LLParser.cpp revision 201360
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Update auto-upgraded malloc calls to "malloc".
43  // FIXME: Remove in LLVM 3.0.
44  if (MallocF) {
45    MallocF->setName("malloc");
46    // If setName() does not set the name to "malloc", then there is already a
47    // declaration of "malloc".  In that case, iterate over all calls to MallocF
48    // and get them to call the declared "malloc" instead.
49    if (MallocF->getName() != "malloc") {
50      Constant *RealMallocF = M->getFunction("malloc");
51      if (RealMallocF->getType() != MallocF->getType())
52        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
53      MallocF->replaceAllUsesWith(RealMallocF);
54      MallocF->eraseFromParent();
55      MallocF = NULL;
56    }
57  }
58
59
60  // If there are entries in ForwardRefBlockAddresses at this point, they are
61  // references after the function was defined.  Resolve those now.
62  while (!ForwardRefBlockAddresses.empty()) {
63    // Okay, we are referencing an already-parsed function, resolve them now.
64    Function *TheFn = 0;
65    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
66    if (Fn.Kind == ValID::t_GlobalName)
67      TheFn = M->getFunction(Fn.StrVal);
68    else if (Fn.UIntVal < NumberedVals.size())
69      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
70
71    if (TheFn == 0)
72      return Error(Fn.Loc, "unknown function referenced by blockaddress");
73
74    // Resolve all these references.
75    if (ResolveForwardRefBlockAddresses(TheFn,
76                                      ForwardRefBlockAddresses.begin()->second,
77                                        0))
78      return true;
79
80    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
81  }
82
83
84  if (!ForwardRefTypes.empty())
85    return Error(ForwardRefTypes.begin()->second.second,
86                 "use of undefined type named '" +
87                 ForwardRefTypes.begin()->first + "'");
88  if (!ForwardRefTypeIDs.empty())
89    return Error(ForwardRefTypeIDs.begin()->second.second,
90                 "use of undefined type '%" +
91                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
92
93  if (!ForwardRefVals.empty())
94    return Error(ForwardRefVals.begin()->second.second,
95                 "use of undefined value '@" + ForwardRefVals.begin()->first +
96                 "'");
97
98  if (!ForwardRefValIDs.empty())
99    return Error(ForwardRefValIDs.begin()->second.second,
100                 "use of undefined value '@" +
101                 utostr(ForwardRefValIDs.begin()->first) + "'");
102
103  if (!ForwardRefMDNodes.empty())
104    return Error(ForwardRefMDNodes.begin()->second.second,
105                 "use of undefined metadata '!" +
106                 utostr(ForwardRefMDNodes.begin()->first) + "'");
107
108
109  // Look for intrinsic functions and CallInst that need to be upgraded
110  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
111    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
112
113  // Check debug info intrinsics.
114  CheckDebugInfoIntrinsics(M);
115  return false;
116}
117
118bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
119                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
120                                               PerFunctionState *PFS) {
121  // Loop over all the references, resolving them.
122  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
123    BasicBlock *Res;
124    if (PFS) {
125      if (Refs[i].first.Kind == ValID::t_LocalName)
126        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
127      else
128        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
129    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
130      return Error(Refs[i].first.Loc,
131       "cannot take address of numeric label after the function is defined");
132    } else {
133      Res = dyn_cast_or_null<BasicBlock>(
134                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
135    }
136
137    if (Res == 0)
138      return Error(Refs[i].first.Loc,
139                   "referenced value is not a basic block");
140
141    // Get the BlockAddress for this and update references to use it.
142    BlockAddress *BA = BlockAddress::get(TheFn, Res);
143    Refs[i].second->replaceAllUsesWith(BA);
144    Refs[i].second->eraseFromParent();
145  }
146  return false;
147}
148
149
150//===----------------------------------------------------------------------===//
151// Top-Level Entities
152//===----------------------------------------------------------------------===//
153
154bool LLParser::ParseTopLevelEntities() {
155  while (1) {
156    switch (Lex.getKind()) {
157    default:         return TokError("expected top-level entity");
158    case lltok::Eof: return false;
159    //case lltok::kw_define:
160    case lltok::kw_declare: if (ParseDeclare()) return true; break;
161    case lltok::kw_define:  if (ParseDefine()) return true; break;
162    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
163    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
164    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
165    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
166    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
167    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
168    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
169    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
170    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
171    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
172    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
173
174    // The Global variable production with no name can have many different
175    // optional leading prefixes, the production is:
176    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
177    //               OptionalAddrSpace ('constant'|'global') ...
178    case lltok::kw_private :       // OptionalLinkage
179    case lltok::kw_linker_private: // OptionalLinkage
180    case lltok::kw_internal:       // OptionalLinkage
181    case lltok::kw_weak:           // OptionalLinkage
182    case lltok::kw_weak_odr:       // OptionalLinkage
183    case lltok::kw_linkonce:       // OptionalLinkage
184    case lltok::kw_linkonce_odr:   // OptionalLinkage
185    case lltok::kw_appending:      // OptionalLinkage
186    case lltok::kw_dllexport:      // OptionalLinkage
187    case lltok::kw_common:         // OptionalLinkage
188    case lltok::kw_dllimport:      // OptionalLinkage
189    case lltok::kw_extern_weak:    // OptionalLinkage
190    case lltok::kw_external: {     // OptionalLinkage
191      unsigned Linkage, Visibility;
192      if (ParseOptionalLinkage(Linkage) ||
193          ParseOptionalVisibility(Visibility) ||
194          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
195        return true;
196      break;
197    }
198    case lltok::kw_default:       // OptionalVisibility
199    case lltok::kw_hidden:        // OptionalVisibility
200    case lltok::kw_protected: {   // OptionalVisibility
201      unsigned Visibility;
202      if (ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), 0, false, Visibility))
204        return true;
205      break;
206    }
207
208    case lltok::kw_thread_local:  // OptionalThreadLocal
209    case lltok::kw_addrspace:     // OptionalAddrSpace
210    case lltok::kw_constant:      // GlobalType
211    case lltok::kw_global:        // GlobalType
212      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
213      break;
214    }
215  }
216}
217
218
219/// toplevelentity
220///   ::= 'module' 'asm' STRINGCONSTANT
221bool LLParser::ParseModuleAsm() {
222  assert(Lex.getKind() == lltok::kw_module);
223  Lex.Lex();
224
225  std::string AsmStr;
226  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
227      ParseStringConstant(AsmStr)) return true;
228
229  const std::string &AsmSoFar = M->getModuleInlineAsm();
230  if (AsmSoFar.empty())
231    M->setModuleInlineAsm(AsmStr);
232  else
233    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
234  return false;
235}
236
237/// toplevelentity
238///   ::= 'target' 'triple' '=' STRINGCONSTANT
239///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
240bool LLParser::ParseTargetDefinition() {
241  assert(Lex.getKind() == lltok::kw_target);
242  std::string Str;
243  switch (Lex.Lex()) {
244  default: return TokError("unknown target property");
245  case lltok::kw_triple:
246    Lex.Lex();
247    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
248        ParseStringConstant(Str))
249      return true;
250    M->setTargetTriple(Str);
251    return false;
252  case lltok::kw_datalayout:
253    Lex.Lex();
254    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
255        ParseStringConstant(Str))
256      return true;
257    M->setDataLayout(Str);
258    return false;
259  }
260}
261
262/// toplevelentity
263///   ::= 'deplibs' '=' '[' ']'
264///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
265bool LLParser::ParseDepLibs() {
266  assert(Lex.getKind() == lltok::kw_deplibs);
267  Lex.Lex();
268  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
269      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
270    return true;
271
272  if (EatIfPresent(lltok::rsquare))
273    return false;
274
275  std::string Str;
276  if (ParseStringConstant(Str)) return true;
277  M->addLibrary(Str);
278
279  while (EatIfPresent(lltok::comma)) {
280    if (ParseStringConstant(Str)) return true;
281    M->addLibrary(Str);
282  }
283
284  return ParseToken(lltok::rsquare, "expected ']' at end of list");
285}
286
287/// ParseUnnamedType:
288///   ::= 'type' type
289///   ::= LocalVarID '=' 'type' type
290bool LLParser::ParseUnnamedType() {
291  unsigned TypeID = NumberedTypes.size();
292
293  // Handle the LocalVarID form.
294  if (Lex.getKind() == lltok::LocalVarID) {
295    if (Lex.getUIntVal() != TypeID)
296      return Error(Lex.getLoc(), "type expected to be numbered '%" +
297                   utostr(TypeID) + "'");
298    Lex.Lex(); // eat LocalVarID;
299
300    if (ParseToken(lltok::equal, "expected '=' after name"))
301      return true;
302  }
303
304  assert(Lex.getKind() == lltok::kw_type);
305  LocTy TypeLoc = Lex.getLoc();
306  Lex.Lex(); // eat kw_type
307
308  PATypeHolder Ty(Type::getVoidTy(Context));
309  if (ParseType(Ty)) return true;
310
311  // See if this type was previously referenced.
312  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
313    FI = ForwardRefTypeIDs.find(TypeID);
314  if (FI != ForwardRefTypeIDs.end()) {
315    if (FI->second.first.get() == Ty)
316      return Error(TypeLoc, "self referential type is invalid");
317
318    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
319    Ty = FI->second.first.get();
320    ForwardRefTypeIDs.erase(FI);
321  }
322
323  NumberedTypes.push_back(Ty);
324
325  return false;
326}
327
328/// toplevelentity
329///   ::= LocalVar '=' 'type' type
330bool LLParser::ParseNamedType() {
331  std::string Name = Lex.getStrVal();
332  LocTy NameLoc = Lex.getLoc();
333  Lex.Lex();  // eat LocalVar.
334
335  PATypeHolder Ty(Type::getVoidTy(Context));
336
337  if (ParseToken(lltok::equal, "expected '=' after name") ||
338      ParseToken(lltok::kw_type, "expected 'type' after name") ||
339      ParseType(Ty))
340    return true;
341
342  // Set the type name, checking for conflicts as we do so.
343  bool AlreadyExists = M->addTypeName(Name, Ty);
344  if (!AlreadyExists) return false;
345
346  // See if this type is a forward reference.  We need to eagerly resolve
347  // types to allow recursive type redefinitions below.
348  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
349  FI = ForwardRefTypes.find(Name);
350  if (FI != ForwardRefTypes.end()) {
351    if (FI->second.first.get() == Ty)
352      return Error(NameLoc, "self referential type is invalid");
353
354    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
355    Ty = FI->second.first.get();
356    ForwardRefTypes.erase(FI);
357  }
358
359  // Inserting a name that is already defined, get the existing name.
360  const Type *Existing = M->getTypeByName(Name);
361  assert(Existing && "Conflict but no matching type?!");
362
363  // Otherwise, this is an attempt to redefine a type. That's okay if
364  // the redefinition is identical to the original.
365  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
366  if (Existing == Ty) return false;
367
368  // Any other kind of (non-equivalent) redefinition is an error.
369  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
370               Ty->getDescription() + "'");
371}
372
373
374/// toplevelentity
375///   ::= 'declare' FunctionHeader
376bool LLParser::ParseDeclare() {
377  assert(Lex.getKind() == lltok::kw_declare);
378  Lex.Lex();
379
380  Function *F;
381  return ParseFunctionHeader(F, false);
382}
383
384/// toplevelentity
385///   ::= 'define' FunctionHeader '{' ...
386bool LLParser::ParseDefine() {
387  assert(Lex.getKind() == lltok::kw_define);
388  Lex.Lex();
389
390  Function *F;
391  return ParseFunctionHeader(F, true) ||
392         ParseFunctionBody(*F);
393}
394
395/// ParseGlobalType
396///   ::= 'constant'
397///   ::= 'global'
398bool LLParser::ParseGlobalType(bool &IsConstant) {
399  if (Lex.getKind() == lltok::kw_constant)
400    IsConstant = true;
401  else if (Lex.getKind() == lltok::kw_global)
402    IsConstant = false;
403  else {
404    IsConstant = false;
405    return TokError("expected 'global' or 'constant'");
406  }
407  Lex.Lex();
408  return false;
409}
410
411/// ParseUnnamedGlobal:
412///   OptionalVisibility ALIAS ...
413///   OptionalLinkage OptionalVisibility ...   -> global variable
414///   GlobalID '=' OptionalVisibility ALIAS ...
415///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
416bool LLParser::ParseUnnamedGlobal() {
417  unsigned VarID = NumberedVals.size();
418  std::string Name;
419  LocTy NameLoc = Lex.getLoc();
420
421  // Handle the GlobalID form.
422  if (Lex.getKind() == lltok::GlobalID) {
423    if (Lex.getUIntVal() != VarID)
424      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
425                   utostr(VarID) + "'");
426    Lex.Lex(); // eat GlobalID;
427
428    if (ParseToken(lltok::equal, "expected '=' after name"))
429      return true;
430  }
431
432  bool HasLinkage;
433  unsigned Linkage, Visibility;
434  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
435      ParseOptionalVisibility(Visibility))
436    return true;
437
438  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440  return ParseAlias(Name, NameLoc, Visibility);
441}
442
443/// ParseNamedGlobal:
444///   GlobalVar '=' OptionalVisibility ALIAS ...
445///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
446bool LLParser::ParseNamedGlobal() {
447  assert(Lex.getKind() == lltok::GlobalVar);
448  LocTy NameLoc = Lex.getLoc();
449  std::string Name = Lex.getStrVal();
450  Lex.Lex();
451
452  bool HasLinkage;
453  unsigned Linkage, Visibility;
454  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
455      ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464// MDString:
465//   ::= '!' STRINGCONSTANT
466bool LLParser::ParseMDString(MDString *&Result) {
467  std::string Str;
468  if (ParseStringConstant(Str)) return true;
469  Result = MDString::get(Context, Str);
470  return false;
471}
472
473// MDNode:
474//   ::= '!' MDNodeNumber
475bool LLParser::ParseMDNodeID(MDNode *&Result) {
476  // !{ ..., !42, ... }
477  unsigned MID = 0;
478  if (ParseUInt32(MID)) return true;
479
480  // Check existing MDNode.
481  if (MID < NumberedMetadata.size() && NumberedMetadata[MID] != 0) {
482    Result = NumberedMetadata[MID];
483    return false;
484  }
485
486  // Create MDNode forward reference.
487
488  // FIXME: This is not unique enough!
489  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
490  Value *V = MDString::get(Context, FwdRefName);
491  MDNode *FwdNode = MDNode::get(Context, &V, 1);
492  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
493
494  if (NumberedMetadata.size() <= MID)
495    NumberedMetadata.resize(MID+1);
496  NumberedMetadata[MID] = FwdNode;
497  Result = FwdNode;
498  return false;
499}
500
501/// ParseNamedMetadata:
502///   !foo = !{ !1, !2 }
503bool LLParser::ParseNamedMetadata() {
504  assert(Lex.getKind() == lltok::MetadataVar);
505  std::string Name = Lex.getStrVal();
506  Lex.Lex();
507
508  if (ParseToken(lltok::equal, "expected '=' here") ||
509      ParseToken(lltok::exclaim, "Expected '!' here") ||
510      ParseToken(lltok::lbrace, "Expected '{' here"))
511    return true;
512
513  SmallVector<MetadataBase *, 8> Elts;
514  do {
515    if (ParseToken(lltok::exclaim, "Expected '!' here"))
516      return true;
517
518    // FIXME: This rejects MDStrings.  Are they legal in an named MDNode or not?
