if (I != ForwardRefVals.end())
1805      Val = I->second.first;
1806  }
1807
1808  // If we have the value in the symbol table or fwd-ref table, return it.
1809  if (Val) {
1810    if (Val->getType() == Ty) return Val;
1811    if (Ty->isLabelTy())
1812      P.Error(Loc, "'%" + Name + "' is not a basic block");
1813    else
1814      P.Error(Loc, "'%" + Name + "' defined with type '" +
1815              Val->getType()->getDescription() + "'");
1816    return 0;
1817  }
1818
1819  // Don't make placeholders with invalid type.
1820  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1821    P.Error(Loc, "invalid use of a non-first-class type");
1822    return 0;
1823  }
1824
1825  // Otherwise, create a new forward reference for this value and remember it.
1826  Value *FwdVal;
1827  if (Ty->isLabelTy())
1828    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1829  else
1830    FwdVal = new Argument(Ty, Name);
1831
1832  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1833  return FwdVal;
1834}
1835
1836Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1837                                          LocTy Loc) {
1838  // Look this name up in the normal function symbol table.
1839  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1840
1841  // If this is a forward reference for the value, see if we already created a
1842  // forward ref record.
1843  if (Val == 0) {
1844    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1845      I = ForwardRefValIDs.find(ID);
1846    if (I != ForwardRefValIDs.end())
1847      Val = I->second.first;
1848  }
1849
1850  // If we have the value in the symbol table or fwd-ref table, return it.
1851  if (Val) {
1852    if (Val->getType() == Ty) return Val;
1853    if (Ty->isLabelTy())
1854      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1855    else
1856      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1857              Val->getType()->getDescription() + "'");
1858    return 0;
1859  }
1860
1861  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1862    P.Error(Loc, "invalid use of a non-first-class type");
1863    return 0;
1864  }
1865
1866  // Otherwise, create a new forward reference for this value and remember it.
1867  Value *FwdVal;
1868  if (Ty->isLabelTy())
1869    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1870  else
1871    FwdVal = new Argument(Ty);
1872
1873  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1874  return FwdVal;
1875}
1876
1877/// SetInstName - After an instruction is parsed and inserted into its
1878/// basic block, this installs its name.
1879bool LLParser::PerFunctionState::SetInstName(int NameID,
1880                                             const std::string &NameStr,
1881                                             LocTy NameLoc, Instruction *Inst) {
1882  // If this instruction has void type, it cannot have a name or ID specified.
1883  if (Inst->getType()->isVoidTy()) {
1884    if (NameID != -1 || !NameStr.empty())
1885      return P.Error(NameLoc, "instructions returning void cannot have a name");
1886    return false;
1887  }
1888
1889  // If this was a numbered instruction, verify that the instruction is the
1890  // expected value and resolve any forward references.
1891  if (NameStr.empty()) {
1892    // If neither a name nor an ID was specified, just use the next ID.
1893    if (NameID == -1)
1894      NameID = NumberedVals.size();
1895
1896    if (unsigned(NameID) != NumberedVals.size())
1897      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1898                     Twine(NumberedVals.size()) + "'");
1899
1900    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1901      ForwardRefValIDs.find(NameID);
1902    if (FI != ForwardRefValIDs.end()) {
1903      if (FI->second.first->getType() != Inst->getType())
1904        return P.Error(NameLoc, "instruction forward referenced with type '" +
1905                       FI->second.first->getType()->getDescription() + "'");
1906      FI->second.first->replaceAllUsesWith(Inst);
1907      delete FI->second.first;
1908      ForwardRefValIDs.erase(FI);
1909    }
1910
1911    NumberedVals.push_back(Inst);
1912    return false;
1913  }
1914
1915  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1916  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1917    FI = ForwardRefVals.find(NameStr);
1918  if (FI != ForwardRefVals.end()) {
1919    if (FI->second.first->getType() != Inst->getType())
1920      return P.Error(NameLoc, "instruction forward referenced with type '" +
1921                     FI->second.first->getType()->getDescription() + "'");
1922    FI->second.first->replaceAllUsesWith(Inst);
1923    delete FI->second.first;
1924    ForwardRefVals.erase(FI);
1925  }
1926
1927  // Set the name on the instruction.
1928  Inst->setName(NameStr);
1929
1930  if (Inst->getName() != NameStr)
1931    return P.Error(NameLoc, "multiple definition of local value named '" +
1932                   NameStr + "'");
1933  return false;
1934}
1935
1936/// GetBB - Get a basic block with the specified name or ID, creating a
1937/// forward reference record if needed.
1938BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1939                                              LocTy Loc) {
1940  return cast_or_null<BasicBlock>(GetVal(Name,
1941                                        Type::getLabelTy(F.getContext()), Loc));
1942}
1943
1944BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1945  return cast_or_null<BasicBlock>(GetVal(ID,
1946                                        Type::getLabelTy(F.getContext()), Loc));
1947}
1948
1949/// DefineBB - Define the specified basic block, which is either named or
1950/// unnamed.  If there is an error, this returns null otherwise it returns
1951/// the block being defined.
1952BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1953                                                 LocTy Loc) {
1954  BasicBlock *BB;
1955  if (Name.empty())
1956    BB = GetBB(NumberedVals.size(), Loc);
1957  else
1958    BB = GetBB(Name, Loc);
1959  if (BB == 0) return 0; // Already diagnosed error.
1960
1961  // Move the block to the end of the function.  Forward ref'd blocks are
1962  // inserted wherever they happen to be referenced.
1963  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1964
1965  // Remove the block from forward ref sets.
1966  if (Name.empty()) {
1967    ForwardRefValIDs.erase(NumberedVals.size());
1968    NumberedVals.push_back(BB);
1969  } else {
1970    // BB forward references are already in the function symbol table.
1971    ForwardRefVals.erase(Name);
1972  }
1973
1974  return BB;
1975}
1976
1977//===----------------------------------------------------------------------===//
1978// Constants.
1979//===----------------------------------------------------------------------===//
1980
1981/// ParseValID - Parse an abstract value that doesn't necessarily have a
1982/// type implied.  For example, if we parse "4" we don't know what integer type
1983/// it has.  The value will later be combined with its type and checked for
1984/// sanity.  PFS is used to convert function-local operands of metadata (since
1985/// metadata operands are not just parsed here but also converted to values).
1986/// PFS can be null when we are not parsing metadata values inside a function.
1987bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1988  ID.Loc = Lex.getLoc();
1989  switch (Lex.getKind()) {
1990  default: return TokError("expected value token");
1991  case lltok::GlobalID:  // @42
1992    ID.UIntVal = Lex.getUIntVal();
1993    ID.Kind = ValID::t_GlobalID;
1994    break;
1995  case lltok::GlobalVar:  // @foo
1996    ID.StrVal = Lex.getStrVal();
1997    ID.Kind = ValID::t_GlobalName;
1998    break;
1999  case lltok::LocalVarID:  // %42
2000    ID.UIntVal = Lex.getUIntVal();
2001    ID.Kind = ValID::t_LocalID;
2002    break;
2003  case lltok::LocalVar:  // %foo
2004  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
2005    ID.StrVal = Lex.getStrVal();
2006    ID.Kind = ValID::t_LocalName;
2007    break;
2008  case lltok::exclaim:   // !42, !{...}, or !"foo"
2009    return ParseMetadataValue(ID, PFS);
2010  case lltok::APSInt:
2011    ID.APSIntVal = Lex.getAPSIntVal();
2012    ID.Kind = ValID::t_APSInt;
2013    break;
2014  case lltok::APFloat:
2015    ID.APFloatVal = Lex.getAPFloatVal();
2016    ID.Kind = ValID::t_APFloat;
2017    break;
2018  case lltok::kw_true:
2019    ID.ConstantVal = ConstantInt::getTrue(Context);
2020    ID.Kind = ValID::t_Constant;
2021    break;
2022  case lltok::kw_false:
2023    ID.ConstantVal = ConstantInt::getFalse(Context);
2024    ID.Kind = ValID::t_Constant;
2025    break;
2026  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2027  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2028  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2029
2030  case lltok::lbrace: {
2031    // ValID ::= '{' ConstVector '}'
2032    Lex.Lex();
2033    SmallVector<Constant*, 16> Elts;
2034    if (ParseGlobalValueVector(Elts) ||
2035        ParseToken(lltok::rbrace, "expected end of struct constant"))
2036      return true;
2037
2038    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2039                                         Elts.size(), false);
2040    ID.Kind = ValID::t_Constant;
2041    return false;
2042  }
2043  case lltok::less: {
2044    // ValID ::= '<' ConstVector '>'         --> Vector.
