LLParser.cpp revision 194612
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29namespace llvm {
30  /// ValID - Represents a reference of a definition of some sort with no type.
31  /// There are several cases where we have to parse the value but where the
32  /// type can depend on later context.  This may either be a numeric reference
33  /// or a symbolic (%var) reference.  This is just a discriminated union.
34  struct ValID {
35    enum {
36      t_LocalID, t_GlobalID,      // ID in UIntVal.
37      t_LocalName, t_GlobalName,  // Name in StrVal.
38      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
39      t_Null, t_Undef, t_Zero,    // No value.
40      t_EmptyArray,               // No value:  []
41      t_Constant,                 // Value in ConstantVal.
42      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
43    } Kind;
44
45    LLParser::LocTy Loc;
46    unsigned UIntVal;
47    std::string StrVal, StrVal2;
48    APSInt APSIntVal;
49    APFloat APFloatVal;
50    Constant *ConstantVal;
51    ValID() : APFloatVal(0.0) {}
52  };
53}
54
55/// Run: module ::= toplevelentity*
56bool LLParser::Run() {
57  // Prime the lexer.
58  Lex.Lex();
59
60  return ParseTopLevelEntities() ||
61         ValidateEndOfModule();
62}
63
64/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65/// module.
66bool LLParser::ValidateEndOfModule() {
67  if (!ForwardRefTypes.empty())
68    return Error(ForwardRefTypes.begin()->second.second,
69                 "use of undefined type named '" +
70                 ForwardRefTypes.begin()->first + "'");
71  if (!ForwardRefTypeIDs.empty())
72    return Error(ForwardRefTypeIDs.begin()->second.second,
73                 "use of undefined type '%" +
74                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
75
76  if (!ForwardRefVals.empty())
77    return Error(ForwardRefVals.begin()->second.second,
78                 "use of undefined value '@" + ForwardRefVals.begin()->first +
79                 "'");
80
81  if (!ForwardRefValIDs.empty())
82    return Error(ForwardRefValIDs.begin()->second.second,
83                 "use of undefined value '@" +
84                 utostr(ForwardRefValIDs.begin()->first) + "'");
85
86  // Look for intrinsic functions and CallInst that need to be upgraded
87  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
88    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
89
90  return false;
91}
92
93//===----------------------------------------------------------------------===//
94// Top-Level Entities
95//===----------------------------------------------------------------------===//
96
97bool LLParser::ParseTopLevelEntities() {
98  while (1) {
99    switch (Lex.getKind()) {
100    default:         return TokError("expected top-level entity");
101    case lltok::Eof: return false;
102    //case lltok::kw_define:
103    case lltok::kw_declare: if (ParseDeclare()) return true; break;
104    case lltok::kw_define:  if (ParseDefine()) return true; break;
105    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
106    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
107    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
108    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
109    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
110    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
111    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
112
113    // The Global variable production with no name can have many different
114    // optional leading prefixes, the production is:
115    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
116    //               OptionalAddrSpace ('constant'|'global') ...
117    case lltok::kw_private:       // OptionalLinkage
118    case lltok::kw_internal:      // OptionalLinkage
119    case lltok::kw_weak:          // OptionalLinkage
120    case lltok::kw_weak_odr:      // OptionalLinkage
121    case lltok::kw_linkonce:      // OptionalLinkage
122    case lltok::kw_linkonce_odr:  // OptionalLinkage
123    case lltok::kw_appending:     // OptionalLinkage
124    case lltok::kw_dllexport:     // OptionalLinkage
125    case lltok::kw_common:        // OptionalLinkage
126    case lltok::kw_dllimport:     // OptionalLinkage
127    case lltok::kw_extern_weak:   // OptionalLinkage
128    case lltok::kw_external: {    // OptionalLinkage
129      unsigned Linkage, Visibility;
130      if (ParseOptionalLinkage(Linkage) ||
131          ParseOptionalVisibility(Visibility) ||
132          ParseGlobal("", 0, Linkage, true, Visibility))
133        return true;
134      break;
135    }
136    case lltok::kw_default:       // OptionalVisibility
137    case lltok::kw_hidden:        // OptionalVisibility
138    case lltok::kw_protected: {   // OptionalVisibility
139      unsigned Visibility;
140      if (ParseOptionalVisibility(Visibility) ||
141          ParseGlobal("", 0, 0, false, Visibility))
142        return true;
143      break;
144    }
145
146    case lltok::kw_thread_local:  // OptionalThreadLocal
147    case lltok::kw_addrspace:     // OptionalAddrSpace
148    case lltok::kw_constant:      // GlobalType
149    case lltok::kw_global:        // GlobalType
150      if (ParseGlobal("", 0, 0, false, 0)) return true;
151      break;
152    }
153  }
154}
155
156
157/// toplevelentity
158///   ::= 'module' 'asm' STRINGCONSTANT
159bool LLParser::ParseModuleAsm() {
160  assert(Lex.getKind() == lltok::kw_module);
161  Lex.Lex();
162
163  std::string AsmStr;
164  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
165      ParseStringConstant(AsmStr)) return true;
166
167  const std::string &AsmSoFar = M->getModuleInlineAsm();
168  if (AsmSoFar.empty())
169    M->setModuleInlineAsm(AsmStr);
170  else
171    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
172  return false;
173}
174
175/// toplevelentity
176///   ::= 'target' 'triple' '=' STRINGCONSTANT
177///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
178bool LLParser::ParseTargetDefinition() {
179  assert(Lex.getKind() == lltok::kw_target);
180  std::string Str;
181  switch (Lex.Lex()) {
182  default: return TokError("unknown target property");
183  case lltok::kw_triple:
184    Lex.Lex();
185    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
186        ParseStringConstant(Str))
187      return true;
188    M->setTargetTriple(Str);
189    return false;
190  case lltok::kw_datalayout:
191    Lex.Lex();
192    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
193        ParseStringConstant(Str))
194      return true;
195    M->setDataLayout(Str);
196    return false;
197  }
198}
199
200/// toplevelentity
201///   ::= 'deplibs' '=' '[' ']'
202///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
203bool LLParser::ParseDepLibs() {
204  assert(Lex.getKind() == lltok::kw_deplibs);
205  Lex.Lex();
206  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
207      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
208    return true;
209
210  if (EatIfPresent(lltok::rsquare))
211    return false;
212
213  std::string Str;
214  if (ParseStringConstant(Str)) return true;
215  M->addLibrary(Str);
216
217  while (EatIfPresent(lltok::comma)) {
218    if (ParseStringConstant(Str)) return true;
219    M->addLibrary(Str);
220  }
221
222  return ParseToken(lltok::rsquare, "expected ']' at end of list");
223}
224
225/// toplevelentity
226///   ::= 'type' type
227bool LLParser::ParseUnnamedType() {
228  assert(Lex.getKind() == lltok::kw_type);
229  LocTy TypeLoc = Lex.getLoc();
230  Lex.Lex(); // eat kw_type
231
232  PATypeHolder Ty(Type::VoidTy);
233  if (ParseType(Ty)) return true;
234
235  unsigned TypeID = NumberedTypes.size();
236
237  // See if this type was previously referenced.
238  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239    FI = ForwardRefTypeIDs.find(TypeID);
240  if (FI != ForwardRefTypeIDs.end()) {
241    if (FI->second.first.get() == Ty)
242      return Error(TypeLoc, "self referential type is invalid");
243
244    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
245    Ty = FI->second.first.get();
246    ForwardRefTypeIDs.erase(FI);
247  }
248
249  NumberedTypes.push_back(Ty);
250
251  return false;
252}
253
254/// toplevelentity
255///   ::= LocalVar '=' 'type' type
256bool LLParser::ParseNamedType() {
257  std::string Name = Lex.getStrVal();
258  LocTy NameLoc = Lex.getLoc();
259  Lex.Lex();  // eat LocalVar.
260
261  PATypeHolder Ty(Type::VoidTy);
262
263  if (ParseToken(lltok::equal, "expected '=' after name") ||
264      ParseToken(lltok::kw_type, "expected 'type' after name") ||
265      ParseType(Ty))
266    return true;
267
268  // Set the type name, checking for conflicts as we do so.
269  bool AlreadyExists = M->addTypeName(Name, Ty);
270  if (!AlreadyExists) return false;
271
272  // See if this type is a forward reference.  We need to eagerly resolve
273  // types to allow recursive type redefinitions below.
274  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275  FI = ForwardRefTypes.find(Name);
276  if (FI != ForwardRefTypes.end()) {
277    if (FI->second.first.get() == Ty)
278      return Error(NameLoc, "self referential type is invalid");
279
280    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
281    Ty = FI->second.first.get();
282    ForwardRefTypes.erase(FI);
283  }
284
285  // Inserting a name that is already defined, get the existing name.
286  const Type *Existing = M->getTypeByName(Name);
287  assert(Existing && "Conflict but no matching type?!");
288
289  // Otherwise, this is an attempt to redefine a type. That's okay if
290  // the redefinition is identical to the original.
291  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
292  if (Existing == Ty) return false;
293
294  // Any other kind of (non-equivalent) redefinition is an error.
295  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
296               Ty->getDescription() + "'");
297}
298
299
300/// toplevelentity
301///   ::= 'declare' FunctionHeader
302bool LLParser::ParseDeclare() {
303  assert(Lex.getKind() == lltok::kw_declare);
304  Lex.Lex();
305
306  Function *F;
307  return ParseFunctionHeader(F, false);
308}
309
310/// toplevelentity
311///   ::= 'define' FunctionHeader '{' ...
312bool LLParser::ParseDefine() {
313  assert(Lex.getKind() == lltok::kw_define);
314  Lex.Lex();
315
316  Function *F;
317  return ParseFunctionHeader(F, true) ||
318         ParseFunctionBody(*F);
319}
320
321/// ParseGlobalType
322///   ::= 'constant'
323///   ::= 'global'
324bool LLParser::ParseGlobalType(bool &IsConstant) {
325  if (Lex.getKind() == lltok::kw_constant)
326    IsConstant = true;
327  else if (Lex.getKind() == lltok::kw_global)
328    IsConstant = false;
329  else {
330    IsConstant = false;
331    return TokError("expected 'global' or 'constant'");
332  }
333  Lex.Lex();
334  return false;
335}
336
337/// ParseNamedGlobal:
338///   GlobalVar '=' OptionalVisibility ALIAS ...
339///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
340bool LLParser::ParseNamedGlobal() {
341  assert(Lex.getKind() == lltok::GlobalVar);
342  LocTy NameLoc = Lex.getLoc();
343  std::string Name = Lex.getStrVal();
344  Lex.Lex();
345
346  bool HasLinkage;
347  unsigned Linkage, Visibility;
348  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
349      ParseOptionalLinkage(Linkage, HasLinkage) ||
350      ParseOptionalVisibility(Visibility))
351    return true;
352
353  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
354    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
355  return ParseAlias(Name, NameLoc, Visibility);
356}
357
358/// ParseAlias:
359///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360/// Aliasee
361///   ::= TypeAndValue
362///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
363///   ::= 'getelementptr' '(' ... ')'
364///
365/// Everything through visibility has already been parsed.
366///
367bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368                          unsigned Visibility) {
369  assert(Lex.getKind() == lltok::kw_alias);
370  Lex.Lex();
371  unsigned Linkage;
372  LocTy LinkageLoc = Lex.getLoc();
373  if (ParseOptionalLinkage(Linkage))
374    return true;
375
376  if (Linkage != GlobalValue::ExternalLinkage &&
377      Linkage != GlobalValue::WeakAnyLinkage &&
378      Linkage != GlobalValue::WeakODRLinkage &&
379      Linkage != GlobalValue::InternalLinkage &&
380      Linkage != GlobalValue::PrivateLinkage)
381    return Error(LinkageLoc, "invalid linkage type for alias");
382
383  Constant *Aliasee;
384  LocTy AliaseeLoc = Lex.getLoc();
385  if (Lex.getKind() != lltok::kw_bitcast &&
386      Lex.getKind() != lltok::kw_getelementptr) {
387    if (ParseGlobalTypeAndValue(Aliasee)) return true;
388  } else {
389    // The bitcast dest type is not present, it is implied by the dest type.
390    ValID ID;
391    if (ParseValID(ID)) return true;
392    if (ID.Kind != ValID::t_Constant)
393      return Error(AliaseeLoc, "invalid aliasee");
394    Aliasee = ID.ConstantVal;
395  }
396
397  if (!isa<PointerType>(Aliasee->getType()))
398    return Error(AliaseeLoc, "alias must have pointer type");
399
400  // Okay, create the alias but do not insert it into the module yet.
401  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
402                                    (GlobalValue::LinkageTypes)Linkage, Name,
403                                    Aliasee);
404  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
405
406  // See if this value already exists in the symbol table.  If so, it is either
407  // a redefinition or a definition of a forward reference.
408  if (GlobalValue *Val =
409        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
410    // See if this was a redefinition.  If so, there is no entry in
411    // ForwardRefVals.
412    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
413      I = ForwardRefVals.find(Name);
414    if (I == ForwardRefVals.end())
415      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
416
417    // Otherwise, this was a definition of forward ref.  Verify that types
418    // agree.
