LLParser.cpp revision 193574
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29namespace llvm {
30  /// ValID - Represents a reference of a definition of some sort with no type.
31  /// There are several cases where we have to parse the value but where the
32  /// type can depend on later context.  This may either be a numeric reference
33  /// or a symbolic (%var) reference.  This is just a discriminated union.
34  struct ValID {
35    enum {
36      t_LocalID, t_GlobalID,      // ID in UIntVal.
37      t_LocalName, t_GlobalName,  // Name in StrVal.
38      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
39      t_Null, t_Undef, t_Zero,    // No value.
40      t_EmptyArray,               // No value:  []
41      t_Constant,                 // Value in ConstantVal.
42      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
43    } Kind;
44
45    LLParser::LocTy Loc;
46    unsigned UIntVal;
47    std::string StrVal, StrVal2;
48    APSInt APSIntVal;
49    APFloat APFloatVal;
50    Constant *ConstantVal;
51    ValID() : APFloatVal(0.0) {}
52  };
53}
54
55/// Run: module ::= toplevelentity*
56bool LLParser::Run() {
57  // Prime the lexer.
58  Lex.Lex();
59
60  return ParseTopLevelEntities() ||
61         ValidateEndOfModule();
62}
63
64/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65/// module.
66bool LLParser::ValidateEndOfModule() {
67  if (!ForwardRefTypes.empty())
68    return Error(ForwardRefTypes.begin()->second.second,
69                 "use of undefined type named '" +
70                 ForwardRefTypes.begin()->first + "'");
71  if (!ForwardRefTypeIDs.empty())
72    return Error(ForwardRefTypeIDs.begin()->second.second,
73                 "use of undefined type '%" +
74                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
75
76  if (!ForwardRefVals.empty())
77    return Error(ForwardRefVals.begin()->second.second,
78                 "use of undefined value '@" + ForwardRefVals.begin()->first +
79                 "'");
80
81  if (!ForwardRefValIDs.empty())
82    return Error(ForwardRefValIDs.begin()->second.second,
83                 "use of undefined value '@" +
84                 utostr(ForwardRefValIDs.begin()->first) + "'");
85
86  // Look for intrinsic functions and CallInst that need to be upgraded
87  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
88    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
89
90  return false;
91}
92
93//===----------------------------------------------------------------------===//
94// Top-Level Entities
95//===----------------------------------------------------------------------===//
96
97bool LLParser::ParseTopLevelEntities() {
98  while (1) {
99    switch (Lex.getKind()) {
100    default:         return TokError("expected top-level entity");
101    case lltok::Eof: return false;
102    //case lltok::kw_define:
103    case lltok::kw_declare: if (ParseDeclare()) return true; break;
104    case lltok::kw_define:  if (ParseDefine()) return true; break;
105    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
106    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
107    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
108    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
109    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
110    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
111    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
112
113    // The Global variable production with no name can have many different
114    // optional leading prefixes, the production is:
115    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
116    //               OptionalAddrSpace ('constant'|'global') ...
117    case lltok::kw_private:       // OptionalLinkage
118    case lltok::kw_internal:      // OptionalLinkage
119    case lltok::kw_weak:          // OptionalLinkage
120    case lltok::kw_weak_odr:      // OptionalLinkage
121    case lltok::kw_linkonce:      // OptionalLinkage
122    case lltok::kw_linkonce_odr:  // OptionalLinkage
123    case lltok::kw_appending:     // OptionalLinkage
124    case lltok::kw_dllexport:     // OptionalLinkage
125    case lltok::kw_common:        // OptionalLinkage
126    case lltok::kw_dllimport:     // OptionalLinkage
127    case lltok::kw_extern_weak:   // OptionalLinkage
128    case lltok::kw_external: {    // OptionalLinkage
129      unsigned Linkage, Visibility;
130      if (ParseOptionalLinkage(Linkage) ||
131          ParseOptionalVisibility(Visibility) ||
132          ParseGlobal("", 0, Linkage, true, Visibility))
133        return true;
134      break;
135    }
136    case lltok::kw_default:       // OptionalVisibility
137    case lltok::kw_hidden:        // OptionalVisibility
138    case lltok::kw_protected: {   // OptionalVisibility
139      unsigned Visibility;
140      if (ParseOptionalVisibility(Visibility) ||
141          ParseGlobal("", 0, 0, false, Visibility))
142        return true;
143      break;
144    }
145
146    case lltok::kw_thread_local:  // OptionalThreadLocal
147    case lltok::kw_addrspace:     // OptionalAddrSpace
148    case lltok::kw_constant:      // GlobalType
149    case lltok::kw_global:        // GlobalType
150      if (ParseGlobal("", 0, 0, false, 0)) return true;
151      break;
152    }
153  }
154}
155
156
157/// toplevelentity
158///   ::= 'module' 'asm' STRINGCONSTANT
159bool LLParser::ParseModuleAsm() {
160  assert(Lex.getKind() == lltok::kw_module);
161  Lex.Lex();
162
163  std::string AsmStr;
164  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
165      ParseStringConstant(AsmStr)) return true;
166
167  const std::string &AsmSoFar = M->getModuleInlineAsm();
168  if (AsmSoFar.empty())
169    M->setModuleInlineAsm(AsmStr);
170  else
171    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
172  return false;
173}
174
175/// toplevelentity
176///   ::= 'target' 'triple' '=' STRINGCONSTANT
177///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
178bool LLParser::ParseTargetDefinition() {
179  assert(Lex.getKind() == lltok::kw_target);
180  std::string Str;
181  switch (Lex.Lex()) {
182  default: return TokError("unknown target property");
183  case lltok::kw_triple:
184    Lex.Lex();
185    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
186        ParseStringConstant(Str))
187      return true;
188    M->setTargetTriple(Str);
189    return false;
190  case lltok::kw_datalayout:
191    Lex.Lex();
192    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
193        ParseStringConstant(Str))
194      return true;
195    M->setDataLayout(Str);
196    return false;
197  }
198}
199
200/// toplevelentity
201///   ::= 'deplibs' '=' '[' ']'
202///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
203bool LLParser::ParseDepLibs() {
204  assert(Lex.getKind() == lltok::kw_deplibs);
205  Lex.Lex();
206  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
207      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
208    return true;
209
210  if (EatIfPresent(lltok::rsquare))
211    return false;
212
213  std::string Str;
214  if (ParseStringConstant(Str)) return true;
215  M->addLibrary(Str);
216
217  while (EatIfPresent(lltok::comma)) {
218    if (ParseStringConstant(Str)) return true;
219    M->addLibrary(Str);
220  }
221
222  return ParseToken(lltok::rsquare, "expected ']' at end of list");
223}
224
225/// toplevelentity
226///   ::= 'type' type
227bool LLParser::ParseUnnamedType() {
228  assert(Lex.getKind() == lltok::kw_type);
229  LocTy TypeLoc = Lex.getLoc();
230  Lex.Lex(); // eat kw_type
231
232  PATypeHolder Ty(Type::VoidTy);
233  if (ParseType(Ty)) return true;
234
235  unsigned TypeID = NumberedTypes.size();
236
237  // See if this type was previously referenced.
238  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
239    FI = ForwardRefTypeIDs.find(TypeID);
240  if (FI != ForwardRefTypeIDs.end()) {
241    if (FI->second.first.get() == Ty)
242      return Error(TypeLoc, "self referential type is invalid");
243
244    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
245    Ty = FI->second.first.get();
246    ForwardRefTypeIDs.erase(FI);
247  }
248
249  NumberedTypes.push_back(Ty);
250
251  return false;
252}
253
254/// toplevelentity
255///   ::= LocalVar '=' 'type' type
256bool LLParser::ParseNamedType() {
257  std::string Name = Lex.getStrVal();
258  LocTy NameLoc = Lex.getLoc();
259  Lex.Lex();  // eat LocalVar.
260
261  PATypeHolder Ty(Type::VoidTy);
262
263  if (ParseToken(lltok::equal, "expected '=' after name") ||
264      ParseToken(lltok::kw_type, "expected 'type' after name") ||
265      ParseType(Ty))
266    return true;
267
268  // Set the type name, checking for conflicts as we do so.
269  bool AlreadyExists = M->addTypeName(Name, Ty);
270  if (!AlreadyExists) return false;
271
272  // See if this type is a forward reference.  We need to eagerly resolve
273  // types to allow recursive type redefinitions below.
274  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275  FI = ForwardRefTypes.find(Name);
276  if (FI != ForwardRefTypes.end()) {
277    if (FI->second.first.get() == Ty)
278      return Error(NameLoc, "self referential type is invalid");
279
280    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
281    Ty = FI->second.first.get();
282    ForwardRefTypes.erase(FI);
283  }
284
285  // Inserting a name that is already defined, get the existing name.
286  const Type *Existing = M->getTypeByName(Name);
287  assert(Existing && "Conflict but no matching type?!");
288
289  // Otherwise, this is an attempt to redefine a type. That's okay if
290  // the redefinition is identical to the original.
291  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
292  if (Existing == Ty) return false;
293
294  // Any other kind of (non-equivalent) redefinition is an error.
295  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
296               Ty->getDescription() + "'");
297}
298
299
300/// toplevelentity
301///   ::= 'declare' FunctionHeader
302bool LLParser::ParseDeclare() {
303  assert(Lex.getKind() == lltok::kw_declare);
304  Lex.Lex();
305
306  Function *F;
307  return ParseFunctionHeader(F, false);
308}
309
310/// toplevelentity
311///   ::= 'define' FunctionHeader '{' ...