2045    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2046    Lex.Lex();
2047    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2048
2049    SmallVector<Constant*, 16> Elts;
2050    LocTy FirstEltLoc = Lex.getLoc();
2051    if (ParseGlobalValueVector(Elts) ||
2052        (isPackedStruct &&
2053         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2054        ParseToken(lltok::greater, "expected end of constant"))
2055      return true;
2056
2057    if (isPackedStruct) {
2058      ID.ConstantVal =
2059        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2060      ID.Kind = ValID::t_Constant;
2061      return false;
2062    }
2063
2064    if (Elts.empty())
2065      return Error(ID.Loc, "constant vector must not be empty");
2066
2067    if (!Elts[0]->getType()->isIntegerTy() &&
2068        !Elts[0]->getType()->isFloatingPointTy())
2069      return Error(FirstEltLoc,
2070                   "vector elements must have integer or floating point type");
2071
2072    // Verify that all the vector elements have the same type.
2073    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2074      if (Elts[i]->getType() != Elts[0]->getType())
2075        return Error(FirstEltLoc,
2076                     "vector element #" + Twine(i) +
2077                    " is not of type '" + Elts[0]->getType()->getDescription());
2078
2079    ID.ConstantVal = ConstantVector::get(Elts);
2080    ID.Kind = ValID::t_Constant;
2081    return false;
2082  }
2083  case lltok::lsquare: {   // Array Constant
2084    Lex.Lex();
2085    SmallVector<Constant*, 16> Elts;
2086    LocTy FirstEltLoc = Lex.getLoc();
2087    if (ParseGlobalValueVector(Elts) ||
2088        ParseToken(lltok::rsquare, "expected end of array constant"))
2089      return true;
2090
2091    // Handle empty element.
2092    if (Elts.empty()) {
2093      // Use undef instead of an array because it's inconvenient to determine
2094      // the element type at this point, there being no elements to examine.
2095      ID.Kind = ValID::t_EmptyArray;
2096      return false;
2097    }
2098
2099    if (!Elts[0]->getType()->isFirstClassType())
2100      return Error(FirstEltLoc, "invalid array element type: " +
2101                   Elts[0]->getType()->getDescription());
2102
2103    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2104
2105    // Verify all elements are correct type!
2106    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2107      if (Elts[i]->getType() != Elts[0]->getType())
2108        return Error(FirstEltLoc,
2109                     "array element #" + Twine(i) +
2110                     " is not of type '" +Elts[0]->getType()->getDescription());
2111    }
2112
2113    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2114    ID.Kind = ValID::t_Constant;
2115    return false;
2116  }
2117  case lltok::kw_c:  // c "foo"
2118    Lex.Lex();
2119    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2120    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2121    ID.Kind = ValID::t_Constant;
2122    return false;
2123
2124  case lltok::kw_asm: {
2125    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2126    bool HasSideEffect, AlignStack;
2127    Lex.Lex();
2128    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2129        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2130        ParseStringConstant(ID.StrVal) ||
2131        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2132        ParseToken(lltok::StringConstant, "expected constraint string"))
2133      return true;
2134    ID.StrVal2 = Lex.getStrVal();
2135    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2136    ID.Kind = ValID::t_InlineAsm;
2137    return false;
2138  }
2139
2140  case lltok::kw_blockaddress: {
2141    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2142    Lex.Lex();
2143
2144    ValID Fn, Label;
2145    LocTy FnLoc, LabelLoc;
2146
2147    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2148        ParseValID(Fn) ||
2149        ParseToken(lltok::comma, "expected comma in block address expression")||
2150        ParseValID(Label) ||
2151        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2152      return true;
2153
2154    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2155      return Error(Fn.Loc, "expected function name in blockaddress");
2156    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2157      return Error(Label.Loc, "expected basic block name in blockaddress");
2158
2159    // Make a global variable as a placeholder for this reference.
2160    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2161                                           false, GlobalValue::InternalLinkage,
2162                                                0, "");
2163    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2164    ID.ConstantVal = FwdRef;
2165    ID.Kind = ValID::t_Constant;
2166    return false;
2167  }
2168
2169  case lltok::kw_trunc:
2170  case lltok::kw_zext:
2171  case lltok::kw_sext:
2172  case lltok::kw_fptrunc:
2173  case lltok::kw_fpext:
2174  case lltok::kw_bitcast:
2175  case lltok::kw_uitofp:
2176  case lltok::kw_sitofp:
2177  case lltok::kw_fptoui:
2178  case lltok::kw_fptosi:
2179  case lltok::kw_inttoptr:
2180  case lltok::kw_ptrtoint: {
2181    unsigned Opc = Lex.getUIntVal();
2182    PATypeHolder DestTy(Type::getVoidTy(Context));
2183    Constant *SrcVal;
2184    Lex.Lex();
2185    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2186        ParseGlobalTypeAndValue(SrcVal) ||
2187        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2188        ParseType(DestTy) ||
2189        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2190      return true;
2191    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2192      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2193                   SrcVal->getType()->getDescription() + "' to '" +
2194                   DestTy->getDescription() + "'");
2195    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2196                                                 SrcVal, DestTy);
2197    ID.Kind = ValID::t_Constant;
2198    return false;
2199  }
2200  case lltok::kw_extractvalue: {
2201    Lex.Lex();
2202    Constant *Val;
2203    SmallVector<unsigned, 4> Indices;
2204    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2205        ParseGlobalTypeAndValue(Val) ||
2206        ParseIndexList(Indices) ||
2207        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2208      return true;
2209
2210    if (!Val->getType()->isAggregateType())
2211      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2212    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2213                                          Indices.end()))
2214      return Error(ID.Loc, "invalid indices for extractvalue");
2215    ID.ConstantVal =
2216      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2217    ID.Kind = ValID::t_Constant;
2218    return false;
2219  }
2220  case lltok::kw_insertvalue: {
2221    Lex.Lex();
2222    Constant *Val0, *Val1;
2223    SmallVector<unsigned, 4> Indices;
2224    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2225        ParseGlobalTypeAndValue(Val0) ||
2226        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2227        ParseGlobalTypeAndValue(Val1) ||
2228        ParseIndexList(Indices) ||
2229        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2230      return true;
2231    if (!Val0->getType()->isAggregateType())
2232      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2233    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2234                                          Indices.end()))
2235      return Error(ID.Loc, "invalid indices for insertvalue");
2236    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2237                       Indices.data(), Indices.size());
2238    ID.Kind = ValID::t_Constant;
2239    return false;
2240  }
2241  case lltok::kw_icmp:
2242  case lltok::kw_fcmp: {
2243    unsigned PredVal, Opc = Lex.getUIntVal();
2244    Constant *Val0, *Val1;
2245    Lex.Lex();
2246    if (ParseCmpPredicate(PredVal, Opc) ||
2247        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2248        ParseGlobalTypeAndValue(Val0) ||
2249        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2250        ParseGlobalTypeAndValue(Val1) ||
2251        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2252      return true;
2253
2254    if (Val0->getType() != Val1->getType())
2255      return Error(ID.Loc, "compare operands must have the same type");
2256
2257    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2258
2259    if (Opc == Instruction::FCmp) {
2260      if (!Val0->getType()->isFPOrFPVectorTy())
2261        return Error(ID.Loc, "fcmp requires floating point operands");
2262      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2263    } else {
2264      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2265      if (!Val0->getType()->isIntOrIntVectorTy() &&
2266          !Val0->getType()->isPointerTy())
2267        return Error(ID.Loc, "icmp requires pointer or integer operands");
2268      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2269    }
2270    ID.Kind = ValID::t_Constant;
2271    return false;
2272  }
2273
2274  // Binary Operators.
2275  case lltok::kw_add:
2276  case lltok::kw_fadd:
2277  case lltok::kw_sub:
2278  case lltok::kw_fsub:
2279  case lltok::kw_mul:
2280  case lltok::kw_fmul:
2281  case lltok::kw_udiv:
2282  case lltok::kw_sdiv:
2283  case lltok::kw_fdiv:
2284  case lltok::kw_urem:
2285  case lltok::kw_srem:
2286  case lltok::kw_frem:
2287  case lltok::kw_shl:
2288  case lltok::kw_lshr:
2289  case lltok::kw_ashr: {
2290    bool NUW = false;
2291    bool NSW = false;
2292    bool Exact = false;
2293    unsigned Opc = Lex.getUIntVal();
2294    Constant *Val0, *Val1;
2295    Lex.Lex();
2296    LocTy ModifierLoc = Lex.getLoc();
2297    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2298        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2299      if (EatIfPresent(lltok::kw_nuw))
2300        NUW = true;
2301      if (EatIfPresent(lltok::kw_nsw)) {
2302        NSW = true;
2303        if (EatIfPresent(lltok::kw_nuw))
2304          NUW = true;
2305      }
2306    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2307               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2308      if (EatIfPresent(lltok::kw_exact))
2309        Exact = true;
2310    }
2311    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2312        ParseGlobalTypeAndValue(Val0) ||
2313        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2314        ParseGlobalTypeAndValue(Val1) ||
2315        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2316      return true;
2317    if (Val0->getType() != Val1->getType())
2318      return Error(ID.Loc, "operands of constexpr must have same type");
2319    if (!Val0->getType()->isIntOrIntVectorTy()) {
2320      if (NUW)
2321        return Error(ModifierLoc, "nuw only applies to integer operations");
2322      if (NSW)
2323        return Error(ModifierLoc, "nsw only applies to integer operations");
2324    }
2325    // Check that the type is valid for the operator.