419    if (Val->getType() != GA->getType())
420      return Error(NameLoc,
421              "forward reference and definition of alias have different types");
422
423    // If they agree, just RAUW the old value with the alias and remove the
424    // forward ref info.
425    Val->replaceAllUsesWith(GA);
426    Val->eraseFromParent();
427    ForwardRefVals.erase(I);
428  }
429
430  // Insert into the module, we know its name won't collide now.
431  M->getAliasList().push_back(GA);
432  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
433
434  return false;
435}
436
437/// ParseGlobal
438///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
439///       OptionalAddrSpace GlobalType Type Const
440///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
441///       OptionalAddrSpace GlobalType Type Const
442///
443/// Everything through visibility has been parsed already.
444///
445bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
446                           unsigned Linkage, bool HasLinkage,
447                           unsigned Visibility) {
448  unsigned AddrSpace;
449  bool ThreadLocal, IsConstant;
450  LocTy TyLoc;
451
452  PATypeHolder Ty(Type::VoidTy);
453  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
454      ParseOptionalAddrSpace(AddrSpace) ||
455      ParseGlobalType(IsConstant) ||
456      ParseType(Ty, TyLoc))
457    return true;
458
459  // If the linkage is specified and is external, then no initializer is
460  // present.
461  Constant *Init = 0;
462  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
463                      Linkage != GlobalValue::ExternalWeakLinkage &&
464                      Linkage != GlobalValue::ExternalLinkage)) {
465    if (ParseGlobalValue(Ty, Init))
466      return true;
467  }
468
469  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
470    return Error(TyLoc, "invalid type for global variable");
471
472  GlobalVariable *GV = 0;
473
474  // See if the global was forward referenced, if so, use the global.
475  if (!Name.empty()) {
476    if ((GV = M->getGlobalVariable(Name, true)) &&
477        !ForwardRefVals.erase(Name))
478      return Error(NameLoc, "redefinition of global '@" + Name + "'");
479  } else {
480    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
481      I = ForwardRefValIDs.find(NumberedVals.size());
482    if (I != ForwardRefValIDs.end()) {
483      GV = cast<GlobalVariable>(I->second.first);
484      ForwardRefValIDs.erase(I);
485    }
486  }
487
488  if (GV == 0) {
489    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
490                            M, false, AddrSpace);
491  } else {
492    if (GV->getType()->getElementType() != Ty)
493      return Error(TyLoc,
494            "forward reference and definition of global have different types");
495
496    // Move the forward-reference to the correct spot in the module.
497    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
498  }
499
500  if (Name.empty())
501    NumberedVals.push_back(GV);
502
503  // Set the parsed properties on the global.
504  if (Init)
505    GV->setInitializer(Init);
506  GV->setConstant(IsConstant);
507  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
508  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
509  GV->setThreadLocal(ThreadLocal);
510
511  // Parse attributes on the global.
512  while (Lex.getKind() == lltok::comma) {
513    Lex.Lex();
514
515    if (Lex.getKind() == lltok::kw_section) {
516      Lex.Lex();
517      GV->setSection(Lex.getStrVal());
518      if (ParseToken(lltok::StringConstant, "expected global section string"))
519        return true;
520    } else if (Lex.getKind() == lltok::kw_align) {
521      unsigned Alignment;
522      if (ParseOptionalAlignment(Alignment)) return true;
523      GV->setAlignment(Alignment);
524    } else {
525      TokError("unknown global variable property!");
526    }
527  }
528
529  return false;
530}
531
532
533//===----------------------------------------------------------------------===//
534// GlobalValue Reference/Resolution Routines.
535//===----------------------------------------------------------------------===//
536
537/// GetGlobalVal - Get a value with the specified name or ID, creating a
538/// forward reference record if needed.  This can return null if the value
539/// exists but does not have the right type.
540GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
541                                    LocTy Loc) {
542  const PointerType *PTy = dyn_cast<PointerType>(Ty);
543  if (PTy == 0) {
544    Error(Loc, "global variable reference must have pointer type");
545    return 0;
546  }
547
548  // Look this name up in the normal function symbol table.
549  GlobalValue *Val =
550    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
551
552  // If this is a forward reference for the value, see if we already created a
553  // forward ref record.
554  if (Val == 0) {
555    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
556      I = ForwardRefVals.find(Name);
557    if (I != ForwardRefVals.end())
558      Val = I->second.first;
559  }
560
561  // If we have the value in the symbol table or fwd-ref table, return it.
562  if (Val) {
563    if (Val->getType() == Ty) return Val;
564    Error(Loc, "'@" + Name + "' defined with type '" +
565          Val->getType()->getDescription() + "'");
566    return 0;
567  }
568
569  // Otherwise, create a new forward reference for this value and remember it.
570  GlobalValue *FwdVal;
571  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
572    // Function types can return opaque but functions can't.
573    if (isa<OpaqueType>(FT->getReturnType())) {
574      Error(Loc, "function may not return opaque type");
575      return 0;
576    }
577
578    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
579  } else {
580    FwdVal = new GlobalVariable(PTy->getElementType(), false,
581                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
582  }
583
584  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
585  return FwdVal;
586}
587
588GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
589  const PointerType *PTy = dyn_cast<PointerType>(Ty);
590  if (PTy == 0) {
591    Error(Loc, "global variable reference must have pointer type");
592    return 0;
593  }
594
595  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
596
597  // If this is a forward reference for the value, see if we already created a
598  // forward ref record.
599  if (Val == 0) {
600    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
601      I = ForwardRefValIDs.find(ID);
602    if (I != ForwardRefValIDs.end())
603      Val = I->second.first;
604  }
605
606  // If we have the value in the symbol table or fwd-ref table, return it.
607  if (Val) {
608    if (Val->getType() == Ty) return Val;
609    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
610          Val->getType()->getDescription() + "'");
611    return 0;
612  }
613
614  // Otherwise, create a new forward reference for this value and remember it.
615  GlobalValue *FwdVal;
616  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
617    // Function types can return opaque but functions can't.
618    if (isa<OpaqueType>(FT->getReturnType())) {
619      Error(Loc, "function may not return opaque type");
620      return 0;
621    }
622    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
623  } else {
624    FwdVal = new GlobalVariable(PTy->getElementType(), false,
625                                GlobalValue::ExternalWeakLinkage, 0, "", M);
626  }
627
628  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
629  return FwdVal;
630}
631
632
633//===----------------------------------------------------------------------===//
634// Helper Routines.
635//===----------------------------------------------------------------------===//
636
637/// ParseToken - If the current token has the specified kind, eat it and return
638/// success.  Otherwise, emit the specified error and return failure.
639bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
640  if (Lex.getKind() != T)
641    return TokError(ErrMsg);
642  Lex.Lex();
643  return false;
644}
645
646/// ParseStringConstant
647///   ::= StringConstant
648bool LLParser::ParseStringConstant(std::string &Result) {
649  if (Lex.getKind() != lltok::StringConstant)
650    return TokError("expected string constant");
651  Result = Lex.getStrVal();
652  Lex.Lex();
653  return false;
654}
655
656/// ParseUInt32
657///   ::= uint32
658bool LLParser::ParseUInt32(unsigned &Val) {
659  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
660    return TokError("expected integer");
661  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
662  if (Val64 != unsigned(Val64))
663    return TokError("expected 32-bit integer (too large)");
664  Val = Val64;
665  Lex.Lex();
666  return false;
667}
668
669
670/// ParseOptionalAddrSpace
671///   := /*empty*/
672///   := 'addrspace' '(' uint32 ')'
673bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
674  AddrSpace = 0;
675  if (!EatIfPresent(lltok::kw_addrspace))
676    return false;
677  return ParseToken(lltok::lparen, "expected '(' in address space") ||
678         ParseUInt32(AddrSpace) ||
679         ParseToken(lltok::rparen, "expected ')' in address space");
680}
681
682/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
683/// indicates what kind of attribute list this is: 0: function arg, 1: result,
684/// 2: function attr.
685/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
686bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
687  Attrs = Attribute::None;
688  LocTy AttrLoc = Lex.getLoc();
689
690  while (1) {
691    switch (Lex.getKind()) {
692    case lltok::kw_sext:
693    case lltok::kw_zext:
694      // Treat these as signext/zeroext if they occur in the argument list after
695      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
696      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
697      // expr.
698      // FIXME: REMOVE THIS IN LLVM 3.0
699      if (AttrKind == 3) {
700        if (Lex.getKind() == lltok::kw_sext)
701          Attrs |= Attribute::SExt;
702        else
703          Attrs |= Attribute::ZExt;
704        break;
705      }
706      // FALL THROUGH.
707    default:  // End of attributes.
708      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
709        return Error(AttrLoc, "invalid use of function-only attribute");
710
711      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
712        return Error(AttrLoc, "invalid use of parameter-only attribute");
713
714      return false;
715    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
716    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
717    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
718    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
719    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
720    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
721    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
722    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
723
724    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
725    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
726    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
727    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
728    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
729    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
730    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
731    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
732    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
733    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
734    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
735
736    case lltok::kw_align: {
737      unsigned Alignment;
738      if (ParseOptionalAlignment(Alignment))
739        return true;
740      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
741      continue;
742    }
743    }
744    Lex.Lex();
745  }
746}
747
748/// ParseOptionalLinkage
749///   ::= /*empty*/
750///   ::= 'private'
751///   ::= 'internal'
752///   ::= 'weak'
753///   ::= 'weak_odr'
754///   ::= 'linkonce'
755///   ::= 'linkonce_odr'
756///   ::= 'appending'
757///   ::= 'dllexport'
758///   ::= 'common'
759///   ::= 'dllimport'
760///   ::= 'extern_weak'
761///   ::= 'external'
762bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
763  HasLinkage = false;
764  switch (Lex.getKind()) {
765  default:                     Res = GlobalValue::ExternalLinkage; return false;
766  case lltok::kw_private:      Res = GlobalValue::PrivateLinkage; break;
767  case lltok::kw_internal:     Res = GlobalValue::InternalLinkage; break;
768  case lltok::kw_weak:         Res = GlobalValue::WeakAnyLinkage; break;
769  case lltok::kw_weak_odr:     Res = GlobalValue::WeakODRLinkage; break;
770  case lltok::kw_linkonce:     Res = GlobalValue::LinkOnceAnyLinkage; break;
771  case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
772  case lltok::kw_available_externally:
773    Res = GlobalValue::AvailableExternallyLinkage;
774    break;
775  case lltok::kw_appending:    Res = GlobalValue::AppendingLinkage; break;
776  case lltok::kw_dllexport:    Res = GlobalValue::DLLExportLinkage; break;
777  case lltok::kw_common:       Res = GlobalValue::CommonLinkage; break;
778  case lltok::kw_dllimport:    Res = GlobalValue::DLLImportLinkage; break;
779  case lltok::kw_extern_weak:  Res = GlobalValue::ExternalWeakLinkage; break;
780  case lltok::kw_external:     Res = GlobalValue::ExternalLinkage; break;
781  }
782  Lex.Lex();
783  HasLinkage = true;
784  return false;
785}
786
787/// ParseOptionalVisibility
788///   ::= /*empty*/
789///   ::= 'default'
790///   ::= 'hidden'
791///   ::= 'protected'
792///
793bool LLParser::ParseOptionalVisibility(unsigned &Res) {
794  switch (Lex.getKind()) {
795  default:                  Res = GlobalValue::DefaultVisibility; return false;
796  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
797  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
798  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
799  }
800  Lex.Lex();
801  return false;
802}
803
804/// ParseOptionalCallingConv
805///   ::= /*empty*/
806///   ::= 'ccc'
807///   ::= 'fastcc'
808///   ::= 'coldcc'
809///   ::= 'x86_stdcallcc'
810///   ::= 'x86_fastcallcc'
811///   ::= 'arm_apcscc'
812///   ::= 'arm_aapcscc'
813///   ::= 'arm_aapcs_vfpcc'
814///   ::= 'cc' UINT
815///
816bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
817  switch (Lex.getKind()) {
818  default:                       CC = CallingConv::C; return false;
819  case lltok::kw_ccc:            CC = CallingConv::C; break;
820  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
821  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
822  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
823  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
824  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
825  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
826  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
827  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
828  }
829  Lex.Lex();
830  return false;
831}
832
833/// ParseOptionalAlignment
834///   ::= /* empty */
835///   ::= 'align' 4
836bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
837  Alignment = 0;
838  if (!EatIfPresent(lltok::kw_align))
839    return false;
840  LocTy AlignLoc = Lex.getLoc();
841  if (ParseUInt32(Alignment)) return true;
842  if (!isPowerOf2_32(Alignment))
843    return Error(AlignLoc, "alignment is not a power of two");
844  return false;
845}
846
847/// ParseOptionalCommaAlignment
848///   ::= /* empty */
849///   ::= ',' 'align' 4
850bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
851  Alignment = 0;
852  if (!EatIfPresent(lltok::comma))
853    return false;
854  return ParseToken(lltok::kw_align, "expected 'align'") ||
855         ParseUInt32(Alignment);
856}
857
858/// ParseIndexList
859///    ::=  (',' uint32)+
860bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
861  if (Lex.getKind() != lltok::comma)
862    return TokError("expected ',' as start of index list");
863
864  while (EatIfPresent(lltok::comma)) {
865    unsigned Idx;
866    if (ParseUInt32(Idx)) return true;
867    Indices.push_back(Idx);
868  }
869
870  return false;
871}
872
873//===----------------------------------------------------------------------===//
874// Type Parsing.
