LLParser.cpp revision 193630
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29namespace llvm {
30  /// ValID - Represents a reference of a definition of some sort with no type.
31  /// There are several cases where we have to parse the value but where the
32  /// type can depend on later context.  This may either be a numeric reference
33  /// or a symbolic (%var) reference.  This is just a discriminated union.
34  struct ValID {
35    enum {
36      t_LocalID, t_GlobalID,      // ID in UIntVal.
37      t_LocalName, t_GlobalName,  // Name in StrVal.
38      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
39      t_Null, t_Undef, t_Zero,    // No value.
40      t_EmptyArray,               // No value:  []
41      t_Constant,                 // Value in ConstantVal.
42      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
43    } Kind;
44
45    LLParser::LocTy Loc;
46    unsigned UIntVal;
47    std::string StrVal, StrVal2;
48    APSInt APSIntVal;
49    APFloat APFloatVal;
50    Constant *ConstantVal;
51    ValID() : APFloatVal(0.0) {}
52  };
53}
54
55/// Run: module ::= toplevelentity*
56bool LLParser::Run() {
57  // Prime the lexer.
58  Lex.Lex();
59
60  return ParseTopLevelEntities() ||
61         ValidateEndOfModule();
62}
63
64/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65/// module.
66bool LLParser::ValidateEndOfModule() {
67  if (!ForwardRefTypes.empty())
68    return Error(ForwardRefTypes.begin()->second.second,
69                 "use of undefined type named '" +
70                 ForwardRefTypes.begin()->first + "'");
71  if (!ForwardRefTypeIDs.empty())
72    return Error(ForwardRefTypeIDs.begin()->second.second,
73                 "use of undefined type '%" +
74                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
75
76  if (!ForwardRefVals.empty())
77    return Error(ForwardRefVals.begin()->second.second,
78                 "use of undefined value '@" + ForwardRefVals.begin()->first +
79                 "'");
80
81  if (!ForwardRefValIDs.empty())
82    return Error(ForwardRefValIDs.begin()->second.second,
83                 "use of undefined value '@" +
84                 utostr(ForwardRefValIDs.begin()->first) + "'");
85
86  // Look for intrinsic functions and CallInst that need to be upgraded
87  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
88    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
89
90  return false;
91}
92
93//===----------------------------------------------------------------------===//
94// Top-Level Entities
95//===----------------------------------------------------------------------===//
96
97bool LLParser::ParseTopLevelEntities() {
98  while (1) {
99    switch (Lex.getKind()) {
100    default:         return TokError("expected top-level entity");
101    case lltok::Eof: return false;
102    //case lltok::kw_define:
103    case lltok::kw_declare: if (ParseDeclare()) return true; break;
104    case lltok::kw_define:  if (ParseDefine()) return true; break;
105    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
106    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
107    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
108    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
109    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
110    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
111    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
112
113    // The Global variable production with no name can have many different
114    // optional leading prefixes, the production is:
115    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
116    //               OptionalAddrSpace ('constant'|'global') ...
117    case lltok::kw_private:       // OptionalLinkage
118    case lltok::kw_internal:      // OptionalLinkage
119    case lltok::kw_weak:          // OptionalLinkage
120    case lltok::kw_weak_odr:      // OptionalLinkage
121    case lltok::kw_linkonce:      // OptionalLinkage
122    case lltok::kw_linkonce_odr:  // OptionalLinkage
123    case lltok::kw_appending:     // OptionalLinkage
124    case lltok::kw_dllexport:     // OptionalLinkage
125    case lltok::kw_common:        // OptionalLinkage
126    case lltok::kw_dllimport:     // OptionalLinkage
127    case lltok::kw_extern_weak:   // OptionalLinkage
128    case lltok::kw_external: {    // OptionalLinkage
129      unsigned Linkage, Visibility;
130      if (ParseOptionalLinkage(Linkage) ||
131          ParseOptionalVisibility(Visibility) ||
132          ParseGlobal("", 0, Linkage, true, Visibility))
133        return true;
134      break;
135    }
136    case lltok::kw_default:       // OptionalVisibility
137    case lltok::kw_hidden:        // OptionalVisibility
138    case lltok::kw_protected: {   // OptionalVisibility
139      unsigned Visibility;
140      if (ParseOptionalVisibility(Visibility) ||
141          ParseGlobal("", 0, 0, false, Visibility))
142        return true;
143      break;
144    }
145
146    case lltok::kw_thread_local:  // OptionalThreadLocal
147    case lltok::kw_addrspace:     // OptionalAddrSpace
148    case lltok::kw_constant:      // GlobalType
149    case lltok::kw_global:        // GlobalType
150      if (ParseGlobal("", 0, 0, false, 0)) return true;
151      break;
152    }
153  }
154}
155
156
157/// toplevelentity
158///   ::= 'module' 'asm' STRINGCONSTANT
159bool LLParser::ParseModuleAsm() {
160  assert(Lex.getKind() == lltok::kw_module);
161  Lex.Lex();
162
163  std::string AsmStr;
164  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
165      ParseStringConstant(AsmStr)) return true;
166
167  const std::string &AsmSoFar = M->getModuleInlineAsm();
168  if (AsmSoFar.empty())
169    M->setModuleInlineAsm(AsmStr);
170  else
171    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
172  return false;
173}
174
175/// toplevelentity
176///   ::= 'target' 'triple' '=' STRINGCONSTANT
177///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
178bool LLParser::ParseTargetDefinition() {
179  assert(Lex.getKind() == lltok::kw_target);
180  std::string Str;
181  switch (Lex.Lex()) {
182  default: return TokError("unknown target property");
183  case lltok::kw_triple:
184    Lex.Lex();
185    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
186        ParseStringConstant(Str))
187      return true;
188    M->setTargetTriple(Str);
189    return false;
190  case lltok::kw_datalayout:
191    Lex.Lex();
192    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
193        ParseStringConstant(Str))
194      return true;
195    M->setDataLayout(Str);
196    return false;
197  }
198}
199
200/// toplevelentity
201///   ::= 'deplibs' '=' '[' ']'
202///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
203bool LLParser::ParseDepLibs() {
204  assert(Lex.getKind() == lltok::kw_deplibs);
205  Lex.Lex();
206  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
207      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
208    return true;
209
210  if (EatIfPresent(lltok::rsquare))
211    return false;
212
213  std::string Str;
214  if (ParseStringConstant(Str)) return true;
215  M->addLibrary(Str);
216
217  while (EatIfPresent(lltok::comma)) {
218    if (ParseStringConstant(Str)) return true;
219    M->addLibrary(Str);
220  }
221
222  return ParseToken(lltok::rsquare, "expected ']' at end of list");
223}
224
225/// toplevelentity
226///   ::= 'type' type
227bool LLParser::ParseUnnamedType() {
228  assert(Lex.getKind() == lltok::kw_type);
229  LocTy TypeLoc = Lex.getLoc();
230  Lex.Lex(); // eat kw_type
231
232  PATypeHolder Ty(Type::VoidTy);
233  if (ParseType(Ty)) return true;
234
235  unsigned TypeID = NumberedTypes.size();
236
237  // See if this type was previously referenced.
238  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239    FI = ForwardRefTypeIDs.find(TypeID);
240  if (FI != ForwardRefTypeIDs.end()) {
241    if (FI->second.first.get() == Ty)
242      return Error(TypeLoc, "self referential type is invalid");
243
244    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
245    Ty = FI->second.first.get();
246    ForwardRefTypeIDs.erase(FI);
247  }
248
249  NumberedTypes.push_back(Ty);
250
251  return false;
252}
253
254/// toplevelentity
255///   ::= LocalVar '=' 'type' type
256bool LLParser::ParseNamedType() {
257  std::string Name = Lex.getStrVal();
258  LocTy NameLoc = Lex.getLoc();
259  Lex.Lex();  // eat LocalVar.
260
261  PATypeHolder Ty(Type::VoidTy);
262
263  if (ParseToken(lltok::equal, "expected '=' after name") ||
264      ParseToken(lltok::kw_type, "expected 'type' after name") ||
265      ParseType(Ty))
266    return true;
267
268  // Set the type name, checking for conflicts as we do so.
269  bool AlreadyExists = M->addTypeName(Name, Ty);
270  if (!AlreadyExists) return false;
271
272  // See if this type is a forward reference.  We need to eagerly resolve
273  // types to allow recursive type redefinitions below.
274  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275  FI = ForwardRefTypes.find(Name);
276  if (FI != ForwardRefTypes.end()) {
277    if (FI->second.first.get() == Ty)
278      return Error(NameLoc, "self referential type is invalid");
279
280    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
281    Ty = FI->second.first.get();
282    ForwardRefTypes.erase(FI);
283  }
284
285  // Inserting a name that is already defined, get the existing name.
286  const Type *Existing = M->getTypeByName(Name);
287  assert(Existing && "Conflict but no matching type?!");
288
289  // Otherwise, this is an attempt to redefine a type. That's okay if
290  // the redefinition is identical to the original.
291  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
292  if (Existing == Ty) return false;
293
294  // Any other kind of (non-equivalent) redefinition is an error.
295  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
296               Ty->getDescription() + "'");
297}
298
299
300/// toplevelentity
301///   ::= 'declare' FunctionHeader
302bool LLParser::ParseDeclare() {
303  assert(Lex.getKind() == lltok::kw_declare);
304  Lex.Lex();
305
306  Function *F;
307  return ParseFunctionHeader(F, false);
308}
309
310/// toplevelentity
311///   ::= 'define' FunctionHeader '{' ...
312bool LLParser::ParseDefine() {
313  assert(Lex.getKind() == lltok::kw_define);
314  Lex.Lex();
315
316  Function *F;
317  return ParseFunctionHeader(F, true) ||
318         ParseFunctionBody(*F);
319}
320
321/// ParseGlobalType
322///   ::= 'constant'
323///   ::= 'global'
324bool LLParser::ParseGlobalType(bool &IsConstant) {
325  if (Lex.getKind() == lltok::kw_constant)
326    IsConstant = true;
327  else if (Lex.getKind() == lltok::kw_global)
328    IsConstant = false;
329  else {
330    IsConstant = false;
331    return TokError("expected 'global' or 'constant'");
332  }
333  Lex.Lex();
334  return false;
335}
336
337/// ParseNamedGlobal:
338///   GlobalVar '=' OptionalVisibility ALIAS ...
339///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
340bool LLParser::ParseNamedGlobal() {
341  assert(Lex.getKind() == lltok::GlobalVar);
342  LocTy NameLoc = Lex.getLoc();
343  std::string Name = Lex.getStrVal();
344  Lex.Lex();
345
346  bool HasLinkage;
347  unsigned Linkage, Visibility;
348  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
349      ParseOptionalLinkage(Linkage, HasLinkage) ||
350      ParseOptionalVisibility(Visibility))
351    return true;
352
353  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
354    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
355  return ParseAlias(Name, NameLoc, Visibility);
356}
357
358/// ParseAlias:
359///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360/// Aliasee
361///   ::= TypeAndValue
362///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
363///   ::= 'getelementptr' '(' ... ')'
364///
365/// Everything through visibility has already been parsed.
366///
367bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368                          unsigned Visibility) {
369  assert(Lex.getKind() == lltok::kw_alias);
370  Lex.Lex();
371  unsigned Linkage;
372  LocTy LinkageLoc = Lex.getLoc();
373  if (ParseOptionalLinkage(Linkage))
374    return true;
375
376  if (Linkage != GlobalValue::ExternalLinkage &&
377      Linkage != GlobalValue::WeakAnyLinkage &&
378      Linkage != GlobalValue::WeakODRLinkage &&
379      Linkage != GlobalValue::InternalLinkage &&
380      Linkage != GlobalValue::PrivateLinkage)
381    return Error(LinkageLoc, "invalid linkage type for alias");
382
383  Constant *Aliasee;
384  LocTy AliaseeLoc = Lex.getLoc();
385  if (Lex.getKind() != lltok::kw_bitcast &&
386      Lex.getKind() != lltok::kw_getelementptr) {
387    if (ParseGlobalTypeAndValue(Aliasee)) return true;
388  } else {
389    // The bitcast dest type is not present, it is implied by the dest type.
390    ValID ID;
391    if (ParseValID(ID)) return true;
392    if (ID.Kind != ValID::t_Constant)
393      return Error(AliaseeLoc, "invalid aliasee");
394    Aliasee = ID.ConstantVal;
395  }
396
397  if (!isa<PointerType>(Aliasee->getType()))
398    return Error(AliaseeLoc, "alias must have pointer type");
399
400  // Okay, create the alias but do not insert it into the module yet.
401  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
402                                    (GlobalValue::LinkageTypes)Linkage, Name,
403                                    Aliasee);
404  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
405
406  // See if this value already exists in the symbol table.  If so, it is either
407  // a redefinition or a definition of a forward reference.
408  if (GlobalValue *Val =
409        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
410    // See if this was a redefinition.  If so, there is no entry in
411    // ForwardRefVals.
412    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
413      I = ForwardRefVals.find(Name);
414    if (I == ForwardRefVals.end())
415      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
416
417    // Otherwise, this was a definition of forward ref.  Verify that types
418    // agree.