2326    switch (Opc) {
2327    case Instruction::Add:
2328    case Instruction::Sub:
2329    case Instruction::Mul:
2330    case Instruction::UDiv:
2331    case Instruction::SDiv:
2332    case Instruction::URem:
2333    case Instruction::SRem:
2334    case Instruction::Shl:
2335    case Instruction::AShr:
2336    case Instruction::LShr:
2337      if (!Val0->getType()->isIntOrIntVectorTy())
2338        return Error(ID.Loc, "constexpr requires integer operands");
2339      break;
2340    case Instruction::FAdd:
2341    case Instruction::FSub:
2342    case Instruction::FMul:
2343    case Instruction::FDiv:
2344    case Instruction::FRem:
2345      if (!Val0->getType()->isFPOrFPVectorTy())
2346        return Error(ID.Loc, "constexpr requires fp operands");
2347      break;
2348    default: llvm_unreachable("Unknown binary operator!");
2349    }
2350    unsigned Flags = 0;
2351    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2352    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2353    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2354    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2355    ID.ConstantVal = C;
2356    ID.Kind = ValID::t_Constant;
2357    return false;
2358  }
2359
2360  // Logical Operations
2361  case lltok::kw_and:
2362  case lltok::kw_or:
2363  case lltok::kw_xor: {
2364    unsigned Opc = Lex.getUIntVal();
2365    Constant *Val0, *Val1;
2366    Lex.Lex();
2367    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2368        ParseGlobalTypeAndValue(Val0) ||
2369        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2370        ParseGlobalTypeAndValue(Val1) ||
2371        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2372      return true;
2373    if (Val0->getType() != Val1->getType())
2374      return Error(ID.Loc, "operands of constexpr must have same type");
2375    if (!Val0->getType()->isIntOrIntVectorTy())
2376      return Error(ID.Loc,
2377                   "constexpr requires integer or integer vector operands");
2378    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2379    ID.Kind = ValID::t_Constant;
2380    return false;
2381  }
2382
2383  case lltok::kw_getelementptr:
2384  case lltok::kw_shufflevector:
2385  case lltok::kw_insertelement:
2386  case lltok::kw_extractelement:
2387  case lltok::kw_select: {
2388    unsigned Opc = Lex.getUIntVal();
2389    SmallVector<Constant*, 16> Elts;
2390    bool InBounds = false;
2391    Lex.Lex();
2392    if (Opc == Instruction::GetElementPtr)
2393      InBounds = EatIfPresent(lltok::kw_inbounds);
2394    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2395        ParseGlobalValueVector(Elts) ||
2396        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2397      return true;
2398
2399    if (Opc == Instruction::GetElementPtr) {
2400      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2401        return Error(ID.Loc, "getelementptr requires pointer operand");
2402
2403      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2404                                             (Value**)(Elts.data() + 1),
2405                                             Elts.size() - 1))
2406        return Error(ID.Loc, "invalid indices for getelementptr");
2407      ID.ConstantVal = InBounds ?
2408        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2409                                               Elts.data() + 1,
2410                                               Elts.size() - 1) :
2411        ConstantExpr::getGetElementPtr(Elts[0],
2412                                       Elts.data() + 1, Elts.size() - 1);
2413    } else if (Opc == Instruction::Select) {
2414      if (Elts.size() != 3)
2415        return Error(ID.Loc, "expected three operands to select");
2416      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2417                                                              Elts[2]))
2418        return Error(ID.Loc, Reason);
2419      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2420    } else if (Opc == Instruction::ShuffleVector) {
2421      if (Elts.size() != 3)
2422        return Error(ID.Loc, "expected three operands to shufflevector");
2423      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2424        return Error(ID.Loc, "invalid operands to shufflevector");
2425      ID.ConstantVal =
2426                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2427    } else if (Opc == Instruction::ExtractElement) {
2428      if (Elts.size() != 2)
2429        return Error(ID.Loc, "expected two operands to extractelement");
2430      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2431        return Error(ID.Loc, "invalid extractelement operands");
2432      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2433    } else {
2434      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2435      if (Elts.size() != 3)
2436      return Error(ID.Loc, "expected three operands to insertelement");
2437      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2438        return Error(ID.Loc, "invalid insertelement operands");
2439      ID.ConstantVal =
2440                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2441    }
2442
2443    ID.Kind = ValID::t_Constant;
2444    return false;
2445  }
2446  }
2447
2448  Lex.Lex();
2449  return false;
2450}
2451
2452/// ParseGlobalValue - Parse a global value with the specified type.
2453bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2454  C = 0;
2455  ValID ID;
2456  Value *V = NULL;
2457  bool Parsed = ParseValID(ID) ||
2458                ConvertValIDToValue(Ty, ID, V, NULL);
2459  if (V && !(C = dyn_cast<Constant>(V)))
2460    return Error(ID.Loc, "global values must be constants");
2461  return Parsed;
2462}
2463
2464bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2465  PATypeHolder Type(Type::getVoidTy(Context));
2466  return ParseType(Type) ||
2467         ParseGlobalValue(Type, V);
2468}
2469
2470/// ParseGlobalValueVector
2471///   ::= /*empty*/
2472///   ::= TypeAndValue (',' TypeAndValue)*
2473bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2474  // Empty list.
2475  if (Lex.getKind() == lltok::rbrace ||
2476      Lex.getKind() == lltok::rsquare ||
2477      Lex.getKind() == lltok::greater ||
2478      Lex.getKind() == lltok::rparen)
2479    return false;
2480
2481  Constant *C;
2482  if (ParseGlobalTypeAndValue(C)) return true;
2483  Elts.push_back(C);
2484
2485  while (EatIfPresent(lltok::comma)) {
2486    if (ParseGlobalTypeAndValue(C)) return true;
2487    Elts.push_back(C);
2488  }
2489
2490  return false;
2491}
2492
2493bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2494  assert(Lex.getKind() == lltok::lbrace);
2495  Lex.Lex();
2496
2497  SmallVector<Value*, 16> Elts;
2498  if (ParseMDNodeVector(Elts, PFS) ||
2499      ParseToken(lltok::rbrace, "expected end of metadata node"))
2500    return true;
2501
2502  ID.MDNodeVal = MDNode::get(Context, Elts);
2503  ID.Kind = ValID::t_MDNode;
2504  return false;
2505}
2506
2507/// ParseMetadataValue
2508///  ::= !42
2509///  ::= !{...}
2510///  ::= !"string"
2511bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2512  assert(Lex.getKind() == lltok::exclaim);
2513  Lex.Lex();
2514
2515  // MDNode:
2516  // !{ ... }
2517  if (Lex.getKind() == lltok::lbrace)
2518    return ParseMetadataListValue(ID, PFS);
2519
2520  // Standalone metadata reference
2521  // !42
2522  if (Lex.getKind() == lltok::APSInt) {
2523    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2524    ID.Kind = ValID::t_MDNode;
2525    return false;
2526  }
2527
2528  // MDString:
2529  //   ::= '!' STRINGCONSTANT
2530  if (ParseMDString(ID.MDStringVal)) return true;
2531  ID.Kind = ValID::t_MDString;
2532  return false;
2533}
2534
2535
2536//===----------------------------------------------------------------------===//
2537// Function Parsing.
2538//===----------------------------------------------------------------------===//
2539
2540bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2541                                   PerFunctionState *PFS) {
2542  if (Ty->isFunctionTy())
2543    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2544
2545  switch (ID.Kind) {
2546  default: llvm_unreachable("Unknown ValID!");
2547  case ValID::t_LocalID:
2548    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2549    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2550    return (V == 0);
2551  case ValID::t_LocalName:
2552    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2553    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2554    return (V == 0);
2555  case ValID::t_InlineAsm: {
2556    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2557    const FunctionType *FTy =
2558      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2559    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2560      return Error(ID.Loc, "invalid type for inline asm constraint string");
2561    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2562    return false;
2563  }
2564  case ValID::t_MDNode:
2565    if (!Ty->isMetadataTy())
2566      return Error(ID.Loc, "metadata value must have metadata type");
2567    V = ID.MDNodeVal;
2568    return false;
2569  case ValID::t_MDString:
2570    if (!Ty->isMetadataTy())
2571      return Error(ID.Loc, "metadata value must have metadata type");
2572    V = ID.MDStringVal;
2573    return false;
2574  case ValID::t_GlobalName:
2575    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2576    return V == 0;
2577  case ValID::t_GlobalID:
2578    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2579    return V == 0;
2580  case ValID::t_APSInt:
2581    if (!Ty->isIntegerTy())
2582      return Error(ID.Loc, "integer constant must have integer type");
2583    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2584    V = ConstantInt::get(Context, ID.APSIntVal);
2585    return false;
2586  case ValID::t_APFloat:
2587    if (!Ty->isFloatingPointTy() ||
2588        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2589      return Error(ID.Loc, "floating point constant invalid for type");
2590
2591    // The lexer has no type info, so builds all float and double FP constants
2592    // as double.  Fix this here.  Long double does not need this.