875//===----------------------------------------------------------------------===//
876
877/// ParseType - Parse and resolve a full type.
878bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
879  LocTy TypeLoc = Lex.getLoc();
880  if (ParseTypeRec(Result)) return true;
881
882  // Verify no unresolved uprefs.
883  if (!UpRefs.empty())
884    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
885
886  if (!AllowVoid && Result.get() == Type::VoidTy)
887    return Error(TypeLoc, "void type only allowed for function results");
888
889  return false;
890}
891
892/// HandleUpRefs - Every time we finish a new layer of types, this function is
893/// called.  It loops through the UpRefs vector, which is a list of the
894/// currently active types.  For each type, if the up-reference is contained in
895/// the newly completed type, we decrement the level count.  When the level
896/// count reaches zero, the up-referenced type is the type that is passed in:
897/// thus we can complete the cycle.
898///
899PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
900  // If Ty isn't abstract, or if there are no up-references in it, then there is
901  // nothing to resolve here.
902  if (!ty->isAbstract() || UpRefs.empty()) return ty;
903
904  PATypeHolder Ty(ty);
905#if 0
906  errs() << "Type '" << Ty->getDescription()
907         << "' newly formed.  Resolving upreferences.\n"
908         << UpRefs.size() << " upreferences active!\n";
909#endif
910
911  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
912  // to zero), we resolve them all together before we resolve them to Ty.  At
913  // the end of the loop, if there is anything to resolve to Ty, it will be in
914  // this variable.
915  OpaqueType *TypeToResolve = 0;
916
917  for (unsigned i = 0; i != UpRefs.size(); ++i) {
918    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
919    bool ContainsType =
920      std::find(Ty->subtype_begin(), Ty->subtype_end(),
921                UpRefs[i].LastContainedTy) != Ty->subtype_end();
922
923#if 0
924    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
925           << UpRefs[i].LastContainedTy->getDescription() << ") = "
926           << (ContainsType ? "true" : "false")
927           << " level=" << UpRefs[i].NestingLevel << "\n";
928#endif
929    if (!ContainsType)
930      continue;
931
932    // Decrement level of upreference
933    unsigned Level = --UpRefs[i].NestingLevel;
934    UpRefs[i].LastContainedTy = Ty;
935
936    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
937    if (Level != 0)
938      continue;
939
940#if 0
941    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
942#endif
943    if (!TypeToResolve)
944      TypeToResolve = UpRefs[i].UpRefTy;
945    else
946      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
947    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
948    --i;                                // Do not skip the next element.
949  }
950
951  if (TypeToResolve)
952    TypeToResolve->refineAbstractTypeTo(Ty);
953
954  return Ty;
955}
956
957
958/// ParseTypeRec - The recursive function used to process the internal
959/// implementation details of types.
960bool LLParser::ParseTypeRec(PATypeHolder &Result) {
961  switch (Lex.getKind()) {
962  default:
963    return TokError("expected type");
964  case lltok::Type:
965    // TypeRec ::= 'float' | 'void' (etc)
966    Result = Lex.getTyVal();
967    Lex.Lex();
968    break;
969  case lltok::kw_opaque:
970    // TypeRec ::= 'opaque'
971    Result = OpaqueType::get();
972    Lex.Lex();
973    break;
974  case lltok::lbrace:
975    // TypeRec ::= '{' ... '}'
976    if (ParseStructType(Result, false))
977      return true;
978    break;
979  case lltok::lsquare:
980    // TypeRec ::= '[' ... ']'
981    Lex.Lex(); // eat the lsquare.
982    if (ParseArrayVectorType(Result, false))
983      return true;
984    break;
985  case lltok::less: // Either vector or packed struct.
986    // TypeRec ::= '<' ... '>'
987    Lex.Lex();
988    if (Lex.getKind() == lltok::lbrace) {
989      if (ParseStructType(Result, true) ||
990          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
991        return true;
992    } else if (ParseArrayVectorType(Result, true))
993      return true;
994    break;
995  case lltok::LocalVar:
996  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
997    // TypeRec ::= %foo
998    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
999      Result = T;
1000    } else {
1001      Result = OpaqueType::get();
1002      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1003                                            std::make_pair(Result,
1004                                                           Lex.getLoc())));
1005      M->addTypeName(Lex.getStrVal(), Result.get());
1006    }
1007    Lex.Lex();
1008    break;
1009
1010  case lltok::LocalVarID:
1011    // TypeRec ::= %4
1012    if (Lex.getUIntVal() < NumberedTypes.size())
1013      Result = NumberedTypes[Lex.getUIntVal()];
1014    else {
1015      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1016        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1017      if (I != ForwardRefTypeIDs.end())
1018        Result = I->second.first;
1019      else {
1020        Result = OpaqueType::get();
1021        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1022                                                std::make_pair(Result,
1023                                                               Lex.getLoc())));
1024      }
1025    }
1026    Lex.Lex();
1027    break;
1028  case lltok::backslash: {
1029    // TypeRec ::= '\' 4
1030    Lex.Lex();
1031    unsigned Val;
1032    if (ParseUInt32(Val)) return true;
1033    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
1034    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1035    Result = OT;
1036    break;
1037  }
1038  }
1039
1040  // Parse the type suffixes.
1041  while (1) {
1042    switch (Lex.getKind()) {
1043    // End of type.
1044    default: return false;
1045
1046    // TypeRec ::= TypeRec '*'
1047    case lltok::star:
1048      if (Result.get() == Type::LabelTy)
1049        return TokError("basic block pointers are invalid");
1050      if (Result.get() == Type::VoidTy)
1051        return TokError("pointers to void are invalid; use i8* instead");
1052      if (!PointerType::isValidElementType(Result.get()))
1053        return TokError("pointer to this type is invalid");
1054      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1055      Lex.Lex();
1056      break;
1057
1058    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1059    case lltok::kw_addrspace: {
1060      if (Result.get() == Type::LabelTy)
1061        return TokError("basic block pointers are invalid");
1062      if (Result.get() == Type::VoidTy)
1063        return TokError("pointers to void are invalid; use i8* instead");
1064      if (!PointerType::isValidElementType(Result.get()))
1065        return TokError("pointer to this type is invalid");
1066      unsigned AddrSpace;
1067      if (ParseOptionalAddrSpace(AddrSpace) ||
1068          ParseToken(lltok::star, "expected '*' in address space"))
1069        return true;
1070
1071      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1072      break;
1073    }
1074
1075    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1076    case lltok::lparen:
1077      if (ParseFunctionType(Result))
1078        return true;
1079      break;
1080    }
1081  }
1082}
1083
1084/// ParseParameterList
1085///    ::= '(' ')'
1086///    ::= '(' Arg (',' Arg)* ')'
1087///  Arg
1088///    ::= Type OptionalAttributes Value OptionalAttributes
1089bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1090                                  PerFunctionState &PFS) {
1091  if (ParseToken(lltok::lparen, "expected '(' in call"))
1092    return true;
1093
1094  while (Lex.getKind() != lltok::rparen) {
1095    // If this isn't the first argument, we need a comma.
1096    if (!ArgList.empty() &&
1097        ParseToken(lltok::comma, "expected ',' in argument list"))
1098      return true;
1099
1100    // Parse the argument.
1101    LocTy ArgLoc;
1102    PATypeHolder ArgTy(Type::VoidTy);
1103    unsigned ArgAttrs1, ArgAttrs2;
1104    Value *V;
1105    if (ParseType(ArgTy, ArgLoc) ||
1106        ParseOptionalAttrs(ArgAttrs1, 0) ||
1107        ParseValue(ArgTy, V, PFS) ||
1108        // FIXME: Should not allow attributes after the argument, remove this in
1109        // LLVM 3.0.
1110        ParseOptionalAttrs(ArgAttrs2, 3))
1111      return true;
1112    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1113  }
1114
1115  Lex.Lex();  // Lex the ')'.
1116  return false;
1117}
1118
1119
1120
1121/// ParseArgumentList - Parse the argument list for a function type or function
1122/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1123///   ::= '(' ArgTypeListI ')'
1124/// ArgTypeListI
1125///   ::= /*empty*/
1126///   ::= '...'
1127///   ::= ArgTypeList ',' '...'
1128///   ::= ArgType (',' ArgType)*
1129///
1130bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1131                                 bool &isVarArg, bool inType) {
1132  isVarArg = false;
1133  assert(Lex.getKind() == lltok::lparen);
1134  Lex.Lex(); // eat the (.
1135
1136  if (Lex.getKind() == lltok::rparen) {
1137    // empty
1138  } else if (Lex.getKind() == lltok::dotdotdot) {
1139    isVarArg = true;
1140    Lex.Lex();
1141  } else {
1142    LocTy TypeLoc = Lex.getLoc();
1143    PATypeHolder ArgTy(Type::VoidTy);
1144    unsigned Attrs;
1145    std::string Name;
1146
1147    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1148    // types (such as a function returning a pointer to itself).  If parsing a
1149    // function prototype, we require fully resolved types.
1150    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1151        ParseOptionalAttrs(Attrs, 0)) return true;
1152
1153    if (ArgTy == Type::VoidTy)
1154      return Error(TypeLoc, "argument can not have void type");
1155
1156    if (Lex.getKind() == lltok::LocalVar ||
1157        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1158      Name = Lex.getStrVal();
1159      Lex.Lex();
1160    }
1161
1162    if (!FunctionType::isValidArgumentType(ArgTy))
1163      return Error(TypeLoc, "invalid type for function argument");
1164
1165    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1166
1167    while (EatIfPresent(lltok::comma)) {
1168      // Handle ... at end of arg list.
1169      if (EatIfPresent(lltok::dotdotdot)) {
1170        isVarArg = true;
1171        break;
1172      }
1173
1174      // Otherwise must be an argument type.
1175      TypeLoc = Lex.getLoc();
1176      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1177          ParseOptionalAttrs(Attrs, 0)) return true;
1178
1179      if (ArgTy == Type::VoidTy)
1180        return Error(TypeLoc, "argument can not have void type");
1181
1182      if (Lex.getKind() == lltok::LocalVar ||
1183          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1184        Name = Lex.getStrVal();
1185        Lex.Lex();
1186      } else {
1187        Name = "";
1188      }
1189
1190      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1191        return Error(TypeLoc, "invalid type for function argument");
1192
1193      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1194    }
1195  }
1196
1197  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1198}
1199
1200/// ParseFunctionType
1201///  ::= Type ArgumentList OptionalAttrs
1202bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1203  assert(Lex.getKind() == lltok::lparen);
1204
1205  if (!FunctionType::isValidReturnType(Result))
1206    return TokError("invalid function return type");
1207
1208  std::vector<ArgInfo> ArgList;
1209  bool isVarArg;
1210  unsigned Attrs;
1211  if (ParseArgumentList(ArgList, isVarArg, true) ||
1212      // FIXME: Allow, but ignore attributes on function types!
1213      // FIXME: Remove in LLVM 3.0
1214      ParseOptionalAttrs(Attrs, 2))
1215    return true;
1216
1217  // Reject names on the arguments lists.
1218  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1219    if (!ArgList[i].Name.empty())
1220      return Error(ArgList[i].Loc, "argument name invalid in function type");
1221    if (!ArgList[i].Attrs != 0) {
1222      // Allow but ignore attributes on function types; this permits
1223      // auto-upgrade.
1224      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1225    }
1226  }
1227
1228  std::vector<const Type*> ArgListTy;
1229  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1230    ArgListTy.push_back(ArgList[i].Type);
1231
1232  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1233  return false;
1234}
1235
1236/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1237///   TypeRec
1238///     ::= '{' '}'
1239///     ::= '{' TypeRec (',' TypeRec)* '}'
1240///     ::= '<' '{' '}' '>'
1241///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1242bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1243  assert(Lex.getKind() == lltok::lbrace);
1244  Lex.Lex(); // Consume the '{'
1245
1246  if (EatIfPresent(lltok::rbrace)) {
1247    Result = StructType::get(std::vector<const Type*>(), Packed);
1248    return false;
1249  }
1250
1251  std::vector<PATypeHolder> ParamsList;
1252  LocTy EltTyLoc = Lex.getLoc();
1253  if (ParseTypeRec(Result)) return true;
1254  ParamsList.push_back(Result);
1255
1256  if (Result == Type::VoidTy)
1257    return Error(EltTyLoc, "struct element can not have void type");
1258  if (!StructType::isValidElementType(Result))
1259    return Error(EltTyLoc, "invalid element type for struct");
1260
1261  while (EatIfPresent(lltok::comma)) {
1262    EltTyLoc = Lex.getLoc();
1263    if (ParseTypeRec(Result)) return true;
1264
1265    if (Result == Type::VoidTy)
1266      return Error(EltTyLoc, "struct element can not have void type");
1267    if (!StructType::isValidElementType(Result))
1268      return Error(EltTyLoc, "invalid element type for struct");
1269
1270    ParamsList.push_back(Result);
1271  }
1272
1273  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1274    return true;
1275
1276  std::vector<const Type*> ParamsListTy;
1277  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1278    ParamsListTy.push_back(ParamsList[i].get());
1279  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1280  return false;
1281}
1282
1283/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1284/// token has already been consumed.
