LLParser.cpp revision 206083
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Handle any instruction metadata forward references.
43  if (!ForwardRefInstMetadata.empty()) {
44    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
45         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
46         I != E; ++I) {
47      Instruction *Inst = I->first;
48      const std::vector<MDRef> &MDList = I->second;
49
50      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
51        unsigned SlotNo = MDList[i].MDSlot;
52
53        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
54          return Error(MDList[i].Loc, "use of undefined metadata '!" +
55                       utostr(SlotNo) + "'");
56        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
57      }
58    }
59    ForwardRefInstMetadata.clear();
60  }
61
62
63  // Update auto-upgraded malloc calls to "malloc".
64  // FIXME: Remove in LLVM 3.0.
65  if (MallocF) {
66    MallocF->setName("malloc");
67    // If setName() does not set the name to "malloc", then there is already a
68    // declaration of "malloc".  In that case, iterate over all calls to MallocF
69    // and get them to call the declared "malloc" instead.
70    if (MallocF->getName() != "malloc") {
71      Constant *RealMallocF = M->getFunction("malloc");
72      if (RealMallocF->getType() != MallocF->getType())
73        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
74      MallocF->replaceAllUsesWith(RealMallocF);
75      MallocF->eraseFromParent();
76      MallocF = NULL;
77    }
78  }
79
80
81  // If there are entries in ForwardRefBlockAddresses at this point, they are
82  // references after the function was defined.  Resolve those now.
83  while (!ForwardRefBlockAddresses.empty()) {
84    // Okay, we are referencing an already-parsed function, resolve them now.
85    Function *TheFn = 0;
86    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
87    if (Fn.Kind == ValID::t_GlobalName)
88      TheFn = M->getFunction(Fn.StrVal);
89    else if (Fn.UIntVal < NumberedVals.size())
90      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
91
92    if (TheFn == 0)
93      return Error(Fn.Loc, "unknown function referenced by blockaddress");
94
95    // Resolve all these references.
96    if (ResolveForwardRefBlockAddresses(TheFn,
97                                      ForwardRefBlockAddresses.begin()->second,
98                                        0))
99      return true;
100
101    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
102  }
103
104
105  if (!ForwardRefTypes.empty())
106    return Error(ForwardRefTypes.begin()->second.second,
107                 "use of undefined type named '" +
108                 ForwardRefTypes.begin()->first + "'");
109  if (!ForwardRefTypeIDs.empty())
110    return Error(ForwardRefTypeIDs.begin()->second.second,
111                 "use of undefined type '%" +
112                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
113
114  if (!ForwardRefVals.empty())
115    return Error(ForwardRefVals.begin()->second.second,
116                 "use of undefined value '@" + ForwardRefVals.begin()->first +
117                 "'");
118
119  if (!ForwardRefValIDs.empty())
120    return Error(ForwardRefValIDs.begin()->second.second,
121                 "use of undefined value '@" +
122                 utostr(ForwardRefValIDs.begin()->first) + "'");
123
124  if (!ForwardRefMDNodes.empty())
125    return Error(ForwardRefMDNodes.begin()->second.second,
126                 "use of undefined metadata '!" +
127                 utostr(ForwardRefMDNodes.begin()->first) + "'");
128
129
130  // Look for intrinsic functions and CallInst that need to be upgraded
131  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
132    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
133
134  // Check debug info intrinsics.
135  CheckDebugInfoIntrinsics(M);
136  return false;
137}
138
139bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
140                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
141                                               PerFunctionState *PFS) {
142  // Loop over all the references, resolving them.
143  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
144    BasicBlock *Res;
145    if (PFS) {
146      if (Refs[i].first.Kind == ValID::t_LocalName)
147        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
148      else
149        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
150    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
151      return Error(Refs[i].first.Loc,
152       "cannot take address of numeric label after the function is defined");
153    } else {
154      Res = dyn_cast_or_null<BasicBlock>(
155                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
156    }
157
158    if (Res == 0)
159      return Error(Refs[i].first.Loc,
160                   "referenced value is not a basic block");
161
162    // Get the BlockAddress for this and update references to use it.
163    BlockAddress *BA = BlockAddress::get(TheFn, Res);
164    Refs[i].second->replaceAllUsesWith(BA);
165    Refs[i].second->eraseFromParent();
166  }
167  return false;
168}
169
170
171//===----------------------------------------------------------------------===//
172// Top-Level Entities
173//===----------------------------------------------------------------------===//
174
175bool LLParser::ParseTopLevelEntities() {
176  while (1) {
177    switch (Lex.getKind()) {
178    default:         return TokError("expected top-level entity");
179    case lltok::Eof: return false;
180    //case lltok::kw_define:
181    case lltok::kw_declare: if (ParseDeclare()) return true; break;
182    case lltok::kw_define:  if (ParseDefine()) return true; break;
183    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
184    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
185    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
186    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
187    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
188    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
189    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
190    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
191    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
192    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
193    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
194
195    // The Global variable production with no name can have many different
196    // optional leading prefixes, the production is:
197    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
198    //               OptionalAddrSpace ('constant'|'global') ...
199    case lltok::kw_private :       // OptionalLinkage
200    case lltok::kw_linker_private: // OptionalLinkage
201    case lltok::kw_internal:       // OptionalLinkage
202    case lltok::kw_weak:           // OptionalLinkage
203    case lltok::kw_weak_odr:       // OptionalLinkage
204    case lltok::kw_linkonce:       // OptionalLinkage
205    case lltok::kw_linkonce_odr:   // OptionalLinkage
206    case lltok::kw_appending:      // OptionalLinkage
207    case lltok::kw_dllexport:      // OptionalLinkage
208    case lltok::kw_common:         // OptionalLinkage
209    case lltok::kw_dllimport:      // OptionalLinkage
210    case lltok::kw_extern_weak:    // OptionalLinkage
211    case lltok::kw_external: {     // OptionalLinkage
212      unsigned Linkage, Visibility;
213      if (ParseOptionalLinkage(Linkage) ||
214          ParseOptionalVisibility(Visibility) ||
215          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
216        return true;
217      break;
218    }
219    case lltok::kw_default:       // OptionalVisibility
220    case lltok::kw_hidden:        // OptionalVisibility
221    case lltok::kw_protected: {   // OptionalVisibility
222      unsigned Visibility;
223      if (ParseOptionalVisibility(Visibility) ||
224          ParseGlobal("", SMLoc(), 0, false, Visibility))
225        return true;
226      break;
227    }
228
229    case lltok::kw_thread_local:  // OptionalThreadLocal
230    case lltok::kw_addrspace:     // OptionalAddrSpace
231    case lltok::kw_constant:      // GlobalType
232    case lltok::kw_global:        // GlobalType
233      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
234      break;
235    }
236  }
237}
238
239
240/// toplevelentity
241///   ::= 'module' 'asm' STRINGCONSTANT
242bool LLParser::ParseModuleAsm() {
243  assert(Lex.getKind() == lltok::kw_module);
244  Lex.Lex();
245
246  std::string AsmStr;
247  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
248      ParseStringConstant(AsmStr)) return true;
249
250  const std::string &AsmSoFar = M->getModuleInlineAsm();
251  if (AsmSoFar.empty())
252    M->setModuleInlineAsm(AsmStr);
253  else
254    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
255  return false;
256}
257
258/// toplevelentity
259///   ::= 'target' 'triple' '=' STRINGCONSTANT
260///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
261bool LLParser::ParseTargetDefinition() {
262  assert(Lex.getKind() == lltok::kw_target);
263  std::string Str;
264  switch (Lex.Lex()) {
265  default: return TokError("unknown target property");
266  case lltok::kw_triple:
267    Lex.Lex();
268    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
269        ParseStringConstant(Str))
270      return true;
271    M->setTargetTriple(Str);
272    return false;
273  case lltok::kw_datalayout:
274    Lex.Lex();
275    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
276        ParseStringConstant(Str))
277      return true;
278    M->setDataLayout(Str);
279    return false;
280  }
281}
282
283/// toplevelentity
284///   ::= 'deplibs' '=' '[' ']'
285///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
286bool LLParser::ParseDepLibs() {
287  assert(Lex.getKind() == lltok::kw_deplibs);
288  Lex.Lex();
289  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
290      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
291    return true;
292
293  if (EatIfPresent(lltok::rsquare))
294    return false;
295
296  std::string Str;
297  if (ParseStringConstant(Str)) return true;
298  M->addLibrary(Str);
299
300  while (EatIfPresent(lltok::comma)) {
301    if (ParseStringConstant(Str)) return true;
302    M->addLibrary(Str);
303  }
304
305  return ParseToken(lltok::rsquare, "expected ']' at end of list");
306}
307
308/// ParseUnnamedType:
309///   ::= 'type' type
310///   ::= LocalVarID '=' 'type' type
311bool LLParser::ParseUnnamedType() {
312  unsigned TypeID = NumberedTypes.size();
313
314  // Handle the LocalVarID form.
315  if (Lex.getKind() == lltok::LocalVarID) {
316    if (Lex.getUIntVal() != TypeID)
317      return Error(Lex.getLoc(), "type expected to be numbered '%" +
318                   utostr(TypeID) + "'");
319    Lex.Lex(); // eat LocalVarID;
320
321    if (ParseToken(lltok::equal, "expected '=' after name"))
322      return true;
323  }
324
325  assert(Lex.getKind() == lltok::kw_type);
326  LocTy TypeLoc = Lex.getLoc();
327  Lex.Lex(); // eat kw_type
328
329  PATypeHolder Ty(Type::getVoidTy(Context));
330  if (ParseType(Ty)) return true;
331
332  // See if this type was previously referenced.
333  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
334    FI = ForwardRefTypeIDs.find(TypeID);
335  if (FI != ForwardRefTypeIDs.end()) {
336    if (FI->second.first.get() == Ty)
337      return Error(TypeLoc, "self referential type is invalid");
338
339    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
340    Ty = FI->second.first.get();
341    ForwardRefTypeIDs.erase(FI);
342  }
343
344  NumberedTypes.push_back(Ty);
345
346  return false;
347}
348
349/// toplevelentity
350///   ::= LocalVar '=' 'type' type
351bool LLParser::ParseNamedType() {
352  std::string Name = Lex.getStrVal();
353  LocTy NameLoc = Lex.getLoc();
354  Lex.Lex();  // eat LocalVar.
355
356  PATypeHolder Ty(Type::getVoidTy(Context));
357
358  if (ParseToken(lltok::equal, "expected '=' after name") ||
359      ParseToken(lltok::kw_type, "expected 'type' after name") ||
360      ParseType(Ty))
361    return true;
362
363  // Set the type name, checking for conflicts as we do so.
364  bool AlreadyExists = M->addTypeName(Name, Ty);
365  if (!AlreadyExists) return false;
366
367  // See if this type is a forward reference.  We need to eagerly resolve
368  // types to allow recursive type redefinitions below.
369  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
370  FI = ForwardRefTypes.find(Name);
371  if (FI != ForwardRefTypes.end()) {
372    if (FI->second.first.get() == Ty)
373      return Error(NameLoc, "self referential type is invalid");
374
375    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
376    Ty = FI->second.first.get();
377    ForwardRefTypes.erase(FI);
378  }
379
380  // Inserting a name that is already defined, get the existing name.
381  const Type *Existing = M->getTypeByName(Name);
382  assert(Existing && "Conflict but no matching type?!");
383
384  // Otherwise, this is an attempt to redefine a type. That's okay if
385  // the redefinition is identical to the original.
386  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
387  if (Existing == Ty) return false;
388
389  // Any other kind of (non-equivalent) redefinition is an error.
390  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
391               Ty->getDescription() + "'");
392}
393
394
395/// toplevelentity
396///   ::= 'declare' FunctionHeader
397bool LLParser::ParseDeclare() {
398  assert(Lex.getKind() == lltok::kw_declare);
399  Lex.Lex();
400
401  Function *F;
402  return ParseFunctionHeader(F, false);
403}
404
405/// toplevelentity
406///   ::= 'define' FunctionHeader '{' ...
407bool LLParser::ParseDefine() {
408  assert(Lex.getKind() == lltok::kw_define);
409  Lex.Lex();
410
411  Function *F;
412  return ParseFunctionHeader(F, true) ||
413         ParseFunctionBody(*F);
414}
415
416/// ParseGlobalType
417///   ::= 'constant'
418///   ::= 'global'
419bool LLParser::ParseGlobalType(bool &IsConstant) {
420  if (Lex.getKind() == lltok::kw_constant)
421    IsConstant = true;
422  else if (Lex.getKind() == lltok::kw_global)
423    IsConstant = false;
424  else {
425    IsConstant = false;
426    return TokError("expected 'global' or 'constant'");
427  }
428  Lex.Lex();
429  return false;
430}
431
432/// ParseUnnamedGlobal:
433///   OptionalVisibility ALIAS ...
434///   OptionalLinkage OptionalVisibility ...   -> global variable
435///   GlobalID '=' OptionalVisibility ALIAS ...
436///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
437bool LLParser::ParseUnnamedGlobal() {
438  unsigned VarID = NumberedVals.size();
439  std::string Name;
440  LocTy NameLoc = Lex.getLoc();
441
442  // Handle the GlobalID form.
443  if (Lex.getKind() == lltok::GlobalID) {
444    if (Lex.getUIntVal() != VarID)
445      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
446                   utostr(VarID) + "'");
447    Lex.Lex(); // eat GlobalID;
448
449    if (ParseToken(lltok::equal, "expected '=' after name"))
450      return true;
451  }
452
453  bool HasLinkage;
454  unsigned Linkage, Visibility;
455  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464/// ParseNamedGlobal:
465///   GlobalVar '=' OptionalVisibility ALIAS ...
466///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
467bool LLParser::ParseNamedGlobal() {
468  assert(Lex.getKind() == lltok::GlobalVar);
469  LocTy NameLoc = Lex.getLoc();
470  std::string Name = Lex.getStrVal();
471  Lex.Lex();
472
473  bool HasLinkage;
474  unsigned Linkage, Visibility;
475  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
476      ParseOptionalLinkage(Linkage, HasLinkage) ||
477      ParseOptionalVisibility(Visibility))
478    return true;
479
480  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
481    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
482  return ParseAlias(Name, NameLoc, Visibility);
483}
484
485// MDString:
486//   ::= '!' STRINGCONSTANT
487bool LLParser::ParseMDString(MDString *&Result) {
488  std::string Str;
489  if (ParseStringConstant(Str)) return true;
490  Result = MDString::get(Context, Str);
491  return false;
492}
493
494// MDNode:
495//   ::= '!' MDNodeNumber
496//
497/// This version of ParseMDNodeID returns the slot number and null in the case
498/// of a forward reference.
499bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
500  // !{ ..., !42, ... }
501  if (ParseUInt32(SlotNo)) return true;
502
503  // Check existing MDNode.
504  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
505    Result = NumberedMetadata[SlotNo];
506  else
507    Result = 0;
508  return false;
509}
510
511bool LLParser::ParseMDNodeID(MDNode *&Result) {
512  // !{ ..., !42, ... }
513  unsigned MID = 0;
514  if (ParseMDNodeID(Result, MID)) return true;
515
516  // If not a forward reference, just return it now.
517  if (Result) return false;
518
519  // Otherwise, create MDNode forward reference.
520
521  // FIXME: This is not unique enough!