312bool LLParser::ParseDefine() {
313  assert(Lex.getKind() == lltok::kw_define);
314  Lex.Lex();
315
316  Function *F;
317  return ParseFunctionHeader(F, true) ||
318         ParseFunctionBody(*F);
319}
320
321/// ParseGlobalType
322///   ::= 'constant'
323///   ::= 'global'
324bool LLParser::ParseGlobalType(bool &IsConstant) {
325  if (Lex.getKind() == lltok::kw_constant)
326    IsConstant = true;
327  else if (Lex.getKind() == lltok::kw_global)
328    IsConstant = false;
329  else {
330    IsConstant = false;
331    return TokError("expected 'global' or 'constant'");
332  }
333  Lex.Lex();
334  return false;
335}
336
337/// ParseNamedGlobal:
338///   GlobalVar '=' OptionalVisibility ALIAS ...
339///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
340bool LLParser::ParseNamedGlobal() {
341  assert(Lex.getKind() == lltok::GlobalVar);
342  LocTy NameLoc = Lex.getLoc();
343  std::string Name = Lex.getStrVal();
344  Lex.Lex();
345
346  bool HasLinkage;
347  unsigned Linkage, Visibility;
348  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
349      ParseOptionalLinkage(Linkage, HasLinkage) ||
350      ParseOptionalVisibility(Visibility))
351    return true;
352
353  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
354    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
355  return ParseAlias(Name, NameLoc, Visibility);
356}
357
358/// ParseAlias:
359///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360/// Aliasee
361///   ::= TypeAndValue
362///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
363///   ::= 'getelementptr' '(' ... ')'
364///
365/// Everything through visibility has already been parsed.
366///
367bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368                          unsigned Visibility) {
369  assert(Lex.getKind() == lltok::kw_alias);
370  Lex.Lex();
371  unsigned Linkage;
372  LocTy LinkageLoc = Lex.getLoc();
373  if (ParseOptionalLinkage(Linkage))
374    return true;
375
376  if (Linkage != GlobalValue::ExternalLinkage &&
377      Linkage != GlobalValue::WeakAnyLinkage &&
378      Linkage != GlobalValue::WeakODRLinkage &&
379      Linkage != GlobalValue::InternalLinkage &&
380      Linkage != GlobalValue::PrivateLinkage)
381    return Error(LinkageLoc, "invalid linkage type for alias");
382
383  Constant *Aliasee;
384  LocTy AliaseeLoc = Lex.getLoc();
385  if (Lex.getKind() != lltok::kw_bitcast &&
386      Lex.getKind() != lltok::kw_getelementptr) {
387    if (ParseGlobalTypeAndValue(Aliasee)) return true;
388  } else {
389    // The bitcast dest type is not present, it is implied by the dest type.
390    ValID ID;
391    if (ParseValID(ID)) return true;
392    if (ID.Kind != ValID::t_Constant)
393      return Error(AliaseeLoc, "invalid aliasee");
394    Aliasee = ID.ConstantVal;
395  }
396
397  if (!isa<PointerType>(Aliasee->getType()))
398    return Error(AliaseeLoc, "alias must have pointer type");
399
400  // Okay, create the alias but do not insert it into the module yet.
401  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
402                                    (GlobalValue::LinkageTypes)Linkage, Name,
403                                    Aliasee);
404  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
405
406  // See if this value already exists in the symbol table.  If so, it is either
407  // a redefinition or a definition of a forward reference.
408  if (GlobalValue *Val =
409        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
410    // See if this was a redefinition.  If so, there is no entry in
411    // ForwardRefVals.
412    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
413      I = ForwardRefVals.find(Name);
414    if (I == ForwardRefVals.end())
415      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
416
417    // Otherwise, this was a definition of forward ref.  Verify that types
418    // agree.
419    if (Val->getType() != GA->getType())
420      return Error(NameLoc,
421              "forward reference and definition of alias have different types");
422
423    // If they agree, just RAUW the old value with the alias and remove the
424    // forward ref info.
425    Val->replaceAllUsesWith(GA);
426    Val->eraseFromParent();
427    ForwardRefVals.erase(I);
428  }
429
430  // Insert into the module, we know its name won't collide now.
431  M->getAliasList().push_back(GA);
432  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
433
434  return false;
435}
436
437/// ParseGlobal
438///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
439///       OptionalAddrSpace GlobalType Type Const
440///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
441///       OptionalAddrSpace GlobalType Type Const
442///
443/// Everything through visibility has been parsed already.
444///
445bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
446                           unsigned Linkage, bool HasLinkage,
447                           unsigned Visibility) {
448  unsigned AddrSpace;
449  bool ThreadLocal, IsConstant;
450  LocTy TyLoc;
451
452  PATypeHolder Ty(Type::VoidTy);
453  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
454      ParseOptionalAddrSpace(AddrSpace) ||
455      ParseGlobalType(IsConstant) ||
456      ParseType(Ty, TyLoc))
457    return true;
458
459  // If the linkage is specified and is external, then no initializer is
460  // present.
461  Constant *Init = 0;
462  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
463                      Linkage != GlobalValue::ExternalWeakLinkage &&
464                      Linkage != GlobalValue::ExternalLinkage)) {
465    if (ParseGlobalValue(Ty, Init))
466      return true;
467  }
468
469  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
470    return Error(TyLoc, "invalid type for global variable");
471
472  GlobalVariable *GV = 0;
473
474  // See if the global was forward referenced, if so, use the global.
475  if (!Name.empty()) {
476    if ((GV = M->getGlobalVariable(Name, true)) &&
477        !ForwardRefVals.erase(Name))
478      return Error(NameLoc, "redefinition of global '@" + Name + "'");
479  } else {
480    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
481      I = ForwardRefValIDs.find(NumberedVals.size());
482    if (I != ForwardRefValIDs.end()) {
483      GV = cast<GlobalVariable>(I->second.first);
484      ForwardRefValIDs.erase(I);
485    }
486  }
487
488  if (GV == 0) {
489    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
490                            M, false, AddrSpace);
491  } else {
492    if (GV->getType()->getElementType() != Ty)
493      return Error(TyLoc,
494            "forward reference and definition of global have different types");
495
496    // Move the forward-reference to the correct spot in the module.
497    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
498  }
499
500  if (Name.empty())
501    NumberedVals.push_back(GV);
502
503  // Set the parsed properties on the global.
504  if (Init)
505    GV->setInitializer(Init);
506  GV->setConstant(IsConstant);
507  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
508  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
509  GV->setThreadLocal(ThreadLocal);
510
511  // Parse attributes on the global.
512  while (Lex.getKind() == lltok::comma) {
513    Lex.Lex();
514
515    if (Lex.getKind() == lltok::kw_section) {
516      Lex.Lex();
517      GV->setSection(Lex.getStrVal());
518      if (ParseToken(lltok::StringConstant, "expected global section string"))
519        return true;
520    } else if (Lex.getKind() == lltok::kw_align) {
521      unsigned Alignment;
522      if (ParseOptionalAlignment(Alignment)) return true;
523      GV->setAlignment(Alignment);
524    } else {
525      TokError("unknown global variable property!");
526    }
527  }
528
529  return false;
530}
531
532
533//===----------------------------------------------------------------------===//
534// GlobalValue Reference/Resolution Routines.
535//===----------------------------------------------------------------------===//
536
537/// GetGlobalVal - Get a value with the specified name or ID, creating a
538/// forward reference record if needed.  This can return null if the value
539/// exists but does not have the right type.
540GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
541                                    LocTy Loc) {
542  const PointerType *PTy = dyn_cast<PointerType>(Ty);
543  if (PTy == 0) {
544    Error(Loc, "global variable reference must have pointer type");
545    return 0;
546  }
547
548  // Look this name up in the normal function symbol table.
549  GlobalValue *Val =
550    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
551
552  // If this is a forward reference for the value, see if we already created a
553  // forward ref record.
554  if (Val == 0) {
555    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
556      I = ForwardRefVals.find(Name);
557    if (I != ForwardRefVals.end())
558      Val = I->second.first;
559  }
560
561  // If we have the value in the symbol table or fwd-ref table, return it.
562  if (Val) {
563    if (Val->getType() == Ty) return Val;
564    Error(Loc, "'@" + Name + "' defined with type '" +
565          Val->getType()->getDescription() + "'");
566    return 0;
567  }
568
569  // Otherwise, create a new forward reference for this value and remember it.
570  GlobalValue *FwdVal;
571  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
572    // Function types can return opaque but functions can't.
573    if (isa<OpaqueType>(FT->getReturnType())) {
574      Error(Loc, "function may not return opaque type");
575      return 0;
576    }
577
578    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
579  } else {
580    FwdVal = new GlobalVariable(PTy->getElementType(), false,
581                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
582  }
583
584  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
585  return FwdVal;
586}
587
588GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
589  const PointerType *PTy = dyn_cast<PointerType>(Ty);
590  if (PTy == 0) {
591    Error(Loc, "global variable reference must have pointer type");
592    return 0;
593  }
594
595  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
596
597  // If this is a forward reference for the value, see if we already created a
598  // forward ref record.
599  if (Val == 0) {
600    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
601      I = ForwardRefValIDs.find(ID);
602    if (I != ForwardRefValIDs.end())
603      Val = I->second.first;
604  }
605
606  // If we have the value in the symbol table or fwd-ref table, return it.
607  if (Val) {
608    if (Val->getType() == Ty) return Val;
609    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
610          Val->getType()->getDescription() + "'");
611    return 0;
612  }
613
614  // Otherwise, create a new forward reference for this value and remember it.
615  GlobalValue *FwdVal;
616  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
617    // Function types can return opaque but functions can't.
