LLParser.cpp revision 210299
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Handle any instruction metadata forward references.
43  if (!ForwardRefInstMetadata.empty()) {
44    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
45         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
46         I != E; ++I) {
47      Instruction *Inst = I->first;
48      const std::vector<MDRef> &MDList = I->second;
49
50      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
51        unsigned SlotNo = MDList[i].MDSlot;
52
53        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
54          return Error(MDList[i].Loc, "use of undefined metadata '!" +
55                       utostr(SlotNo) + "'");
56        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
57      }
58    }
59    ForwardRefInstMetadata.clear();
60  }
61
62
63  // Update auto-upgraded malloc calls to "malloc".
64  // FIXME: Remove in LLVM 3.0.
65  if (MallocF) {
66    MallocF->setName("malloc");
67    // If setName() does not set the name to "malloc", then there is already a
68    // declaration of "malloc".  In that case, iterate over all calls to MallocF
69    // and get them to call the declared "malloc" instead.
70    if (MallocF->getName() != "malloc") {
71      Constant *RealMallocF = M->getFunction("malloc");
72      if (RealMallocF->getType() != MallocF->getType())
73        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
74      MallocF->replaceAllUsesWith(RealMallocF);
75      MallocF->eraseFromParent();
76      MallocF = NULL;
77    }
78  }
79
80
81  // If there are entries in ForwardRefBlockAddresses at this point, they are
82  // references after the function was defined.  Resolve those now.
83  while (!ForwardRefBlockAddresses.empty()) {
84    // Okay, we are referencing an already-parsed function, resolve them now.
85    Function *TheFn = 0;
86    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
87    if (Fn.Kind == ValID::t_GlobalName)
88      TheFn = M->getFunction(Fn.StrVal);
89    else if (Fn.UIntVal < NumberedVals.size())
90      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
91
92    if (TheFn == 0)
93      return Error(Fn.Loc, "unknown function referenced by blockaddress");
94
95    // Resolve all these references.
96    if (ResolveForwardRefBlockAddresses(TheFn,
97                                      ForwardRefBlockAddresses.begin()->second,
98                                        0))
99      return true;
100
101    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
102  }
103
104
105  if (!ForwardRefTypes.empty())
106    return Error(ForwardRefTypes.begin()->second.second,
107                 "use of undefined type named '" +
108                 ForwardRefTypes.begin()->first + "'");
109  if (!ForwardRefTypeIDs.empty())
110    return Error(ForwardRefTypeIDs.begin()->second.second,
111                 "use of undefined type '%" +
112                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
113
114  if (!ForwardRefVals.empty())
115    return Error(ForwardRefVals.begin()->second.second,
116                 "use of undefined value '@" + ForwardRefVals.begin()->first +
117                 "'");
118
119  if (!ForwardRefValIDs.empty())
120    return Error(ForwardRefValIDs.begin()->second.second,
121                 "use of undefined value '@" +
122                 utostr(ForwardRefValIDs.begin()->first) + "'");
123
124  if (!ForwardRefMDNodes.empty())
125    return Error(ForwardRefMDNodes.begin()->second.second,
126                 "use of undefined metadata '!" +
127                 utostr(ForwardRefMDNodes.begin()->first) + "'");
128
129
130  // Look for intrinsic functions and CallInst that need to be upgraded
131  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
132    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
133
134  // Check debug info intrinsics.
135  CheckDebugInfoIntrinsics(M);
136  return false;
137}
138
139bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
140                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
141                                               PerFunctionState *PFS) {
142  // Loop over all the references, resolving them.
143  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
144    BasicBlock *Res;
145    if (PFS) {
146      if (Refs[i].first.Kind == ValID::t_LocalName)
147        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
148      else
149        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
150    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
151      return Error(Refs[i].first.Loc,
152       "cannot take address of numeric label after the function is defined");
153    } else {
154      Res = dyn_cast_or_null<BasicBlock>(
155                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
156    }
157
158    if (Res == 0)
159      return Error(Refs[i].first.Loc,
160                   "referenced value is not a basic block");
161
162    // Get the BlockAddress for this and update references to use it.
163    BlockAddress *BA = BlockAddress::get(TheFn, Res);
164    Refs[i].second->replaceAllUsesWith(BA);
165    Refs[i].second->eraseFromParent();
166  }
167  return false;
168}
169
170
171//===----------------------------------------------------------------------===//
172// Top-Level Entities
173//===----------------------------------------------------------------------===//
174
175bool LLParser::ParseTopLevelEntities() {
176  while (1) {
177    switch (Lex.getKind()) {
178    default:         return TokError("expected top-level entity");
179    case lltok::Eof: return false;
180    //case lltok::kw_define:
181    case lltok::kw_declare: if (ParseDeclare()) return true; break;
182    case lltok::kw_define:  if (ParseDefine()) return true; break;
183    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
184    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
185    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
186    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
187    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
188    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
189    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
190    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
191    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
192    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
193    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
194
195    // The Global variable production with no name can have many different
196    // optional leading prefixes, the production is:
197    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
198    //               OptionalAddrSpace ('constant'|'global') ...
199    case lltok::kw_private:             // OptionalLinkage
200    case lltok::kw_linker_private:      // OptionalLinkage
201    case lltok::kw_linker_private_weak: // OptionalLinkage
202    case lltok::kw_internal:            // OptionalLinkage
203    case lltok::kw_weak:                // OptionalLinkage
204    case lltok::kw_weak_odr:            // OptionalLinkage
205    case lltok::kw_linkonce:            // OptionalLinkage
206    case lltok::kw_linkonce_odr:        // OptionalLinkage
207    case lltok::kw_appending:           // OptionalLinkage
208    case lltok::kw_dllexport:           // OptionalLinkage
209    case lltok::kw_common:              // OptionalLinkage
210    case lltok::kw_dllimport:           // OptionalLinkage
211    case lltok::kw_extern_weak:         // OptionalLinkage
212    case lltok::kw_external: {          // OptionalLinkage
213      unsigned Linkage, Visibility;
214      if (ParseOptionalLinkage(Linkage) ||
215          ParseOptionalVisibility(Visibility) ||
216          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
217        return true;
218      break;
219    }
220    case lltok::kw_default:       // OptionalVisibility
221    case lltok::kw_hidden:        // OptionalVisibility
222    case lltok::kw_protected: {   // OptionalVisibility
223      unsigned Visibility;
224      if (ParseOptionalVisibility(Visibility) ||
225          ParseGlobal("", SMLoc(), 0, false, Visibility))
226        return true;
227      break;
228    }
229
230    case lltok::kw_thread_local:  // OptionalThreadLocal
231    case lltok::kw_addrspace:     // OptionalAddrSpace
232    case lltok::kw_constant:      // GlobalType
233    case lltok::kw_global:        // GlobalType
234      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
235      break;
236    }
237  }
238}
239
240
241/// toplevelentity
242///   ::= 'module' 'asm' STRINGCONSTANT
243bool LLParser::ParseModuleAsm() {
244  assert(Lex.getKind() == lltok::kw_module);
245  Lex.Lex();
246
247  std::string AsmStr;
248  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
249      ParseStringConstant(AsmStr)) return true;
250
251  const std::string &AsmSoFar = M->getModuleInlineAsm();
252  if (AsmSoFar.empty())
253    M->setModuleInlineAsm(AsmStr);
254  else
255    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
256  return false;
257}
258
259/// toplevelentity
260///   ::= 'target' 'triple' '=' STRINGCONSTANT
261///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
262bool LLParser::ParseTargetDefinition() {
263  assert(Lex.getKind() == lltok::kw_target);
264  std::string Str;
265  switch (Lex.Lex()) {
266  default: return TokError("unknown target property");
267  case lltok::kw_triple:
268    Lex.Lex();
269    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
270        ParseStringConstant(Str))
271      return true;
272    M->setTargetTriple(Str);
273    return false;
274  case lltok::kw_datalayout:
275    Lex.Lex();
276    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
277        ParseStringConstant(Str))
278      return true;
279    M->setDataLayout(Str);
280    return false;
281  }
282}
283
284/// toplevelentity
285///   ::= 'deplibs' '=' '[' ']'
286///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
287bool LLParser::ParseDepLibs() {
288  assert(Lex.getKind() == lltok::kw_deplibs);
289  Lex.Lex();
290  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
291      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
292    return true;
293
294  if (EatIfPresent(lltok::rsquare))
295    return false;
296
297  std::string Str;
298  if (ParseStringConstant(Str)) return true;
299  M->addLibrary(Str);
300
301  while (EatIfPresent(lltok::comma)) {
302    if (ParseStringConstant(Str)) return true;
303    M->addLibrary(Str);
304  }
305
306  return ParseToken(lltok::rsquare, "expected ']' at end of list");
307}
308
309/// ParseUnnamedType:
310///   ::= 'type' type
311///   ::= LocalVarID '=' 'type' type
312bool LLParser::ParseUnnamedType() {
313  unsigned TypeID = NumberedTypes.size();
314
315  // Handle the LocalVarID form.
316  if (Lex.getKind() == lltok::LocalVarID) {
317    if (Lex.getUIntVal() != TypeID)
318      return Error(Lex.getLoc(), "type expected to be numbered '%" +
319                   utostr(TypeID) + "'");
320    Lex.Lex(); // eat LocalVarID;
321
322    if (ParseToken(lltok::equal, "expected '=' after name"))
323      return true;
324  }
325
326  LocTy TypeLoc = Lex.getLoc();
327  if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true;
328
329  PATypeHolder Ty(Type::getVoidTy(Context));
330  if (ParseType(Ty)) return true;
331
332  // See if this type was previously referenced.
333  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
334    FI = ForwardRefTypeIDs.find(TypeID);
335  if (FI != ForwardRefTypeIDs.end()) {
336    if (FI->second.first.get() == Ty)
337      return Error(TypeLoc, "self referential type is invalid");
338
339    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
340    Ty = FI->second.first.get();
341    ForwardRefTypeIDs.erase(FI);
342  }
343
344  NumberedTypes.push_back(Ty);
345
346  return false;
347}
348
349/// toplevelentity
350///   ::= LocalVar '=' 'type' type
351bool LLParser::ParseNamedType() {
352  std::string Name = Lex.getStrVal();
353  LocTy NameLoc = Lex.getLoc();
354  Lex.Lex();  // eat LocalVar.
355
356  PATypeHolder Ty(Type::getVoidTy(Context));
357
358  if (ParseToken(lltok::equal, "expected '=' after name") ||
359      ParseToken(lltok::kw_type, "expected 'type' after name") ||
360      ParseType(Ty))
361    return true;
362
363  // Set the type name, checking for conflicts as we do so.
364  bool AlreadyExists = M->addTypeName(Name, Ty);
365  if (!AlreadyExists) return false;
366
367  // See if this type is a forward reference.  We need to eagerly resolve
368  // types to allow recursive type redefinitions below.
369  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
370  FI = ForwardRefTypes.find(Name);
371  if (FI != ForwardRefTypes.end()) {
372    if (FI->second.first.get() == Ty)
373      return Error(NameLoc, "self referential type is invalid");
374
375    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
376    Ty = FI->second.first.get();
377    ForwardRefTypes.erase(FI);
378  }
379
380  // Inserting a name that is already defined, get the existing name.
381  const Type *Existing = M->getTypeByName(Name);
382  assert(Existing && "Conflict but no matching type?!");
383
384  // Otherwise, this is an attempt to redefine a type. That's okay if
385  // the redefinition is identical to the original.
386  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
387  if (Existing == Ty) return false;
388
389  // Any other kind of (non-equivalent) redefinition is an error.
390  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
391               Ty->getDescription() + "'");
392}
393
394
395/// toplevelentity
396///   ::= 'declare' FunctionHeader
397bool LLParser::ParseDeclare() {
398  assert(Lex.getKind() == lltok::kw_declare);
399  Lex.Lex();
400
401  Function *F;
402  return ParseFunctionHeader(F, false);
403}
404
405/// toplevelentity
406///   ::= 'define' FunctionHeader '{' ...
407bool LLParser::ParseDefine() {
408  assert(Lex.getKind() == lltok::kw_define);
409  Lex.Lex();
410
411  Function *F;
412  return ParseFunctionHeader(F, true) ||
413         ParseFunctionBody(*F);
414}
415
416/// ParseGlobalType
417///   ::= 'constant'
418///   ::= 'global'
419bool LLParser::ParseGlobalType(bool &IsConstant) {
420  if (Lex.getKind() == lltok::kw_constant)
421    IsConstant = true;
422  else if (Lex.getKind() == lltok::kw_global)
423    IsConstant = false;
424  else {
425    IsConstant = false;
426    return TokError("expected 'global' or 'constant'");
427  }
428  Lex.Lex();
429  return false;
430}
431
432/// ParseUnnamedGlobal:
433///   OptionalVisibility ALIAS ...
434///   OptionalLinkage OptionalVisibility ...   -> global variable
435///   GlobalID '=' OptionalVisibility ALIAS ...
436///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
437bool LLParser::ParseUnnamedGlobal() {
438  unsigned VarID = NumberedVals.size();
439  std::string Name;
440  LocTy NameLoc = Lex.getLoc();
441
442  // Handle the GlobalID form.
443  if (Lex.getKind() == lltok::GlobalID) {
444    if (Lex.getUIntVal() != VarID)
445      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
446                   utostr(VarID) + "'");
447    Lex.Lex(); // eat GlobalID;
448
449    if (ParseToken(lltok::equal, "expected '=' after name"))
450      return true;
451  }
452
453  bool HasLinkage;
454  unsigned Linkage, Visibility;
455  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464/// ParseNamedGlobal:
465///   GlobalVar '=' OptionalVisibility ALIAS ...
466///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
467bool LLParser::ParseNamedGlobal() {
468  assert(Lex.getKind() == lltok::GlobalVar);
469  LocTy NameLoc = Lex.getLoc();
470  std::string Name = Lex.getStrVal();
471  Lex.Lex();
472
473  bool HasLinkage;
474  unsigned Linkage, Visibility;
475  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
476      ParseOptionalLinkage(Linkage, HasLinkage) ||
477      ParseOptionalVisibility(Visibility))
478    return true;
479
480  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
481    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
482  return ParseAlias(Name, NameLoc, Visibility);
483}
484
485// MDString:
486//   ::= '!' STRINGCONSTANT
487bool LLParser::ParseMDString(MDString *&Result) {
488  std::string Str;
489  if (ParseStringConstant(Str)) return true;
490  Result = MDString::get(Context, Str);
491  return false;
492}
493
494// MDNode:
495//   ::= '!' MDNodeNumber
496//
497/// This version of ParseMDNodeID returns the slot number and null in the case
498/// of a forward reference.
499bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
500  // !{ ..., !42, ... }
501  if (ParseUInt32(SlotNo)) return true;
502
503  // Check existing MDNode.
504  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
505    Result = NumberedMetadata[SlotNo];
506  else
507    Result = 0;
508  return false;
509}
510
511bool LLParser::ParseMDNodeID(MDNode *&Result) {
512  // !{ ..., !42, ... }
513  unsigned MID = 0;
514  if (ParseMDNodeID(Result, MID)) return true;
515
516  // If not a forward reference, just return it now.
517  if (Result) return false;
518
519  // Otherwise, create MDNode forward reference.
520
521  // FIXME: This is not unique enough!
522  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
523  Value *V = MDString::get(Context, FwdRefName);
524  MDNode *FwdNode = MDNode::get(Context, &V, 1);
525  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
526
527  if (NumberedMetadata.size() <= MID)
528    NumberedMetadata.resize(MID+1);
529  NumberedMetadata[MID] = FwdNode;
530  Result = FwdNode;
531  return false;
532}
533
534/// ParseNamedMetadata:
535///   !foo = !{ !1, !2 }
536bool LLParser::ParseNamedMetadata() {
537  assert(Lex.getKind() == lltok::MetadataVar);
538  std::string Name = Lex.getStrVal();
539  Lex.Lex();
540
541  if (ParseToken(lltok::equal, "expected '=' here") ||
542      ParseToken(lltok::exclaim, "Expected '!' here") ||
543      ParseToken(lltok::lbrace, "Expected '{' here"))
544    return true;
545
546  SmallVector<MDNode *, 8> Elts;
547  if (Lex.getKind() != lltok::rbrace)
548    do {
549      // Null is a special case since it is typeless.