522  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
523  Value *V = MDString::get(Context, FwdRefName);
524  MDNode *FwdNode = MDNode::get(Context, &V, 1);
525  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
526
527  if (NumberedMetadata.size() <= MID)
528    NumberedMetadata.resize(MID+1);
529  NumberedMetadata[MID] = FwdNode;
530  Result = FwdNode;
531  return false;
532}
533
534/// ParseNamedMetadata:
535///   !foo = !{ !1, !2 }
536bool LLParser::ParseNamedMetadata() {
537  assert(Lex.getKind() == lltok::MetadataVar);
538  std::string Name = Lex.getStrVal();
539  Lex.Lex();
540
541  if (ParseToken(lltok::equal, "expected '=' here") ||
542      ParseToken(lltok::exclaim, "Expected '!' here") ||
543      ParseToken(lltok::lbrace, "Expected '{' here"))
544    return true;
545
546  SmallVector<MDNode *, 8> Elts;
547  do {
548    // Null is a special case since it is typeless.
549    if (EatIfPresent(lltok::kw_null)) {
550      Elts.push_back(0);
551      continue;
552    }
553
554    if (ParseToken(lltok::exclaim, "Expected '!' here"))
555      return true;
556
557    MDNode *N = 0;
558    if (ParseMDNodeID(N)) return true;
559    Elts.push_back(N);
560  } while (EatIfPresent(lltok::comma));
561
562  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
563    return true;
564
565  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
566  return false;
567}
568
569/// ParseStandaloneMetadata:
570///   !42 = !{...}
571bool LLParser::ParseStandaloneMetadata() {
572  assert(Lex.getKind() == lltok::exclaim);
573  Lex.Lex();
574  unsigned MetadataID = 0;
575
576  LocTy TyLoc;
577  PATypeHolder Ty(Type::getVoidTy(Context));
578  SmallVector<Value *, 16> Elts;
579  if (ParseUInt32(MetadataID) ||
580      ParseToken(lltok::equal, "expected '=' here") ||
581      ParseType(Ty, TyLoc) ||
582      ParseToken(lltok::exclaim, "Expected '!' here") ||
583      ParseToken(lltok::lbrace, "Expected '{' here") ||
584      ParseMDNodeVector(Elts, NULL) ||
585      ParseToken(lltok::rbrace, "expected end of metadata node"))
586    return true;
587
588  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
589
590  // See if this was forward referenced, if so, handle it.
591  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
592    FI = ForwardRefMDNodes.find(MetadataID);
593  if (FI != ForwardRefMDNodes.end()) {
594    FI->second.first->replaceAllUsesWith(Init);
595    ForwardRefMDNodes.erase(FI);
596
597    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
598  } else {
599    if (MetadataID >= NumberedMetadata.size())
600      NumberedMetadata.resize(MetadataID+1);
601
602    if (NumberedMetadata[MetadataID] != 0)
603      return TokError("Metadata id is already used");
604    NumberedMetadata[MetadataID] = Init;
605  }
606
607  return false;
608}
609
610/// ParseAlias:
611///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
612/// Aliasee
613///   ::= TypeAndValue
614///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
615///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
616///
617/// Everything through visibility has already been parsed.
618///
619bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
620                          unsigned Visibility) {
621  assert(Lex.getKind() == lltok::kw_alias);
622  Lex.Lex();
623  unsigned Linkage;
624  LocTy LinkageLoc = Lex.getLoc();
625  if (ParseOptionalLinkage(Linkage))
626    return true;
627
628  if (Linkage != GlobalValue::ExternalLinkage &&
629      Linkage != GlobalValue::WeakAnyLinkage &&
630      Linkage != GlobalValue::WeakODRLinkage &&
631      Linkage != GlobalValue::InternalLinkage &&
632      Linkage != GlobalValue::PrivateLinkage &&
633      Linkage != GlobalValue::LinkerPrivateLinkage)
634    return Error(LinkageLoc, "invalid linkage type for alias");
635
636  Constant *Aliasee;
637  LocTy AliaseeLoc = Lex.getLoc();
638  if (Lex.getKind() != lltok::kw_bitcast &&
639      Lex.getKind() != lltok::kw_getelementptr) {
640    if (ParseGlobalTypeAndValue(Aliasee)) return true;
641  } else {
642    // The bitcast dest type is not present, it is implied by the dest type.
643    ValID ID;
644    if (ParseValID(ID)) return true;
645    if (ID.Kind != ValID::t_Constant)
646      return Error(AliaseeLoc, "invalid aliasee");
647    Aliasee = ID.ConstantVal;
648  }
649
650  if (!Aliasee->getType()->isPointerTy())
651    return Error(AliaseeLoc, "alias must have pointer type");
652
653  // Okay, create the alias but do not insert it into the module yet.
654  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
655                                    (GlobalValue::LinkageTypes)Linkage, Name,
656                                    Aliasee);
657  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
658
659  // See if this value already exists in the symbol table.  If so, it is either
660  // a redefinition or a definition of a forward reference.
661  if (GlobalValue *Val = M->getNamedValue(Name)) {
662    // See if this was a redefinition.  If so, there is no entry in
663    // ForwardRefVals.
664    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
665      I = ForwardRefVals.find(Name);
666    if (I == ForwardRefVals.end())
667      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
668
669    // Otherwise, this was a definition of forward ref.  Verify that types
670    // agree.
671    if (Val->getType() != GA->getType())
672      return Error(NameLoc,
673              "forward reference and definition of alias have different types");
674
675    // If they agree, just RAUW the old value with the alias and remove the
676    // forward ref info.
677    Val->replaceAllUsesWith(GA);
678    Val->eraseFromParent();
679    ForwardRefVals.erase(I);
680  }
681
682  // Insert into the module, we know its name won't collide now.
683  M->getAliasList().push_back(GA);
684  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
685
686  return false;
687}
688
689/// ParseGlobal
690///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
691///       OptionalAddrSpace GlobalType Type Const
692///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
693///       OptionalAddrSpace GlobalType Type Const
694///
695/// Everything through visibility has been parsed already.
696///
697bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
698                           unsigned Linkage, bool HasLinkage,
699                           unsigned Visibility) {
700  unsigned AddrSpace;
701  bool ThreadLocal, IsConstant;
702  LocTy TyLoc;
703
704  PATypeHolder Ty(Type::getVoidTy(Context));
705  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
706      ParseOptionalAddrSpace(AddrSpace) ||
707      ParseGlobalType(IsConstant) ||
708      ParseType(Ty, TyLoc))
709    return true;
710
711  // If the linkage is specified and is external, then no initializer is
712  // present.
713  Constant *Init = 0;
714  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
715                      Linkage != GlobalValue::ExternalWeakLinkage &&
716                      Linkage != GlobalValue::ExternalLinkage)) {
717    if (ParseGlobalValue(Ty, Init))
718      return true;
719  }
720
721  if (Ty->isFunctionTy() || Ty->isLabelTy())
722    return Error(TyLoc, "invalid type for global variable");
723
724  GlobalVariable *GV = 0;
725
726  // See if the global was forward referenced, if so, use the global.
727  if (!Name.empty()) {
728    if (GlobalValue *GVal = M->getNamedValue(Name)) {
729      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
730        return Error(NameLoc, "redefinition of global '@" + Name + "'");
731      GV = cast<GlobalVariable>(GVal);
732    }
733  } else {
734    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
735      I = ForwardRefValIDs.find(NumberedVals.size());
736    if (I != ForwardRefValIDs.end()) {
737      GV = cast<GlobalVariable>(I->second.first);
738      ForwardRefValIDs.erase(I);
739    }
740  }
741
742  if (GV == 0) {
743    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
744                            Name, 0, false, AddrSpace);
745  } else {
746    if (GV->getType()->getElementType() != Ty)
747      return Error(TyLoc,
748            "forward reference and definition of global have different types");
749
750    // Move the forward-reference to the correct spot in the module.
751    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
752  }
753
754  if (Name.empty())
755    NumberedVals.push_back(GV);
756
757  // Set the parsed properties on the global.
758  if (Init)
759    GV->setInitializer(Init);
760  GV->setConstant(IsConstant);
761  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
762  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
763  GV->setThreadLocal(ThreadLocal);
764
765  // Parse attributes on the global.
766  while (Lex.getKind() == lltok::comma) {
767    Lex.Lex();
768
769    if (Lex.getKind() == lltok::kw_section) {
770      Lex.Lex();
771      GV->setSection(Lex.getStrVal());
772      if (ParseToken(lltok::StringConstant, "expected global section string"))
773        return true;
774    } else if (Lex.getKind() == lltok::kw_align) {
775      unsigned Alignment;
776      if (ParseOptionalAlignment(Alignment)) return true;
777      GV->setAlignment(Alignment);
778    } else {
779      TokError("unknown global variable property!");
780    }
781  }
782
783  return false;
784}
785
786
787//===----------------------------------------------------------------------===//
788// GlobalValue Reference/Resolution Routines.
789//===----------------------------------------------------------------------===//
790
791/// GetGlobalVal - Get a value with the specified name or ID, creating a
792/// forward reference record if needed.  This can return null if the value
793/// exists but does not have the right type.
794GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
795                                    LocTy Loc) {
796  const PointerType *PTy = dyn_cast<PointerType>(Ty);
797  if (PTy == 0) {
798    Error(Loc, "global variable reference must have pointer type");
799    return 0;
800  }
801
802  // Look this name up in the normal function symbol table.
803  GlobalValue *Val =
804    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
805
806  // If this is a forward reference for the value, see if we already created a
807  // forward ref record.
808  if (Val == 0) {
809    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
810      I = ForwardRefVals.find(Name);
811    if (I != ForwardRefVals.end())
812      Val = I->second.first;
813  }
814
815  // If we have the value in the symbol table or fwd-ref table, return it.
816  if (Val) {
817    if (Val->getType() == Ty) return Val;
818    Error(Loc, "'@" + Name + "' defined with type '" +
819          Val->getType()->getDescription() + "'");
820    return 0;
821  }
822
823  // Otherwise, create a new forward reference for this value and remember it.
824  GlobalValue *FwdVal;
825  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
826    // Function types can return opaque but functions can't.
827    if (FT->getReturnType()->isOpaqueTy()) {
828      Error(Loc, "function may not return opaque type");
829      return 0;
830    }
831
832    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
833  } else {
834    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
835                                GlobalValue::ExternalWeakLinkage, 0, Name);
836  }
837
838  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
839  return FwdVal;
840}
841
842GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
843  const PointerType *PTy = dyn_cast<PointerType>(Ty);
844  if (PTy == 0) {
845    Error(Loc, "global variable reference must have pointer type");
846    return 0;
847  }
848
849  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
850
851  // If this is a forward reference for the value, see if we already created a
852  // forward ref record.
853  if (Val == 0) {
854    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
855      I = ForwardRefValIDs.find(ID);
856    if (I != ForwardRefValIDs.end())
857      Val = I->second.first;
858  }
859
860  // If we have the value in the symbol table or fwd-ref table, return it.
861  if (Val) {
862    if (Val->getType() == Ty) return Val;
863    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
864          Val->getType()->getDescription() + "'");
865    return 0;
866  }
867
868  // Otherwise, create a new forward reference for this value and remember it.
869  GlobalValue *FwdVal;
870  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
871    // Function types can return opaque but functions can't.
872    if (FT->getReturnType()->isOpaqueTy()) {
873      Error(Loc, "function may not return opaque type");
874      return 0;
875    }
876    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
877  } else {
878    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
879                                GlobalValue::ExternalWeakLinkage, 0, "");
880  }
881
882  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
883  return FwdVal;
884}
885
886
887//===----------------------------------------------------------------------===//
888// Helper Routines.
889//===----------------------------------------------------------------------===//
890
891/// ParseToken - If the current token has the specified kind, eat it and return
892/// success.  Otherwise, emit the specified error and return failure.
893bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
894  if (Lex.getKind() != T)
895    return TokError(ErrMsg);
896  Lex.Lex();
897  return false;
898}
899
900/// ParseStringConstant
901///   ::= StringConstant
902bool LLParser::ParseStringConstant(std::string &Result) {
903  if (Lex.getKind() != lltok::StringConstant)
904    return TokError("expected string constant");
905  Result = Lex.getStrVal();
906  Lex.Lex();
907  return false;
908}
909
910/// ParseUInt32
911///   ::= uint32
912bool LLParser::ParseUInt32(unsigned &Val) {
913  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
914    return TokError("expected integer");
915  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
916  if (Val64 != unsigned(Val64))
917    return TokError("expected 32-bit integer (too large)");
918  Val = Val64;
919  Lex.Lex();
920  return false;
921}
922
923
924/// ParseOptionalAddrSpace
925///   := /*empty*/
926///   := 'addrspace' '(' uint32 ')'
927bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
928  AddrSpace = 0;
929  if (!EatIfPresent(lltok::kw_addrspace))
930    return false;
931  return ParseToken(lltok::lparen, "expected '(' in address space") ||
932         ParseUInt32(AddrSpace) ||
933         ParseToken(lltok::rparen, "expected ')' in address space");
934}
935
936/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
937/// indicates what kind of attribute list this is: 0: function arg, 1: result,
938/// 2: function attr.
939/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
940bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
941  Attrs = Attribute::None;
942  LocTy AttrLoc = Lex.getLoc();
943
944  while (1) {
945    switch (Lex.getKind()) {
946    case lltok::kw_sext:
947    case lltok::kw_zext:
948      // Treat these as signext/zeroext if they occur in the argument list after
949      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
950      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
951      // expr.
952      // FIXME: REMOVE THIS IN LLVM 3.0
953      if (AttrKind == 3) {
954        if (Lex.getKind() == lltok::kw_sext)
955          Attrs |= Attribute::SExt;
956        else
957          Attrs |= Attribute::ZExt;
958        break;
959      }
960      // FALL THROUGH.
961    default:  // End of attributes.
962      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
963        return Error(AttrLoc, "invalid use of function-only attribute");
964
965      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
966        return Error(AttrLoc, "invalid use of parameter-only attribute");
967
968      return false;
969    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
970    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
971    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
972    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
973    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
974    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
975    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
976    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
977
978    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
979    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
980    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
981    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
982    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
983    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
984    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
985    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
986    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
987    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
988    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
989    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
990    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
991
992    case lltok::kw_alignstack: {
993      unsigned Alignment;
994      if (ParseOptionalStackAlignment(Alignment))
995        return true;
996      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
997      continue;
998    }
999
1000    case lltok::kw_align: {
1001      unsigned Alignment;
1002      if (ParseOptionalAlignment(Alignment))
1003        return true;
1004      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1005      continue;
1006    }
1007
1008    }
1009    Lex.Lex();
1010  }
1011}
1012
1013/// ParseOptionalLinkage
1014///   ::= /*empty*/
1015///   ::= 'private'
1016///   ::= 'linker_private'
1017///   ::= 'internal'
1018///   ::= 'weak'
1019///   ::= 'weak_odr'
1020///   ::= 'linkonce'
1021///   ::= 'linkonce_odr'
1022///   ::= 'appending'
1023///   ::= 'dllexport'
1024///   ::= 'common'
1025///   ::= 'dllimport'
1026///   ::= 'extern_weak'
1027///   ::= 'external'
1028bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1029  HasLinkage = false;
1030  switch (Lex.getKind()) {
1031  default:                       Res=GlobalValue::ExternalLinkage; return false;
1032  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1033  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1034  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1035  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1036  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1037  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1038  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1039  case lltok::kw_available_externally:
1040    Res = GlobalValue::AvailableExternallyLinkage;
1041    break;
1042  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1043  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1044  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1045  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1046  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1047  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1048  }
1049  Lex.Lex();
1050  HasLinkage = true;
1051  return false;
1052}
1053
1054/// ParseOptionalVisibility
1055///   ::= /*empty*/
1056///   ::= 'default'
1057///   ::= 'hidden'
1058///   ::= 'protected'
1059///
1060bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1061  switch (Lex.getKind()) {
1062  default:                  Res = GlobalValue::DefaultVisibility; return false;
1063  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1064  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1065  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1066  }
1067  Lex.Lex();
1068  return false;
1069}
1070
1071/// ParseOptionalCallingConv
1072///   ::= /*empty*/
1073///   ::= 'ccc'
1074///   ::= 'fastcc'
1075///   ::= 'coldcc'
1076///   ::= 'x86_stdcallcc'
1077///   ::= 'x86_fastcallcc'
1078///   ::= 'arm_apcscc'
1079///   ::= 'arm_aapcscc'
1080///   ::= 'arm_aapcs_vfpcc'
1081///   ::= 'msp430_intrcc'
1082///   ::= 'cc' UINT
1083///
1084bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1085  switch (Lex.getKind()) {
1086  default:                       CC = CallingConv::C; return false;
1087  case lltok::kw_ccc:            CC = CallingConv::C; break;
1088  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1089  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1090  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1091  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1092  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1093  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1094  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1095  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1096  case lltok::kw_cc: {
1097      unsigned ArbitraryCC;
1098      Lex.Lex();
1099      if (ParseUInt32(ArbitraryCC)) {
1100        return true;
1101      } else
1102        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1103        return false;
1104    }
1105    break;
1106  }
1107
1108  Lex.Lex();
1109  return false;
1110}
1111
1112/// ParseInstructionMetadata
1113///   ::= !dbg !42 (',' !dbg !57)*
1114bool LLParser::ParseInstructionMetadata(Instruction *Inst) {
1115  do {
1116    if (Lex.getKind() != lltok::MetadataVar)
1117      return TokError("expected metadata after comma");
1118
1119    std::string Name = Lex.getStrVal();
1120    Lex.Lex();
1121
1122    MDNode *Node;
1123    unsigned NodeID;
1124    SMLoc Loc = Lex.getLoc();
1125    if (ParseToken(lltok::exclaim, "expected '!' here") ||
1126        ParseMDNodeID(Node, NodeID))
1127      return true;
1128
1129    unsigned MDK = M->getMDKindID(Name.c_str());
1130    if (Node) {
1131      // If we got the node, add it to the instruction.