618    if (isa<OpaqueType>(FT->getReturnType())) {
619      Error(Loc, "function may not return opaque type");
620      return 0;
621    }
622    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
623  } else {
624    FwdVal = new GlobalVariable(PTy->getElementType(), false,
625                                GlobalValue::ExternalWeakLinkage, 0, "", M);
626  }
627
628  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
629  return FwdVal;
630}
631
632
633//===----------------------------------------------------------------------===//
634// Helper Routines.
635//===----------------------------------------------------------------------===//
636
637/// ParseToken - If the current token has the specified kind, eat it and return
638/// success.  Otherwise, emit the specified error and return failure.
639bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
640  if (Lex.getKind() != T)
641    return TokError(ErrMsg);
642  Lex.Lex();
643  return false;
644}
645
646/// ParseStringConstant
647///   ::= StringConstant
648bool LLParser::ParseStringConstant(std::string &Result) {
649  if (Lex.getKind() != lltok::StringConstant)
650    return TokError("expected string constant");
651  Result = Lex.getStrVal();
652  Lex.Lex();
653  return false;
654}
655
656/// ParseUInt32
657///   ::= uint32
658bool LLParser::ParseUInt32(unsigned &Val) {
659  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
660    return TokError("expected integer");
661  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
662  if (Val64 != unsigned(Val64))
663    return TokError("expected 32-bit integer (too large)");
664  Val = Val64;
665  Lex.Lex();
666  return false;
667}
668
669
670/// ParseOptionalAddrSpace
671///   := /*empty*/
672///   := 'addrspace' '(' uint32 ')'
673bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
674  AddrSpace = 0;
675  if (!EatIfPresent(lltok::kw_addrspace))
676    return false;
677  return ParseToken(lltok::lparen, "expected '(' in address space") ||
678         ParseUInt32(AddrSpace) ||
679         ParseToken(lltok::rparen, "expected ')' in address space");
680}
681
682/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
683/// indicates what kind of attribute list this is: 0: function arg, 1: result,
684/// 2: function attr.
685/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
686bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
687  Attrs = Attribute::None;
688  LocTy AttrLoc = Lex.getLoc();
689
690  while (1) {
691    switch (Lex.getKind()) {
692    case lltok::kw_sext:
693    case lltok::kw_zext:
694      // Treat these as signext/zeroext if they occur in the argument list after
695      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
696      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
697      // expr.
698      // FIXME: REMOVE THIS IN LLVM 3.0
699      if (AttrKind == 3) {
700        if (Lex.getKind() == lltok::kw_sext)
701          Attrs |= Attribute::SExt;
702        else
703          Attrs |= Attribute::ZExt;
704        break;
705      }
706      // FALL THROUGH.
707    default:  // End of attributes.
708      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
709        return Error(AttrLoc, "invalid use of function-only attribute");
710
711      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
712        return Error(AttrLoc, "invalid use of parameter-only attribute");
713
714      return false;
715    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
716    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
717    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
718    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
719    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
720    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
721    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
722    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
723
724    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
725    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
726    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
727    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
728    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
729    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
730    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
731    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
732    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
733    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
734    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
735
736    case lltok::kw_align: {
737      unsigned Alignment;
738      if (ParseOptionalAlignment(Alignment))
739        return true;
740      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
741      continue;
742    }
743    }
744    Lex.Lex();
745  }
746}
747
748/// ParseOptionalLinkage
749///   ::= /*empty*/
750///   ::= 'private'
751///   ::= 'internal'
752///   ::= 'weak'
753///   ::= 'weak_odr'
754///   ::= 'linkonce'
755///   ::= 'linkonce_odr'
756///   ::= 'appending'
757///   ::= 'dllexport'
758///   ::= 'common'
759///   ::= 'dllimport'
760///   ::= 'extern_weak'
761///   ::= 'external'
762bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
763  HasLinkage = false;
764  switch (Lex.getKind()) {
765  default:                     Res = GlobalValue::ExternalLinkage; return false;
766  case lltok::kw_private:      Res = GlobalValue::PrivateLinkage; break;
767  case lltok::kw_internal:     Res = GlobalValue::InternalLinkage; break;
768  case lltok::kw_weak:         Res = GlobalValue::WeakAnyLinkage; break;
769  case lltok::kw_weak_odr:     Res = GlobalValue::WeakODRLinkage; break;
770  case lltok::kw_linkonce:     Res = GlobalValue::LinkOnceAnyLinkage; break;
771  case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
772  case lltok::kw_available_externally:
773    Res = GlobalValue::AvailableExternallyLinkage;
774    break;
775  case lltok::kw_appending:    Res = GlobalValue::AppendingLinkage; break;
776  case lltok::kw_dllexport:    Res = GlobalValue::DLLExportLinkage; break;
777  case lltok::kw_common:       Res = GlobalValue::CommonLinkage; break;
778  case lltok::kw_dllimport:    Res = GlobalValue::DLLImportLinkage; break;
779  case lltok::kw_extern_weak:  Res = GlobalValue::ExternalWeakLinkage; break;
780  case lltok::kw_external:     Res = GlobalValue::ExternalLinkage; break;
781  }
782  Lex.Lex();
783  HasLinkage = true;
784  return false;
785}
786
787/// ParseOptionalVisibility
788///   ::= /*empty*/
789///   ::= 'default'
790///   ::= 'hidden'
791///   ::= 'protected'
792///
793bool LLParser::ParseOptionalVisibility(unsigned &Res) {
794  switch (Lex.getKind()) {
795  default:                  Res = GlobalValue::DefaultVisibility; return false;
796  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
797  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
798  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
799  }
800  Lex.Lex();
801  return false;
802}
803
804/// ParseOptionalCallingConv
805///   ::= /*empty*/
806///   ::= 'ccc'
807///   ::= 'fastcc'
808///   ::= 'coldcc'
809///   ::= 'x86_stdcallcc'
810///   ::= 'x86_fastcallcc'
811///   ::= 'cc' UINT
812///
813bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
814  switch (Lex.getKind()) {
815  default:                       CC = CallingConv::C; return false;
816  case lltok::kw_ccc:            CC = CallingConv::C; break;
817  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
818  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
819  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
820  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
821  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
822  }
823  Lex.Lex();
824  return false;
825}
826
827/// ParseOptionalAlignment
828///   ::= /* empty */
829///   ::= 'align' 4
830bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
831  Alignment = 0;
832  if (!EatIfPresent(lltok::kw_align))
833    return false;
834  LocTy AlignLoc = Lex.getLoc();
835  if (ParseUInt32(Alignment)) return true;
836  if (!isPowerOf2_32(Alignment))
837    return Error(AlignLoc, "alignment is not a power of two");
838  return false;
839}
840
841/// ParseOptionalCommaAlignment
842///   ::= /* empty */
843///   ::= ',' 'align' 4
844bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
845  Alignment = 0;
846  if (!EatIfPresent(lltok::comma))
847    return false;
848  return ParseToken(lltok::kw_align, "expected 'align'") ||
849         ParseUInt32(Alignment);
850}
851
852/// ParseIndexList
853///    ::=  (',' uint32)+
854bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
855  if (Lex.getKind() != lltok::comma)
856    return TokError("expected ',' as start of index list");
857
858  while (EatIfPresent(lltok::comma)) {
859    unsigned Idx;
860    if (ParseUInt32(Idx)) return true;
861    Indices.push_back(Idx);
862  }
863
864  return false;
865}
866
867//===----------------------------------------------------------------------===//
868// Type Parsing.
869//===----------------------------------------------------------------------===//
870
871/// ParseType - Parse and resolve a full type.
872bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
873  LocTy TypeLoc = Lex.getLoc();
874  if (ParseTypeRec(Result)) return true;
875
876  // Verify no unresolved uprefs.
877  if (!UpRefs.empty())
878    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
879
880  if (!AllowVoid && Result.get() == Type::VoidTy)
881    return Error(TypeLoc, "void type only allowed for function results");
882
883  return false;
884}
885
886/// HandleUpRefs - Every time we finish a new layer of types, this function is
887/// called.  It loops through the UpRefs vector, which is a list of the
888/// currently active types.  For each type, if the up-reference is contained in
889/// the newly completed type, we decrement the level count.  When the level
890/// count reaches zero, the up-referenced type is the type that is passed in:
891/// thus we can complete the cycle.
892///
893PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
894  // If Ty isn't abstract, or if there are no up-references in it, then there is
895  // nothing to resolve here.
896  if (!ty->isAbstract() || UpRefs.empty()) return ty;
897
898  PATypeHolder Ty(ty);
899#if 0
900  errs() << "Type '" << Ty->getDescription()
901         << "' newly formed.  Resolving upreferences.\n"
902         << UpRefs.size() << " upreferences active!\n";
903#endif
904
905  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
906  // to zero), we resolve them all together before we resolve them to Ty.  At
907  // the end of the loop, if there is anything to resolve to Ty, it will be in
908  // this variable.
909  OpaqueType *TypeToResolve = 0;
910
911  for (unsigned i = 0; i != UpRefs.size(); ++i) {
912    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
913    bool ContainsType =
914      std::find(Ty->subtype_begin(), Ty->subtype_end(),
915                UpRefs[i].LastContainedTy) != Ty->subtype_end();
916
917#if 0
918    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
919           << UpRefs[i].LastContainedTy->getDescription() << ") = "
920           << (ContainsType ? "true" : "false")
921           << " level=" << UpRefs[i].NestingLevel << "\n";
922#endif
923    if (!ContainsType)
924      continue;
925
926    // Decrement level of upreference
927    unsigned Level = --UpRefs[i].NestingLevel;
928    UpRefs[i].LastContainedTy = Ty;
929
930    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
931    if (Level != 0)
932      continue;
933
934#if 0
935    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
936#endif
937    if (!TypeToResolve)
938      TypeToResolve = UpRefs[i].UpRefTy;
939    else
940      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
941    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
942    --i;                                // Do not skip the next element.