419    if (Val->getType() != GA->getType())
420      return Error(NameLoc,
421              "forward reference and definition of alias have different types");
422
423    // If they agree, just RAUW the old value with the alias and remove the
424    // forward ref info.
425    Val->replaceAllUsesWith(GA);
426    Val->eraseFromParent();
427    ForwardRefVals.erase(I);
428  }
429
430  // Insert into the module, we know its name won't collide now.
431  M->getAliasList().push_back(GA);
432  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
433
434  return false;
435}
436
437/// ParseGlobal
438///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
439///       OptionalAddrSpace GlobalType Type Const
440///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
441///       OptionalAddrSpace GlobalType Type Const
442///
443/// Everything through visibility has been parsed already.
444///
445bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
446                           unsigned Linkage, bool HasLinkage,
447                           unsigned Visibility) {
448  unsigned AddrSpace;
449  bool ThreadLocal, IsConstant;
450  LocTy TyLoc;
451
452  PATypeHolder Ty(Type::VoidTy);
453  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
454      ParseOptionalAddrSpace(AddrSpace) ||
455      ParseGlobalType(IsConstant) ||
456      ParseType(Ty, TyLoc))
457    return true;
458
459  // If the linkage is specified and is external, then no initializer is
460  // present.
461  Constant *Init = 0;
462  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
463                      Linkage != GlobalValue::ExternalWeakLinkage &&
464                      Linkage != GlobalValue::ExternalLinkage)) {
465    if (ParseGlobalValue(Ty, Init))
466      return true;
467  }
468
469  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
470    return Error(TyLoc, "invalid type for global variable");
471
472  GlobalVariable *GV = 0;
473
474  // See if the global was forward referenced, if so, use the global.
475  if (!Name.empty()) {
476    if ((GV = M->getGlobalVariable(Name, true)) &&
477        !ForwardRefVals.erase(Name))
478      return Error(NameLoc, "redefinition of global '@" + Name + "'");
479  } else {
480    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
481      I = ForwardRefValIDs.find(NumberedVals.size());
482    if (I != ForwardRefValIDs.end()) {
483      GV = cast<GlobalVariable>(I->second.first);
484      ForwardRefValIDs.erase(I);
485    }
486  }
487
488  if (GV == 0) {
489    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
490                            M, false, AddrSpace);
491  } else {
492    if (GV->getType()->getElementType() != Ty)
493      return Error(TyLoc,
494            "forward reference and definition of global have different types");
495
496    // Move the forward-reference to the correct spot in the module.
497    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
498  }
499
500  if (Name.empty())
501    NumberedVals.push_back(GV);
502
503  // Set the parsed properties on the global.
504  if (Init)
505    GV->setInitializer(Init);
506  GV->setConstant(IsConstant);
507  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
508  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
509  GV->setThreadLocal(ThreadLocal);
510
511  // Parse attributes on the global.
512  while (Lex.getKind() == lltok::comma) {
513    Lex.Lex();
514
515    if (Lex.getKind() == lltok::kw_section) {
516      Lex.Lex();
517      GV->setSection(Lex.getStrVal());
518      if (ParseToken(lltok::StringConstant, "expected global section string"))
519        return true;
520    } else if (Lex.getKind() == lltok::kw_align) {
521      unsigned Alignment;
522      if (ParseOptionalAlignment(Alignment)) return true;
523      GV->setAlignment(Alignment);
524    } else {
525      TokError("unknown global variable property!");
526    }
527  }
528
529  return false;
530}
531
532
533//===----------------------------------------------------------------------===//
534// GlobalValue Reference/Resolution Routines.
535//===----------------------------------------------------------------------===//
536
537/// GetGlobalVal - Get a value with the specified name or ID, creating a
538/// forward reference record if needed.  This can return null if the value
539/// exists but does not have the right type.
540GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
541                                    LocTy Loc) {
542  const PointerType *PTy = dyn_cast<PointerType>(Ty);
543  if (PTy == 0) {
544    Error(Loc, "global variable reference must have pointer type");
545    return 0;
546  }
547
548  // Look this name up in the normal function symbol table.
549  GlobalValue *Val =
550    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
551
552  // If this is a forward reference for the value, see if we already created a
553  // forward ref record.
554  if (Val == 0) {
555    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
556      I = ForwardRefVals.find(Name);
557    if (I != ForwardRefVals.end())
558      Val = I->second.first;
559  }
560
561  // If we have the value in the symbol table or fwd-ref table, return it.
562  if (Val) {
563    if (Val->getType() == Ty) return Val;
564    Error(Loc, "'@" + Name + "' defined with type '" +
565          Val->getType()->getDescription() + "'");
566    return 0;
567  }
568
569  // Otherwise, create a new forward reference for this value and remember it.
570  GlobalValue *FwdVal;
571  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
572    // Function types can return opaque but functions can't.
573    if (isa<OpaqueType>(FT->getReturnType())) {
574      Error(Loc, "function may not return opaque type");
575      return 0;
576    }
577
578    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
579  } else {
580    FwdVal = new GlobalVariable(PTy->getElementType(), false,
581                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
582  }
583
584  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
585  return FwdVal;
586}
587
588GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
589  const PointerType *PTy = dyn_cast<PointerType>(Ty);
590  if (PTy == 0) {
591    Error(Loc, "global variable reference must have pointer type");
592    return 0;
593  }
594
595  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
596
597  // If this is a forward reference for the value, see if we already created a
598  // forward ref record.
599  if (Val == 0) {
600    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
601      I = ForwardRefValIDs.find(ID);
602    if (I != ForwardRefValIDs.end())
603      Val = I->second.first;
604  }
605
606  // If we have the value in the symbol table or fwd-ref table, return it.
607  if (Val) {
608    if (Val->getType() == Ty) return Val;
609    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
610          Val->getType()->getDescription() + "'");
611    return 0;
612  }
613
614  // Otherwise, create a new forward reference for this value and remember it.
615  GlobalValue *FwdVal;
616  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
617    // Function types can return opaque but functions can't.
618    if (isa<OpaqueType>(FT->getReturnType())) {
619      Error(Loc, "function may not return opaque type");
620      return 0;
621    }
622    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
623  } else {
624    FwdVal = new GlobalVariable(PTy->getElementType(), false,
625                                GlobalValue::ExternalWeakLinkage, 0, "", M);
626  }
627
628  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
629  return FwdVal;
630}
631
632
633//===----------------------------------------------------------------------===//
634// Helper Routines.
635//===----------------------------------------------------------------------===//
636
637/// ParseToken - If the current token has the specified kind, eat it and return
638/// success.  Otherwise, emit the specified error and return failure.
639bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
640  if (Lex.getKind() != T)
641    return TokError(ErrMsg);
642  Lex.Lex();
643  return false;
644}
645
646/// ParseStringConstant
647///   ::= StringConstant
648bool LLParser::ParseStringConstant(std::string &Result) {
649  if (Lex.getKind() != lltok::StringConstant)
650    return TokError("expected string constant");
651  Result = Lex.getStrVal();
652  Lex.Lex();
653  return false;
654}
655
656/// ParseUInt32
657///   ::= uint32
658bool LLParser::ParseUInt32(unsigned &Val) {
659  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
660    return TokError("expected integer");
661  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
662  if (Val64 != unsigned(Val64))
663    return TokError("expected 32-bit integer (too large)");
664  Val = Val64;
665  Lex.Lex();
666  return false;
667}
668
669
670/// ParseOptionalAddrSpace
671///   := /*empty*/
672///   := 'addrspace' '(' uint32 ')'
673bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
674  AddrSpace = 0;
675  if (!EatIfPresent(lltok::kw_addrspace))
676    return false;
677  return ParseToken(lltok::lparen, "expected '(' in address space") ||
678         ParseUInt32(AddrSpace) ||
679         ParseToken(lltok::rparen, "expected ')' in address space");
680}
681
682/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
683/// indicates what kind of attribute list this is: 0: function arg, 1: result,
684/// 2: function attr.
685/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
686bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
687  Attrs = Attribute::None;
688  LocTy AttrLoc = Lex.getLoc();
689
690  while (1) {
691    switch (Lex.getKind()) {
692    case lltok::kw_sext:
693    case lltok::kw_zext:
694      // Treat these as signext/zeroext if they occur in the argument list after
695      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
696      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
697      // expr.
698      // FIXME: REMOVE THIS IN LLVM 3.0
699      if (AttrKind == 3) {
700        if (Lex.getKind() == lltok::kw_sext)
701          Attrs |= Attribute::SExt;
702        else
703          Attrs |= Attribute::ZExt;
704        break;
705      }
706      // FALL THROUGH.
707    default:  // End of attributes.
708      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
709        return Error(AttrLoc, "invalid use of function-only attribute");
710
711      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
712        return Error(AttrLoc, "invalid use of parameter-only attribute");
713
714      return false;
715    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
716    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
717    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
718    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
719    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
720    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
721    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
722    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
723
724    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
725    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
726    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
727    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
728    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
729    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
730    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
731    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
732    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
733    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
734    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
735
736    case lltok::kw_align: {
737      unsigned Alignment;
738      if (ParseOptionalAlignment(Alignment))
739        return true;
740      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
741      continue;
742    }
743    }
744    Lex.Lex();
745  }
746}
747
748/// ParseOptionalLinkage
749///   ::= /*empty*/
750///   ::= 'private'
751///   ::= 'internal'
752///   ::= 'weak'
753///   ::= 'weak_odr'
754///   ::= 'linkonce'
755///   ::= 'linkonce_odr'
756///   ::= 'appending'
757///   ::= 'dllexport'
758///   ::= 'common'
759///   ::= 'dllimport'
760///   ::= 'extern_weak'
761///   ::= 'external'
762bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
763  HasLinkage = false;
764  switch (Lex.getKind()) {
765  default:                     Res = GlobalValue::ExternalLinkage; return false;
766  case lltok::kw_private:      Res = GlobalValue::PrivateLinkage; break;
767  case lltok::kw_internal:     Res = GlobalValue::InternalLinkage; break;
768  case lltok::kw_weak:         Res = GlobalValue::WeakAnyLinkage; break;
769  case lltok::kw_weak_odr:     Res = GlobalValue::WeakODRLinkage; break;
770  case lltok::kw_linkonce:     Res = GlobalValue::LinkOnceAnyLinkage; break;
771  case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
772  case lltok::kw_available_externally:
773    Res = GlobalValue::AvailableExternallyLinkage;
774    break;
775  case lltok::kw_appending:    Res = GlobalValue::AppendingLinkage; break;
776  case lltok::kw_dllexport:    Res = GlobalValue::DLLExportLinkage; break;
777  case lltok::kw_common:       Res = GlobalValue::CommonLinkage; break;
778  case lltok::kw_dllimport:    Res = GlobalValue::DLLImportLinkage; break;
779  case lltok::kw_extern_weak:  Res = GlobalValue::ExternalWeakLinkage; break;
780  case lltok::kw_external:     Res = GlobalValue::ExternalLinkage; break;
781  }
782  Lex.Lex();
783  HasLinkage = true;
784  return false;
785}
786
787/// ParseOptionalVisibility
788///   ::= /*empty*/
789///   ::= 'default'
790///   ::= 'hidden'
791///   ::= 'protected'
792///
793bool LLParser::ParseOptionalVisibility(unsigned &Res) {
794  switch (Lex.getKind()) {
795  default:                  Res = GlobalValue::DefaultVisibility; return false;
796  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
797  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
798  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
799  }
800  Lex.Lex();
801  return false;
802}
803
804/// ParseOptionalCallingConv
805///   ::= /*empty*/
806///   ::= 'ccc'
807///   ::= 'fastcc'
808///   ::= 'coldcc'
809///   ::= 'x86_stdcallcc'
810///   ::= 'x86_fastcallcc'
811///   ::= 'cc' UINT
812///
813bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
814  switch (Lex.getKind()) {
815  default:                       CC = CallingConv::C; return false;
816  case lltok::kw_ccc:            CC = CallingConv::C; break;
817  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
818  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
819  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
820  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
821  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
822  }
823  Lex.Lex();
824  return false;
825}
826
827/// ParseOptionalAlignment
828///   ::= /* empty */
829///   ::= 'align' 4
830bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
831  Alignment = 0;
832  if (!EatIfPresent(lltok::kw_align))
833    return false;
834  LocTy AlignLoc = Lex.getLoc();
835  if (ParseUInt32(Alignment)) return true;
836  if (!isPowerOf2_32(Alignment))
837    return Error(AlignLoc, "alignment is not a power of two");
838  return false;
839}
840
841/// ParseOptionalCommaAlignment
842///   ::= /* empty */
843///   ::= ',' 'align' 4
844bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
845  Alignment = 0;
846  if (!EatIfPresent(lltok::comma))
847    return false;
848  return ParseToken(lltok::kw_align, "expected 'align'") ||
849         ParseUInt32(Alignment);
850}
851
852/// ParseIndexList
853///    ::=  (',' uint32)+
854bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
855  if (Lex.getKind() != lltok::comma)
856    return TokError("expected ',' as start of index list");
857
858  while (EatIfPresent(lltok::comma)) {
859    unsigned Idx;
860    if (ParseUInt32(Idx)) return true;
861    Indices.push_back(Idx);
862  }
863
864  return false;
865}
866
867//===----------------------------------------------------------------------===//
868// Type Parsing.