1285///   TypeRec
1286///     ::= '[' APSINTVAL 'x' Types ']'
1287///     ::= '<' APSINTVAL 'x' Types '>'
1288bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1289  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1290      Lex.getAPSIntVal().getBitWidth() > 64)
1291    return TokError("expected number in address space");
1292
1293  LocTy SizeLoc = Lex.getLoc();
1294  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1295  Lex.Lex();
1296
1297  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1298      return true;
1299
1300  LocTy TypeLoc = Lex.getLoc();
1301  PATypeHolder EltTy(Type::VoidTy);
1302  if (ParseTypeRec(EltTy)) return true;
1303
1304  if (EltTy == Type::VoidTy)
1305    return Error(TypeLoc, "array and vector element type cannot be void");
1306
1307  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1308                 "expected end of sequential type"))
1309    return true;
1310
1311  if (isVector) {
1312    if (Size == 0)
1313      return Error(SizeLoc, "zero element vector is illegal");
1314    if ((unsigned)Size != Size)
1315      return Error(SizeLoc, "size too large for vector");
1316    if (!VectorType::isValidElementType(EltTy))
1317      return Error(TypeLoc, "vector element type must be fp or integer");
1318    Result = VectorType::get(EltTy, unsigned(Size));
1319  } else {
1320    if (!ArrayType::isValidElementType(EltTy))
1321      return Error(TypeLoc, "invalid array element type");
1322    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1323  }
1324  return false;
1325}
1326
1327//===----------------------------------------------------------------------===//
1328// Function Semantic Analysis.
1329//===----------------------------------------------------------------------===//
1330
1331LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1332  : P(p), F(f) {
1333
1334  // Insert unnamed arguments into the NumberedVals list.
1335  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1336       AI != E; ++AI)
1337    if (!AI->hasName())
1338      NumberedVals.push_back(AI);
1339}
1340
1341LLParser::PerFunctionState::~PerFunctionState() {
1342  // If there were any forward referenced non-basicblock values, delete them.
1343  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1344       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1345    if (!isa<BasicBlock>(I->second.first)) {
1346      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1347                                                          ->getType()));
1348      delete I->second.first;
1349      I->second.first = 0;
1350    }
1351
1352  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1353       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1354    if (!isa<BasicBlock>(I->second.first)) {
1355      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1356                                                          ->getType()));
1357      delete I->second.first;
1358      I->second.first = 0;
1359    }
1360}
1361
1362bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1363  if (!ForwardRefVals.empty())
1364    return P.Error(ForwardRefVals.begin()->second.second,
1365                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1366                   "'");
1367  if (!ForwardRefValIDs.empty())
1368    return P.Error(ForwardRefValIDs.begin()->second.second,
1369                   "use of undefined value '%" +
1370                   utostr(ForwardRefValIDs.begin()->first) + "'");
1371  return false;
1372}
1373
1374
1375/// GetVal - Get a value with the specified name or ID, creating a
1376/// forward reference record if needed.  This can return null if the value
1377/// exists but does not have the right type.
1378Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1379                                          const Type *Ty, LocTy Loc) {
1380  // Look this name up in the normal function symbol table.
1381  Value *Val = F.getValueSymbolTable().lookup(Name);
1382
1383  // If this is a forward reference for the value, see if we already created a
1384  // forward ref record.
1385  if (Val == 0) {
1386    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1387      I = ForwardRefVals.find(Name);
1388    if (I != ForwardRefVals.end())
1389      Val = I->second.first;
1390  }
1391
1392  // If we have the value in the symbol table or fwd-ref table, return it.
1393  if (Val) {
1394    if (Val->getType() == Ty) return Val;
1395    if (Ty == Type::LabelTy)
1396      P.Error(Loc, "'%" + Name + "' is not a basic block");
1397    else
1398      P.Error(Loc, "'%" + Name + "' defined with type '" +
1399              Val->getType()->getDescription() + "'");
1400    return 0;
1401  }
1402
1403  // Don't make placeholders with invalid type.
1404  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1405    P.Error(Loc, "invalid use of a non-first-class type");
1406    return 0;
1407  }
1408
1409  // Otherwise, create a new forward reference for this value and remember it.
1410  Value *FwdVal;
1411  if (Ty == Type::LabelTy)
1412    FwdVal = BasicBlock::Create(Name, &F);
1413  else
1414    FwdVal = new Argument(Ty, Name);
1415
1416  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1417  return FwdVal;
1418}
1419
1420Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1421                                          LocTy Loc) {
1422  // Look this name up in the normal function symbol table.
1423  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1424
1425  // If this is a forward reference for the value, see if we already created a
1426  // forward ref record.
1427  if (Val == 0) {
1428    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1429      I = ForwardRefValIDs.find(ID);
1430    if (I != ForwardRefValIDs.end())
1431      Val = I->second.first;
1432  }
1433
1434  // If we have the value in the symbol table or fwd-ref table, return it.
1435  if (Val) {
1436    if (Val->getType() == Ty) return Val;
1437    if (Ty == Type::LabelTy)
1438      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1439    else
1440      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1441              Val->getType()->getDescription() + "'");
1442    return 0;
1443  }
1444
1445  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1446    P.Error(Loc, "invalid use of a non-first-class type");
1447    return 0;
1448  }
1449
1450  // Otherwise, create a new forward reference for this value and remember it.
1451  Value *FwdVal;
1452  if (Ty == Type::LabelTy)
1453    FwdVal = BasicBlock::Create("", &F);
1454  else
1455    FwdVal = new Argument(Ty);
1456
1457  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1458  return FwdVal;
1459}
1460
1461/// SetInstName - After an instruction is parsed and inserted into its
1462/// basic block, this installs its name.
1463bool LLParser::PerFunctionState::SetInstName(int NameID,
1464                                             const std::string &NameStr,
1465                                             LocTy NameLoc, Instruction *Inst) {
1466  // If this instruction has void type, it cannot have a name or ID specified.
1467  if (Inst->getType() == Type::VoidTy) {
1468    if (NameID != -1 || !NameStr.empty())
1469      return P.Error(NameLoc, "instructions returning void cannot have a name");
1470    return false;
1471  }
1472
1473  // If this was a numbered instruction, verify that the instruction is the
1474  // expected value and resolve any forward references.
1475  if (NameStr.empty()) {
1476    // If neither a name nor an ID was specified, just use the next ID.
1477    if (NameID == -1)
1478      NameID = NumberedVals.size();
1479
1480    if (unsigned(NameID) != NumberedVals.size())
1481      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1482                     utostr(NumberedVals.size()) + "'");
1483
1484    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1485      ForwardRefValIDs.find(NameID);
1486    if (FI != ForwardRefValIDs.end()) {
1487      if (FI->second.first->getType() != Inst->getType())
1488        return P.Error(NameLoc, "instruction forward referenced with type '" +
1489                       FI->second.first->getType()->getDescription() + "'");
1490      FI->second.first->replaceAllUsesWith(Inst);
1491      ForwardRefValIDs.erase(FI);
1492    }
1493
1494    NumberedVals.push_back(Inst);
1495    return false;
1496  }
1497
1498  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1499  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1500    FI = ForwardRefVals.find(NameStr);
1501  if (FI != ForwardRefVals.end()) {
1502    if (FI->second.first->getType() != Inst->getType())
1503      return P.Error(NameLoc, "instruction forward referenced with type '" +
1504                     FI->second.first->getType()->getDescription() + "'");
1505    FI->second.first->replaceAllUsesWith(Inst);
1506    ForwardRefVals.erase(FI);
1507  }
1508
1509  // Set the name on the instruction.
1510  Inst->setName(NameStr);
1511
1512  if (Inst->getNameStr() != NameStr)
1513    return P.Error(NameLoc, "multiple definition of local value named '" +
1514                   NameStr + "'");
1515  return false;
1516}
1517
1518/// GetBB - Get a basic block with the specified name or ID, creating a
1519/// forward reference record if needed.
1520BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1521                                              LocTy Loc) {
1522  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1523}
1524
1525BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1526  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1527}
1528
1529/// DefineBB - Define the specified basic block, which is either named or
1530/// unnamed.  If there is an error, this returns null otherwise it returns
1531/// the block being defined.
1532BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1533                                                 LocTy Loc) {
1534  BasicBlock *BB;
1535  if (Name.empty())
1536    BB = GetBB(NumberedVals.size(), Loc);
1537  else
1538    BB = GetBB(Name, Loc);
1539  if (BB == 0) return 0; // Already diagnosed error.
1540
1541  // Move the block to the end of the function.  Forward ref'd blocks are
1542  // inserted wherever they happen to be referenced.
1543  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1544
1545  // Remove the block from forward ref sets.
1546  if (Name.empty()) {
1547    ForwardRefValIDs.erase(NumberedVals.size());
1548    NumberedVals.push_back(BB);
1549  } else {
1550    // BB forward references are already in the function symbol table.
1551    ForwardRefVals.erase(Name);
1552  }
1553
1554  return BB;
1555}
1556
1557//===----------------------------------------------------------------------===//
1558// Constants.
1559//===----------------------------------------------------------------------===//
1560
1561/// ParseValID - Parse an abstract value that doesn't necessarily have a
1562/// type implied.  For example, if we parse "4" we don't know what integer type
1563/// it has.  The value will later be combined with its type and checked for
1564/// sanity.
1565bool LLParser::ParseValID(ValID &ID) {
1566  ID.Loc = Lex.getLoc();
1567  switch (Lex.getKind()) {
1568  default: return TokError("expected value token");
1569  case lltok::GlobalID:  // @42
1570    ID.UIntVal = Lex.getUIntVal();
1571    ID.Kind = ValID::t_GlobalID;
1572    break;
1573  case lltok::GlobalVar:  // @foo
1574    ID.StrVal = Lex.getStrVal();
1575    ID.Kind = ValID::t_GlobalName;
1576    break;
1577  case lltok::LocalVarID:  // %42
1578    ID.UIntVal = Lex.getUIntVal();
1579    ID.Kind = ValID::t_LocalID;
1580    break;
1581  case lltok::LocalVar:  // %foo
1582  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1583    ID.StrVal = Lex.getStrVal();
1584    ID.Kind = ValID::t_LocalName;
1585    break;
1586  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1587    ID.Kind = ValID::t_Constant;
1588    Lex.Lex();
1589    if (Lex.getKind() == lltok::lbrace) {
1590      SmallVector<Value*, 16> Elts;
1591      if (ParseMDNodeVector(Elts) ||
1592          ParseToken(lltok::rbrace, "expected end of metadata node"))
1593        return true;
1594
1595      ID.ConstantVal = MDNode::get(Elts.data(), Elts.size());
1596      return false;
1597    }
1598
1599    // MDString:
1600    //   ::= '!' STRINGCONSTANT
1601    std::string Str;
1602    if (ParseStringConstant(Str)) return true;
1603
1604    ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1605    return false;
1606  }
1607  case lltok::APSInt:
1608    ID.APSIntVal = Lex.getAPSIntVal();
1609    ID.Kind = ValID::t_APSInt;
1610    break;
1611  case lltok::APFloat:
1612    ID.APFloatVal = Lex.getAPFloatVal();
1613    ID.Kind = ValID::t_APFloat;
1614    break;
1615  case lltok::kw_true:
1616    ID.ConstantVal = ConstantInt::getTrue();
1617    ID.Kind = ValID::t_Constant;
1618    break;
1619  case lltok::kw_false:
1620    ID.ConstantVal = ConstantInt::getFalse();
1621    ID.Kind = ValID::t_Constant;
1622    break;
1623  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1624  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1625  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1626
1627  case lltok::lbrace: {
1628    // ValID ::= '{' ConstVector '}'
1629    Lex.Lex();
1630    SmallVector<Constant*, 16> Elts;
1631    if (ParseGlobalValueVector(Elts) ||
1632        ParseToken(lltok::rbrace, "expected end of struct constant"))
1633      return true;
1634
1635    ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false);
1636    ID.Kind = ValID::t_Constant;
1637    return false;
1638  }
1639  case lltok::less: {
1640    // ValID ::= '<' ConstVector '>'         --> Vector.
1641    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1642    Lex.Lex();
1643    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1644
1645    SmallVector<Constant*, 16> Elts;
1646    LocTy FirstEltLoc = Lex.getLoc();
1647    if (ParseGlobalValueVector(Elts) ||
1648        (isPackedStruct &&
1649         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1650        ParseToken(lltok::greater, "expected end of constant"))
1651      return true;
1652
1653    if (isPackedStruct) {
1654      ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), true);
1655      ID.Kind = ValID::t_Constant;
1656      return false;
1657    }
1658
1659    if (Elts.empty())
1660      return Error(ID.Loc, "constant vector must not be empty");
1661
1662    if (!Elts[0]->getType()->isInteger() &&
1663        !Elts[0]->getType()->isFloatingPoint())
1664      return Error(FirstEltLoc,
1665                   "vector elements must have integer or floating point type");
1666
1667    // Verify that all the vector elements have the same type.