943  }
944
945  if (TypeToResolve)
946    TypeToResolve->refineAbstractTypeTo(Ty);
947
948  return Ty;
949}
950
951
952/// ParseTypeRec - The recursive function used to process the internal
953/// implementation details of types.
954bool LLParser::ParseTypeRec(PATypeHolder &Result) {
955  switch (Lex.getKind()) {
956  default:
957    return TokError("expected type");
958  case lltok::Type:
959    // TypeRec ::= 'float' | 'void' (etc)
960    Result = Lex.getTyVal();
961    Lex.Lex();
962    break;
963  case lltok::kw_opaque:
964    // TypeRec ::= 'opaque'
965    Result = OpaqueType::get();
966    Lex.Lex();
967    break;
968  case lltok::lbrace:
969    // TypeRec ::= '{' ... '}'
970    if (ParseStructType(Result, false))
971      return true;
972    break;
973  case lltok::lsquare:
974    // TypeRec ::= '[' ... ']'
975    Lex.Lex(); // eat the lsquare.
976    if (ParseArrayVectorType(Result, false))
977      return true;
978    break;
979  case lltok::less: // Either vector or packed struct.
980    // TypeRec ::= '<' ... '>'
981    Lex.Lex();
982    if (Lex.getKind() == lltok::lbrace) {
983      if (ParseStructType(Result, true) ||
984          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
985        return true;
986    } else if (ParseArrayVectorType(Result, true))
987      return true;
988    break;
989  case lltok::LocalVar:
990  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
991    // TypeRec ::= %foo
992    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
993      Result = T;
994    } else {
995      Result = OpaqueType::get();
996      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
997                                            std::make_pair(Result,
998                                                           Lex.getLoc())));
999      M->addTypeName(Lex.getStrVal(), Result.get());
1000    }
1001    Lex.Lex();
1002    break;
1003
1004  case lltok::LocalVarID:
1005    // TypeRec ::= %4
1006    if (Lex.getUIntVal() < NumberedTypes.size())
1007      Result = NumberedTypes[Lex.getUIntVal()];
1008    else {
1009      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1010        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1011      if (I != ForwardRefTypeIDs.end())
1012        Result = I->second.first;
1013      else {
1014        Result = OpaqueType::get();
1015        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1016                                                std::make_pair(Result,
1017                                                               Lex.getLoc())));
1018      }
1019    }
1020    Lex.Lex();
1021    break;
1022  case lltok::backslash: {
1023    // TypeRec ::= '\' 4
1024    Lex.Lex();
1025    unsigned Val;
1026    if (ParseUInt32(Val)) return true;
1027    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
1028    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1029    Result = OT;
1030    break;
1031  }
1032  }
1033
1034  // Parse the type suffixes.
1035  while (1) {
1036    switch (Lex.getKind()) {
1037    // End of type.
1038    default: return false;
1039
1040    // TypeRec ::= TypeRec '*'
1041    case lltok::star:
1042      if (Result.get() == Type::LabelTy)
1043        return TokError("basic block pointers are invalid");
1044      if (Result.get() == Type::VoidTy)
1045        return TokError("pointers to void are invalid; use i8* instead");
1046      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1047      Lex.Lex();
1048      break;
1049
1050    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1051    case lltok::kw_addrspace: {
1052      if (Result.get() == Type::LabelTy)
1053        return TokError("basic block pointers are invalid");
1054      if (Result.get() == Type::VoidTy)
1055        return TokError("pointers to void are invalid; use i8* instead");
1056      unsigned AddrSpace;
1057      if (ParseOptionalAddrSpace(AddrSpace) ||
1058          ParseToken(lltok::star, "expected '*' in address space"))
1059        return true;
1060
1061      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1062      break;
1063    }
1064
1065    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1066    case lltok::lparen:
1067      if (ParseFunctionType(Result))
1068        return true;
1069      break;
1070    }
1071  }
1072}
1073
1074/// ParseParameterList
1075///    ::= '(' ')'
1076///    ::= '(' Arg (',' Arg)* ')'
1077///  Arg
1078///    ::= Type OptionalAttributes Value OptionalAttributes
1079bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1080                                  PerFunctionState &PFS) {
1081  if (ParseToken(lltok::lparen, "expected '(' in call"))
1082    return true;
1083
1084  while (Lex.getKind() != lltok::rparen) {
1085    // If this isn't the first argument, we need a comma.
1086    if (!ArgList.empty() &&
1087        ParseToken(lltok::comma, "expected ',' in argument list"))
1088      return true;
1089
1090    // Parse the argument.
1091    LocTy ArgLoc;
1092    PATypeHolder ArgTy(Type::VoidTy);
1093    unsigned ArgAttrs1, ArgAttrs2;
1094    Value *V;
1095    if (ParseType(ArgTy, ArgLoc) ||
1096        ParseOptionalAttrs(ArgAttrs1, 0) ||
1097        ParseValue(ArgTy, V, PFS) ||
1098        // FIXME: Should not allow attributes after the argument, remove this in
1099        // LLVM 3.0.
1100        ParseOptionalAttrs(ArgAttrs2, 3))
1101      return true;
1102    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1103  }
1104
1105  Lex.Lex();  // Lex the ')'.
1106  return false;
1107}
1108
1109
1110
1111/// ParseArgumentList - Parse the argument list for a function type or function
1112/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1113///   ::= '(' ArgTypeListI ')'
1114/// ArgTypeListI
1115///   ::= /*empty*/
1116///   ::= '...'
1117///   ::= ArgTypeList ',' '...'
1118///   ::= ArgType (',' ArgType)*
1119///
1120bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1121                                 bool &isVarArg, bool inType) {
1122  isVarArg = false;
1123  assert(Lex.getKind() == lltok::lparen);
1124  Lex.Lex(); // eat the (.
1125
1126  if (Lex.getKind() == lltok::rparen) {
1127    // empty
1128  } else if (Lex.getKind() == lltok::dotdotdot) {
1129    isVarArg = true;
1130    Lex.Lex();
1131  } else {
1132    LocTy TypeLoc = Lex.getLoc();
1133    PATypeHolder ArgTy(Type::VoidTy);
1134    unsigned Attrs;
1135    std::string Name;
1136
1137    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1138    // types (such as a function returning a pointer to itself).  If parsing a
1139    // function prototype, we require fully resolved types.
1140    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1141        ParseOptionalAttrs(Attrs, 0)) return true;
1142
1143    if (ArgTy == Type::VoidTy)
1144      return Error(TypeLoc, "argument can not have void type");
1145
1146    if (Lex.getKind() == lltok::LocalVar ||
1147        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1148      Name = Lex.getStrVal();
1149      Lex.Lex();
1150    }
1151
1152    if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1153      return Error(TypeLoc, "invalid type for function argument");
1154
1155    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1156
1157    while (EatIfPresent(lltok::comma)) {
1158      // Handle ... at end of arg list.
1159      if (EatIfPresent(lltok::dotdotdot)) {
1160        isVarArg = true;
1161        break;
1162      }
1163
1164      // Otherwise must be an argument type.
1165      TypeLoc = Lex.getLoc();
1166      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1167          ParseOptionalAttrs(Attrs, 0)) return true;
1168
1169      if (ArgTy == Type::VoidTy)
1170        return Error(TypeLoc, "argument can not have void type");
1171
1172      if (Lex.getKind() == lltok::LocalVar ||
1173          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1174        Name = Lex.getStrVal();
1175        Lex.Lex();
1176      } else {
1177        Name = "";
1178      }
1179
1180      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1181        return Error(TypeLoc, "invalid type for function argument");
1182
1183      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1184    }
1185  }
1186
1187  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1188}
1189
1190/// ParseFunctionType
1191///  ::= Type ArgumentList OptionalAttrs
1192bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1193  assert(Lex.getKind() == lltok::lparen);
1194
1195  if (!FunctionType::isValidReturnType(Result))
1196    return TokError("invalid function return type");
1197
1198  std::vector<ArgInfo> ArgList;
1199  bool isVarArg;
1200  unsigned Attrs;
1201  if (ParseArgumentList(ArgList, isVarArg, true) ||
1202      // FIXME: Allow, but ignore attributes on function types!
1203      // FIXME: Remove in LLVM 3.0
1204      ParseOptionalAttrs(Attrs, 2))
1205    return true;
1206
1207  // Reject names on the arguments lists.
1208  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1209    if (!ArgList[i].Name.empty())
1210      return Error(ArgList[i].Loc, "argument name invalid in function type");
1211    if (!ArgList[i].Attrs != 0) {
1212      // Allow but ignore attributes on function types; this permits
1213      // auto-upgrade.