2593    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2594        Ty->isFloatTy()) {
2595      bool Ignored;
2596      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2597                            &Ignored);
2598    }
2599    V = ConstantFP::get(Context, ID.APFloatVal);
2600
2601    if (V->getType() != Ty)
2602      return Error(ID.Loc, "floating point constant does not have type '" +
2603                   Ty->getDescription() + "'");
2604
2605    return false;
2606  case ValID::t_Null:
2607    if (!Ty->isPointerTy())
2608      return Error(ID.Loc, "null must be a pointer type");
2609    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2610    return false;
2611  case ValID::t_Undef:
2612    // FIXME: LabelTy should not be a first-class type.
2613    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2614        !Ty->isOpaqueTy())
2615      return Error(ID.Loc, "invalid type for undef constant");
2616    V = UndefValue::get(Ty);
2617    return false;
2618  case ValID::t_EmptyArray:
2619    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2620      return Error(ID.Loc, "invalid empty array initializer");
2621    V = UndefValue::get(Ty);
2622    return false;
2623  case ValID::t_Zero:
2624    // FIXME: LabelTy should not be a first-class type.
2625    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2626      return Error(ID.Loc, "invalid type for null constant");
2627    V = Constant::getNullValue(Ty);
2628    return false;
2629  case ValID::t_Constant:
2630    if (ID.ConstantVal->getType() != Ty)
2631      return Error(ID.Loc, "constant expression type mismatch");
2632
2633    V = ID.ConstantVal;
2634    return false;
2635  }
2636}
2637
2638bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2639  V = 0;
2640  ValID ID;
2641  return ParseValID(ID, &PFS) ||
2642         ConvertValIDToValue(Ty, ID, V, &PFS);
2643}
2644
2645bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2646  PATypeHolder T(Type::getVoidTy(Context));
2647  return ParseType(T) ||
2648         ParseValue(T, V, PFS);
2649}
2650
2651bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2652                                      PerFunctionState &PFS) {
2653  Value *V;
2654  Loc = Lex.getLoc();
2655  if (ParseTypeAndValue(V, PFS)) return true;
2656  if (!isa<BasicBlock>(V))
2657    return Error(Loc, "expected a basic block");
2658  BB = cast<BasicBlock>(V);
2659  return false;
2660}
2661
2662
2663/// FunctionHeader
2664///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2665///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2666///       OptionalAlign OptGC
2667bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2668  // Parse the linkage.
2669  LocTy LinkageLoc = Lex.getLoc();
2670  unsigned Linkage;
2671
2672  unsigned Visibility, RetAttrs;
2673  CallingConv::ID CC;
2674  PATypeHolder RetType(Type::getVoidTy(Context));
2675  LocTy RetTypeLoc = Lex.getLoc();
2676  if (ParseOptionalLinkage(Linkage) ||
2677      ParseOptionalVisibility(Visibility) ||
2678      ParseOptionalCallingConv(CC) ||
2679      ParseOptionalAttrs(RetAttrs, 1) ||
2680      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2681    return true;
2682
2683  // Verify that the linkage is ok.
2684  switch ((GlobalValue::LinkageTypes)Linkage) {
2685  case GlobalValue::ExternalLinkage:
2686    break; // always ok.
2687  case GlobalValue::DLLImportLinkage:
2688  case GlobalValue::ExternalWeakLinkage:
2689    if (isDefine)
2690      return Error(LinkageLoc, "invalid linkage for function definition");
2691    break;
2692  case GlobalValue::PrivateLinkage:
2693  case GlobalValue::LinkerPrivateLinkage:
2694  case GlobalValue::LinkerPrivateWeakLinkage:
2695  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2696  case GlobalValue::InternalLinkage:
2697  case GlobalValue::AvailableExternallyLinkage:
2698  case GlobalValue::LinkOnceAnyLinkage:
2699  case GlobalValue::LinkOnceODRLinkage:
2700  case GlobalValue::WeakAnyLinkage:
2701  case GlobalValue::WeakODRLinkage:
2702  case GlobalValue::DLLExportLinkage:
2703    if (!isDefine)
2704      return Error(LinkageLoc, "invalid linkage for function declaration");
2705    break;
2706  case GlobalValue::AppendingLinkage:
2707  case GlobalValue::CommonLinkage:
2708    return Error(LinkageLoc, "invalid function linkage type");
2709  }
2710
2711  if (!FunctionType::isValidReturnType(RetType) ||
2712      RetType->isOpaqueTy())
2713    return Error(RetTypeLoc, "invalid function return type");
2714
2715  LocTy NameLoc = Lex.getLoc();
2716
2717  std::string FunctionName;
2718  if (Lex.getKind() == lltok::GlobalVar) {
2719    FunctionName = Lex.getStrVal();
2720  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2721    unsigned NameID = Lex.getUIntVal();
2722
2723    if (NameID != NumberedVals.size())
2724      return TokError("function expected to be numbered '%" +
2725                      Twine(NumberedVals.size()) + "'");
2726  } else {
2727    return TokError("expected function name");
2728  }
2729
2730  Lex.Lex();
2731
2732  if (Lex.getKind() != lltok::lparen)
2733    return TokError("expected '(' in function argument list");
2734
2735  std::vector<ArgInfo> ArgList;
2736  bool isVarArg;
2737  unsigned FuncAttrs;
2738  std::string Section;
2739  unsigned Alignment;
2740  std::string GC;
2741  bool UnnamedAddr;
2742  LocTy UnnamedAddrLoc;
2743
2744  if (ParseArgumentList(ArgList, isVarArg, false) ||
2745      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2746                         &UnnamedAddrLoc) ||
2747      ParseOptionalAttrs(FuncAttrs, 2) ||
2748      (EatIfPresent(lltok::kw_section) &&
2749       ParseStringConstant(Section)) ||
2750      ParseOptionalAlignment(Alignment) ||
2751      (EatIfPresent(lltok::kw_gc) &&
2752       ParseStringConstant(GC)))
2753    return true;
2754
2755  // If the alignment was parsed as an attribute, move to the alignment field.
2756  if (FuncAttrs & Attribute::Alignment) {
2757    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2758    FuncAttrs &= ~Attribute::Alignment;
2759  }
2760
2761  // Okay, if we got here, the function is syntactically valid.  Convert types
2762  // and do semantic checks.
2763  std::vector<const Type*> ParamTypeList;
2764  SmallVector<AttributeWithIndex, 8> Attrs;
2765  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2766  // attributes.
2767  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2768  if (FuncAttrs & ObsoleteFuncAttrs) {
2769    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2770    FuncAttrs &= ~ObsoleteFuncAttrs;
2771  }
2772
2773  if (RetAttrs != Attribute::None)
2774    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2775
2776  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2777    ParamTypeList.push_back(ArgList[i].Type);
2778    if (ArgList[i].Attrs != Attribute::None)
2779      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2780  }
2781
2782  if (FuncAttrs != Attribute::None)
2783    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2784
2785  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2786
2787  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2788    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2789
2790  const FunctionType *FT =
2791    FunctionType::get(RetType, ParamTypeList, isVarArg);
2792  const PointerType *PFT = PointerType::getUnqual(FT);
2793
2794  Fn = 0;
2795  if (!FunctionName.empty()) {
2796    // If this was a definition of a forward reference, remove the definition
2797    // from the forward reference table and fill in the forward ref.
2798    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2799      ForwardRefVals.find(FunctionName);
2800    if (FRVI != ForwardRefVals.end()) {
2801      Fn = M->getFunction(FunctionName);
2802      if (Fn->getType() != PFT)
2803        return Error(FRVI->second.second, "invalid forward reference to "
2804                     "function '" + FunctionName + "' with wrong type!");
2805
2806      ForwardRefVals.erase(FRVI);
2807    } else if ((Fn = M->getFunction(FunctionName))) {
2808      // If this function already exists in the symbol table, then it is
2809      // multiply defined.  We accept a few cases for old backwards compat.