519    MDNode *N = 0;
520    if (ParseMDNodeID(N)) return true;
521    Elts.push_back(N);
522  } while (EatIfPresent(lltok::comma));
523
524  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
525    return true;
526
527  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
528  return false;
529}
530
531/// ParseStandaloneMetadata:
532///   !42 = !{...}
533bool LLParser::ParseStandaloneMetadata() {
534  assert(Lex.getKind() == lltok::exclaim);
535  Lex.Lex();
536  unsigned MetadataID = 0;
537
538  LocTy TyLoc;
539  PATypeHolder Ty(Type::getVoidTy(Context));
540  SmallVector<Value *, 16> Elts;
541  if (ParseUInt32(MetadataID) ||
542      ParseToken(lltok::equal, "expected '=' here") ||
543      ParseType(Ty, TyLoc) ||
544      ParseToken(lltok::exclaim, "Expected '!' here") ||
545      ParseToken(lltok::lbrace, "Expected '{' here") ||
546      ParseMDNodeVector(Elts) ||
547      ParseToken(lltok::rbrace, "expected end of metadata node"))
548    return true;
549
550  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
551
552  // See if this was forward referenced, if so, handle it.
553  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
554    FI = ForwardRefMDNodes.find(MetadataID);
555  if (FI != ForwardRefMDNodes.end()) {
556    FI->second.first->replaceAllUsesWith(Init);
557    ForwardRefMDNodes.erase(FI);
558
559    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
560  } else {
561    if (MetadataID >= NumberedMetadata.size())
562      NumberedMetadata.resize(MetadataID+1);
563
564    if (NumberedMetadata[MetadataID] != 0)
565      return TokError("Metadata id is already used");
566    NumberedMetadata[MetadataID] = Init;
567  }
568
569  return false;
570}
571
572/// ParseAlias:
573///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
574/// Aliasee
575///   ::= TypeAndValue
576///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
577///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
578///
579/// Everything through visibility has already been parsed.
580///
581bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
582                          unsigned Visibility) {
583  assert(Lex.getKind() == lltok::kw_alias);
584  Lex.Lex();
585  unsigned Linkage;
586  LocTy LinkageLoc = Lex.getLoc();
587  if (ParseOptionalLinkage(Linkage))
588    return true;
589
590  if (Linkage != GlobalValue::ExternalLinkage &&
591      Linkage != GlobalValue::WeakAnyLinkage &&
592      Linkage != GlobalValue::WeakODRLinkage &&
593      Linkage != GlobalValue::InternalLinkage &&
594      Linkage != GlobalValue::PrivateLinkage &&
595      Linkage != GlobalValue::LinkerPrivateLinkage)
596    return Error(LinkageLoc, "invalid linkage type for alias");
597
598  Constant *Aliasee;
599  LocTy AliaseeLoc = Lex.getLoc();
600  if (Lex.getKind() != lltok::kw_bitcast &&
601      Lex.getKind() != lltok::kw_getelementptr) {
602    if (ParseGlobalTypeAndValue(Aliasee)) return true;
603  } else {
604    // The bitcast dest type is not present, it is implied by the dest type.
605    ValID ID;
606    if (ParseValID(ID)) return true;
607    if (ID.Kind != ValID::t_Constant)
608      return Error(AliaseeLoc, "invalid aliasee");
609    Aliasee = ID.ConstantVal;
610  }
611
612  if (!isa<PointerType>(Aliasee->getType()))
613    return Error(AliaseeLoc, "alias must have pointer type");
614
615  // Okay, create the alias but do not insert it into the module yet.
616  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
617                                    (GlobalValue::LinkageTypes)Linkage, Name,
618                                    Aliasee);
619  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
620
621  // See if this value already exists in the symbol table.  If so, it is either
622  // a redefinition or a definition of a forward reference.
623  if (GlobalValue *Val = M->getNamedValue(Name)) {
624    // See if this was a redefinition.  If so, there is no entry in
625    // ForwardRefVals.
626    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
627      I = ForwardRefVals.find(Name);
628    if (I == ForwardRefVals.end())
629      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
630
631    // Otherwise, this was a definition of forward ref.  Verify that types
632    // agree.
633    if (Val->getType() != GA->getType())
634      return Error(NameLoc,
635              "forward reference and definition of alias have different types");
636
637    // If they agree, just RAUW the old value with the alias and remove the
638    // forward ref info.
639    Val->replaceAllUsesWith(GA);
640    Val->eraseFromParent();
641    ForwardRefVals.erase(I);
642  }
643
644  // Insert into the module, we know its name won't collide now.
645  M->getAliasList().push_back(GA);
646  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
647
648  return false;
649}
650
651/// ParseGlobal
652///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
653///       OptionalAddrSpace GlobalType Type Const
654///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
655///       OptionalAddrSpace GlobalType Type Const
656///
657/// Everything through visibility has been parsed already.
658///
659bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
660                           unsigned Linkage, bool HasLinkage,
661                           unsigned Visibility) {
662  unsigned AddrSpace;
663  bool ThreadLocal, IsConstant;
664  LocTy TyLoc;
665
666  PATypeHolder Ty(Type::getVoidTy(Context));
667  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
668      ParseOptionalAddrSpace(AddrSpace) ||
669      ParseGlobalType(IsConstant) ||
670      ParseType(Ty, TyLoc))
671    return true;
672
673  // If the linkage is specified and is external, then no initializer is
674  // present.
675  Constant *Init = 0;
676  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
677                      Linkage != GlobalValue::ExternalWeakLinkage &&
678                      Linkage != GlobalValue::ExternalLinkage)) {
679    if (ParseGlobalValue(Ty, Init))
680      return true;
681  }
682
683  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
684    return Error(TyLoc, "invalid type for global variable");
685
686  GlobalVariable *GV = 0;
687
688  // See if the global was forward referenced, if so, use the global.
689  if (!Name.empty()) {
690    if (GlobalValue *GVal = M->getNamedValue(Name)) {
691      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
692        return Error(NameLoc, "redefinition of global '@" + Name + "'");
693      GV = cast<GlobalVariable>(GVal);
694    }
695  } else {
696    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
697      I = ForwardRefValIDs.find(NumberedVals.size());
698    if (I != ForwardRefValIDs.end()) {
699      GV = cast<GlobalVariable>(I->second.first);
700      ForwardRefValIDs.erase(I);
701    }
702  }
703
704  if (GV == 0) {
705    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
706                            Name, 0, false, AddrSpace);
707  } else {
708    if (GV->getType()->getElementType() != Ty)
709      return Error(TyLoc,
710            "forward reference and definition of global have different types");
711
712    // Move the forward-reference to the correct spot in the module.
713    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
714  }
715
716  if (Name.empty())
717    NumberedVals.push_back(GV);
718
719  // Set the parsed properties on the global.
720  if (Init)
721    GV->setInitializer(Init);
722  GV->setConstant(IsConstant);
723  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
724  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
725  GV->setThreadLocal(ThreadLocal);
726
727  // Parse attributes on the global.
728  while (Lex.getKind() == lltok::comma) {
729    Lex.Lex();
730
731    if (Lex.getKind() == lltok::kw_section) {
732      Lex.Lex();
733      GV->setSection(Lex.getStrVal());
734      if (ParseToken(lltok::StringConstant, "expected global section string"))
735        return true;
736    } else if (Lex.getKind() == lltok::kw_align) {
737      unsigned Alignment;
738      if (ParseOptionalAlignment(Alignment)) return true;
739      GV->setAlignment(Alignment);
740    } else {
741      TokError("unknown global variable property!");
742    }
743  }
744
745  return false;
746}
747
748
749//===----------------------------------------------------------------------===//
750// GlobalValue Reference/Resolution Routines.
751//===----------------------------------------------------------------------===//
752
753/// GetGlobalVal - Get a value with the specified name or ID, creating a
754/// forward reference record if needed.  This can return null if the value
755/// exists but does not have the right type.
756GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
757                                    LocTy Loc) {
758  const PointerType *PTy = dyn_cast<PointerType>(Ty);
759  if (PTy == 0) {
760    Error(Loc, "global variable reference must have pointer type");
761    return 0;
762  }
763
764  // Look this name up in the normal function symbol table.
765  GlobalValue *Val =
766    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
767
768  // If this is a forward reference for the value, see if we already created a
769  // forward ref record.
770  if (Val == 0) {
771    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
772      I = ForwardRefVals.find(Name);
773    if (I != ForwardRefVals.end())
774      Val = I->second.first;
775  }
776
777  // If we have the value in the symbol table or fwd-ref table, return it.
778  if (Val) {
779    if (Val->getType() == Ty) return Val;
780    Error(Loc, "'@" + Name + "' defined with type '" +
781          Val->getType()->getDescription() + "'");
782    return 0;
783  }
784
785  // Otherwise, create a new forward reference for this value and remember it.
786  GlobalValue *FwdVal;
787  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
788    // Function types can return opaque but functions can't.
789    if (isa<OpaqueType>(FT->getReturnType())) {
790      Error(Loc, "function may not return opaque type");
791      return 0;
792    }
793
794    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
795  } else {
796    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
797                                GlobalValue::ExternalWeakLinkage, 0, Name);
798  }
799
800  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
801  return FwdVal;
802}
803
804GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
805  const PointerType *PTy = dyn_cast<PointerType>(Ty);
806  if (PTy == 0) {
807    Error(Loc, "global variable reference must have pointer type");
808    return 0;
809  }
810
811  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
812
813  // If this is a forward reference for the value, see if we already created a
814  // forward ref record.
815  if (Val == 0) {
816    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
817      I = ForwardRefValIDs.find(ID);
818    if (I != ForwardRefValIDs.end())
819      Val = I->second.first;
820  }
821
822  // If we have the value in the symbol table or fwd-ref table, return it.
823  if (Val) {
824    if (Val->getType() == Ty) return Val;
825    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
826          Val->getType()->getDescription() + "'");
827    return 0;
828  }
829
830  // Otherwise, create a new forward reference for this value and remember it.
831  GlobalValue *FwdVal;
832  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
833    // Function types can return opaque but functions can't.
834    if (isa<OpaqueType>(FT->getReturnType())) {
835      Error(Loc, "function may not return opaque type");
836      return 0;
837    }
838    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
839  } else {
840    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
841                                GlobalValue::ExternalWeakLinkage, 0, "");
842  }
843
844  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
845  return FwdVal;
846}
847
848
849//===----------------------------------------------------------------------===//
850// Helper Routines.
851//===----------------------------------------------------------------------===//
852
853/// ParseToken - If the current token has the specified kind, eat it and return
854/// success.  Otherwise, emit the specified error and return failure.
855bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
856  if (Lex.getKind() != T)
857    return TokError(ErrMsg);
858  Lex.Lex();
859  return false;
860}
861
862/// ParseStringConstant
863///   ::= StringConstant
864bool LLParser::ParseStringConstant(std::string &Result) {
865  if (Lex.getKind() != lltok::StringConstant)
866    return TokError("expected string constant");
867  Result = Lex.getStrVal();
868  Lex.Lex();
869  return false;
870}
871
872/// ParseUInt32
873///   ::= uint32
874bool LLParser::ParseUInt32(unsigned &Val) {
875  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
876    return TokError("expected integer");
877  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
878  if (Val64 != unsigned(Val64))
879    return TokError("expected 32-bit integer (too large)");
880  Val = Val64;
881  Lex.Lex();
882  return false;
883}
884
885
886/// ParseOptionalAddrSpace
887///   := /*empty*/
888///   := 'addrspace' '(' uint32 ')'
889bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
890  AddrSpace = 0;
891  if (!EatIfPresent(lltok::kw_addrspace))
892    return false;
893  return ParseToken(lltok::lparen, "expected '(' in address space") ||
894         ParseUInt32(AddrSpace) ||
895         ParseToken(lltok::rparen, "expected ')' in address space");
896}
897
898/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
899/// indicates what kind of attribute list this is: 0: function arg, 1: result,
900/// 2: function attr.
901/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
902bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
903  Attrs = Attribute::None;
904  LocTy AttrLoc = Lex.getLoc();
905
906  while (1) {
907    switch (Lex.getKind()) {
908    case lltok::kw_sext:
909    case lltok::kw_zext:
910      // Treat these as signext/zeroext if they occur in the argument list after
911      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
912      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
913      // expr.
914      // FIXME: REMOVE THIS IN LLVM 3.0
915      if (AttrKind == 3) {
916        if (Lex.getKind() == lltok::kw_sext)
917          Attrs |= Attribute::SExt;
918        else
919          Attrs |= Attribute::ZExt;
920        break;
921      }
922      // FALL THROUGH.
923    default:  // End of attributes.
924      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
925        return Error(AttrLoc, "invalid use of function-only attribute");
926
927      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
928        return Error(AttrLoc, "invalid use of parameter-only attribute");
929
930      return false;
931    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
932    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
933    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
934    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
935    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
936    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
937    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
938    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
939
940    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
941    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
942    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
943    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
944    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
945    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
946    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
947    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
948    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
949    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
950    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
951    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
952    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
953
954    case lltok::kw_align: {
955      unsigned Alignment;
956      if (ParseOptionalAlignment(Alignment))
957        return true;
958      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
959      continue;
960    }
961    }
962    Lex.Lex();
963  }
964}
965
966/// ParseOptionalLinkage
967///   ::= /*empty*/
968///   ::= 'private'
969///   ::= 'linker_private'
970///   ::= 'internal'
971///   ::= 'weak'
972///   ::= 'weak_odr'
973///   ::= 'linkonce'
974///   ::= 'linkonce_odr'
975///   ::= 'appending'
976///   ::= 'dllexport'
977///   ::= 'common'
978///   ::= 'dllimport'
979///   ::= 'extern_weak'
980///   ::= 'external'
981bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
982  HasLinkage = false;
983  switch (Lex.getKind()) {
984  default:                       Res=GlobalValue::ExternalLinkage; return false;
985  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
986  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
987  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
988  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
989  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
990  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
991  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
992  case lltok::kw_available_externally:
993    Res = GlobalValue::AvailableExternallyLinkage;
994    break;
995  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
996  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
997  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
998  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
999  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1000  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1001  }
1002  Lex.Lex();
1003  HasLinkage = true;
1004  return false;
1005}
1006
1007/// ParseOptionalVisibility
1008///   ::= /*empty*/
1009///   ::= 'default'
1010///   ::= 'hidden'
1011///   ::= 'protected'
1012///
1013bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1014  switch (Lex.getKind()) {
1015  default:                  Res = GlobalValue::DefaultVisibility; return false;
1016  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1017  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1018  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1019  }
1020  Lex.Lex();
1021  return false;
1022}
1023
1024/// ParseOptionalCallingConv
1025///   ::= /*empty*/
1026///   ::= 'ccc'
1027///   ::= 'fastcc'
1028///   ::= 'coldcc'
1029///   ::= 'x86_stdcallcc'
1030///   ::= 'x86_fastcallcc'
1031///   ::= 'arm_apcscc'
1032///   ::= 'arm_aapcscc'
1033///   ::= 'arm_aapcs_vfpcc'
1034///   ::= 'msp430_intrcc'
1035///   ::= 'cc' UINT
1036///
1037bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1038  switch (Lex.getKind()) {
1039  default:                       CC = CallingConv::C; return false;
1040  case lltok::kw_ccc:            CC = CallingConv::C; break;
1041  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1042  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1043  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1044  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1045  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1046  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1047  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1048  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1049  case lltok::kw_cc: {
1050      unsigned ArbitraryCC;
1051      Lex.Lex();
1052      if (ParseUInt32(ArbitraryCC)) {
1053        return true;
1054      } else
1055        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1056        return false;
1057    }
1058    break;
1059  }
1060
1061  Lex.Lex();
1062  return false;
1063}
1064
1065/// ParseInstructionMetadata
1066///   ::= !dbg !42 (',' !dbg !57)*
1067bool LLParser::
1068ParseInstructionMetadata(SmallVectorImpl<std::pair<unsigned,
1069                                                 MDNode *> > &Result){
1070  do {
1071    if (Lex.getKind() != lltok::MetadataVar)
1072      return TokError("expected metadata after comma");
1073
1074    std::string Name = Lex.getStrVal();
1075    Lex.Lex();
1076
1077    MDNode *Node;
1078    if (ParseToken(lltok::exclaim, "expected '!' here") ||
1079        ParseMDNodeID(Node))
1080      return true;
1081
1082    unsigned MDK = M->getMDKindID(Name.c_str());
1083    Result.push_back(std::make_pair(MDK, Node));
1084
1085    // If this is the end of the list, we're done.