550      if (EatIfPresent(lltok::kw_null)) {
551        Elts.push_back(0);
552        continue;
553      }
554
555      if (ParseToken(lltok::exclaim, "Expected '!' here"))
556        return true;
557
558      MDNode *N = 0;
559      if (ParseMDNodeID(N)) return true;
560      Elts.push_back(N);
561    } while (EatIfPresent(lltok::comma));
562
563  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
564    return true;
565
566  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
567  return false;
568}
569
570/// ParseStandaloneMetadata:
571///   !42 = !{...}
572bool LLParser::ParseStandaloneMetadata() {
573  assert(Lex.getKind() == lltok::exclaim);
574  Lex.Lex();
575  unsigned MetadataID = 0;
576
577  LocTy TyLoc;
578  PATypeHolder Ty(Type::getVoidTy(Context));
579  SmallVector<Value *, 16> Elts;
580  if (ParseUInt32(MetadataID) ||
581      ParseToken(lltok::equal, "expected '=' here") ||
582      ParseType(Ty, TyLoc) ||
583      ParseToken(lltok::exclaim, "Expected '!' here") ||
584      ParseToken(lltok::lbrace, "Expected '{' here") ||
585      ParseMDNodeVector(Elts, NULL) ||
586      ParseToken(lltok::rbrace, "expected end of metadata node"))
587    return true;
588
589  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
590
591  // See if this was forward referenced, if so, handle it.
592  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593    FI = ForwardRefMDNodes.find(MetadataID);
594  if (FI != ForwardRefMDNodes.end()) {
595    FI->second.first->replaceAllUsesWith(Init);
596    ForwardRefMDNodes.erase(FI);
597
598    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
599  } else {
600    if (MetadataID >= NumberedMetadata.size())
601      NumberedMetadata.resize(MetadataID+1);
602
603    if (NumberedMetadata[MetadataID] != 0)
604      return TokError("Metadata id is already used");
605    NumberedMetadata[MetadataID] = Init;
606  }
607
608  return false;
609}
610
611/// ParseAlias:
612///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
613/// Aliasee
614///   ::= TypeAndValue
615///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
616///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
617///
618/// Everything through visibility has already been parsed.
619///
620bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
621                          unsigned Visibility) {
622  assert(Lex.getKind() == lltok::kw_alias);
623  Lex.Lex();
624  unsigned Linkage;
625  LocTy LinkageLoc = Lex.getLoc();
626  if (ParseOptionalLinkage(Linkage))
627    return true;
628
629  if (Linkage != GlobalValue::ExternalLinkage &&
630      Linkage != GlobalValue::WeakAnyLinkage &&
631      Linkage != GlobalValue::WeakODRLinkage &&
632      Linkage != GlobalValue::InternalLinkage &&
633      Linkage != GlobalValue::PrivateLinkage &&
634      Linkage != GlobalValue::LinkerPrivateLinkage &&
635      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
636    return Error(LinkageLoc, "invalid linkage type for alias");
637
638  Constant *Aliasee;
639  LocTy AliaseeLoc = Lex.getLoc();
640  if (Lex.getKind() != lltok::kw_bitcast &&
641      Lex.getKind() != lltok::kw_getelementptr) {
642    if (ParseGlobalTypeAndValue(Aliasee)) return true;
643  } else {
644    // The bitcast dest type is not present, it is implied by the dest type.
645    ValID ID;
646    if (ParseValID(ID)) return true;
647    if (ID.Kind != ValID::t_Constant)
648      return Error(AliaseeLoc, "invalid aliasee");
649    Aliasee = ID.ConstantVal;
650  }
651
652  if (!Aliasee->getType()->isPointerTy())
653    return Error(AliaseeLoc, "alias must have pointer type");
654
655  // Okay, create the alias but do not insert it into the module yet.
656  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
657                                    (GlobalValue::LinkageTypes)Linkage, Name,
658                                    Aliasee);
659  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
660
661  // See if this value already exists in the symbol table.  If so, it is either
662  // a redefinition or a definition of a forward reference.
663  if (GlobalValue *Val = M->getNamedValue(Name)) {
664    // See if this was a redefinition.  If so, there is no entry in
665    // ForwardRefVals.
666    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
667      I = ForwardRefVals.find(Name);
668    if (I == ForwardRefVals.end())
669      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
670
671    // Otherwise, this was a definition of forward ref.  Verify that types
672    // agree.
673    if (Val->getType() != GA->getType())
674      return Error(NameLoc,
675              "forward reference and definition of alias have different types");
676
677    // If they agree, just RAUW the old value with the alias and remove the
678    // forward ref info.
679    Val->replaceAllUsesWith(GA);
680    Val->eraseFromParent();
681    ForwardRefVals.erase(I);
682  }
683
684  // Insert into the module, we know its name won't collide now.
685  M->getAliasList().push_back(GA);
686  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
687
688  return false;
689}
690
691/// ParseGlobal
692///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
693///       OptionalAddrSpace GlobalType Type Const
694///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
695///       OptionalAddrSpace GlobalType Type Const
696///
697/// Everything through visibility has been parsed already.
698///
699bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
700                           unsigned Linkage, bool HasLinkage,
701                           unsigned Visibility) {
702  unsigned AddrSpace;
703  bool ThreadLocal, IsConstant;
704  LocTy TyLoc;
705
706  PATypeHolder Ty(Type::getVoidTy(Context));
707  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
708      ParseOptionalAddrSpace(AddrSpace) ||
709      ParseGlobalType(IsConstant) ||
710      ParseType(Ty, TyLoc))
711    return true;
712
713  // If the linkage is specified and is external, then no initializer is
714  // present.
715  Constant *Init = 0;
716  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
717                      Linkage != GlobalValue::ExternalWeakLinkage &&
718                      Linkage != GlobalValue::ExternalLinkage)) {
719    if (ParseGlobalValue(Ty, Init))
720      return true;
721  }
722
723  if (Ty->isFunctionTy() || Ty->isLabelTy())
724    return Error(TyLoc, "invalid type for global variable");
725
726  GlobalVariable *GV = 0;
727
728  // See if the global was forward referenced, if so, use the global.
729  if (!Name.empty()) {
730    if (GlobalValue *GVal = M->getNamedValue(Name)) {
731      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
732        return Error(NameLoc, "redefinition of global '@" + Name + "'");
733      GV = cast<GlobalVariable>(GVal);
734    }
735  } else {
736    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
737      I = ForwardRefValIDs.find(NumberedVals.size());
738    if (I != ForwardRefValIDs.end()) {
739      GV = cast<GlobalVariable>(I->second.first);
740      ForwardRefValIDs.erase(I);
741    }
742  }
743
744  if (GV == 0) {
745    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
746                            Name, 0, false, AddrSpace);
747  } else {
748    if (GV->getType()->getElementType() != Ty)
749      return Error(TyLoc,
750            "forward reference and definition of global have different types");
751
752    // Move the forward-reference to the correct spot in the module.
753    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
754  }
755
756  if (Name.empty())
757    NumberedVals.push_back(GV);
758
759  // Set the parsed properties on the global.
760  if (Init)
761    GV->setInitializer(Init);
762  GV->setConstant(IsConstant);
763  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
764  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
765  GV->setThreadLocal(ThreadLocal);
766
767  // Parse attributes on the global.
768  while (Lex.getKind() == lltok::comma) {
769    Lex.Lex();
770
771    if (Lex.getKind() == lltok::kw_section) {
772      Lex.Lex();
773      GV->setSection(Lex.getStrVal());
774      if (ParseToken(lltok::StringConstant, "expected global section string"))
775        return true;
776    } else if (Lex.getKind() == lltok::kw_align) {
777      unsigned Alignment;
778      if (ParseOptionalAlignment(Alignment)) return true;
779      GV->setAlignment(Alignment);
780    } else {
781      TokError("unknown global variable property!");
782    }
783  }
784
785  return false;
786}
787
788
789//===----------------------------------------------------------------------===//
790// GlobalValue Reference/Resolution Routines.
791//===----------------------------------------------------------------------===//
792
793/// GetGlobalVal - Get a value with the specified name or ID, creating a
794/// forward reference record if needed.  This can return null if the value
795/// exists but does not have the right type.
796GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
797                                    LocTy Loc) {
798  const PointerType *PTy = dyn_cast<PointerType>(Ty);
799  if (PTy == 0) {
800    Error(Loc, "global variable reference must have pointer type");
801    return 0;
802  }
803
804  // Look this name up in the normal function symbol table.
805  GlobalValue *Val =
806    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
807
808  // If this is a forward reference for the value, see if we already created a
809  // forward ref record.
810  if (Val == 0) {
811    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
812      I = ForwardRefVals.find(Name);
813    if (I != ForwardRefVals.end())
814      Val = I->second.first;
815  }
816
817  // If we have the value in the symbol table or fwd-ref table, return it.
818  if (Val) {
819    if (Val->getType() == Ty) return Val;
820    Error(Loc, "'@" + Name + "' defined with type '" +
821          Val->getType()->getDescription() + "'");
822    return 0;
823  }
824
825  // Otherwise, create a new forward reference for this value and remember it.
826  GlobalValue *FwdVal;
827  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
828    // Function types can return opaque but functions can't.
829    if (FT->getReturnType()->isOpaqueTy()) {
830      Error(Loc, "function may not return opaque type");
831      return 0;
832    }
833
834    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
835  } else {
836    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
837                                GlobalValue::ExternalWeakLinkage, 0, Name);
838  }
839
840  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
841  return FwdVal;
842}
843
844GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
845  const PointerType *PTy = dyn_cast<PointerType>(Ty);
846  if (PTy == 0) {
847    Error(Loc, "global variable reference must have pointer type");
848    return 0;
849  }
850
851  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
852
853  // If this is a forward reference for the value, see if we already created a
854  // forward ref record.
855  if (Val == 0) {
856    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
857      I = ForwardRefValIDs.find(ID);
858    if (I != ForwardRefValIDs.end())
859      Val = I->second.first;
860  }
861
862  // If we have the value in the symbol table or fwd-ref table, return it.
863  if (Val) {
864    if (Val->getType() == Ty) return Val;
865    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
866          Val->getType()->getDescription() + "'");
867    return 0;
868  }
869
870  // Otherwise, create a new forward reference for this value and remember it.
871  GlobalValue *FwdVal;
872  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
873    // Function types can return opaque but functions can't.
874    if (FT->getReturnType()->isOpaqueTy()) {
875      Error(Loc, "function may not return opaque type");
876      return 0;
877    }
878    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
879  } else {
880    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
881                                GlobalValue::ExternalWeakLinkage, 0, "");
882  }
883
884  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
885  return FwdVal;
886}
887
888
889//===----------------------------------------------------------------------===//
890// Helper Routines.
891//===----------------------------------------------------------------------===//
892
893/// ParseToken - If the current token has the specified kind, eat it and return
894/// success.  Otherwise, emit the specified error and return failure.
895bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
896  if (Lex.getKind() != T)
897    return TokError(ErrMsg);
898  Lex.Lex();
899  return false;
900}
901
902/// ParseStringConstant
903///   ::= StringConstant
904bool LLParser::ParseStringConstant(std::string &Result) {
905  if (Lex.getKind() != lltok::StringConstant)
906    return TokError("expected string constant");
907  Result = Lex.getStrVal();
908  Lex.Lex();
909  return false;
910}
911
912/// ParseUInt32
913///   ::= uint32
914bool LLParser::ParseUInt32(unsigned &Val) {
915  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
916    return TokError("expected integer");
917  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
918  if (Val64 != unsigned(Val64))
919    return TokError("expected 32-bit integer (too large)");
920  Val = Val64;
921  Lex.Lex();
922  return false;
923}
924
925
926/// ParseOptionalAddrSpace
927///   := /*empty*/
928///   := 'addrspace' '(' uint32 ')'
929bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
930  AddrSpace = 0;
931  if (!EatIfPresent(lltok::kw_addrspace))
932    return false;
933  return ParseToken(lltok::lparen, "expected '(' in address space") ||
934         ParseUInt32(AddrSpace) ||
935         ParseToken(lltok::rparen, "expected ')' in address space");
936}
937
938/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
939/// indicates what kind of attribute list this is: 0: function arg, 1: result,
940/// 2: function attr.
941/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
942bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
943  Attrs = Attribute::None;
944  LocTy AttrLoc = Lex.getLoc();
945
946  while (1) {
947    switch (Lex.getKind()) {
948    case lltok::kw_sext:
949    case lltok::kw_zext:
950      // Treat these as signext/zeroext if they occur in the argument list after
951      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
952      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
953      // expr.
954      // FIXME: REMOVE THIS IN LLVM 3.0
955      if (AttrKind == 3) {
956        if (Lex.getKind() == lltok::kw_sext)
957          Attrs |= Attribute::SExt;
958        else
959          Attrs |= Attribute::ZExt;
960        break;
961      }
962      // FALL THROUGH.
963    default:  // End of attributes.
964      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
965        return Error(AttrLoc, "invalid use of function-only attribute");
966
967      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
968        return Error(AttrLoc, "invalid use of parameter-only attribute");
969
970      return false;
971    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
972    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
973    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
974    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
975    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
976    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
977    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
978    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
979
980    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
981    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
982    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
983    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
984    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
985    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
986    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
987    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
988    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
989    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
990    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
991    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
992    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
993
994    case lltok::kw_alignstack: {
995      unsigned Alignment;
996      if (ParseOptionalStackAlignment(Alignment))
997        return true;
998      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
999      continue;
1000    }
1001
1002    case lltok::kw_align: {
1003      unsigned Alignment;
1004      if (ParseOptionalAlignment(Alignment))
1005        return true;
1006      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1007      continue;
1008    }
1009
1010    }
1011    Lex.Lex();
1012  }
1013}
1014
1015/// ParseOptionalLinkage
1016///   ::= /*empty*/
1017///   ::= 'private'
1018///   ::= 'linker_private'
1019///   ::= 'linker_private_weak'
1020///   ::= 'internal'
1021///   ::= 'weak'
1022///   ::= 'weak_odr'
1023///   ::= 'linkonce'
1024///   ::= 'linkonce_odr'
1025///   ::= 'available_externally'
1026///   ::= 'appending'
1027///   ::= 'dllexport'
1028///   ::= 'common'
1029///   ::= 'dllimport'
1030///   ::= 'extern_weak'
1031///   ::= 'external'
1032bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1033  HasLinkage = false;
1034  switch (Lex.getKind()) {
1035  default:                       Res=GlobalValue::ExternalLinkage; return false;
1036  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1037  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1038  case lltok::kw_linker_private_weak:
1039    Res = GlobalValue::LinkerPrivateWeakLinkage;
1040    break;
1041  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1042  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1043  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1044  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1045  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1046  case lltok::kw_available_externally:
1047    Res = GlobalValue::AvailableExternallyLinkage;
1048    break;
1049  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1050  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1051  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1052  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1053  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1054  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1055  }
1056  Lex.Lex();
1057  HasLinkage = true;
1058  return false;
1059}
1060
1061/// ParseOptionalVisibility
1062///   ::= /*empty*/
1063///   ::= 'default'
1064///   ::= 'hidden'
1065///   ::= 'protected'
1066///
1067bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1068  switch (Lex.getKind()) {
1069  default:                  Res = GlobalValue::DefaultVisibility; return false;
1070  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1071  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1072  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1073  }
1074  Lex.Lex();
1075  return false;
1076}
1077
1078/// ParseOptionalCallingConv
1079///   ::= /*empty*/
1080///   ::= 'ccc'
1081///   ::= 'fastcc'
1082///   ::= 'coldcc'
1083///   ::= 'x86_stdcallcc'
1084///   ::= 'x86_fastcallcc'
1085///   ::= 'x86_thiscallcc'
1086///   ::= 'arm_apcscc'
1087///   ::= 'arm_aapcscc'
1088///   ::= 'arm_aapcs_vfpcc'
1089///   ::= 'msp430_intrcc'
1090///   ::= 'cc' UINT
1091///
1092bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1093  switch (Lex.getKind()) {
1094  default:                       CC = CallingConv::C; return false;
1095  case lltok::kw_ccc:            CC = CallingConv::C; break;
1096  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1097  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1098  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1099  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1100  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1101  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1102  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1103  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1104  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1105  case lltok::kw_cc: {
1106      unsigned ArbitraryCC;
1107      Lex.Lex();
1108      if (ParseUInt32(ArbitraryCC)) {
1109        return true;
1110      } else
1111        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1112        return false;
1113    }
1114    break;
1115  }
1116
1117  Lex.Lex();
1118  return false;
1119}
1120
1121/// ParseInstructionMetadata
1122///   ::= !dbg !42 (',' !dbg !57)*
1123bool LLParser::ParseInstructionMetadata(Instruction *Inst) {
1124  do {
1125    if (Lex.getKind() != lltok::MetadataVar)
1126      return TokError("expected metadata after comma");
1127
1128    std::string Name = Lex.getStrVal();
1129    Lex.Lex();
1130
1131    MDNode *Node;
1132    unsigned NodeID;
1133    SMLoc Loc = Lex.getLoc();
1134    if (ParseToken(lltok::exclaim, "expected '!' here") ||
1135        ParseMDNodeID(Node, NodeID))
1136      return true;
1137
1138    unsigned MDK = M->getMDKindID(Name.c_str());
1139    if (Node) {
1140      // If we got the node, add it to the instruction.