2810      // FIXME: Remove this stuff for LLVM 3.0.
2811      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2812          (!Fn->isDeclaration() && isDefine)) {
2813        // If the redefinition has different type or different attributes,
2814        // reject it.  If both have bodies, reject it.
2815        return Error(NameLoc, "invalid redefinition of function '" +
2816                     FunctionName + "'");
2817      } else if (Fn->isDeclaration()) {
2818        // Make sure to strip off any argument names so we can't get conflicts.
2819        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2820             AI != AE; ++AI)
2821          AI->setName("");
2822      }
2823    } else if (M->getNamedValue(FunctionName)) {
2824      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2825    }
2826
2827  } else {
2828    // If this is a definition of a forward referenced function, make sure the
2829    // types agree.
2830    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2831      = ForwardRefValIDs.find(NumberedVals.size());
2832    if (I != ForwardRefValIDs.end()) {
2833      Fn = cast<Function>(I->second.first);
2834      if (Fn->getType() != PFT)
2835        return Error(NameLoc, "type of definition and forward reference of '@" +
2836                     Twine(NumberedVals.size()) + "' disagree");
2837      ForwardRefValIDs.erase(I);
2838    }
2839  }
2840
2841  if (Fn == 0)
2842    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2843  else // Move the forward-reference to the correct spot in the module.
2844    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2845
2846  if (FunctionName.empty())
2847    NumberedVals.push_back(Fn);
2848
2849  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2850  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2851  Fn->setCallingConv(CC);
2852  Fn->setAttributes(PAL);
2853  Fn->setUnnamedAddr(UnnamedAddr);
2854  Fn->setAlignment(Alignment);
2855  Fn->setSection(Section);
2856  if (!GC.empty()) Fn->setGC(GC.c_str());
2857
2858  // Add all of the arguments we parsed to the function.
2859  Function::arg_iterator ArgIt = Fn->arg_begin();
2860  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2861    // If we run out of arguments in the Function prototype, exit early.
2862    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2863    if (ArgIt == Fn->arg_end()) break;
2864
2865    // If the argument has a name, insert it into the argument symbol table.
2866    if (ArgList[i].Name.empty()) continue;
2867
2868    // Set the name, if it conflicted, it will be auto-renamed.
2869    ArgIt->setName(ArgList[i].Name);
2870
2871    if (ArgIt->getName() != ArgList[i].Name)
2872      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2873                   ArgList[i].Name + "'");
2874  }
2875
2876  return false;
2877}
2878
2879
2880/// ParseFunctionBody
2881///   ::= '{' BasicBlock+ '}'
2882///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2883///
2884bool LLParser::ParseFunctionBody(Function &Fn) {
2885  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2886    return TokError("expected '{' in function body");
2887  Lex.Lex();  // eat the {.
2888
2889  int FunctionNumber = -1;
2890  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2891
2892  PerFunctionState PFS(*this, Fn, FunctionNumber);
2893
2894  // We need at least one basic block.
2895  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2896    return TokError("function body requires at least one basic block");
2897
2898  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2899    if (ParseBasicBlock(PFS)) return true;
2900
2901  // Eat the }.
2902  Lex.Lex();
2903
2904  // Verify function is ok.
2905  return PFS.FinishFunction();
2906}
2907
2908/// ParseBasicBlock
2909///   ::= LabelStr? Instruction*
2910bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2911  // If this basic block starts out with a name, remember it.
2912  std::string Name;
2913  LocTy NameLoc = Lex.getLoc();
2914  if (Lex.getKind() == lltok::LabelStr) {
2915    Name = Lex.getStrVal();
2916    Lex.Lex();
2917  }
2918
2919  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2920  if (BB == 0) return true;
2921
2922  std::string NameStr;
2923
2924  // Parse the instructions in this block until we get a terminator.
2925  Instruction *Inst;
2926  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2927  do {
2928    // This instruction may have three possibilities for a name: a) none
2929    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2930    LocTy NameLoc = Lex.getLoc();
2931    int NameID = -1;
2932    NameStr = "";
2933
2934    if (Lex.getKind() == lltok::LocalVarID) {
2935      NameID = Lex.getUIntVal();
2936      Lex.Lex();
2937      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2938        return true;
2939    } else if (Lex.getKind() == lltok::LocalVar ||
2940               // FIXME: REMOVE IN LLVM 3.0
2941               Lex.getKind() == lltok::StringConstant) {
2942      NameStr = Lex.getStrVal();
2943      Lex.Lex();
2944      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2945        return true;
2946    }
2947
2948    switch (ParseInstruction(Inst, BB, PFS)) {
2949    default: assert(0 && "Unknown ParseInstruction result!");
2950    case InstError: return true;
2951    case InstNormal:
2952      BB->getInstList().push_back(Inst);
2953
2954      // With a normal result, we check to see if the instruction is followed by
2955      // a comma and metadata.
2956      if (EatIfPresent(lltok::comma))
2957        if (ParseInstructionMetadata(Inst, &PFS))
2958          return true;
2959      break;
2960    case InstExtraComma:
2961      BB->getInstList().push_back(Inst);
2962
2963      // If the instruction parser ate an extra comma at the end of it, it
2964      // *must* be followed by metadata.
2965      if (ParseInstructionMetadata(Inst, &PFS))
2966        return true;
2967      break;
2968    }
2969
2970    // Set the name on the instruction.
2971    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2972  } while (!isa<TerminatorInst>(Inst));
2973
2974  return false;
2975}
2976
2977//===----------------------------------------------------------------------===//
2978// Instruction Parsing.
2979//===----------------------------------------------------------------------===//
2980
2981/// ParseInstruction - Parse one of the many different instructions.
2982///
2983int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2984                               PerFunctionState &PFS) {
2985  lltok::Kind Token = Lex.getKind();
2986  if (Token == lltok::Eof)
2987    return TokError("found end of file when expecting more instructions");
2988  LocTy Loc = Lex.getLoc();
2989  unsigned KeywordVal = Lex.getUIntVal();
2990  Lex.Lex();  // Eat the keyword.
2991
2992  switch (Token) {
2993  default:                    return Error(Loc, "expected instruction opcode");
2994  // Terminator Instructions.
2995  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2996  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2997  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2998  case lltok::kw_br:          return ParseBr(Inst, PFS);
2999  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3000  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3001  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3002  // Binary Operators.
3003  case lltok::kw_add:
3004  case lltok::kw_sub:
3005  case lltok::kw_mul:
3006  case lltok::kw_shl: {
3007    bool NUW = EatIfPresent(lltok::kw_nuw);
3008    bool NSW = EatIfPresent(lltok::kw_nsw);
3009    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3010
3011    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3012
3013    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3014    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3015    return false;
3016  }
3017  case lltok::kw_fadd:
3018  case lltok::kw_fsub:
3019  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3020
3021  case lltok::kw_sdiv:
3022  case lltok::kw_udiv:
3023  case lltok::kw_lshr:
3024  case lltok::kw_ashr: {
3025    bool Exact = EatIfPresent(lltok::kw_exact);
3026
3027    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3028    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3029    return false;
3030  }
3031
3032  case lltok::kw_urem:
3033  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3034  case lltok::kw_fdiv:
3035  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3036  case lltok::kw_and:
3037  case lltok::kw_or:
3038  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3039  case lltok::kw_icmp:
3040  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3041  // Casts.
3042  case lltok::kw_trunc:
3043  case lltok::kw_zext:
3044  case lltok::kw_sext:
3045  case lltok::kw_fptrunc:
3046  case lltok::kw_fpext:
3047  case lltok::kw_bitcast:
3048  case lltok::kw_uitofp:
3049  case lltok::kw_sitofp:
3050  case lltok::kw_fptoui:
3051  case lltok::kw_fptosi:
3052  case lltok::kw_inttoptr:
3053  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3054  // Other.
3055  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3056  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3057  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3058  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3059  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3060  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3061  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3062  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3063  // Memory.
3064  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3065  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
3066  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
3067  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
3068  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
3069  case lltok::kw_volatile:
3070    if (EatIfPresent(lltok::kw_load))
3071      return ParseLoad(Inst, PFS, true);
3072    else if (EatIfPresent(lltok::kw_store))
3073      return ParseStore(Inst, PFS, true);
3074    else
3075      return TokError("expected 'load' or 'store'");
3076  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
3077  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3078  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3079  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3080  }
3081}
3082
3083/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3084bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3085  if (Opc == Instruction::FCmp) {
3086    switch (Lex.getKind()) {
3087    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3088    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3089    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3090    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3091    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3092    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3093    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3094    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3095    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3096    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3097    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3098    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3099    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3100    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3101    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3102    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3103    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3104    }
3105  } else {
3106    switch (Lex.getKind()) {
3107    default: TokError("expected icmp predicate (e.g. 'eq')");
3108    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3109    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3110    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3111    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3112    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3113    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3114    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3115    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3116    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3117    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3118    }
3119  }
3120  Lex.Lex();
3121  return false;
3122}
3123
3124//===----------------------------------------------------------------------===//
3125// Terminator Instructions.