1086  } while (EatIfPresent(lltok::comma));
1087  return false;
1088}
1089
1090/// ParseOptionalAlignment
1091///   ::= /* empty */
1092///   ::= 'align' 4
1093bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1094  Alignment = 0;
1095  if (!EatIfPresent(lltok::kw_align))
1096    return false;
1097  LocTy AlignLoc = Lex.getLoc();
1098  if (ParseUInt32(Alignment)) return true;
1099  if (!isPowerOf2_32(Alignment))
1100    return Error(AlignLoc, "alignment is not a power of two");
1101  return false;
1102}
1103
1104/// ParseOptionalCommaAlign
1105///   ::=
1106///   ::= ',' align 4
1107///
1108/// This returns with AteExtraComma set to true if it ate an excess comma at the
1109/// end.
1110bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1111                                       bool &AteExtraComma) {
1112  AteExtraComma = false;
1113  while (EatIfPresent(lltok::comma)) {
1114    // Metadata at the end is an early exit.
1115    if (Lex.getKind() == lltok::MetadataVar) {
1116      AteExtraComma = true;
1117      return false;
1118    }
1119
1120    if (Lex.getKind() == lltok::kw_align) {
1121      if (ParseOptionalAlignment(Alignment)) return true;
1122    } else
1123      return true;
1124  }
1125
1126  return false;
1127}
1128
1129
1130/// ParseIndexList - This parses the index list for an insert/extractvalue
1131/// instruction.  This sets AteExtraComma in the case where we eat an extra
1132/// comma at the end of the line and find that it is followed by metadata.
1133/// Clients that don't allow metadata can call the version of this function that
1134/// only takes one argument.
1135///
1136/// ParseIndexList
1137///    ::=  (',' uint32)+
1138///
1139bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1140                              bool &AteExtraComma) {
1141  AteExtraComma = false;
1142
1143  if (Lex.getKind() != lltok::comma)
1144    return TokError("expected ',' as start of index list");
1145
1146  while (EatIfPresent(lltok::comma)) {
1147    if (Lex.getKind() == lltok::MetadataVar) {
1148      AteExtraComma = true;
1149      return false;
1150    }
1151    unsigned Idx;
1152    if (ParseUInt32(Idx)) return true;
1153    Indices.push_back(Idx);
1154  }
1155
1156  return false;
1157}
1158
1159//===----------------------------------------------------------------------===//
1160// Type Parsing.
1161//===----------------------------------------------------------------------===//
1162
1163/// ParseType - Parse and resolve a full type.
1164bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1165  LocTy TypeLoc = Lex.getLoc();
1166  if (ParseTypeRec(Result)) return true;
1167
1168  // Verify no unresolved uprefs.
1169  if (!UpRefs.empty())
1170    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1171
1172  if (!AllowVoid && Result.get()->isVoidTy())
1173    return Error(TypeLoc, "void type only allowed for function results");
1174
1175  return false;
1176}
1177
1178/// HandleUpRefs - Every time we finish a new layer of types, this function is
1179/// called.  It loops through the UpRefs vector, which is a list of the
1180/// currently active types.  For each type, if the up-reference is contained in
1181/// the newly completed type, we decrement the level count.  When the level
1182/// count reaches zero, the up-referenced type is the type that is passed in:
1183/// thus we can complete the cycle.
1184///
1185PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1186  // If Ty isn't abstract, or if there are no up-references in it, then there is
1187  // nothing to resolve here.
1188  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1189
1190  PATypeHolder Ty(ty);
1191#if 0
1192  dbgs() << "Type '" << Ty->getDescription()
1193         << "' newly formed.  Resolving upreferences.\n"
1194         << UpRefs.size() << " upreferences active!\n";
1195#endif
1196
1197  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1198  // to zero), we resolve them all together before we resolve them to Ty.  At
1199  // the end of the loop, if there is anything to resolve to Ty, it will be in
1200  // this variable.
1201  OpaqueType *TypeToResolve = 0;
1202
1203  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1204    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1205    bool ContainsType =
1206      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1207                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1208
1209#if 0
1210    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1211           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1212           << (ContainsType ? "true" : "false")
1213           << " level=" << UpRefs[i].NestingLevel << "\n";
1214#endif
1215    if (!ContainsType)
1216      continue;
1217
1218    // Decrement level of upreference
1219    unsigned Level = --UpRefs[i].NestingLevel;
1220    UpRefs[i].LastContainedTy = Ty;
1221
1222    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1223    if (Level != 0)
1224      continue;
1225
1226#if 0
1227    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1228#endif
1229    if (!TypeToResolve)
1230      TypeToResolve = UpRefs[i].UpRefTy;
1231    else
1232      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1233    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1234    --i;                                // Do not skip the next element.
1235  }
1236
1237  if (TypeToResolve)
1238    TypeToResolve->refineAbstractTypeTo(Ty);
1239
1240  return Ty;
1241}
1242
1243
1244/// ParseTypeRec - The recursive function used to process the internal
1245/// implementation details of types.
1246bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1247  switch (Lex.getKind()) {
1248  default:
1249    return TokError("expected type");
1250  case lltok::Type:
1251    // TypeRec ::= 'float' | 'void' (etc)
1252    Result = Lex.getTyVal();
1253    Lex.Lex();
1254    break;
1255  case lltok::kw_opaque:
1256    // TypeRec ::= 'opaque'
1257    Result = OpaqueType::get(Context);
1258    Lex.Lex();
1259    break;
1260  case lltok::lbrace:
1261    // TypeRec ::= '{' ... '}'
1262    if (ParseStructType(Result, false))
1263      return true;
1264    break;
1265  case lltok::lsquare:
1266    // TypeRec ::= '[' ... ']'
1267    Lex.Lex(); // eat the lsquare.
1268    if (ParseArrayVectorType(Result, false))
1269      return true;
1270    break;
1271  case lltok::less: // Either vector or packed struct.
1272    // TypeRec ::= '<' ... '>'
1273    Lex.Lex();
1274    if (Lex.getKind() == lltok::lbrace) {
1275      if (ParseStructType(Result, true) ||
1276          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1277        return true;
1278    } else if (ParseArrayVectorType(Result, true))
1279      return true;
1280    break;
1281  case lltok::LocalVar:
1282  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1283    // TypeRec ::= %foo
1284    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1285      Result = T;
1286    } else {
1287      Result = OpaqueType::get(Context);
1288      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1289                                            std::make_pair(Result,
1290                                                           Lex.getLoc())));
1291      M->addTypeName(Lex.getStrVal(), Result.get());
1292    }
1293    Lex.Lex();
1294    break;
1295
1296  case lltok::LocalVarID:
1297    // TypeRec ::= %4
1298    if (Lex.getUIntVal() < NumberedTypes.size())
1299      Result = NumberedTypes[Lex.getUIntVal()];
1300    else {
1301      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1302        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1303      if (I != ForwardRefTypeIDs.end())
1304        Result = I->second.first;
1305      else {
1306        Result = OpaqueType::get(Context);
1307        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1308                                                std::make_pair(Result,
1309                                                               Lex.getLoc())));
1310      }
1311    }
1312    Lex.Lex();
1313    break;
1314  case lltok::backslash: {
1315    // TypeRec ::= '\' 4
1316    Lex.Lex();
1317    unsigned Val;
1318    if (ParseUInt32(Val)) return true;
1319    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1320    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1321    Result = OT;
1322    break;
1323  }
1324  }
1325
1326  // Parse the type suffixes.
1327  while (1) {
1328    switch (Lex.getKind()) {
1329    // End of type.
1330    default: return false;
1331
1332    // TypeRec ::= TypeRec '*'
1333    case lltok::star:
1334      if (Result.get()->isLabelTy())
1335        return TokError("basic block pointers are invalid");
1336      if (Result.get()->isVoidTy())
1337        return TokError("pointers to void are invalid; use i8* instead");
1338      if (!PointerType::isValidElementType(Result.get()))
1339        return TokError("pointer to this type is invalid");
1340      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1341      Lex.Lex();
1342      break;
1343
1344    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1345    case lltok::kw_addrspace: {
1346      if (Result.get()->isLabelTy())
1347        return TokError("basic block pointers are invalid");
1348      if (Result.get()->isVoidTy())
1349        return TokError("pointers to void are invalid; use i8* instead");
1350      if (!PointerType::isValidElementType(Result.get()))
1351        return TokError("pointer to this type is invalid");
1352      unsigned AddrSpace;
1353      if (ParseOptionalAddrSpace(AddrSpace) ||
1354          ParseToken(lltok::star, "expected '*' in address space"))
1355        return true;
1356
1357      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1358      break;
1359    }
1360
1361    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1362    case lltok::lparen:
1363      if (ParseFunctionType(Result))
1364        return true;
1365      break;
1366    }
1367  }
1368}
1369
1370/// ParseParameterList
1371///    ::= '(' ')'
1372///    ::= '(' Arg (',' Arg)* ')'
1373///  Arg
1374///    ::= Type OptionalAttributes Value OptionalAttributes
1375bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1376                                  PerFunctionState &PFS) {
1377  if (ParseToken(lltok::lparen, "expected '(' in call"))
1378    return true;
1379
1380  while (Lex.getKind() != lltok::rparen) {
1381    // If this isn't the first argument, we need a comma.
1382    if (!ArgList.empty() &&
1383        ParseToken(lltok::comma, "expected ',' in argument list"))
1384      return true;
1385
1386    // Parse the argument.
1387    LocTy ArgLoc;
1388    PATypeHolder ArgTy(Type::getVoidTy(Context));
1389    unsigned ArgAttrs1 = Attribute::None;
1390    unsigned ArgAttrs2 = Attribute::None;
1391    Value *V;
1392    if (ParseType(ArgTy, ArgLoc))
1393      return true;
1394
1395    // Otherwise, handle normal operands.
1396    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1397        ParseValue(ArgTy, V, PFS) ||
1398        // FIXME: Should not allow attributes after the argument, remove this
1399        // in LLVM 3.0.
1400        ParseOptionalAttrs(ArgAttrs2, 3))
1401      return true;
1402    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1403  }
1404
1405  Lex.Lex();  // Lex the ')'.
1406  return false;
1407}
1408
1409
1410
1411/// ParseArgumentList - Parse the argument list for a function type or function
1412/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1413///   ::= '(' ArgTypeListI ')'
1414/// ArgTypeListI
1415///   ::= /*empty*/
1416///   ::= '...'
1417///   ::= ArgTypeList ',' '...'
1418///   ::= ArgType (',' ArgType)*
1419///
1420bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1421                                 bool &isVarArg, bool inType) {
1422  isVarArg = false;
1423  assert(Lex.getKind() == lltok::lparen);
1424  Lex.Lex(); // eat the (.
1425
1426  if (Lex.getKind() == lltok::rparen) {
1427    // empty
1428  } else if (Lex.getKind() == lltok::dotdotdot) {
1429    isVarArg = true;
1430    Lex.Lex();
1431  } else {
1432    LocTy TypeLoc = Lex.getLoc();
1433    PATypeHolder ArgTy(Type::getVoidTy(Context));
1434    unsigned Attrs;
1435    std::string Name;
1436
1437    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1438    // types (such as a function returning a pointer to itself).  If parsing a
1439    // function prototype, we require fully resolved types.
1440    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1441        ParseOptionalAttrs(Attrs, 0)) return true;
1442
1443    if (ArgTy->isVoidTy())
1444      return Error(TypeLoc, "argument can not have void type");
1445
1446    if (Lex.getKind() == lltok::LocalVar ||
1447        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1448      Name = Lex.getStrVal();
1449      Lex.Lex();
1450    }
1451
1452    if (!FunctionType::isValidArgumentType(ArgTy))
1453      return Error(TypeLoc, "invalid type for function argument");
1454
1455    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1456
1457    while (EatIfPresent(lltok::comma)) {
1458      // Handle ... at end of arg list.
1459      if (EatIfPresent(lltok::dotdotdot)) {
1460        isVarArg = true;
1461        break;
1462      }
1463
1464      // Otherwise must be an argument type.
1465      TypeLoc = Lex.getLoc();
1466      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1467          ParseOptionalAttrs(Attrs, 0)) return true;
1468
1469      if (ArgTy->isVoidTy())
1470        return Error(TypeLoc, "argument can not have void type");
1471
1472      if (Lex.getKind() == lltok::LocalVar ||
1473          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1474        Name = Lex.getStrVal();
1475        Lex.Lex();
1476      } else {
1477        Name = "";
1478      }
1479
1480      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1481        return Error(TypeLoc, "invalid type for function argument");
1482
1483      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1484    }
1485  }
1486
1487  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1488}
1489
1490/// ParseFunctionType
1491///  ::= Type ArgumentList OptionalAttrs
1492bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1493  assert(Lex.getKind() == lltok::lparen);
1494
1495  if (!FunctionType::isValidReturnType(Result))
1496    return TokError("invalid function return type");
1497
1498  std::vector<ArgInfo> ArgList;
1499  bool isVarArg;
1500  unsigned Attrs;
1501  if (ParseArgumentList(ArgList, isVarArg, true) ||
1502      // FIXME: Allow, but ignore attributes on function types!
1503      // FIXME: Remove in LLVM 3.0
1504      ParseOptionalAttrs(Attrs, 2))
1505    return true;
1506
1507  // Reject names on the arguments lists.
1508  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1509    if (!ArgList[i].Name.empty())
1510      return Error(ArgList[i].Loc, "argument name invalid in function type");
1511    if (!ArgList[i].Attrs != 0) {
1512      // Allow but ignore attributes on function types; this permits
1513      // auto-upgrade.