1141      Inst->setMetadata(MDK, Node);
1142    } else {
1143      MDRef R = { Loc, MDK, NodeID };
1144      // Otherwise, remember that this should be resolved later.
1145      ForwardRefInstMetadata[Inst].push_back(R);
1146    }
1147
1148    // If this is the end of the list, we're done.
1149  } while (EatIfPresent(lltok::comma));
1150  return false;
1151}
1152
1153/// ParseOptionalAlignment
1154///   ::= /* empty */
1155///   ::= 'align' 4
1156bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1157  Alignment = 0;
1158  if (!EatIfPresent(lltok::kw_align))
1159    return false;
1160  LocTy AlignLoc = Lex.getLoc();
1161  if (ParseUInt32(Alignment)) return true;
1162  if (!isPowerOf2_32(Alignment))
1163    return Error(AlignLoc, "alignment is not a power of two");
1164  return false;
1165}
1166
1167/// ParseOptionalCommaAlign
1168///   ::=
1169///   ::= ',' align 4
1170///
1171/// This returns with AteExtraComma set to true if it ate an excess comma at the
1172/// end.
1173bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1174                                       bool &AteExtraComma) {
1175  AteExtraComma = false;
1176  while (EatIfPresent(lltok::comma)) {
1177    // Metadata at the end is an early exit.
1178    if (Lex.getKind() == lltok::MetadataVar) {
1179      AteExtraComma = true;
1180      return false;
1181    }
1182
1183    if (Lex.getKind() != lltok::kw_align)
1184      return Error(Lex.getLoc(), "expected metadata or 'align'");
1185
1186    if (ParseOptionalAlignment(Alignment)) return true;
1187  }
1188
1189  return false;
1190}
1191
1192/// ParseOptionalStackAlignment
1193///   ::= /* empty */
1194///   ::= 'alignstack' '(' 4 ')'
1195bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1196  Alignment = 0;
1197  if (!EatIfPresent(lltok::kw_alignstack))
1198    return false;
1199  LocTy ParenLoc = Lex.getLoc();
1200  if (!EatIfPresent(lltok::lparen))
1201    return Error(ParenLoc, "expected '('");
1202  LocTy AlignLoc = Lex.getLoc();
1203  if (ParseUInt32(Alignment)) return true;
1204  ParenLoc = Lex.getLoc();
1205  if (!EatIfPresent(lltok::rparen))
1206    return Error(ParenLoc, "expected ')'");
1207  if (!isPowerOf2_32(Alignment))
1208    return Error(AlignLoc, "stack alignment is not a power of two");
1209  return false;
1210}
1211
1212/// ParseIndexList - This parses the index list for an insert/extractvalue
1213/// instruction.  This sets AteExtraComma in the case where we eat an extra
1214/// comma at the end of the line and find that it is followed by metadata.
1215/// Clients that don't allow metadata can call the version of this function that
1216/// only takes one argument.
1217///
1218/// ParseIndexList
1219///    ::=  (',' uint32)+
1220///
1221bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1222                              bool &AteExtraComma) {
1223  AteExtraComma = false;
1224
1225  if (Lex.getKind() != lltok::comma)
1226    return TokError("expected ',' as start of index list");
1227
1228  while (EatIfPresent(lltok::comma)) {
1229    if (Lex.getKind() == lltok::MetadataVar) {
1230      AteExtraComma = true;
1231      return false;
1232    }
1233    unsigned Idx;
1234    if (ParseUInt32(Idx)) return true;
1235    Indices.push_back(Idx);
1236  }
1237
1238  return false;
1239}
1240
1241//===----------------------------------------------------------------------===//
1242// Type Parsing.
1243//===----------------------------------------------------------------------===//
1244
1245/// ParseType - Parse and resolve a full type.
1246bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1247  LocTy TypeLoc = Lex.getLoc();
1248  if (ParseTypeRec(Result)) return true;
1249
1250  // Verify no unresolved uprefs.
1251  if (!UpRefs.empty())
1252    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1253
1254  if (!AllowVoid && Result.get()->isVoidTy())
1255    return Error(TypeLoc, "void type only allowed for function results");
1256
1257  return false;
1258}
1259
1260/// HandleUpRefs - Every time we finish a new layer of types, this function is
1261/// called.  It loops through the UpRefs vector, which is a list of the
1262/// currently active types.  For each type, if the up-reference is contained in
1263/// the newly completed type, we decrement the level count.  When the level
1264/// count reaches zero, the up-referenced type is the type that is passed in:
1265/// thus we can complete the cycle.
1266///
1267PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1268  // If Ty isn't abstract, or if there are no up-references in it, then there is
1269  // nothing to resolve here.
1270  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1271
1272  PATypeHolder Ty(ty);
1273#if 0
1274  dbgs() << "Type '" << Ty->getDescription()
1275         << "' newly formed.  Resolving upreferences.\n"
1276         << UpRefs.size() << " upreferences active!\n";
1277#endif
1278
1279  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1280  // to zero), we resolve them all together before we resolve them to Ty.  At
1281  // the end of the loop, if there is anything to resolve to Ty, it will be in
1282  // this variable.
1283  OpaqueType *TypeToResolve = 0;
1284
1285  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1286    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1287    bool ContainsType =
1288      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1289                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1290
1291#if 0
1292    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1293           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1294           << (ContainsType ? "true" : "false")
1295           << " level=" << UpRefs[i].NestingLevel << "\n";
1296#endif
1297    if (!ContainsType)
1298      continue;
1299
1300    // Decrement level of upreference
1301    unsigned Level = --UpRefs[i].NestingLevel;
1302    UpRefs[i].LastContainedTy = Ty;
1303
1304    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1305    if (Level != 0)
1306      continue;
1307
1308#if 0
1309    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1310#endif
1311    if (!TypeToResolve)
1312      TypeToResolve = UpRefs[i].UpRefTy;
1313    else
1314      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1315    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1316    --i;                                // Do not skip the next element.
1317  }
1318
1319  if (TypeToResolve)
1320    TypeToResolve->refineAbstractTypeTo(Ty);
1321
1322  return Ty;
1323}
1324
1325
1326/// ParseTypeRec - The recursive function used to process the internal
1327/// implementation details of types.
1328bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1329  switch (Lex.getKind()) {
1330  default:
1331    return TokError("expected type");
1332  case lltok::Type:
1333    // TypeRec ::= 'float' | 'void' (etc)
1334    Result = Lex.getTyVal();
1335    Lex.Lex();
1336    break;
1337  case lltok::kw_opaque:
1338    // TypeRec ::= 'opaque'
1339    Result = OpaqueType::get(Context);
1340    Lex.Lex();
1341    break;
1342  case lltok::lbrace:
1343    // TypeRec ::= '{' ... '}'
1344    if (ParseStructType(Result, false))
1345      return true;
1346    break;
1347  case lltok::kw_union:
1348    // TypeRec ::= 'union' '{' ... '}'
1349    if (ParseUnionType(Result))
1350      return true;
1351    break;
1352  case lltok::lsquare:
1353    // TypeRec ::= '[' ... ']'
1354    Lex.Lex(); // eat the lsquare.
1355    if (ParseArrayVectorType(Result, false))
1356      return true;
1357    break;
1358  case lltok::less: // Either vector or packed struct.
1359    // TypeRec ::= '<' ... '>'
1360    Lex.Lex();
1361    if (Lex.getKind() == lltok::lbrace) {
1362      if (ParseStructType(Result, true) ||
1363          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1364        return true;
1365    } else if (ParseArrayVectorType(Result, true))
1366      return true;
1367    break;
1368  case lltok::LocalVar:
1369  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1370    // TypeRec ::= %foo
1371    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1372      Result = T;
1373    } else {
1374      Result = OpaqueType::get(Context);
1375      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1376                                            std::make_pair(Result,
1377                                                           Lex.getLoc())));
1378      M->addTypeName(Lex.getStrVal(), Result.get());
1379    }
1380    Lex.Lex();
1381    break;
1382
1383  case lltok::LocalVarID:
1384    // TypeRec ::= %4
1385    if (Lex.getUIntVal() < NumberedTypes.size())
1386      Result = NumberedTypes[Lex.getUIntVal()];
1387    else {
1388      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1389        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1390      if (I != ForwardRefTypeIDs.end())
1391        Result = I->second.first;
1392      else {
1393        Result = OpaqueType::get(Context);
1394        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1395                                                std::make_pair(Result,
1396                                                               Lex.getLoc())));
1397      }
1398    }
1399    Lex.Lex();
1400    break;
1401  case lltok::backslash: {
1402    // TypeRec ::= '\' 4
1403    Lex.Lex();
1404    unsigned Val;
1405    if (ParseUInt32(Val)) return true;
1406    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1407    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1408    Result = OT;
1409    break;
1410  }
1411  }
1412
1413  // Parse the type suffixes.
1414  while (1) {
1415    switch (Lex.getKind()) {
1416    // End of type.
1417    default: return false;
1418
1419    // TypeRec ::= TypeRec '*'
1420    case lltok::star:
1421      if (Result.get()->isLabelTy())
1422        return TokError("basic block pointers are invalid");
1423      if (Result.get()->isVoidTy())
1424        return TokError("pointers to void are invalid; use i8* instead");
1425      if (!PointerType::isValidElementType(Result.get()))
1426        return TokError("pointer to this type is invalid");
1427      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1428      Lex.Lex();
1429      break;
1430
1431    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1432    case lltok::kw_addrspace: {
1433      if (Result.get()->isLabelTy())
1434        return TokError("basic block pointers are invalid");
1435      if (Result.get()->isVoidTy())
1436        return TokError("pointers to void are invalid; use i8* instead");
1437      if (!PointerType::isValidElementType(Result.get()))
1438        return TokError("pointer to this type is invalid");
1439      unsigned AddrSpace;
1440      if (ParseOptionalAddrSpace(AddrSpace) ||
1441          ParseToken(lltok::star, "expected '*' in address space"))
1442        return true;
1443
1444      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1445      break;
1446    }
1447
1448    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1449    case lltok::lparen:
1450      if (ParseFunctionType(Result))
1451        return true;
1452      break;
1453    }
1454  }
1455}
1456
1457/// ParseParameterList
1458///    ::= '(' ')'
1459///    ::= '(' Arg (',' Arg)* ')'
1460///  Arg
1461///    ::= Type OptionalAttributes Value OptionalAttributes
1462bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1463                                  PerFunctionState &PFS) {
1464  if (ParseToken(lltok::lparen, "expected '(' in call"))
1465    return true;
1466
1467  while (Lex.getKind() != lltok::rparen) {
1468    // If this isn't the first argument, we need a comma.
1469    if (!ArgList.empty() &&
1470        ParseToken(lltok::comma, "expected ',' in argument list"))
1471      return true;
1472
1473    // Parse the argument.
1474    LocTy ArgLoc;
1475    PATypeHolder ArgTy(Type::getVoidTy(Context));
1476    unsigned ArgAttrs1 = Attribute::None;
1477    unsigned ArgAttrs2 = Attribute::None;
1478    Value *V;
1479    if (ParseType(ArgTy, ArgLoc))
1480      return true;
1481
1482    // Otherwise, handle normal operands.
1483    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1484        ParseValue(ArgTy, V, PFS) ||
1485        // FIXME: Should not allow attributes after the argument, remove this
1486        // in LLVM 3.0.
1487        ParseOptionalAttrs(ArgAttrs2, 3))
1488      return true;
1489    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1490  }
1491
1492  Lex.Lex();  // Lex the ')'.
1493  return false;
1494}
1495
1496
1497
1498/// ParseArgumentList - Parse the argument list for a function type or function
1499/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1500///   ::= '(' ArgTypeListI ')'
1501/// ArgTypeListI
1502///   ::= /*empty*/
1503///   ::= '...'
1504///   ::= ArgTypeList ',' '...'
1505///   ::= ArgType (',' ArgType)*
1506///
1507bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1508                                 bool &isVarArg, bool inType) {
1509  isVarArg = false;
1510  assert(Lex.getKind() == lltok::lparen);
1511  Lex.Lex(); // eat the (.
1512
1513  if (Lex.getKind() == lltok::rparen) {
1514    // empty
1515  } else if (Lex.getKind() == lltok::dotdotdot) {
1516    isVarArg = true;
1517    Lex.Lex();
1518  } else {
1519    LocTy TypeLoc = Lex.getLoc();
1520    PATypeHolder ArgTy(Type::getVoidTy(Context));
1521    unsigned Attrs;
1522    std::string Name;
1523
1524    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1525    // types (such as a function returning a pointer to itself).  If parsing a
1526    // function prototype, we require fully resolved types.
1527    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1528        ParseOptionalAttrs(Attrs, 0)) return true;
1529
1530    if (ArgTy->isVoidTy())
1531      return Error(TypeLoc, "argument can not have void type");
1532
1533    if (Lex.getKind() == lltok::LocalVar ||
1534        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1535      Name = Lex.getStrVal();
1536      Lex.Lex();
1537    }
1538
1539    if (!FunctionType::isValidArgumentType(ArgTy))
1540      return Error(TypeLoc, "invalid type for function argument");
1541
1542    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1543
1544    while (EatIfPresent(lltok::comma)) {
1545      // Handle ... at end of arg list.
1546      if (EatIfPresent(lltok::dotdotdot)) {
1547        isVarArg = true;
1548        break;
1549      }
1550
1551      // Otherwise must be an argument type.
1552      TypeLoc = Lex.getLoc();
1553      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1554          ParseOptionalAttrs(Attrs, 0)) return true;
1555
1556      if (ArgTy->isVoidTy())
1557        return Error(TypeLoc, "argument can not have void type");
1558
1559      if (Lex.getKind() == lltok::LocalVar ||
1560          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1561        Name = Lex.getStrVal();
1562        Lex.Lex();
1563      } else {
1564        Name = "";
1565      }
1566
1567      if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
1568        return Error(TypeLoc, "invalid type for function argument");
1569
1570      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1571    }
1572  }
1573
1574  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1575}
1576
1577/// ParseFunctionType
1578///  ::= Type ArgumentList OptionalAttrs
1579bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1580  assert(Lex.getKind() == lltok::lparen);
1581
1582  if (!FunctionType::isValidReturnType(Result))
1583    return TokError("invalid function return type");
1584
1585  std::vector<ArgInfo> ArgList;
1586  bool isVarArg;
1587  unsigned Attrs;
1588  if (ParseArgumentList(ArgList, isVarArg, true) ||
1589      // FIXME: Allow, but ignore attributes on function types!