1668    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1669      if (Elts[i]->getType() != Elts[0]->getType())
1670        return Error(FirstEltLoc,
1671                     "vector element #" + utostr(i) +
1672                    " is not of type '" + Elts[0]->getType()->getDescription());
1673
1674    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1675    ID.Kind = ValID::t_Constant;
1676    return false;
1677  }
1678  case lltok::lsquare: {   // Array Constant
1679    Lex.Lex();
1680    SmallVector<Constant*, 16> Elts;
1681    LocTy FirstEltLoc = Lex.getLoc();
1682    if (ParseGlobalValueVector(Elts) ||
1683        ParseToken(lltok::rsquare, "expected end of array constant"))
1684      return true;
1685
1686    // Handle empty element.
1687    if (Elts.empty()) {
1688      // Use undef instead of an array because it's inconvenient to determine
1689      // the element type at this point, there being no elements to examine.
1690      ID.Kind = ValID::t_EmptyArray;
1691      return false;
1692    }
1693
1694    if (!Elts[0]->getType()->isFirstClassType())
1695      return Error(FirstEltLoc, "invalid array element type: " +
1696                   Elts[0]->getType()->getDescription());
1697
1698    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1699
1700    // Verify all elements are correct type!
1701    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1702      if (Elts[i]->getType() != Elts[0]->getType())
1703        return Error(FirstEltLoc,
1704                     "array element #" + utostr(i) +
1705                     " is not of type '" +Elts[0]->getType()->getDescription());
1706    }
1707
1708    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1709    ID.Kind = ValID::t_Constant;
1710    return false;
1711  }
1712  case lltok::kw_c:  // c "foo"
1713    Lex.Lex();
1714    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1715    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1716    ID.Kind = ValID::t_Constant;
1717    return false;
1718
1719  case lltok::kw_asm: {
1720    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1721    bool HasSideEffect;
1722    Lex.Lex();
1723    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1724        ParseStringConstant(ID.StrVal) ||
1725        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1726        ParseToken(lltok::StringConstant, "expected constraint string"))
1727      return true;
1728    ID.StrVal2 = Lex.getStrVal();
1729    ID.UIntVal = HasSideEffect;
1730    ID.Kind = ValID::t_InlineAsm;
1731    return false;
1732  }
1733
1734  case lltok::kw_trunc:
1735  case lltok::kw_zext:
1736  case lltok::kw_sext:
1737  case lltok::kw_fptrunc:
1738  case lltok::kw_fpext:
1739  case lltok::kw_bitcast:
1740  case lltok::kw_uitofp:
1741  case lltok::kw_sitofp:
1742  case lltok::kw_fptoui:
1743  case lltok::kw_fptosi:
1744  case lltok::kw_inttoptr:
1745  case lltok::kw_ptrtoint: {
1746    unsigned Opc = Lex.getUIntVal();
1747    PATypeHolder DestTy(Type::VoidTy);
1748    Constant *SrcVal;
1749    Lex.Lex();
1750    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1751        ParseGlobalTypeAndValue(SrcVal) ||
1752        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
1753        ParseType(DestTy) ||
1754        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1755      return true;
1756    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1757      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1758                   SrcVal->getType()->getDescription() + "' to '" +
1759                   DestTy->getDescription() + "'");
1760    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1761                                           DestTy);
1762    ID.Kind = ValID::t_Constant;
1763    return false;
1764  }
1765  case lltok::kw_extractvalue: {
1766    Lex.Lex();
1767    Constant *Val;
1768    SmallVector<unsigned, 4> Indices;
1769    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1770        ParseGlobalTypeAndValue(Val) ||
1771        ParseIndexList(Indices) ||
1772        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1773      return true;
1774    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1775      return Error(ID.Loc, "extractvalue operand must be array or struct");
1776    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1777                                          Indices.end()))
1778      return Error(ID.Loc, "invalid indices for extractvalue");
1779    ID.ConstantVal =
1780      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1781    ID.Kind = ValID::t_Constant;
1782    return false;
1783  }
1784  case lltok::kw_insertvalue: {
1785    Lex.Lex();
1786    Constant *Val0, *Val1;
1787    SmallVector<unsigned, 4> Indices;
1788    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1789        ParseGlobalTypeAndValue(Val0) ||
1790        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1791        ParseGlobalTypeAndValue(Val1) ||
1792        ParseIndexList(Indices) ||
1793        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1794      return true;
1795    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1796      return Error(ID.Loc, "extractvalue operand must be array or struct");
1797    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1798                                          Indices.end()))
1799      return Error(ID.Loc, "invalid indices for insertvalue");
1800    ID.ConstantVal =
1801      ConstantExpr::getInsertValue(Val0, Val1, Indices.data(), Indices.size());
1802    ID.Kind = ValID::t_Constant;
1803    return false;
1804  }
1805  case lltok::kw_icmp:
1806  case lltok::kw_fcmp:
1807  case lltok::kw_vicmp:
1808  case lltok::kw_vfcmp: {
1809    unsigned PredVal, Opc = Lex.getUIntVal();
1810    Constant *Val0, *Val1;
1811    Lex.Lex();
1812    if (ParseCmpPredicate(PredVal, Opc) ||
1813        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1814        ParseGlobalTypeAndValue(Val0) ||
1815        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1816        ParseGlobalTypeAndValue(Val1) ||
1817        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1818      return true;
1819
1820    if (Val0->getType() != Val1->getType())
1821      return Error(ID.Loc, "compare operands must have the same type");
1822
1823    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1824
1825    if (Opc == Instruction::FCmp) {
1826      if (!Val0->getType()->isFPOrFPVector())
1827        return Error(ID.Loc, "fcmp requires floating point operands");
1828      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1829    } else if (Opc == Instruction::ICmp) {
1830      if (!Val0->getType()->isIntOrIntVector() &&
1831          !isa<PointerType>(Val0->getType()))
1832        return Error(ID.Loc, "icmp requires pointer or integer operands");
1833      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1834    } else if (Opc == Instruction::VFCmp) {
1835      // FIXME: REMOVE VFCMP Support
1836      if (!Val0->getType()->isFPOrFPVector() ||
1837          !isa<VectorType>(Val0->getType()))
1838        return Error(ID.Loc, "vfcmp requires vector floating point operands");
1839      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1840    } else if (Opc == Instruction::VICmp) {
1841      // FIXME: REMOVE VICMP Support
1842      if (!Val0->getType()->isIntOrIntVector() ||
1843          !isa<VectorType>(Val0->getType()))
1844        return Error(ID.Loc, "vicmp requires vector floating point operands");
1845      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1846    }
1847    ID.Kind = ValID::t_Constant;
1848    return false;
1849  }
1850
1851  // Binary Operators.
1852  case lltok::kw_add:
1853  case lltok::kw_fadd:
1854  case lltok::kw_sub:
1855  case lltok::kw_fsub:
1856  case lltok::kw_mul:
1857  case lltok::kw_fmul:
1858  case lltok::kw_udiv:
1859  case lltok::kw_sdiv:
1860  case lltok::kw_fdiv:
1861  case lltok::kw_urem:
1862  case lltok::kw_srem:
1863  case lltok::kw_frem: {
1864    unsigned Opc = Lex.getUIntVal();
1865    Constant *Val0, *Val1;
1866    Lex.Lex();
1867    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1868        ParseGlobalTypeAndValue(Val0) ||
1869        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1870        ParseGlobalTypeAndValue(Val1) ||
1871        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1872      return true;
1873    if (Val0->getType() != Val1->getType())
1874      return Error(ID.Loc, "operands of constexpr must have same type");
1875    if (!Val0->getType()->isIntOrIntVector() &&
1876        !Val0->getType()->isFPOrFPVector())
1877      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1878    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1879    ID.Kind = ValID::t_Constant;
1880    return false;
1881  }
1882
1883  // Logical Operations
1884  case lltok::kw_shl:
1885  case lltok::kw_lshr:
1886  case lltok::kw_ashr:
1887  case lltok::kw_and:
1888  case lltok::kw_or:
1889  case lltok::kw_xor: {
1890    unsigned Opc = Lex.getUIntVal();
1891    Constant *Val0, *Val1;
1892    Lex.Lex();
1893    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1894        ParseGlobalTypeAndValue(Val0) ||
1895        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1896        ParseGlobalTypeAndValue(Val1) ||
1897        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1898      return true;
1899    if (Val0->getType() != Val1->getType())
1900      return Error(ID.Loc, "operands of constexpr must have same type");
1901    if (!Val0->getType()->isIntOrIntVector())
1902      return Error(ID.Loc,
1903                   "constexpr requires integer or integer vector operands");
1904    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1905    ID.Kind = ValID::t_Constant;
1906    return false;
1907  }
1908
1909  case lltok::kw_getelementptr:
1910  case lltok::kw_shufflevector:
1911  case lltok::kw_insertelement:
1912  case lltok::kw_extractelement:
1913  case lltok::kw_select: {
1914    unsigned Opc = Lex.getUIntVal();
1915    SmallVector<Constant*, 16> Elts;
1916    Lex.Lex();
1917    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1918        ParseGlobalValueVector(Elts) ||
1919        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1920      return true;
1921
1922    if (Opc == Instruction::GetElementPtr) {
1923      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1924        return Error(ID.Loc, "getelementptr requires pointer operand");
1925
1926      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1927                                             (Value**)&Elts[1], Elts.size()-1))
1928        return Error(ID.Loc, "invalid indices for getelementptr");
1929      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1930                                                      &Elts[1], Elts.size()-1);
1931    } else if (Opc == Instruction::Select) {
1932      if (Elts.size() != 3)
1933        return Error(ID.Loc, "expected three operands to select");
1934      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1935                                                              Elts[2]))
1936        return Error(ID.Loc, Reason);
1937      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1938    } else if (Opc == Instruction::ShuffleVector) {
1939      if (Elts.size() != 3)
1940        return Error(ID.Loc, "expected three operands to shufflevector");
1941      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1942        return Error(ID.Loc, "invalid operands to shufflevector");
1943      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1944    } else if (Opc == Instruction::ExtractElement) {
1945      if (Elts.size() != 2)
1946        return Error(ID.Loc, "expected two operands to extractelement");
1947      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1948        return Error(ID.Loc, "invalid extractelement operands");
1949      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1950    } else {
1951      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1952      if (Elts.size() != 3)
1953      return Error(ID.Loc, "expected three operands to insertelement");
1954      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1955        return Error(ID.Loc, "invalid insertelement operands");
1956      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1957    }
1958
1959    ID.Kind = ValID::t_Constant;
1960    return false;
1961  }
1962  }
1963
1964  Lex.Lex();
1965  return false;
1966}
1967
1968/// ParseGlobalValue - Parse a global value with the specified type.
1969bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1970  V = 0;
1971  ValID ID;
1972  return ParseValID(ID) ||
1973         ConvertGlobalValIDToValue(Ty, ID, V);
1974}
1975
1976/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1977/// constant.
1978bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1979                                         Constant *&V) {
1980  if (isa<FunctionType>(Ty))
1981    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1982
1983  switch (ID.Kind) {
1984  default: assert(0 && "Unknown ValID!");
1985  case ValID::t_LocalID:
1986  case ValID::t_LocalName:
1987    return Error(ID.Loc, "invalid use of function-local name");
1988  case ValID::t_InlineAsm:
1989    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1990  case ValID::t_GlobalName:
1991    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1992    return V == 0;
1993  case ValID::t_GlobalID:
1994    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1995    return V == 0;
1996  case ValID::t_APSInt:
1997    if (!isa<IntegerType>(Ty))
1998      return Error(ID.Loc, "integer constant must have integer type");
1999    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2000    V = ConstantInt::get(ID.APSIntVal);
2001    return false;
2002  case ValID::t_APFloat:
2003    if (!Ty->isFloatingPoint() ||
2004        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2005      return Error(ID.Loc, "floating point constant invalid for type");
2006
2007    // The lexer has no type info, so builds all float and double FP constants
2008    // as double.  Fix this here.  Long double does not need this.
2009    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2010        Ty == Type::FloatTy) {
2011      bool Ignored;
2012      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2013                            &Ignored);
2014    }
2015    V = ConstantFP::get(ID.APFloatVal);
2016
2017    if (V->getType() != Ty)
2018      return Error(ID.Loc, "floating point constant does not have type '" +
2019                   Ty->getDescription() + "'");
2020
2021    return false;
2022  case ValID::t_Null:
2023    if (!isa<PointerType>(Ty))
2024      return Error(ID.Loc, "null must be a pointer type");
2025    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2026    return false;
2027  case ValID::t_Undef:
2028    // FIXME: LabelTy should not be a first-class type.