1514      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1515    }
1516  }
1517
1518  std::vector<const Type*> ArgListTy;
1519  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1520    ArgListTy.push_back(ArgList[i].Type);
1521
1522  Result = HandleUpRefs(FunctionType::get(Result.get(),
1523                                                ArgListTy, isVarArg));
1524  return false;
1525}
1526
1527/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1528///   TypeRec
1529///     ::= '{' '}'
1530///     ::= '{' TypeRec (',' TypeRec)* '}'
1531///     ::= '<' '{' '}' '>'
1532///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1533bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1534  assert(Lex.getKind() == lltok::lbrace);
1535  Lex.Lex(); // Consume the '{'
1536
1537  if (EatIfPresent(lltok::rbrace)) {
1538    Result = StructType::get(Context, Packed);
1539    return false;
1540  }
1541
1542  std::vector<PATypeHolder> ParamsList;
1543  LocTy EltTyLoc = Lex.getLoc();
1544  if (ParseTypeRec(Result)) return true;
1545  ParamsList.push_back(Result);
1546
1547  if (Result->isVoidTy())
1548    return Error(EltTyLoc, "struct element can not have void type");
1549  if (!StructType::isValidElementType(Result))
1550    return Error(EltTyLoc, "invalid element type for struct");
1551
1552  while (EatIfPresent(lltok::comma)) {
1553    EltTyLoc = Lex.getLoc();
1554    if (ParseTypeRec(Result)) return true;
1555
1556    if (Result->isVoidTy())
1557      return Error(EltTyLoc, "struct element can not have void type");
1558    if (!StructType::isValidElementType(Result))
1559      return Error(EltTyLoc, "invalid element type for struct");
1560
1561    ParamsList.push_back(Result);
1562  }
1563
1564  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1565    return true;
1566
1567  std::vector<const Type*> ParamsListTy;
1568  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1569    ParamsListTy.push_back(ParamsList[i].get());
1570  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1571  return false;
1572}
1573
1574/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1575/// token has already been consumed.
1576///   TypeRec
1577///     ::= '[' APSINTVAL 'x' Types ']'
1578///     ::= '<' APSINTVAL 'x' Types '>'
1579bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1580  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1581      Lex.getAPSIntVal().getBitWidth() > 64)
1582    return TokError("expected number in address space");
1583
1584  LocTy SizeLoc = Lex.getLoc();
1585  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1586  Lex.Lex();
1587
1588  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1589      return true;
1590
1591  LocTy TypeLoc = Lex.getLoc();
1592  PATypeHolder EltTy(Type::getVoidTy(Context));
1593  if (ParseTypeRec(EltTy)) return true;
1594
1595  if (EltTy->isVoidTy())
1596    return Error(TypeLoc, "array and vector element type cannot be void");
1597
1598  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1599                 "expected end of sequential type"))
1600    return true;
1601
1602  if (isVector) {
1603    if (Size == 0)
1604      return Error(SizeLoc, "zero element vector is illegal");
1605    if ((unsigned)Size != Size)
1606      return Error(SizeLoc, "size too large for vector");
1607    if (!VectorType::isValidElementType(EltTy))
1608      return Error(TypeLoc, "vector element type must be fp or integer");
1609    Result = VectorType::get(EltTy, unsigned(Size));
1610  } else {
1611    if (!ArrayType::isValidElementType(EltTy))
1612      return Error(TypeLoc, "invalid array element type");
1613    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1614  }
1615  return false;
1616}
1617
1618//===----------------------------------------------------------------------===//
1619// Function Semantic Analysis.
1620//===----------------------------------------------------------------------===//
1621
1622LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1623                                             int functionNumber)
1624  : P(p), F(f), FunctionNumber(functionNumber) {
1625
1626  // Insert unnamed arguments into the NumberedVals list.
1627  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1628       AI != E; ++AI)
1629    if (!AI->hasName())
1630      NumberedVals.push_back(AI);
1631}
1632
1633LLParser::PerFunctionState::~PerFunctionState() {
1634  // If there were any forward referenced non-basicblock values, delete them.
1635  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1636       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1637    if (!isa<BasicBlock>(I->second.first)) {
1638      I->second.first->replaceAllUsesWith(
1639                           UndefValue::get(I->second.first->getType()));
1640      delete I->second.first;
1641      I->second.first = 0;
1642    }
1643
1644  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1645       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1646    if (!isa<BasicBlock>(I->second.first)) {
1647      I->second.first->replaceAllUsesWith(
1648                           UndefValue::get(I->second.first->getType()));
1649      delete I->second.first;
1650      I->second.first = 0;
1651    }
1652}
1653
1654bool LLParser::PerFunctionState::FinishFunction() {
1655  // Check to see if someone took the address of labels in this block.
1656  if (!P.ForwardRefBlockAddresses.empty()) {
1657    ValID FunctionID;
1658    if (!F.getName().empty()) {
1659      FunctionID.Kind = ValID::t_GlobalName;
1660      FunctionID.StrVal = F.getName();
1661    } else {
1662      FunctionID.Kind = ValID::t_GlobalID;
1663      FunctionID.UIntVal = FunctionNumber;
1664    }
1665
1666    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1667      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1668    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1669      // Resolve all these references.
1670      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1671        return true;
1672
1673      P.ForwardRefBlockAddresses.erase(FRBAI);
1674    }
1675  }
1676
1677  if (!ForwardRefVals.empty())
1678    return P.Error(ForwardRefVals.begin()->second.second,
1679                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1680                   "'");
1681  if (!ForwardRefValIDs.empty())
1682    return P.Error(ForwardRefValIDs.begin()->second.second,
1683                   "use of undefined value '%" +
1684                   utostr(ForwardRefValIDs.begin()->first) + "'");
1685  return false;
1686}
1687
1688
1689/// GetVal - Get a value with the specified name or ID, creating a
1690/// forward reference record if needed.  This can return null if the value
1691/// exists but does not have the right type.
1692Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1693                                          const Type *Ty, LocTy Loc) {
1694  // Look this name up in the normal function symbol table.
1695  Value *Val = F.getValueSymbolTable().lookup(Name);
1696
1697  // If this is a forward reference for the value, see if we already created a
1698  // forward ref record.
1699  if (Val == 0) {
1700    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1701      I = ForwardRefVals.find(Name);
1702    if (I != ForwardRefVals.end())
1703      Val = I->second.first;
1704  }
1705
1706  // If we have the value in the symbol table or fwd-ref table, return it.
1707  if (Val) {
1708    if (Val->getType() == Ty) return Val;
1709    if (Ty->isLabelTy())
1710      P.Error(Loc, "'%" + Name + "' is not a basic block");
1711    else
1712      P.Error(Loc, "'%" + Name + "' defined with type '" +
1713              Val->getType()->getDescription() + "'");
1714    return 0;
1715  }
1716
1717  // Don't make placeholders with invalid type.
1718  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1719      Ty != Type::getLabelTy(F.getContext())) {
1720    P.Error(Loc, "invalid use of a non-first-class type");
1721    return 0;
1722  }
1723
1724  // Otherwise, create a new forward reference for this value and remember it.
1725  Value *FwdVal;
1726  if (Ty->isLabelTy())
1727    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1728  else
1729    FwdVal = new Argument(Ty, Name);
1730
1731  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1732  return FwdVal;
1733}
1734
1735Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1736                                          LocTy Loc) {
1737  // Look this name up in the normal function symbol table.
1738  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1739
1740  // If this is a forward reference for the value, see if we already created a
1741  // forward ref record.
1742  if (Val == 0) {
1743    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1744      I = ForwardRefValIDs.find(ID);
1745    if (I != ForwardRefValIDs.end())
1746      Val = I->second.first;
1747  }
1748
1749  // If we have the value in the symbol table or fwd-ref table, return it.
1750  if (Val) {
1751    if (Val->getType() == Ty) return Val;
1752    if (Ty->isLabelTy())
1753      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1754    else
1755      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1756              Val->getType()->getDescription() + "'");
1757    return 0;
1758  }
1759
1760  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1761      Ty != Type::getLabelTy(F.getContext())) {
1762    P.Error(Loc, "invalid use of a non-first-class type");
1763    return 0;
1764  }
1765
1766  // Otherwise, create a new forward reference for this value and remember it.
1767  Value *FwdVal;
1768  if (Ty->isLabelTy())
1769    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1770  else
1771    FwdVal = new Argument(Ty);
1772
1773  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1774  return FwdVal;
1775}
1776
1777/// SetInstName - After an instruction is parsed and inserted into its
1778/// basic block, this installs its name.
1779bool LLParser::PerFunctionState::SetInstName(int NameID,
1780                                             const std::string &NameStr,
1781                                             LocTy NameLoc, Instruction *Inst) {
1782  // If this instruction has void type, it cannot have a name or ID specified.
1783  if (Inst->getType()->isVoidTy()) {
1784    if (NameID != -1 || !NameStr.empty())
1785      return P.Error(NameLoc, "instructions returning void cannot have a name");
1786    return false;
1787  }
1788
1789  // If this was a numbered instruction, verify that the instruction is the
1790  // expected value and resolve any forward references.
1791  if (NameStr.empty()) {
1792    // If neither a name nor an ID was specified, just use the next ID.
1793    if (NameID == -1)
1794      NameID = NumberedVals.size();
1795
1796    if (unsigned(NameID) != NumberedVals.size())
1797      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1798                     utostr(NumberedVals.size()) + "'");
1799
1800    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1801      ForwardRefValIDs.find(NameID);
1802    if (FI != ForwardRefValIDs.end()) {
1803      if (FI->second.first->getType() != Inst->getType())
1804        return P.Error(NameLoc, "instruction forward referenced with type '" +
1805                       FI->second.first->getType()->getDescription() + "'");
1806      FI->second.first->replaceAllUsesWith(Inst);
1807      delete FI->second.first;
1808      ForwardRefValIDs.erase(FI);
1809    }
1810
1811    NumberedVals.push_back(Inst);
1812    return false;
1813  }
1814
1815  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1816  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1817    FI = ForwardRefVals.find(NameStr);
1818  if (FI != ForwardRefVals.end()) {
1819    if (FI->second.first->getType() != Inst->getType())
1820      return P.Error(NameLoc, "instruction forward referenced with type '" +
1821                     FI->second.first->getType()->getDescription() + "'");
1822    FI->second.first->replaceAllUsesWith(Inst);
1823    delete FI->second.first;
1824    ForwardRefVals.erase(FI);
1825  }
1826
1827  // Set the name on the instruction.
1828  Inst->setName(NameStr);
1829
1830  if (Inst->getNameStr() != NameStr)
1831    return P.Error(NameLoc, "multiple definition of local value named '" +
1832                   NameStr + "'");
1833  return false;
1834}
1835
1836/// GetBB - Get a basic block with the specified name or ID, creating a
1837/// forward reference record if needed.
1838BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1839                                              LocTy Loc) {
1840  return cast_or_null<BasicBlock>(GetVal(Name,
1841                                        Type::getLabelTy(F.getContext()), Loc));
1842}
1843
1844BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1845  return cast_or_null<BasicBlock>(GetVal(ID,
1846                                        Type::getLabelTy(F.getContext()), Loc));
1847}
1848
1849/// DefineBB - Define the specified basic block, which is either named or
1850/// unnamed.  If there is an error, this returns null otherwise it returns
1851/// the block being defined.
1852BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1853                                                 LocTy Loc) {
1854  BasicBlock *BB;
1855  if (Name.empty())
1856    BB = GetBB(NumberedVals.size(), Loc);
1857  else
1858    BB = GetBB(Name, Loc);
1859  if (BB == 0) return 0; // Already diagnosed error.
1860
1861  // Move the block to the end of the function.  Forward ref'd blocks are
1862  // inserted wherever they happen to be referenced.
1863  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1864
1865  // Remove the block from forward ref sets.
1866  if (Name.empty()) {
1867    ForwardRefValIDs.erase(NumberedVals.size());
1868    NumberedVals.push_back(BB);
1869  } else {
1870    // BB forward references are already in the function symbol table.
1871    ForwardRefVals.erase(Name);
1872  }
1873
1874  return BB;
1875}
1876
1877//===----------------------------------------------------------------------===//
1878// Constants.
1879//===----------------------------------------------------------------------===//
1880
1881/// ParseValID - Parse an abstract value that doesn't necessarily have a
1882/// type implied.  For example, if we parse "4" we don't know what integer type
1883/// it has.  The value will later be combined with its type and checked for
1884/// sanity.
1885bool LLParser::ParseValID(ValID &ID) {
1886  ID.Loc = Lex.getLoc();
1887  switch (Lex.getKind()) {
1888  default: return TokError("expected value token");
1889  case lltok::GlobalID:  // @42
1890    ID.UIntVal = Lex.getUIntVal();
1891    ID.Kind = ValID::t_GlobalID;
1892    break;
1893  case lltok::GlobalVar:  // @foo
1894    ID.StrVal = Lex.getStrVal();
1895    ID.Kind = ValID::t_GlobalName;
1896    break;
1897  case lltok::LocalVarID:  // %42
1898    ID.UIntVal = Lex.getUIntVal();
1899    ID.Kind = ValID::t_LocalID;
1900    break;
1901  case lltok::LocalVar:  // %foo
1902  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1903    ID.StrVal = Lex.getStrVal();
1904    ID.Kind = ValID::t_LocalName;
1905    break;
1906  case lltok::exclaim:   // !{...} MDNode, !"foo" MDString
1907    Lex.Lex();
1908
1909    if (EatIfPresent(lltok::lbrace)) {
1910      SmallVector<Value*, 16> Elts;
1911      if (ParseMDNodeVector(Elts) ||
1912          ParseToken(lltok::rbrace, "expected end of metadata node"))
1913        return true;
1914
1915      ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
1916      ID.Kind = ValID::t_MDNode;
1917      return false;
1918    }
1919
1920    // Standalone metadata reference
1921    // !{ ..., !42, ... }
1922    if (Lex.getKind() == lltok::APSInt) {
1923      if (ParseMDNodeID(ID.MDNodeVal)) return true;
1924      ID.Kind = ValID::t_MDNode;
1925      return false;
1926    }
1927
1928    // MDString:
1929    //   ::= '!' STRINGCONSTANT
1930    if (ParseMDString(ID.MDStringVal)) return true;
1931    ID.Kind = ValID::t_MDString;
1932    return false;
1933  case lltok::APSInt:
1934    ID.APSIntVal = Lex.getAPSIntVal();
1935    ID.Kind = ValID::t_APSInt;
1936    break;
1937  case lltok::APFloat:
1938    ID.APFloatVal = Lex.getAPFloatVal();
1939    ID.Kind = ValID::t_APFloat;
1940    break;
1941  case lltok::kw_true:
1942    ID.ConstantVal = ConstantInt::getTrue(Context);
1943    ID.Kind = ValID::t_Constant;
1944    break;
1945  case lltok::kw_false:
1946    ID.ConstantVal = ConstantInt::getFalse(Context);
1947    ID.Kind = ValID::t_Constant;
1948    break;
1949  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1950  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1951  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1952
1953  case lltok::lbrace: {
1954    // ValID ::= '{' ConstVector '}'
1955    Lex.Lex();
1956    SmallVector<Constant*, 16> Elts;
1957    if (ParseGlobalValueVector(Elts) ||
1958        ParseToken(lltok::rbrace, "expected end of struct constant"))
1959      return true;
1960
1961    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1962                                         Elts.size(), false);
1963    ID.Kind = ValID::t_Constant;
1964    return false;
1965  }
1966  case lltok::less: {
1967    // ValID ::= '<' ConstVector '>'         --> Vector.