1590      // FIXME: Remove in LLVM 3.0
1591      ParseOptionalAttrs(Attrs, 2))
1592    return true;
1593
1594  // Reject names on the arguments lists.
1595  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1596    if (!ArgList[i].Name.empty())
1597      return Error(ArgList[i].Loc, "argument name invalid in function type");
1598    if (!ArgList[i].Attrs != 0) {
1599      // Allow but ignore attributes on function types; this permits
1600      // auto-upgrade.
1601      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1602    }
1603  }
1604
1605  std::vector<const Type*> ArgListTy;
1606  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1607    ArgListTy.push_back(ArgList[i].Type);
1608
1609  Result = HandleUpRefs(FunctionType::get(Result.get(),
1610                                                ArgListTy, isVarArg));
1611  return false;
1612}
1613
1614/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1615///   TypeRec
1616///     ::= '{' '}'
1617///     ::= '{' TypeRec (',' TypeRec)* '}'
1618///     ::= '<' '{' '}' '>'
1619///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1620bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1621  assert(Lex.getKind() == lltok::lbrace);
1622  Lex.Lex(); // Consume the '{'
1623
1624  if (EatIfPresent(lltok::rbrace)) {
1625    Result = StructType::get(Context, Packed);
1626    return false;
1627  }
1628
1629  std::vector<PATypeHolder> ParamsList;
1630  LocTy EltTyLoc = Lex.getLoc();
1631  if (ParseTypeRec(Result)) return true;
1632  ParamsList.push_back(Result);
1633
1634  if (Result->isVoidTy())
1635    return Error(EltTyLoc, "struct element can not have void type");
1636  if (!StructType::isValidElementType(Result))
1637    return Error(EltTyLoc, "invalid element type for struct");
1638
1639  while (EatIfPresent(lltok::comma)) {
1640    EltTyLoc = Lex.getLoc();
1641    if (ParseTypeRec(Result)) return true;
1642
1643    if (Result->isVoidTy())
1644      return Error(EltTyLoc, "struct element can not have void type");
1645    if (!StructType::isValidElementType(Result))
1646      return Error(EltTyLoc, "invalid element type for struct");
1647
1648    ParamsList.push_back(Result);
1649  }
1650
1651  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1652    return true;
1653
1654  std::vector<const Type*> ParamsListTy;
1655  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1656    ParamsListTy.push_back(ParamsList[i].get());
1657  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1658  return false;
1659}
1660
1661/// ParseUnionType
1662///   TypeRec
1663///     ::= 'union' '{' TypeRec (',' TypeRec)* '}'
1664bool LLParser::ParseUnionType(PATypeHolder &Result) {
1665  assert(Lex.getKind() == lltok::kw_union);
1666  Lex.Lex(); // Consume the 'union'
1667
1668  if (ParseToken(lltok::lbrace, "'{' expected after 'union'")) return true;
1669
1670  SmallVector<PATypeHolder, 8> ParamsList;
1671  do {
1672    LocTy EltTyLoc = Lex.getLoc();
1673    if (ParseTypeRec(Result)) return true;
1674    ParamsList.push_back(Result);
1675
1676    if (Result->isVoidTy())
1677      return Error(EltTyLoc, "union element can not have void type");
1678    if (!UnionType::isValidElementType(Result))
1679      return Error(EltTyLoc, "invalid element type for union");
1680
1681  } while (EatIfPresent(lltok::comma)) ;
1682
1683  if (ParseToken(lltok::rbrace, "expected '}' at end of union"))
1684    return true;
1685
1686  SmallVector<const Type*, 8> ParamsListTy;
1687  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1688    ParamsListTy.push_back(ParamsList[i].get());
1689  Result = HandleUpRefs(UnionType::get(&ParamsListTy[0], ParamsListTy.size()));
1690  return false;
1691}
1692
1693/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1694/// token has already been consumed.
1695///   TypeRec
1696///     ::= '[' APSINTVAL 'x' Types ']'
1697///     ::= '<' APSINTVAL 'x' Types '>'
1698bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1699  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1700      Lex.getAPSIntVal().getBitWidth() > 64)
1701    return TokError("expected number in address space");
1702
1703  LocTy SizeLoc = Lex.getLoc();
1704  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1705  Lex.Lex();
1706
1707  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1708      return true;
1709
1710  LocTy TypeLoc = Lex.getLoc();
1711  PATypeHolder EltTy(Type::getVoidTy(Context));
1712  if (ParseTypeRec(EltTy)) return true;
1713
1714  if (EltTy->isVoidTy())
1715    return Error(TypeLoc, "array and vector element type cannot be void");
1716
1717  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1718                 "expected end of sequential type"))
1719    return true;
1720
1721  if (isVector) {
1722    if (Size == 0)
1723      return Error(SizeLoc, "zero element vector is illegal");
1724    if ((unsigned)Size != Size)
1725      return Error(SizeLoc, "size too large for vector");
1726    if (!VectorType::isValidElementType(EltTy))
1727      return Error(TypeLoc, "vector element type must be fp or integer");
1728    Result = VectorType::get(EltTy, unsigned(Size));
1729  } else {
1730    if (!ArrayType::isValidElementType(EltTy))
1731      return Error(TypeLoc, "invalid array element type");
1732    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1733  }
1734  return false;
1735}
1736
1737//===----------------------------------------------------------------------===//
1738// Function Semantic Analysis.
1739//===----------------------------------------------------------------------===//
1740
1741LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1742                                             int functionNumber)
1743  : P(p), F(f), FunctionNumber(functionNumber) {
1744
1745  // Insert unnamed arguments into the NumberedVals list.
1746  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1747       AI != E; ++AI)
1748    if (!AI->hasName())
1749      NumberedVals.push_back(AI);
1750}
1751
1752LLParser::PerFunctionState::~PerFunctionState() {
1753  // If there were any forward referenced non-basicblock values, delete them.
1754  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1755       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1756    if (!isa<BasicBlock>(I->second.first)) {
1757      I->second.first->replaceAllUsesWith(
1758                           UndefValue::get(I->second.first->getType()));
1759      delete I->second.first;
1760      I->second.first = 0;
1761    }
1762
1763  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1764       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1765    if (!isa<BasicBlock>(I->second.first)) {
1766      I->second.first->replaceAllUsesWith(
1767                           UndefValue::get(I->second.first->getType()));
1768      delete I->second.first;
1769      I->second.first = 0;
1770    }
1771}
1772
1773bool LLParser::PerFunctionState::FinishFunction() {
1774  // Check to see if someone took the address of labels in this block.
1775  if (!P.ForwardRefBlockAddresses.empty()) {
1776    ValID FunctionID;
1777    if (!F.getName().empty()) {
1778      FunctionID.Kind = ValID::t_GlobalName;
1779      FunctionID.StrVal = F.getName();
1780    } else {
1781      FunctionID.Kind = ValID::t_GlobalID;
1782      FunctionID.UIntVal = FunctionNumber;
1783    }
1784
1785    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1786      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1787    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1788      // Resolve all these references.
1789      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1790        return true;
1791
1792      P.ForwardRefBlockAddresses.erase(FRBAI);
1793    }
1794  }
1795
1796  if (!ForwardRefVals.empty())
1797    return P.Error(ForwardRefVals.begin()->second.second,
1798                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1799                   "'");
1800  if (!ForwardRefValIDs.empty())
1801    return P.Error(ForwardRefValIDs.begin()->second.second,
1802                   "use of undefined value '%" +
1803                   utostr(ForwardRefValIDs.begin()->first) + "'");
1804  return false;
1805}
1806
1807
1808/// GetVal - Get a value with the specified name or ID, creating a
1809/// forward reference record if needed.  This can return null if the value
1810/// exists but does not have the right type.
1811Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1812                                          const Type *Ty, LocTy Loc) {
1813  // Look this name up in the normal function symbol table.
1814  Value *Val = F.getValueSymbolTable().lookup(Name);
1815
1816  // If this is a forward reference for the value, see if we already created a
1817  // forward ref record.
1818  if (Val == 0) {
1819    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1820      I = ForwardRefVals.find(Name);
1821    if (I != ForwardRefVals.end())
1822      Val = I->second.first;
1823  }
1824
1825  // If we have the value in the symbol table or fwd-ref table, return it.
1826  if (Val) {
1827    if (Val->getType() == Ty) return Val;
1828    if (Ty->isLabelTy())
1829      P.Error(Loc, "'%" + Name + "' is not a basic block");
1830    else
1831      P.Error(Loc, "'%" + Name + "' defined with type '" +
1832              Val->getType()->getDescription() + "'");
1833    return 0;
1834  }
1835
1836  // Don't make placeholders with invalid type.
1837  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1838    P.Error(Loc, "invalid use of a non-first-class type");
1839    return 0;
1840  }
1841
1842  // Otherwise, create a new forward reference for this value and remember it.
1843  Value *FwdVal;
1844  if (Ty->isLabelTy())
1845    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1846  else
1847    FwdVal = new Argument(Ty, Name);
1848
1849  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1850  return FwdVal;
1851}
1852
1853Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1854                                          LocTy Loc) {
1855  // Look this name up in the normal function symbol table.
1856  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1857
1858  // If this is a forward reference for the value, see if we already created a
1859  // forward ref record.
1860  if (Val == 0) {
1861    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1862      I = ForwardRefValIDs.find(ID);
1863    if (I != ForwardRefValIDs.end())
1864      Val = I->second.first;
1865  }
1866
1867  // If we have the value in the symbol table or fwd-ref table, return it.
1868  if (Val) {
1869    if (Val->getType() == Ty) return Val;
1870    if (Ty->isLabelTy())
1871      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1872    else
1873      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1874              Val->getType()->getDescription() + "'");
1875    return 0;
1876  }
1877
1878  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1879    P.Error(Loc, "invalid use of a non-first-class type");
1880    return 0;
1881  }
1882
1883  // Otherwise, create a new forward reference for this value and remember it.
1884  Value *FwdVal;
1885  if (Ty->isLabelTy())
1886    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1887  else
1888    FwdVal = new Argument(Ty);
1889
1890  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1891  return FwdVal;
1892}
1893
1894/// SetInstName - After an instruction is parsed and inserted into its
1895/// basic block, this installs its name.
1896bool LLParser::PerFunctionState::SetInstName(int NameID,
1897                                             const std::string &NameStr,
1898                                             LocTy NameLoc, Instruction *Inst) {
1899  // If this instruction has void type, it cannot have a name or ID specified.
1900  if (Inst->getType()->isVoidTy()) {
1901    if (NameID != -1 || !NameStr.empty())
1902      return P.Error(NameLoc, "instructions returning void cannot have a name");
1903    return false;
1904  }
1905
1906  // If this was a numbered instruction, verify that the instruction is the
1907  // expected value and resolve any forward references.
1908  if (NameStr.empty()) {
1909    // If neither a name nor an ID was specified, just use the next ID.
1910    if (NameID == -1)
1911      NameID = NumberedVals.size();
1912
1913    if (unsigned(NameID) != NumberedVals.size())
1914      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1915                     utostr(NumberedVals.size()) + "'");
1916
1917    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1918      ForwardRefValIDs.find(NameID);
1919    if (FI != ForwardRefValIDs.end()) {
1920      if (FI->second.first->getType() != Inst->getType())
1921        return P.Error(NameLoc, "instruction forward referenced with type '" +
1922                       FI->second.first->getType()->getDescription() + "'");
1923      FI->second.first->replaceAllUsesWith(Inst);
1924      delete FI->second.first;
1925      ForwardRefValIDs.erase(FI);
1926    }
1927
1928    NumberedVals.push_back(Inst);
1929    return false;
1930  }
1931
1932  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1933  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1934    FI = ForwardRefVals.find(NameStr);
1935  if (FI != ForwardRefVals.end()) {
1936    if (FI->second.first->getType() != Inst->getType())
1937      return P.Error(NameLoc, "instruction forward referenced with type '" +
1938                     FI->second.first->getType()->getDescription() + "'");
1939    FI->second.first->replaceAllUsesWith(Inst);
1940    delete FI->second.first;
1941    ForwardRefVals.erase(FI);
1942  }
1943
1944  // Set the name on the instruction.
1945  Inst->setName(NameStr);
1946
1947  if (Inst->getNameStr() != NameStr)
1948    return P.Error(NameLoc, "multiple definition of local value named '" +
1949                   NameStr + "'");
1950  return false;
1951}
1952
1953/// GetBB - Get a basic block with the specified name or ID, creating a
1954/// forward reference record if needed.
1955BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1956                                              LocTy Loc) {
1957  return cast_or_null<BasicBlock>(GetVal(Name,
1958                                        Type::getLabelTy(F.getContext()), Loc));
1959}
1960
1961BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1962  return cast_or_null<BasicBlock>(GetVal(ID,
1963                                        Type::getLabelTy(F.getContext()), Loc));
1964}
1965
1966/// DefineBB - Define the specified basic block, which is either named or
1967/// unnamed.  If there is an error, this returns null otherwise it returns
1968/// the block being defined.
1969BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1970                                                 LocTy Loc) {
1971  BasicBlock *BB;
1972  if (Name.empty())
1973    BB = GetBB(NumberedVals.size(), Loc);
1974  else
1975    BB = GetBB(Name, Loc);
1976  if (BB == 0) return 0; // Already diagnosed error.
1977
1978  // Move the block to the end of the function.  Forward ref'd blocks are
1979  // inserted wherever they happen to be referenced.
1980  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1981
1982  // Remove the block from forward ref sets.
1983  if (Name.empty()) {
1984    ForwardRefValIDs.erase(NumberedVals.size());
1985    NumberedVals.push_back(BB);
1986  } else {
1987    // BB forward references are already in the function symbol table.
1988    ForwardRefVals.erase(Name);
1989  }
1990
1991  return BB;
1992}
1993
1994//===----------------------------------------------------------------------===//
1995// Constants.
1996//===----------------------------------------------------------------------===//
1997
1998/// ParseValID - Parse an abstract value that doesn't necessarily have a
1999/// type implied.  For example, if we parse "4" we don't know what integer type
2000/// it has.  The value will later be combined with its type and checked for
2001/// sanity.  PFS is used to convert function-local operands of metadata (since
2002/// metadata operands are not just parsed here but also converted to values).
2003/// PFS can be null when we are not parsing metadata values inside a function.