3126//===----------------------------------------------------------------------===//
3127
3128/// ParseRet - Parse a return instruction.
3129///   ::= 'ret' void (',' !dbg, !1)*
3130///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3131///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3132///         [[obsolete: LLVM 3.0]]
3133int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3134                       PerFunctionState &PFS) {
3135  PATypeHolder Ty(Type::getVoidTy(Context));
3136  if (ParseType(Ty, true /*void allowed*/)) return true;
3137
3138  if (Ty->isVoidTy()) {
3139    Inst = ReturnInst::Create(Context);
3140    return false;
3141  }
3142
3143  Value *RV;
3144  if (ParseValue(Ty, RV, PFS)) return true;
3145
3146  bool ExtraComma = false;
3147  if (EatIfPresent(lltok::comma)) {
3148    // Parse optional custom metadata, e.g. !dbg
3149    if (Lex.getKind() == lltok::MetadataVar) {
3150      ExtraComma = true;
3151    } else {
3152      // The normal case is one return value.
3153      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3154      // use of 'ret {i32,i32} {i32 1, i32 2}'
3155      SmallVector<Value*, 8> RVs;
3156      RVs.push_back(RV);
3157
3158      do {
3159        // If optional custom metadata, e.g. !dbg is seen then this is the
3160        // end of MRV.
3161        if (Lex.getKind() == lltok::MetadataVar)
3162          break;
3163        if (ParseTypeAndValue(RV, PFS)) return true;
3164        RVs.push_back(RV);
3165      } while (EatIfPresent(lltok::comma));
3166
3167      RV = UndefValue::get(PFS.getFunction().getReturnType());
3168      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3169        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3170        BB->getInstList().push_back(I);
3171        RV = I;
3172      }
3173    }
3174  }
3175
3176  Inst = ReturnInst::Create(Context, RV);
3177  return ExtraComma ? InstExtraComma : InstNormal;
3178}
3179
3180
3181/// ParseBr
3182///   ::= 'br' TypeAndValue
3183///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3184bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3185  LocTy Loc, Loc2;
3186  Value *Op0;
3187  BasicBlock *Op1, *Op2;
3188  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3189
3190  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3191    Inst = BranchInst::Create(BB);
3192    return false;
3193  }
3194
3195  if (Op0->getType() != Type::getInt1Ty(Context))
3196    return Error(Loc, "branch condition must have 'i1' type");
3197
3198  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3199      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3200      ParseToken(lltok::comma, "expected ',' after true destination") ||
3201      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3202    return true;
3203
3204  Inst = BranchInst::Create(Op1, Op2, Op0);
3205  return false;
3206}
3207
3208/// ParseSwitch
3209///  Instruction
3210///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3211///  JumpTable
3212///    ::= (TypeAndValue ',' TypeAndValue)*
3213bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3214  LocTy CondLoc, BBLoc;
3215  Value *Cond;
3216  BasicBlock *DefaultBB;
3217  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3218      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3219      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3220      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3221    return true;
3222
3223  if (!Cond->getType()->isIntegerTy())
3224    return Error(CondLoc, "switch condition must have integer type");
3225
3226  // Parse the jump table pairs.
3227  SmallPtrSet<Value*, 32> SeenCases;
3228  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3229  while (Lex.getKind() != lltok::rsquare) {
3230    Value *Constant;
3231    BasicBlock *DestBB;
3232
3233    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3234        ParseToken(lltok::comma, "expected ',' after case value") ||
3235        ParseTypeAndBasicBlock(DestBB, PFS))
3236      return true;
3237
3238    if (!SeenCases.insert(Constant))
3239      return Error(CondLoc, "duplicate case value in switch");
3240    if (!isa<ConstantInt>(Constant))
3241      return Error(CondLoc, "case value is not a constant integer");
3242
3243    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3244  }
3245
3246  Lex.Lex();  // Eat the ']'.
3247
3248  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3249  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3250    SI->addCase(Table[i].first, Table[i].second);
3251  Inst = SI;
3252  return false;
3253}
3254
3255/// ParseIndirectBr
3256///  Instruction
3257///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3258bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3259  LocTy AddrLoc;
3260  Value *Address;
3261  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3262      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3263      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3264    return true;
3265
3266  if (!Address->getType()->isPointerTy())
3267    return Error(AddrLoc, "indirectbr address must have pointer type");
3268
3269  // Parse the destination list.
3270  SmallVector<BasicBlock*, 16> DestList;
3271
3272  if (Lex.getKind() != lltok::rsquare) {
3273    BasicBlock *DestBB;
3274    if (ParseTypeAndBasicBlock(DestBB, PFS))
3275      return true;
3276    DestList.push_back(DestBB);
3277
3278    while (EatIfPresent(lltok::comma)) {
3279      if (ParseTypeAndBasicBlock(DestBB, PFS))
3280        return true;
3281      DestList.push_back(DestBB);
3282    }
3283  }
3284
3285  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3286    return true;
3287
3288  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3289  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3290    IBI->addDestination(DestList[i]);
3291  Inst = IBI;
3292  return false;
3293}
3294
3295
3296/// ParseInvoke
3297///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3298///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3299bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3300  LocTy CallLoc = Lex.getLoc();
3301  unsigned RetAttrs, FnAttrs;
3302  CallingConv::ID CC;
3303  PATypeHolder RetType(Type::getVoidTy(Context));
3304  LocTy RetTypeLoc;
3305  ValID CalleeID;
3306  SmallVector<ParamInfo, 16> ArgList;
3307
3308  BasicBlock *NormalBB, *UnwindBB;
3309  if (ParseOptionalCallingConv(CC) ||
3310      ParseOptionalAttrs(RetAttrs, 1) ||
3311      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3312      ParseValID(CalleeID) ||
3313      ParseParameterList(ArgList, PFS) ||
3314      ParseOptionalAttrs(FnAttrs, 2) ||
3315      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3316      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3317      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3318      ParseTypeAndBasicBlock(UnwindBB, PFS))
3319    return true;
3320
3321  // If RetType is a non-function pointer type, then this is the short syntax
3322  // for the call, which means that RetType is just the return type.  Infer the
3323  // rest of the function argument types from the arguments that are present.
3324  const PointerType *PFTy = 0;
3325  const FunctionType *Ty = 0;
3326  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3327      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3328    // Pull out the types of all of the arguments...
3329    std::vector<const Type*> ParamTypes;
3330    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3331      ParamTypes.push_back(ArgList[i].V->getType());
3332
3333    if (!FunctionType::isValidReturnType(RetType))
3334      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3335
3336    Ty = FunctionType::get(RetType, ParamTypes, false);
3337    PFTy = PointerType::getUnqual(Ty);
3338  }
3339
3340  // Look up the callee.
3341  Value *Callee;
3342  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3343
3344  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3345  // function attributes.
3346  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3347  if (FnAttrs & ObsoleteFuncAttrs) {
3348    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3349    FnAttrs &= ~ObsoleteFuncAttrs;
3350  }
3351
3352  // Set up the Attributes for the function.
3353  SmallVector<AttributeWithIndex, 8> Attrs;
3354  if (RetAttrs != Attribute::None)
3355    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3356
3357  SmallVector<Value*, 8> Args;
3358
3359  // Loop through FunctionType's arguments and ensure they are specified
3360  // correctly.  Also, gather any parameter attributes.
3361  FunctionType::param_iterator I = Ty->param_begin();
3362  FunctionType::param_iterator E = Ty->param_end();
3363  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3364    const Type *ExpectedTy = 0;
3365    if (I != E) {
3366      ExpectedTy = *I++;
3367    } else if (!Ty->isVarArg()) {
3368      return Error(ArgList[i].Loc, "too many arguments specified");
3369    }
3370
3371    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3372      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3373                   ExpectedTy->getDescription() + "'");
3374    Args.push_back(ArgList[i].V);
3375    if (ArgList[i].Attrs != Attribute::None)
3376      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3377  }
3378
3379  if (I != E)
3380    return Error(CallLoc, "not enough parameters specified for call");
3381
3382  if (FnAttrs != Attribute::None)
3383    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3384
3385  // Finish off the Attributes and check them
3386  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3387
3388  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3389                                      Args.begin(), Args.end());
3390  II->setCallingConv(CC);
3391  II->setAttributes(PAL);
3392  Inst = II;
3393  return false;
3394}
3395
3396
3397
3398//===----------------------------------------------------------------------===//
3399// Binary Operators.