1968    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1969    Lex.Lex();
1970    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1971
1972    SmallVector<Constant*, 16> Elts;
1973    LocTy FirstEltLoc = Lex.getLoc();
1974    if (ParseGlobalValueVector(Elts) ||
1975        (isPackedStruct &&
1976         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1977        ParseToken(lltok::greater, "expected end of constant"))
1978      return true;
1979
1980    if (isPackedStruct) {
1981      ID.ConstantVal =
1982        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1983      ID.Kind = ValID::t_Constant;
1984      return false;
1985    }
1986
1987    if (Elts.empty())
1988      return Error(ID.Loc, "constant vector must not be empty");
1989
1990    if (!Elts[0]->getType()->isInteger() &&
1991        !Elts[0]->getType()->isFloatingPoint())
1992      return Error(FirstEltLoc,
1993                   "vector elements must have integer or floating point type");
1994
1995    // Verify that all the vector elements have the same type.
1996    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1997      if (Elts[i]->getType() != Elts[0]->getType())
1998        return Error(FirstEltLoc,
1999                     "vector element #" + utostr(i) +
2000                    " is not of type '" + Elts[0]->getType()->getDescription());
2001
2002    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2003    ID.Kind = ValID::t_Constant;
2004    return false;
2005  }
2006  case lltok::lsquare: {   // Array Constant
2007    Lex.Lex();
2008    SmallVector<Constant*, 16> Elts;
2009    LocTy FirstEltLoc = Lex.getLoc();
2010    if (ParseGlobalValueVector(Elts) ||
2011        ParseToken(lltok::rsquare, "expected end of array constant"))
2012      return true;
2013
2014    // Handle empty element.
2015    if (Elts.empty()) {
2016      // Use undef instead of an array because it's inconvenient to determine
2017      // the element type at this point, there being no elements to examine.
2018      ID.Kind = ValID::t_EmptyArray;
2019      return false;
2020    }
2021
2022    if (!Elts[0]->getType()->isFirstClassType())
2023      return Error(FirstEltLoc, "invalid array element type: " +
2024                   Elts[0]->getType()->getDescription());
2025
2026    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2027
2028    // Verify all elements are correct type!
2029    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2030      if (Elts[i]->getType() != Elts[0]->getType())
2031        return Error(FirstEltLoc,
2032                     "array element #" + utostr(i) +
2033                     " is not of type '" +Elts[0]->getType()->getDescription());
2034    }
2035
2036    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2037    ID.Kind = ValID::t_Constant;
2038    return false;
2039  }
2040  case lltok::kw_c:  // c "foo"
2041    Lex.Lex();
2042    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2043    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2044    ID.Kind = ValID::t_Constant;
2045    return false;
2046
2047  case lltok::kw_asm: {
2048    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2049    bool HasSideEffect, AlignStack;
2050    Lex.Lex();
2051    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2052        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2053        ParseStringConstant(ID.StrVal) ||
2054        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2055        ParseToken(lltok::StringConstant, "expected constraint string"))
2056      return true;
2057    ID.StrVal2 = Lex.getStrVal();
2058    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2059    ID.Kind = ValID::t_InlineAsm;
2060    return false;
2061  }
2062
2063  case lltok::kw_blockaddress: {
2064    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2065    Lex.Lex();
2066
2067    ValID Fn, Label;
2068    LocTy FnLoc, LabelLoc;
2069
2070    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2071        ParseValID(Fn) ||
2072        ParseToken(lltok::comma, "expected comma in block address expression")||
2073        ParseValID(Label) ||
2074        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2075      return true;
2076
2077    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2078      return Error(Fn.Loc, "expected function name in blockaddress");
2079    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2080      return Error(Label.Loc, "expected basic block name in blockaddress");
2081
2082    // Make a global variable as a placeholder for this reference.
2083    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2084                                           false, GlobalValue::InternalLinkage,
2085                                                0, "");
2086    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2087    ID.ConstantVal = FwdRef;
2088    ID.Kind = ValID::t_Constant;
2089    return false;
2090  }
2091
2092  case lltok::kw_trunc:
2093  case lltok::kw_zext:
2094  case lltok::kw_sext:
2095  case lltok::kw_fptrunc:
2096  case lltok::kw_fpext:
2097  case lltok::kw_bitcast:
2098  case lltok::kw_uitofp:
2099  case lltok::kw_sitofp:
2100  case lltok::kw_fptoui:
2101  case lltok::kw_fptosi:
2102  case lltok::kw_inttoptr:
2103  case lltok::kw_ptrtoint: {
2104    unsigned Opc = Lex.getUIntVal();
2105    PATypeHolder DestTy(Type::getVoidTy(Context));
2106    Constant *SrcVal;
2107    Lex.Lex();
2108    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2109        ParseGlobalTypeAndValue(SrcVal) ||
2110        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2111        ParseType(DestTy) ||
2112        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2113      return true;
2114    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2115      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2116                   SrcVal->getType()->getDescription() + "' to '" +
2117                   DestTy->getDescription() + "'");
2118    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2119                                                 SrcVal, DestTy);
2120    ID.Kind = ValID::t_Constant;
2121    return false;
2122  }
2123  case lltok::kw_extractvalue: {
2124    Lex.Lex();
2125    Constant *Val;
2126    SmallVector<unsigned, 4> Indices;
2127    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2128        ParseGlobalTypeAndValue(Val) ||
2129        ParseIndexList(Indices) ||
2130        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2131      return true;
2132
2133    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2134      return Error(ID.Loc, "extractvalue operand must be array or struct");
2135    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2136                                          Indices.end()))
2137      return Error(ID.Loc, "invalid indices for extractvalue");
2138    ID.ConstantVal =
2139      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2140    ID.Kind = ValID::t_Constant;
2141    return false;
2142  }
2143  case lltok::kw_insertvalue: {
2144    Lex.Lex();
2145    Constant *Val0, *Val1;
2146    SmallVector<unsigned, 4> Indices;
2147    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2148        ParseGlobalTypeAndValue(Val0) ||
2149        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2150        ParseGlobalTypeAndValue(Val1) ||
2151        ParseIndexList(Indices) ||
2152        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2153      return true;
2154    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2155      return Error(ID.Loc, "extractvalue operand must be array or struct");
2156    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2157                                          Indices.end()))
2158      return Error(ID.Loc, "invalid indices for insertvalue");
2159    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2160                       Indices.data(), Indices.size());
2161    ID.Kind = ValID::t_Constant;
2162    return false;
2163  }
2164  case lltok::kw_icmp:
2165  case lltok::kw_fcmp: {
2166    unsigned PredVal, Opc = Lex.getUIntVal();
2167    Constant *Val0, *Val1;
2168    Lex.Lex();
2169    if (ParseCmpPredicate(PredVal, Opc) ||
2170        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2171        ParseGlobalTypeAndValue(Val0) ||
2172        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2173        ParseGlobalTypeAndValue(Val1) ||
2174        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2175      return true;
2176
2177    if (Val0->getType() != Val1->getType())
2178      return Error(ID.Loc, "compare operands must have the same type");
2179
2180    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2181
2182    if (Opc == Instruction::FCmp) {
2183      if (!Val0->getType()->isFPOrFPVector())
2184        return Error(ID.Loc, "fcmp requires floating point operands");
2185      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2186    } else {
2187      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2188      if (!Val0->getType()->isIntOrIntVector() &&
2189          !isa<PointerType>(Val0->getType()))
2190        return Error(ID.Loc, "icmp requires pointer or integer operands");
2191      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2192    }
2193    ID.Kind = ValID::t_Constant;
2194    return false;
2195  }
2196
2197  // Binary Operators.
2198  case lltok::kw_add:
2199  case lltok::kw_fadd:
2200  case lltok::kw_sub:
2201  case lltok::kw_fsub:
2202  case lltok::kw_mul:
2203  case lltok::kw_fmul:
2204  case lltok::kw_udiv:
2205  case lltok::kw_sdiv:
2206  case lltok::kw_fdiv:
2207  case lltok::kw_urem:
2208  case lltok::kw_srem:
2209  case lltok::kw_frem: {
2210    bool NUW = false;
2211    bool NSW = false;
2212    bool Exact = false;
2213    unsigned Opc = Lex.getUIntVal();
2214    Constant *Val0, *Val1;
2215    Lex.Lex();
2216    LocTy ModifierLoc = Lex.getLoc();
2217    if (Opc == Instruction::Add ||
2218        Opc == Instruction::Sub ||
2219        Opc == Instruction::Mul) {
2220      if (EatIfPresent(lltok::kw_nuw))
2221        NUW = true;
2222      if (EatIfPresent(lltok::kw_nsw)) {
2223        NSW = true;
2224        if (EatIfPresent(lltok::kw_nuw))
2225          NUW = true;
2226      }
2227    } else if (Opc == Instruction::SDiv) {
2228      if (EatIfPresent(lltok::kw_exact))
2229        Exact = true;
2230    }
2231    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2232        ParseGlobalTypeAndValue(Val0) ||
2233        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2234        ParseGlobalTypeAndValue(Val1) ||
2235        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2236      return true;
2237    if (Val0->getType() != Val1->getType())
2238      return Error(ID.Loc, "operands of constexpr must have same type");
2239    if (!Val0->getType()->isIntOrIntVector()) {
2240      if (NUW)
2241        return Error(ModifierLoc, "nuw only applies to integer operations");
2242      if (NSW)
2243        return Error(ModifierLoc, "nsw only applies to integer operations");
2244    }
2245    // API compatibility: Accept either integer or floating-point types with
2246    // add, sub, and mul.
2247    if (!Val0->getType()->isIntOrIntVector() &&
2248        !Val0->getType()->isFPOrFPVector())
2249      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2250    unsigned Flags = 0;
2251    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2252    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2253    if (Exact) Flags |= SDivOperator::IsExact;
2254    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2255    ID.ConstantVal = C;
2256    ID.Kind = ValID::t_Constant;
2257    return false;
2258  }
2259
2260  // Logical Operations
2261  case lltok::kw_shl:
2262  case lltok::kw_lshr:
2263  case lltok::kw_ashr:
2264  case lltok::kw_and:
2265  case lltok::kw_or:
2266  case lltok::kw_xor: {
2267    unsigned Opc = Lex.getUIntVal();
2268    Constant *Val0, *Val1;
2269    Lex.Lex();
2270    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2271        ParseGlobalTypeAndValue(Val0) ||
2272        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2273        ParseGlobalTypeAndValue(Val1) ||
2274        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2275      return true;
2276    if (Val0->getType() != Val1->getType())
2277      return Error(ID.Loc, "operands of constexpr must have same type");
2278    if (!Val0->getType()->isIntOrIntVector())
2279      return Error(ID.Loc,
2280                   "constexpr requires integer or integer vector operands");
2281    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2282    ID.Kind = ValID::t_Constant;
2283    return false;
2284  }
2285
2286  case lltok::kw_getelementptr:
2287  case lltok::kw_shufflevector:
2288  case lltok::kw_insertelement:
2289  case lltok::kw_extractelement:
2290  case lltok::kw_select: {
2291    unsigned Opc = Lex.getUIntVal();
2292    SmallVector<Constant*, 16> Elts;
2293    bool InBounds = false;
2294    Lex.Lex();
2295    if (Opc == Instruction::GetElementPtr)
2296      InBounds = EatIfPresent(lltok::kw_inbounds);
2297    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2298        ParseGlobalValueVector(Elts) ||
2299        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2300      return true;
2301
2302    if (Opc == Instruction::GetElementPtr) {
2303      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2304        return Error(ID.Loc, "getelementptr requires pointer operand");
2305
2306      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2307                                             (Value**)(Elts.data() + 1),
2308                                             Elts.size() - 1))
2309        return Error(ID.Loc, "invalid indices for getelementptr");
2310      ID.ConstantVal = InBounds ?
2311        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2312                                               Elts.data() + 1,
2313                                               Elts.size() - 1) :
2314        ConstantExpr::getGetElementPtr(Elts[0],
2315                                       Elts.data() + 1, Elts.size() - 1);
2316    } else if (Opc == Instruction::Select) {
2317      if (Elts.size() != 3)
2318        return Error(ID.Loc, "expected three operands to select");
2319      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2320                                                              Elts[2]))
2321        return Error(ID.Loc, Reason);
2322      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2323    } else if (Opc == Instruction::ShuffleVector) {
2324      if (Elts.size() != 3)
2325        return Error(ID.Loc, "expected three operands to shufflevector");
2326      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2327        return Error(ID.Loc, "invalid operands to shufflevector");
2328      ID.ConstantVal =
2329                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2330    } else if (Opc == Instruction::ExtractElement) {
2331      if (Elts.size() != 2)
2332        return Error(ID.Loc, "expected two operands to extractelement");
2333      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2334        return Error(ID.Loc, "invalid extractelement operands");
2335      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2336    } else {
2337      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2338      if (Elts.size() != 3)
2339      return Error(ID.Loc, "expected three operands to insertelement");
2340      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2341        return Error(ID.Loc, "invalid insertelement operands");
2342      ID.ConstantVal =
2343                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2344    }
2345
2346    ID.Kind = ValID::t_Constant;
2347    return false;
2348  }
2349  }
2350
2351  Lex.Lex();
2352  return false;
2353}
2354
2355/// ParseGlobalValue - Parse a global value with the specified type.
2356bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2357  V = 0;
2358  ValID ID;
2359  return ParseValID(ID) ||
2360         ConvertGlobalValIDToValue(Ty, ID, V);
2361}
2362
2363/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2364/// constant.
2365bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2366                                         Constant *&V) {
2367  if (isa<FunctionType>(Ty))
2368    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2369
2370  switch (ID.Kind) {
2371  default: llvm_unreachable("Unknown ValID!");
2372  case ValID::t_MDNode:
2373  case ValID::t_MDString:
2374    return Error(ID.Loc, "invalid use of metadata");
2375  case ValID::t_LocalID:
2376  case ValID::t_LocalName:
2377    return Error(ID.Loc, "invalid use of function-local name");
2378  case ValID::t_InlineAsm:
2379    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2380  case ValID::t_GlobalName:
2381    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2382    return V == 0;
2383  case ValID::t_GlobalID:
2384    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2385    return V == 0;
2386  case ValID::t_APSInt:
2387    if (!isa<IntegerType>(Ty))
2388      return Error(ID.Loc, "integer constant must have integer type");
2389    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2390    V = ConstantInt::get(Context, ID.APSIntVal);
2391    return false;
2392  case ValID::t_APFloat:
2393    if (!Ty->isFloatingPoint() ||
2394        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2395      return Error(ID.Loc, "floating point constant invalid for type");
2396
2397    // The lexer has no type info, so builds all float and double FP constants
2398    // as double.  Fix this here.  Long double does not need this.