1132      Inst->setMetadata(MDK, Node);
1133    } else {
1134      MDRef R = { Loc, MDK, NodeID };
1135      // Otherwise, remember that this should be resolved later.
1136      ForwardRefInstMetadata[Inst].push_back(R);
1137    }
1138
1139    // If this is the end of the list, we're done.
1140  } while (EatIfPresent(lltok::comma));
1141  return false;
1142}
1143
1144/// ParseOptionalAlignment
1145///   ::= /* empty */
1146///   ::= 'align' 4
1147bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1148  Alignment = 0;
1149  if (!EatIfPresent(lltok::kw_align))
1150    return false;
1151  LocTy AlignLoc = Lex.getLoc();
1152  if (ParseUInt32(Alignment)) return true;
1153  if (!isPowerOf2_32(Alignment))
1154    return Error(AlignLoc, "alignment is not a power of two");
1155  return false;
1156}
1157
1158/// ParseOptionalCommaAlign
1159///   ::=
1160///   ::= ',' align 4
1161///
1162/// This returns with AteExtraComma set to true if it ate an excess comma at the
1163/// end.
1164bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1165                                       bool &AteExtraComma) {
1166  AteExtraComma = false;
1167  while (EatIfPresent(lltok::comma)) {
1168    // Metadata at the end is an early exit.
1169    if (Lex.getKind() == lltok::MetadataVar) {
1170      AteExtraComma = true;
1171      return false;
1172    }
1173
1174    if (Lex.getKind() == lltok::kw_align) {
1175      if (ParseOptionalAlignment(Alignment)) return true;
1176    } else
1177      return true;
1178  }
1179
1180  return false;
1181}
1182
1183/// ParseOptionalStackAlignment
1184///   ::= /* empty */
1185///   ::= 'alignstack' '(' 4 ')'
1186bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1187  Alignment = 0;
1188  if (!EatIfPresent(lltok::kw_alignstack))
1189    return false;
1190  LocTy ParenLoc = Lex.getLoc();
1191  if (!EatIfPresent(lltok::lparen))
1192    return Error(ParenLoc, "expected '('");
1193  LocTy AlignLoc = Lex.getLoc();
1194  if (ParseUInt32(Alignment)) return true;
1195  ParenLoc = Lex.getLoc();
1196  if (!EatIfPresent(lltok::rparen))
1197    return Error(ParenLoc, "expected ')'");
1198  if (!isPowerOf2_32(Alignment))
1199    return Error(AlignLoc, "stack alignment is not a power of two");
1200  return false;
1201}
1202
1203/// ParseIndexList - This parses the index list for an insert/extractvalue
1204/// instruction.  This sets AteExtraComma in the case where we eat an extra
1205/// comma at the end of the line and find that it is followed by metadata.
1206/// Clients that don't allow metadata can call the version of this function that
1207/// only takes one argument.
1208///
1209/// ParseIndexList
1210///    ::=  (',' uint32)+
1211///
1212bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1213                              bool &AteExtraComma) {
1214  AteExtraComma = false;
1215
1216  if (Lex.getKind() != lltok::comma)
1217    return TokError("expected ',' as start of index list");
1218
1219  while (EatIfPresent(lltok::comma)) {
1220    if (Lex.getKind() == lltok::MetadataVar) {
1221      AteExtraComma = true;
1222      return false;
1223    }
1224    unsigned Idx;
1225    if (ParseUInt32(Idx)) return true;
1226    Indices.push_back(Idx);
1227  }
1228
1229  return false;
1230}
1231
1232//===----------------------------------------------------------------------===//
1233// Type Parsing.
1234//===----------------------------------------------------------------------===//
1235
1236/// ParseType - Parse and resolve a full type.
1237bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1238  LocTy TypeLoc = Lex.getLoc();
1239  if (ParseTypeRec(Result)) return true;
1240
1241  // Verify no unresolved uprefs.
1242  if (!UpRefs.empty())
1243    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1244
1245  if (!AllowVoid && Result.get()->isVoidTy())
1246    return Error(TypeLoc, "void type only allowed for function results");
1247
1248  return false;
1249}
1250
1251/// HandleUpRefs - Every time we finish a new layer of types, this function is
1252/// called.  It loops through the UpRefs vector, which is a list of the
1253/// currently active types.  For each type, if the up-reference is contained in
1254/// the newly completed type, we decrement the level count.  When the level
1255/// count reaches zero, the up-referenced type is the type that is passed in:
1256/// thus we can complete the cycle.
1257///
1258PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1259  // If Ty isn't abstract, or if there are no up-references in it, then there is
1260  // nothing to resolve here.
1261  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1262
1263  PATypeHolder Ty(ty);
1264#if 0
1265  dbgs() << "Type '" << Ty->getDescription()
1266         << "' newly formed.  Resolving upreferences.\n"
1267         << UpRefs.size() << " upreferences active!\n";
1268#endif
1269
1270  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1271  // to zero), we resolve them all together before we resolve them to Ty.  At
1272  // the end of the loop, if there is anything to resolve to Ty, it will be in
1273  // this variable.
1274  OpaqueType *TypeToResolve = 0;
1275
1276  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1277    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1278    bool ContainsType =
1279      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1280                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1281
1282#if 0
1283    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1284           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1285           << (ContainsType ? "true" : "false")
1286           << " level=" << UpRefs[i].NestingLevel << "\n";
1287#endif
1288    if (!ContainsType)
1289      continue;
1290
1291    // Decrement level of upreference
1292    unsigned Level = --UpRefs[i].NestingLevel;
1293    UpRefs[i].LastContainedTy = Ty;
1294
1295    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1296    if (Level != 0)
1297      continue;
1298
1299#if 0
1300    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1301#endif
1302    if (!TypeToResolve)
1303      TypeToResolve = UpRefs[i].UpRefTy;
1304    else
1305      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1306    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1307    --i;                                // Do not skip the next element.
1308  }
1309
1310  if (TypeToResolve)
1311    TypeToResolve->refineAbstractTypeTo(Ty);
1312
1313  return Ty;
1314}
1315
1316
1317/// ParseTypeRec - The recursive function used to process the internal
1318/// implementation details of types.
1319bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1320  switch (Lex.getKind()) {
1321  default:
1322    return TokError("expected type");
1323  case lltok::Type:
1324    // TypeRec ::= 'float' | 'void' (etc)
1325    Result = Lex.getTyVal();
1326    Lex.Lex();
1327    break;
1328  case lltok::kw_opaque:
1329    // TypeRec ::= 'opaque'
1330    Result = OpaqueType::get(Context);
1331    Lex.Lex();
1332    break;
1333  case lltok::lbrace:
1334    // TypeRec ::= '{' ... '}'
1335    if (ParseStructType(Result, false))
1336      return true;
1337    break;
1338  case lltok::kw_union:
1339    // TypeRec ::= 'union' '{' ... '}'
1340    if (ParseUnionType(Result))
1341      return true;
1342    break;
1343  case lltok::lsquare:
1344    // TypeRec ::= '[' ... ']'
1345    Lex.Lex(); // eat the lsquare.
1346    if (ParseArrayVectorType(Result, false))
1347      return true;
1348    break;
1349  case lltok::less: // Either vector or packed struct.
1350    // TypeRec ::= '<' ... '>'
1351    Lex.Lex();
1352    if (Lex.getKind() == lltok::lbrace) {
1353      if (ParseStructType(Result, true) ||
1354          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1355        return true;
1356    } else if (ParseArrayVectorType(Result, true))
1357      return true;
1358    break;
1359  case lltok::LocalVar:
1360  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1361    // TypeRec ::= %foo
1362    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1363      Result = T;
1364    } else {
1365      Result = OpaqueType::get(Context);
1366      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1367                                            std::make_pair(Result,
1368                                                           Lex.getLoc())));
1369      M->addTypeName(Lex.getStrVal(), Result.get());
1370    }
1371    Lex.Lex();
1372    break;
1373
1374  case lltok::LocalVarID:
1375    // TypeRec ::= %4
1376    if (Lex.getUIntVal() < NumberedTypes.size())
1377      Result = NumberedTypes[Lex.getUIntVal()];
1378    else {
1379      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1380        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1381      if (I != ForwardRefTypeIDs.end())
1382        Result = I->second.first;
1383      else {
1384        Result = OpaqueType::get(Context);
1385        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1386                                                std::make_pair(Result,
1387                                                               Lex.getLoc())));
1388      }
1389    }
1390    Lex.Lex();
1391    break;
1392  case lltok::backslash: {
1393    // TypeRec ::= '\' 4
1394    Lex.Lex();
1395    unsigned Val;
1396    if (ParseUInt32(Val)) return true;
1397    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1398    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1399    Result = OT;
1400    break;
1401  }
1402  }
1403
1404  // Parse the type suffixes.
1405  while (1) {
1406    switch (Lex.getKind()) {
1407    // End of type.
1408    default: return false;
1409
1410    // TypeRec ::= TypeRec '*'
1411    case lltok::star:
1412      if (Result.get()->isLabelTy())
1413        return TokError("basic block pointers are invalid");
1414      if (Result.get()->isVoidTy())
1415        return TokError("pointers to void are invalid; use i8* instead");
1416      if (!PointerType::isValidElementType(Result.get()))
1417        return TokError("pointer to this type is invalid");
1418      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1419      Lex.Lex();
1420      break;
1421
1422    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1423    case lltok::kw_addrspace: {
1424      if (Result.get()->isLabelTy())
1425        return TokError("basic block pointers are invalid");
1426      if (Result.get()->isVoidTy())
1427        return TokError("pointers to void are invalid; use i8* instead");
1428      if (!PointerType::isValidElementType(Result.get()))
1429        return TokError("pointer to this type is invalid");
1430      unsigned AddrSpace;
1431      if (ParseOptionalAddrSpace(AddrSpace) ||
1432          ParseToken(lltok::star, "expected '*' in address space"))
1433        return true;
1434
1435      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1436      break;
1437    }
1438
1439    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1440    case lltok::lparen:
1441      if (ParseFunctionType(Result))
1442        return true;
1443      break;
1444    }
1445  }
1446}
1447
1448/// ParseParameterList
1449///    ::= '(' ')'
1450///    ::= '(' Arg (',' Arg)* ')'
1451///  Arg
1452///    ::= Type OptionalAttributes Value OptionalAttributes
1453bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1454                                  PerFunctionState &PFS) {
1455  if (ParseToken(lltok::lparen, "expected '(' in call"))
1456    return true;
1457
1458  while (Lex.getKind() != lltok::rparen) {
1459    // If this isn't the first argument, we need a comma.
1460    if (!ArgList.empty() &&
1461        ParseToken(lltok::comma, "expected ',' in argument list"))
1462      return true;
1463
1464    // Parse the argument.
1465    LocTy ArgLoc;
1466    PATypeHolder ArgTy(Type::getVoidTy(Context));
1467    unsigned ArgAttrs1 = Attribute::None;
1468    unsigned ArgAttrs2 = Attribute::None;
1469    Value *V;
1470    if (ParseType(ArgTy, ArgLoc))
1471      return true;
1472
1473    // Otherwise, handle normal operands.
1474    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1475        ParseValue(ArgTy, V, PFS) ||
1476        // FIXME: Should not allow attributes after the argument, remove this
1477        // in LLVM 3.0.
1478        ParseOptionalAttrs(ArgAttrs2, 3))
1479      return true;
1480    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1481  }
1482
1483  Lex.Lex();  // Lex the ')'.
1484  return false;
1485}
1486
1487
1488
1489/// ParseArgumentList - Parse the argument list for a function type or function
1490/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1491///   ::= '(' ArgTypeListI ')'
1492/// ArgTypeListI
1493///   ::= /*empty*/
1494///   ::= '...'
1495///   ::= ArgTypeList ',' '...'
1496///   ::= ArgType (',' ArgType)*
1497///
1498bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1499                                 bool &isVarArg, bool inType) {
1500  isVarArg = false;
1501  assert(Lex.getKind() == lltok::lparen);
1502  Lex.Lex(); // eat the (.
1503
1504  if (Lex.getKind() == lltok::rparen) {
1505    // empty
1506  } else if (Lex.getKind() == lltok::dotdotdot) {
1507    isVarArg = true;
1508    Lex.Lex();
1509  } else {
1510    LocTy TypeLoc = Lex.getLoc();
1511    PATypeHolder ArgTy(Type::getVoidTy(Context));
1512    unsigned Attrs;
1513    std::string Name;
1514
1515    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1516    // types (such as a function returning a pointer to itself).  If parsing a
1517    // function prototype, we require fully resolved types.
1518    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1519        ParseOptionalAttrs(Attrs, 0)) return true;
1520
1521    if (ArgTy->isVoidTy())
1522      return Error(TypeLoc, "argument can not have void type");
1523
1524    if (Lex.getKind() == lltok::LocalVar ||
1525        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1526      Name = Lex.getStrVal();
1527      Lex.Lex();
1528    }
1529
1530    if (!FunctionType::isValidArgumentType(ArgTy))
1531      return Error(TypeLoc, "invalid type for function argument");
1532
1533    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1534
1535    while (EatIfPresent(lltok::comma)) {
1536      // Handle ... at end of arg list.
1537      if (EatIfPresent(lltok::dotdotdot)) {
1538        isVarArg = true;
1539        break;
1540      }
1541
1542      // Otherwise must be an argument type.