869//===----------------------------------------------------------------------===//
870
871/// ParseType - Parse and resolve a full type.
872bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
873  LocTy TypeLoc = Lex.getLoc();
874  if (ParseTypeRec(Result)) return true;
875
876  // Verify no unresolved uprefs.
877  if (!UpRefs.empty())
878    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
879
880  if (!AllowVoid && Result.get() == Type::VoidTy)
881    return Error(TypeLoc, "void type only allowed for function results");
882
883  return false;
884}
885
886/// HandleUpRefs - Every time we finish a new layer of types, this function is
887/// called.  It loops through the UpRefs vector, which is a list of the
888/// currently active types.  For each type, if the up-reference is contained in
889/// the newly completed type, we decrement the level count.  When the level
890/// count reaches zero, the up-referenced type is the type that is passed in:
891/// thus we can complete the cycle.
892///
893PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
894  // If Ty isn't abstract, or if there are no up-references in it, then there is
895  // nothing to resolve here.
896  if (!ty->isAbstract() || UpRefs.empty()) return ty;
897
898  PATypeHolder Ty(ty);
899#if 0
900  errs() << "Type '" << Ty->getDescription()
901         << "' newly formed.  Resolving upreferences.\n"
902         << UpRefs.size() << " upreferences active!\n";
903#endif
904
905  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
906  // to zero), we resolve them all together before we resolve them to Ty.  At
907  // the end of the loop, if there is anything to resolve to Ty, it will be in
908  // this variable.
909  OpaqueType *TypeToResolve = 0;
910
911  for (unsigned i = 0; i != UpRefs.size(); ++i) {
912    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
913    bool ContainsType =
914      std::find(Ty->subtype_begin(), Ty->subtype_end(),
915                UpRefs[i].LastContainedTy) != Ty->subtype_end();
916
917#if 0
918    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
919           << UpRefs[i].LastContainedTy->getDescription() << ") = "
920           << (ContainsType ? "true" : "false")
921           << " level=" << UpRefs[i].NestingLevel << "\n";
922#endif
923    if (!ContainsType)
924      continue;
925
926    // Decrement level of upreference
927    unsigned Level = --UpRefs[i].NestingLevel;
928    UpRefs[i].LastContainedTy = Ty;
929
930    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
931    if (Level != 0)
932      continue;
933
934#if 0
935    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
936#endif
937    if (!TypeToResolve)
938      TypeToResolve = UpRefs[i].UpRefTy;
939    else
940      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
941    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
942    --i;                                // Do not skip the next element.
943  }
944
945  if (TypeToResolve)
946    TypeToResolve->refineAbstractTypeTo(Ty);
947
948  return Ty;
949}
950
951
952/// ParseTypeRec - The recursive function used to process the internal
953/// implementation details of types.
954bool LLParser::ParseTypeRec(PATypeHolder &Result) {
955  switch (Lex.getKind()) {
956  default:
957    return TokError("expected type");
958  case lltok::Type:
959    // TypeRec ::= 'float' | 'void' (etc)
960    Result = Lex.getTyVal();
961    Lex.Lex();
962    break;
963  case lltok::kw_opaque:
964    // TypeRec ::= 'opaque'
965    Result = OpaqueType::get();
966    Lex.Lex();
967    break;
968  case lltok::lbrace:
969    // TypeRec ::= '{' ... '}'
970    if (ParseStructType(Result, false))
971      return true;
972    break;
973  case lltok::lsquare:
974    // TypeRec ::= '[' ... ']'
975    Lex.Lex(); // eat the lsquare.
976    if (ParseArrayVectorType(Result, false))
977      return true;
978    break;
979  case lltok::less: // Either vector or packed struct.
980    // TypeRec ::= '<' ... '>'
981    Lex.Lex();
982    if (Lex.getKind() == lltok::lbrace) {
983      if (ParseStructType(Result, true) ||
984          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
985        return true;
986    } else if (ParseArrayVectorType(Result, true))
987      return true;
988    break;
989  case lltok::LocalVar:
990  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
991    // TypeRec ::= %foo
992    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
993      Result = T;
994    } else {
995      Result = OpaqueType::get();
996      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
997                                            std::make_pair(Result,
998                                                           Lex.getLoc())));
999      M->addTypeName(Lex.getStrVal(), Result.get());
1000    }
1001    Lex.Lex();
1002    break;
1003
1004  case lltok::LocalVarID:
1005    // TypeRec ::= %4
1006    if (Lex.getUIntVal() < NumberedTypes.size())
1007      Result = NumberedTypes[Lex.getUIntVal()];
1008    else {
1009      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1010        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1011      if (I != ForwardRefTypeIDs.end())
1012        Result = I->second.first;
1013      else {
1014        Result = OpaqueType::get();
1015        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1016                                                std::make_pair(Result,
1017                                                               Lex.getLoc())));
1018      }
1019    }
1020    Lex.Lex();
1021    break;
1022  case lltok::backslash: {
1023    // TypeRec ::= '\' 4
1024    Lex.Lex();
1025    unsigned Val;
1026    if (ParseUInt32(Val)) return true;
1027    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
1028    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1029    Result = OT;
1030    break;
1031  }
1032  }
1033
1034  // Parse the type suffixes.
1035  while (1) {
1036    switch (Lex.getKind()) {
1037    // End of type.
1038    default: return false;
1039
1040    // TypeRec ::= TypeRec '*'
1041    case lltok::star:
1042      if (Result.get() == Type::LabelTy)
1043        return TokError("basic block pointers are invalid");
1044      if (Result.get() == Type::VoidTy)
1045        return TokError("pointers to void are invalid; use i8* instead");
1046      if (!PointerType::isValidElementType(Result.get()))
1047        return TokError("pointer to this type is invalid");
1048      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1049      Lex.Lex();
1050      break;
1051
1052    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1053    case lltok::kw_addrspace: {
1054      if (Result.get() == Type::LabelTy)
1055        return TokError("basic block pointers are invalid");
1056      if (Result.get() == Type::VoidTy)
1057        return TokError("pointers to void are invalid; use i8* instead");
1058      if (!PointerType::isValidElementType(Result.get()))
1059        return TokError("pointer to this type is invalid");
1060      unsigned AddrSpace;
1061      if (ParseOptionalAddrSpace(AddrSpace) ||
1062          ParseToken(lltok::star, "expected '*' in address space"))
1063        return true;
1064
1065      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1066      break;
1067    }
1068
1069    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1070    case lltok::lparen:
1071      if (ParseFunctionType(Result))
1072        return true;
1073      break;
1074    }
1075  }
1076}
1077
1078/// ParseParameterList
1079///    ::= '(' ')'
1080///    ::= '(' Arg (',' Arg)* ')'
1081///  Arg
1082///    ::= Type OptionalAttributes Value OptionalAttributes
1083bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1084                                  PerFunctionState &PFS) {
1085  if (ParseToken(lltok::lparen, "expected '(' in call"))
1086    return true;
1087
1088  while (Lex.getKind() != lltok::rparen) {
1089    // If this isn't the first argument, we need a comma.
1090    if (!ArgList.empty() &&
1091        ParseToken(lltok::comma, "expected ',' in argument list"))
1092      return true;
1093
1094    // Parse the argument.
1095    LocTy ArgLoc;
1096    PATypeHolder ArgTy(Type::VoidTy);
1097    unsigned ArgAttrs1, ArgAttrs2;
1098    Value *V;
1099    if (ParseType(ArgTy, ArgLoc) ||
1100        ParseOptionalAttrs(ArgAttrs1, 0) ||
1101        ParseValue(ArgTy, V, PFS) ||
1102        // FIXME: Should not allow attributes after the argument, remove this in
1103        // LLVM 3.0.
1104        ParseOptionalAttrs(ArgAttrs2, 3))
1105      return true;
1106    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1107  }
1108
1109  Lex.Lex();  // Lex the ')'.
1110  return false;
1111}
1112
1113
1114
1115/// ParseArgumentList - Parse the argument list for a function type or function
1116/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1117///   ::= '(' ArgTypeListI ')'
1118/// ArgTypeListI
1119///   ::= /*empty*/
1120///   ::= '...'
1121///   ::= ArgTypeList ',' '...'
1122///   ::= ArgType (',' ArgType)*
1123///
1124bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1125                                 bool &isVarArg, bool inType) {
1126  isVarArg = false;
1127  assert(Lex.getKind() == lltok::lparen);
1128  Lex.Lex(); // eat the (.
1129
1130  if (Lex.getKind() == lltok::rparen) {
1131    // empty
1132  } else if (Lex.getKind() == lltok::dotdotdot) {
1133    isVarArg = true;
1134    Lex.Lex();
1135  } else {
1136    LocTy TypeLoc = Lex.getLoc();
1137    PATypeHolder ArgTy(Type::VoidTy);
1138    unsigned Attrs;
1139    std::string Name;
1140
1141    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1142    // types (such as a function returning a pointer to itself).  If parsing a
1143    // function prototype, we require fully resolved types.
1144    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1145        ParseOptionalAttrs(Attrs, 0)) return true;
1146
1147    if (ArgTy == Type::VoidTy)
1148      return Error(TypeLoc, "argument can not have void type");
1149
1150    if (Lex.getKind() == lltok::LocalVar ||
1151        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1152      Name = Lex.getStrVal();
1153      Lex.Lex();
1154    }
1155
1156    if (!FunctionType::isValidArgumentType(ArgTy))
1157      return Error(TypeLoc, "invalid type for function argument");
1158
1159    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1160
1161    while (EatIfPresent(lltok::comma)) {
1162      // Handle ... at end of arg list.
1163      if (EatIfPresent(lltok::dotdotdot)) {
1164        isVarArg = true;
1165        break;
1166      }
1167
1168      // Otherwise must be an argument type.
1169      TypeLoc = Lex.getLoc();
1170      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1171          ParseOptionalAttrs(Attrs, 0)) return true;
1172
1173      if (ArgTy == Type::VoidTy)
1174        return Error(TypeLoc, "argument can not have void type");
1175
1176      if (Lex.getKind() == lltok::LocalVar ||
1177          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1178        Name = Lex.getStrVal();
1179        Lex.Lex();
1180      } else {
1181        Name = "";
1182      }
1183
1184      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1185        return Error(TypeLoc, "invalid type for function argument");
1186
1187      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1188    }
1189  }
1190
1191  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1192}
1193
1194/// ParseFunctionType
1195///  ::= Type ArgumentList OptionalAttrs
1196bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1197  assert(Lex.getKind() == lltok::lparen);
1198
1199  if (!FunctionType::isValidReturnType(Result))
1200    return TokError("invalid function return type");
1201
1202  std::vector<ArgInfo> ArgList;
1203  bool isVarArg;
1204  unsigned Attrs;
1205  if (ParseArgumentList(ArgList, isVarArg, true) ||
1206      // FIXME: Allow, but ignore attributes on function types!
1207      // FIXME: Remove in LLVM 3.0
1208      ParseOptionalAttrs(Attrs, 2))
1209    return true;
1210
1211  // Reject names on the arguments lists.
1212  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1213    if (!ArgList[i].Name.empty())
1214      return Error(ArgList[i].Loc, "argument name invalid in function type");
1215    if (!ArgList[i].Attrs != 0) {
1216      // Allow but ignore attributes on function types; this permits
1217      // auto-upgrade.
1218      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1219    }
1220  }
1221
1222  std::vector<const Type*> ArgListTy;
1223  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1224    ArgListTy.push_back(ArgList[i].Type);
1225
1226  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1227  return false;
1228}
1229
1230/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1231///   TypeRec
1232///     ::= '{' '}'
1233///     ::= '{' TypeRec (',' TypeRec)* '}'
1234///     ::= '<' '{' '}' '>'
1235///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1236bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1237  assert(Lex.getKind() == lltok::lbrace);
1238  Lex.Lex(); // Consume the '{'
1239
1240  if (EatIfPresent(lltok::rbrace)) {
1241    Result = StructType::get(std::vector<const Type*>(), Packed);
1242    return false;
1243  }
1244
1245  std::vector<PATypeHolder> ParamsList;
1246  LocTy EltTyLoc = Lex.getLoc();
1247  if (ParseTypeRec(Result)) return true;
1248  ParamsList.push_back(Result);
1249
1250  if (Result == Type::VoidTy)
1251    return Error(EltTyLoc, "struct element can not have void type");
1252  if (!StructType::isValidElementType(Result))
1253    return Error(EltTyLoc, "invalid element type for struct");
1254
1255  while (EatIfPresent(lltok::comma)) {
1256    EltTyLoc = Lex.getLoc();
1257    if (ParseTypeRec(Result)) return true;
1258
1259    if (Result == Type::VoidTy)
1260      return Error(EltTyLoc, "struct element can not have void type");
1261    if (!StructType::isValidElementType(Result))
1262      return Error(EltTyLoc, "invalid element type for struct");
1263
1264    ParamsList.push_back(Result);
1265  }
1266
1267  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1268    return true;
1269
1270  std::vector<const Type*> ParamsListTy;
1271  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1272    ParamsListTy.push_back(ParamsList[i].get());
1273  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1274  return false;
1275}
1276
1277/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1278/// token has already been consumed.