2399    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2400        Ty->isFloatTy()) {
2401      bool Ignored;
2402      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2403                            &Ignored);
2404    }
2405    V = ConstantFP::get(Context, ID.APFloatVal);
2406
2407    if (V->getType() != Ty)
2408      return Error(ID.Loc, "floating point constant does not have type '" +
2409                   Ty->getDescription() + "'");
2410
2411    return false;
2412  case ValID::t_Null:
2413    if (!isa<PointerType>(Ty))
2414      return Error(ID.Loc, "null must be a pointer type");
2415    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2416    return false;
2417  case ValID::t_Undef:
2418    // FIXME: LabelTy should not be a first-class type.
2419    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2420        !isa<OpaqueType>(Ty))
2421      return Error(ID.Loc, "invalid type for undef constant");
2422    V = UndefValue::get(Ty);
2423    return false;
2424  case ValID::t_EmptyArray:
2425    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2426      return Error(ID.Loc, "invalid empty array initializer");
2427    V = UndefValue::get(Ty);
2428    return false;
2429  case ValID::t_Zero:
2430    // FIXME: LabelTy should not be a first-class type.
2431    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2432      return Error(ID.Loc, "invalid type for null constant");
2433    V = Constant::getNullValue(Ty);
2434    return false;
2435  case ValID::t_Constant:
2436    if (ID.ConstantVal->getType() != Ty)
2437      return Error(ID.Loc, "constant expression type mismatch");
2438    V = ID.ConstantVal;
2439    return false;
2440  }
2441}
2442
2443/// ConvertGlobalOrMetadataValIDToValue - Apply a type to a ValID to get a fully
2444/// resolved constant or metadata value.
2445bool LLParser::ConvertGlobalOrMetadataValIDToValue(const Type *Ty, ValID &ID,
2446                                                   Value *&V) {
2447  switch (ID.Kind) {
2448  case ValID::t_MDNode:
2449    if (!Ty->isMetadataTy())
2450      return Error(ID.Loc, "metadata value must have metadata type");
2451    V = ID.MDNodeVal;
2452    return false;
2453  case ValID::t_MDString:
2454    if (!Ty->isMetadataTy())
2455      return Error(ID.Loc, "metadata value must have metadata type");
2456    V = ID.MDStringVal;
2457    return false;
2458  default:
2459    Constant *C;
2460    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2461    V = C;
2462    return false;
2463  }
2464}
2465
2466
2467bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2468  PATypeHolder Type(Type::getVoidTy(Context));
2469  return ParseType(Type) ||
2470         ParseGlobalValue(Type, V);
2471}
2472
2473/// ParseGlobalValueVector
2474///   ::= /*empty*/
2475///   ::= TypeAndValue (',' TypeAndValue)*
2476bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2477  // Empty list.
2478  if (Lex.getKind() == lltok::rbrace ||
2479      Lex.getKind() == lltok::rsquare ||
2480      Lex.getKind() == lltok::greater ||
2481      Lex.getKind() == lltok::rparen)
2482    return false;
2483
2484  Constant *C;
2485  if (ParseGlobalTypeAndValue(C)) return true;
2486  Elts.push_back(C);
2487
2488  while (EatIfPresent(lltok::comma)) {
2489    if (ParseGlobalTypeAndValue(C)) return true;
2490    Elts.push_back(C);
2491  }
2492
2493  return false;
2494}
2495
2496
2497//===----------------------------------------------------------------------===//
2498// Function Parsing.
2499//===----------------------------------------------------------------------===//
2500
2501bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2502                                   PerFunctionState &PFS) {
2503  switch (ID.Kind) {
2504  case ValID::t_LocalID: V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc); break;
2505  case ValID::t_LocalName: V = PFS.GetVal(ID.StrVal, Ty, ID.Loc); break;
2506  case ValID::t_InlineAsm: {
2507    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2508    const FunctionType *FTy =
2509      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2510    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2511      return Error(ID.Loc, "invalid type for inline asm constraint string");
2512    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2513    return false;
2514  }
2515  default:
2516    return ConvertGlobalOrMetadataValIDToValue(Ty, ID, V);
2517  }
2518
2519  return V == 0;
2520}
2521
2522bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2523  V = 0;
2524  ValID ID;
2525  return ParseValID(ID) ||
2526         ConvertValIDToValue(Ty, ID, V, PFS);
2527}
2528
2529bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2530  PATypeHolder T(Type::getVoidTy(Context));
2531  return ParseType(T) ||
2532         ParseValue(T, V, PFS);
2533}
2534
2535bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2536                                      PerFunctionState &PFS) {
2537  Value *V;
2538  Loc = Lex.getLoc();
2539  if (ParseTypeAndValue(V, PFS)) return true;
2540  if (!isa<BasicBlock>(V))
2541    return Error(Loc, "expected a basic block");
2542  BB = cast<BasicBlock>(V);
2543  return false;
2544}
2545
2546
2547/// FunctionHeader
2548///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2549///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2550///       OptionalAlign OptGC
2551bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2552  // Parse the linkage.
2553  LocTy LinkageLoc = Lex.getLoc();
2554  unsigned Linkage;
2555
2556  unsigned Visibility, RetAttrs;
2557  CallingConv::ID CC;
2558  PATypeHolder RetType(Type::getVoidTy(Context));
2559  LocTy RetTypeLoc = Lex.getLoc();
2560  if (ParseOptionalLinkage(Linkage) ||
2561      ParseOptionalVisibility(Visibility) ||
2562      ParseOptionalCallingConv(CC) ||
2563      ParseOptionalAttrs(RetAttrs, 1) ||
2564      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2565    return true;
2566
2567  // Verify that the linkage is ok.
2568  switch ((GlobalValue::LinkageTypes)Linkage) {
2569  case GlobalValue::ExternalLinkage:
2570    break; // always ok.
2571  case GlobalValue::DLLImportLinkage:
2572  case GlobalValue::ExternalWeakLinkage:
2573    if (isDefine)
2574      return Error(LinkageLoc, "invalid linkage for function definition");
2575    break;
2576  case GlobalValue::PrivateLinkage:
2577  case GlobalValue::LinkerPrivateLinkage:
2578  case GlobalValue::InternalLinkage:
2579  case GlobalValue::AvailableExternallyLinkage:
2580  case GlobalValue::LinkOnceAnyLinkage:
2581  case GlobalValue::LinkOnceODRLinkage:
2582  case GlobalValue::WeakAnyLinkage:
2583  case GlobalValue::WeakODRLinkage:
2584  case GlobalValue::DLLExportLinkage:
2585    if (!isDefine)
2586      return Error(LinkageLoc, "invalid linkage for function declaration");
2587    break;
2588  case GlobalValue::AppendingLinkage:
2589  case GlobalValue::GhostLinkage:
2590  case GlobalValue::CommonLinkage:
2591    return Error(LinkageLoc, "invalid function linkage type");
2592  }
2593
2594  if (!FunctionType::isValidReturnType(RetType) ||
2595      isa<OpaqueType>(RetType))
2596    return Error(RetTypeLoc, "invalid function return type");
2597
2598  LocTy NameLoc = Lex.getLoc();
2599
2600  std::string FunctionName;
2601  if (Lex.getKind() == lltok::GlobalVar) {
2602    FunctionName = Lex.getStrVal();
2603  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2604    unsigned NameID = Lex.getUIntVal();
2605
2606    if (NameID != NumberedVals.size())
2607      return TokError("function expected to be numbered '%" +
2608                      utostr(NumberedVals.size()) + "'");
2609  } else {
2610    return TokError("expected function name");
2611  }
2612
2613  Lex.Lex();
2614
2615  if (Lex.getKind() != lltok::lparen)
2616    return TokError("expected '(' in function argument list");
2617
2618  std::vector<ArgInfo> ArgList;
2619  bool isVarArg;
2620  unsigned FuncAttrs;
2621  std::string Section;
2622  unsigned Alignment;
2623  std::string GC;
2624
2625  if (ParseArgumentList(ArgList, isVarArg, false) ||
2626      ParseOptionalAttrs(FuncAttrs, 2) ||
2627      (EatIfPresent(lltok::kw_section) &&
2628       ParseStringConstant(Section)) ||
2629      ParseOptionalAlignment(Alignment) ||
2630      (EatIfPresent(lltok::kw_gc) &&
2631       ParseStringConstant(GC)))
2632    return true;
2633
2634  // If the alignment was parsed as an attribute, move to the alignment field.
2635  if (FuncAttrs & Attribute::Alignment) {
2636    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2637    FuncAttrs &= ~Attribute::Alignment;
2638  }
2639
2640  // Okay, if we got here, the function is syntactically valid.  Convert types
2641  // and do semantic checks.
2642  std::vector<const Type*> ParamTypeList;
2643  SmallVector<AttributeWithIndex, 8> Attrs;
2644  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2645  // attributes.
2646  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2647  if (FuncAttrs & ObsoleteFuncAttrs) {
2648    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2649    FuncAttrs &= ~ObsoleteFuncAttrs;
2650  }
2651
2652  if (RetAttrs != Attribute::None)
2653    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2654
2655  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2656    ParamTypeList.push_back(ArgList[i].Type);
2657    if (ArgList[i].Attrs != Attribute::None)
2658      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2659  }
2660
2661  if (FuncAttrs != Attribute::None)
2662    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2663
2664  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2665
2666  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2667      RetType != Type::getVoidTy(Context))
2668    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2669
2670  const FunctionType *FT =
2671    FunctionType::get(RetType, ParamTypeList, isVarArg);
2672  const PointerType *PFT = PointerType::getUnqual(FT);
2673
2674  Fn = 0;
2675  if (!FunctionName.empty()) {
2676    // If this was a definition of a forward reference, remove the definition
2677    // from the forward reference table and fill in the forward ref.
2678    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2679      ForwardRefVals.find(FunctionName);
2680    if (FRVI != ForwardRefVals.end()) {
2681      Fn = M->getFunction(FunctionName);
2682      ForwardRefVals.erase(FRVI);
2683    } else if ((Fn = M->getFunction(FunctionName))) {
2684      // If this function already exists in the symbol table, then it is
2685      // multiply defined.  We accept a few cases for old backwards compat.
2686      // FIXME: Remove this stuff for LLVM 3.0.
2687      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2688          (!Fn->isDeclaration() && isDefine)) {
2689        // If the redefinition has different type or different attributes,
2690        // reject it.  If both have bodies, reject it.
2691        return Error(NameLoc, "invalid redefinition of function '" +
2692                     FunctionName + "'");
2693      } else if (Fn->isDeclaration()) {
2694        // Make sure to strip off any argument names so we can't get conflicts.
2695        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2696             AI != AE; ++AI)
2697          AI->setName("");
2698      }
2699    } else if (M->getNamedValue(FunctionName)) {
2700      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2701    }
2702
2703  } else {
2704    // If this is a definition of a forward referenced function, make sure the
2705    // types agree.
2706    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2707      = ForwardRefValIDs.find(NumberedVals.size());
2708    if (I != ForwardRefValIDs.end()) {
2709      Fn = cast<Function>(I->second.first);
2710      if (Fn->getType() != PFT)
2711        return Error(NameLoc, "type of definition and forward reference of '@" +
2712                     utostr(NumberedVals.size()) +"' disagree");
2713      ForwardRefValIDs.erase(I);
2714    }
2715  }
2716
2717  if (Fn == 0)
2718    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2719  else // Move the forward-reference to the correct spot in the module.
2720    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2721
2722  if (FunctionName.empty())
2723    NumberedVals.push_back(Fn);
2724
2725  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2726  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2727  Fn->setCallingConv(CC);
2728  Fn->setAttributes(PAL);
2729  Fn->setAlignment(Alignment);
2730  Fn->setSection(Section);
2731  if (!GC.empty()) Fn->setGC(GC.c_str());
2732
2733  // Add all of the arguments we parsed to the function.
2734  Function::arg_iterator ArgIt = Fn->arg_begin();
2735  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2736    // If we run out of arguments in the Function prototype, exit early.
2737    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2738    if (ArgIt == Fn->arg_end()) break;
2739
2740    // If the argument has a name, insert it into the argument symbol table.
2741    if (ArgList[i].Name.empty()) continue;
2742
2743    // Set the name, if it conflicted, it will be auto-renamed.
2744    ArgIt->setName(ArgList[i].Name);
2745
2746    if (ArgIt->getNameStr() != ArgList[i].Name)
2747      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2748                   ArgList[i].Name + "'");
2749  }
2750
2751  return false;
2752}
2753
2754
2755/// ParseFunctionBody
2756///   ::= '{' BasicBlock+ '}'
2757///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2758///
2759bool LLParser::ParseFunctionBody(Function &Fn) {
2760  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2761    return TokError("expected '{' in function body");
2762  Lex.Lex();  // eat the {.
2763
2764  int FunctionNumber = -1;
2765  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2766
2767  PerFunctionState PFS(*this, Fn, FunctionNumber);
2768
2769  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2770    if (ParseBasicBlock(PFS)) return true;
2771
2772  // Eat the }.
2773  Lex.Lex();
2774
2775  // Verify function is ok.
2776  return PFS.FinishFunction();
2777}
2778
2779/// ParseBasicBlock
2780///   ::= LabelStr? Instruction*
2781bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2782  // If this basic block starts out with a name, remember it.
2783  std::string Name;
2784  LocTy NameLoc = Lex.getLoc();
2785  if (Lex.getKind() == lltok::LabelStr) {
2786    Name = Lex.getStrVal();
2787    Lex.Lex();
2788  }
2789
2790  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2791  if (BB == 0) return true;
2792
2793  std::string NameStr;
2794
2795  // Parse the instructions in this block until we get a terminator.
2796  Instruction *Inst;
2797  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2798  do {
2799    // This instruction may have three possibilities for a name: a) none
2800    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2801    LocTy NameLoc = Lex.getLoc();
2802    int NameID = -1;
2803    NameStr = "";
2804
2805    if (Lex.getKind() == lltok::LocalVarID) {
2806      NameID = Lex.getUIntVal();
2807      Lex.Lex();
2808      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2809        return true;
2810    } else if (Lex.getKind() == lltok::LocalVar ||
2811               // FIXME: REMOVE IN LLVM 3.0
2812               Lex.getKind() == lltok::StringConstant) {
2813      NameStr = Lex.getStrVal();
2814      Lex.Lex();
2815      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2816        return true;
2817    }
2818
2819    switch (ParseInstruction(Inst, BB, PFS)) {
2820    default: assert(0 && "Unknown ParseInstruction result!");
2821    case InstError: return true;
2822    case InstNormal:
2823      // With a normal result, we check to see if the instruction is followed by
2824      // a comma and metadata.
2825      if (EatIfPresent(lltok::comma))
2826        if (ParseInstructionMetadata(MetadataOnInst))
2827          return true;
2828      break;
2829    case InstExtraComma:
2830      // If the instruction parser ate an extra comma at the end of it, it
2831      // *must* be followed by metadata.
2832      if (ParseInstructionMetadata(MetadataOnInst))
2833        return true;
2834      break;
2835    }
2836
2837    // Set metadata attached with this instruction.