1543      TypeLoc = Lex.getLoc();
1544      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1545          ParseOptionalAttrs(Attrs, 0)) return true;
1546
1547      if (ArgTy->isVoidTy())
1548        return Error(TypeLoc, "argument can not have void type");
1549
1550      if (Lex.getKind() == lltok::LocalVar ||
1551          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1552        Name = Lex.getStrVal();
1553        Lex.Lex();
1554      } else {
1555        Name = "";
1556      }
1557
1558      if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
1559        return Error(TypeLoc, "invalid type for function argument");
1560
1561      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1562    }
1563  }
1564
1565  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1566}
1567
1568/// ParseFunctionType
1569///  ::= Type ArgumentList OptionalAttrs
1570bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1571  assert(Lex.getKind() == lltok::lparen);
1572
1573  if (!FunctionType::isValidReturnType(Result))
1574    return TokError("invalid function return type");
1575
1576  std::vector<ArgInfo> ArgList;
1577  bool isVarArg;
1578  unsigned Attrs;
1579  if (ParseArgumentList(ArgList, isVarArg, true) ||
1580      // FIXME: Allow, but ignore attributes on function types!
1581      // FIXME: Remove in LLVM 3.0
1582      ParseOptionalAttrs(Attrs, 2))
1583    return true;
1584
1585  // Reject names on the arguments lists.
1586  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1587    if (!ArgList[i].Name.empty())
1588      return Error(ArgList[i].Loc, "argument name invalid in function type");
1589    if (!ArgList[i].Attrs != 0) {
1590      // Allow but ignore attributes on function types; this permits
1591      // auto-upgrade.
1592      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1593    }
1594  }
1595
1596  std::vector<const Type*> ArgListTy;
1597  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1598    ArgListTy.push_back(ArgList[i].Type);
1599
1600  Result = HandleUpRefs(FunctionType::get(Result.get(),
1601                                                ArgListTy, isVarArg));
1602  return false;
1603}
1604
1605/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1606///   TypeRec
1607///     ::= '{' '}'
1608///     ::= '{' TypeRec (',' TypeRec)* '}'
1609///     ::= '<' '{' '}' '>'
1610///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1611bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1612  assert(Lex.getKind() == lltok::lbrace);
1613  Lex.Lex(); // Consume the '{'
1614
1615  if (EatIfPresent(lltok::rbrace)) {
1616    Result = StructType::get(Context, Packed);
1617    return false;
1618  }
1619
1620  std::vector<PATypeHolder> ParamsList;
1621  LocTy EltTyLoc = Lex.getLoc();
1622  if (ParseTypeRec(Result)) return true;
1623  ParamsList.push_back(Result);
1624
1625  if (Result->isVoidTy())
1626    return Error(EltTyLoc, "struct element can not have void type");
1627  if (!StructType::isValidElementType(Result))
1628    return Error(EltTyLoc, "invalid element type for struct");
1629
1630  while (EatIfPresent(lltok::comma)) {
1631    EltTyLoc = Lex.getLoc();
1632    if (ParseTypeRec(Result)) return true;
1633
1634    if (Result->isVoidTy())
1635      return Error(EltTyLoc, "struct element can not have void type");
1636    if (!StructType::isValidElementType(Result))
1637      return Error(EltTyLoc, "invalid element type for struct");
1638
1639    ParamsList.push_back(Result);
1640  }
1641
1642  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1643    return true;
1644
1645  std::vector<const Type*> ParamsListTy;
1646  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1647    ParamsListTy.push_back(ParamsList[i].get());
1648  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1649  return false;
1650}
1651
1652/// ParseUnionType
1653///   TypeRec
1654///     ::= 'union' '{' TypeRec (',' TypeRec)* '}'
1655bool LLParser::ParseUnionType(PATypeHolder &Result) {
1656  assert(Lex.getKind() == lltok::kw_union);
1657  Lex.Lex(); // Consume the 'union'
1658
1659  if (ParseToken(lltok::lbrace, "'{' expected after 'union'")) return true;
1660
1661  SmallVector<PATypeHolder, 8> ParamsList;
1662  do {
1663    LocTy EltTyLoc = Lex.getLoc();
1664    if (ParseTypeRec(Result)) return true;
1665    ParamsList.push_back(Result);
1666
1667    if (Result->isVoidTy())
1668      return Error(EltTyLoc, "union element can not have void type");
1669    if (!UnionType::isValidElementType(Result))
1670      return Error(EltTyLoc, "invalid element type for union");
1671
1672  } while (EatIfPresent(lltok::comma)) ;
1673
1674  if (ParseToken(lltok::rbrace, "expected '}' at end of union"))
1675    return true;
1676
1677  SmallVector<const Type*, 8> ParamsListTy;
1678  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1679    ParamsListTy.push_back(ParamsList[i].get());
1680  Result = HandleUpRefs(UnionType::get(&ParamsListTy[0], ParamsListTy.size()));
1681  return false;
1682}
1683
1684/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1685/// token has already been consumed.
1686///   TypeRec
1687///     ::= '[' APSINTVAL 'x' Types ']'
1688///     ::= '<' APSINTVAL 'x' Types '>'
1689bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1690  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1691      Lex.getAPSIntVal().getBitWidth() > 64)
1692    return TokError("expected number in address space");
1693
1694  LocTy SizeLoc = Lex.getLoc();
1695  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1696  Lex.Lex();
1697
1698  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1699      return true;
1700
1701  LocTy TypeLoc = Lex.getLoc();
1702  PATypeHolder EltTy(Type::getVoidTy(Context));
1703  if (ParseTypeRec(EltTy)) return true;
1704
1705  if (EltTy->isVoidTy())
1706    return Error(TypeLoc, "array and vector element type cannot be void");
1707
1708  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1709                 "expected end of sequential type"))
1710    return true;
1711
1712  if (isVector) {
1713    if (Size == 0)
1714      return Error(SizeLoc, "zero element vector is illegal");
1715    if ((unsigned)Size != Size)
1716      return Error(SizeLoc, "size too large for vector");
1717    if (!VectorType::isValidElementType(EltTy))
1718      return Error(TypeLoc, "vector element type must be fp or integer");
1719    Result = VectorType::get(EltTy, unsigned(Size));
1720  } else {
1721    if (!ArrayType::isValidElementType(EltTy))
1722      return Error(TypeLoc, "invalid array element type");
1723    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1724  }
1725  return false;
1726}
1727
1728//===----------------------------------------------------------------------===//
1729// Function Semantic Analysis.
1730//===----------------------------------------------------------------------===//
1731
1732LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1733                                             int functionNumber)
1734  : P(p), F(f), FunctionNumber(functionNumber) {
1735
1736  // Insert unnamed arguments into the NumberedVals list.
1737  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1738       AI != E; ++AI)
1739    if (!AI->hasName())
1740      NumberedVals.push_back(AI);
1741}
1742
1743LLParser::PerFunctionState::~PerFunctionState() {
1744  // If there were any forward referenced non-basicblock values, delete them.
1745  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1746       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1747    if (!isa<BasicBlock>(I->second.first)) {
1748      I->second.first->replaceAllUsesWith(
1749                           UndefValue::get(I->second.first->getType()));
1750      delete I->second.first;
1751      I->second.first = 0;
1752    }
1753
1754  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1755       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1756    if (!isa<BasicBlock>(I->second.first)) {
1757      I->second.first->replaceAllUsesWith(
1758                           UndefValue::get(I->second.first->getType()));
1759      delete I->second.first;
1760      I->second.first = 0;
1761    }
1762}
1763
1764bool LLParser::PerFunctionState::FinishFunction() {
1765  // Check to see if someone took the address of labels in this block.
1766  if (!P.ForwardRefBlockAddresses.empty()) {
1767    ValID FunctionID;
1768    if (!F.getName().empty()) {
1769      FunctionID.Kind = ValID::t_GlobalName;
1770      FunctionID.StrVal = F.getName();
1771    } else {
1772      FunctionID.Kind = ValID::t_GlobalID;
1773      FunctionID.UIntVal = FunctionNumber;
1774    }
1775
1776    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1777      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1778    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1779      // Resolve all these references.
1780      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1781        return true;
1782
1783      P.ForwardRefBlockAddresses.erase(FRBAI);
1784    }
1785  }
1786
1787  if (!ForwardRefVals.empty())
1788    return P.Error(ForwardRefVals.begin()->second.second,
1789                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1790                   "'");
1791  if (!ForwardRefValIDs.empty())
1792    return P.Error(ForwardRefValIDs.begin()->second.second,
1793                   "use of undefined value '%" +
1794                   utostr(ForwardRefValIDs.begin()->first) + "'");
1795  return false;
1796}
1797
1798
1799/// GetVal - Get a value with the specified name or ID, creating a
1800/// forward reference record if needed.  This can return null if the value
1801/// exists but does not have the right type.
1802Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1803                                          const Type *Ty, LocTy Loc) {
1804  // Look this name up in the normal function symbol table.
1805  Value *Val = F.getValueSymbolTable().lookup(Name);
1806
1807  // If this is a forward reference for the value, see if we already created a
1808  // forward ref record.
1809  if (Val == 0) {
1810    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1811      I = ForwardRefVals.find(Name);
1812    if (I != ForwardRefVals.end())
1813      Val = I->second.first;
1814  }
1815
1816  // If we have the value in the symbol table or fwd-ref table, return it.
1817  if (Val) {
1818    if (Val->getType() == Ty) return Val;
1819    if (Ty->isLabelTy())
1820      P.Error(Loc, "'%" + Name + "' is not a basic block");
1821    else
1822      P.Error(Loc, "'%" + Name + "' defined with type '" +
1823              Val->getType()->getDescription() + "'");
1824    return 0;
1825  }
1826
1827  // Don't make placeholders with invalid type.
1828  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1829    P.Error(Loc, "invalid use of a non-first-class type");
1830    return 0;
1831  }
1832
1833  // Otherwise, create a new forward reference for this value and remember it.
1834  Value *FwdVal;
1835  if (Ty->isLabelTy())
1836    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1837  else
1838    FwdVal = new Argument(Ty, Name);
1839
1840  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1841  return FwdVal;
1842}
1843
1844Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1845                                          LocTy Loc) {
1846  // Look this name up in the normal function symbol table.
1847  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1848
1849  // If this is a forward reference for the value, see if we already created a
1850  // forward ref record.
1851  if (Val == 0) {
1852    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1853      I = ForwardRefValIDs.find(ID);
1854    if (I != ForwardRefValIDs.end())
1855      Val = I->second.first;
1856  }
1857
1858  // If we have the value in the symbol table or fwd-ref table, return it.
1859  if (Val) {
1860    if (Val->getType() == Ty) return Val;
1861    if (Ty->isLabelTy())
1862      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1863    else
1864      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1865              Val->getType()->getDescription() + "'");
1866    return 0;
1867  }
1868
1869  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1870    P.Error(Loc, "invalid use of a non-first-class type");
1871    return 0;
1872  }
1873
1874  // Otherwise, create a new forward reference for this value and remember it.
1875  Value *FwdVal;
1876  if (Ty->isLabelTy())
1877    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1878  else
1879    FwdVal = new Argument(Ty);
1880
1881  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1882  return FwdVal;
1883}
1884
1885/// SetInstName - After an instruction is parsed and inserted into its
1886/// basic block, this installs its name.
1887bool LLParser::PerFunctionState::SetInstName(int NameID,
1888                                             const std::string &NameStr,
1889                                             LocTy NameLoc, Instruction *Inst) {
1890  // If this instruction has void type, it cannot have a name or ID specified.
1891  if (Inst->getType()->isVoidTy()) {
1892    if (NameID != -1 || !NameStr.empty())
1893      return P.Error(NameLoc, "instructions returning void cannot have a name");
1894    return false;
1895  }
1896
1897  // If this was a numbered instruction, verify that the instruction is the
1898  // expected value and resolve any forward references.
1899  if (NameStr.empty()) {
1900    // If neither a name nor an ID was specified, just use the next ID.
1901    if (NameID == -1)
1902      NameID = NumberedVals.size();
1903
1904    if (unsigned(NameID) != NumberedVals.size())
1905      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1906                     utostr(NumberedVals.size()) + "'");
1907
1908    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1909      ForwardRefValIDs.find(NameID);
1910    if (FI != ForwardRefValIDs.end()) {
1911      if (FI->second.first->getType() != Inst->getType())
1912        return P.Error(NameLoc, "instruction forward referenced with type '" +
1913                       FI->second.first->getType()->getDescription() + "'");
1914      FI->second.first->replaceAllUsesWith(Inst);
1915      delete FI->second.first;
1916      ForwardRefValIDs.erase(FI);
1917    }
1918
1919    NumberedVals.push_back(Inst);
1920    return false;
1921  }
1922
1923  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1924  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1925    FI = ForwardRefVals.find(NameStr);
1926  if (FI != ForwardRefVals.end()) {
1927    if (FI->second.first->getType() != Inst->getType())
1928      return P.Error(NameLoc, "instruction forward referenced with type '" +
1929                     FI->second.first->getType()->getDescription() + "'");
1930    FI->second.first->replaceAllUsesWith(Inst);
1931    delete FI->second.first;
1932    ForwardRefVals.erase(FI);
1933  }
1934
1935  // Set the name on the instruction.
1936  Inst->setName(NameStr);
1937
1938  if (Inst->getNameStr() != NameStr)
1939    return P.Error(NameLoc, "multiple definition of local value named '" +
1940                   NameStr + "'");
1941  return false;
1942}
1943
1944/// GetBB - Get a basic block with the specified name or ID, creating a
1945/// forward reference record if needed.
1946BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1947                                              LocTy Loc) {
1948  return cast_or_null<BasicBlock>(GetVal(Name,
1949                                        Type::getLabelTy(F.getContext()), Loc));
1950}
1951
1952BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1953  return cast_or_null<BasicBlock>(GetVal(ID,
1954                                        Type::getLabelTy(F.getContext()), Loc));
1955}
1956
1957/// DefineBB - Define the specified basic block, which is either named or
1958/// unnamed.  If there is an error, this returns null otherwise it returns
1959/// the block being defined.
1960BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1961                                                 LocTy Loc) {
1962  BasicBlock *BB;
1963  if (Name.empty())
1964    BB = GetBB(NumberedVals.size(), Loc);
1965  else
1966    BB = GetBB(Name, Loc);
1967  if (BB == 0) return 0; // Already diagnosed error.
1968
1969  // Move the block to the end of the function.  Forward ref'd blocks are
1970  // inserted wherever they happen to be referenced.
1971  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1972
1973  // Remove the block from forward ref sets.
1974  if (Name.empty()) {
1975    ForwardRefValIDs.erase(NumberedVals.size());
1976    NumberedVals.push_back(BB);
1977  } else {
1978    // BB forward references are already in the function symbol table.
1979    ForwardRefVals.erase(Name);
1980  }
1981
1982  return BB;
1983}
1984
1985//===----------------------------------------------------------------------===//
1986// Constants.
1987//===----------------------------------------------------------------------===//
1988
1989/// ParseValID - Parse an abstract value that doesn't necessarily have a
1990/// type implied.  For example, if we parse "4" we don't know what integer type
1991/// it has.  The value will later be combined with its type and checked for
1992/// sanity.  PFS is used to convert function-local operands of metadata (since
1993/// metadata operands are not just parsed here but also converted to values).
1994/// PFS can be null when we are not parsing metadata values inside a function.