1279///   TypeRec
1280///     ::= '[' APSINTVAL 'x' Types ']'
1281///     ::= '<' APSINTVAL 'x' Types '>'
1282bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1283  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1284      Lex.getAPSIntVal().getBitWidth() > 64)
1285    return TokError("expected number in address space");
1286
1287  LocTy SizeLoc = Lex.getLoc();
1288  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1289  Lex.Lex();
1290
1291  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1292      return true;
1293
1294  LocTy TypeLoc = Lex.getLoc();
1295  PATypeHolder EltTy(Type::VoidTy);
1296  if (ParseTypeRec(EltTy)) return true;
1297
1298  if (EltTy == Type::VoidTy)
1299    return Error(TypeLoc, "array and vector element type cannot be void");
1300
1301  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1302                 "expected end of sequential type"))
1303    return true;
1304
1305  if (isVector) {
1306    if (Size == 0)
1307      return Error(SizeLoc, "zero element vector is illegal");
1308    if ((unsigned)Size != Size)
1309      return Error(SizeLoc, "size too large for vector");
1310    if (!VectorType::isValidElementType(EltTy))
1311      return Error(TypeLoc, "vector element type must be fp or integer");
1312    Result = VectorType::get(EltTy, unsigned(Size));
1313  } else {
1314    if (!ArrayType::isValidElementType(EltTy))
1315      return Error(TypeLoc, "invalid array element type");
1316    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1317  }
1318  return false;
1319}
1320
1321//===----------------------------------------------------------------------===//
1322// Function Semantic Analysis.
1323//===----------------------------------------------------------------------===//
1324
1325LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1326  : P(p), F(f) {
1327
1328  // Insert unnamed arguments into the NumberedVals list.
1329  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1330       AI != E; ++AI)
1331    if (!AI->hasName())
1332      NumberedVals.push_back(AI);
1333}
1334
1335LLParser::PerFunctionState::~PerFunctionState() {
1336  // If there were any forward referenced non-basicblock values, delete them.
1337  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1338       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1339    if (!isa<BasicBlock>(I->second.first)) {
1340      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1341                                                          ->getType()));
1342      delete I->second.first;
1343      I->second.first = 0;
1344    }
1345
1346  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1347       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1348    if (!isa<BasicBlock>(I->second.first)) {
1349      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1350                                                          ->getType()));
1351      delete I->second.first;
1352      I->second.first = 0;
1353    }
1354}
1355
1356bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1357  if (!ForwardRefVals.empty())
1358    return P.Error(ForwardRefVals.begin()->second.second,
1359                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1360                   "'");
1361  if (!ForwardRefValIDs.empty())
1362    return P.Error(ForwardRefValIDs.begin()->second.second,
1363                   "use of undefined value '%" +
1364                   utostr(ForwardRefValIDs.begin()->first) + "'");
1365  return false;
1366}
1367
1368
1369/// GetVal - Get a value with the specified name or ID, creating a
1370/// forward reference record if needed.  This can return null if the value
1371/// exists but does not have the right type.
1372Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1373                                          const Type *Ty, LocTy Loc) {
1374  // Look this name up in the normal function symbol table.
1375  Value *Val = F.getValueSymbolTable().lookup(Name);
1376
1377  // If this is a forward reference for the value, see if we already created a
1378  // forward ref record.
1379  if (Val == 0) {
1380    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1381      I = ForwardRefVals.find(Name);
1382    if (I != ForwardRefVals.end())
1383      Val = I->second.first;
1384  }
1385
1386  // If we have the value in the symbol table or fwd-ref table, return it.
1387  if (Val) {
1388    if (Val->getType() == Ty) return Val;
1389    if (Ty == Type::LabelTy)
1390      P.Error(Loc, "'%" + Name + "' is not a basic block");
1391    else
1392      P.Error(Loc, "'%" + Name + "' defined with type '" +
1393              Val->getType()->getDescription() + "'");
1394    return 0;
1395  }
1396
1397  // Don't make placeholders with invalid type.
1398  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1399    P.Error(Loc, "invalid use of a non-first-class type");
1400    return 0;
1401  }
1402
1403  // Otherwise, create a new forward reference for this value and remember it.
1404  Value *FwdVal;
1405  if (Ty == Type::LabelTy)
1406    FwdVal = BasicBlock::Create(Name, &F);
1407  else
1408    FwdVal = new Argument(Ty, Name);
1409
1410  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1411  return FwdVal;
1412}
1413
1414Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1415                                          LocTy Loc) {
1416  // Look this name up in the normal function symbol table.
1417  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1418
1419  // If this is a forward reference for the value, see if we already created a
1420  // forward ref record.
1421  if (Val == 0) {
1422    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1423      I = ForwardRefValIDs.find(ID);
1424    if (I != ForwardRefValIDs.end())
1425      Val = I->second.first;
1426  }
1427
1428  // If we have the value in the symbol table or fwd-ref table, return it.
1429  if (Val) {
1430    if (Val->getType() == Ty) return Val;
1431    if (Ty == Type::LabelTy)
1432      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1433    else
1434      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1435              Val->getType()->getDescription() + "'");
1436    return 0;
1437  }
1438
1439  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1440    P.Error(Loc, "invalid use of a non-first-class type");
1441    return 0;
1442  }
1443
1444  // Otherwise, create a new forward reference for this value and remember it.
1445  Value *FwdVal;
1446  if (Ty == Type::LabelTy)
1447    FwdVal = BasicBlock::Create("", &F);
1448  else
1449    FwdVal = new Argument(Ty);
1450
1451  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1452  return FwdVal;
1453}
1454
1455/// SetInstName - After an instruction is parsed and inserted into its
1456/// basic block, this installs its name.
1457bool LLParser::PerFunctionState::SetInstName(int NameID,
1458                                             const std::string &NameStr,
1459                                             LocTy NameLoc, Instruction *Inst) {
1460  // If this instruction has void type, it cannot have a name or ID specified.
1461  if (Inst->getType() == Type::VoidTy) {
1462    if (NameID != -1 || !NameStr.empty())
1463      return P.Error(NameLoc, "instructions returning void cannot have a name");
1464    return false;
1465  }
1466
1467  // If this was a numbered instruction, verify that the instruction is the
1468  // expected value and resolve any forward references.
1469  if (NameStr.empty()) {
1470    // If neither a name nor an ID was specified, just use the next ID.
1471    if (NameID == -1)
1472      NameID = NumberedVals.size();
1473
1474    if (unsigned(NameID) != NumberedVals.size())
1475      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1476                     utostr(NumberedVals.size()) + "'");
1477
1478    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1479      ForwardRefValIDs.find(NameID);
1480    if (FI != ForwardRefValIDs.end()) {
1481      if (FI->second.first->getType() != Inst->getType())
1482        return P.Error(NameLoc, "instruction forward referenced with type '" +
1483                       FI->second.first->getType()->getDescription() + "'");
1484      FI->second.first->replaceAllUsesWith(Inst);
1485      ForwardRefValIDs.erase(FI);
1486    }
1487
1488    NumberedVals.push_back(Inst);
1489    return false;
1490  }
1491
1492  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1493  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1494    FI = ForwardRefVals.find(NameStr);
1495  if (FI != ForwardRefVals.end()) {
1496    if (FI->second.first->getType() != Inst->getType())
1497      return P.Error(NameLoc, "instruction forward referenced with type '" +
1498                     FI->second.first->getType()->getDescription() + "'");
1499    FI->second.first->replaceAllUsesWith(Inst);
1500    ForwardRefVals.erase(FI);
1501  }
1502
1503  // Set the name on the instruction.
1504  Inst->setName(NameStr);
1505
1506  if (Inst->getNameStr() != NameStr)
1507    return P.Error(NameLoc, "multiple definition of local value named '" +
1508                   NameStr + "'");
1509  return false;
1510}
1511
1512/// GetBB - Get a basic block with the specified name or ID, creating a
1513/// forward reference record if needed.
1514BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1515                                              LocTy Loc) {
1516  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1517}
1518
1519BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1520  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1521}
1522
1523/// DefineBB - Define the specified basic block, which is either named or
1524/// unnamed.  If there is an error, this returns null otherwise it returns
1525/// the block being defined.
1526BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1527                                                 LocTy Loc) {
1528  BasicBlock *BB;
1529  if (Name.empty())
1530    BB = GetBB(NumberedVals.size(), Loc);
1531  else
1532    BB = GetBB(Name, Loc);
1533  if (BB == 0) return 0; // Already diagnosed error.
1534
1535  // Move the block to the end of the function.  Forward ref'd blocks are
1536  // inserted wherever they happen to be referenced.
1537  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1538
1539  // Remove the block from forward ref sets.
1540  if (Name.empty()) {
1541    ForwardRefValIDs.erase(NumberedVals.size());
1542    NumberedVals.push_back(BB);
1543  } else {
1544    // BB forward references are already in the function symbol table.
1545    ForwardRefVals.erase(Name);
1546  }
1547
1548  return BB;
1549}
1550
1551//===----------------------------------------------------------------------===//
1552// Constants.
1553//===----------------------------------------------------------------------===//
1554
1555/// ParseValID - Parse an abstract value that doesn't necessarily have a
1556/// type implied.  For example, if we parse "4" we don't know what integer type
1557/// it has.  The value will later be combined with its type and checked for
1558/// sanity.
1559bool LLParser::ParseValID(ValID &ID) {
1560  ID.Loc = Lex.getLoc();
1561  switch (Lex.getKind()) {
1562  default: return TokError("expected value token");
1563  case lltok::GlobalID:  // @42
1564    ID.UIntVal = Lex.getUIntVal();
1565    ID.Kind = ValID::t_GlobalID;
1566    break;
1567  case lltok::GlobalVar:  // @foo
1568    ID.StrVal = Lex.getStrVal();
1569    ID.Kind = ValID::t_GlobalName;
1570    break;
1571  case lltok::LocalVarID:  // %42
1572    ID.UIntVal = Lex.getUIntVal();
1573    ID.Kind = ValID::t_LocalID;
1574    break;
1575  case lltok::LocalVar:  // %foo
1576  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1577    ID.StrVal = Lex.getStrVal();
1578    ID.Kind = ValID::t_LocalName;
1579    break;
1580  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1581    ID.Kind = ValID::t_Constant;
1582    Lex.Lex();
1583    if (Lex.getKind() == lltok::lbrace) {
1584      SmallVector<Value*, 16> Elts;
1585      if (ParseMDNodeVector(Elts) ||
1586          ParseToken(lltok::rbrace, "expected end of metadata node"))
1587        return true;
1588
1589      ID.ConstantVal = MDNode::get(Elts.data(), Elts.size());
1590      return false;
1591    }
1592
1593    // MDString:
1594    //   ::= '!' STRINGCONSTANT
1595    std::string Str;
1596    if (ParseStringConstant(Str)) return true;
1597
1598    ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1599    return false;
1600  }
1601  case lltok::APSInt:
1602    ID.APSIntVal = Lex.getAPSIntVal();
1603    ID.Kind = ValID::t_APSInt;
1604    break;
1605  case lltok::APFloat:
1606    ID.APFloatVal = Lex.getAPFloatVal();
1607    ID.Kind = ValID::t_APFloat;
1608    break;
1609  case lltok::kw_true:
1610    ID.ConstantVal = ConstantInt::getTrue();
1611    ID.Kind = ValID::t_Constant;
1612    break;
1613  case lltok::kw_false:
1614    ID.ConstantVal = ConstantInt::getFalse();
1615    ID.Kind = ValID::t_Constant;
1616    break;
1617  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1618  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1619  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1620
1621  case lltok::lbrace: {
1622    // ValID ::= '{' ConstVector '}'
1623    Lex.Lex();
1624    SmallVector<Constant*, 16> Elts;
1625    if (ParseGlobalValueVector(Elts) ||
1626        ParseToken(lltok::rbrace, "expected end of struct constant"))
1627      return true;
1628
1629    ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false);
1630    ID.Kind = ValID::t_Constant;
1631    return false;
1632  }
1633  case lltok::less: {
1634    // ValID ::= '<' ConstVector '>'         --> Vector.
1635    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1636    Lex.Lex();
1637    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1638
1639    SmallVector<Constant*, 16> Elts;
1640    LocTy FirstEltLoc = Lex.getLoc();
1641    if (ParseGlobalValueVector(Elts) ||
1642        (isPackedStruct &&
1643         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1644        ParseToken(lltok::greater, "expected end of constant"))
1645      return true;
1646
1647    if (isPackedStruct) {
1648      ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), true);
1649      ID.Kind = ValID::t_Constant;
1650      return false;
1651    }
1652
1653    if (Elts.empty())
1654      return Error(ID.Loc, "constant vector must not be empty");
1655
1656    if (!Elts[0]->getType()->isInteger() &&
1657        !Elts[0]->getType()->isFloatingPoint())
1658      return Error(FirstEltLoc,
1659                   "vector elements must have integer or floating point type");
1660
1661    // Verify that all the vector elements have the same type.