2004bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2005  ID.Loc = Lex.getLoc();
2006  switch (Lex.getKind()) {
2007  default: return TokError("expected value token");
2008  case lltok::GlobalID:  // @42
2009    ID.UIntVal = Lex.getUIntVal();
2010    ID.Kind = ValID::t_GlobalID;
2011    break;
2012  case lltok::GlobalVar:  // @foo
2013    ID.StrVal = Lex.getStrVal();
2014    ID.Kind = ValID::t_GlobalName;
2015    break;
2016  case lltok::LocalVarID:  // %42
2017    ID.UIntVal = Lex.getUIntVal();
2018    ID.Kind = ValID::t_LocalID;
2019    break;
2020  case lltok::LocalVar:  // %foo
2021  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
2022    ID.StrVal = Lex.getStrVal();
2023    ID.Kind = ValID::t_LocalName;
2024    break;
2025  case lltok::exclaim:   // !42, !{...}, or !"foo"
2026    return ParseMetadataValue(ID, PFS);
2027  case lltok::APSInt:
2028    ID.APSIntVal = Lex.getAPSIntVal();
2029    ID.Kind = ValID::t_APSInt;
2030    break;
2031  case lltok::APFloat:
2032    ID.APFloatVal = Lex.getAPFloatVal();
2033    ID.Kind = ValID::t_APFloat;
2034    break;
2035  case lltok::kw_true:
2036    ID.ConstantVal = ConstantInt::getTrue(Context);
2037    ID.Kind = ValID::t_Constant;
2038    break;
2039  case lltok::kw_false:
2040    ID.ConstantVal = ConstantInt::getFalse(Context);
2041    ID.Kind = ValID::t_Constant;
2042    break;
2043  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2044  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2045  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2046
2047  case lltok::lbrace: {
2048    // ValID ::= '{' ConstVector '}'
2049    Lex.Lex();
2050    SmallVector<Constant*, 16> Elts;
2051    if (ParseGlobalValueVector(Elts) ||
2052        ParseToken(lltok::rbrace, "expected end of struct constant"))
2053      return true;
2054
2055    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2056                                         Elts.size(), false);
2057    ID.Kind = ValID::t_Constant;
2058    return false;
2059  }
2060  case lltok::less: {
2061    // ValID ::= '<' ConstVector '>'         --> Vector.
2062    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2063    Lex.Lex();
2064    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2065
2066    SmallVector<Constant*, 16> Elts;
2067    LocTy FirstEltLoc = Lex.getLoc();
2068    if (ParseGlobalValueVector(Elts) ||
2069        (isPackedStruct &&
2070         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2071        ParseToken(lltok::greater, "expected end of constant"))
2072      return true;
2073
2074    if (isPackedStruct) {
2075      ID.ConstantVal =
2076        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2077      ID.Kind = ValID::t_Constant;
2078      return false;
2079    }
2080
2081    if (Elts.empty())
2082      return Error(ID.Loc, "constant vector must not be empty");
2083
2084    if (!Elts[0]->getType()->isIntegerTy() &&
2085        !Elts[0]->getType()->isFloatingPointTy())
2086      return Error(FirstEltLoc,
2087                   "vector elements must have integer or floating point type");
2088
2089    // Verify that all the vector elements have the same type.
2090    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2091      if (Elts[i]->getType() != Elts[0]->getType())
2092        return Error(FirstEltLoc,
2093                     "vector element #" + utostr(i) +
2094                    " is not of type '" + Elts[0]->getType()->getDescription());
2095
2096    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2097    ID.Kind = ValID::t_Constant;
2098    return false;
2099  }
2100  case lltok::lsquare: {   // Array Constant
2101    Lex.Lex();
2102    SmallVector<Constant*, 16> Elts;
2103    LocTy FirstEltLoc = Lex.getLoc();
2104    if (ParseGlobalValueVector(Elts) ||
2105        ParseToken(lltok::rsquare, "expected end of array constant"))
2106      return true;
2107
2108    // Handle empty element.
2109    if (Elts.empty()) {
2110      // Use undef instead of an array because it's inconvenient to determine
2111      // the element type at this point, there being no elements to examine.
2112      ID.Kind = ValID::t_EmptyArray;
2113      return false;
2114    }
2115
2116    if (!Elts[0]->getType()->isFirstClassType())
2117      return Error(FirstEltLoc, "invalid array element type: " +
2118                   Elts[0]->getType()->getDescription());
2119
2120    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2121
2122    // Verify all elements are correct type!
2123    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2124      if (Elts[i]->getType() != Elts[0]->getType())
2125        return Error(FirstEltLoc,
2126                     "array element #" + utostr(i) +
2127                     " is not of type '" +Elts[0]->getType()->getDescription());
2128    }
2129
2130    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2131    ID.Kind = ValID::t_Constant;
2132    return false;
2133  }
2134  case lltok::kw_c:  // c "foo"
2135    Lex.Lex();
2136    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2137    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2138    ID.Kind = ValID::t_Constant;
2139    return false;
2140
2141  case lltok::kw_asm: {
2142    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2143    bool HasSideEffect, AlignStack;
2144    Lex.Lex();
2145    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2146        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2147        ParseStringConstant(ID.StrVal) ||
2148        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2149        ParseToken(lltok::StringConstant, "expected constraint string"))
2150      return true;
2151    ID.StrVal2 = Lex.getStrVal();
2152    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2153    ID.Kind = ValID::t_InlineAsm;
2154    return false;
2155  }
2156
2157  case lltok::kw_blockaddress: {
2158    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2159    Lex.Lex();
2160
2161    ValID Fn, Label;
2162    LocTy FnLoc, LabelLoc;
2163
2164    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2165        ParseValID(Fn) ||
2166        ParseToken(lltok::comma, "expected comma in block address expression")||
2167        ParseValID(Label) ||
2168        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2169      return true;
2170
2171    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2172      return Error(Fn.Loc, "expected function name in blockaddress");
2173    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2174      return Error(Label.Loc, "expected basic block name in blockaddress");
2175
2176    // Make a global variable as a placeholder for this reference.
2177    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2178                                           false, GlobalValue::InternalLinkage,
2179                                                0, "");
2180    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2181    ID.ConstantVal = FwdRef;
2182    ID.Kind = ValID::t_Constant;
2183    return false;
2184  }
2185
2186  case lltok::kw_trunc:
2187  case lltok::kw_zext:
2188  case lltok::kw_sext:
2189  case lltok::kw_fptrunc:
2190  case lltok::kw_fpext:
2191  case lltok::kw_bitcast:
2192  case lltok::kw_uitofp:
2193  case lltok::kw_sitofp:
2194  case lltok::kw_fptoui:
2195  case lltok::kw_fptosi:
2196  case lltok::kw_inttoptr:
2197  case lltok::kw_ptrtoint: {
2198    unsigned Opc = Lex.getUIntVal();
2199    PATypeHolder DestTy(Type::getVoidTy(Context));
2200    Constant *SrcVal;
2201    Lex.Lex();
2202    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2203        ParseGlobalTypeAndValue(SrcVal) ||
2204        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2205        ParseType(DestTy) ||
2206        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2207      return true;
2208    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2209      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2210                   SrcVal->getType()->getDescription() + "' to '" +
2211                   DestTy->getDescription() + "'");
2212    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2213                                                 SrcVal, DestTy);
2214    ID.Kind = ValID::t_Constant;
2215    return false;
2216  }
2217  case lltok::kw_extractvalue: {
2218    Lex.Lex();
2219    Constant *Val;
2220    SmallVector<unsigned, 4> Indices;
2221    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2222        ParseGlobalTypeAndValue(Val) ||
2223        ParseIndexList(Indices) ||
2224        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2225      return true;
2226
2227    if (!Val->getType()->isAggregateType())
2228      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2229    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2230                                          Indices.end()))
2231      return Error(ID.Loc, "invalid indices for extractvalue");
2232    ID.ConstantVal =
2233      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2234    ID.Kind = ValID::t_Constant;
2235    return false;
2236  }
2237  case lltok::kw_insertvalue: {
2238    Lex.Lex();
2239    Constant *Val0, *Val1;
2240    SmallVector<unsigned, 4> Indices;
2241    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2242        ParseGlobalTypeAndValue(Val0) ||
2243        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2244        ParseGlobalTypeAndValue(Val1) ||
2245        ParseIndexList(Indices) ||
2246        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2247      return true;
2248    if (!Val0->getType()->isAggregateType())
2249      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2250    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2251                                          Indices.end()))
2252      return Error(ID.Loc, "invalid indices for insertvalue");
2253    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2254                       Indices.data(), Indices.size());
2255    ID.Kind = ValID::t_Constant;
2256    return false;
2257  }
2258  case lltok::kw_icmp:
2259  case lltok::kw_fcmp: {
2260    unsigned PredVal, Opc = Lex.getUIntVal();
2261    Constant *Val0, *Val1;
2262    Lex.Lex();
2263    if (ParseCmpPredicate(PredVal, Opc) ||
2264        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2265        ParseGlobalTypeAndValue(Val0) ||
2266        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2267        ParseGlobalTypeAndValue(Val1) ||
2268        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2269      return true;
2270
2271    if (Val0->getType() != Val1->getType())
2272      return Error(ID.Loc, "compare operands must have the same type");
2273
2274    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2275
2276    if (Opc == Instruction::FCmp) {
2277      if (!Val0->getType()->isFPOrFPVectorTy())
2278        return Error(ID.Loc, "fcmp requires floating point operands");
2279      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2280    } else {
2281      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2282      if (!Val0->getType()->isIntOrIntVectorTy() &&
2283          !Val0->getType()->isPointerTy())
2284        return Error(ID.Loc, "icmp requires pointer or integer operands");
2285      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2286    }
2287    ID.Kind = ValID::t_Constant;
2288    return false;
2289  }
2290
2291  // Binary Operators.
2292  case lltok::kw_add:
2293  case lltok::kw_fadd:
2294  case lltok::kw_sub:
2295  case lltok::kw_fsub:
2296  case lltok::kw_mul:
2297  case lltok::kw_fmul:
2298  case lltok::kw_udiv:
2299  case lltok::kw_sdiv:
2300  case lltok::kw_fdiv:
2301  case lltok::kw_urem:
2302  case lltok::kw_srem:
2303  case lltok::kw_frem: {
2304    bool NUW = false;
2305    bool NSW = false;
2306    bool Exact = false;
2307    unsigned Opc = Lex.getUIntVal();
2308    Constant *Val0, *Val1;
2309    Lex.Lex();
2310    LocTy ModifierLoc = Lex.getLoc();
2311    if (Opc == Instruction::Add ||
2312        Opc == Instruction::Sub ||
2313        Opc == Instruction::Mul) {
2314      if (EatIfPresent(lltok::kw_nuw))
2315        NUW = true;
2316      if (EatIfPresent(lltok::kw_nsw)) {
2317        NSW = true;
2318        if (EatIfPresent(lltok::kw_nuw))
2319          NUW = true;
2320      }
2321    } else if (Opc == Instruction::SDiv) {
2322      if (EatIfPresent(lltok::kw_exact))
2323        Exact = true;
2324    }
2325    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2326        ParseGlobalTypeAndValue(Val0) ||
2327        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2328        ParseGlobalTypeAndValue(Val1) ||
2329        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2330      return true;
2331    if (Val0->getType() != Val1->getType())
2332      return Error(ID.Loc, "operands of constexpr must have same type");
2333    if (!Val0->getType()->isIntOrIntVectorTy()) {
2334      if (NUW)
2335        return Error(ModifierLoc, "nuw only applies to integer operations");
2336      if (NSW)
2337        return Error(ModifierLoc, "nsw only applies to integer operations");
2338    }
2339    // Check that the type is valid for the operator.
2340    switch (Opc) {
2341    case Instruction::Add:
2342    case Instruction::Sub:
2343    case Instruction::Mul:
2344    case Instruction::UDiv:
2345    case Instruction::SDiv:
2346    case Instruction::URem:
2347    case Instruction::SRem:
2348      if (!Val0->getType()->isIntOrIntVectorTy())
2349        return Error(ID.Loc, "constexpr requires integer operands");
2350      break;
2351    case Instruction::FAdd:
2352    case Instruction::FSub:
2353    case Instruction::FMul:
2354    case Instruction::FDiv:
2355    case Instruction::FRem:
2356      if (!Val0->getType()->isFPOrFPVectorTy())
2357        return Error(ID.Loc, "constexpr requires fp operands");
2358      break;
2359    default: llvm_unreachable("Unknown binary operator!");
2360    }
2361    unsigned Flags = 0;
2362    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2363    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2364    if (Exact) Flags |= SDivOperator::IsExact;
2365    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2366    ID.ConstantVal = C;
2367    ID.Kind = ValID::t_Constant;
2368    return false;
2369  }
2370
2371  // Logical Operations
2372  case lltok::kw_shl:
2373  case lltok::kw_lshr:
2374  case lltok::kw_ashr:
2375  case lltok::kw_and:
2376  case lltok::kw_or:
2377  case lltok::kw_xor: {
2378    unsigned Opc = Lex.getUIntVal();
2379    Constant *Val0, *Val1;
2380    Lex.Lex();
2381    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2382        ParseGlobalTypeAndValue(Val0) ||
2383        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2384        ParseGlobalTypeAndValue(Val1) ||
2385        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2386      return true;
2387    if (Val0->getType() != Val1->getType())
2388      return Error(ID.Loc, "operands of constexpr must have same type");
2389    if (!Val0->getType()->isIntOrIntVectorTy())
2390      return Error(ID.Loc,
2391                   "constexpr requires integer or integer vector operands");
2392    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2393    ID.Kind = ValID::t_Constant;
2394    return false;
2395  }
2396
2397  case lltok::kw_getelementptr:
2398  case lltok::kw_shufflevector:
2399  case lltok::kw_insertelement:
2400  case lltok::kw_extractelement:
2401  case lltok::kw_select: {
2402    unsigned Opc = Lex.getUIntVal();
2403    SmallVector<Constant*, 16> Elts;
2404    bool InBounds = false;
2405    Lex.Lex();
2406    if (Opc == Instruction::GetElementPtr)
2407      InBounds = EatIfPresent(lltok::kw_inbounds);
2408    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2409        ParseGlobalValueVector(Elts) ||
2410        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2411      return true;
2412
2413    if (Opc == Instruction::GetElementPtr) {
2414      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2415        return Error(ID.Loc, "getelementptr requires pointer operand");
2416
2417      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2418                                             (Value**)(Elts.data() + 1),
2419                                             Elts.size() - 1))
2420        return Error(ID.Loc, "invalid indices for getelementptr");
2421      ID.ConstantVal = InBounds ?
2422        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2423                                               Elts.data() + 1,
2424                                               Elts.size() - 1) :
2425        ConstantExpr::getGetElementPtr(Elts[0],
2426                                       Elts.data() + 1, Elts.size() - 1);
2427    } else if (Opc == Instruction::Select) {
2428      if (Elts.size() != 3)
2429        return Error(ID.Loc, "expected three operands to select");
2430      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2431                                                              Elts[2]))
2432        return Error(ID.Loc, Reason);
2433      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2434    } else if (Opc == Instruction::ShuffleVector) {
2435      if (Elts.size() != 3)
2436        return Error(ID.Loc, "expected three operands to shufflevector");
2437      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2438        return Error(ID.Loc, "invalid operands to shufflevector");
2439      ID.ConstantVal =
2440                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2441    } else if (Opc == Instruction::ExtractElement) {
2442      if (Elts.size() != 2)
2443        return Error(ID.Loc, "expected two operands to extractelement");
2444      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2445        return Error(ID.Loc, "invalid extractelement operands");
2446      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2447    } else {
2448      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2449      if (Elts.size() != 3)
2450      return Error(ID.Loc, "expected three operands to insertelement");
2451      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2452        return Error(ID.Loc, "invalid insertelement operands");
2453      ID.ConstantVal =
2454                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2455    }
2456
2457    ID.Kind = ValID::t_Constant;
2458    return false;
2459  }
2460  }
2461
2462  Lex.Lex();
2463  return false;
2464}
2465
2466/// ParseGlobalValue - Parse a global value with the specified type.
2467bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2468  C = 0;
2469  ValID ID;
2470  Value *V = NULL;
2471  bool Parsed = ParseValID(ID) ||
2472                ConvertValIDToValue(Ty, ID, V, NULL);
2473  if (V && !(C = dyn_cast<Constant>(V)))
2474    return Error(ID.Loc, "global values must be constants");
2475  return Parsed;
2476}
2477
2478bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2479  PATypeHolder Type(Type::getVoidTy(Context));
2480  return ParseType(Type) ||
2481         ParseGlobalValue(Type, V);
2482}
2483
2484/// ParseGlobalValueVector
2485///   ::= /*empty*/
2486///   ::= TypeAndValue (',' TypeAndValue)*
2487bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2488  // Empty list.