1995bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1996  ID.Loc = Lex.getLoc();
1997  switch (Lex.getKind()) {
1998  default: return TokError("expected value token");
1999  case lltok::GlobalID:  // @42
2000    ID.UIntVal = Lex.getUIntVal();
2001    ID.Kind = ValID::t_GlobalID;
2002    break;
2003  case lltok::GlobalVar:  // @foo
2004    ID.StrVal = Lex.getStrVal();
2005    ID.Kind = ValID::t_GlobalName;
2006    break;
2007  case lltok::LocalVarID:  // %42
2008    ID.UIntVal = Lex.getUIntVal();
2009    ID.Kind = ValID::t_LocalID;
2010    break;
2011  case lltok::LocalVar:  // %foo
2012  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
2013    ID.StrVal = Lex.getStrVal();
2014    ID.Kind = ValID::t_LocalName;
2015    break;
2016  case lltok::exclaim:   // !{...} MDNode, !"foo" MDString
2017    Lex.Lex();
2018
2019    if (EatIfPresent(lltok::lbrace)) {
2020      SmallVector<Value*, 16> Elts;
2021      if (ParseMDNodeVector(Elts, PFS) ||
2022          ParseToken(lltok::rbrace, "expected end of metadata node"))
2023        return true;
2024
2025      ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
2026      ID.Kind = ValID::t_MDNode;
2027      return false;
2028    }
2029
2030    // Standalone metadata reference
2031    // !{ ..., !42, ... }
2032    if (Lex.getKind() == lltok::APSInt) {
2033      if (ParseMDNodeID(ID.MDNodeVal)) return true;
2034      ID.Kind = ValID::t_MDNode;
2035      return false;
2036    }
2037
2038    // MDString:
2039    //   ::= '!' STRINGCONSTANT
2040    if (ParseMDString(ID.MDStringVal)) return true;
2041    ID.Kind = ValID::t_MDString;
2042    return false;
2043  case lltok::APSInt:
2044    ID.APSIntVal = Lex.getAPSIntVal();
2045    ID.Kind = ValID::t_APSInt;
2046    break;
2047  case lltok::APFloat:
2048    ID.APFloatVal = Lex.getAPFloatVal();
2049    ID.Kind = ValID::t_APFloat;
2050    break;
2051  case lltok::kw_true:
2052    ID.ConstantVal = ConstantInt::getTrue(Context);
2053    ID.Kind = ValID::t_Constant;
2054    break;
2055  case lltok::kw_false:
2056    ID.ConstantVal = ConstantInt::getFalse(Context);
2057    ID.Kind = ValID::t_Constant;
2058    break;
2059  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2060  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2061  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2062
2063  case lltok::lbrace: {
2064    // ValID ::= '{' ConstVector '}'
2065    Lex.Lex();
2066    SmallVector<Constant*, 16> Elts;
2067    if (ParseGlobalValueVector(Elts) ||
2068        ParseToken(lltok::rbrace, "expected end of struct constant"))
2069      return true;
2070
2071    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2072                                         Elts.size(), false);
2073    ID.Kind = ValID::t_Constant;
2074    return false;
2075  }
2076  case lltok::less: {
2077    // ValID ::= '<' ConstVector '>'         --> Vector.
2078    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2079    Lex.Lex();
2080    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2081
2082    SmallVector<Constant*, 16> Elts;
2083    LocTy FirstEltLoc = Lex.getLoc();
2084    if (ParseGlobalValueVector(Elts) ||
2085        (isPackedStruct &&
2086         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2087        ParseToken(lltok::greater, "expected end of constant"))
2088      return true;
2089
2090    if (isPackedStruct) {
2091      ID.ConstantVal =
2092        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2093      ID.Kind = ValID::t_Constant;
2094      return false;
2095    }
2096
2097    if (Elts.empty())
2098      return Error(ID.Loc, "constant vector must not be empty");
2099
2100    if (!Elts[0]->getType()->isIntegerTy() &&
2101        !Elts[0]->getType()->isFloatingPointTy())
2102      return Error(FirstEltLoc,
2103                   "vector elements must have integer or floating point type");
2104
2105    // Verify that all the vector elements have the same type.
2106    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2107      if (Elts[i]->getType() != Elts[0]->getType())
2108        return Error(FirstEltLoc,
2109                     "vector element #" + utostr(i) +
2110                    " is not of type '" + Elts[0]->getType()->getDescription());
2111
2112    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2113    ID.Kind = ValID::t_Constant;
2114    return false;
2115  }
2116  case lltok::lsquare: {   // Array Constant
2117    Lex.Lex();
2118    SmallVector<Constant*, 16> Elts;
2119    LocTy FirstEltLoc = Lex.getLoc();
2120    if (ParseGlobalValueVector(Elts) ||
2121        ParseToken(lltok::rsquare, "expected end of array constant"))
2122      return true;
2123
2124    // Handle empty element.
2125    if (Elts.empty()) {
2126      // Use undef instead of an array because it's inconvenient to determine
2127      // the element type at this point, there being no elements to examine.
2128      ID.Kind = ValID::t_EmptyArray;
2129      return false;
2130    }
2131
2132    if (!Elts[0]->getType()->isFirstClassType())
2133      return Error(FirstEltLoc, "invalid array element type: " +
2134                   Elts[0]->getType()->getDescription());
2135
2136    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2137
2138    // Verify all elements are correct type!
2139    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2140      if (Elts[i]->getType() != Elts[0]->getType())
2141        return Error(FirstEltLoc,
2142                     "array element #" + utostr(i) +
2143                     " is not of type '" +Elts[0]->getType()->getDescription());
2144    }
2145
2146    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2147    ID.Kind = ValID::t_Constant;
2148    return false;
2149  }
2150  case lltok::kw_c:  // c "foo"
2151    Lex.Lex();
2152    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2153    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2154    ID.Kind = ValID::t_Constant;
2155    return false;
2156
2157  case lltok::kw_asm: {
2158    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2159    bool HasSideEffect, AlignStack;
2160    Lex.Lex();
2161    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2162        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2163        ParseStringConstant(ID.StrVal) ||
2164        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2165        ParseToken(lltok::StringConstant, "expected constraint string"))
2166      return true;
2167    ID.StrVal2 = Lex.getStrVal();
2168    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2169    ID.Kind = ValID::t_InlineAsm;
2170    return false;
2171  }
2172
2173  case lltok::kw_blockaddress: {
2174    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2175    Lex.Lex();
2176
2177    ValID Fn, Label;
2178    LocTy FnLoc, LabelLoc;
2179
2180    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2181        ParseValID(Fn) ||
2182        ParseToken(lltok::comma, "expected comma in block address expression")||
2183        ParseValID(Label) ||
2184        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2185      return true;
2186
2187    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2188      return Error(Fn.Loc, "expected function name in blockaddress");
2189    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2190      return Error(Label.Loc, "expected basic block name in blockaddress");
2191
2192    // Make a global variable as a placeholder for this reference.
2193    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2194                                           false, GlobalValue::InternalLinkage,
2195                                                0, "");
2196    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2197    ID.ConstantVal = FwdRef;
2198    ID.Kind = ValID::t_Constant;
2199    return false;
2200  }
2201
2202  case lltok::kw_trunc:
2203  case lltok::kw_zext:
2204  case lltok::kw_sext:
2205  case lltok::kw_fptrunc:
2206  case lltok::kw_fpext:
2207  case lltok::kw_bitcast:
2208  case lltok::kw_uitofp:
2209  case lltok::kw_sitofp:
2210  case lltok::kw_fptoui:
2211  case lltok::kw_fptosi:
2212  case lltok::kw_inttoptr:
2213  case lltok::kw_ptrtoint: {
2214    unsigned Opc = Lex.getUIntVal();
2215    PATypeHolder DestTy(Type::getVoidTy(Context));
2216    Constant *SrcVal;
2217    Lex.Lex();
2218    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2219        ParseGlobalTypeAndValue(SrcVal) ||
2220        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2221        ParseType(DestTy) ||
2222        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2223      return true;
2224    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2225      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2226                   SrcVal->getType()->getDescription() + "' to '" +
2227                   DestTy->getDescription() + "'");
2228    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2229                                                 SrcVal, DestTy);
2230    ID.Kind = ValID::t_Constant;
2231    return false;
2232  }
2233  case lltok::kw_extractvalue: {
2234    Lex.Lex();
2235    Constant *Val;
2236    SmallVector<unsigned, 4> Indices;
2237    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2238        ParseGlobalTypeAndValue(Val) ||
2239        ParseIndexList(Indices) ||
2240        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2241      return true;
2242
2243    if (!Val->getType()->isAggregateType())
2244      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2245    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2246                                          Indices.end()))
2247      return Error(ID.Loc, "invalid indices for extractvalue");
2248    ID.ConstantVal =
2249      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2250    ID.Kind = ValID::t_Constant;
2251    return false;
2252  }
2253  case lltok::kw_insertvalue: {
2254    Lex.Lex();
2255    Constant *Val0, *Val1;
2256    SmallVector<unsigned, 4> Indices;
2257    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2258        ParseGlobalTypeAndValue(Val0) ||
2259        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2260        ParseGlobalTypeAndValue(Val1) ||
2261        ParseIndexList(Indices) ||
2262        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2263      return true;
2264    if (!Val0->getType()->isAggregateType())
2265      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2266    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2267                                          Indices.end()))
2268      return Error(ID.Loc, "invalid indices for insertvalue");
2269    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2270                       Indices.data(), Indices.size());
2271    ID.Kind = ValID::t_Constant;
2272    return false;
2273  }
2274  case lltok::kw_icmp:
2275  case lltok::kw_fcmp: {
2276    unsigned PredVal, Opc = Lex.getUIntVal();
2277    Constant *Val0, *Val1;
2278    Lex.Lex();
2279    if (ParseCmpPredicate(PredVal, Opc) ||
2280        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2281        ParseGlobalTypeAndValue(Val0) ||
2282        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2283        ParseGlobalTypeAndValue(Val1) ||
2284        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2285      return true;
2286
2287    if (Val0->getType() != Val1->getType())
2288      return Error(ID.Loc, "compare operands must have the same type");
2289
2290    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2291
2292    if (Opc == Instruction::FCmp) {
2293      if (!Val0->getType()->isFPOrFPVectorTy())
2294        return Error(ID.Loc, "fcmp requires floating point operands");
2295      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2296    } else {
2297      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2298      if (!Val0->getType()->isIntOrIntVectorTy() &&
2299          !Val0->getType()->isPointerTy())
2300        return Error(ID.Loc, "icmp requires pointer or integer operands");
2301      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2302    }
2303    ID.Kind = ValID::t_Constant;
2304    return false;
2305  }
2306
2307  // Binary Operators.
2308  case lltok::kw_add:
2309  case lltok::kw_fadd:
2310  case lltok::kw_sub:
2311  case lltok::kw_fsub:
2312  case lltok::kw_mul:
2313  case lltok::kw_fmul:
2314  case lltok::kw_udiv:
2315  case lltok::kw_sdiv:
2316  case lltok::kw_fdiv:
2317  case lltok::kw_urem:
2318  case lltok::kw_srem:
2319  case lltok::kw_frem: {
2320    bool NUW = false;
2321    bool NSW = false;
2322    bool Exact = false;
2323    unsigned Opc = Lex.getUIntVal();
2324    Constant *Val0, *Val1;
2325    Lex.Lex();
2326    LocTy ModifierLoc = Lex.getLoc();
2327    if (Opc == Instruction::Add ||
2328        Opc == Instruction::Sub ||
2329        Opc == Instruction::Mul) {
2330      if (EatIfPresent(lltok::kw_nuw))
2331        NUW = true;
2332      if (EatIfPresent(lltok::kw_nsw)) {
2333        NSW = true;
2334        if (EatIfPresent(lltok::kw_nuw))
2335          NUW = true;
2336      }
2337    } else if (Opc == Instruction::SDiv) {
2338      if (EatIfPresent(lltok::kw_exact))
2339        Exact = true;
2340    }
2341    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2342        ParseGlobalTypeAndValue(Val0) ||
2343        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2344        ParseGlobalTypeAndValue(Val1) ||
2345        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2346      return true;
2347    if (Val0->getType() != Val1->getType())
2348      return Error(ID.Loc, "operands of constexpr must have same type");
2349    if (!Val0->getType()->isIntOrIntVectorTy()) {
2350      if (NUW)
2351        return Error(ModifierLoc, "nuw only applies to integer operations");
2352      if (NSW)
2353        return Error(ModifierLoc, "nsw only applies to integer operations");
2354    }
2355    // API compatibility: Accept either integer or floating-point types with
2356    // add, sub, and mul.
2357    if (!Val0->getType()->isIntOrIntVectorTy() &&
2358        !Val0->getType()->isFPOrFPVectorTy())
2359      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2360    unsigned Flags = 0;
2361    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2362    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2363    if (Exact) Flags |= SDivOperator::IsExact;
2364    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2365    ID.ConstantVal = C;
2366    ID.Kind = ValID::t_Constant;
2367    return false;
2368  }
2369
2370  // Logical Operations
2371  case lltok::kw_shl:
2372  case lltok::kw_lshr:
2373  case lltok::kw_ashr:
2374  case lltok::kw_and:
2375  case lltok::kw_or:
2376  case lltok::kw_xor: {
2377    unsigned Opc = Lex.getUIntVal();
2378    Constant *Val0, *Val1;
2379    Lex.Lex();
2380    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2381        ParseGlobalTypeAndValue(Val0) ||
2382        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2383        ParseGlobalTypeAndValue(Val1) ||
2384        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2385      return true;
2386    if (Val0->getType() != Val1->getType())
2387      return Error(ID.Loc, "operands of constexpr must have same type");
2388    if (!Val0->getType()->isIntOrIntVectorTy())
2389      return Error(ID.Loc,
2390                   "constexpr requires integer or integer vector operands");
2391    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2392    ID.Kind = ValID::t_Constant;
2393    return false;
2394  }
2395
2396  case lltok::kw_getelementptr:
2397  case lltok::kw_shufflevector:
2398  case lltok::kw_insertelement:
2399  case lltok::kw_extractelement:
2400  case lltok::kw_select: {
2401    unsigned Opc = Lex.getUIntVal();
2402    SmallVector<Constant*, 16> Elts;
2403    bool InBounds = false;
2404    Lex.Lex();
2405    if (Opc == Instruction::GetElementPtr)
2406      InBounds = EatIfPresent(lltok::kw_inbounds);
2407    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2408        ParseGlobalValueVector(Elts) ||
2409        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2410      return true;
2411
2412    if (Opc == Instruction::GetElementPtr) {
2413      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2414        return Error(ID.Loc, "getelementptr requires pointer operand");
2415
2416      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2417                                             (Value**)(Elts.data() + 1),
2418                                             Elts.size() - 1))
2419        return Error(ID.Loc, "invalid indices for getelementptr");
2420      ID.ConstantVal = InBounds ?
2421        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2422                                               Elts.data() + 1,
2423                                               Elts.size() - 1) :
2424        ConstantExpr::getGetElementPtr(Elts[0],
2425                                       Elts.data() + 1, Elts.size() - 1);
2426    } else if (Opc == Instruction::Select) {
2427      if (Elts.size() != 3)
2428        return Error(ID.Loc, "expected three operands to select");
2429      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2430                                                              Elts[2]))
2431        return Error(ID.Loc, Reason);
2432      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2433    } else if (Opc == Instruction::ShuffleVector) {
2434      if (Elts.size() != 3)
2435        return Error(ID.Loc, "expected three operands to shufflevector");
2436      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2437        return Error(ID.Loc, "invalid operands to shufflevector");
2438      ID.ConstantVal =
2439                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2440    } else if (Opc == Instruction::ExtractElement) {
2441      if (Elts.size() != 2)
2442        return Error(ID.Loc, "expected two operands to extractelement");
2443      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2444        return Error(ID.Loc, "invalid extractelement operands");
2445      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2446    } else {
2447      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2448      if (Elts.size() != 3)
2449      return Error(ID.Loc, "expected three operands to insertelement");
2450      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2451        return Error(ID.Loc, "invalid insertelement operands");
2452      ID.ConstantVal =
2453                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2454    }
2455
2456    ID.Kind = ValID::t_Constant;
2457    return false;
2458  }
2459  }
2460
2461  Lex.Lex();
2462  return false;
2463}
2464
2465/// ParseGlobalValue - Parse a global value with the specified type.