2838    for (unsigned i = 0, e = MetadataOnInst.size(); i != e; ++i)
2839      Inst->setMetadata(MetadataOnInst[i].first, MetadataOnInst[i].second);
2840    MetadataOnInst.clear();
2841
2842    BB->getInstList().push_back(Inst);
2843
2844    // Set the name on the instruction.
2845    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2846  } while (!isa<TerminatorInst>(Inst));
2847
2848  return false;
2849}
2850
2851//===----------------------------------------------------------------------===//
2852// Instruction Parsing.
2853//===----------------------------------------------------------------------===//
2854
2855/// ParseInstruction - Parse one of the many different instructions.
2856///
2857int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2858                               PerFunctionState &PFS) {
2859  lltok::Kind Token = Lex.getKind();
2860  if (Token == lltok::Eof)
2861    return TokError("found end of file when expecting more instructions");
2862  LocTy Loc = Lex.getLoc();
2863  unsigned KeywordVal = Lex.getUIntVal();
2864  Lex.Lex();  // Eat the keyword.
2865
2866  switch (Token) {
2867  default:                    return Error(Loc, "expected instruction opcode");
2868  // Terminator Instructions.
2869  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2870  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2871  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2872  case lltok::kw_br:          return ParseBr(Inst, PFS);
2873  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2874  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2875  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2876  // Binary Operators.
2877  case lltok::kw_add:
2878  case lltok::kw_sub:
2879  case lltok::kw_mul: {
2880    bool NUW = false;
2881    bool NSW = false;
2882    LocTy ModifierLoc = Lex.getLoc();
2883    if (EatIfPresent(lltok::kw_nuw))
2884      NUW = true;
2885    if (EatIfPresent(lltok::kw_nsw)) {
2886      NSW = true;
2887      if (EatIfPresent(lltok::kw_nuw))
2888        NUW = true;
2889    }
2890    // API compatibility: Accept either integer or floating-point types.
2891    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2892    if (!Result) {
2893      if (!Inst->getType()->isIntOrIntVector()) {
2894        if (NUW)
2895          return Error(ModifierLoc, "nuw only applies to integer operations");
2896        if (NSW)
2897          return Error(ModifierLoc, "nsw only applies to integer operations");
2898      }
2899      if (NUW)
2900        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2901      if (NSW)
2902        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2903    }
2904    return Result;
2905  }
2906  case lltok::kw_fadd:
2907  case lltok::kw_fsub:
2908  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2909
2910  case lltok::kw_sdiv: {
2911    bool Exact = false;
2912    if (EatIfPresent(lltok::kw_exact))
2913      Exact = true;
2914    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2915    if (!Result)
2916      if (Exact)
2917        cast<BinaryOperator>(Inst)->setIsExact(true);
2918    return Result;
2919  }
2920
2921  case lltok::kw_udiv:
2922  case lltok::kw_urem:
2923  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2924  case lltok::kw_fdiv:
2925  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2926  case lltok::kw_shl:
2927  case lltok::kw_lshr:
2928  case lltok::kw_ashr:
2929  case lltok::kw_and:
2930  case lltok::kw_or:
2931  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2932  case lltok::kw_icmp:
2933  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2934  // Casts.
2935  case lltok::kw_trunc:
2936  case lltok::kw_zext:
2937  case lltok::kw_sext:
2938  case lltok::kw_fptrunc:
2939  case lltok::kw_fpext:
2940  case lltok::kw_bitcast:
2941  case lltok::kw_uitofp:
2942  case lltok::kw_sitofp:
2943  case lltok::kw_fptoui:
2944  case lltok::kw_fptosi:
2945  case lltok::kw_inttoptr:
2946  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2947  // Other.
2948  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2949  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2950  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2951  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2952  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2953  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2954  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2955  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2956  // Memory.
2957  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2958  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
2959  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
2960  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2961  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2962  case lltok::kw_volatile:
2963    if (EatIfPresent(lltok::kw_load))
2964      return ParseLoad(Inst, PFS, true);
2965    else if (EatIfPresent(lltok::kw_store))
2966      return ParseStore(Inst, PFS, true);
2967    else
2968      return TokError("expected 'load' or 'store'");
2969  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2970  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2971  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2972  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2973  }
2974}
2975
2976/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2977bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2978  if (Opc == Instruction::FCmp) {
2979    switch (Lex.getKind()) {
2980    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2981    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2982    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2983    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2984    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2985    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2986    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2987    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2988    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2989    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2990    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2991    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2992    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2993    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2994    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2995    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2996    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2997    }
2998  } else {
2999    switch (Lex.getKind()) {
3000    default: TokError("expected icmp predicate (e.g. 'eq')");
3001    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3002    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3003    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3004    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3005    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3006    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3007    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3008    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3009    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3010    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3011    }
3012  }
3013  Lex.Lex();
3014  return false;
3015}
3016
3017//===----------------------------------------------------------------------===//
3018// Terminator Instructions.
3019//===----------------------------------------------------------------------===//
3020
3021/// ParseRet - Parse a return instruction.
3022///   ::= 'ret' void (',' !dbg, !1)*
3023///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3024///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3025///         [[obsolete: LLVM 3.0]]
3026int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3027                       PerFunctionState &PFS) {
3028  PATypeHolder Ty(Type::getVoidTy(Context));
3029  if (ParseType(Ty, true /*void allowed*/)) return true;
3030
3031  if (Ty->isVoidTy()) {
3032    Inst = ReturnInst::Create(Context);
3033    return false;
3034  }
3035
3036  Value *RV;
3037  if (ParseValue(Ty, RV, PFS)) return true;
3038
3039  bool ExtraComma = false;
3040  if (EatIfPresent(lltok::comma)) {
3041    // Parse optional custom metadata, e.g. !dbg
3042    if (Lex.getKind() == lltok::MetadataVar) {
3043      ExtraComma = true;
3044    } else {
3045      // The normal case is one return value.
3046      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3047      // use of 'ret {i32,i32} {i32 1, i32 2}'
3048      SmallVector<Value*, 8> RVs;
3049      RVs.push_back(RV);
3050
3051      do {
3052        // If optional custom metadata, e.g. !dbg is seen then this is the
3053        // end of MRV.
3054        if (Lex.getKind() == lltok::MetadataVar)
3055          break;
3056        if (ParseTypeAndValue(RV, PFS)) return true;
3057        RVs.push_back(RV);
3058      } while (EatIfPresent(lltok::comma));
3059
3060      RV = UndefValue::get(PFS.getFunction().getReturnType());
3061      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3062        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3063        BB->getInstList().push_back(I);
3064        RV = I;
3065      }
3066    }
3067  }
3068
3069  Inst = ReturnInst::Create(Context, RV);
3070  return ExtraComma ? InstExtraComma : InstNormal;
3071}
3072
3073
3074/// ParseBr
3075///   ::= 'br' TypeAndValue
3076///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3077bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3078  LocTy Loc, Loc2;
3079  Value *Op0;
3080  BasicBlock *Op1, *Op2;
3081  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3082
3083  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3084    Inst = BranchInst::Create(BB);
3085    return false;
3086  }
3087
3088  if (Op0->getType() != Type::getInt1Ty(Context))
3089    return Error(Loc, "branch condition must have 'i1' type");
3090
3091  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3092      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3093      ParseToken(lltok::comma, "expected ',' after true destination") ||
3094      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3095    return true;
3096
3097  Inst = BranchInst::Create(Op1, Op2, Op0);
3098  return false;
3099}
3100
3101/// ParseSwitch
3102///  Instruction
3103///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3104///  JumpTable
3105///    ::= (TypeAndValue ',' TypeAndValue)*
3106bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3107  LocTy CondLoc, BBLoc;
3108  Value *Cond;
3109  BasicBlock *DefaultBB;
3110  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3111      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3112      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3113      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3114    return true;
3115
3116  if (!isa<IntegerType>(Cond->getType()))
3117    return Error(CondLoc, "switch condition must have integer type");
3118
3119  // Parse the jump table pairs.
3120  SmallPtrSet<Value*, 32> SeenCases;
3121  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3122  while (Lex.getKind() != lltok::rsquare) {
3123    Value *Constant;
3124    BasicBlock *DestBB;
3125
3126    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3127        ParseToken(lltok::comma, "expected ',' after case value") ||
3128        ParseTypeAndBasicBlock(DestBB, PFS))
3129      return true;
3130
3131    if (!SeenCases.insert(Constant))
3132      return Error(CondLoc, "duplicate case value in switch");
3133    if (!isa<ConstantInt>(Constant))
3134      return Error(CondLoc, "case value is not a constant integer");
3135
3136    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3137  }
3138
3139  Lex.Lex();  // Eat the ']'.
3140
3141  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3142  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3143    SI->addCase(Table[i].first, Table[i].second);
3144  Inst = SI;
3145  return false;
3146}
3147
3148/// ParseIndirectBr
3149///  Instruction
3150///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3151bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3152  LocTy AddrLoc;
3153  Value *Address;
3154  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3155      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3156      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3157    return true;
3158
3159  if (!isa<PointerType>(Address->getType()))
3160    return Error(AddrLoc, "indirectbr address must have pointer type");
3161
3162  // Parse the destination list.
3163  SmallVector<BasicBlock*, 16> DestList;
3164
3165  if (Lex.getKind() != lltok::rsquare) {
3166    BasicBlock *DestBB;
3167    if (ParseTypeAndBasicBlock(DestBB, PFS))
3168      return true;
3169    DestList.push_back(DestBB);
3170
3171    while (EatIfPresent(lltok::comma)) {
3172      if (ParseTypeAndBasicBlock(DestBB, PFS))
3173        return true;
3174      DestList.push_back(DestBB);
3175    }
3176  }
3177
3178  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3179    return true;
3180
3181  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3182  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3183    IBI->addDestination(DestList[i]);
3184  Inst = IBI;
3185  return false;
3186}
3187
3188
3189/// ParseInvoke
3190///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3191///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3192bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3193  LocTy CallLoc = Lex.getLoc();
3194  unsigned RetAttrs, FnAttrs;
3195  CallingConv::ID CC;
3196  PATypeHolder RetType(Type::getVoidTy(Context));
3197  LocTy RetTypeLoc;
3198  ValID CalleeID;
3199  SmallVector<ParamInfo, 16> ArgList;
3200
3201  BasicBlock *NormalBB, *UnwindBB;
3202  if (ParseOptionalCallingConv(CC) ||
3203      ParseOptionalAttrs(RetAttrs, 1) ||
3204      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3205      ParseValID(CalleeID) ||
3206      ParseParameterList(ArgList, PFS) ||
3207      ParseOptionalAttrs(FnAttrs, 2) ||
3208      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3209      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3210      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3211      ParseTypeAndBasicBlock(UnwindBB, PFS))
3212    return true;
3213
3214  // If RetType is a non-function pointer type, then this is the short syntax
3215  // for the call, which means that RetType is just the return type.  Infer the
3216  // rest of the function argument types from the arguments that are present.
3217  const PointerType *PFTy = 0;
3218  const FunctionType *Ty = 0;
3219  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3220      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3221    // Pull out the types of all of the arguments...
3222    std::vector<const Type*> ParamTypes;
3223    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3224      ParamTypes.push_back(ArgList[i].V->getType());
3225
3226    if (!FunctionType::isValidReturnType(RetType))
3227      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3228
3229    Ty = FunctionType::get(RetType, ParamTypes, false);
3230    PFTy = PointerType::getUnqual(Ty);
3231  }
3232
3233  // Look up the callee.
3234  Value *Callee;
3235  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3236
3237  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3238  // function attributes.
3239  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3240  if (FnAttrs & ObsoleteFuncAttrs) {
3241    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3242    FnAttrs &= ~ObsoleteFuncAttrs;
3243  }
3244
3245  // Set up the Attributes for the function.
3246  SmallVector<AttributeWithIndex, 8> Attrs;
3247  if (RetAttrs != Attribute::None)
3248    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3249
3250  SmallVector<Value*, 8> Args;
3251
3252  // Loop through FunctionType's arguments and ensure they are specified
3253  // correctly.  Also, gather any parameter attributes.
3254  FunctionType::param_iterator I = Ty->param_begin();
3255  FunctionType::param_iterator E = Ty->param_end();
3256  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3257    const Type *ExpectedTy = 0;
3258    if (I != E) {
3259      ExpectedTy = *I++;
3260    } else if (!Ty->isVarArg()) {
3261      return Error(ArgList[i].Loc, "too many arguments specified");
3262    }
3263
3264    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3265      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3266                   ExpectedTy->getDescription() + "'");
3267    Args.push_back(ArgList[i].V);
3268    if (ArgList[i].Attrs != Attribute::None)
3269      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3270  }
3271
3272  if (I != E)
3273    return Error(CallLoc, "not enough parameters specified for call");
3274
3275  if (FnAttrs != Attribute::None)
3276    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3277
3278  // Finish off the Attributes and check them
3279  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3280
3281  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3282                                      Args.begin(), Args.end());
3283  II->setCallingConv(CC);
3284  II->setAttributes(PAL);
3285  Inst = II;
3286  return false;
3287}
3288
3289
3290
3291//===----------------------------------------------------------------------===//
3292// Binary Operators.
3293//===----------------------------------------------------------------------===//
3294
3295/// ParseArithmetic
3296///  ::= ArithmeticOps TypeAndValue ',' Value
3297///
3298/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3299/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3300bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3301                               unsigned Opc, unsigned OperandType) {
3302  LocTy Loc; Value *LHS, *RHS;
3303  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3304      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3305      ParseValue(LHS->getType(), RHS, PFS))
3306    return true;
3307
3308  bool Valid;
3309  switch (OperandType) {
3310  default: llvm_unreachable("Unknown operand type!");
3311  case 0: // int or FP.
3312    Valid = LHS->getType()->isIntOrIntVector() ||
3313            LHS->getType()->isFPOrFPVector();
3314    break;
3315  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3316  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3317  }
3318
3319  if (!Valid)
3320    return Error(Loc, "invalid operand type for instruction");
3321
3322  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3323  return false;
3324}
3325
3326/// ParseLogical
3327///  ::= ArithmeticOps TypeAndValue ',' Value {
3328bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3329                            unsigned Opc) {
3330  LocTy Loc; Value *LHS, *RHS;
3331  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3332      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3333      ParseValue(LHS->getType(), RHS, PFS))
3334    return true;
3335
3336  if (!LHS->getType()->isIntOrIntVector())
3337    return Error(Loc,"instruction requires integer or integer vector operands");
3338
3339  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3340  return false;
3341}
3342
3343
3344/// ParseCompare
3345///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3346///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3347bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3348                            unsigned Opc) {
3349  // Parse the integer/fp comparison predicate.
3350  LocTy Loc;
3351  unsigned Pred;
3352  Value *LHS, *RHS;
3353  if (ParseCmpPredicate(Pred, Opc) ||
3354      ParseTypeAndValue(LHS, Loc, PFS) ||
3355      ParseToken(lltok::comma, "expected ',' after compare value") ||
3356      ParseValue(LHS->getType(), RHS, PFS))
3357    return true;
3358
3359  if (Opc == Instruction::FCmp) {
3360    if (!LHS->getType()->isFPOrFPVector())
3361      return Error(Loc, "fcmp requires floating point operands");
3362    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3363  } else {
3364    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3365    if (!LHS->getType()->isIntOrIntVector() &&
3366        !isa<PointerType>(LHS->getType()))
3367      return Error(Loc, "icmp requires integer operands");
3368    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3369  }
3370  return false;
3371}
3372
3373//===----------------------------------------------------------------------===//
3374// Other Instructions.