1662    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1663      if (Elts[i]->getType() != Elts[0]->getType())
1664        return Error(FirstEltLoc,
1665                     "vector element #" + utostr(i) +
1666                    " is not of type '" + Elts[0]->getType()->getDescription());
1667
1668    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1669    ID.Kind = ValID::t_Constant;
1670    return false;
1671  }
1672  case lltok::lsquare: {   // Array Constant
1673    Lex.Lex();
1674    SmallVector<Constant*, 16> Elts;
1675    LocTy FirstEltLoc = Lex.getLoc();
1676    if (ParseGlobalValueVector(Elts) ||
1677        ParseToken(lltok::rsquare, "expected end of array constant"))
1678      return true;
1679
1680    // Handle empty element.
1681    if (Elts.empty()) {
1682      // Use undef instead of an array because it's inconvenient to determine
1683      // the element type at this point, there being no elements to examine.
1684      ID.Kind = ValID::t_EmptyArray;
1685      return false;
1686    }
1687
1688    if (!Elts[0]->getType()->isFirstClassType())
1689      return Error(FirstEltLoc, "invalid array element type: " +
1690                   Elts[0]->getType()->getDescription());
1691
1692    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1693
1694    // Verify all elements are correct type!
1695    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1696      if (Elts[i]->getType() != Elts[0]->getType())
1697        return Error(FirstEltLoc,
1698                     "array element #" + utostr(i) +
1699                     " is not of type '" +Elts[0]->getType()->getDescription());
1700    }
1701
1702    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1703    ID.Kind = ValID::t_Constant;
1704    return false;
1705  }
1706  case lltok::kw_c:  // c "foo"
1707    Lex.Lex();
1708    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1709    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1710    ID.Kind = ValID::t_Constant;
1711    return false;
1712
1713  case lltok::kw_asm: {
1714    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1715    bool HasSideEffect;
1716    Lex.Lex();
1717    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1718        ParseStringConstant(ID.StrVal) ||
1719        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1720        ParseToken(lltok::StringConstant, "expected constraint string"))
1721      return true;
1722    ID.StrVal2 = Lex.getStrVal();
1723    ID.UIntVal = HasSideEffect;
1724    ID.Kind = ValID::t_InlineAsm;
1725    return false;
1726  }
1727
1728  case lltok::kw_trunc:
1729  case lltok::kw_zext:
1730  case lltok::kw_sext:
1731  case lltok::kw_fptrunc:
1732  case lltok::kw_fpext:
1733  case lltok::kw_bitcast:
1734  case lltok::kw_uitofp:
1735  case lltok::kw_sitofp:
1736  case lltok::kw_fptoui:
1737  case lltok::kw_fptosi:
1738  case lltok::kw_inttoptr:
1739  case lltok::kw_ptrtoint: {
1740    unsigned Opc = Lex.getUIntVal();
1741    PATypeHolder DestTy(Type::VoidTy);
1742    Constant *SrcVal;
1743    Lex.Lex();
1744    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1745        ParseGlobalTypeAndValue(SrcVal) ||
1746        ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1747        ParseType(DestTy) ||
1748        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1749      return true;
1750    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1751      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1752                   SrcVal->getType()->getDescription() + "' to '" +
1753                   DestTy->getDescription() + "'");
1754    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1755                                           DestTy);
1756    ID.Kind = ValID::t_Constant;
1757    return false;
1758  }
1759  case lltok::kw_extractvalue: {
1760    Lex.Lex();
1761    Constant *Val;
1762    SmallVector<unsigned, 4> Indices;
1763    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1764        ParseGlobalTypeAndValue(Val) ||
1765        ParseIndexList(Indices) ||
1766        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1767      return true;
1768    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1769      return Error(ID.Loc, "extractvalue operand must be array or struct");
1770    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1771                                          Indices.end()))
1772      return Error(ID.Loc, "invalid indices for extractvalue");
1773    ID.ConstantVal =
1774      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1775    ID.Kind = ValID::t_Constant;
1776    return false;
1777  }
1778  case lltok::kw_insertvalue: {
1779    Lex.Lex();
1780    Constant *Val0, *Val1;
1781    SmallVector<unsigned, 4> Indices;
1782    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1783        ParseGlobalTypeAndValue(Val0) ||
1784        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1785        ParseGlobalTypeAndValue(Val1) ||
1786        ParseIndexList(Indices) ||
1787        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1788      return true;
1789    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1790      return Error(ID.Loc, "extractvalue operand must be array or struct");
1791    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1792                                          Indices.end()))
1793      return Error(ID.Loc, "invalid indices for insertvalue");
1794    ID.ConstantVal =
1795      ConstantExpr::getInsertValue(Val0, Val1, Indices.data(), Indices.size());
1796    ID.Kind = ValID::t_Constant;
1797    return false;
1798  }
1799  case lltok::kw_icmp:
1800  case lltok::kw_fcmp:
1801  case lltok::kw_vicmp:
1802  case lltok::kw_vfcmp: {
1803    unsigned PredVal, Opc = Lex.getUIntVal();
1804    Constant *Val0, *Val1;
1805    Lex.Lex();
1806    if (ParseCmpPredicate(PredVal, Opc) ||
1807        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1808        ParseGlobalTypeAndValue(Val0) ||
1809        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1810        ParseGlobalTypeAndValue(Val1) ||
1811        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1812      return true;
1813
1814    if (Val0->getType() != Val1->getType())
1815      return Error(ID.Loc, "compare operands must have the same type");
1816
1817    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1818
1819    if (Opc == Instruction::FCmp) {
1820      if (!Val0->getType()->isFPOrFPVector())
1821        return Error(ID.Loc, "fcmp requires floating point operands");
1822      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1823    } else if (Opc == Instruction::ICmp) {
1824      if (!Val0->getType()->isIntOrIntVector() &&
1825          !isa<PointerType>(Val0->getType()))
1826        return Error(ID.Loc, "icmp requires pointer or integer operands");
1827      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1828    } else if (Opc == Instruction::VFCmp) {
1829      // FIXME: REMOVE VFCMP Support
1830      if (!Val0->getType()->isFPOrFPVector() ||
1831          !isa<VectorType>(Val0->getType()))
1832        return Error(ID.Loc, "vfcmp requires vector floating point operands");
1833      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1834    } else if (Opc == Instruction::VICmp) {
1835      // FIXME: REMOVE VICMP Support
1836      if (!Val0->getType()->isIntOrIntVector() ||
1837          !isa<VectorType>(Val0->getType()))
1838        return Error(ID.Loc, "vicmp requires vector floating point operands");
1839      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1840    }
1841    ID.Kind = ValID::t_Constant;
1842    return false;
1843  }
1844
1845  // Binary Operators.
1846  case lltok::kw_add:
1847  case lltok::kw_fadd:
1848  case lltok::kw_sub:
1849  case lltok::kw_fsub:
1850  case lltok::kw_mul:
1851  case lltok::kw_fmul:
1852  case lltok::kw_udiv:
1853  case lltok::kw_sdiv:
1854  case lltok::kw_fdiv:
1855  case lltok::kw_urem:
1856  case lltok::kw_srem:
1857  case lltok::kw_frem: {
1858    unsigned Opc = Lex.getUIntVal();
1859    Constant *Val0, *Val1;
1860    Lex.Lex();
1861    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1862        ParseGlobalTypeAndValue(Val0) ||
1863        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1864        ParseGlobalTypeAndValue(Val1) ||
1865        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1866      return true;
1867    if (Val0->getType() != Val1->getType())
1868      return Error(ID.Loc, "operands of constexpr must have same type");
1869    if (!Val0->getType()->isIntOrIntVector() &&
1870        !Val0->getType()->isFPOrFPVector())
1871      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1872    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1873    ID.Kind = ValID::t_Constant;
1874    return false;
1875  }
1876
1877  // Logical Operations
1878  case lltok::kw_shl:
1879  case lltok::kw_lshr:
1880  case lltok::kw_ashr:
1881  case lltok::kw_and:
1882  case lltok::kw_or:
1883  case lltok::kw_xor: {
1884    unsigned Opc = Lex.getUIntVal();
1885    Constant *Val0, *Val1;
1886    Lex.Lex();
1887    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1888        ParseGlobalTypeAndValue(Val0) ||
1889        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1890        ParseGlobalTypeAndValue(Val1) ||
1891        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1892      return true;
1893    if (Val0->getType() != Val1->getType())
1894      return Error(ID.Loc, "operands of constexpr must have same type");
1895    if (!Val0->getType()->isIntOrIntVector())
1896      return Error(ID.Loc,
1897                   "constexpr requires integer or integer vector operands");
1898    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1899    ID.Kind = ValID::t_Constant;
1900    return false;
1901  }
1902
1903  case lltok::kw_getelementptr:
1904  case lltok::kw_shufflevector:
1905  case lltok::kw_insertelement:
1906  case lltok::kw_extractelement:
1907  case lltok::kw_select: {
1908    unsigned Opc = Lex.getUIntVal();
1909    SmallVector<Constant*, 16> Elts;
1910    Lex.Lex();
1911    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1912        ParseGlobalValueVector(Elts) ||
1913        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1914      return true;
1915
1916    if (Opc == Instruction::GetElementPtr) {
1917      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1918        return Error(ID.Loc, "getelementptr requires pointer operand");
1919
1920      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1921                                             (Value**)&Elts[1], Elts.size()-1))
1922        return Error(ID.Loc, "invalid indices for getelementptr");
1923      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1924                                                      &Elts[1], Elts.size()-1);
1925    } else if (Opc == Instruction::Select) {
1926      if (Elts.size() != 3)
1927        return Error(ID.Loc, "expected three operands to select");
1928      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1929                                                              Elts[2]))
1930        return Error(ID.Loc, Reason);
1931      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1932    } else if (Opc == Instruction::ShuffleVector) {
1933      if (Elts.size() != 3)
1934        return Error(ID.Loc, "expected three operands to shufflevector");
1935      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1936        return Error(ID.Loc, "invalid operands to shufflevector");
1937      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1938    } else if (Opc == Instruction::ExtractElement) {
1939      if (Elts.size() != 2)
1940        return Error(ID.Loc, "expected two operands to extractelement");
1941      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1942        return Error(ID.Loc, "invalid extractelement operands");
1943      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1944    } else {
1945      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1946      if (Elts.size() != 3)
1947      return Error(ID.Loc, "expected three operands to insertelement");
1948      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1949        return Error(ID.Loc, "invalid insertelement operands");
1950      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1951    }
1952
1953    ID.Kind = ValID::t_Constant;
1954    return false;
1955  }
1956  }
1957
1958  Lex.Lex();
1959  return false;
1960}
1961
1962/// ParseGlobalValue - Parse a global value with the specified type.
1963bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1964  V = 0;
1965  ValID ID;
1966  return ParseValID(ID) ||
1967         ConvertGlobalValIDToValue(Ty, ID, V);
1968}
1969
1970/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1971/// constant.
1972bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1973                                         Constant *&V) {
1974  if (isa<FunctionType>(Ty))
1975    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1976
1977  switch (ID.Kind) {
1978  default: assert(0 && "Unknown ValID!");
1979  case ValID::t_LocalID:
1980  case ValID::t_LocalName:
1981    return Error(ID.Loc, "invalid use of function-local name");
1982  case ValID::t_InlineAsm:
1983    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1984  case ValID::t_GlobalName:
1985    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1986    return V == 0;
1987  case ValID::t_GlobalID:
1988    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1989    return V == 0;
1990  case ValID::t_APSInt:
1991    if (!isa<IntegerType>(Ty))
1992      return Error(ID.Loc, "integer constant must have integer type");
1993    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1994    V = ConstantInt::get(ID.APSIntVal);
1995    return false;
1996  case ValID::t_APFloat:
1997    if (!Ty->isFloatingPoint() ||
1998        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1999      return Error(ID.Loc, "floating point constant invalid for type");
2000
2001    // The lexer has no type info, so builds all float and double FP constants
2002    // as double.  Fix this here.  Long double does not need this.
2003    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2004        Ty == Type::FloatTy) {
2005      bool Ignored;
2006      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2007                            &Ignored);
2008    }
2009    V = ConstantFP::get(ID.APFloatVal);
2010
2011    if (V->getType() != Ty)
2012      return Error(ID.Loc, "floating point constant does not have type '" +
2013                   Ty->getDescription() + "'");
2014
2015    return false;
2016  case ValID::t_Null:
2017    if (!isa<PointerType>(Ty))
2018      return Error(ID.Loc, "null must be a pointer type");
2019    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2020    return false;
2021  case ValID::t_Undef:
2022    // FIXME: LabelTy should not be a first-class type.