2466bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2467  C = 0;
2468  ValID ID;
2469  Value *V = NULL;
2470  bool Parsed = ParseValID(ID) ||
2471                ConvertValIDToValue(Ty, ID, V, NULL);
2472  if (V && !(C = dyn_cast<Constant>(V)))
2473    return Error(ID.Loc, "global values must be constants");
2474  return Parsed;
2475}
2476
2477bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2478  PATypeHolder Type(Type::getVoidTy(Context));
2479  return ParseType(Type) ||
2480         ParseGlobalValue(Type, V);
2481}
2482
2483/// ParseGlobalValueVector
2484///   ::= /*empty*/
2485///   ::= TypeAndValue (',' TypeAndValue)*
2486bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2487  // Empty list.
2488  if (Lex.getKind() == lltok::rbrace ||
2489      Lex.getKind() == lltok::rsquare ||
2490      Lex.getKind() == lltok::greater ||
2491      Lex.getKind() == lltok::rparen)
2492    return false;
2493
2494  Constant *C;
2495  if (ParseGlobalTypeAndValue(C)) return true;
2496  Elts.push_back(C);
2497
2498  while (EatIfPresent(lltok::comma)) {
2499    if (ParseGlobalTypeAndValue(C)) return true;
2500    Elts.push_back(C);
2501  }
2502
2503  return false;
2504}
2505
2506
2507//===----------------------------------------------------------------------===//
2508// Function Parsing.
2509//===----------------------------------------------------------------------===//
2510
2511bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2512                                   PerFunctionState *PFS) {
2513  if (Ty->isFunctionTy())
2514    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2515
2516  switch (ID.Kind) {
2517  default: llvm_unreachable("Unknown ValID!");
2518  case ValID::t_LocalID:
2519    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2520    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2521    return (V == 0);
2522  case ValID::t_LocalName:
2523    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2524    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2525    return (V == 0);
2526  case ValID::t_InlineAsm: {
2527    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2528    const FunctionType *FTy =
2529      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2530    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2531      return Error(ID.Loc, "invalid type for inline asm constraint string");
2532    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2533    return false;
2534  }
2535  case ValID::t_MDNode:
2536    if (!Ty->isMetadataTy())
2537      return Error(ID.Loc, "metadata value must have metadata type");
2538    V = ID.MDNodeVal;
2539    return false;
2540  case ValID::t_MDString:
2541    if (!Ty->isMetadataTy())
2542      return Error(ID.Loc, "metadata value must have metadata type");
2543    V = ID.MDStringVal;
2544    return false;
2545  case ValID::t_GlobalName:
2546    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2547    return V == 0;
2548  case ValID::t_GlobalID:
2549    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2550    return V == 0;
2551  case ValID::t_APSInt:
2552    if (!Ty->isIntegerTy())
2553      return Error(ID.Loc, "integer constant must have integer type");
2554    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2555    V = ConstantInt::get(Context, ID.APSIntVal);
2556    return false;
2557  case ValID::t_APFloat:
2558    if (!Ty->isFloatingPointTy() ||
2559        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2560      return Error(ID.Loc, "floating point constant invalid for type");
2561
2562    // The lexer has no type info, so builds all float and double FP constants
2563    // as double.  Fix this here.  Long double does not need this.
2564    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2565        Ty->isFloatTy()) {
2566      bool Ignored;
2567      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2568                            &Ignored);
2569    }
2570    V = ConstantFP::get(Context, ID.APFloatVal);
2571
2572    if (V->getType() != Ty)
2573      return Error(ID.Loc, "floating point constant does not have type '" +
2574                   Ty->getDescription() + "'");
2575
2576    return false;
2577  case ValID::t_Null:
2578    if (!Ty->isPointerTy())
2579      return Error(ID.Loc, "null must be a pointer type");
2580    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2581    return false;
2582  case ValID::t_Undef:
2583    // FIXME: LabelTy should not be a first-class type.
2584    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2585        !Ty->isOpaqueTy())
2586      return Error(ID.Loc, "invalid type for undef constant");
2587    V = UndefValue::get(Ty);
2588    return false;
2589  case ValID::t_EmptyArray:
2590    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2591      return Error(ID.Loc, "invalid empty array initializer");
2592    V = UndefValue::get(Ty);
2593    return false;
2594  case ValID::t_Zero:
2595    // FIXME: LabelTy should not be a first-class type.
2596    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2597      return Error(ID.Loc, "invalid type for null constant");
2598    V = Constant::getNullValue(Ty);
2599    return false;
2600  case ValID::t_Constant:
2601    if (ID.ConstantVal->getType() != Ty) {
2602      // Allow a constant struct with a single member to be converted
2603      // to a union, if the union has a member which is the same type
2604      // as the struct member.
2605      if (const UnionType* utype = dyn_cast<UnionType>(Ty)) {
2606        return ParseUnionValue(utype, ID, V);
2607      }
2608
2609      return Error(ID.Loc, "constant expression type mismatch");
2610    }
2611
2612    V = ID.ConstantVal;
2613    return false;
2614  }
2615}
2616
2617bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2618  V = 0;
2619  ValID ID;
2620  return ParseValID(ID, &PFS) ||
2621         ConvertValIDToValue(Ty, ID, V, &PFS);
2622}
2623
2624bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2625  PATypeHolder T(Type::getVoidTy(Context));
2626  return ParseType(T) ||
2627         ParseValue(T, V, PFS);
2628}
2629
2630bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2631                                      PerFunctionState &PFS) {
2632  Value *V;
2633  Loc = Lex.getLoc();
2634  if (ParseTypeAndValue(V, PFS)) return true;
2635  if (!isa<BasicBlock>(V))
2636    return Error(Loc, "expected a basic block");
2637  BB = cast<BasicBlock>(V);
2638  return false;
2639}
2640
2641bool LLParser::ParseUnionValue(const UnionType* utype, ValID &ID, Value *&V) {
2642  if (const StructType* stype = dyn_cast<StructType>(ID.ConstantVal->getType())) {
2643    if (stype->getNumContainedTypes() != 1)
2644      return Error(ID.Loc, "constant expression type mismatch");
2645    int index = utype->getElementTypeIndex(stype->getContainedType(0));
2646    if (index < 0)
2647      return Error(ID.Loc, "initializer type is not a member of the union");
2648
2649    V = ConstantUnion::get(
2650        utype, cast<Constant>(ID.ConstantVal->getOperand(0)));
2651    return false;
2652  }
2653
2654  return Error(ID.Loc, "constant expression type mismatch");
2655}
2656
2657
2658/// FunctionHeader
2659///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2660///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2661///       OptionalAlign OptGC
2662bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2663  // Parse the linkage.
2664  LocTy LinkageLoc = Lex.getLoc();
2665  unsigned Linkage;
2666
2667  unsigned Visibility, RetAttrs;
2668  CallingConv::ID CC;
2669  PATypeHolder RetType(Type::getVoidTy(Context));
2670  LocTy RetTypeLoc = Lex.getLoc();
2671  if (ParseOptionalLinkage(Linkage) ||
2672      ParseOptionalVisibility(Visibility) ||
2673      ParseOptionalCallingConv(CC) ||
2674      ParseOptionalAttrs(RetAttrs, 1) ||
2675      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2676    return true;
2677
2678  // Verify that the linkage is ok.
2679  switch ((GlobalValue::LinkageTypes)Linkage) {
2680  case GlobalValue::ExternalLinkage:
2681    break; // always ok.
2682  case GlobalValue::DLLImportLinkage:
2683  case GlobalValue::ExternalWeakLinkage:
2684    if (isDefine)
2685      return Error(LinkageLoc, "invalid linkage for function definition");
2686    break;
2687  case GlobalValue::PrivateLinkage:
2688  case GlobalValue::LinkerPrivateLinkage:
2689  case GlobalValue::InternalLinkage:
2690  case GlobalValue::AvailableExternallyLinkage:
2691  case GlobalValue::LinkOnceAnyLinkage:
2692  case GlobalValue::LinkOnceODRLinkage:
2693  case GlobalValue::WeakAnyLinkage:
2694  case GlobalValue::WeakODRLinkage:
2695  case GlobalValue::DLLExportLinkage:
2696    if (!isDefine)
2697      return Error(LinkageLoc, "invalid linkage for function declaration");
2698    break;
2699  case GlobalValue::AppendingLinkage:
2700  case GlobalValue::CommonLinkage:
2701    return Error(LinkageLoc, "invalid function linkage type");
2702  }
2703
2704  if (!FunctionType::isValidReturnType(RetType) ||
2705      RetType->isOpaqueTy())
2706    return Error(RetTypeLoc, "invalid function return type");
2707
2708  LocTy NameLoc = Lex.getLoc();
2709
2710  std::string FunctionName;
2711  if (Lex.getKind() == lltok::GlobalVar) {
2712    FunctionName = Lex.getStrVal();
2713  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2714    unsigned NameID = Lex.getUIntVal();
2715
2716    if (NameID != NumberedVals.size())
2717      return TokError("function expected to be numbered '%" +
2718                      utostr(NumberedVals.size()) + "'");
2719  } else {
2720    return TokError("expected function name");
2721  }
2722
2723  Lex.Lex();
2724
2725  if (Lex.getKind() != lltok::lparen)
2726    return TokError("expected '(' in function argument list");
2727
2728  std::vector<ArgInfo> ArgList;
2729  bool isVarArg;
2730  unsigned FuncAttrs;
2731  std::string Section;
2732  unsigned Alignment;
2733  std::string GC;
2734
2735  if (ParseArgumentList(ArgList, isVarArg, false) ||
2736      ParseOptionalAttrs(FuncAttrs, 2) ||
2737      (EatIfPresent(lltok::kw_section) &&
2738       ParseStringConstant(Section)) ||
2739      ParseOptionalAlignment(Alignment) ||
2740      (EatIfPresent(lltok::kw_gc) &&
2741       ParseStringConstant(GC)))
2742    return true;
2743
2744  // If the alignment was parsed as an attribute, move to the alignment field.
2745  if (FuncAttrs & Attribute::Alignment) {
2746    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2747    FuncAttrs &= ~Attribute::Alignment;
2748  }
2749
2750  // Okay, if we got here, the function is syntactically valid.  Convert types
2751  // and do semantic checks.
2752  std::vector<const Type*> ParamTypeList;
2753  SmallVector<AttributeWithIndex, 8> Attrs;
2754  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2755  // attributes.
2756  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2757  if (FuncAttrs & ObsoleteFuncAttrs) {
2758    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2759    FuncAttrs &= ~ObsoleteFuncAttrs;
2760  }
2761
2762  if (RetAttrs != Attribute::None)
2763    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2764
2765  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2766    ParamTypeList.push_back(ArgList[i].Type);
2767    if (ArgList[i].Attrs != Attribute::None)
2768      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2769  }
2770
2771  if (FuncAttrs != Attribute::None)
2772    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2773
2774  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2775
2776  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2777    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2778
2779  const FunctionType *FT =
2780    FunctionType::get(RetType, ParamTypeList, isVarArg);
2781  const PointerType *PFT = PointerType::getUnqual(FT);
2782
2783  Fn = 0;
2784  if (!FunctionName.empty()) {
2785    // If this was a definition of a forward reference, remove the definition
2786    // from the forward reference table and fill in the forward ref.
2787    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2788      ForwardRefVals.find(FunctionName);
2789    if (FRVI != ForwardRefVals.end()) {
2790      Fn = M->getFunction(FunctionName);
2791      ForwardRefVals.erase(FRVI);
2792    } else if ((Fn = M->getFunction(FunctionName))) {
2793      // If this function already exists in the symbol table, then it is
2794      // multiply defined.  We accept a few cases for old backwards compat.
2795      // FIXME: Remove this stuff for LLVM 3.0.
2796      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2797          (!Fn->isDeclaration() && isDefine)) {
2798        // If the redefinition has different type or different attributes,
2799        // reject it.  If both have bodies, reject it.
2800        return Error(NameLoc, "invalid redefinition of function '" +
2801                     FunctionName + "'");
2802      } else if (Fn->isDeclaration()) {
2803        // Make sure to strip off any argument names so we can't get conflicts.
2804        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2805             AI != AE; ++AI)
2806          AI->setName("");
2807      }
2808    } else if (M->getNamedValue(FunctionName)) {
2809      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2810    }
2811
2812  } else {
2813    // If this is a definition of a forward referenced function, make sure the
2814    // types agree.
2815    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2816      = ForwardRefValIDs.find(NumberedVals.size());
2817    if (I != ForwardRefValIDs.end()) {
2818      Fn = cast<Function>(I->second.first);
2819      if (Fn->getType() != PFT)
2820        return Error(NameLoc, "type of definition and forward reference of '@" +
2821                     utostr(NumberedVals.size()) +"' disagree");
2822      ForwardRefValIDs.erase(I);
2823    }
2824  }
2825
2826  if (Fn == 0)
2827    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2828  else // Move the forward-reference to the correct spot in the module.
2829    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2830
2831  if (FunctionName.empty())
2832    NumberedVals.push_back(Fn);
2833
2834  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2835  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2836  Fn->setCallingConv(CC);
2837  Fn->setAttributes(PAL);
2838  Fn->setAlignment(Alignment);
2839  Fn->setSection(Section);
2840  if (!GC.empty()) Fn->setGC(GC.c_str());
2841
2842  // Add all of the arguments we parsed to the function.
2843  Function::arg_iterator ArgIt = Fn->arg_begin();
2844  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2845    // If we run out of arguments in the Function prototype, exit early.
2846    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2847    if (ArgIt == Fn->arg_end()) break;
2848
2849    // If the argument has a name, insert it into the argument symbol table.
2850    if (ArgList[i].Name.empty()) continue;
2851
2852    // Set the name, if it conflicted, it will be auto-renamed.
2853    ArgIt->setName(ArgList[i].Name);
2854
2855    if (ArgIt->getNameStr() != ArgList[i].Name)
2856      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2857                   ArgList[i].Name + "'");
2858  }
2859
2860  return false;
2861}
2862
2863
2864/// ParseFunctionBody
2865///   ::= '{' BasicBlock+ '}'
2866///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2867///
2868bool LLParser::ParseFunctionBody(Function &Fn) {
2869  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2870    return TokError("expected '{' in function body");
2871  Lex.Lex();  // eat the {.
2872
2873  int FunctionNumber = -1;
2874  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2875
2876  PerFunctionState PFS(*this, Fn, FunctionNumber);
2877
2878  // We need at least one basic block.
2879  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2880    return TokError("function body requires at least one basic block");
2881
2882  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2883    if (ParseBasicBlock(PFS)) return true;
2884
2885  // Eat the }.
2886  Lex.Lex();
2887
2888  // Verify function is ok.
2889  return PFS.FinishFunction();
2890}
2891
2892/// ParseBasicBlock
2893///   ::= LabelStr? Instruction*
2894bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2895  // If this basic block starts out with a name, remember it.
2896  std::string Name;
2897  LocTy NameLoc = Lex.getLoc();
2898  if (Lex.getKind() == lltok::LabelStr) {
2899    Name = Lex.getStrVal();
2900    Lex.Lex();
2901  }
2902
2903  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2904  if (BB == 0) return true;
2905
2906  std::string NameStr;
2907
2908  // Parse the instructions in this block until we get a terminator.