3375//===----------------------------------------------------------------------===//
3376
3377
3378/// ParseCast
3379///   ::= CastOpc TypeAndValue 'to' Type
3380bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3381                         unsigned Opc) {
3382  LocTy Loc;  Value *Op;
3383  PATypeHolder DestTy(Type::getVoidTy(Context));
3384  if (ParseTypeAndValue(Op, Loc, PFS) ||
3385      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3386      ParseType(DestTy))
3387    return true;
3388
3389  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3390    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3391    return Error(Loc, "invalid cast opcode for cast from '" +
3392                 Op->getType()->getDescription() + "' to '" +
3393                 DestTy->getDescription() + "'");
3394  }
3395  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3396  return false;
3397}
3398
3399/// ParseSelect
3400///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3401bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3402  LocTy Loc;
3403  Value *Op0, *Op1, *Op2;
3404  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3405      ParseToken(lltok::comma, "expected ',' after select condition") ||
3406      ParseTypeAndValue(Op1, PFS) ||
3407      ParseToken(lltok::comma, "expected ',' after select value") ||
3408      ParseTypeAndValue(Op2, PFS))
3409    return true;
3410
3411  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3412    return Error(Loc, Reason);
3413
3414  Inst = SelectInst::Create(Op0, Op1, Op2);
3415  return false;
3416}
3417
3418/// ParseVA_Arg
3419///   ::= 'va_arg' TypeAndValue ',' Type
3420bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3421  Value *Op;
3422  PATypeHolder EltTy(Type::getVoidTy(Context));
3423  LocTy TypeLoc;
3424  if (ParseTypeAndValue(Op, PFS) ||
3425      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3426      ParseType(EltTy, TypeLoc))
3427    return true;
3428
3429  if (!EltTy->isFirstClassType())
3430    return Error(TypeLoc, "va_arg requires operand with first class type");
3431
3432  Inst = new VAArgInst(Op, EltTy);
3433  return false;
3434}
3435
3436/// ParseExtractElement
3437///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3438bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3439  LocTy Loc;
3440  Value *Op0, *Op1;
3441  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3442      ParseToken(lltok::comma, "expected ',' after extract value") ||
3443      ParseTypeAndValue(Op1, PFS))
3444    return true;
3445
3446  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3447    return Error(Loc, "invalid extractelement operands");
3448
3449  Inst = ExtractElementInst::Create(Op0, Op1);
3450  return false;
3451}
3452
3453/// ParseInsertElement
3454///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3455bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3456  LocTy Loc;
3457  Value *Op0, *Op1, *Op2;
3458  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3459      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3460      ParseTypeAndValue(Op1, PFS) ||
3461      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3462      ParseTypeAndValue(Op2, PFS))
3463    return true;
3464
3465  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3466    return Error(Loc, "invalid insertelement operands");
3467
3468  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3469  return false;
3470}
3471
3472/// ParseShuffleVector
3473///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3474bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3475  LocTy Loc;
3476  Value *Op0, *Op1, *Op2;
3477  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3478      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3479      ParseTypeAndValue(Op1, PFS) ||
3480      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3481      ParseTypeAndValue(Op2, PFS))
3482    return true;
3483
3484  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3485    return Error(Loc, "invalid extractelement operands");
3486
3487  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3488  return false;
3489}
3490
3491/// ParsePHI
3492///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3493int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3494  PATypeHolder Ty(Type::getVoidTy(Context));
3495  Value *Op0, *Op1;
3496  LocTy TypeLoc = Lex.getLoc();
3497
3498  if (ParseType(Ty) ||
3499      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3500      ParseValue(Ty, Op0, PFS) ||
3501      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3502      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3503      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3504    return true;
3505
3506  bool AteExtraComma = false;
3507  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3508  while (1) {
3509    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3510
3511    if (!EatIfPresent(lltok::comma))
3512      break;
3513
3514    if (Lex.getKind() == lltok::MetadataVar) {
3515      AteExtraComma = true;
3516      break;
3517    }
3518
3519    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3520        ParseValue(Ty, Op0, PFS) ||
3521        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3522        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3523        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3524      return true;
3525  }
3526
3527  if (!Ty->isFirstClassType())
3528    return Error(TypeLoc, "phi node must have first class type");
3529
3530  PHINode *PN = PHINode::Create(Ty);
3531  PN->reserveOperandSpace(PHIVals.size());
3532  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3533    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3534  Inst = PN;
3535  return AteExtraComma ? InstExtraComma : InstNormal;
3536}
3537
3538/// ParseCall
3539///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3540///       ParameterList OptionalAttrs
3541bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3542                         bool isTail) {
3543  unsigned RetAttrs, FnAttrs;
3544  CallingConv::ID CC;
3545  PATypeHolder RetType(Type::getVoidTy(Context));
3546  LocTy RetTypeLoc;
3547  ValID CalleeID;
3548  SmallVector<ParamInfo, 16> ArgList;
3549  LocTy CallLoc = Lex.getLoc();
3550
3551  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3552      ParseOptionalCallingConv(CC) ||
3553      ParseOptionalAttrs(RetAttrs, 1) ||
3554      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3555      ParseValID(CalleeID) ||
3556      ParseParameterList(ArgList, PFS) ||
3557      ParseOptionalAttrs(FnAttrs, 2))
3558    return true;
3559
3560  // If RetType is a non-function pointer type, then this is the short syntax
3561  // for the call, which means that RetType is just the return type.  Infer the
3562  // rest of the function argument types from the arguments that are present.
3563  const PointerType *PFTy = 0;
3564  const FunctionType *Ty = 0;
3565  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3566      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3567    // Pull out the types of all of the arguments...
3568    std::vector<const Type*> ParamTypes;
3569    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3570      ParamTypes.push_back(ArgList[i].V->getType());
3571
3572    if (!FunctionType::isValidReturnType(RetType))
3573      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3574
3575    Ty = FunctionType::get(RetType, ParamTypes, false);
3576    PFTy = PointerType::getUnqual(Ty);
3577  }
3578
3579  // Look up the callee.
3580  Value *Callee;
3581  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3582
3583  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3584  // function attributes.
3585  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3586  if (FnAttrs & ObsoleteFuncAttrs) {
3587    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3588    FnAttrs &= ~ObsoleteFuncAttrs;
3589  }
3590
3591  // Set up the Attributes for the function.
3592  SmallVector<AttributeWithIndex, 8> Attrs;
3593  if (RetAttrs != Attribute::None)
3594    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3595
3596  SmallVector<Value*, 8> Args;
3597
3598  // Loop through FunctionType's arguments and ensure they are specified
3599  // correctly.  Also, gather any parameter attributes.
3600  FunctionType::param_iterator I = Ty->param_begin();
3601  FunctionType::param_iterator E = Ty->param_end();
3602  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3603    const Type *ExpectedTy = 0;
3604    if (I != E) {
3605      ExpectedTy = *I++;
3606    } else if (!Ty->isVarArg()) {
3607      return Error(ArgList[i].Loc, "too many arguments specified");
3608    }
3609
3610    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3611      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3612                   ExpectedTy->getDescription() + "'");
3613    Args.push_back(ArgList[i].V);
3614    if (ArgList[i].Attrs != Attribute::None)
3615      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3616  }
3617
3618  if (I != E)
3619    return Error(CallLoc, "not enough parameters specified for call");
3620
3621  if (FnAttrs != Attribute::None)
3622    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3623
3624  // Finish off the Attributes and check them
3625  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3626
3627  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3628  CI->setTailCall(isTail);
3629  CI->setCallingConv(CC);
3630  CI->setAttributes(PAL);
3631  Inst = CI;
3632  return false;
3633}
3634
3635//===----------------------------------------------------------------------===//
3636// Memory Instructions.
3637//===----------------------------------------------------------------------===//
3638
3639/// ParseAlloc
3640///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3641///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3642int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3643                         BasicBlock* BB, bool isAlloca) {
3644  PATypeHolder Ty(Type::getVoidTy(Context));
3645  Value *Size = 0;
3646  LocTy SizeLoc;
3647  unsigned Alignment = 0;
3648  if (ParseType(Ty)) return true;
3649
3650  bool AteExtraComma = false;
3651  if (EatIfPresent(lltok::comma)) {
3652    if (Lex.getKind() == lltok::kw_align) {
3653      if (ParseOptionalAlignment(Alignment)) return true;
3654    } else if (Lex.getKind() == lltok::MetadataVar) {
3655      AteExtraComma = true;
3656    } else {
3657      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3658          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3659        return true;
3660    }
3661  }
3662
3663  if (Size && Size->getType() != Type::getInt32Ty(Context))
3664    return Error(SizeLoc, "element count must be i32");
3665
3666  if (isAlloca) {
3667    Inst = new AllocaInst(Ty, Size, Alignment);
3668    return AteExtraComma ? InstExtraComma : InstNormal;
3669  }
3670
3671  // Autoupgrade old malloc instruction to malloc call.
3672  // FIXME: Remove in LLVM 3.0.
3673  const Type *IntPtrTy = Type::getInt32Ty(Context);
3674  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3675  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3676  if (!MallocF)
3677    // Prototype malloc as "void *(int32)".
3678    // This function is renamed as "malloc" in ValidateEndOfModule().
3679    MallocF = cast<Function>(
3680       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3681  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3682return AteExtraComma ? InstExtraComma : InstNormal;
3683}
3684
3685/// ParseFree
3686///   ::= 'free' TypeAndValue
3687bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3688                         BasicBlock* BB) {
3689  Value *Val; LocTy Loc;
3690  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3691  if (!isa<PointerType>(Val->getType()))
3692    return Error(Loc, "operand to free must be a pointer");
3693  Inst = CallInst::CreateFree(Val, BB);
3694  return false;
3695}
3696
3697/// ParseLoad
3698///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3699int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3700                        bool isVolatile) {
3701  Value *Val; LocTy Loc;
3702  unsigned Alignment = 0;
3703  bool AteExtraComma = false;
3704  if (ParseTypeAndValue(Val, Loc, PFS) ||
3705      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3706    return true;
3707
3708  if (!isa<PointerType>(Val->getType()) ||
3709      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3710    return Error(Loc, "load operand must be a pointer to a first class type");
3711
3712  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3713  return AteExtraComma ? InstExtraComma : InstNormal;
3714}
3715
3716/// ParseStore
3717///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3718int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3719                         bool isVolatile) {
3720  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3721  unsigned Alignment = 0;
3722  bool AteExtraComma = false;
3723  if (ParseTypeAndValue(Val, Loc, PFS) ||
3724      ParseToken(lltok::comma, "expected ',' after store operand") ||
3725      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3726      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3727    return true;
3728
3729  if (!isa<PointerType>(Ptr->getType()))
3730    return Error(PtrLoc, "store operand must be a pointer");
3731  if (!Val->getType()->isFirstClassType())
3732    return Error(Loc, "store operand must be a first class value");
3733  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3734    return Error(Loc, "stored value and pointer type do not match");
3735
3736  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3737  return AteExtraComma ? InstExtraComma : InstNormal;
3738}
3739
3740/// ParseGetResult
3741///   ::= 'getresult' TypeAndValue ',' i32
3742/// FIXME: Remove support for getresult in LLVM 3.0
3743bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3744  Value *Val; LocTy ValLoc, EltLoc;
3745  unsigned Element;
3746  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3747      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3748      ParseUInt32(Element, EltLoc))
3749    return true;
3750
3751  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3752    return Error(ValLoc, "getresult inst requires an aggregate operand");
3753  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3754    return Error(EltLoc, "invalid getresult index for value");
3755  Inst = ExtractValueInst::Create(Val, Element);
3756  return false;
3757}
3758
3759/// ParseGetElementPtr
3760///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3761int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3762  Value *Ptr, *Val; LocTy Loc, EltLoc;
3763
3764  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3765
3766  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3767
3768  if (!isa<PointerType>(Ptr->getType()))
3769    return Error(Loc, "base of getelementptr must be a pointer");
3770
3771  SmallVector<Value*, 16> Indices;
3772  bool AteExtraComma = false;
3773  while (EatIfPresent(lltok::comma)) {
3774    if (Lex.getKind() == lltok::MetadataVar) {
3775      AteExtraComma = true;
3776      break;
3777    }
3778    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3779    if (!isa<IntegerType>(Val->getType()))
3780      return Error(EltLoc, "getelementptr index must be an integer");
3781    Indices.push_back(Val);
3782  }
3783
3784  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3785                                         Indices.begin(), Indices.end()))
3786    return Error(Loc, "invalid getelementptr indices");
3787  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3788  if (InBounds)
3789    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3790  return AteExtraComma ? InstExtraComma : InstNormal;
3791}
3792
3793/// ParseExtractValue
3794///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3795int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3796  Value *Val; LocTy Loc;
3797  SmallVector<unsigned, 4> Indices;
3798  bool AteExtraComma;
3799  if (ParseTypeAndValue(Val, Loc, PFS) ||
3800      ParseIndexList(Indices, AteExtraComma))
3801    return true;
3802
3803  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3804    return Error(Loc, "extractvalue operand must be array or struct");
3805
3806  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3807                                        Indices.end()))
3808    return Error(Loc, "invalid indices for extractvalue");
3809  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3810  return AteExtraComma ? InstExtraComma : InstNormal;
3811}
3812
3813/// ParseInsertValue
3814///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3815int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3816  Value *Val0, *Val1; LocTy Loc0, Loc1;
3817  SmallVector<unsigned, 4> Indices;
3818  bool AteExtraComma;
3819  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3820      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3821      ParseTypeAndValue(Val1, Loc1, PFS) ||
3822      ParseIndexList(Indices, AteExtraComma))
3823    return true;
3824
3825  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3826    return Error(Loc0, "extractvalue operand must be array or struct");
3827
3828  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3829                                        Indices.end()))
3830    return Error(Loc0, "invalid indices for insertvalue");
3831  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3832  return AteExtraComma ? InstExtraComma : InstNormal;
3833}
3834
3835//===----------------------------------------------------------------------===//
3836// Embedded metadata.
3837//===----------------------------------------------------------------------===//
3838
3839/// ParseMDNodeVector
3840///   ::= Element (',' Element)*
3841/// Element
3842///   ::= 'null' | TypeAndValue
3843bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3844  do {
3845    // Null is a special case since it is typeless.
3846    if (EatIfPresent(lltok::kw_null)) {
3847      Elts.push_back(0);
3848      continue;
3849    }
3850
3851    Value *V = 0;
3852    PATypeHolder Ty(Type::getVoidTy(Context));
3853    ValID ID;
3854    if (ParseType(Ty) || ParseValID(ID) ||
3855        ConvertGlobalOrMetadataValIDToValue(Ty, ID, V))
3856      return true;
3857
3858    Elts.push_back(V);
3859  } while (EatIfPresent(lltok::comma));
3860
3861  return false;
3862}
3863