2489  if (Lex.getKind() == lltok::rbrace ||
2490      Lex.getKind() == lltok::rsquare ||
2491      Lex.getKind() == lltok::greater ||
2492      Lex.getKind() == lltok::rparen)
2493    return false;
2494
2495  Constant *C;
2496  if (ParseGlobalTypeAndValue(C)) return true;
2497  Elts.push_back(C);
2498
2499  while (EatIfPresent(lltok::comma)) {
2500    if (ParseGlobalTypeAndValue(C)) return true;
2501    Elts.push_back(C);
2502  }
2503
2504  return false;
2505}
2506
2507/// ParseMetadataValue
2508///  ::= !42
2509///  ::= !{...}
2510///  ::= !"string"
2511bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2512  assert(Lex.getKind() == lltok::exclaim);
2513  Lex.Lex();
2514
2515  // MDNode:
2516  // !{ ... }
2517  if (EatIfPresent(lltok::lbrace)) {
2518    SmallVector<Value*, 16> Elts;
2519    if (ParseMDNodeVector(Elts, PFS) ||
2520        ParseToken(lltok::rbrace, "expected end of metadata node"))
2521      return true;
2522
2523    ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
2524    ID.Kind = ValID::t_MDNode;
2525    return false;
2526  }
2527
2528  // Standalone metadata reference
2529  // !42
2530  if (Lex.getKind() == lltok::APSInt) {
2531    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2532    ID.Kind = ValID::t_MDNode;
2533    return false;
2534  }
2535
2536  // MDString:
2537  //   ::= '!' STRINGCONSTANT
2538  if (ParseMDString(ID.MDStringVal)) return true;
2539  ID.Kind = ValID::t_MDString;
2540  return false;
2541}
2542
2543
2544//===----------------------------------------------------------------------===//
2545// Function Parsing.
2546//===----------------------------------------------------------------------===//
2547
2548bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2549                                   PerFunctionState *PFS) {
2550  if (Ty->isFunctionTy())
2551    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2552
2553  switch (ID.Kind) {
2554  default: llvm_unreachable("Unknown ValID!");
2555  case ValID::t_LocalID:
2556    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2557    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2558    return (V == 0);
2559  case ValID::t_LocalName:
2560    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2561    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2562    return (V == 0);
2563  case ValID::t_InlineAsm: {
2564    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2565    const FunctionType *FTy =
2566      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2567    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2568      return Error(ID.Loc, "invalid type for inline asm constraint string");
2569    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2570    return false;
2571  }
2572  case ValID::t_MDNode:
2573    if (!Ty->isMetadataTy())
2574      return Error(ID.Loc, "metadata value must have metadata type");
2575    V = ID.MDNodeVal;
2576    return false;
2577  case ValID::t_MDString:
2578    if (!Ty->isMetadataTy())
2579      return Error(ID.Loc, "metadata value must have metadata type");
2580    V = ID.MDStringVal;
2581    return false;
2582  case ValID::t_GlobalName:
2583    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2584    return V == 0;
2585  case ValID::t_GlobalID:
2586    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2587    return V == 0;
2588  case ValID::t_APSInt:
2589    if (!Ty->isIntegerTy())
2590      return Error(ID.Loc, "integer constant must have integer type");
2591    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2592    V = ConstantInt::get(Context, ID.APSIntVal);
2593    return false;
2594  case ValID::t_APFloat:
2595    if (!Ty->isFloatingPointTy() ||
2596        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2597      return Error(ID.Loc, "floating point constant invalid for type");
2598
2599    // The lexer has no type info, so builds all float and double FP constants
2600    // as double.  Fix this here.  Long double does not need this.
2601    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2602        Ty->isFloatTy()) {
2603      bool Ignored;
2604      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2605                            &Ignored);
2606    }
2607    V = ConstantFP::get(Context, ID.APFloatVal);
2608
2609    if (V->getType() != Ty)
2610      return Error(ID.Loc, "floating point constant does not have type '" +
2611                   Ty->getDescription() + "'");
2612
2613    return false;
2614  case ValID::t_Null:
2615    if (!Ty->isPointerTy())
2616      return Error(ID.Loc, "null must be a pointer type");
2617    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2618    return false;
2619  case ValID::t_Undef:
2620    // FIXME: LabelTy should not be a first-class type.
2621    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2622        !Ty->isOpaqueTy())
2623      return Error(ID.Loc, "invalid type for undef constant");
2624    V = UndefValue::get(Ty);
2625    return false;
2626  case ValID::t_EmptyArray:
2627    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2628      return Error(ID.Loc, "invalid empty array initializer");
2629    V = UndefValue::get(Ty);
2630    return false;
2631  case ValID::t_Zero:
2632    // FIXME: LabelTy should not be a first-class type.
2633    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2634      return Error(ID.Loc, "invalid type for null constant");
2635    V = Constant::getNullValue(Ty);
2636    return false;
2637  case ValID::t_Constant:
2638    if (ID.ConstantVal->getType() != Ty) {
2639      // Allow a constant struct with a single member to be converted
2640      // to a union, if the union has a member which is the same type
2641      // as the struct member.
2642      if (const UnionType* utype = dyn_cast<UnionType>(Ty)) {
2643        return ParseUnionValue(utype, ID, V);
2644      }
2645
2646      return Error(ID.Loc, "constant expression type mismatch");
2647    }
2648
2649    V = ID.ConstantVal;
2650    return false;
2651  }
2652}
2653
2654bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2655  V = 0;
2656  ValID ID;
2657  return ParseValID(ID, &PFS) ||
2658         ConvertValIDToValue(Ty, ID, V, &PFS);
2659}
2660
2661bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2662  PATypeHolder T(Type::getVoidTy(Context));
2663  return ParseType(T) ||
2664         ParseValue(T, V, PFS);
2665}
2666
2667bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2668                                      PerFunctionState &PFS) {
2669  Value *V;
2670  Loc = Lex.getLoc();
2671  if (ParseTypeAndValue(V, PFS)) return true;
2672  if (!isa<BasicBlock>(V))
2673    return Error(Loc, "expected a basic block");
2674  BB = cast<BasicBlock>(V);
2675  return false;
2676}
2677
2678bool LLParser::ParseUnionValue(const UnionType* utype, ValID &ID, Value *&V) {
2679  if (const StructType* stype = dyn_cast<StructType>(ID.ConstantVal->getType())) {
2680    if (stype->getNumContainedTypes() != 1)
2681      return Error(ID.Loc, "constant expression type mismatch");
2682    int index = utype->getElementTypeIndex(stype->getContainedType(0));
2683    if (index < 0)
2684      return Error(ID.Loc, "initializer type is not a member of the union");
2685
2686    V = ConstantUnion::get(
2687        utype, cast<Constant>(ID.ConstantVal->getOperand(0)));
2688    return false;
2689  }
2690
2691  return Error(ID.Loc, "constant expression type mismatch");
2692}
2693
2694
2695/// FunctionHeader
2696///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2697///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2698///       OptionalAlign OptGC
2699bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2700  // Parse the linkage.
2701  LocTy LinkageLoc = Lex.getLoc();
2702  unsigned Linkage;
2703
2704  unsigned Visibility, RetAttrs;
2705  CallingConv::ID CC;
2706  PATypeHolder RetType(Type::getVoidTy(Context));
2707  LocTy RetTypeLoc = Lex.getLoc();
2708  if (ParseOptionalLinkage(Linkage) ||
2709      ParseOptionalVisibility(Visibility) ||
2710      ParseOptionalCallingConv(CC) ||
2711      ParseOptionalAttrs(RetAttrs, 1) ||
2712      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2713    return true;
2714
2715  // Verify that the linkage is ok.
2716  switch ((GlobalValue::LinkageTypes)Linkage) {
2717  case GlobalValue::ExternalLinkage:
2718    break; // always ok.
2719  case GlobalValue::DLLImportLinkage:
2720  case GlobalValue::ExternalWeakLinkage:
2721    if (isDefine)
2722      return Error(LinkageLoc, "invalid linkage for function definition");
2723    break;
2724  case GlobalValue::PrivateLinkage:
2725  case GlobalValue::LinkerPrivateLinkage:
2726  case GlobalValue::LinkerPrivateWeakLinkage:
2727  case GlobalValue::InternalLinkage:
2728  case GlobalValue::AvailableExternallyLinkage:
2729  case GlobalValue::LinkOnceAnyLinkage:
2730  case GlobalValue::LinkOnceODRLinkage:
2731  case GlobalValue::WeakAnyLinkage:
2732  case GlobalValue::WeakODRLinkage:
2733  case GlobalValue::DLLExportLinkage:
2734    if (!isDefine)
2735      return Error(LinkageLoc, "invalid linkage for function declaration");
2736    break;
2737  case GlobalValue::AppendingLinkage:
2738  case GlobalValue::CommonLinkage:
2739    return Error(LinkageLoc, "invalid function linkage type");
2740  }
2741
2742  if (!FunctionType::isValidReturnType(RetType) ||
2743      RetType->isOpaqueTy())
2744    return Error(RetTypeLoc, "invalid function return type");
2745
2746  LocTy NameLoc = Lex.getLoc();
2747
2748  std::string FunctionName;
2749  if (Lex.getKind() == lltok::GlobalVar) {
2750    FunctionName = Lex.getStrVal();
2751  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2752    unsigned NameID = Lex.getUIntVal();
2753
2754    if (NameID != NumberedVals.size())
2755      return TokError("function expected to be numbered '%" +
2756                      utostr(NumberedVals.size()) + "'");
2757  } else {
2758    return TokError("expected function name");
2759  }
2760
2761  Lex.Lex();
2762
2763  if (Lex.getKind() != lltok::lparen)
2764    return TokError("expected '(' in function argument list");
2765
2766  std::vector<ArgInfo> ArgList;
2767  bool isVarArg;
2768  unsigned FuncAttrs;
2769  std::string Section;
2770  unsigned Alignment;
2771  std::string GC;
2772
2773  if (ParseArgumentList(ArgList, isVarArg, false) ||
2774      ParseOptionalAttrs(FuncAttrs, 2) ||
2775      (EatIfPresent(lltok::kw_section) &&
2776       ParseStringConstant(Section)) ||
2777      ParseOptionalAlignment(Alignment) ||
2778      (EatIfPresent(lltok::kw_gc) &&
2779       ParseStringConstant(GC)))
2780    return true;
2781
2782  // If the alignment was parsed as an attribute, move to the alignment field.
2783  if (FuncAttrs & Attribute::Alignment) {
2784    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2785    FuncAttrs &= ~Attribute::Alignment;
2786  }
2787
2788  // Okay, if we got here, the function is syntactically valid.  Convert types
2789  // and do semantic checks.
2790  std::vector<const Type*> ParamTypeList;
2791  SmallVector<AttributeWithIndex, 8> Attrs;
2792  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2793  // attributes.
2794  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2795  if (FuncAttrs & ObsoleteFuncAttrs) {
2796    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2797    FuncAttrs &= ~ObsoleteFuncAttrs;
2798  }
2799
2800  if (RetAttrs != Attribute::None)
2801    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2802
2803  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2804    ParamTypeList.push_back(ArgList[i].Type);
2805    if (ArgList[i].Attrs != Attribute::None)
2806      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2807  }
2808
2809  if (FuncAttrs != Attribute::None)
2810    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2811
2812  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2813
2814  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2815    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2816
2817  const FunctionType *FT =
2818    FunctionType::get(RetType, ParamTypeList, isVarArg);
2819  const PointerType *PFT = PointerType::getUnqual(FT);
2820
2821  Fn = 0;
2822  if (!FunctionName.empty()) {
2823    // If this was a definition of a forward reference, remove the definition
2824    // from the forward reference table and fill in the forward ref.
2825    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2826      ForwardRefVals.find(FunctionName);
2827    if (FRVI != ForwardRefVals.end()) {
2828      Fn = M->getFunction(FunctionName);
2829      if (Fn->getType() != PFT)
2830        return Error(FRVI->second.second, "invalid forward reference to "
2831                     "function '" + FunctionName + "' with wrong type!");
2832
2833      ForwardRefVals.erase(FRVI);
2834    } else if ((Fn = M->getFunction(FunctionName))) {
2835      // If this function already exists in the symbol table, then it is
2836      // multiply defined.  We accept a few cases for old backwards compat.
2837      // FIXME: Remove this stuff for LLVM 3.0.
2838      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2839          (!Fn->isDeclaration() && isDefine)) {
2840        // If the redefinition has different type or different attributes,
2841        // reject it.  If both have bodies, reject it.
2842        return Error(NameLoc, "invalid redefinition of function '" +
2843                     FunctionName + "'");
2844      } else if (Fn->isDeclaration()) {
2845        // Make sure to strip off any argument names so we can't get conflicts.
2846        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2847             AI != AE; ++AI)
2848          AI->setName("");
2849      }
2850    } else if (M->getNamedValue(FunctionName)) {
2851      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2852    }
2853
2854  } else {
2855    // If this is a definition of a forward referenced function, make sure the
2856    // types agree.
2857    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2858      = ForwardRefValIDs.find(NumberedVals.size());
2859    if (I != ForwardRefValIDs.end()) {
2860      Fn = cast<Function>(I->second.first);
2861      if (Fn->getType() != PFT)
2862        return Error(NameLoc, "type of definition and forward reference of '@" +
2863                     utostr(NumberedVals.size()) +"' disagree");
2864      ForwardRefValIDs.erase(I);
2865    }
2866  }
2867
2868  if (Fn == 0)
2869    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2870  else // Move the forward-reference to the correct spot in the module.
2871    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2872
2873  if (FunctionName.empty())
2874    NumberedVals.push_back(Fn);
2875
2876  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2877  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2878  Fn->setCallingConv(CC);
2879  Fn->setAttributes(PAL);
2880  Fn->setAlignment(Alignment);
2881  Fn->setSection(Section);
2882  if (!GC.empty()) Fn->setGC(GC.c_str());
2883
2884  // Add all of the arguments we parsed to the function.
2885  Function::arg_iterator ArgIt = Fn->arg_begin();
2886  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2887    // If we run out of arguments in the Function prototype, exit early.
2888    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2889    if (ArgIt == Fn->arg_end()) break;
2890
2891    // If the argument has a name, insert it into the argument symbol table.
2892    if (ArgList[i].Name.empty()) continue;
2893
2894    // Set the name, if it conflicted, it will be auto-renamed.
2895    ArgIt->setName(ArgList[i].Name);
2896
2897    if (ArgIt->getNameStr() != ArgList[i].Name)
2898      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2899                   ArgList[i].Name + "'");
2900  }
2901
2902  return false;
2903}
2904
2905
2906/// ParseFunctionBody
2907///   ::= '{' BasicBlock+ '}'
2908///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2909///
2910bool LLParser::ParseFunctionBody(Function &Fn) {
2911  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2912    return TokError("expected '{' in function body");
2913  Lex.Lex();  // eat the {.
2914
2915  int FunctionNumber = -1;
2916  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2917
2918  PerFunctionState PFS(*this, Fn, FunctionNumber);
2919
2920  // We need at least one basic block.
2921  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2922    return TokError("function body requires at least one basic block");
2923
2924  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2925    if (ParseBasicBlock(PFS)) return true;
2926
2927  // Eat the }.
2928  Lex.Lex();
2929
2930  // Verify function is ok.
2931  return PFS.FinishFunction();
2932}
2933
2934/// ParseBasicBlock
2935///   ::= LabelStr? Instruction*
2936bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2937  // If this basic block starts out with a name, remember it.
2938  std::string Name;
2939  LocTy NameLoc = Lex.getLoc();
2940  if (Lex.getKind() == lltok::LabelStr) {
2941    Name = Lex.getStrVal();
2942    Lex.Lex();
2943  }
2944
2945  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2946  if (BB == 0) return true;
2947
2948  std::string NameStr;
2949
2950  // Parse the instructions in this block until we get a terminator.