2909  Instruction *Inst;
2910  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2911  do {
2912    // This instruction may have three possibilities for a name: a) none
2913    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2914    LocTy NameLoc = Lex.getLoc();
2915    int NameID = -1;
2916    NameStr = "";
2917
2918    if (Lex.getKind() == lltok::LocalVarID) {
2919      NameID = Lex.getUIntVal();
2920      Lex.Lex();
2921      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2922        return true;
2923    } else if (Lex.getKind() == lltok::LocalVar ||
2924               // FIXME: REMOVE IN LLVM 3.0
2925               Lex.getKind() == lltok::StringConstant) {
2926      NameStr = Lex.getStrVal();
2927      Lex.Lex();
2928      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2929        return true;
2930    }
2931
2932    switch (ParseInstruction(Inst, BB, PFS)) {
2933    default: assert(0 && "Unknown ParseInstruction result!");
2934    case InstError: return true;
2935    case InstNormal:
2936      // With a normal result, we check to see if the instruction is followed by
2937      // a comma and metadata.
2938      if (EatIfPresent(lltok::comma))
2939        if (ParseInstructionMetadata(Inst))
2940          return true;
2941      break;
2942    case InstExtraComma:
2943      // If the instruction parser ate an extra comma at the end of it, it
2944      // *must* be followed by metadata.
2945      if (ParseInstructionMetadata(Inst))
2946        return true;
2947      break;
2948    }
2949
2950    BB->getInstList().push_back(Inst);
2951
2952    // Set the name on the instruction.
2953    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2954  } while (!isa<TerminatorInst>(Inst));
2955
2956  return false;
2957}
2958
2959//===----------------------------------------------------------------------===//
2960// Instruction Parsing.
2961//===----------------------------------------------------------------------===//
2962
2963/// ParseInstruction - Parse one of the many different instructions.
2964///
2965int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2966                               PerFunctionState &PFS) {
2967  lltok::Kind Token = Lex.getKind();
2968  if (Token == lltok::Eof)
2969    return TokError("found end of file when expecting more instructions");
2970  LocTy Loc = Lex.getLoc();
2971  unsigned KeywordVal = Lex.getUIntVal();
2972  Lex.Lex();  // Eat the keyword.
2973
2974  switch (Token) {
2975  default:                    return Error(Loc, "expected instruction opcode");
2976  // Terminator Instructions.
2977  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2978  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2979  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2980  case lltok::kw_br:          return ParseBr(Inst, PFS);
2981  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2982  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2983  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2984  // Binary Operators.
2985  case lltok::kw_add:
2986  case lltok::kw_sub:
2987  case lltok::kw_mul: {
2988    bool NUW = false;
2989    bool NSW = false;
2990    LocTy ModifierLoc = Lex.getLoc();
2991    if (EatIfPresent(lltok::kw_nuw))
2992      NUW = true;
2993    if (EatIfPresent(lltok::kw_nsw)) {
2994      NSW = true;
2995      if (EatIfPresent(lltok::kw_nuw))
2996        NUW = true;
2997    }
2998    // API compatibility: Accept either integer or floating-point types.
2999    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
3000    if (!Result) {
3001      if (!Inst->getType()->isIntOrIntVectorTy()) {
3002        if (NUW)
3003          return Error(ModifierLoc, "nuw only applies to integer operations");
3004        if (NSW)
3005          return Error(ModifierLoc, "nsw only applies to integer operations");
3006      }
3007      if (NUW)
3008        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3009      if (NSW)
3010        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3011    }
3012    return Result;
3013  }
3014  case lltok::kw_fadd:
3015  case lltok::kw_fsub:
3016  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3017
3018  case lltok::kw_sdiv: {
3019    bool Exact = false;
3020    if (EatIfPresent(lltok::kw_exact))
3021      Exact = true;
3022    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3023    if (!Result)
3024      if (Exact)
3025        cast<BinaryOperator>(Inst)->setIsExact(true);
3026    return Result;
3027  }
3028
3029  case lltok::kw_udiv:
3030  case lltok::kw_urem:
3031  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3032  case lltok::kw_fdiv:
3033  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3034  case lltok::kw_shl:
3035  case lltok::kw_lshr:
3036  case lltok::kw_ashr:
3037  case lltok::kw_and:
3038  case lltok::kw_or:
3039  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3040  case lltok::kw_icmp:
3041  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3042  // Casts.
3043  case lltok::kw_trunc:
3044  case lltok::kw_zext:
3045  case lltok::kw_sext:
3046  case lltok::kw_fptrunc:
3047  case lltok::kw_fpext:
3048  case lltok::kw_bitcast:
3049  case lltok::kw_uitofp:
3050  case lltok::kw_sitofp:
3051  case lltok::kw_fptoui:
3052  case lltok::kw_fptosi:
3053  case lltok::kw_inttoptr:
3054  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3055  // Other.
3056  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3057  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3058  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3059  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3060  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3061  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3062  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3063  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3064  // Memory.
3065  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3066  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
3067  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
3068  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
3069  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
3070  case lltok::kw_volatile:
3071    if (EatIfPresent(lltok::kw_load))
3072      return ParseLoad(Inst, PFS, true);
3073    else if (EatIfPresent(lltok::kw_store))
3074      return ParseStore(Inst, PFS, true);
3075    else
3076      return TokError("expected 'load' or 'store'");
3077  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
3078  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3079  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3080  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3081  }
3082}
3083
3084/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3085bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3086  if (Opc == Instruction::FCmp) {
3087    switch (Lex.getKind()) {
3088    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3089    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3090    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3091    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3092    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3093    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3094    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3095    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3096    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3097    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3098    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3099    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3100    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3101    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3102    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3103    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3104    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3105    }
3106  } else {
3107    switch (Lex.getKind()) {
3108    default: TokError("expected icmp predicate (e.g. 'eq')");
3109    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3110    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3111    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3112    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3113    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3114    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3115    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3116    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3117    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3118    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3119    }
3120  }
3121  Lex.Lex();
3122  return false;
3123}
3124
3125//===----------------------------------------------------------------------===//
3126// Terminator Instructions.
3127//===----------------------------------------------------------------------===//
3128
3129/// ParseRet - Parse a return instruction.
3130///   ::= 'ret' void (',' !dbg, !1)*
3131///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3132///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3133///         [[obsolete: LLVM 3.0]]
3134int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3135                       PerFunctionState &PFS) {
3136  PATypeHolder Ty(Type::getVoidTy(Context));
3137  if (ParseType(Ty, true /*void allowed*/)) return true;
3138
3139  if (Ty->isVoidTy()) {
3140    Inst = ReturnInst::Create(Context);
3141    return false;
3142  }
3143
3144  Value *RV;
3145  if (ParseValue(Ty, RV, PFS)) return true;
3146
3147  bool ExtraComma = false;
3148  if (EatIfPresent(lltok::comma)) {
3149    // Parse optional custom metadata, e.g. !dbg
3150    if (Lex.getKind() == lltok::MetadataVar) {
3151      ExtraComma = true;
3152    } else {
3153      // The normal case is one return value.
3154      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3155      // use of 'ret {i32,i32} {i32 1, i32 2}'
3156      SmallVector<Value*, 8> RVs;
3157      RVs.push_back(RV);
3158
3159      do {
3160        // If optional custom metadata, e.g. !dbg is seen then this is the
3161        // end of MRV.
3162        if (Lex.getKind() == lltok::MetadataVar)
3163          break;
3164        if (ParseTypeAndValue(RV, PFS)) return true;
3165        RVs.push_back(RV);
3166      } while (EatIfPresent(lltok::comma));
3167
3168      RV = UndefValue::get(PFS.getFunction().getReturnType());
3169      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3170        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3171        BB->getInstList().push_back(I);
3172        RV = I;
3173      }
3174    }
3175  }
3176
3177  Inst = ReturnInst::Create(Context, RV);
3178  return ExtraComma ? InstExtraComma : InstNormal;
3179}
3180
3181
3182/// ParseBr
3183///   ::= 'br' TypeAndValue
3184///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3185bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3186  LocTy Loc, Loc2;
3187  Value *Op0;
3188  BasicBlock *Op1, *Op2;
3189  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3190
3191  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3192    Inst = BranchInst::Create(BB);
3193    return false;
3194  }
3195
3196  if (Op0->getType() != Type::getInt1Ty(Context))
3197    return Error(Loc, "branch condition must have 'i1' type");
3198
3199  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3200      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3201      ParseToken(lltok::comma, "expected ',' after true destination") ||
3202      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3203    return true;
3204
3205  Inst = BranchInst::Create(Op1, Op2, Op0);
3206  return false;
3207}
3208
3209/// ParseSwitch
3210///  Instruction
3211///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3212///  JumpTable
3213///    ::= (TypeAndValue ',' TypeAndValue)*
3214bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3215  LocTy CondLoc, BBLoc;
3216  Value *Cond;
3217  BasicBlock *DefaultBB;
3218  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3219      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3220      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3221      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3222    return true;
3223
3224  if (!Cond->getType()->isIntegerTy())
3225    return Error(CondLoc, "switch condition must have integer type");
3226
3227  // Parse the jump table pairs.
3228  SmallPtrSet<Value*, 32> SeenCases;
3229  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3230  while (Lex.getKind() != lltok::rsquare) {
3231    Value *Constant;
3232    BasicBlock *DestBB;
3233
3234    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3235        ParseToken(lltok::comma, "expected ',' after case value") ||
3236        ParseTypeAndBasicBlock(DestBB, PFS))
3237      return true;
3238
3239    if (!SeenCases.insert(Constant))
3240      return Error(CondLoc, "duplicate case value in switch");
3241    if (!isa<ConstantInt>(Constant))
3242      return Error(CondLoc, "case value is not a constant integer");
3243
3244    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3245  }
3246
3247  Lex.Lex();  // Eat the ']'.
3248
3249  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3250  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3251    SI->addCase(Table[i].first, Table[i].second);
3252  Inst = SI;
3253  return false;
3254}
3255
3256/// ParseIndirectBr
3257///  Instruction
3258///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3259bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3260  LocTy AddrLoc;
3261  Value *Address;
3262  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3263      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3264      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3265    return true;
3266
3267  if (!Address->getType()->isPointerTy())
3268    return Error(AddrLoc, "indirectbr address must have pointer type");
3269
3270  // Parse the destination list.
3271  SmallVector<BasicBlock*, 16> DestList;
3272
3273  if (Lex.getKind() != lltok::rsquare) {
3274    BasicBlock *DestBB;
3275    if (ParseTypeAndBasicBlock(DestBB, PFS))
3276      return true;
3277    DestList.push_back(DestBB);
3278
3279    while (EatIfPresent(lltok::comma)) {
3280      if (ParseTypeAndBasicBlock(DestBB, PFS))
3281        return true;
3282      DestList.push_back(DestBB);
3283    }
3284  }
3285
3286  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3287    return true;
3288
3289  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3290  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3291    IBI->addDestination(DestList[i]);
3292  Inst = IBI;
3293  return false;
3294}
3295
3296
3297/// ParseInvoke
3298///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3299///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3300bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3301  LocTy CallLoc = Lex.getLoc();
3302  unsigned RetAttrs, FnAttrs;
3303  CallingConv::ID CC;
3304  PATypeHolder RetType(Type::getVoidTy(Context));
3305  LocTy RetTypeLoc;
3306  ValID CalleeID;
3307  SmallVector<ParamInfo, 16> ArgList;
3308
3309  BasicBlock *NormalBB, *UnwindBB;
3310  if (ParseOptionalCallingConv(CC) ||
3311      ParseOptionalAttrs(RetAttrs, 1) ||
3312      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3313      ParseValID(CalleeID) ||
3314      ParseParameterList(ArgList, PFS) ||
3315      ParseOptionalAttrs(FnAttrs, 2) ||
3316      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3317      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3318      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3319      ParseTypeAndBasicBlock(UnwindBB, PFS))
3320    return true;
3321
3322  // If RetType is a non-function pointer type, then this is the short syntax
3323  // for the call, which means that RetType is just the return type.  Infer the
3324  // rest of the function argument types from the arguments that are present.
3325  const PointerType *PFTy = 0;
3326  const FunctionType *Ty = 0;
3327  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3328      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3329    // Pull out the types of all of the arguments...
3330    std::vector<const Type*> ParamTypes;
3331    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3332      ParamTypes.push_back(ArgList[i].V->getType());
3333
3334    if (!FunctionType::isValidReturnType(RetType))
3335      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3336
3337    Ty = FunctionType::get(RetType, ParamTypes, false);
3338    PFTy = PointerType::getUnqual(Ty);
3339  }
3340
3341  // Look up the callee.
3342  Value *Callee;
3343  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3344
3345  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3346  // function attributes.
3347  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3348  if (FnAttrs & ObsoleteFuncAttrs) {
3349    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3350    FnAttrs &= ~ObsoleteFuncAttrs;
3351  }
3352
3353  // Set up the Attributes for the function.
3354  SmallVector<AttributeWithIndex, 8> Attrs;
3355  if (RetAttrs != Attribute::None)
3356    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3357
3358  SmallVector<Value*, 8> Args;
3359
3360  // Loop through FunctionType's arguments and ensure they are specified
3361  // correctly.  Also, gather any parameter attributes.
3362  FunctionType::param_iterator I = Ty->param_begin();
3363  FunctionType::param_iterator E = Ty->param_end();
3364  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3365    const Type *ExpectedTy = 0;
3366    if (I != E) {
3367      ExpectedTy = *I++;
3368    } else if (!Ty->isVarArg()) {
3369      return Error(ArgList[i].Loc, "too many arguments specified");
3370    }
3371
3372    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3373      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3374                   ExpectedTy->getDescription() + "'");
3375    Args.push_back(ArgList[i].V);
3376    if (ArgList[i].Attrs != Attribute::None)
3377      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3378  }
3379
3380  if (I != E)
3381    return Error(CallLoc, "not enough parameters specified for call");
3382
3383  if (FnAttrs != Attribute::None)
3384    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3385
3386  // Finish off the Attributes and check them
3387  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3388
3389  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3390                                      Args.begin(), Args.end());
3391  II->setCallingConv(CC);
3392  II->setAttributes(PAL);
3393  Inst = II;
3394  return false;
3395}
3396
3397
3398
3399//===----------------------------------------------------------------------===//
3400// Binary Operators.
3401//===----------------------------------------------------------------------===//
3402
3403/// ParseArithmetic
3404///  ::= ArithmeticOps TypeAndValue ',' Value
3405///
3406/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3407/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3408bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3409                               unsigned Opc, unsigned OperandType) {
3410  LocTy Loc; Value *LHS, *RHS;
3411  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3412      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3413      ParseValue(LHS->getType(), RHS, PFS))
3414    return true;
3415
3416  bool Valid;
3417  switch (OperandType) {
3418  default: llvm_unreachable("Unknown operand type!");
3419  case 0: // int or FP.
3420    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3421            LHS->getType()->isFPOrFPVectorTy();
3422    break;
3423  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3424  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3425  }
3426
3427  if (!Valid)
3428    return Error(Loc, "invalid operand type for instruction");
3429
3430  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3431  return false;
3432}
3433
3434/// ParseLogical
3435///  ::= ArithmeticOps TypeAndValue ',' Value {
3436bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3437                            unsigned Opc) {
3438  LocTy Loc; Value *LHS, *RHS;
3439  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3440      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3441      ParseValue(LHS->getType(), RHS, PFS))
3442    return true;
3443
3444  if (!LHS->getType()->isIntOrIntVectorTy())
3445    return Error(Loc,"instruction requires integer or integer vector operands");
3446
3447  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3448  return false;
3449}
3450
3451
3452/// ParseCompare
3453///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3454///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3455bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3456                            unsigned Opc) {
3457  // Parse the integer/fp comparison predicate.