2023    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2024        !isa<OpaqueType>(Ty))
2025      return Error(ID.Loc, "invalid type for undef constant");
2026    V = UndefValue::get(Ty);
2027    return false;
2028  case ValID::t_EmptyArray:
2029    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2030      return Error(ID.Loc, "invalid empty array initializer");
2031    V = UndefValue::get(Ty);
2032    return false;
2033  case ValID::t_Zero:
2034    // FIXME: LabelTy should not be a first-class type.
2035    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2036      return Error(ID.Loc, "invalid type for null constant");
2037    V = Constant::getNullValue(Ty);
2038    return false;
2039  case ValID::t_Constant:
2040    if (ID.ConstantVal->getType() != Ty)
2041      return Error(ID.Loc, "constant expression type mismatch");
2042    V = ID.ConstantVal;
2043    return false;
2044  }
2045}
2046
2047bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2048  PATypeHolder Type(Type::VoidTy);
2049  return ParseType(Type) ||
2050         ParseGlobalValue(Type, V);
2051}
2052
2053/// ParseGlobalValueVector
2054///   ::= /*empty*/
2055///   ::= TypeAndValue (',' TypeAndValue)*
2056bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2057  // Empty list.
2058  if (Lex.getKind() == lltok::rbrace ||
2059      Lex.getKind() == lltok::rsquare ||
2060      Lex.getKind() == lltok::greater ||
2061      Lex.getKind() == lltok::rparen)
2062    return false;
2063
2064  Constant *C;
2065  if (ParseGlobalTypeAndValue(C)) return true;
2066  Elts.push_back(C);
2067
2068  while (EatIfPresent(lltok::comma)) {
2069    if (ParseGlobalTypeAndValue(C)) return true;
2070    Elts.push_back(C);
2071  }
2072
2073  return false;
2074}
2075
2076
2077//===----------------------------------------------------------------------===//
2078// Function Parsing.
2079//===----------------------------------------------------------------------===//
2080
2081bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2082                                   PerFunctionState &PFS) {
2083  if (ID.Kind == ValID::t_LocalID)
2084    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2085  else if (ID.Kind == ValID::t_LocalName)
2086    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2087  else if (ID.Kind == ValID::t_InlineAsm) {
2088    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2089    const FunctionType *FTy =
2090      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2091    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2092      return Error(ID.Loc, "invalid type for inline asm constraint string");
2093    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2094    return false;
2095  } else {
2096    Constant *C;
2097    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2098    V = C;
2099    return false;
2100  }
2101
2102  return V == 0;
2103}
2104
2105bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2106  V = 0;
2107  ValID ID;
2108  return ParseValID(ID) ||
2109         ConvertValIDToValue(Ty, ID, V, PFS);
2110}
2111
2112bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2113  PATypeHolder T(Type::VoidTy);
2114  return ParseType(T) ||
2115         ParseValue(T, V, PFS);
2116}
2117
2118/// FunctionHeader
2119///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2120///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2121///       OptionalAlign OptGC
2122bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2123  // Parse the linkage.
2124  LocTy LinkageLoc = Lex.getLoc();
2125  unsigned Linkage;
2126
2127  unsigned Visibility, CC, RetAttrs;
2128  PATypeHolder RetType(Type::VoidTy);
2129  LocTy RetTypeLoc = Lex.getLoc();
2130  if (ParseOptionalLinkage(Linkage) ||
2131      ParseOptionalVisibility(Visibility) ||
2132      ParseOptionalCallingConv(CC) ||
2133      ParseOptionalAttrs(RetAttrs, 1) ||
2134      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2135    return true;
2136
2137  // Verify that the linkage is ok.
2138  switch ((GlobalValue::LinkageTypes)Linkage) {
2139  case GlobalValue::ExternalLinkage:
2140    break; // always ok.
2141  case GlobalValue::DLLImportLinkage:
2142  case GlobalValue::ExternalWeakLinkage:
2143    if (isDefine)
2144      return Error(LinkageLoc, "invalid linkage for function definition");
2145    break;
2146  case GlobalValue::PrivateLinkage:
2147  case GlobalValue::InternalLinkage:
2148  case GlobalValue::AvailableExternallyLinkage:
2149  case GlobalValue::LinkOnceAnyLinkage:
2150  case GlobalValue::LinkOnceODRLinkage:
2151  case GlobalValue::WeakAnyLinkage:
2152  case GlobalValue::WeakODRLinkage:
2153  case GlobalValue::DLLExportLinkage:
2154    if (!isDefine)
2155      return Error(LinkageLoc, "invalid linkage for function declaration");
2156    break;
2157  case GlobalValue::AppendingLinkage:
2158  case GlobalValue::GhostLinkage:
2159  case GlobalValue::CommonLinkage:
2160    return Error(LinkageLoc, "invalid function linkage type");
2161  }
2162
2163  if (!FunctionType::isValidReturnType(RetType) ||
2164      isa<OpaqueType>(RetType))
2165    return Error(RetTypeLoc, "invalid function return type");
2166
2167  LocTy NameLoc = Lex.getLoc();
2168
2169  std::string FunctionName;
2170  if (Lex.getKind() == lltok::GlobalVar) {
2171    FunctionName = Lex.getStrVal();
2172  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2173    unsigned NameID = Lex.getUIntVal();
2174
2175    if (NameID != NumberedVals.size())
2176      return TokError("function expected to be numbered '%" +
2177                      utostr(NumberedVals.size()) + "'");
2178  } else {
2179    return TokError("expected function name");
2180  }
2181
2182  Lex.Lex();
2183
2184  if (Lex.getKind() != lltok::lparen)
2185    return TokError("expected '(' in function argument list");
2186
2187  std::vector<ArgInfo> ArgList;
2188  bool isVarArg;
2189  unsigned FuncAttrs;
2190  std::string Section;
2191  unsigned Alignment;
2192  std::string GC;
2193
2194  if (ParseArgumentList(ArgList, isVarArg, false) ||
2195      ParseOptionalAttrs(FuncAttrs, 2) ||
2196      (EatIfPresent(lltok::kw_section) &&
2197       ParseStringConstant(Section)) ||
2198      ParseOptionalAlignment(Alignment) ||
2199      (EatIfPresent(lltok::kw_gc) &&
2200       ParseStringConstant(GC)))
2201    return true;
2202
2203  // If the alignment was parsed as an attribute, move to the alignment field.
2204  if (FuncAttrs & Attribute::Alignment) {
2205    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2206    FuncAttrs &= ~Attribute::Alignment;
2207  }
2208
2209  // Okay, if we got here, the function is syntactically valid.  Convert types
2210  // and do semantic checks.
2211  std::vector<const Type*> ParamTypeList;
2212  SmallVector<AttributeWithIndex, 8> Attrs;
2213  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2214  // attributes.
2215  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2216  if (FuncAttrs & ObsoleteFuncAttrs) {
2217    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2218    FuncAttrs &= ~ObsoleteFuncAttrs;
2219  }
2220
2221  if (RetAttrs != Attribute::None)
2222    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2223
2224  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2225    ParamTypeList.push_back(ArgList[i].Type);
2226    if (ArgList[i].Attrs != Attribute::None)
2227      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2228  }
2229
2230  if (FuncAttrs != Attribute::None)
2231    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2232
2233  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2234
2235  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2236      RetType != Type::VoidTy)
2237    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2238
2239  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2240  const PointerType *PFT = PointerType::getUnqual(FT);
2241
2242  Fn = 0;
2243  if (!FunctionName.empty()) {
2244    // If this was a definition of a forward reference, remove the definition
2245    // from the forward reference table and fill in the forward ref.
2246    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2247      ForwardRefVals.find(FunctionName);
2248    if (FRVI != ForwardRefVals.end()) {
2249      Fn = M->getFunction(FunctionName);
2250      ForwardRefVals.erase(FRVI);
2251    } else if ((Fn = M->getFunction(FunctionName))) {
2252      // If this function already exists in the symbol table, then it is
2253      // multiply defined.  We accept a few cases for old backwards compat.
2254      // FIXME: Remove this stuff for LLVM 3.0.
2255      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2256          (!Fn->isDeclaration() && isDefine)) {
2257        // If the redefinition has different type or different attributes,
2258        // reject it.  If both have bodies, reject it.
2259        return Error(NameLoc, "invalid redefinition of function '" +
2260                     FunctionName + "'");
2261      } else if (Fn->isDeclaration()) {
2262        // Make sure to strip off any argument names so we can't get conflicts.
2263        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2264             AI != AE; ++AI)
2265          AI->setName("");
2266      }
2267    }
2268
2269  } else if (FunctionName.empty()) {
2270    // If this is a definition of a forward referenced function, make sure the
2271    // types agree.
2272    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2273      = ForwardRefValIDs.find(NumberedVals.size());
2274    if (I != ForwardRefValIDs.end()) {
2275      Fn = cast<Function>(I->second.first);
2276      if (Fn->getType() != PFT)
2277        return Error(NameLoc, "type of definition and forward reference of '@" +
2278                     utostr(NumberedVals.size()) +"' disagree");
2279      ForwardRefValIDs.erase(I);
2280    }
2281  }
2282
2283  if (Fn == 0)
2284    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2285  else // Move the forward-reference to the correct spot in the module.
2286    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2287
2288  if (FunctionName.empty())
2289    NumberedVals.push_back(Fn);
2290
2291  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2292  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2293  Fn->setCallingConv(CC);
2294  Fn->setAttributes(PAL);
2295  Fn->setAlignment(Alignment);
2296  Fn->setSection(Section);
2297  if (!GC.empty()) Fn->setGC(GC.c_str());
2298
2299  // Add all of the arguments we parsed to the function.
2300  Function::arg_iterator ArgIt = Fn->arg_begin();
2301  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2302    // If the argument has a name, insert it into the argument symbol table.
2303    if (ArgList[i].Name.empty()) continue;
2304
2305    // Set the name, if it conflicted, it will be auto-renamed.
2306    ArgIt->setName(ArgList[i].Name);
2307
2308    if (ArgIt->getNameStr() != ArgList[i].Name)
2309      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2310                   ArgList[i].Name + "'");
2311  }
2312
2313  return false;
2314}
2315
2316
2317/// ParseFunctionBody
2318///   ::= '{' BasicBlock+ '}'
2319///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2320///
2321bool LLParser::ParseFunctionBody(Function &Fn) {
2322  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2323    return TokError("expected '{' in function body");
2324  Lex.Lex();  // eat the {.
2325
2326  PerFunctionState PFS(*this, Fn);
2327
2328  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2329    if (ParseBasicBlock(PFS)) return true;
2330
2331  // Eat the }.
2332  Lex.Lex();
2333
2334  // Verify function is ok.
2335  return PFS.VerifyFunctionComplete();
2336}
2337
2338/// ParseBasicBlock
2339///   ::= LabelStr? Instruction*
2340bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2341  // If this basic block starts out with a name, remember it.
2342  std::string Name;
2343  LocTy NameLoc = Lex.getLoc();
2344  if (Lex.getKind() == lltok::LabelStr) {
2345    Name = Lex.getStrVal();
2346    Lex.Lex();
2347  }
2348
2349  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2350  if (BB == 0) return true;
2351
2352  std::string NameStr;
2353
2354  // Parse the instructions in this block until we get a terminator.
2355  Instruction *Inst;
2356  do {
2357    // This instruction may have three possibilities for a name: a) none
2358    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2359    LocTy NameLoc = Lex.getLoc();
2360    int NameID = -1;
2361    NameStr = "";
2362
2363    if (Lex.getKind() == lltok::LocalVarID) {
2364      NameID = Lex.getUIntVal();
2365      Lex.Lex();
2366      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2367        return true;
2368    } else if (Lex.getKind() == lltok::LocalVar ||
2369               // FIXME: REMOVE IN LLVM 3.0
2370               Lex.getKind() == lltok::StringConstant) {
2371      NameStr = Lex.getStrVal();
2372      Lex.Lex();
2373      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2374        return true;
2375    }
2376
2377    if (ParseInstruction(Inst, BB, PFS)) return true;
2378
2379    BB->getInstList().push_back(Inst);
2380
2381    // Set the name on the instruction.
2382    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2383  } while (!isa<TerminatorInst>(Inst));
2384
2385  return false;
2386}
2387
2388//===----------------------------------------------------------------------===//
2389// Instruction Parsing.
2390//===----------------------------------------------------------------------===//
2391
2392/// ParseInstruction - Parse one of the many different instructions.
2393///
2394bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2395                                PerFunctionState &PFS) {
2396  lltok::Kind Token = Lex.getKind();
2397  if (Token == lltok::Eof)
2398    return TokError("found end of file when expecting more instructions");
2399  LocTy Loc = Lex.getLoc();
2400  unsigned KeywordVal = Lex.getUIntVal();
2401  Lex.Lex();  // Eat the keyword.
2402
2403  switch (Token) {
2404  default:                    return Error(Loc, "expected instruction opcode");
2405  // Terminator Instructions.
2406  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2407  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2408  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2409  case lltok::kw_br:          return ParseBr(Inst, PFS);
2410  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2411  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2412  // Binary Operators.
2413  case lltok::kw_add:
2414  case lltok::kw_sub:
2415  case lltok::kw_mul:
2416    // API compatibility: Accept either integer or floating-point types.