1214      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1215    }
1216  }
1217
1218  std::vector<const Type*> ArgListTy;
1219  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1220    ArgListTy.push_back(ArgList[i].Type);
1221
1222  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1223  return false;
1224}
1225
1226/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1227///   TypeRec
1228///     ::= '{' '}'
1229///     ::= '{' TypeRec (',' TypeRec)* '}'
1230///     ::= '<' '{' '}' '>'
1231///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1232bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1233  assert(Lex.getKind() == lltok::lbrace);
1234  Lex.Lex(); // Consume the '{'
1235
1236  if (EatIfPresent(lltok::rbrace)) {
1237    Result = StructType::get(std::vector<const Type*>(), Packed);
1238    return false;
1239  }
1240
1241  std::vector<PATypeHolder> ParamsList;
1242  LocTy EltTyLoc = Lex.getLoc();
1243  if (ParseTypeRec(Result)) return true;
1244  ParamsList.push_back(Result);
1245
1246  if (Result == Type::VoidTy)
1247    return Error(EltTyLoc, "struct element can not have void type");
1248
1249  while (EatIfPresent(lltok::comma)) {
1250    EltTyLoc = Lex.getLoc();
1251    if (ParseTypeRec(Result)) return true;
1252
1253    if (Result == Type::VoidTy)
1254      return Error(EltTyLoc, "struct element can not have void type");
1255
1256    ParamsList.push_back(Result);
1257  }
1258
1259  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1260    return true;
1261
1262  std::vector<const Type*> ParamsListTy;
1263  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1264    ParamsListTy.push_back(ParamsList[i].get());
1265  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1266  return false;
1267}
1268
1269/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1270/// token has already been consumed.
1271///   TypeRec
1272///     ::= '[' APSINTVAL 'x' Types ']'
1273///     ::= '<' APSINTVAL 'x' Types '>'
1274bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1275  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1276      Lex.getAPSIntVal().getBitWidth() > 64)
1277    return TokError("expected number in address space");
1278
1279  LocTy SizeLoc = Lex.getLoc();
1280  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1281  Lex.Lex();
1282
1283  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1284      return true;
1285
1286  LocTy TypeLoc = Lex.getLoc();
1287  PATypeHolder EltTy(Type::VoidTy);
1288  if (ParseTypeRec(EltTy)) return true;
1289
1290  if (EltTy == Type::VoidTy)
1291    return Error(TypeLoc, "array and vector element type cannot be void");
1292
1293  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1294                 "expected end of sequential type"))
1295    return true;
1296
1297  if (isVector) {
1298    if (Size == 0)
1299      return Error(SizeLoc, "zero element vector is illegal");
1300    if ((unsigned)Size != Size)
1301      return Error(SizeLoc, "size too large for vector");
1302    if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1303      return Error(TypeLoc, "vector element type must be fp or integer");
1304    Result = VectorType::get(EltTy, unsigned(Size));
1305  } else {
1306    if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1307      return Error(TypeLoc, "invalid array element type");
1308    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1309  }
1310  return false;
1311}
1312
1313//===----------------------------------------------------------------------===//
1314// Function Semantic Analysis.
1315//===----------------------------------------------------------------------===//
1316
1317LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1318  : P(p), F(f) {
1319
1320  // Insert unnamed arguments into the NumberedVals list.
1321  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1322       AI != E; ++AI)
1323    if (!AI->hasName())
1324      NumberedVals.push_back(AI);
1325}
1326
1327LLParser::PerFunctionState::~PerFunctionState() {
1328  // If there were any forward referenced non-basicblock values, delete them.
1329  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1330       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1331    if (!isa<BasicBlock>(I->second.first)) {
1332      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1333                                                          ->getType()));
1334      delete I->second.first;
1335      I->second.first = 0;
1336    }
1337
1338  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1339       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1340    if (!isa<BasicBlock>(I->second.first)) {
1341      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1342                                                          ->getType()));
1343      delete I->second.first;
1344      I->second.first = 0;
1345    }
1346}
1347
1348bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1349  if (!ForwardRefVals.empty())
1350    return P.Error(ForwardRefVals.begin()->second.second,
1351                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1352                   "'");
1353  if (!ForwardRefValIDs.empty())
1354    return P.Error(ForwardRefValIDs.begin()->second.second,
1355                   "use of undefined value '%" +
1356                   utostr(ForwardRefValIDs.begin()->first) + "'");
1357  return false;
1358}
1359
1360
1361/// GetVal - Get a value with the specified name or ID, creating a
1362/// forward reference record if needed.  This can return null if the value
1363/// exists but does not have the right type.
1364Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1365                                          const Type *Ty, LocTy Loc) {
1366  // Look this name up in the normal function symbol table.
1367  Value *Val = F.getValueSymbolTable().lookup(Name);
1368
1369  // If this is a forward reference for the value, see if we already created a
1370  // forward ref record.
1371  if (Val == 0) {
1372    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1373      I = ForwardRefVals.find(Name);
1374    if (I != ForwardRefVals.end())
1375      Val = I->second.first;
1376  }
1377
1378  // If we have the value in the symbol table or fwd-ref table, return it.
1379  if (Val) {
1380    if (Val->getType() == Ty) return Val;
1381    if (Ty == Type::LabelTy)
1382      P.Error(Loc, "'%" + Name + "' is not a basic block");
1383    else
1384      P.Error(Loc, "'%" + Name + "' defined with type '" +
1385              Val->getType()->getDescription() + "'");
1386    return 0;
1387  }
1388
1389  // Don't make placeholders with invalid type.
1390  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1391    P.Error(Loc, "invalid use of a non-first-class type");
1392    return 0;
1393  }
1394
1395  // Otherwise, create a new forward reference for this value and remember it.
1396  Value *FwdVal;
1397  if (Ty == Type::LabelTy)
1398    FwdVal = BasicBlock::Create(Name, &F);
1399  else
1400    FwdVal = new Argument(Ty, Name);
1401
1402  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1403  return FwdVal;
1404}
1405
1406Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1407                                          LocTy Loc) {
1408  // Look this name up in the normal function symbol table.
1409  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1410
1411  // If this is a forward reference for the value, see if we already created a
1412  // forward ref record.
1413  if (Val == 0) {
1414    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1415      I = ForwardRefValIDs.find(ID);
1416    if (I != ForwardRefValIDs.end())
1417      Val = I->second.first;
1418  }
1419
1420  // If we have the value in the symbol table or fwd-ref table, return it.
1421  if (Val) {
1422    if (Val->getType() == Ty) return Val;
1423    if (Ty == Type::LabelTy)
1424      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1425    else
1426      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1427              Val->getType()->getDescription() + "'");
1428    return 0;
1429  }
1430
1431  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1432    P.Error(Loc, "invalid use of a non-first-class type");
1433    return 0;
1434  }
1435
1436  // Otherwise, create a new forward reference for this value and remember it.
1437  Value *FwdVal;
1438  if (Ty == Type::LabelTy)
1439    FwdVal = BasicBlock::Create("", &F);
1440  else
1441    FwdVal = new Argument(Ty);
1442
1443  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1444  return FwdVal;
1445}
1446
1447/// SetInstName - After an instruction is parsed and inserted into its
1448/// basic block, this installs its name.
1449bool LLParser::PerFunctionState::SetInstName(int NameID,
1450                                             const std::string &NameStr,
1451                                             LocTy NameLoc, Instruction *Inst) {
1452  // If this instruction has void type, it cannot have a name or ID specified.
1453  if (Inst->getType() == Type::VoidTy) {
1454    if (NameID != -1 || !NameStr.empty())
1455      return P.Error(NameLoc, "instructions returning void cannot have a name");
1456    return false;
1457  }
1458
1459  // If this was a numbered instruction, verify that the instruction is the
1460  // expected value and resolve any forward references.
1461  if (NameStr.empty()) {
1462    // If neither a name nor an ID was specified, just use the next ID.
1463    if (NameID == -1)
1464      NameID = NumberedVals.size();
1465
1466    if (unsigned(NameID) != NumberedVals.size())
1467      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1468                     utostr(NumberedVals.size()) + "'");
1469
1470    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1471      ForwardRefValIDs.find(NameID);
1472    if (FI != ForwardRefValIDs.end()) {
1473      if (FI->second.first->getType() != Inst->getType())
1474        return P.Error(NameLoc, "instruction forward referenced with type '" +
1475                       FI->second.first->getType()->getDescription() + "'");
1476      FI->second.first->replaceAllUsesWith(Inst);
1477      ForwardRefValIDs.erase(FI);
1478    }
1479
1480    NumberedVals.push_back(Inst);
1481    return false;
1482  }
1483
1484  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1485  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1486    FI = ForwardRefVals.find(NameStr);
1487  if (FI != ForwardRefVals.end()) {
1488    if (FI->second.first->getType() != Inst->getType())
1489      return P.Error(NameLoc, "instruction forward referenced with type '" +
1490                     FI->second.first->getType()->getDescription() + "'");
1491    FI->second.first->replaceAllUsesWith(Inst);
1492    ForwardRefVals.erase(FI);
1493  }
1494
1495  // Set the name on the instruction.
1496  Inst->setName(NameStr);
1497
1498  if (Inst->getNameStr() != NameStr)
1499    return P.Error(NameLoc, "multiple definition of local value named '" +
1500                   NameStr + "'");
1501  return false;
1502}
1503
1504/// GetBB - Get a basic block with the specified name or ID, creating a
1505/// forward reference record if needed.
1506BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1507                                              LocTy Loc) {
1508  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1509}
1510
1511BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1512  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1513}
1514
1515/// DefineBB - Define the specified basic block, which is either named or
1516/// unnamed.  If there is an error, this returns null otherwise it returns
1517/// the block being defined.
1518BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1519                                                 LocTy Loc) {
1520  BasicBlock *BB;
1521  if (Name.empty())
1522    BB = GetBB(NumberedVals.size(), Loc);
1523  else
1524    BB = GetBB(Name, Loc);
1525  if (BB == 0) return 0; // Already diagnosed error.
1526
1527  // Move the block to the end of the function.  Forward ref'd blocks are
1528  // inserted wherever they happen to be referenced.
1529  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1530
1531  // Remove the block from forward ref sets.
1532  if (Name.empty()) {
1533    ForwardRefValIDs.erase(NumberedVals.size());
1534    NumberedVals.push_back(BB);
1535  } else {
1536    // BB forward references are already in the function symbol table.