3400//===----------------------------------------------------------------------===//
3401
3402/// ParseArithmetic
3403///  ::= ArithmeticOps TypeAndValue ',' Value
3404///
3405/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3406/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3407bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3408                               unsigned Opc, unsigned OperandType) {
3409  LocTy Loc; Value *LHS, *RHS;
3410  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3411      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3412      ParseValue(LHS->getType(), RHS, PFS))
3413    return true;
3414
3415  bool Valid;
3416  switch (OperandType) {
3417  default: llvm_unreachable("Unknown operand type!");
3418  case 0: // int or FP.
3419    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3420            LHS->getType()->isFPOrFPVectorTy();
3421    break;
3422  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3423  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3424  }
3425
3426  if (!Valid)
3427    return Error(Loc, "invalid operand type for instruction");
3428
3429  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3430  return false;
3431}
3432
3433/// ParseLogical
3434///  ::= ArithmeticOps TypeAndValue ',' Value {
3435bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3436                            unsigned Opc) {
3437  LocTy Loc; Value *LHS, *RHS;
3438  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3439      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3440      ParseValue(LHS->getType(), RHS, PFS))
3441    return true;
3442
3443  if (!LHS->getType()->isIntOrIntVectorTy())
3444    return Error(Loc,"instruction requires integer or integer vector operands");
3445
3446  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3447  return false;
3448}
3449
3450
3451/// ParseCompare
3452///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3453///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3454bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3455                            unsigned Opc) {
3456  // Parse the integer/fp comparison predicate.
3457  LocTy Loc;
3458  unsigned Pred;
3459  Value *LHS, *RHS;
3460  if (ParseCmpPredicate(Pred, Opc) ||
3461      ParseTypeAndValue(LHS, Loc, PFS) ||
3462      ParseToken(lltok::comma, "expected ',' after compare value") ||
3463      ParseValue(LHS->getType(), RHS, PFS))
3464    return true;
3465
3466  if (Opc == Instruction::FCmp) {
3467    if (!LHS->getType()->isFPOrFPVectorTy())
3468      return Error(Loc, "fcmp requires floating point operands");
3469    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3470  } else {
3471    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3472    if (!LHS->getType()->isIntOrIntVectorTy() &&
3473        !LHS->getType()->isPointerTy())
3474      return Error(Loc, "icmp requires integer operands");
3475    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3476  }
3477  return false;
3478}
3479
3480//===----------------------------------------------------------------------===//
3481// Other Instructions.
3482//===----------------------------------------------------------------------===//
3483
3484
3485/// ParseCast
3486///   ::= CastOpc TypeAndValue 'to' Type
3487bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3488                         unsigned Opc) {
3489  LocTy Loc;  Value *Op;
3490  PATypeHolder DestTy(Type::getVoidTy(Context));
3491  if (ParseTypeAndValue(Op, Loc, PFS) ||
3492      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3493      ParseType(DestTy))
3494    return true;
3495
3496  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3497    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3498    return Error(Loc, "invalid cast opcode for cast from '" +
3499                 Op->getType()->getDescription() + "' to '" +
3500                 DestTy->getDescription() + "'");
3501  }
3502  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3503  return false;
3504}
3505
3506/// ParseSelect
3507///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3508bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3509  LocTy Loc;
3510  Value *Op0, *Op1, *Op2;
3511  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3512      ParseToken(lltok::comma, "expected ',' after select condition") ||
3513      ParseTypeAndValue(Op1, PFS) ||
3514      ParseToken(lltok::comma, "expected ',' after select value") ||
3515      ParseTypeAndValue(Op2, PFS))
3516    return true;
3517
3518  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3519    return Error(Loc, Reason);
3520
3521  Inst = SelectInst::Create(Op0, Op1, Op2);
3522  return false;
3523}
3524
3525/// ParseVA_Arg
3526///   ::= 'va_arg' TypeAndValue ',' Type
3527bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3528  Value *Op;
3529  PATypeHolder EltTy(Type::getVoidTy(Context));
3530  LocTy TypeLoc;
3531  if (ParseTypeAndValue(Op, PFS) ||
3532      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3533      ParseType(EltTy, TypeLoc))
3534    return true;
3535
3536  if (!EltTy->isFirstClassType())
3537    return Error(TypeLoc, "va_arg requires operand with first class type");
3538
3539  Inst = new VAArgInst(Op, EltTy);
3540  return false;
3541}
3542
3543/// ParseExtractElement
3544///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3545bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3546  LocTy Loc;
3547  Value *Op0, *Op1;
3548  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3549      ParseToken(lltok::comma, "expected ',' after extract value") ||
3550      ParseTypeAndValue(Op1, PFS))
3551    return true;
3552
3553  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3554    return Error(Loc, "invalid extractelement operands");
3555
3556  Inst = ExtractElementInst::Create(Op0, Op1);
3557  return false;
3558}
3559
3560/// ParseInsertElement
3561///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3562bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3563  LocTy Loc;
3564  Value *Op0, *Op1, *Op2;
3565  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3566      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3567      ParseTypeAndValue(Op1, PFS) ||
3568      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3569      ParseTypeAndValue(Op2, PFS))
3570    return true;
3571
3572  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3573    return Error(Loc, "invalid insertelement operands");
3574
3575  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3576  return false;
3577}
3578
3579/// ParseShuffleVector
3580///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3581bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3582  LocTy Loc;
3583  Value *Op0, *Op1, *Op2;
3584  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3585      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3586      ParseTypeAndValue(Op1, PFS) ||
3587      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3588      ParseTypeAndValue(Op2, PFS))
3589    return true;
3590
3591  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3592    return Error(Loc, "invalid extractelement operands");
3593
3594  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3595  return false;
3596}
3597
3598/// ParsePHI
3599///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3600int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3601  PATypeHolder Ty(Type::getVoidTy(Context));
3602  Value *Op0, *Op1;
3603  LocTy TypeLoc = Lex.getLoc();
3604
3605  if (ParseType(Ty) ||
3606      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3607      ParseValue(Ty, Op0, PFS) ||
3608      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3609      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3610      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3611    return true;
3612
3613  bool AteExtraComma = false;
3614  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3615  while (1) {
3616    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3617
3618    if (!EatIfPresent(lltok::comma))
3619      break;
3620
3621    if (Lex.getKind() == lltok::MetadataVar) {
3622      AteExtraComma = true;
3623      break;
3624    }
3625
3626    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3627        ParseValue(Ty, Op0, PFS) ||
3628        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3629        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3630        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3631      return true;
3632  }
3633
3634  if (!Ty->isFirstClassType())
3635    return Error(TypeLoc, "phi node must have first class type");
3636
3637  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3638  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3639    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3640  Inst = PN;
3641  return AteExtraComma ? InstExtraComma : InstNormal;
3642}
3643
3644/// ParseCall
3645///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3646///       ParameterList OptionalAttrs
3647bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3648                         bool isTail) {
3649  unsigned RetAttrs, FnAttrs;
3650  CallingConv::ID CC;
3651  PATypeHolder RetType(Type::getVoidTy(Context));
3652  LocTy RetTypeLoc;
3653  ValID CalleeID;
3654  SmallVector<ParamInfo, 16> ArgList;
3655  LocTy CallLoc = Lex.getLoc();
3656
3657  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3658      ParseOptionalCallingConv(CC) ||
3659      ParseOptionalAttrs(RetAttrs, 1) ||
3660      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3661      ParseValID(CalleeID) ||
3662      ParseParameterList(ArgList, PFS) ||
3663      ParseOptionalAttrs(FnAttrs, 2))
3664    return true;
3665
3666  // If RetType is a non-function pointer type, then this is the short syntax
3667  // for the call, which means that RetType is just the return type.  Infer the
3668  // rest of the function argument types from the arguments that are present.
3669  const PointerType *PFTy = 0;
3670  const FunctionType *Ty = 0;
3671  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3672      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3673    // Pull out the types of all of the arguments...
3674    std::vector<const Type*> ParamTypes;
3675    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3676      ParamTypes.push_back(ArgList[i].V->getType());
3677
3678    if (!FunctionType::isValidReturnType(RetType))
3679      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3680
3681    Ty = FunctionType::get(RetType, ParamTypes, false);
3682    PFTy = PointerType::getUnqual(Ty);
3683  }
3684
3685  // Look up the callee.
3686  Value *Callee;
3687  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3688
3689  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3690  // function attributes.
3691  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3692  if (FnAttrs & ObsoleteFuncAttrs) {
3693    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3694    FnAttrs &= ~ObsoleteFuncAttrs;
3695  }
3696
3697  // Set up the Attributes for the function.
3698  SmallVector<AttributeWithIndex, 8> Attrs;
3699  if (RetAttrs != Attribute::None)
3700    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3701
3702  SmallVector<Value*, 8> Args;
3703
3704  // Loop through FunctionType's arguments and ensure they are specified
3705  // correctly.  Also, gather any parameter attributes.