2029    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2030        !isa<OpaqueType>(Ty))
2031      return Error(ID.Loc, "invalid type for undef constant");
2032    V = UndefValue::get(Ty);
2033    return false;
2034  case ValID::t_EmptyArray:
2035    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2036      return Error(ID.Loc, "invalid empty array initializer");
2037    V = UndefValue::get(Ty);
2038    return false;
2039  case ValID::t_Zero:
2040    // FIXME: LabelTy should not be a first-class type.
2041    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2042      return Error(ID.Loc, "invalid type for null constant");
2043    V = Constant::getNullValue(Ty);
2044    return false;
2045  case ValID::t_Constant:
2046    if (ID.ConstantVal->getType() != Ty)
2047      return Error(ID.Loc, "constant expression type mismatch");
2048    V = ID.ConstantVal;
2049    return false;
2050  }
2051}
2052
2053bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2054  PATypeHolder Type(Type::VoidTy);
2055  return ParseType(Type) ||
2056         ParseGlobalValue(Type, V);
2057}
2058
2059/// ParseGlobalValueVector
2060///   ::= /*empty*/
2061///   ::= TypeAndValue (',' TypeAndValue)*
2062bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2063  // Empty list.
2064  if (Lex.getKind() == lltok::rbrace ||
2065      Lex.getKind() == lltok::rsquare ||
2066      Lex.getKind() == lltok::greater ||
2067      Lex.getKind() == lltok::rparen)
2068    return false;
2069
2070  Constant *C;
2071  if (ParseGlobalTypeAndValue(C)) return true;
2072  Elts.push_back(C);
2073
2074  while (EatIfPresent(lltok::comma)) {
2075    if (ParseGlobalTypeAndValue(C)) return true;
2076    Elts.push_back(C);
2077  }
2078
2079  return false;
2080}
2081
2082
2083//===----------------------------------------------------------------------===//
2084// Function Parsing.
2085//===----------------------------------------------------------------------===//
2086
2087bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2088                                   PerFunctionState &PFS) {
2089  if (ID.Kind == ValID::t_LocalID)
2090    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2091  else if (ID.Kind == ValID::t_LocalName)
2092    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2093  else if (ID.Kind == ValID::t_InlineAsm) {
2094    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2095    const FunctionType *FTy =
2096      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2097    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2098      return Error(ID.Loc, "invalid type for inline asm constraint string");
2099    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2100    return false;
2101  } else {
2102    Constant *C;
2103    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2104    V = C;
2105    return false;
2106  }
2107
2108  return V == 0;
2109}
2110
2111bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2112  V = 0;
2113  ValID ID;
2114  return ParseValID(ID) ||
2115         ConvertValIDToValue(Ty, ID, V, PFS);
2116}
2117
2118bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2119  PATypeHolder T(Type::VoidTy);
2120  return ParseType(T) ||
2121         ParseValue(T, V, PFS);
2122}
2123
2124/// FunctionHeader
2125///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2126///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2127///       OptionalAlign OptGC
2128bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2129  // Parse the linkage.
2130  LocTy LinkageLoc = Lex.getLoc();
2131  unsigned Linkage;
2132
2133  unsigned Visibility, CC, RetAttrs;
2134  PATypeHolder RetType(Type::VoidTy);
2135  LocTy RetTypeLoc = Lex.getLoc();
2136  if (ParseOptionalLinkage(Linkage) ||
2137      ParseOptionalVisibility(Visibility) ||
2138      ParseOptionalCallingConv(CC) ||
2139      ParseOptionalAttrs(RetAttrs, 1) ||
2140      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2141    return true;
2142
2143  // Verify that the linkage is ok.
2144  switch ((GlobalValue::LinkageTypes)Linkage) {
2145  case GlobalValue::ExternalLinkage:
2146    break; // always ok.
2147  case GlobalValue::DLLImportLinkage:
2148  case GlobalValue::ExternalWeakLinkage:
2149    if (isDefine)
2150      return Error(LinkageLoc, "invalid linkage for function definition");
2151    break;
2152  case GlobalValue::PrivateLinkage:
2153  case GlobalValue::InternalLinkage:
2154  case GlobalValue::AvailableExternallyLinkage:
2155  case GlobalValue::LinkOnceAnyLinkage:
2156  case GlobalValue::LinkOnceODRLinkage:
2157  case GlobalValue::WeakAnyLinkage:
2158  case GlobalValue::WeakODRLinkage:
2159  case GlobalValue::DLLExportLinkage:
2160    if (!isDefine)
2161      return Error(LinkageLoc, "invalid linkage for function declaration");
2162    break;
2163  case GlobalValue::AppendingLinkage:
2164  case GlobalValue::GhostLinkage:
2165  case GlobalValue::CommonLinkage:
2166    return Error(LinkageLoc, "invalid function linkage type");
2167  }
2168
2169  if (!FunctionType::isValidReturnType(RetType) ||
2170      isa<OpaqueType>(RetType))
2171    return Error(RetTypeLoc, "invalid function return type");
2172
2173  LocTy NameLoc = Lex.getLoc();
2174
2175  std::string FunctionName;
2176  if (Lex.getKind() == lltok::GlobalVar) {
2177    FunctionName = Lex.getStrVal();
2178  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2179    unsigned NameID = Lex.getUIntVal();
2180
2181    if (NameID != NumberedVals.size())
2182      return TokError("function expected to be numbered '%" +
2183                      utostr(NumberedVals.size()) + "'");
2184  } else {
2185    return TokError("expected function name");
2186  }
2187
2188  Lex.Lex();
2189
2190  if (Lex.getKind() != lltok::lparen)
2191    return TokError("expected '(' in function argument list");
2192
2193  std::vector<ArgInfo> ArgList;
2194  bool isVarArg;
2195  unsigned FuncAttrs;
2196  std::string Section;
2197  unsigned Alignment;
2198  std::string GC;
2199
2200  if (ParseArgumentList(ArgList, isVarArg, false) ||
2201      ParseOptionalAttrs(FuncAttrs, 2) ||
2202      (EatIfPresent(lltok::kw_section) &&
2203       ParseStringConstant(Section)) ||
2204      ParseOptionalAlignment(Alignment) ||
2205      (EatIfPresent(lltok::kw_gc) &&
2206       ParseStringConstant(GC)))
2207    return true;
2208
2209  // If the alignment was parsed as an attribute, move to the alignment field.
2210  if (FuncAttrs & Attribute::Alignment) {
2211    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2212    FuncAttrs &= ~Attribute::Alignment;
2213  }
2214
2215  // Okay, if we got here, the function is syntactically valid.  Convert types
2216  // and do semantic checks.
2217  std::vector<const Type*> ParamTypeList;
2218  SmallVector<AttributeWithIndex, 8> Attrs;
2219  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2220  // attributes.
2221  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2222  if (FuncAttrs & ObsoleteFuncAttrs) {
2223    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2224    FuncAttrs &= ~ObsoleteFuncAttrs;
2225  }
2226
2227  if (RetAttrs != Attribute::None)
2228    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2229
2230  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2231    ParamTypeList.push_back(ArgList[i].Type);
2232    if (ArgList[i].Attrs != Attribute::None)
2233      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2234  }
2235
2236  if (FuncAttrs != Attribute::None)
2237    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2238
2239  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2240
2241  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2242      RetType != Type::VoidTy)
2243    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2244
2245  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2246  const PointerType *PFT = PointerType::getUnqual(FT);
2247
2248  Fn = 0;
2249  if (!FunctionName.empty()) {
2250    // If this was a definition of a forward reference, remove the definition
2251    // from the forward reference table and fill in the forward ref.
2252    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2253      ForwardRefVals.find(FunctionName);
2254    if (FRVI != ForwardRefVals.end()) {
2255      Fn = M->getFunction(FunctionName);
2256      ForwardRefVals.erase(FRVI);
2257    } else if ((Fn = M->getFunction(FunctionName))) {
2258      // If this function already exists in the symbol table, then it is
2259      // multiply defined.  We accept a few cases for old backwards compat.
2260      // FIXME: Remove this stuff for LLVM 3.0.
2261      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2262          (!Fn->isDeclaration() && isDefine)) {
2263        // If the redefinition has different type or different attributes,
2264        // reject it.  If both have bodies, reject it.
2265        return Error(NameLoc, "invalid redefinition of function '" +
2266                     FunctionName + "'");
2267      } else if (Fn->isDeclaration()) {
2268        // Make sure to strip off any argument names so we can't get conflicts.
2269        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2270             AI != AE; ++AI)
2271          AI->setName("");
2272      }
2273    }
2274
2275  } else if (FunctionName.empty()) {
2276    // If this is a definition of a forward referenced function, make sure the
2277    // types agree.
2278    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2279      = ForwardRefValIDs.find(NumberedVals.size());
2280    if (I != ForwardRefValIDs.end()) {
2281      Fn = cast<Function>(I->second.first);
2282      if (Fn->getType() != PFT)
2283        return Error(NameLoc, "type of definition and forward reference of '@" +
2284                     utostr(NumberedVals.size()) +"' disagree");
2285      ForwardRefValIDs.erase(I);
2286    }
2287  }
2288
2289  if (Fn == 0)
2290    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2291  else // Move the forward-reference to the correct spot in the module.
2292    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2293
2294  if (FunctionName.empty())
2295    NumberedVals.push_back(Fn);
2296
2297  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2298  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2299  Fn->setCallingConv(CC);
2300  Fn->setAttributes(PAL);
2301  Fn->setAlignment(Alignment);
2302  Fn->setSection(Section);
2303  if (!GC.empty()) Fn->setGC(GC.c_str());
2304
2305  // Add all of the arguments we parsed to the function.
2306  Function::arg_iterator ArgIt = Fn->arg_begin();
2307  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2308    // If the argument has a name, insert it into the argument symbol table.
2309    if (ArgList[i].Name.empty()) continue;
2310
2311    // Set the name, if it conflicted, it will be auto-renamed.
2312    ArgIt->setName(ArgList[i].Name);
2313
2314    if (ArgIt->getNameStr() != ArgList[i].Name)
2315      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2316                   ArgList[i].Name + "'");
2317  }
2318
2319  return false;
2320}
2321
2322
2323/// ParseFunctionBody
2324///   ::= '{' BasicBlock+ '}'
2325///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2326///
2327bool LLParser::ParseFunctionBody(Function &Fn) {
2328  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2329    return TokError("expected '{' in function body");
2330  Lex.Lex();  // eat the {.
2331
2332  PerFunctionState PFS(*this, Fn);
2333
2334  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2335    if (ParseBasicBlock(PFS)) return true;
2336
2337  // Eat the }.
2338  Lex.Lex();
2339
2340  // Verify function is ok.
2341  return PFS.VerifyFunctionComplete();
2342}
2343
2344/// ParseBasicBlock
2345///   ::= LabelStr? Instruction*
2346bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2347  // If this basic block starts out with a name, remember it.
2348  std::string Name;
2349  LocTy NameLoc = Lex.getLoc();
2350  if (Lex.getKind() == lltok::LabelStr) {
2351    Name = Lex.getStrVal();
2352    Lex.Lex();
2353  }
2354
2355  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2356  if (BB == 0) return true;
2357
2358  std::string NameStr;
2359
2360  // Parse the instructions in this block until we get a terminator.
2361  Instruction *Inst;
2362  do {
2363    // This instruction may have three possibilities for a name: a) none
2364    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2365    LocTy NameLoc = Lex.getLoc();
2366    int NameID = -1;
2367    NameStr = "";
2368
2369    if (Lex.getKind() == lltok::LocalVarID) {
2370      NameID = Lex.getUIntVal();
2371      Lex.Lex();
2372      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2373        return true;
2374    } else if (Lex.getKind() == lltok::LocalVar ||
2375               // FIXME: REMOVE IN LLVM 3.0
2376               Lex.getKind() == lltok::StringConstant) {
2377      NameStr = Lex.getStrVal();
2378      Lex.Lex();
2379      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2380        return true;
2381    }
2382
2383    if (ParseInstruction(Inst, BB, PFS)) return true;
2384
2385    BB->getInstList().push_back(Inst);
2386
2387    // Set the name on the instruction.
2388    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2389  } while (!isa<TerminatorInst>(Inst));
2390
2391  return false;
2392}
2393
2394//===----------------------------------------------------------------------===//
2395// Instruction Parsing.
2396//===----------------------------------------------------------------------===//
2397
2398/// ParseInstruction - Parse one of the many different instructions.
2399///
2400bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2401                                PerFunctionState &PFS) {
2402  lltok::Kind Token = Lex.getKind();
2403  if (Token == lltok::Eof)
2404    return TokError("found end of file when expecting more instructions");
2405  LocTy Loc = Lex.getLoc();
2406  unsigned KeywordVal = Lex.getUIntVal();
2407  Lex.Lex();  // Eat the keyword.
2408
2409  switch (Token) {
2410  default:                    return Error(Loc, "expected instruction opcode");
2411  // Terminator Instructions.
2412  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2413  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2414  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2415  case lltok::kw_br:          return ParseBr(Inst, PFS);
2416  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2417  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2418  // Binary Operators.
2419  case lltok::kw_add:
2420  case lltok::kw_sub:
2421  case lltok::kw_mul:
2422    // API compatibility: Accept either integer or floating-point types.