2417    return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2418  case lltok::kw_fadd:
2419  case lltok::kw_fsub:
2420  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2421
2422  case lltok::kw_udiv:
2423  case lltok::kw_sdiv:
2424  case lltok::kw_urem:
2425  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2426  case lltok::kw_fdiv:
2427  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2428  case lltok::kw_shl:
2429  case lltok::kw_lshr:
2430  case lltok::kw_ashr:
2431  case lltok::kw_and:
2432  case lltok::kw_or:
2433  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2434  case lltok::kw_icmp:
2435  case lltok::kw_fcmp:
2436  case lltok::kw_vicmp:
2437  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, KeywordVal);
2438  // Casts.
2439  case lltok::kw_trunc:
2440  case lltok::kw_zext:
2441  case lltok::kw_sext:
2442  case lltok::kw_fptrunc:
2443  case lltok::kw_fpext:
2444  case lltok::kw_bitcast:
2445  case lltok::kw_uitofp:
2446  case lltok::kw_sitofp:
2447  case lltok::kw_fptoui:
2448  case lltok::kw_fptosi:
2449  case lltok::kw_inttoptr:
2450  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2451  // Other.
2452  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2453  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2454  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2455  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2456  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2457  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2458  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2459  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2460  // Memory.
2461  case lltok::kw_alloca:
2462  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2463  case lltok::kw_free:           return ParseFree(Inst, PFS);
2464  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2465  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2466  case lltok::kw_volatile:
2467    if (EatIfPresent(lltok::kw_load))
2468      return ParseLoad(Inst, PFS, true);
2469    else if (EatIfPresent(lltok::kw_store))
2470      return ParseStore(Inst, PFS, true);
2471    else
2472      return TokError("expected 'load' or 'store'");
2473  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2474  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2475  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2476  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2477  }
2478}
2479
2480/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2481bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2482  // FIXME: REMOVE vicmp/vfcmp!
2483  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2484    switch (Lex.getKind()) {
2485    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2486    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2487    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2488    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2489    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2490    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2491    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2492    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2493    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2494    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2495    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2496    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2497    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2498    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2499    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2500    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2501    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2502    }
2503  } else {
2504    switch (Lex.getKind()) {
2505    default: TokError("expected icmp predicate (e.g. 'eq')");
2506    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2507    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2508    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2509    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2510    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2511    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2512    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2513    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2514    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2515    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2516    }
2517  }
2518  Lex.Lex();
2519  return false;
2520}
2521
2522//===----------------------------------------------------------------------===//
2523// Terminator Instructions.
2524//===----------------------------------------------------------------------===//
2525
2526/// ParseRet - Parse a return instruction.
2527///   ::= 'ret' void
2528///   ::= 'ret' TypeAndValue
2529///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2530bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2531                        PerFunctionState &PFS) {
2532  PATypeHolder Ty(Type::VoidTy);
2533  if (ParseType(Ty, true /*void allowed*/)) return true;
2534
2535  if (Ty == Type::VoidTy) {
2536    Inst = ReturnInst::Create();
2537    return false;
2538  }
2539
2540  Value *RV;
2541  if (ParseValue(Ty, RV, PFS)) return true;
2542
2543  // The normal case is one return value.
2544  if (Lex.getKind() == lltok::comma) {
2545    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2546    // of 'ret {i32,i32} {i32 1, i32 2}'
2547    SmallVector<Value*, 8> RVs;
2548    RVs.push_back(RV);
2549
2550    while (EatIfPresent(lltok::comma)) {
2551      if (ParseTypeAndValue(RV, PFS)) return true;
2552      RVs.push_back(RV);
2553    }
2554
2555    RV = UndefValue::get(PFS.getFunction().getReturnType());
2556    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2557      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2558      BB->getInstList().push_back(I);
2559      RV = I;
2560    }
2561  }
2562  Inst = ReturnInst::Create(RV);
2563  return false;
2564}
2565
2566
2567/// ParseBr
2568///   ::= 'br' TypeAndValue
2569///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2570bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2571  LocTy Loc, Loc2;
2572  Value *Op0, *Op1, *Op2;
2573  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2574
2575  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2576    Inst = BranchInst::Create(BB);
2577    return false;
2578  }
2579
2580  if (Op0->getType() != Type::Int1Ty)
2581    return Error(Loc, "branch condition must have 'i1' type");
2582
2583  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2584      ParseTypeAndValue(Op1, Loc, PFS) ||
2585      ParseToken(lltok::comma, "expected ',' after true destination") ||
2586      ParseTypeAndValue(Op2, Loc2, PFS))
2587    return true;
2588
2589  if (!isa<BasicBlock>(Op1))
2590    return Error(Loc, "true destination of branch must be a basic block");
2591  if (!isa<BasicBlock>(Op2))
2592    return Error(Loc2, "true destination of branch must be a basic block");
2593
2594  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2595  return false;
2596}
2597
2598/// ParseSwitch
2599///  Instruction
2600///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2601///  JumpTable
2602///    ::= (TypeAndValue ',' TypeAndValue)*
2603bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2604  LocTy CondLoc, BBLoc;
2605  Value *Cond, *DefaultBB;
2606  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2607      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2608      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2609      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2610    return true;
2611
2612  if (!isa<IntegerType>(Cond->getType()))
2613    return Error(CondLoc, "switch condition must have integer type");
2614  if (!isa<BasicBlock>(DefaultBB))
2615    return Error(BBLoc, "default destination must be a basic block");
2616
2617  // Parse the jump table pairs.
2618  SmallPtrSet<Value*, 32> SeenCases;
2619  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2620  while (Lex.getKind() != lltok::rsquare) {
2621    Value *Constant, *DestBB;
2622
2623    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2624        ParseToken(lltok::comma, "expected ',' after case value") ||
2625        ParseTypeAndValue(DestBB, BBLoc, PFS))
2626      return true;
2627
2628    if (!SeenCases.insert(Constant))
2629      return Error(CondLoc, "duplicate case value in switch");
2630    if (!isa<ConstantInt>(Constant))
2631      return Error(CondLoc, "case value is not a constant integer");
2632    if (!isa<BasicBlock>(DestBB))
2633      return Error(BBLoc, "case destination is not a basic block");
2634
2635    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2636                                   cast<BasicBlock>(DestBB)));
2637  }
2638
2639  Lex.Lex();  // Eat the ']'.
2640
2641  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2642                                      Table.size());
2643  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2644    SI->addCase(Table[i].first, Table[i].second);
2645  Inst = SI;
2646  return false;
2647}
2648
2649/// ParseInvoke
2650///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2651///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2652bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2653  LocTy CallLoc = Lex.getLoc();
2654  unsigned CC, RetAttrs, FnAttrs;
2655  PATypeHolder RetType(Type::VoidTy);
2656  LocTy RetTypeLoc;
2657  ValID CalleeID;
2658  SmallVector<ParamInfo, 16> ArgList;
2659
2660  Value *NormalBB, *UnwindBB;
2661  if (ParseOptionalCallingConv(CC) ||
2662      ParseOptionalAttrs(RetAttrs, 1) ||
2663      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2664      ParseValID(CalleeID) ||
2665      ParseParameterList(ArgList, PFS) ||
2666      ParseOptionalAttrs(FnAttrs, 2) ||
2667      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2668      ParseTypeAndValue(NormalBB, PFS) ||
2669      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2670      ParseTypeAndValue(UnwindBB, PFS))
2671    return true;
2672
2673  if (!isa<BasicBlock>(NormalBB))
2674    return Error(CallLoc, "normal destination is not a basic block");
2675  if (!isa<BasicBlock>(UnwindBB))
2676    return Error(CallLoc, "unwind destination is not a basic block");
2677
2678  // If RetType is a non-function pointer type, then this is the short syntax
2679  // for the call, which means that RetType is just the return type.  Infer the
2680  // rest of the function argument types from the arguments that are present.
2681  const PointerType *PFTy = 0;
2682  const FunctionType *Ty = 0;
2683  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2684      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2685    // Pull out the types of all of the arguments...
2686    std::vector<const Type*> ParamTypes;
2687    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2688      ParamTypes.push_back(ArgList[i].V->getType());
2689
2690    if (!FunctionType::isValidReturnType(RetType))
2691      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2692
2693    Ty = FunctionType::get(RetType, ParamTypes, false);
2694    PFTy = PointerType::getUnqual(Ty);
2695  }
2696
2697  // Look up the callee.
2698  Value *Callee;
2699  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2700
2701  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2702  // function attributes.
2703  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2704  if (FnAttrs & ObsoleteFuncAttrs) {
2705    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2706    FnAttrs &= ~ObsoleteFuncAttrs;
2707  }
2708
2709  // Set up the Attributes for the function.
2710  SmallVector<AttributeWithIndex, 8> Attrs;
2711  if (RetAttrs != Attribute::None)
2712    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2713
2714  SmallVector<Value*, 8> Args;
2715
2716  // Loop through FunctionType's arguments and ensure they are specified
2717  // correctly.  Also, gather any parameter attributes.
2718  FunctionType::param_iterator I = Ty->param_begin();
2719  FunctionType::param_iterator E = Ty->param_end();
2720  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2721    const Type *ExpectedTy = 0;
2722    if (I != E) {
2723      ExpectedTy = *I++;
2724    } else if (!Ty->isVarArg()) {
2725      return Error(ArgList[i].Loc, "too many arguments specified");
2726    }
2727
2728    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2729      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2730                   ExpectedTy->getDescription() + "'");
2731    Args.push_back(ArgList[i].V);
2732    if (ArgList[i].Attrs != Attribute::None)
2733      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2734  }
2735
2736  if (I != E)
2737    return Error(CallLoc, "not enough parameters specified for call");
2738
2739  if (FnAttrs != Attribute::None)
2740    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2741
2742  // Finish off the Attributes and check them
2743  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2744
2745  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2746                                      cast<BasicBlock>(UnwindBB),
2747                                      Args.begin(), Args.end());
2748  II->setCallingConv(CC);
2749  II->setAttributes(PAL);
2750  Inst = II;
2751  return false;
2752}
2753
2754
2755
2756//===----------------------------------------------------------------------===//
2757// Binary Operators.
2758//===----------------------------------------------------------------------===//
2759
2760/// ParseArithmetic
2761///  ::= ArithmeticOps TypeAndValue ',' Value
2762///
2763/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2764/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2765bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2766                               unsigned Opc, unsigned OperandType) {
2767  LocTy Loc; Value *LHS, *RHS;
2768  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2769      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2770      ParseValue(LHS->getType(), RHS, PFS))
2771    return true;
2772
2773  bool Valid;
2774  switch (OperandType) {
2775  default: assert(0 && "Unknown operand type!");
2776  case 0: // int or FP.
2777    Valid = LHS->getType()->isIntOrIntVector() ||
2778            LHS->getType()->isFPOrFPVector();
2779    break;
2780  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2781  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2782  }
2783
2784  if (!Valid)
2785    return Error(Loc, "invalid operand type for instruction");
2786
2787  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2788  return false;
2789}
2790
2791/// ParseLogical
2792///  ::= ArithmeticOps TypeAndValue ',' Value {
2793bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2794                            unsigned Opc) {
2795  LocTy Loc; Value *LHS, *RHS;
2796  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2797      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2798      ParseValue(LHS->getType(), RHS, PFS))
2799    return true;
2800
2801  if (!LHS->getType()->isIntOrIntVector())
2802    return Error(Loc,"instruction requires integer or integer vector operands");
2803
2804  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2805  return false;
2806}
2807
2808
2809/// ParseCompare
2810///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2811///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2812///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2813///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2814bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2815                            unsigned Opc) {
2816  // Parse the integer/fp comparison predicate.
2817  LocTy Loc;
2818  unsigned Pred;
2819  Value *LHS, *RHS;
2820  if (ParseCmpPredicate(Pred, Opc) ||
2821      ParseTypeAndValue(LHS, Loc, PFS) ||
2822      ParseToken(lltok::comma, "expected ',' after compare value") ||
2823      ParseValue(LHS->getType(), RHS, PFS))
2824    return true;
2825
2826  if (Opc == Instruction::FCmp) {
2827    if (!LHS->getType()->isFPOrFPVector())
2828      return Error(Loc, "fcmp requires floating point operands");
2829    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2830  } else if (Opc == Instruction::ICmp) {
2831    if (!LHS->getType()->isIntOrIntVector() &&
2832        !isa<PointerType>(LHS->getType()))
2833      return Error(Loc, "icmp requires integer operands");
2834    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2835  } else if (Opc == Instruction::VFCmp) {
2836    if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2837      return Error(Loc, "vfcmp requires vector floating point operands");
2838    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2839  } else if (Opc == Instruction::VICmp) {
2840    if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2841      return Error(Loc, "vicmp requires vector floating point operands");
2842    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2843  }
2844  return false;
2845}
2846
2847//===----------------------------------------------------------------------===//
2848// Other Instructions.