1537    ForwardRefVals.erase(Name);
1538  }
1539
1540  return BB;
1541}
1542
1543//===----------------------------------------------------------------------===//
1544// Constants.
1545//===----------------------------------------------------------------------===//
1546
1547/// ParseValID - Parse an abstract value that doesn't necessarily have a
1548/// type implied.  For example, if we parse "4" we don't know what integer type
1549/// it has.  The value will later be combined with its type and checked for
1550/// sanity.
1551bool LLParser::ParseValID(ValID &ID) {
1552  ID.Loc = Lex.getLoc();
1553  switch (Lex.getKind()) {
1554  default: return TokError("expected value token");
1555  case lltok::GlobalID:  // @42
1556    ID.UIntVal = Lex.getUIntVal();
1557    ID.Kind = ValID::t_GlobalID;
1558    break;
1559  case lltok::GlobalVar:  // @foo
1560    ID.StrVal = Lex.getStrVal();
1561    ID.Kind = ValID::t_GlobalName;
1562    break;
1563  case lltok::LocalVarID:  // %42
1564    ID.UIntVal = Lex.getUIntVal();
1565    ID.Kind = ValID::t_LocalID;
1566    break;
1567  case lltok::LocalVar:  // %foo
1568  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1569    ID.StrVal = Lex.getStrVal();
1570    ID.Kind = ValID::t_LocalName;
1571    break;
1572  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1573    ID.Kind = ValID::t_Constant;
1574    Lex.Lex();
1575    if (Lex.getKind() == lltok::lbrace) {
1576      SmallVector<Value*, 16> Elts;
1577      if (ParseMDNodeVector(Elts) ||
1578          ParseToken(lltok::rbrace, "expected end of metadata node"))
1579        return true;
1580
1581      ID.ConstantVal = MDNode::get(Elts.data(), Elts.size());
1582      return false;
1583    }
1584
1585    // MDString:
1586    //   ::= '!' STRINGCONSTANT
1587    std::string Str;
1588    if (ParseStringConstant(Str)) return true;
1589
1590    ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1591    return false;
1592  }
1593  case lltok::APSInt:
1594    ID.APSIntVal = Lex.getAPSIntVal();
1595    ID.Kind = ValID::t_APSInt;
1596    break;
1597  case lltok::APFloat:
1598    ID.APFloatVal = Lex.getAPFloatVal();
1599    ID.Kind = ValID::t_APFloat;
1600    break;
1601  case lltok::kw_true:
1602    ID.ConstantVal = ConstantInt::getTrue();
1603    ID.Kind = ValID::t_Constant;
1604    break;
1605  case lltok::kw_false:
1606    ID.ConstantVal = ConstantInt::getFalse();
1607    ID.Kind = ValID::t_Constant;
1608    break;
1609  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1610  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1611  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1612
1613  case lltok::lbrace: {
1614    // ValID ::= '{' ConstVector '}'
1615    Lex.Lex();
1616    SmallVector<Constant*, 16> Elts;
1617    if (ParseGlobalValueVector(Elts) ||
1618        ParseToken(lltok::rbrace, "expected end of struct constant"))
1619      return true;
1620
1621    ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false);
1622    ID.Kind = ValID::t_Constant;
1623    return false;
1624  }
1625  case lltok::less: {
1626    // ValID ::= '<' ConstVector '>'         --> Vector.
1627    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1628    Lex.Lex();
1629    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1630
1631    SmallVector<Constant*, 16> Elts;
1632    LocTy FirstEltLoc = Lex.getLoc();
1633    if (ParseGlobalValueVector(Elts) ||
1634        (isPackedStruct &&
1635         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1636        ParseToken(lltok::greater, "expected end of constant"))
1637      return true;
1638
1639    if (isPackedStruct) {
1640      ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), true);
1641      ID.Kind = ValID::t_Constant;
1642      return false;
1643    }
1644
1645    if (Elts.empty())
1646      return Error(ID.Loc, "constant vector must not be empty");
1647
1648    if (!Elts[0]->getType()->isInteger() &&
1649        !Elts[0]->getType()->isFloatingPoint())
1650      return Error(FirstEltLoc,
1651                   "vector elements must have integer or floating point type");
1652
1653    // Verify that all the vector elements have the same type.
1654    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1655      if (Elts[i]->getType() != Elts[0]->getType())
1656        return Error(FirstEltLoc,
1657                     "vector element #" + utostr(i) +
1658                    " is not of type '" + Elts[0]->getType()->getDescription());
1659
1660    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1661    ID.Kind = ValID::t_Constant;
1662    return false;
1663  }
1664  case lltok::lsquare: {   // Array Constant
1665    Lex.Lex();
1666    SmallVector<Constant*, 16> Elts;
1667    LocTy FirstEltLoc = Lex.getLoc();
1668    if (ParseGlobalValueVector(Elts) ||
1669        ParseToken(lltok::rsquare, "expected end of array constant"))
1670      return true;
1671
1672    // Handle empty element.
1673    if (Elts.empty()) {
1674      // Use undef instead of an array because it's inconvenient to determine
1675      // the element type at this point, there being no elements to examine.
1676      ID.Kind = ValID::t_EmptyArray;
1677      return false;
1678    }
1679
1680    if (!Elts[0]->getType()->isFirstClassType())
1681      return Error(FirstEltLoc, "invalid array element type: " +
1682                   Elts[0]->getType()->getDescription());
1683
1684    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1685
1686    // Verify all elements are correct type!
1687    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1688      if (Elts[i]->getType() != Elts[0]->getType())
1689        return Error(FirstEltLoc,
1690                     "array element #" + utostr(i) +
1691                     " is not of type '" +Elts[0]->getType()->getDescription());
1692    }
1693
1694    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1695    ID.Kind = ValID::t_Constant;
1696    return false;
1697  }
1698  case lltok::kw_c:  // c "foo"
1699    Lex.Lex();
1700    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1701    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1702    ID.Kind = ValID::t_Constant;
1703    return false;
1704
1705  case lltok::kw_asm: {
1706    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1707    bool HasSideEffect;
1708    Lex.Lex();
1709    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1710        ParseStringConstant(ID.StrVal) ||
1711        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1712        ParseToken(lltok::StringConstant, "expected constraint string"))
1713      return true;
1714    ID.StrVal2 = Lex.getStrVal();
1715    ID.UIntVal = HasSideEffect;
1716    ID.Kind = ValID::t_InlineAsm;
1717    return false;
1718  }
1719
1720  case lltok::kw_trunc:
1721  case lltok::kw_zext:
1722  case lltok::kw_sext:
1723  case lltok::kw_fptrunc:
1724  case lltok::kw_fpext:
1725  case lltok::kw_bitcast:
1726  case lltok::kw_uitofp:
1727  case lltok::kw_sitofp:
1728  case lltok::kw_fptoui:
1729  case lltok::kw_fptosi:
1730  case lltok::kw_inttoptr:
1731  case lltok::kw_ptrtoint: {
1732    unsigned Opc = Lex.getUIntVal();
1733    PATypeHolder DestTy(Type::VoidTy);
1734    Constant *SrcVal;
1735    Lex.Lex();
1736    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1737        ParseGlobalTypeAndValue(SrcVal) ||
1738        ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1739        ParseType(DestTy) ||
1740        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1741      return true;
1742    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1743      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1744                   SrcVal->getType()->getDescription() + "' to '" +
1745                   DestTy->getDescription() + "'");
1746    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1747                                           DestTy);
1748    ID.Kind = ValID::t_Constant;
1749    return false;
1750  }
1751  case lltok::kw_extractvalue: {
1752    Lex.Lex();
1753    Constant *Val;
1754    SmallVector<unsigned, 4> Indices;
1755    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1756        ParseGlobalTypeAndValue(Val) ||
1757        ParseIndexList(Indices) ||
1758        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1759      return true;
1760    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1761      return Error(ID.Loc, "extractvalue operand must be array or struct");
1762    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1763                                          Indices.end()))
1764      return Error(ID.Loc, "invalid indices for extractvalue");
1765    ID.ConstantVal =
1766      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1767    ID.Kind = ValID::t_Constant;
1768    return false;
1769  }
1770  case lltok::kw_insertvalue: {
1771    Lex.Lex();
1772    Constant *Val0, *Val1;
1773    SmallVector<unsigned, 4> Indices;
1774    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1775        ParseGlobalTypeAndValue(Val0) ||
1776        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1777        ParseGlobalTypeAndValue(Val1) ||
1778        ParseIndexList(Indices) ||
1779        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1780      return true;
1781    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1782      return Error(ID.Loc, "extractvalue operand must be array or struct");
1783    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1784                                          Indices.end()))
1785      return Error(ID.Loc, "invalid indices for insertvalue");
1786    ID.ConstantVal =
1787      ConstantExpr::getInsertValue(Val0, Val1, Indices.data(), Indices.size());
1788    ID.Kind = ValID::t_Constant;
1789    return false;
1790  }
1791  case lltok::kw_icmp:
1792  case lltok::kw_fcmp:
1793  case lltok::kw_vicmp:
1794  case lltok::kw_vfcmp: {
1795    unsigned PredVal, Opc = Lex.getUIntVal();
1796    Constant *Val0, *Val1;
1797    Lex.Lex();
1798    if (ParseCmpPredicate(PredVal, Opc) ||
1799        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1800        ParseGlobalTypeAndValue(Val0) ||
1801        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1802        ParseGlobalTypeAndValue(Val1) ||
1803        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1804      return true;
1805
1806    if (Val0->getType() != Val1->getType())
1807      return Error(ID.Loc, "compare operands must have the same type");
1808
1809    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1810
1811    if (Opc == Instruction::FCmp) {
1812      if (!Val0->getType()->isFPOrFPVector())
1813        return Error(ID.Loc, "fcmp requires floating point operands");
1814      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1815    } else if (Opc == Instruction::ICmp) {
1816      if (!Val0->getType()->isIntOrIntVector() &&
1817          !isa<PointerType>(Val0->getType()))
1818        return Error(ID.Loc, "icmp requires pointer or integer operands");
1819      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1820    } else if (Opc == Instruction::VFCmp) {
1821      // FIXME: REMOVE VFCMP Support
1822      if (!Val0->getType()->isFPOrFPVector() ||
1823          !isa<VectorType>(Val0->getType()))
1824        return Error(ID.Loc, "vfcmp requires vector floating point operands");
1825      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1826    } else if (Opc == Instruction::VICmp) {
1827      // FIXME: REMOVE VICMP Support
1828      if (!Val0->getType()->isIntOrIntVector() ||
1829          !isa<VectorType>(Val0->getType()))
1830        return Error(ID.Loc, "vicmp requires vector floating point operands");
1831      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1832    }
1833    ID.Kind = ValID::t_Constant;
1834    return false;
1835  }
1836
1837  // Binary Operators.