2423    return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2424  case lltok::kw_fadd:
2425  case lltok::kw_fsub:
2426  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2427
2428  case lltok::kw_udiv:
2429  case lltok::kw_sdiv:
2430  case lltok::kw_urem:
2431  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2432  case lltok::kw_fdiv:
2433  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2434  case lltok::kw_shl:
2435  case lltok::kw_lshr:
2436  case lltok::kw_ashr:
2437  case lltok::kw_and:
2438  case lltok::kw_or:
2439  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2440  case lltok::kw_icmp:
2441  case lltok::kw_fcmp:
2442  case lltok::kw_vicmp:
2443  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, KeywordVal);
2444  // Casts.
2445  case lltok::kw_trunc:
2446  case lltok::kw_zext:
2447  case lltok::kw_sext:
2448  case lltok::kw_fptrunc:
2449  case lltok::kw_fpext:
2450  case lltok::kw_bitcast:
2451  case lltok::kw_uitofp:
2452  case lltok::kw_sitofp:
2453  case lltok::kw_fptoui:
2454  case lltok::kw_fptosi:
2455  case lltok::kw_inttoptr:
2456  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2457  // Other.
2458  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2459  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2460  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2461  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2462  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2463  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2464  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2465  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2466  // Memory.
2467  case lltok::kw_alloca:
2468  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2469  case lltok::kw_free:           return ParseFree(Inst, PFS);
2470  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2471  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2472  case lltok::kw_volatile:
2473    if (EatIfPresent(lltok::kw_load))
2474      return ParseLoad(Inst, PFS, true);
2475    else if (EatIfPresent(lltok::kw_store))
2476      return ParseStore(Inst, PFS, true);
2477    else
2478      return TokError("expected 'load' or 'store'");
2479  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2480  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2481  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2482  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2483  }
2484}
2485
2486/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2487bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2488  // FIXME: REMOVE vicmp/vfcmp!
2489  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2490    switch (Lex.getKind()) {
2491    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2492    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2493    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2494    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2495    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2496    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2497    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2498    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2499    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2500    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2501    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2502    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2503    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2504    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2505    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2506    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2507    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2508    }
2509  } else {
2510    switch (Lex.getKind()) {
2511    default: TokError("expected icmp predicate (e.g. 'eq')");
2512    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2513    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2514    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2515    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2516    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2517    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2518    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2519    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2520    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2521    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2522    }
2523  }
2524  Lex.Lex();
2525  return false;
2526}
2527
2528//===----------------------------------------------------------------------===//
2529// Terminator Instructions.
2530//===----------------------------------------------------------------------===//
2531
2532/// ParseRet - Parse a return instruction.
2533///   ::= 'ret' void
2534///   ::= 'ret' TypeAndValue
2535///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2536bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2537                        PerFunctionState &PFS) {
2538  PATypeHolder Ty(Type::VoidTy);
2539  if (ParseType(Ty, true /*void allowed*/)) return true;
2540
2541  if (Ty == Type::VoidTy) {
2542    Inst = ReturnInst::Create();
2543    return false;
2544  }
2545
2546  Value *RV;
2547  if (ParseValue(Ty, RV, PFS)) return true;
2548
2549  // The normal case is one return value.
2550  if (Lex.getKind() == lltok::comma) {
2551    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2552    // of 'ret {i32,i32} {i32 1, i32 2}'
2553    SmallVector<Value*, 8> RVs;
2554    RVs.push_back(RV);
2555
2556    while (EatIfPresent(lltok::comma)) {
2557      if (ParseTypeAndValue(RV, PFS)) return true;
2558      RVs.push_back(RV);
2559    }
2560
2561    RV = UndefValue::get(PFS.getFunction().getReturnType());
2562    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2563      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2564      BB->getInstList().push_back(I);
2565      RV = I;
2566    }
2567  }
2568  Inst = ReturnInst::Create(RV);
2569  return false;
2570}
2571
2572
2573/// ParseBr
2574///   ::= 'br' TypeAndValue
2575///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2576bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2577  LocTy Loc, Loc2;
2578  Value *Op0, *Op1, *Op2;
2579  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2580
2581  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2582    Inst = BranchInst::Create(BB);
2583    return false;
2584  }
2585
2586  if (Op0->getType() != Type::Int1Ty)
2587    return Error(Loc, "branch condition must have 'i1' type");
2588
2589  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2590      ParseTypeAndValue(Op1, Loc, PFS) ||
2591      ParseToken(lltok::comma, "expected ',' after true destination") ||
2592      ParseTypeAndValue(Op2, Loc2, PFS))
2593    return true;
2594
2595  if (!isa<BasicBlock>(Op1))
2596    return Error(Loc, "true destination of branch must be a basic block");
2597  if (!isa<BasicBlock>(Op2))
2598    return Error(Loc2, "true destination of branch must be a basic block");
2599
2600  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2601  return false;
2602}
2603
2604/// ParseSwitch
2605///  Instruction
2606///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2607///  JumpTable
2608///    ::= (TypeAndValue ',' TypeAndValue)*
2609bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2610  LocTy CondLoc, BBLoc;
2611  Value *Cond, *DefaultBB;
2612  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2613      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2614      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2615      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2616    return true;
2617
2618  if (!isa<IntegerType>(Cond->getType()))
2619    return Error(CondLoc, "switch condition must have integer type");
2620  if (!isa<BasicBlock>(DefaultBB))
2621    return Error(BBLoc, "default destination must be a basic block");
2622
2623  // Parse the jump table pairs.
2624  SmallPtrSet<Value*, 32> SeenCases;
2625  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2626  while (Lex.getKind() != lltok::rsquare) {
2627    Value *Constant, *DestBB;
2628
2629    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2630        ParseToken(lltok::comma, "expected ',' after case value") ||
2631        ParseTypeAndValue(DestBB, BBLoc, PFS))
2632      return true;
2633
2634    if (!SeenCases.insert(Constant))
2635      return Error(CondLoc, "duplicate case value in switch");
2636    if (!isa<ConstantInt>(Constant))
2637      return Error(CondLoc, "case value is not a constant integer");
2638    if (!isa<BasicBlock>(DestBB))
2639      return Error(BBLoc, "case destination is not a basic block");
2640
2641    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2642                                   cast<BasicBlock>(DestBB)));
2643  }
2644
2645  Lex.Lex();  // Eat the ']'.
2646
2647  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2648                                      Table.size());
2649  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2650    SI->addCase(Table[i].first, Table[i].second);
2651  Inst = SI;
2652  return false;
2653}
2654
2655/// ParseInvoke
2656///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2657///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2658bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2659  LocTy CallLoc = Lex.getLoc();
2660  unsigned CC, RetAttrs, FnAttrs;
2661  PATypeHolder RetType(Type::VoidTy);
2662  LocTy RetTypeLoc;
2663  ValID CalleeID;
2664  SmallVector<ParamInfo, 16> ArgList;
2665
2666  Value *NormalBB, *UnwindBB;
2667  if (ParseOptionalCallingConv(CC) ||
2668      ParseOptionalAttrs(RetAttrs, 1) ||
2669      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2670      ParseValID(CalleeID) ||
2671      ParseParameterList(ArgList, PFS) ||
2672      ParseOptionalAttrs(FnAttrs, 2) ||
2673      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2674      ParseTypeAndValue(NormalBB, PFS) ||
2675      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2676      ParseTypeAndValue(UnwindBB, PFS))
2677    return true;
2678
2679  if (!isa<BasicBlock>(NormalBB))
2680    return Error(CallLoc, "normal destination is not a basic block");
2681  if (!isa<BasicBlock>(UnwindBB))
2682    return Error(CallLoc, "unwind destination is not a basic block");
2683
2684  // If RetType is a non-function pointer type, then this is the short syntax
2685  // for the call, which means that RetType is just the return type.  Infer the
2686  // rest of the function argument types from the arguments that are present.
2687  const PointerType *PFTy = 0;
2688  const FunctionType *Ty = 0;
2689  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2690      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2691    // Pull out the types of all of the arguments...
2692    std::vector<const Type*> ParamTypes;
2693    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2694      ParamTypes.push_back(ArgList[i].V->getType());
2695
2696    if (!FunctionType::isValidReturnType(RetType))
2697      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2698
2699    Ty = FunctionType::get(RetType, ParamTypes, false);
2700    PFTy = PointerType::getUnqual(Ty);
2701  }
2702
2703  // Look up the callee.
2704  Value *Callee;
2705  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2706
2707  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2708  // function attributes.
2709  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2710  if (FnAttrs & ObsoleteFuncAttrs) {
2711    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2712    FnAttrs &= ~ObsoleteFuncAttrs;
2713  }
2714
2715  // Set up the Attributes for the function.
2716  SmallVector<AttributeWithIndex, 8> Attrs;
2717  if (RetAttrs != Attribute::None)
2718    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2719
2720  SmallVector<Value*, 8> Args;
2721
2722  // Loop through FunctionType's arguments and ensure they are specified
2723  // correctly.  Also, gather any parameter attributes.
2724  FunctionType::param_iterator I = Ty->param_begin();
2725  FunctionType::param_iterator E = Ty->param_end();
2726  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2727    const Type *ExpectedTy = 0;
2728    if (I != E) {
2729      ExpectedTy = *I++;
2730    } else if (!Ty->isVarArg()) {
2731      return Error(ArgList[i].Loc, "too many arguments specified");
2732    }
2733
2734    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2735      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2736                   ExpectedTy->getDescription() + "'");
2737    Args.push_back(ArgList[i].V);
2738    if (ArgList[i].Attrs != Attribute::None)
2739      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2740  }
2741
2742  if (I != E)
2743    return Error(CallLoc, "not enough parameters specified for call");
2744
2745  if (FnAttrs != Attribute::None)
2746    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2747
2748  // Finish off the Attributes and check them
2749  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2750
2751  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2752                                      cast<BasicBlock>(UnwindBB),
2753                                      Args.begin(), Args.end());
2754  II->setCallingConv(CC);
2755  II->setAttributes(PAL);
2756  Inst = II;
2757  return false;
2758}
2759
2760
2761
2762//===----------------------------------------------------------------------===//
2763// Binary Operators.
2764//===----------------------------------------------------------------------===//
2765
2766/// ParseArithmetic
2767///  ::= ArithmeticOps TypeAndValue ',' Value
2768///
2769/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2770/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2771bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2772                               unsigned Opc, unsigned OperandType) {
2773  LocTy Loc; Value *LHS, *RHS;
2774  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2775      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2776      ParseValue(LHS->getType(), RHS, PFS))
2777    return true;
2778
2779  bool Valid;
2780  switch (OperandType) {
2781  default: assert(0 && "Unknown operand type!");
2782  case 0: // int or FP.
2783    Valid = LHS->getType()->isIntOrIntVector() ||
2784            LHS->getType()->isFPOrFPVector();
2785    break;
2786  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2787  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2788  }
2789
2790  if (!Valid)
2791    return Error(Loc, "invalid operand type for instruction");
2792
2793  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2794  return false;
2795}
2796
2797/// ParseLogical
2798///  ::= ArithmeticOps TypeAndValue ',' Value {
2799bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2800                            unsigned Opc) {
2801  LocTy Loc; Value *LHS, *RHS;
2802  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2803      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2804      ParseValue(LHS->getType(), RHS, PFS))
2805    return true;
2806
2807  if (!LHS->getType()->isIntOrIntVector())
2808    return Error(Loc,"instruction requires integer or integer vector operands");
2809
2810  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2811  return false;
2812}
2813
2814
2815/// ParseCompare
2816///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2817///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2818///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2819///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2820bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2821                            unsigned Opc) {
2822  // Parse the integer/fp comparison predicate.
2823  LocTy Loc;
2824  unsigned Pred;
2825  Value *LHS, *RHS;
2826  if (ParseCmpPredicate(Pred, Opc) ||
2827      ParseTypeAndValue(LHS, Loc, PFS) ||
2828      ParseToken(lltok::comma, "expected ',' after compare value") ||
2829      ParseValue(LHS->getType(), RHS, PFS))
2830    return true;
2831
2832  if (Opc == Instruction::FCmp) {
2833    if (!LHS->getType()->isFPOrFPVector())
2834      return Error(Loc, "fcmp requires floating point operands");
2835    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2836  } else if (Opc == Instruction::ICmp) {
2837    if (!LHS->getType()->isIntOrIntVector() &&
2838        !isa<PointerType>(LHS->getType()))
2839      return Error(Loc, "icmp requires integer operands");
2840    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2841  } else if (Opc == Instruction::VFCmp) {
2842    if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2843      return Error(Loc, "vfcmp requires vector floating point operands");
2844    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2845  } else if (Opc == Instruction::VICmp) {
2846    if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2847      return Error(Loc, "vicmp requires vector floating point operands");
2848    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2849  }
2850  return false;
2851}
2852
2853//===----------------------------------------------------------------------===//
2854// Other Instructions.