2951  Instruction *Inst;
2952  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2953  do {
2954    // This instruction may have three possibilities for a name: a) none
2955    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2956    LocTy NameLoc = Lex.getLoc();
2957    int NameID = -1;
2958    NameStr = "";
2959
2960    if (Lex.getKind() == lltok::LocalVarID) {
2961      NameID = Lex.getUIntVal();
2962      Lex.Lex();
2963      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2964        return true;
2965    } else if (Lex.getKind() == lltok::LocalVar ||
2966               // FIXME: REMOVE IN LLVM 3.0
2967               Lex.getKind() == lltok::StringConstant) {
2968      NameStr = Lex.getStrVal();
2969      Lex.Lex();
2970      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2971        return true;
2972    }
2973
2974    switch (ParseInstruction(Inst, BB, PFS)) {
2975    default: assert(0 && "Unknown ParseInstruction result!");
2976    case InstError: return true;
2977    case InstNormal:
2978      BB->getInstList().push_back(Inst);
2979
2980      // With a normal result, we check to see if the instruction is followed by
2981      // a comma and metadata.
2982      if (EatIfPresent(lltok::comma))
2983        if (ParseInstructionMetadata(Inst))
2984          return true;
2985      break;
2986    case InstExtraComma:
2987      BB->getInstList().push_back(Inst);
2988
2989      // If the instruction parser ate an extra comma at the end of it, it
2990      // *must* be followed by metadata.
2991      if (ParseInstructionMetadata(Inst))
2992        return true;
2993      break;
2994    }
2995
2996    // Set the name on the instruction.
2997    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2998  } while (!isa<TerminatorInst>(Inst));
2999
3000  return false;
3001}
3002
3003//===----------------------------------------------------------------------===//
3004// Instruction Parsing.
3005//===----------------------------------------------------------------------===//
3006
3007/// ParseInstruction - Parse one of the many different instructions.
3008///
3009int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3010                               PerFunctionState &PFS) {
3011  lltok::Kind Token = Lex.getKind();
3012  if (Token == lltok::Eof)
3013    return TokError("found end of file when expecting more instructions");
3014  LocTy Loc = Lex.getLoc();
3015  unsigned KeywordVal = Lex.getUIntVal();
3016  Lex.Lex();  // Eat the keyword.
3017
3018  switch (Token) {
3019  default:                    return Error(Loc, "expected instruction opcode");
3020  // Terminator Instructions.
3021  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
3022  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3023  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
3024  case lltok::kw_br:          return ParseBr(Inst, PFS);
3025  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3026  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3027  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3028  // Binary Operators.
3029  case lltok::kw_add:
3030  case lltok::kw_sub:
3031  case lltok::kw_mul: {
3032    bool NUW = false;
3033    bool NSW = false;
3034    LocTy ModifierLoc = Lex.getLoc();
3035    if (EatIfPresent(lltok::kw_nuw))
3036      NUW = true;
3037    if (EatIfPresent(lltok::kw_nsw)) {
3038      NSW = true;
3039      if (EatIfPresent(lltok::kw_nuw))
3040        NUW = true;
3041    }
3042    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3043    if (!Result) {
3044      if (!Inst->getType()->isIntOrIntVectorTy()) {
3045        if (NUW)
3046          return Error(ModifierLoc, "nuw only applies to integer operations");
3047        if (NSW)
3048          return Error(ModifierLoc, "nsw only applies to integer operations");
3049      }
3050      if (NUW)
3051        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3052      if (NSW)
3053        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3054    }
3055    return Result;
3056  }
3057  case lltok::kw_fadd:
3058  case lltok::kw_fsub:
3059  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3060
3061  case lltok::kw_sdiv: {
3062    bool Exact = false;
3063    if (EatIfPresent(lltok::kw_exact))
3064      Exact = true;
3065    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3066    if (!Result)
3067      if (Exact)
3068        cast<BinaryOperator>(Inst)->setIsExact(true);
3069    return Result;
3070  }
3071
3072  case lltok::kw_udiv:
3073  case lltok::kw_urem:
3074  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3075  case lltok::kw_fdiv:
3076  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3077  case lltok::kw_shl:
3078  case lltok::kw_lshr:
3079  case lltok::kw_ashr:
3080  case lltok::kw_and:
3081  case lltok::kw_or:
3082  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3083  case lltok::kw_icmp:
3084  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3085  // Casts.
3086  case lltok::kw_trunc:
3087  case lltok::kw_zext:
3088  case lltok::kw_sext:
3089  case lltok::kw_fptrunc:
3090  case lltok::kw_fpext:
3091  case lltok::kw_bitcast:
3092  case lltok::kw_uitofp:
3093  case lltok::kw_sitofp:
3094  case lltok::kw_fptoui:
3095  case lltok::kw_fptosi:
3096  case lltok::kw_inttoptr:
3097  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3098  // Other.
3099  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3100  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3101  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3102  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3103  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3104  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3105  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3106  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3107  // Memory.
3108  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3109  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
3110  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
3111  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
3112  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
3113  case lltok::kw_volatile:
3114    if (EatIfPresent(lltok::kw_load))
3115      return ParseLoad(Inst, PFS, true);
3116    else if (EatIfPresent(lltok::kw_store))
3117      return ParseStore(Inst, PFS, true);
3118    else
3119      return TokError("expected 'load' or 'store'");
3120  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
3121  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3122  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3123  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3124  }
3125}
3126
3127/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3128bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3129  if (Opc == Instruction::FCmp) {
3130    switch (Lex.getKind()) {
3131    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3132    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3133    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3134    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3135    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3136    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3137    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3138    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3139    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3140    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3141    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3142    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3143    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3144    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3145    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3146    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3147    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3148    }
3149  } else {
3150    switch (Lex.getKind()) {
3151    default: TokError("expected icmp predicate (e.g. 'eq')");
3152    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3153    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3154    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3155    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3156    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3157    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3158    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3159    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3160    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3161    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3162    }
3163  }
3164  Lex.Lex();
3165  return false;
3166}
3167
3168//===----------------------------------------------------------------------===//
3169// Terminator Instructions.
3170//===----------------------------------------------------------------------===//
3171
3172/// ParseRet - Parse a return instruction.
3173///   ::= 'ret' void (',' !dbg, !1)*
3174///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3175///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3176///         [[obsolete: LLVM 3.0]]
3177int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3178                       PerFunctionState &PFS) {
3179  PATypeHolder Ty(Type::getVoidTy(Context));
3180  if (ParseType(Ty, true /*void allowed*/)) return true;
3181
3182  if (Ty->isVoidTy()) {
3183    Inst = ReturnInst::Create(Context);
3184    return false;
3185  }
3186
3187  Value *RV;
3188  if (ParseValue(Ty, RV, PFS)) return true;
3189
3190  bool ExtraComma = false;
3191  if (EatIfPresent(lltok::comma)) {
3192    // Parse optional custom metadata, e.g. !dbg
3193    if (Lex.getKind() == lltok::MetadataVar) {
3194      ExtraComma = true;
3195    } else {
3196      // The normal case is one return value.
3197      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3198      // use of 'ret {i32,i32} {i32 1, i32 2}'
3199      SmallVector<Value*, 8> RVs;
3200      RVs.push_back(RV);
3201
3202      do {
3203        // If optional custom metadata, e.g. !dbg is seen then this is the
3204        // end of MRV.
3205        if (Lex.getKind() == lltok::MetadataVar)
3206          break;
3207        if (ParseTypeAndValue(RV, PFS)) return true;
3208        RVs.push_back(RV);
3209      } while (EatIfPresent(lltok::comma));
3210
3211      RV = UndefValue::get(PFS.getFunction().getReturnType());
3212      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3213        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3214        BB->getInstList().push_back(I);
3215        RV = I;
3216      }
3217    }
3218  }
3219
3220  Inst = ReturnInst::Create(Context, RV);
3221  return ExtraComma ? InstExtraComma : InstNormal;
3222}
3223
3224
3225/// ParseBr
3226///   ::= 'br' TypeAndValue
3227///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3228bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3229  LocTy Loc, Loc2;
3230  Value *Op0;
3231  BasicBlock *Op1, *Op2;
3232  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3233
3234  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3235    Inst = BranchInst::Create(BB);
3236    return false;
3237  }
3238
3239  if (Op0->getType() != Type::getInt1Ty(Context))
3240    return Error(Loc, "branch condition must have 'i1' type");
3241
3242  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3243      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3244      ParseToken(lltok::comma, "expected ',' after true destination") ||
3245      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3246    return true;
3247
3248  Inst = BranchInst::Create(Op1, Op2, Op0);
3249  return false;
3250}
3251
3252/// ParseSwitch
3253///  Instruction
3254///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3255///  JumpTable
3256///    ::= (TypeAndValue ',' TypeAndValue)*
3257bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3258  LocTy CondLoc, BBLoc;
3259  Value *Cond;
3260  BasicBlock *DefaultBB;
3261  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3262      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3263      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3264      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3265    return true;
3266
3267  if (!Cond->getType()->isIntegerTy())
3268    return Error(CondLoc, "switch condition must have integer type");
3269
3270  // Parse the jump table pairs.
3271  SmallPtrSet<Value*, 32> SeenCases;
3272  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3273  while (Lex.getKind() != lltok::rsquare) {
3274    Value *Constant;
3275    BasicBlock *DestBB;
3276
3277    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3278        ParseToken(lltok::comma, "expected ',' after case value") ||
3279        ParseTypeAndBasicBlock(DestBB, PFS))
3280      return true;
3281
3282    if (!SeenCases.insert(Constant))
3283      return Error(CondLoc, "duplicate case value in switch");
3284    if (!isa<ConstantInt>(Constant))
3285      return Error(CondLoc, "case value is not a constant integer");
3286
3287    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3288  }
3289
3290  Lex.Lex();  // Eat the ']'.
3291
3292  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3293  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3294    SI->addCase(Table[i].first, Table[i].second);
3295  Inst = SI;
3296  return false;
3297}
3298
3299/// ParseIndirectBr
3300///  Instruction
3301///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3302bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3303  LocTy AddrLoc;
3304  Value *Address;
3305  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3306      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3307      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3308    return true;
3309
3310  if (!Address->getType()->isPointerTy())
3311    return Error(AddrLoc, "indirectbr address must have pointer type");
3312
3313  // Parse the destination list.
3314  SmallVector<BasicBlock*, 16> DestList;
3315
3316  if (Lex.getKind() != lltok::rsquare) {
3317    BasicBlock *DestBB;
3318    if (ParseTypeAndBasicBlock(DestBB, PFS))
3319      return true;
3320    DestList.push_back(DestBB);
3321
3322    while (EatIfPresent(lltok::comma)) {
3323      if (ParseTypeAndBasicBlock(DestBB, PFS))
3324        return true;
3325      DestList.push_back(DestBB);
3326    }
3327  }
3328
3329  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3330    return true;
3331
3332  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3333  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3334    IBI->addDestination(DestList[i]);
3335  Inst = IBI;
3336  return false;
3337}
3338
3339
3340/// ParseInvoke
3341///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3342///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3343bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3344  LocTy CallLoc = Lex.getLoc();
3345  unsigned RetAttrs, FnAttrs;
3346  CallingConv::ID CC;
3347  PATypeHolder RetType(Type::getVoidTy(Context));
3348  LocTy RetTypeLoc;
3349  ValID CalleeID;
3350  SmallVector<ParamInfo, 16> ArgList;
3351
3352  BasicBlock *NormalBB, *UnwindBB;
3353  if (ParseOptionalCallingConv(CC) ||
3354      ParseOptionalAttrs(RetAttrs, 1) ||
3355      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3356      ParseValID(CalleeID) ||
3357      ParseParameterList(ArgList, PFS) ||
3358      ParseOptionalAttrs(FnAttrs, 2) ||
3359      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3360      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3361      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3362      ParseTypeAndBasicBlock(UnwindBB, PFS))
3363    return true;
3364
3365  // If RetType is a non-function pointer type, then this is the short syntax
3366  // for the call, which means that RetType is just the return type.  Infer the
3367  // rest of the function argument types from the arguments that are present.
3368  const PointerType *PFTy = 0;
3369  const FunctionType *Ty = 0;
3370  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3371      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3372    // Pull out the types of all of the arguments...
3373    std::vector<const Type*> ParamTypes;
3374    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3375      ParamTypes.push_back(ArgList[i].V->getType());
3376
3377    if (!FunctionType::isValidReturnType(RetType))
3378      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3379
3380    Ty = FunctionType::get(RetType, ParamTypes, false);
3381    PFTy = PointerType::getUnqual(Ty);
3382  }
3383
3384  // Look up the callee.
3385  Value *Callee;
3386  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3387
3388  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3389  // function attributes.
3390  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3391  if (FnAttrs & ObsoleteFuncAttrs) {
3392    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3393    FnAttrs &= ~ObsoleteFuncAttrs;
3394  }
3395
3396  // Set up the Attributes for the function.
3397  SmallVector<AttributeWithIndex, 8> Attrs;
3398  if (RetAttrs != Attribute::None)
3399    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3400
3401  SmallVector<Value*, 8> Args;
3402
3403  // Loop through FunctionType's arguments and ensure they are specified
3404  // correctly.  Also, gather any parameter attributes.
3405  FunctionType::param_iterator I = Ty->param_begin();
3406  FunctionType::param_iterator E = Ty->param_end();
3407  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3408    const Type *ExpectedTy = 0;
3409    if (I != E) {
3410      ExpectedTy = *I++;
3411    } else if (!Ty->isVarArg()) {
3412      return Error(ArgList[i].Loc, "too many arguments specified");
3413    }
3414
3415    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3416      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3417                   ExpectedTy->getDescription() + "'");
3418    Args.push_back(ArgList[i].V);
3419    if (ArgList[i].Attrs != Attribute::None)
3420      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3421  }
3422
3423  if (I != E)
3424    return Error(CallLoc, "not enough parameters specified for call");
3425
3426  if (FnAttrs != Attribute::None)
3427    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3428
3429  // Finish off the Attributes and check them
3430  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3431
3432  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3433                                      Args.begin(), Args.end());
3434  II->setCallingConv(CC);
3435  II->setAttributes(PAL);
3436  Inst = II;
3437  return false;
3438}
3439
3440
3441
3442//===----------------------------------------------------------------------===//
3443// Binary Operators.
3444//===----------------------------------------------------------------------===//
3445
3446/// ParseArithmetic
3447///  ::= ArithmeticOps TypeAndValue ',' Value
3448///
3449/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3450/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3451bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3452                               unsigned Opc, unsigned OperandType) {
3453  LocTy Loc; Value *LHS, *RHS;
3454  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3455      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3456      ParseValue(LHS->getType(), RHS, PFS))
3457    return true;
3458
3459  bool Valid;
3460  switch (OperandType) {
3461  default: llvm_unreachable("Unknown operand type!");
3462  case 0: // int or FP.
3463    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3464            LHS->getType()->isFPOrFPVectorTy();
3465    break;
3466  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3467  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3468  }
3469
3470  if (!Valid)
3471    return Error(Loc, "invalid operand type for instruction");
3472
3473  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3474  return false;
3475}
3476
3477/// ParseLogical
3478///  ::= ArithmeticOps TypeAndValue ',' Value {
3479bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3480                            unsigned Opc) {
3481  LocTy Loc; Value *LHS, *RHS;
3482  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3483      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3484      ParseValue(LHS->getType(), RHS, PFS))
3485    return true;
3486
3487  if (!LHS->getType()->isIntOrIntVectorTy())
3488    return Error(Loc,"instruction requires integer or integer vector operands");
3489
3490  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3491  return false;
3492}
3493
3494
3495/// ParseCompare
3496///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3497///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3498bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3499                            unsigned Opc) {
3500  // Parse the integer/fp comparison predicate.