2849//===----------------------------------------------------------------------===//
2850
2851
2852/// ParseCast
2853///   ::= CastOpc TypeAndValue 'to' Type
2854bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2855                         unsigned Opc) {
2856  LocTy Loc;  Value *Op;
2857  PATypeHolder DestTy(Type::VoidTy);
2858  if (ParseTypeAndValue(Op, Loc, PFS) ||
2859      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2860      ParseType(DestTy))
2861    return true;
2862
2863  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2864    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2865    return Error(Loc, "invalid cast opcode for cast from '" +
2866                 Op->getType()->getDescription() + "' to '" +
2867                 DestTy->getDescription() + "'");
2868  }
2869  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2870  return false;
2871}
2872
2873/// ParseSelect
2874///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2875bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2876  LocTy Loc;
2877  Value *Op0, *Op1, *Op2;
2878  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2879      ParseToken(lltok::comma, "expected ',' after select condition") ||
2880      ParseTypeAndValue(Op1, PFS) ||
2881      ParseToken(lltok::comma, "expected ',' after select value") ||
2882      ParseTypeAndValue(Op2, PFS))
2883    return true;
2884
2885  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2886    return Error(Loc, Reason);
2887
2888  Inst = SelectInst::Create(Op0, Op1, Op2);
2889  return false;
2890}
2891
2892/// ParseVA_Arg
2893///   ::= 'va_arg' TypeAndValue ',' Type
2894bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2895  Value *Op;
2896  PATypeHolder EltTy(Type::VoidTy);
2897  LocTy TypeLoc;
2898  if (ParseTypeAndValue(Op, PFS) ||
2899      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2900      ParseType(EltTy, TypeLoc))
2901    return true;
2902
2903  if (!EltTy->isFirstClassType())
2904    return Error(TypeLoc, "va_arg requires operand with first class type");
2905
2906  Inst = new VAArgInst(Op, EltTy);
2907  return false;
2908}
2909
2910/// ParseExtractElement
2911///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2912bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2913  LocTy Loc;
2914  Value *Op0, *Op1;
2915  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2916      ParseToken(lltok::comma, "expected ',' after extract value") ||
2917      ParseTypeAndValue(Op1, PFS))
2918    return true;
2919
2920  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2921    return Error(Loc, "invalid extractelement operands");
2922
2923  Inst = new ExtractElementInst(Op0, Op1);
2924  return false;
2925}
2926
2927/// ParseInsertElement
2928///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2929bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2930  LocTy Loc;
2931  Value *Op0, *Op1, *Op2;
2932  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2933      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2934      ParseTypeAndValue(Op1, PFS) ||
2935      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2936      ParseTypeAndValue(Op2, PFS))
2937    return true;
2938
2939  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2940    return Error(Loc, "invalid extractelement operands");
2941
2942  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2943  return false;
2944}
2945
2946/// ParseShuffleVector
2947///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2948bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2949  LocTy Loc;
2950  Value *Op0, *Op1, *Op2;
2951  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2952      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2953      ParseTypeAndValue(Op1, PFS) ||
2954      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2955      ParseTypeAndValue(Op2, PFS))
2956    return true;
2957
2958  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2959    return Error(Loc, "invalid extractelement operands");
2960
2961  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2962  return false;
2963}
2964
2965/// ParsePHI
2966///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value�� ']')*
2967bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2968  PATypeHolder Ty(Type::VoidTy);
2969  Value *Op0, *Op1;
2970  LocTy TypeLoc = Lex.getLoc();
2971
2972  if (ParseType(Ty) ||
2973      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2974      ParseValue(Ty, Op0, PFS) ||
2975      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2976      ParseValue(Type::LabelTy, Op1, PFS) ||
2977      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2978    return true;
2979
2980  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2981  while (1) {
2982    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2983
2984    if (!EatIfPresent(lltok::comma))
2985      break;
2986
2987    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2988        ParseValue(Ty, Op0, PFS) ||
2989        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2990        ParseValue(Type::LabelTy, Op1, PFS) ||
2991        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2992      return true;
2993  }
2994
2995  if (!Ty->isFirstClassType())
2996    return Error(TypeLoc, "phi node must have first class type");
2997
2998  PHINode *PN = PHINode::Create(Ty);
2999  PN->reserveOperandSpace(PHIVals.size());
3000  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3001    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3002  Inst = PN;
3003  return false;
3004}
3005
3006/// ParseCall
3007///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3008///       ParameterList OptionalAttrs
3009bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3010                         bool isTail) {
3011  unsigned CC, RetAttrs, FnAttrs;
3012  PATypeHolder RetType(Type::VoidTy);
3013  LocTy RetTypeLoc;
3014  ValID CalleeID;
3015  SmallVector<ParamInfo, 16> ArgList;
3016  LocTy CallLoc = Lex.getLoc();
3017
3018  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3019      ParseOptionalCallingConv(CC) ||
3020      ParseOptionalAttrs(RetAttrs, 1) ||
3021      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3022      ParseValID(CalleeID) ||
3023      ParseParameterList(ArgList, PFS) ||
3024      ParseOptionalAttrs(FnAttrs, 2))
3025    return true;
3026
3027  // If RetType is a non-function pointer type, then this is the short syntax
3028  // for the call, which means that RetType is just the return type.  Infer the
3029  // rest of the function argument types from the arguments that are present.
3030  const PointerType *PFTy = 0;
3031  const FunctionType *Ty = 0;
3032  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3033      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3034    // Pull out the types of all of the arguments...
3035    std::vector<const Type*> ParamTypes;
3036    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3037      ParamTypes.push_back(ArgList[i].V->getType());
3038
3039    if (!FunctionType::isValidReturnType(RetType))
3040      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3041
3042    Ty = FunctionType::get(RetType, ParamTypes, false);
3043    PFTy = PointerType::getUnqual(Ty);
3044  }
3045
3046  // Look up the callee.
3047  Value *Callee;
3048  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3049
3050  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3051  // function attributes.
3052  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3053  if (FnAttrs & ObsoleteFuncAttrs) {
3054    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3055    FnAttrs &= ~ObsoleteFuncAttrs;
3056  }
3057
3058  // Set up the Attributes for the function.
3059  SmallVector<AttributeWithIndex, 8> Attrs;
3060  if (RetAttrs != Attribute::None)
3061    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3062
3063  SmallVector<Value*, 8> Args;
3064
3065  // Loop through FunctionType's arguments and ensure they are specified
3066  // correctly.  Also, gather any parameter attributes.
3067  FunctionType::param_iterator I = Ty->param_begin();
3068  FunctionType::param_iterator E = Ty->param_end();
3069  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3070    const Type *ExpectedTy = 0;
3071    if (I != E) {
3072      ExpectedTy = *I++;
3073    } else if (!Ty->isVarArg()) {
3074      return Error(ArgList[i].Loc, "too many arguments specified");
3075    }
3076
3077    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3078      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3079                   ExpectedTy->getDescription() + "'");
3080    Args.push_back(ArgList[i].V);
3081    if (ArgList[i].Attrs != Attribute::None)
3082      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3083  }
3084
3085  if (I != E)
3086    return Error(CallLoc, "not enough parameters specified for call");
3087
3088  if (FnAttrs != Attribute::None)
3089    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3090
3091  // Finish off the Attributes and check them
3092  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3093
3094  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3095  CI->setTailCall(isTail);
3096  CI->setCallingConv(CC);
3097  CI->setAttributes(PAL);
3098  Inst = CI;
3099  return false;
3100}
3101
3102//===----------------------------------------------------------------------===//
3103// Memory Instructions.
3104//===----------------------------------------------------------------------===//
3105
3106/// ParseAlloc
3107///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3108///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3109bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3110                          unsigned Opc) {
3111  PATypeHolder Ty(Type::VoidTy);
3112  Value *Size = 0;
3113  LocTy SizeLoc = 0;
3114  unsigned Alignment = 0;
3115  if (ParseType(Ty)) return true;
3116
3117  if (EatIfPresent(lltok::comma)) {
3118    if (Lex.getKind() == lltok::kw_align) {
3119      if (ParseOptionalAlignment(Alignment)) return true;
3120    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3121               ParseOptionalCommaAlignment(Alignment)) {
3122      return true;
3123    }
3124  }
3125
3126  if (Size && Size->getType() != Type::Int32Ty)
3127    return Error(SizeLoc, "element count must be i32");
3128
3129  if (Opc == Instruction::Malloc)
3130    Inst = new MallocInst(Ty, Size, Alignment);
3131  else
3132    Inst = new AllocaInst(Ty, Size, Alignment);
3133  return false;
3134}
3135
3136/// ParseFree
3137///   ::= 'free' TypeAndValue
3138bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3139  Value *Val; LocTy Loc;
3140  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3141  if (!isa<PointerType>(Val->getType()))
3142    return Error(Loc, "operand to free must be a pointer");
3143  Inst = new FreeInst(Val);
3144  return false;
3145}
3146
3147/// ParseLoad
3148///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3149bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3150                         bool isVolatile) {
3151  Value *Val; LocTy Loc;
3152  unsigned Alignment;
3153  if (ParseTypeAndValue(Val, Loc, PFS) ||
3154      ParseOptionalCommaAlignment(Alignment))
3155    return true;
3156
3157  if (!isa<PointerType>(Val->getType()) ||
3158      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3159    return Error(Loc, "load operand must be a pointer to a first class type");
3160
3161  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3162  return false;
3163}
3164
3165/// ParseStore
3166///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3167bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3168                          bool isVolatile) {
3169  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3170  unsigned Alignment;
3171  if (ParseTypeAndValue(Val, Loc, PFS) ||
3172      ParseToken(lltok::comma, "expected ',' after store operand") ||
3173      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3174      ParseOptionalCommaAlignment(Alignment))
3175    return true;
3176
3177  if (!isa<PointerType>(Ptr->getType()))
3178    return Error(PtrLoc, "store operand must be a pointer");
3179  if (!Val->getType()->isFirstClassType())
3180    return Error(Loc, "store operand must be a first class value");
3181  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3182    return Error(Loc, "stored value and pointer type do not match");
3183
3184  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3185  return false;
3186}
3187
3188/// ParseGetResult
3189///   ::= 'getresult' TypeAndValue ',' uint
3190/// FIXME: Remove support for getresult in LLVM 3.0
3191bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3192  Value *Val; LocTy ValLoc, EltLoc;
3193  unsigned Element;
3194  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3195      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3196      ParseUInt32(Element, EltLoc))
3197    return true;
3198
3199  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3200    return Error(ValLoc, "getresult inst requires an aggregate operand");
3201  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3202    return Error(EltLoc, "invalid getresult index for value");
3203  Inst = ExtractValueInst::Create(Val, Element);
3204  return false;
3205}
3206
3207/// ParseGetElementPtr
3208///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3209bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3210  Value *Ptr, *Val; LocTy Loc, EltLoc;
3211  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3212
3213  if (!isa<PointerType>(Ptr->getType()))
3214    return Error(Loc, "base of getelementptr must be a pointer");
3215
3216  SmallVector<Value*, 16> Indices;
3217  while (EatIfPresent(lltok::comma)) {
3218    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3219    if (!isa<IntegerType>(Val->getType()))
3220      return Error(EltLoc, "getelementptr index must be an integer");
3221    Indices.push_back(Val);
3222  }
3223
3224  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3225                                         Indices.begin(), Indices.end()))
3226    return Error(Loc, "invalid getelementptr indices");
3227  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3228  return false;
3229}
3230
3231/// ParseExtractValue
3232///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3233bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3234  Value *Val; LocTy Loc;
3235  SmallVector<unsigned, 4> Indices;
3236  if (ParseTypeAndValue(Val, Loc, PFS) ||
3237      ParseIndexList(Indices))
3238    return true;
3239
3240  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3241    return Error(Loc, "extractvalue operand must be array or struct");
3242
3243  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3244                                        Indices.end()))
3245    return Error(Loc, "invalid indices for extractvalue");
3246  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3247  return false;
3248}
3249
3250/// ParseInsertValue
3251///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3252bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3253  Value *Val0, *Val1; LocTy Loc0, Loc1;
3254  SmallVector<unsigned, 4> Indices;
3255  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3256      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3257      ParseTypeAndValue(Val1, Loc1, PFS) ||
3258      ParseIndexList(Indices))
3259    return true;
3260
3261  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3262    return Error(Loc0, "extractvalue operand must be array or struct");
3263
3264  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3265                                        Indices.end()))
3266    return Error(Loc0, "invalid indices for insertvalue");
3267  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3268  return false;
3269}
3270
3271//===----------------------------------------------------------------------===//
3272// Embedded metadata.
3273//===----------------------------------------------------------------------===//
3274
3275/// ParseMDNodeVector
3276///   ::= Element (',' Element)*
3277/// Element
3278///   ::= 'null' | TypeAndValue
3279bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3280  assert(Lex.getKind() == lltok::lbrace);
3281  Lex.Lex();
3282  do {
3283    Value *V;
3284    if (Lex.getKind() == lltok::kw_null) {
3285      Lex.Lex();
3286      V = 0;
3287    } else {
3288      Constant *C;
3289      if (ParseGlobalTypeAndValue(C)) return true;
3290      V = C;
3291    }
3292    Elts.push_back(V);
3293  } while (EatIfPresent(lltok::comma));
3294
3295  return false;
3296}
3297