3458  LocTy Loc;
3459  unsigned Pred;
3460  Value *LHS, *RHS;
3461  if (ParseCmpPredicate(Pred, Opc) ||
3462      ParseTypeAndValue(LHS, Loc, PFS) ||
3463      ParseToken(lltok::comma, "expected ',' after compare value") ||
3464      ParseValue(LHS->getType(), RHS, PFS))
3465    return true;
3466
3467  if (Opc == Instruction::FCmp) {
3468    if (!LHS->getType()->isFPOrFPVectorTy())
3469      return Error(Loc, "fcmp requires floating point operands");
3470    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3471  } else {
3472    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3473    if (!LHS->getType()->isIntOrIntVectorTy() &&
3474        !LHS->getType()->isPointerTy())
3475      return Error(Loc, "icmp requires integer operands");
3476    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3477  }
3478  return false;
3479}
3480
3481//===----------------------------------------------------------------------===//
3482// Other Instructions.
3483//===----------------------------------------------------------------------===//
3484
3485
3486/// ParseCast
3487///   ::= CastOpc TypeAndValue 'to' Type
3488bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3489                         unsigned Opc) {
3490  LocTy Loc;  Value *Op;
3491  PATypeHolder DestTy(Type::getVoidTy(Context));
3492  if (ParseTypeAndValue(Op, Loc, PFS) ||
3493      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3494      ParseType(DestTy))
3495    return true;
3496
3497  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3498    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3499    return Error(Loc, "invalid cast opcode for cast from '" +
3500                 Op->getType()->getDescription() + "' to '" +
3501                 DestTy->getDescription() + "'");
3502  }
3503  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3504  return false;
3505}
3506
3507/// ParseSelect
3508///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3509bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3510  LocTy Loc;
3511  Value *Op0, *Op1, *Op2;
3512  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3513      ParseToken(lltok::comma, "expected ',' after select condition") ||
3514      ParseTypeAndValue(Op1, PFS) ||
3515      ParseToken(lltok::comma, "expected ',' after select value") ||
3516      ParseTypeAndValue(Op2, PFS))
3517    return true;
3518
3519  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3520    return Error(Loc, Reason);
3521
3522  Inst = SelectInst::Create(Op0, Op1, Op2);
3523  return false;
3524}
3525
3526/// ParseVA_Arg
3527///   ::= 'va_arg' TypeAndValue ',' Type
3528bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3529  Value *Op;
3530  PATypeHolder EltTy(Type::getVoidTy(Context));
3531  LocTy TypeLoc;
3532  if (ParseTypeAndValue(Op, PFS) ||
3533      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3534      ParseType(EltTy, TypeLoc))
3535    return true;
3536
3537  if (!EltTy->isFirstClassType())
3538    return Error(TypeLoc, "va_arg requires operand with first class type");
3539
3540  Inst = new VAArgInst(Op, EltTy);
3541  return false;
3542}
3543
3544/// ParseExtractElement
3545///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3546bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3547  LocTy Loc;
3548  Value *Op0, *Op1;
3549  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3550      ParseToken(lltok::comma, "expected ',' after extract value") ||
3551      ParseTypeAndValue(Op1, PFS))
3552    return true;
3553
3554  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3555    return Error(Loc, "invalid extractelement operands");
3556
3557  Inst = ExtractElementInst::Create(Op0, Op1);
3558  return false;
3559}
3560
3561/// ParseInsertElement
3562///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3563bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3564  LocTy Loc;
3565  Value *Op0, *Op1, *Op2;
3566  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3567      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3568      ParseTypeAndValue(Op1, PFS) ||
3569      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3570      ParseTypeAndValue(Op2, PFS))
3571    return true;
3572
3573  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3574    return Error(Loc, "invalid insertelement operands");
3575
3576  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3577  return false;
3578}
3579
3580/// ParseShuffleVector
3581///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3582bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3583  LocTy Loc;
3584  Value *Op0, *Op1, *Op2;
3585  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3586      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3587      ParseTypeAndValue(Op1, PFS) ||
3588      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3589      ParseTypeAndValue(Op2, PFS))
3590    return true;
3591
3592  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3593    return Error(Loc, "invalid extractelement operands");
3594
3595  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3596  return false;
3597}
3598
3599/// ParsePHI
3600///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3601int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3602  PATypeHolder Ty(Type::getVoidTy(Context));
3603  Value *Op0, *Op1;
3604  LocTy TypeLoc = Lex.getLoc();
3605
3606  if (ParseType(Ty) ||
3607      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3608      ParseValue(Ty, Op0, PFS) ||
3609      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3610      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3611      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3612    return true;
3613
3614  bool AteExtraComma = false;
3615  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3616  while (1) {
3617    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3618
3619    if (!EatIfPresent(lltok::comma))
3620      break;
3621
3622    if (Lex.getKind() == lltok::MetadataVar) {
3623      AteExtraComma = true;
3624      break;
3625    }
3626
3627    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3628        ParseValue(Ty, Op0, PFS) ||
3629        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3630        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3631        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3632      return true;
3633  }
3634
3635  if (!Ty->isFirstClassType())
3636    return Error(TypeLoc, "phi node must have first class type");
3637
3638  PHINode *PN = PHINode::Create(Ty);
3639  PN->reserveOperandSpace(PHIVals.size());
3640  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3641    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3642  Inst = PN;
3643  return AteExtraComma ? InstExtraComma : InstNormal;
3644}
3645
3646/// ParseCall
3647///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3648///       ParameterList OptionalAttrs
3649bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3650                         bool isTail) {
3651  unsigned RetAttrs, FnAttrs;
3652  CallingConv::ID CC;
3653  PATypeHolder RetType(Type::getVoidTy(Context));
3654  LocTy RetTypeLoc;
3655  ValID CalleeID;
3656  SmallVector<ParamInfo, 16> ArgList;
3657  LocTy CallLoc = Lex.getLoc();
3658
3659  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3660      ParseOptionalCallingConv(CC) ||
3661      ParseOptionalAttrs(RetAttrs, 1) ||
3662      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3663      ParseValID(CalleeID) ||
3664      ParseParameterList(ArgList, PFS) ||
3665      ParseOptionalAttrs(FnAttrs, 2))
3666    return true;
3667
3668  // If RetType is a non-function pointer type, then this is the short syntax
3669  // for the call, which means that RetType is just the return type.  Infer the
3670  // rest of the function argument types from the arguments that are present.
3671  const PointerType *PFTy = 0;
3672  const FunctionType *Ty = 0;
3673  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3674      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3675    // Pull out the types of all of the arguments...
3676    std::vector<const Type*> ParamTypes;
3677    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3678      ParamTypes.push_back(ArgList[i].V->getType());
3679
3680    if (!FunctionType::isValidReturnType(RetType))
3681      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3682
3683    Ty = FunctionType::get(RetType, ParamTypes, false);
3684    PFTy = PointerType::getUnqual(Ty);
3685  }
3686
3687  // Look up the callee.
3688  Value *Callee;
3689  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3690
3691  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3692  // function attributes.
3693  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3694  if (FnAttrs & ObsoleteFuncAttrs) {
3695    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3696    FnAttrs &= ~ObsoleteFuncAttrs;
3697  }
3698
3699  // Set up the Attributes for the function.
3700  SmallVector<AttributeWithIndex, 8> Attrs;
3701  if (RetAttrs != Attribute::None)
3702    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3703
3704  SmallVector<Value*, 8> Args;
3705
3706  // Loop through FunctionType's arguments and ensure they are specified
3707  // correctly.  Also, gather any parameter attributes.
3708  FunctionType::param_iterator I = Ty->param_begin();
3709  FunctionType::param_iterator E = Ty->param_end();
3710  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3711    const Type *ExpectedTy = 0;
3712    if (I != E) {
3713      ExpectedTy = *I++;
3714    } else if (!Ty->isVarArg()) {
3715      return Error(ArgList[i].Loc, "too many arguments specified");
3716    }
3717
3718    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3719      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3720                   ExpectedTy->getDescription() + "'");
3721    Args.push_back(ArgList[i].V);
3722    if (ArgList[i].Attrs != Attribute::None)
3723      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3724  }
3725
3726  if (I != E)
3727    return Error(CallLoc, "not enough parameters specified for call");
3728
3729  if (FnAttrs != Attribute::None)
3730    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3731
3732  // Finish off the Attributes and check them
3733  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3734
3735  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3736  CI->setTailCall(isTail);
3737  CI->setCallingConv(CC);
3738  CI->setAttributes(PAL);
3739  Inst = CI;
3740  return false;
3741}
3742
3743//===----------------------------------------------------------------------===//
3744// Memory Instructions.
3745//===----------------------------------------------------------------------===//
3746
3747/// ParseAlloc
3748///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3749///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3750int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3751                         BasicBlock* BB, bool isAlloca) {
3752  PATypeHolder Ty(Type::getVoidTy(Context));
3753  Value *Size = 0;
3754  LocTy SizeLoc;
3755  unsigned Alignment = 0;
3756  if (ParseType(Ty)) return true;
3757
3758  bool AteExtraComma = false;
3759  if (EatIfPresent(lltok::comma)) {
3760    if (Lex.getKind() == lltok::kw_align) {
3761      if (ParseOptionalAlignment(Alignment)) return true;
3762    } else if (Lex.getKind() == lltok::MetadataVar) {
3763      AteExtraComma = true;
3764    } else {
3765      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3766          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3767        return true;
3768    }
3769  }
3770
3771  if (Size && !Size->getType()->isIntegerTy(32))
3772    return Error(SizeLoc, "element count must be i32");
3773
3774  if (isAlloca) {
3775    Inst = new AllocaInst(Ty, Size, Alignment);
3776    return AteExtraComma ? InstExtraComma : InstNormal;
3777  }
3778
3779  // Autoupgrade old malloc instruction to malloc call.
3780  // FIXME: Remove in LLVM 3.0.
3781  const Type *IntPtrTy = Type::getInt32Ty(Context);
3782  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3783  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3784  if (!MallocF)
3785    // Prototype malloc as "void *(int32)".
3786    // This function is renamed as "malloc" in ValidateEndOfModule().
3787    MallocF = cast<Function>(
3788       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3789  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3790return AteExtraComma ? InstExtraComma : InstNormal;
3791}
3792
3793/// ParseFree
3794///   ::= 'free' TypeAndValue
3795bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3796                         BasicBlock* BB) {
3797  Value *Val; LocTy Loc;
3798  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3799  if (!Val->getType()->isPointerTy())
3800    return Error(Loc, "operand to free must be a pointer");
3801  Inst = CallInst::CreateFree(Val, BB);
3802  return false;
3803}
3804
3805/// ParseLoad
3806///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3807int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3808                        bool isVolatile) {
3809  Value *Val; LocTy Loc;
3810  unsigned Alignment = 0;
3811  bool AteExtraComma = false;
3812  if (ParseTypeAndValue(Val, Loc, PFS) ||
3813      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3814    return true;
3815
3816  if (!Val->getType()->isPointerTy() ||
3817      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3818    return Error(Loc, "load operand must be a pointer to a first class type");
3819
3820  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3821  return AteExtraComma ? InstExtraComma : InstNormal;
3822}
3823
3824/// ParseStore
3825///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3826int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3827                         bool isVolatile) {
3828  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3829  unsigned Alignment = 0;
3830  bool AteExtraComma = false;
3831  if (ParseTypeAndValue(Val, Loc, PFS) ||
3832      ParseToken(lltok::comma, "expected ',' after store operand") ||
3833      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3834      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3835    return true;
3836
3837  if (!Ptr->getType()->isPointerTy())
3838    return Error(PtrLoc, "store operand must be a pointer");
3839  if (!Val->getType()->isFirstClassType())
3840    return Error(Loc, "store operand must be a first class value");
3841  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3842    return Error(Loc, "stored value and pointer type do not match");
3843
3844  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3845  return AteExtraComma ? InstExtraComma : InstNormal;
3846}
3847
3848/// ParseGetResult
3849///   ::= 'getresult' TypeAndValue ',' i32
3850/// FIXME: Remove support for getresult in LLVM 3.0
3851bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3852  Value *Val; LocTy ValLoc, EltLoc;
3853  unsigned Element;
3854  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3855      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3856      ParseUInt32(Element, EltLoc))
3857    return true;
3858
3859  if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3860    return Error(ValLoc, "getresult inst requires an aggregate operand");
3861  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3862    return Error(EltLoc, "invalid getresult index for value");
3863  Inst = ExtractValueInst::Create(Val, Element);
3864  return false;
3865}
3866
3867/// ParseGetElementPtr
3868///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3869int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3870  Value *Ptr, *Val; LocTy Loc, EltLoc;
3871
3872  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3873
3874  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3875
3876  if (!Ptr->getType()->isPointerTy())
3877    return Error(Loc, "base of getelementptr must be a pointer");
3878
3879  SmallVector<Value*, 16> Indices;
3880  bool AteExtraComma = false;
3881  while (EatIfPresent(lltok::comma)) {
3882    if (Lex.getKind() == lltok::MetadataVar) {
3883      AteExtraComma = true;
3884      break;
3885    }
3886    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3887    if (!Val->getType()->isIntegerTy())
3888      return Error(EltLoc, "getelementptr index must be an integer");
3889    Indices.push_back(Val);
3890  }
3891
3892  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3893                                         Indices.begin(), Indices.end()))
3894    return Error(Loc, "invalid getelementptr indices");
3895  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3896  if (InBounds)
3897    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3898  return AteExtraComma ? InstExtraComma : InstNormal;
3899}
3900
3901/// ParseExtractValue
3902///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3903int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3904  Value *Val; LocTy Loc;
3905  SmallVector<unsigned, 4> Indices;
3906  bool AteExtraComma;
3907  if (ParseTypeAndValue(Val, Loc, PFS) ||
3908      ParseIndexList(Indices, AteExtraComma))
3909    return true;
3910
3911  if (!Val->getType()->isAggregateType())
3912    return Error(Loc, "extractvalue operand must be aggregate type");
3913
3914  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3915                                        Indices.end()))
3916    return Error(Loc, "invalid indices for extractvalue");
3917  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3918  return AteExtraComma ? InstExtraComma : InstNormal;
3919}
3920
3921/// ParseInsertValue
3922///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3923int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3924  Value *Val0, *Val1; LocTy Loc0, Loc1;
3925  SmallVector<unsigned, 4> Indices;
3926  bool AteExtraComma;
3927  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3928      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3929      ParseTypeAndValue(Val1, Loc1, PFS) ||
3930      ParseIndexList(Indices, AteExtraComma))
3931    return true;
3932
3933  if (!Val0->getType()->isAggregateType())
3934    return Error(Loc0, "insertvalue operand must be aggregate type");
3935
3936  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3937                                        Indices.end()))
3938    return Error(Loc0, "invalid indices for insertvalue");
3939  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3940  return AteExtraComma ? InstExtraComma : InstNormal;
3941}
3942
3943//===----------------------------------------------------------------------===//
3944// Embedded metadata.
3945//===----------------------------------------------------------------------===//
3946
3947/// ParseMDNodeVector
3948///   ::= Element (',' Element)*
3949/// Element
3950///   ::= 'null' | TypeAndValue
3951bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3952                                 PerFunctionState *PFS) {
3953  do {
3954    // Null is a special case since it is typeless.
3955    if (EatIfPresent(lltok::kw_null)) {
3956      Elts.push_back(0);
3957      continue;
3958    }
3959
3960    Value *V = 0;
3961    PATypeHolder Ty(Type::getVoidTy(Context));
3962    ValID ID;
3963    if (ParseType(Ty) || ParseValID(ID, PFS) ||
3964        ConvertValIDToValue(Ty, ID, V, PFS))
3965      return true;
3966
3967    Elts.push_back(V);
3968  } while (EatIfPresent(lltok::comma));
3969
3970  return false;
3971}
3972