1838  case lltok::kw_add:
1839  case lltok::kw_fadd:
1840  case lltok::kw_sub:
1841  case lltok::kw_fsub:
1842  case lltok::kw_mul:
1843  case lltok::kw_fmul:
1844  case lltok::kw_udiv:
1845  case lltok::kw_sdiv:
1846  case lltok::kw_fdiv:
1847  case lltok::kw_urem:
1848  case lltok::kw_srem:
1849  case lltok::kw_frem: {
1850    unsigned Opc = Lex.getUIntVal();
1851    Constant *Val0, *Val1;
1852    Lex.Lex();
1853    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1854        ParseGlobalTypeAndValue(Val0) ||
1855        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1856        ParseGlobalTypeAndValue(Val1) ||
1857        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1858      return true;
1859    if (Val0->getType() != Val1->getType())
1860      return Error(ID.Loc, "operands of constexpr must have same type");
1861    if (!Val0->getType()->isIntOrIntVector() &&
1862        !Val0->getType()->isFPOrFPVector())
1863      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1864    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1865    ID.Kind = ValID::t_Constant;
1866    return false;
1867  }
1868
1869  // Logical Operations
1870  case lltok::kw_shl:
1871  case lltok::kw_lshr:
1872  case lltok::kw_ashr:
1873  case lltok::kw_and:
1874  case lltok::kw_or:
1875  case lltok::kw_xor: {
1876    unsigned Opc = Lex.getUIntVal();
1877    Constant *Val0, *Val1;
1878    Lex.Lex();
1879    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1880        ParseGlobalTypeAndValue(Val0) ||
1881        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1882        ParseGlobalTypeAndValue(Val1) ||
1883        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1884      return true;
1885    if (Val0->getType() != Val1->getType())
1886      return Error(ID.Loc, "operands of constexpr must have same type");
1887    if (!Val0->getType()->isIntOrIntVector())
1888      return Error(ID.Loc,
1889                   "constexpr requires integer or integer vector operands");
1890    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1891    ID.Kind = ValID::t_Constant;
1892    return false;
1893  }
1894
1895  case lltok::kw_getelementptr:
1896  case lltok::kw_shufflevector:
1897  case lltok::kw_insertelement:
1898  case lltok::kw_extractelement:
1899  case lltok::kw_select: {
1900    unsigned Opc = Lex.getUIntVal();
1901    SmallVector<Constant*, 16> Elts;
1902    Lex.Lex();
1903    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1904        ParseGlobalValueVector(Elts) ||
1905        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1906      return true;
1907
1908    if (Opc == Instruction::GetElementPtr) {
1909      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1910        return Error(ID.Loc, "getelementptr requires pointer operand");
1911
1912      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1913                                             (Value**)&Elts[1], Elts.size()-1))
1914        return Error(ID.Loc, "invalid indices for getelementptr");
1915      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1916                                                      &Elts[1], Elts.size()-1);
1917    } else if (Opc == Instruction::Select) {
1918      if (Elts.size() != 3)
1919        return Error(ID.Loc, "expected three operands to select");
1920      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1921                                                              Elts[2]))
1922        return Error(ID.Loc, Reason);
1923      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1924    } else if (Opc == Instruction::ShuffleVector) {
1925      if (Elts.size() != 3)
1926        return Error(ID.Loc, "expected three operands to shufflevector");
1927      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1928        return Error(ID.Loc, "invalid operands to shufflevector");
1929      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1930    } else if (Opc == Instruction::ExtractElement) {
1931      if (Elts.size() != 2)
1932        return Error(ID.Loc, "expected two operands to extractelement");
1933      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1934        return Error(ID.Loc, "invalid extractelement operands");
1935      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1936    } else {
1937      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1938      if (Elts.size() != 3)
1939      return Error(ID.Loc, "expected three operands to insertelement");
1940      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1941        return Error(ID.Loc, "invalid insertelement operands");
1942      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1943    }
1944
1945    ID.Kind = ValID::t_Constant;
1946    return false;
1947  }
1948  }
1949
1950  Lex.Lex();
1951  return false;
1952}
1953
1954/// ParseGlobalValue - Parse a global value with the specified type.
1955bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1956  V = 0;
1957  ValID ID;
1958  return ParseValID(ID) ||
1959         ConvertGlobalValIDToValue(Ty, ID, V);
1960}
1961
1962/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1963/// constant.
1964bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1965                                         Constant *&V) {
1966  if (isa<FunctionType>(Ty))
1967    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1968
1969  switch (ID.Kind) {
1970  default: assert(0 && "Unknown ValID!");
1971  case ValID::t_LocalID:
1972  case ValID::t_LocalName:
1973    return Error(ID.Loc, "invalid use of function-local name");
1974  case ValID::t_InlineAsm:
1975    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1976  case ValID::t_GlobalName:
1977    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1978    return V == 0;
1979  case ValID::t_GlobalID:
1980    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1981    return V == 0;
1982  case ValID::t_APSInt:
1983    if (!isa<IntegerType>(Ty))
1984      return Error(ID.Loc, "integer constant must have integer type");
1985    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1986    V = ConstantInt::get(ID.APSIntVal);
1987    return false;
1988  case ValID::t_APFloat:
1989    if (!Ty->isFloatingPoint() ||
1990        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1991      return Error(ID.Loc, "floating point constant invalid for type");
1992
1993    // The lexer has no type info, so builds all float and double FP constants
1994    // as double.  Fix this here.  Long double does not need this.
1995    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1996        Ty == Type::FloatTy) {
1997      bool Ignored;
1998      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1999                            &Ignored);
2000    }
2001    V = ConstantFP::get(ID.APFloatVal);
2002
2003    if (V->getType() != Ty)
2004      return Error(ID.Loc, "floating point constant does not have type '" +
2005                   Ty->getDescription() + "'");
2006
2007    return false;
2008  case ValID::t_Null:
2009    if (!isa<PointerType>(Ty))
2010      return Error(ID.Loc, "null must be a pointer type");
2011    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2012    return false;
2013  case ValID::t_Undef:
2014    // FIXME: LabelTy should not be a first-class type.
2015    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2016        !isa<OpaqueType>(Ty))
2017      return Error(ID.Loc, "invalid type for undef constant");
2018    V = UndefValue::get(Ty);
2019    return false;
2020  case ValID::t_EmptyArray:
2021    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2022      return Error(ID.Loc, "invalid empty array initializer");
2023    V = UndefValue::get(Ty);
2024    return false;
2025  case ValID::t_Zero:
2026    // FIXME: LabelTy should not be a first-class type.
2027    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2028      return Error(ID.Loc, "invalid type for null constant");
2029    V = Constant::getNullValue(Ty);
2030    return false;
2031  case ValID::t_Constant:
2032    if (ID.ConstantVal->getType() != Ty)
2033      return Error(ID.Loc, "constant expression type mismatch");
2034    V = ID.ConstantVal;
2035    return false;
2036  }
2037}
2038
2039bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2040  PATypeHolder Type(Type::VoidTy);
2041  return ParseType(Type) ||
2042         ParseGlobalValue(Type, V);
2043}
2044
2045/// ParseGlobalValueVector
2046///   ::= /*empty*/
2047///   ::= TypeAndValue (',' TypeAndValue)*
2048bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2049  // Empty list.
2050  if (Lex.getKind() == lltok::rbrace ||
2051      Lex.getKind() == lltok::rsquare ||
2052      Lex.getKind() == lltok::greater ||
2053      Lex.getKind() == lltok::rparen)
2054    return false;
2055
2056  Constant *C;
2057  if (ParseGlobalTypeAndValue(C)) return true;
2058  Elts.push_back(C);
2059
2060  while (EatIfPresent(lltok::comma)) {
2061    if (ParseGlobalTypeAndValue(C)) return true;
2062    Elts.push_back(C);
2063  }
2064
2065  return false;
2066}
2067
2068
2069//===----------------------------------------------------------------------===//
2070// Function Parsing.