3501  LocTy Loc;
3502  unsigned Pred;
3503  Value *LHS, *RHS;
3504  if (ParseCmpPredicate(Pred, Opc) ||
3505      ParseTypeAndValue(LHS, Loc, PFS) ||
3506      ParseToken(lltok::comma, "expected ',' after compare value") ||
3507      ParseValue(LHS->getType(), RHS, PFS))
3508    return true;
3509
3510  if (Opc == Instruction::FCmp) {
3511    if (!LHS->getType()->isFPOrFPVectorTy())
3512      return Error(Loc, "fcmp requires floating point operands");
3513    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3514  } else {
3515    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3516    if (!LHS->getType()->isIntOrIntVectorTy() &&
3517        !LHS->getType()->isPointerTy())
3518      return Error(Loc, "icmp requires integer operands");
3519    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3520  }
3521  return false;
3522}
3523
3524//===----------------------------------------------------------------------===//
3525// Other Instructions.
3526//===----------------------------------------------------------------------===//
3527
3528
3529/// ParseCast
3530///   ::= CastOpc TypeAndValue 'to' Type
3531bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3532                         unsigned Opc) {
3533  LocTy Loc;  Value *Op;
3534  PATypeHolder DestTy(Type::getVoidTy(Context));
3535  if (ParseTypeAndValue(Op, Loc, PFS) ||
3536      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3537      ParseType(DestTy))
3538    return true;
3539
3540  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3541    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3542    return Error(Loc, "invalid cast opcode for cast from '" +
3543                 Op->getType()->getDescription() + "' to '" +
3544                 DestTy->getDescription() + "'");
3545  }
3546  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3547  return false;
3548}
3549
3550/// ParseSelect
3551///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3552bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3553  LocTy Loc;
3554  Value *Op0, *Op1, *Op2;
3555  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3556      ParseToken(lltok::comma, "expected ',' after select condition") ||
3557      ParseTypeAndValue(Op1, PFS) ||
3558      ParseToken(lltok::comma, "expected ',' after select value") ||
3559      ParseTypeAndValue(Op2, PFS))
3560    return true;
3561
3562  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3563    return Error(Loc, Reason);
3564
3565  Inst = SelectInst::Create(Op0, Op1, Op2);
3566  return false;
3567}
3568
3569/// ParseVA_Arg
3570///   ::= 'va_arg' TypeAndValue ',' Type
3571bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3572  Value *Op;
3573  PATypeHolder EltTy(Type::getVoidTy(Context));
3574  LocTy TypeLoc;
3575  if (ParseTypeAndValue(Op, PFS) ||
3576      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3577      ParseType(EltTy, TypeLoc))
3578    return true;
3579
3580  if (!EltTy->isFirstClassType())
3581    return Error(TypeLoc, "va_arg requires operand with first class type");
3582
3583  Inst = new VAArgInst(Op, EltTy);
3584  return false;
3585}
3586
3587/// ParseExtractElement
3588///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3589bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3590  LocTy Loc;
3591  Value *Op0, *Op1;
3592  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3593      ParseToken(lltok::comma, "expected ',' after extract value") ||
3594      ParseTypeAndValue(Op1, PFS))
3595    return true;
3596
3597  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3598    return Error(Loc, "invalid extractelement operands");
3599
3600  Inst = ExtractElementInst::Create(Op0, Op1);
3601  return false;
3602}
3603
3604/// ParseInsertElement
3605///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3606bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3607  LocTy Loc;
3608  Value *Op0, *Op1, *Op2;
3609  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3610      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3611      ParseTypeAndValue(Op1, PFS) ||
3612      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3613      ParseTypeAndValue(Op2, PFS))
3614    return true;
3615
3616  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3617    return Error(Loc, "invalid insertelement operands");
3618
3619  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3620  return false;
3621}
3622
3623/// ParseShuffleVector
3624///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3625bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3626  LocTy Loc;
3627  Value *Op0, *Op1, *Op2;
3628  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3629      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3630      ParseTypeAndValue(Op1, PFS) ||
3631      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3632      ParseTypeAndValue(Op2, PFS))
3633    return true;
3634
3635  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3636    return Error(Loc, "invalid extractelement operands");
3637
3638  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3639  return false;
3640}
3641
3642/// ParsePHI
3643///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3644int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3645  PATypeHolder Ty(Type::getVoidTy(Context));
3646  Value *Op0, *Op1;
3647  LocTy TypeLoc = Lex.getLoc();
3648
3649  if (ParseType(Ty) ||
3650      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3651      ParseValue(Ty, Op0, PFS) ||
3652      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3653      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3654      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3655    return true;
3656
3657  bool AteExtraComma = false;
3658  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3659  while (1) {
3660    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3661
3662    if (!EatIfPresent(lltok::comma))
3663      break;
3664
3665    if (Lex.getKind() == lltok::MetadataVar) {
3666      AteExtraComma = true;
3667      break;
3668    }
3669
3670    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3671        ParseValue(Ty, Op0, PFS) ||
3672        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3673        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3674        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3675      return true;
3676  }
3677
3678  if (!Ty->isFirstClassType())
3679    return Error(TypeLoc, "phi node must have first class type");
3680
3681  PHINode *PN = PHINode::Create(Ty);
3682  PN->reserveOperandSpace(PHIVals.size());
3683  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3684    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3685  Inst = PN;
3686  return AteExtraComma ? InstExtraComma : InstNormal;
3687}
3688
3689/// ParseCall
3690///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3691///       ParameterList OptionalAttrs
3692bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3693                         bool isTail) {
3694  unsigned RetAttrs, FnAttrs;
3695  CallingConv::ID CC;
3696  PATypeHolder RetType(Type::getVoidTy(Context));
3697  LocTy RetTypeLoc;
3698  ValID CalleeID;
3699  SmallVector<ParamInfo, 16> ArgList;
3700  LocTy CallLoc = Lex.getLoc();
3701
3702  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3703      ParseOptionalCallingConv(CC) ||
3704      ParseOptionalAttrs(RetAttrs, 1) ||
3705      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3706      ParseValID(CalleeID) ||
3707      ParseParameterList(ArgList, PFS) ||
3708      ParseOptionalAttrs(FnAttrs, 2))
3709    return true;
3710
3711  // If RetType is a non-function pointer type, then this is the short syntax
3712  // for the call, which means that RetType is just the return type.  Infer the
3713  // rest of the function argument types from the arguments that are present.
3714  const PointerType *PFTy = 0;
3715  const FunctionType *Ty = 0;
3716  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3717      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3718    // Pull out the types of all of the arguments...
3719    std::vector<const Type*> ParamTypes;
3720    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3721      ParamTypes.push_back(ArgList[i].V->getType());
3722
3723    if (!FunctionType::isValidReturnType(RetType))
3724      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3725
3726    Ty = FunctionType::get(RetType, ParamTypes, false);
3727    PFTy = PointerType::getUnqual(Ty);
3728  }
3729
3730  // Look up the callee.
3731  Value *Callee;
3732  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3733
3734  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3735  // function attributes.
3736  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3737  if (FnAttrs & ObsoleteFuncAttrs) {
3738    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3739    FnAttrs &= ~ObsoleteFuncAttrs;
3740  }
3741
3742  // Set up the Attributes for the function.
3743  SmallVector<AttributeWithIndex, 8> Attrs;
3744  if (RetAttrs != Attribute::None)
3745    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3746
3747  SmallVector<Value*, 8> Args;
3748
3749  // Loop through FunctionType's arguments and ensure they are specified
3750  // correctly.  Also, gather any parameter attributes.
3751  FunctionType::param_iterator I = Ty->param_begin();
3752  FunctionType::param_iterator E = Ty->param_end();
3753  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3754    const Type *ExpectedTy = 0;
3755    if (I != E) {
3756      ExpectedTy = *I++;
3757    } else if (!Ty->isVarArg()) {
3758      return Error(ArgList[i].Loc, "too many arguments specified");
3759    }
3760
3761    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3762      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3763                   ExpectedTy->getDescription() + "'");
3764    Args.push_back(ArgList[i].V);
3765    if (ArgList[i].Attrs != Attribute::None)
3766      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3767  }
3768
3769  if (I != E)
3770    return Error(CallLoc, "not enough parameters specified for call");
3771
3772  if (FnAttrs != Attribute::None)
3773    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3774
3775  // Finish off the Attributes and check them
3776  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3777
3778  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3779  CI->setTailCall(isTail);
3780  CI->setCallingConv(CC);
3781  CI->setAttributes(PAL);
3782  Inst = CI;
3783  return false;
3784}
3785
3786//===----------------------------------------------------------------------===//
3787// Memory Instructions.
3788//===----------------------------------------------------------------------===//
3789
3790/// ParseAlloc
3791///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3792///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3793int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3794                         BasicBlock* BB, bool isAlloca) {
3795  PATypeHolder Ty(Type::getVoidTy(Context));
3796  Value *Size = 0;
3797  LocTy SizeLoc;
3798  unsigned Alignment = 0;
3799  if (ParseType(Ty)) return true;
3800
3801  bool AteExtraComma = false;
3802  if (EatIfPresent(lltok::comma)) {
3803    if (Lex.getKind() == lltok::kw_align) {
3804      if (ParseOptionalAlignment(Alignment)) return true;
3805    } else if (Lex.getKind() == lltok::MetadataVar) {
3806      AteExtraComma = true;
3807    } else {
3808      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3809          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3810        return true;
3811    }
3812  }
3813
3814  if (Size && !Size->getType()->isIntegerTy())
3815    return Error(SizeLoc, "element count must have integer type");
3816
3817  if (isAlloca) {
3818    Inst = new AllocaInst(Ty, Size, Alignment);
3819    return AteExtraComma ? InstExtraComma : InstNormal;
3820  }
3821
3822  // Autoupgrade old malloc instruction to malloc call.
3823  // FIXME: Remove in LLVM 3.0.
3824  if (Size && !Size->getType()->isIntegerTy(32))
3825    return Error(SizeLoc, "element count must be i32");
3826  const Type *IntPtrTy = Type::getInt32Ty(Context);
3827  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3828  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3829  if (!MallocF)
3830    // Prototype malloc as "void *(int32)".
3831    // This function is renamed as "malloc" in ValidateEndOfModule().
3832    MallocF = cast<Function>(
3833       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3834  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3835return AteExtraComma ? InstExtraComma : InstNormal;
3836}
3837
3838/// ParseFree
3839///   ::= 'free' TypeAndValue
3840bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3841                         BasicBlock* BB) {
3842  Value *Val; LocTy Loc;
3843  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3844  if (!Val->getType()->isPointerTy())
3845    return Error(Loc, "operand to free must be a pointer");
3846  Inst = CallInst::CreateFree(Val, BB);
3847  return false;
3848}
3849
3850/// ParseLoad
3851///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3852int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3853                        bool isVolatile) {
3854  Value *Val; LocTy Loc;
3855  unsigned Alignment = 0;
3856  bool AteExtraComma = false;
3857  if (ParseTypeAndValue(Val, Loc, PFS) ||
3858      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3859    return true;
3860
3861  if (!Val->getType()->isPointerTy() ||
3862      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3863    return Error(Loc, "load operand must be a pointer to a first class type");
3864
3865  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3866  return AteExtraComma ? InstExtraComma : InstNormal;
3867}
3868
3869/// ParseStore
3870///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3871int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3872                         bool isVolatile) {
3873  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3874  unsigned Alignment = 0;
3875  bool AteExtraComma = false;
3876  if (ParseTypeAndValue(Val, Loc, PFS) ||
3877      ParseToken(lltok::comma, "expected ',' after store operand") ||
3878      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3879      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3880    return true;
3881
3882  if (!Ptr->getType()->isPointerTy())
3883    return Error(PtrLoc, "store operand must be a pointer");
3884  if (!Val->getType()->isFirstClassType())
3885    return Error(Loc, "store operand must be a first class value");
3886  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3887    return Error(Loc, "stored value and pointer type do not match");
3888
3889  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3890  return AteExtraComma ? InstExtraComma : InstNormal;
3891}
3892
3893/// ParseGetResult
3894///   ::= 'getresult' TypeAndValue ',' i32
3895/// FIXME: Remove support for getresult in LLVM 3.0
3896bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3897  Value *Val; LocTy ValLoc, EltLoc;
3898  unsigned Element;
3899  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3900      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3901      ParseUInt32(Element, EltLoc))
3902    return true;
3903
3904  if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3905    return Error(ValLoc, "getresult inst requires an aggregate operand");
3906  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3907    return Error(EltLoc, "invalid getresult index for value");
3908  Inst = ExtractValueInst::Create(Val, Element);
3909  return false;
3910}
3911
3912/// ParseGetElementPtr
3913///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3914int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3915  Value *Ptr, *Val; LocTy Loc, EltLoc;
3916
3917  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3918
3919  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3920
3921  if (!Ptr->getType()->isPointerTy())
3922    return Error(Loc, "base of getelementptr must be a pointer");
3923
3924  SmallVector<Value*, 16> Indices;
3925  bool AteExtraComma = false;
3926  while (EatIfPresent(lltok::comma)) {
3927    if (Lex.getKind() == lltok::MetadataVar) {
3928      AteExtraComma = true;
3929      break;
3930    }
3931    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3932    if (!Val->getType()->isIntegerTy())
3933      return Error(EltLoc, "getelementptr index must be an integer");
3934    Indices.push_back(Val);
3935  }
3936
3937  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3938                                         Indices.begin(), Indices.end()))
3939    return Error(Loc, "invalid getelementptr indices");
3940  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3941  if (InBounds)
3942    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3943  return AteExtraComma ? InstExtraComma : InstNormal;
3944}
3945
3946/// ParseExtractValue
3947///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3948int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3949  Value *Val; LocTy Loc;
3950  SmallVector<unsigned, 4> Indices;
3951  bool AteExtraComma;
3952  if (ParseTypeAndValue(Val, Loc, PFS) ||
3953      ParseIndexList(Indices, AteExtraComma))
3954    return true;
3955
3956  if (!Val->getType()->isAggregateType())
3957    return Error(Loc, "extractvalue operand must be aggregate type");
3958
3959  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3960                                        Indices.end()))
3961    return Error(Loc, "invalid indices for extractvalue");
3962  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3963  return AteExtraComma ? InstExtraComma : InstNormal;
3964}
3965
3966/// ParseInsertValue
3967///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3968int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3969  Value *Val0, *Val1; LocTy Loc0, Loc1;
3970  SmallVector<unsigned, 4> Indices;
3971  bool AteExtraComma;
3972  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3973      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3974      ParseTypeAndValue(Val1, Loc1, PFS) ||
3975      ParseIndexList(Indices, AteExtraComma))
3976    return true;
3977
3978  if (!Val0->getType()->isAggregateType())
3979    return Error(Loc0, "insertvalue operand must be aggregate type");
3980
3981  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3982                                        Indices.end()))
3983    return Error(Loc0, "invalid indices for insertvalue");
3984  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3985  return AteExtraComma ? InstExtraComma : InstNormal;
3986}
3987
3988//===----------------------------------------------------------------------===//
3989// Embedded metadata.
3990//===----------------------------------------------------------------------===//
3991
3992/// ParseMDNodeVector
3993///   ::= Element (',' Element)*
3994/// Element
3995///   ::= 'null' | TypeAndValue
3996bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3997                                 PerFunctionState *PFS) {
3998  // Check for an empty list.
3999  if (Lex.getKind() == lltok::rbrace)
4000    return false;
4001
4002  do {
4003    // Null is a special case since it is typeless.
4004    if (EatIfPresent(lltok::kw_null)) {
4005      Elts.push_back(0);
4006      continue;
4007    }
4008
4009    Value *V = 0;
4010    PATypeHolder Ty(Type::getVoidTy(Context));
4011    ValID ID;
4012    if (ParseType(Ty) || ParseValID(ID, PFS) ||
4013        ConvertValIDToValue(Ty, ID, V, PFS))
4014      return true;
4015
4016    Elts.push_back(V);
4017  } while (EatIfPresent(lltok::comma));
4018
4019  return false;
4020}
4021