2855//===----------------------------------------------------------------------===//
2856
2857
2858/// ParseCast
2859///   ::= CastOpc TypeAndValue 'to' Type
2860bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2861                         unsigned Opc) {
2862  LocTy Loc;  Value *Op;
2863  PATypeHolder DestTy(Type::VoidTy);
2864  if (ParseTypeAndValue(Op, Loc, PFS) ||
2865      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2866      ParseType(DestTy))
2867    return true;
2868
2869  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2870    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2871    return Error(Loc, "invalid cast opcode for cast from '" +
2872                 Op->getType()->getDescription() + "' to '" +
2873                 DestTy->getDescription() + "'");
2874  }
2875  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2876  return false;
2877}
2878
2879/// ParseSelect
2880///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2881bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2882  LocTy Loc;
2883  Value *Op0, *Op1, *Op2;
2884  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2885      ParseToken(lltok::comma, "expected ',' after select condition") ||
2886      ParseTypeAndValue(Op1, PFS) ||
2887      ParseToken(lltok::comma, "expected ',' after select value") ||
2888      ParseTypeAndValue(Op2, PFS))
2889    return true;
2890
2891  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2892    return Error(Loc, Reason);
2893
2894  Inst = SelectInst::Create(Op0, Op1, Op2);
2895  return false;
2896}
2897
2898/// ParseVA_Arg
2899///   ::= 'va_arg' TypeAndValue ',' Type
2900bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2901  Value *Op;
2902  PATypeHolder EltTy(Type::VoidTy);
2903  LocTy TypeLoc;
2904  if (ParseTypeAndValue(Op, PFS) ||
2905      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2906      ParseType(EltTy, TypeLoc))
2907    return true;
2908
2909  if (!EltTy->isFirstClassType())
2910    return Error(TypeLoc, "va_arg requires operand with first class type");
2911
2912  Inst = new VAArgInst(Op, EltTy);
2913  return false;
2914}
2915
2916/// ParseExtractElement
2917///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2918bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2919  LocTy Loc;
2920  Value *Op0, *Op1;
2921  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2922      ParseToken(lltok::comma, "expected ',' after extract value") ||
2923      ParseTypeAndValue(Op1, PFS))
2924    return true;
2925
2926  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2927    return Error(Loc, "invalid extractelement operands");
2928
2929  Inst = new ExtractElementInst(Op0, Op1);
2930  return false;
2931}
2932
2933/// ParseInsertElement
2934///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2935bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2936  LocTy Loc;
2937  Value *Op0, *Op1, *Op2;
2938  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2939      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2940      ParseTypeAndValue(Op1, PFS) ||
2941      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2942      ParseTypeAndValue(Op2, PFS))
2943    return true;
2944
2945  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2946    return Error(Loc, "invalid extractelement operands");
2947
2948  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2949  return false;
2950}
2951
2952/// ParseShuffleVector
2953///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2954bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2955  LocTy Loc;
2956  Value *Op0, *Op1, *Op2;
2957  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2958      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2959      ParseTypeAndValue(Op1, PFS) ||
2960      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2961      ParseTypeAndValue(Op2, PFS))
2962    return true;
2963
2964  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2965    return Error(Loc, "invalid extractelement operands");
2966
2967  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2968  return false;
2969}
2970
2971/// ParsePHI
2972///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value�� ']')*
2973bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2974  PATypeHolder Ty(Type::VoidTy);
2975  Value *Op0, *Op1;
2976  LocTy TypeLoc = Lex.getLoc();
2977
2978  if (ParseType(Ty) ||
2979      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2980      ParseValue(Ty, Op0, PFS) ||
2981      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2982      ParseValue(Type::LabelTy, Op1, PFS) ||
2983      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2984    return true;
2985
2986  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2987  while (1) {
2988    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2989
2990    if (!EatIfPresent(lltok::comma))
2991      break;
2992
2993    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2994        ParseValue(Ty, Op0, PFS) ||
2995        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2996        ParseValue(Type::LabelTy, Op1, PFS) ||
2997        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2998      return true;
2999  }
3000
3001  if (!Ty->isFirstClassType())
3002    return Error(TypeLoc, "phi node must have first class type");
3003
3004  PHINode *PN = PHINode::Create(Ty);
3005  PN->reserveOperandSpace(PHIVals.size());
3006  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3007    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3008  Inst = PN;
3009  return false;
3010}
3011
3012/// ParseCall
3013///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3014///       ParameterList OptionalAttrs
3015bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3016                         bool isTail) {
3017  unsigned CC, RetAttrs, FnAttrs;
3018  PATypeHolder RetType(Type::VoidTy);
3019  LocTy RetTypeLoc;
3020  ValID CalleeID;
3021  SmallVector<ParamInfo, 16> ArgList;
3022  LocTy CallLoc = Lex.getLoc();
3023
3024  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3025      ParseOptionalCallingConv(CC) ||
3026      ParseOptionalAttrs(RetAttrs, 1) ||
3027      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3028      ParseValID(CalleeID) ||
3029      ParseParameterList(ArgList, PFS) ||
3030      ParseOptionalAttrs(FnAttrs, 2))
3031    return true;
3032
3033  // If RetType is a non-function pointer type, then this is the short syntax
3034  // for the call, which means that RetType is just the return type.  Infer the
3035  // rest of the function argument types from the arguments that are present.
3036  const PointerType *PFTy = 0;
3037  const FunctionType *Ty = 0;
3038  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3039      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3040    // Pull out the types of all of the arguments...
3041    std::vector<const Type*> ParamTypes;
3042    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3043      ParamTypes.push_back(ArgList[i].V->getType());
3044
3045    if (!FunctionType::isValidReturnType(RetType))
3046      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3047
3048    Ty = FunctionType::get(RetType, ParamTypes, false);
3049    PFTy = PointerType::getUnqual(Ty);
3050  }
3051
3052  // Look up the callee.
3053  Value *Callee;
3054  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3055
3056  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3057  // function attributes.
3058  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3059  if (FnAttrs & ObsoleteFuncAttrs) {
3060    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3061    FnAttrs &= ~ObsoleteFuncAttrs;
3062  }
3063
3064  // Set up the Attributes for the function.
3065  SmallVector<AttributeWithIndex, 8> Attrs;
3066  if (RetAttrs != Attribute::None)
3067    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3068
3069  SmallVector<Value*, 8> Args;
3070
3071  // Loop through FunctionType's arguments and ensure they are specified
3072  // correctly.  Also, gather any parameter attributes.
3073  FunctionType::param_iterator I = Ty->param_begin();
3074  FunctionType::param_iterator E = Ty->param_end();
3075  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3076    const Type *ExpectedTy = 0;
3077    if (I != E) {
3078      ExpectedTy = *I++;
3079    } else if (!Ty->isVarArg()) {
3080      return Error(ArgList[i].Loc, "too many arguments specified");
3081    }
3082
3083    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3084      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3085                   ExpectedTy->getDescription() + "'");
3086    Args.push_back(ArgList[i].V);
3087    if (ArgList[i].Attrs != Attribute::None)
3088      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3089  }
3090
3091  if (I != E)
3092    return Error(CallLoc, "not enough parameters specified for call");
3093
3094  if (FnAttrs != Attribute::None)
3095    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3096
3097  // Finish off the Attributes and check them
3098  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3099
3100  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3101  CI->setTailCall(isTail);
3102  CI->setCallingConv(CC);
3103  CI->setAttributes(PAL);
3104  Inst = CI;
3105  return false;
3106}
3107
3108//===----------------------------------------------------------------------===//
3109// Memory Instructions.
3110//===----------------------------------------------------------------------===//
3111
3112/// ParseAlloc
3113///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3114///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3115bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3116                          unsigned Opc) {
3117  PATypeHolder Ty(Type::VoidTy);
3118  Value *Size = 0;
3119  LocTy SizeLoc = 0;
3120  unsigned Alignment = 0;
3121  if (ParseType(Ty)) return true;
3122
3123  if (EatIfPresent(lltok::comma)) {
3124    if (Lex.getKind() == lltok::kw_align) {
3125      if (ParseOptionalAlignment(Alignment)) return true;
3126    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3127               ParseOptionalCommaAlignment(Alignment)) {
3128      return true;
3129    }
3130  }
3131
3132  if (Size && Size->getType() != Type::Int32Ty)
3133    return Error(SizeLoc, "element count must be i32");
3134
3135  if (Opc == Instruction::Malloc)
3136    Inst = new MallocInst(Ty, Size, Alignment);
3137  else
3138    Inst = new AllocaInst(Ty, Size, Alignment);
3139  return false;
3140}
3141
3142/// ParseFree
3143///   ::= 'free' TypeAndValue
3144bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3145  Value *Val; LocTy Loc;
3146  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3147  if (!isa<PointerType>(Val->getType()))
3148    return Error(Loc, "operand to free must be a pointer");
3149  Inst = new FreeInst(Val);
3150  return false;
3151}
3152
3153/// ParseLoad
3154///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
3155bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3156                         bool isVolatile) {
3157  Value *Val; LocTy Loc;
3158  unsigned Alignment;
3159  if (ParseTypeAndValue(Val, Loc, PFS) ||
3160      ParseOptionalCommaAlignment(Alignment))
3161    return true;
3162
3163  if (!isa<PointerType>(Val->getType()) ||
3164      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3165    return Error(Loc, "load operand must be a pointer to a first class type");
3166
3167  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3168  return false;
3169}
3170
3171/// ParseStore
3172///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3173bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3174                          bool isVolatile) {
3175  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3176  unsigned Alignment;
3177  if (ParseTypeAndValue(Val, Loc, PFS) ||
3178      ParseToken(lltok::comma, "expected ',' after store operand") ||
3179      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3180      ParseOptionalCommaAlignment(Alignment))
3181    return true;
3182
3183  if (!isa<PointerType>(Ptr->getType()))
3184    return Error(PtrLoc, "store operand must be a pointer");
3185  if (!Val->getType()->isFirstClassType())
3186    return Error(Loc, "store operand must be a first class value");
3187  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3188    return Error(Loc, "stored value and pointer type do not match");
3189
3190  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3191  return false;
3192}
3193
3194/// ParseGetResult
3195///   ::= 'getresult' TypeAndValue ',' i32
3196/// FIXME: Remove support for getresult in LLVM 3.0
3197bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3198  Value *Val; LocTy ValLoc, EltLoc;
3199  unsigned Element;
3200  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3201      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3202      ParseUInt32(Element, EltLoc))
3203    return true;
3204
3205  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3206    return Error(ValLoc, "getresult inst requires an aggregate operand");
3207  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3208    return Error(EltLoc, "invalid getresult index for value");
3209  Inst = ExtractValueInst::Create(Val, Element);
3210  return false;
3211}
3212
3213/// ParseGetElementPtr
3214///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3215bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3216  Value *Ptr, *Val; LocTy Loc, EltLoc;
3217  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3218
3219  if (!isa<PointerType>(Ptr->getType()))
3220    return Error(Loc, "base of getelementptr must be a pointer");
3221
3222  SmallVector<Value*, 16> Indices;
3223  while (EatIfPresent(lltok::comma)) {
3224    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3225    if (!isa<IntegerType>(Val->getType()))
3226      return Error(EltLoc, "getelementptr index must be an integer");
3227    Indices.push_back(Val);
3228  }
3229
3230  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3231                                         Indices.begin(), Indices.end()))
3232    return Error(Loc, "invalid getelementptr indices");
3233  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3234  return false;
3235}
3236
3237/// ParseExtractValue
3238///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3239bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3240  Value *Val; LocTy Loc;
3241  SmallVector<unsigned, 4> Indices;
3242  if (ParseTypeAndValue(Val, Loc, PFS) ||
3243      ParseIndexList(Indices))
3244    return true;
3245
3246  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3247    return Error(Loc, "extractvalue operand must be array or struct");
3248
3249  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3250                                        Indices.end()))
3251    return Error(Loc, "invalid indices for extractvalue");
3252  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3253  return false;
3254}
3255
3256/// ParseInsertValue
3257///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3258bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3259  Value *Val0, *Val1; LocTy Loc0, Loc1;
3260  SmallVector<unsigned, 4> Indices;
3261  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3262      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3263      ParseTypeAndValue(Val1, Loc1, PFS) ||
3264      ParseIndexList(Indices))
3265    return true;
3266
3267  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3268    return Error(Loc0, "extractvalue operand must be array or struct");
3269
3270  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3271                                        Indices.end()))
3272    return Error(Loc0, "invalid indices for insertvalue");
3273  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3274  return false;
3275}
3276
3277//===----------------------------------------------------------------------===//
3278// Embedded metadata.
3279//===----------------------------------------------------------------------===//
3280
3281/// ParseMDNodeVector
3282///   ::= Element (',' Element)*
3283/// Element
3284///   ::= 'null' | TypeAndValue
3285bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3286  assert(Lex.getKind() == lltok::lbrace);
3287  Lex.Lex();
3288  do {
3289    Value *V;
3290    if (Lex.getKind() == lltok::kw_null) {
3291      Lex.Lex();
3292      V = 0;
3293    } else {
3294      Constant *C;
3295      if (ParseGlobalTypeAndValue(C)) return true;
3296      V = C;
3297    }
3298    Elts.push_back(V);
3299  } while (EatIfPresent(lltok::comma));
3300
3301  return false;
3302}
3303