3706  FunctionType::param_iterator I = Ty->param_begin();
3707  FunctionType::param_iterator E = Ty->param_end();
3708  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3709    const Type *ExpectedTy = 0;
3710    if (I != E) {
3711      ExpectedTy = *I++;
3712    } else if (!Ty->isVarArg()) {
3713      return Error(ArgList[i].Loc, "too many arguments specified");
3714    }
3715
3716    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3717      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3718                   ExpectedTy->getDescription() + "'");
3719    Args.push_back(ArgList[i].V);
3720    if (ArgList[i].Attrs != Attribute::None)
3721      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3722  }
3723
3724  if (I != E)
3725    return Error(CallLoc, "not enough parameters specified for call");
3726
3727  if (FnAttrs != Attribute::None)
3728    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3729
3730  // Finish off the Attributes and check them
3731  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3732
3733  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3734  CI->setTailCall(isTail);
3735  CI->setCallingConv(CC);
3736  CI->setAttributes(PAL);
3737  Inst = CI;
3738  return false;
3739}
3740
3741//===----------------------------------------------------------------------===//
3742// Memory Instructions.
3743//===----------------------------------------------------------------------===//
3744
3745/// ParseAlloc
3746///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3747///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3748int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3749                         BasicBlock* BB, bool isAlloca) {
3750  PATypeHolder Ty(Type::getVoidTy(Context));
3751  Value *Size = 0;
3752  LocTy SizeLoc;
3753  unsigned Alignment = 0;
3754  if (ParseType(Ty)) return true;
3755
3756  bool AteExtraComma = false;
3757  if (EatIfPresent(lltok::comma)) {
3758    if (Lex.getKind() == lltok::kw_align) {
3759      if (ParseOptionalAlignment(Alignment)) return true;
3760    } else if (Lex.getKind() == lltok::MetadataVar) {
3761      AteExtraComma = true;
3762    } else {
3763      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3764          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3765        return true;
3766    }
3767  }
3768
3769  if (Size && !Size->getType()->isIntegerTy())
3770    return Error(SizeLoc, "element count must have integer type");
3771
3772  if (isAlloca) {
3773    Inst = new AllocaInst(Ty, Size, Alignment);
3774    return AteExtraComma ? InstExtraComma : InstNormal;
3775  }
3776
3777  // Autoupgrade old malloc instruction to malloc call.
3778  // FIXME: Remove in LLVM 3.0.
3779  if (Size && !Size->getType()->isIntegerTy(32))
3780    return Error(SizeLoc, "element count must be i32");
3781  const Type *IntPtrTy = Type::getInt32Ty(Context);
3782  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3783  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3784  if (!MallocF)
3785    // Prototype malloc as "void *(int32)".
3786    // This function is renamed as "malloc" in ValidateEndOfModule().
3787    MallocF = cast<Function>(
3788       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3789  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3790return AteExtraComma ? InstExtraComma : InstNormal;
3791}
3792
3793/// ParseFree
3794///   ::= 'free' TypeAndValue
3795bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3796                         BasicBlock* BB) {
3797  Value *Val; LocTy Loc;
3798  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3799  if (!Val->getType()->isPointerTy())
3800    return Error(Loc, "operand to free must be a pointer");
3801  Inst = CallInst::CreateFree(Val, BB);
3802  return false;
3803}
3804
3805/// ParseLoad
3806///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3807int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3808                        bool isVolatile) {
3809  Value *Val; LocTy Loc;
3810  unsigned Alignment = 0;
3811  bool AteExtraComma = false;
3812  if (ParseTypeAndValue(Val, Loc, PFS) ||
3813      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3814    return true;
3815
3816  if (!Val->getType()->isPointerTy() ||
3817      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3818    return Error(Loc, "load operand must be a pointer to a first class type");
3819
3820  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3821  return AteExtraComma ? InstExtraComma : InstNormal;
3822}
3823
3824/// ParseStore
3825///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3826int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3827                         bool isVolatile) {
3828  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3829  unsigned Alignment = 0;
3830  bool AteExtraComma = false;
3831  if (ParseTypeAndValue(Val, Loc, PFS) ||
3832      ParseToken(lltok::comma, "expected ',' after store operand") ||
3833      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3834      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3835    return true;
3836
3837  if (!Ptr->getType()->isPointerTy())
3838    return Error(PtrLoc, "store operand must be a pointer");
3839  if (!Val->getType()->isFirstClassType())
3840    return Error(Loc, "store operand must be a first class value");
3841  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3842    return Error(Loc, "stored value and pointer type do not match");
3843
3844  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3845  return AteExtraComma ? InstExtraComma : InstNormal;
3846}
3847
3848/// ParseGetResult
3849///   ::= 'getresult' TypeAndValue ',' i32
3850/// FIXME: Remove support for getresult in LLVM 3.0
3851bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3852  Value *Val; LocTy ValLoc, EltLoc;
3853  unsigned Element;
3854  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3855      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3856      ParseUInt32(Element, EltLoc))
3857    return true;
3858
3859  if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3860    return Error(ValLoc, "getresult inst requires an aggregate operand");
3861  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3862    return Error(EltLoc, "invalid getresult index for value");
3863  Inst = ExtractValueInst::Create(Val, Element);
3864  return false;
3865}
3866
3867/// ParseGetElementPtr
3868///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3869int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3870  Value *Ptr, *Val; LocTy Loc, EltLoc;
3871
3872  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3873
3874  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3875
3876  if (!Ptr->getType()->isPointerTy())
3877    return Error(Loc, "base of getelementptr must be a pointer");
3878
3879  SmallVector<Value*, 16> Indices;
3880  bool AteExtraComma = false;
3881  while (EatIfPresent(lltok::comma)) {
3882    if (Lex.getKind() == lltok::MetadataVar) {
3883      AteExtraComma = true;
3884      break;
3885    }
3886    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3887    if (!Val->getType()->isIntegerTy())
3888      return Error(EltLoc, "getelementptr index must be an integer");
3889    Indices.push_back(Val);
3890  }
3891
3892  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3893                                         Indices.begin(), Indices.end()))
3894    return Error(Loc, "invalid getelementptr indices");
3895  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3896  if (InBounds)
3897    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3898  return AteExtraComma ? InstExtraComma : InstNormal;
3899}
3900
3901/// ParseExtractValue
3902///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3903int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3904  Value *Val; LocTy Loc;
3905  SmallVector<unsigned, 4> Indices;
3906  bool AteExtraComma;
3907  if (ParseTypeAndValue(Val, Loc, PFS) ||
3908      ParseIndexList(Indices, AteExtraComma))
3909    return true;
3910
3911  if (!Val->getType()->isAggregateType())
3912    return Error(Loc, "extractvalue operand must be aggregate type");
3913
3914  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3915                                        Indices.end()))
3916    return Error(Loc, "invalid indices for extractvalue");
3917  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3918  return AteExtraComma ? InstExtraComma : InstNormal;
3919}
3920
3921/// ParseInsertValue
3922///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3923int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3924  Value *Val0, *Val1; LocTy Loc0, Loc1;
3925  SmallVector<unsigned, 4> Indices;
3926  bool AteExtraComma;
3927  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3928      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3929      ParseTypeAndValue(Val1, Loc1, PFS) ||
3930      ParseIndexList(Indices, AteExtraComma))
3931    return true;
3932
3933  if (!Val0->getType()->isAggregateType())
3934    return Error(Loc0, "insertvalue operand must be aggregate type");
3935
3936  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3937                                        Indices.end()))
3938    return Error(Loc0, "invalid indices for insertvalue");
3939  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3940  return AteExtraComma ? InstExtraComma : InstNormal;
3941}
3942
3943//===----------------------------------------------------------------------===//
3944// Embedded metadata.
3945//===----------------------------------------------------------------------===//
3946
3947/// ParseMDNodeVector
3948///   ::= Element (',' Element)*
3949/// Element
3950///   ::= 'null' | TypeAndValue
3951bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3952                                 PerFunctionState *PFS) {
3953  // Check for an empty list.
3954  if (Lex.getKind() == lltok::rbrace)
3955    return false;
3956
3957  do {
3958    // Null is a special case since it is typeless.
3959    if (EatIfPresent(lltok::kw_null)) {
3960      Elts.push_back(0);
3961      continue;
3962    }
3963
3964    Value *V = 0;
3965    PATypeHolder Ty(Type::getVoidTy(Context));
3966    ValID ID;
3967    if (ParseType(Ty) || ParseValID(ID, PFS) ||
3968        ConvertValIDToValue(Ty, ID, V, PFS))
3969      return true;
3970
3971    Elts.push_back(V);
3972  } while (EatIfPresent(lltok::comma));
3973
3974  return false;
3975}
3976