2071//===----------------------------------------------------------------------===//
2072
2073bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2074                                   PerFunctionState &PFS) {
2075  if (ID.Kind == ValID::t_LocalID)
2076    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2077  else if (ID.Kind == ValID::t_LocalName)
2078    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2079  else if (ID.Kind == ValID::t_InlineAsm) {
2080    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2081    const FunctionType *FTy =
2082      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2083    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2084      return Error(ID.Loc, "invalid type for inline asm constraint string");
2085    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2086    return false;
2087  } else {
2088    Constant *C;
2089    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2090    V = C;
2091    return false;
2092  }
2093
2094  return V == 0;
2095}
2096
2097bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2098  V = 0;
2099  ValID ID;
2100  return ParseValID(ID) ||
2101         ConvertValIDToValue(Ty, ID, V, PFS);
2102}
2103
2104bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2105  PATypeHolder T(Type::VoidTy);
2106  return ParseType(T) ||
2107         ParseValue(T, V, PFS);
2108}
2109
2110/// FunctionHeader
2111///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2112///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2113///       OptionalAlign OptGC
2114bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2115  // Parse the linkage.
2116  LocTy LinkageLoc = Lex.getLoc();
2117  unsigned Linkage;
2118
2119  unsigned Visibility, CC, RetAttrs;
2120  PATypeHolder RetType(Type::VoidTy);
2121  LocTy RetTypeLoc = Lex.getLoc();
2122  if (ParseOptionalLinkage(Linkage) ||
2123      ParseOptionalVisibility(Visibility) ||
2124      ParseOptionalCallingConv(CC) ||
2125      ParseOptionalAttrs(RetAttrs, 1) ||
2126      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2127    return true;
2128
2129  // Verify that the linkage is ok.
2130  switch ((GlobalValue::LinkageTypes)Linkage) {
2131  case GlobalValue::ExternalLinkage:
2132    break; // always ok.
2133  case GlobalValue::DLLImportLinkage:
2134  case GlobalValue::ExternalWeakLinkage:
2135    if (isDefine)
2136      return Error(LinkageLoc, "invalid linkage for function definition");
2137    break;
2138  case GlobalValue::PrivateLinkage:
2139  case GlobalValue::InternalLinkage:
2140  case GlobalValue::AvailableExternallyLinkage:
2141  case GlobalValue::LinkOnceAnyLinkage:
2142  case GlobalValue::LinkOnceODRLinkage:
2143  case GlobalValue::WeakAnyLinkage:
2144  case GlobalValue::WeakODRLinkage:
2145  case GlobalValue::DLLExportLinkage:
2146    if (!isDefine)
2147      return Error(LinkageLoc, "invalid linkage for function declaration");
2148    break;
2149  case GlobalValue::AppendingLinkage:
2150  case GlobalValue::GhostLinkage:
2151  case GlobalValue::CommonLinkage:
2152    return Error(LinkageLoc, "invalid function linkage type");
2153  }
2154
2155  if (!FunctionType::isValidReturnType(RetType) ||
2156      isa<OpaqueType>(RetType))
2157    return Error(RetTypeLoc, "invalid function return type");
2158
2159  LocTy NameLoc = Lex.getLoc();
2160
2161  std::string FunctionName;
2162  if (Lex.getKind() == lltok::GlobalVar) {
2163    FunctionName = Lex.getStrVal();
2164  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2165    unsigned NameID = Lex.getUIntVal();
2166
2167    if (NameID != NumberedVals.size())
2168      return TokError("function expected to be numbered '%" +
2169                      utostr(NumberedVals.size()) + "'");
2170  } else {
2171    return TokError("expected function name");
2172  }
2173
2174  Lex.Lex();
2175
2176  if (Lex.getKind() != lltok::lparen)
2177    return TokError("expected '(' in function argument list");
2178
2179  std::vector<ArgInfo> ArgList;
2180  bool isVarArg;
2181  unsigned FuncAttrs;
2182  std::string Section;
2183  unsigned Alignment;
2184  std::string GC;
2185
2186  if (ParseArgumentList(ArgList, isVarArg, false) ||
2187      ParseOptionalAttrs(FuncAttrs, 2) ||
2188      (EatIfPresent(lltok::kw_section) &&
2189       ParseStringConstant(Section)) ||
2190      ParseOptionalAlignment(Alignment) ||
2191      (EatIfPresent(lltok::kw_gc) &&
2192       ParseStringConstant(GC)))
2193    return true;
2194
2195  // If the alignment was parsed as an attribute, move to the alignment field.
2196  if (FuncAttrs & Attribute::Alignment) {
2197    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2198    FuncAttrs &= ~Attribute::Alignment;
2199  }
2200
2201  // Okay, if we got here, the function is syntactically valid.  Convert types
2202  // and do semantic checks.
2203  std::vector<const Type*> ParamTypeList;
2204  SmallVector<AttributeWithIndex, 8> Attrs;
2205  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2206  // attributes.
2207  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2208  if (FuncAttrs & ObsoleteFuncAttrs) {
2209    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2210    FuncAttrs &= ~ObsoleteFuncAttrs;
2211  }
2212
2213  if (RetAttrs != Attribute::None)
2214    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2215
2216  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2217    ParamTypeList.push_back(ArgList[i].Type);
2218    if (ArgList[i].Attrs != Attribute::None)
2219      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2220  }
2221
2222  if (FuncAttrs != Attribute::None)
2223    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2224
2225  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2226
2227  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2228      RetType != Type::VoidTy)
2229    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2230
2231  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2232  const PointerType *PFT = PointerType::getUnqual(FT);
2233
2234  Fn = 0;
2235  if (!FunctionName.empty()) {
2236    // If this was a definition of a forward reference, remove the definition
2237    // from the forward reference table and fill in the forward ref.
2238    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2239      ForwardRefVals.find(FunctionName);
2240    if (FRVI != ForwardRefVals.end()) {
2241      Fn = M->getFunction(FunctionName);
2242      ForwardRefVals.erase(FRVI);
2243    } else if ((Fn = M->getFunction(FunctionName))) {
2244      // If this function already exists in the symbol table, then it is
2245      // multiply defined.  We accept a few cases for old backwards compat.
2246      // FIXME: Remove this stuff for LLVM 3.0.
2247      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2248          (!Fn->isDeclaration() && isDefine)) {
2249        // If the redefinition has different type or different attributes,
2250        // reject it.  If both have bodies, reject it.
2251        return Error(NameLoc, "invalid redefinition of function '" +
2252                     FunctionName + "'");
2253      } else if (Fn->isDeclaration()) {
2254        // Make sure to strip off any argument names so we can't get conflicts.
2255        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2256             AI != AE; ++AI)
2257          AI->setName("");
2258      }
2259    }
2260
2261  } else if (FunctionName.empty()) {
2262    // If this is a definition of a forward referenced function, make sure the
2263    // types agree.
2264    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2265      = ForwardRefValIDs.find(NumberedVals.size());
2266    if (I != ForwardRefValIDs.end()) {
2267      Fn = cast<Function>(I->second.first);
2268      if (Fn->getType() != PFT)
2269        return Error(NameLoc, "type of definition and forward reference of '@" +
2270                     utostr(NumberedVals.size()) +"' disagree");
2271      ForwardRefValIDs.erase(I);
2272    }
2273  }
2274
2275  if (Fn == 0)
2276    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2277  else // Move the forward-reference to the correct spot in the module.
2278    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2279
2280  if (FunctionName.empty())
2281    NumberedVals.push_back(Fn);
2282
2283  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2284  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2285  Fn->setCallingConv(CC);
2286  Fn->setAttributes(PAL);
2287  Fn->setAlignment(Alignment);
2288  Fn->setSection(Section);
2289  if (!GC.empty()) Fn->setGC(GC.c_str());
2290
2291  // Add all of the arguments we parsed to the function.
2292  Function::arg_iterator ArgIt = Fn->arg_begin();
2293  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2294    // If the argument has a name, insert it into the argument symbol table.
2295    if (ArgList[i].Name.empty()) continue;
2296
2297    // Set the name, if it conflicted, it will be auto-renamed.
2298    ArgIt->setName(ArgList[i].Name);
2299
2300    if (ArgIt->getNameStr() != ArgList[i].Name)
2301      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2302                   ArgList[i].Name + "'");
2303  }
2304
2305  return false;
2306}
2307
2308
2309/// ParseFunctionBody
2310///   ::= '{' BasicBlock+ '}'
2311///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2312///
2313bool LLParser::ParseFunctionBody(Function &Fn) {
2314  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2315    return TokError("expected '{' in function body");
2316  Lex.Lex();  // eat the {.
2317
2318  PerFunctionState PFS(*this, Fn);
2319
2320  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2321    if (ParseBasicBlock(PFS)) return true;
2322
2323  // Eat the }.
2324  Lex.Lex();
2325
2326  // Verify function is ok.
2327  return PFS.VerifyFunctionComplete();
2328}
2329
2330/// ParseBasicBlock
2331///   ::= LabelStr? Instruction*
2332bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2333  // If this basic block starts out with a name, remember it.
2334  std::string Name;
2335  LocTy NameLoc = Lex.getLoc();
2336  if (Lex.getKind() == lltok::LabelStr) {
2337    Name = Lex.getStrVal();
2338    Lex.Lex();
2339  }
2340
2341  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2342  if (BB == 0) return true;
2343
2344  std::string NameStr;
2345
2346  // Parse the instructions in this block until we get a terminator.
2347  Instruction *Inst;
2348  do {
2349    // This instruction may have three possibilities for a name: a) none
2350    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2351    LocTy NameLoc = Lex.getLoc();
2352    int NameID = -1;
2353    NameStr = "";
2354
2355    if (Lex.getKind() == lltok::LocalVarID) {
2356      NameID = Lex.getUIntVal();
2357      Lex.Lex();
2358      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2359        return true;
2360    } else if (Lex.getKind() == lltok::LocalVar ||
2361               // FIXME: REMOVE IN LLVM 3.0
2362               Lex.getKind() == lltok::StringConstant) {
2363      NameStr = Lex.getStrVal();
2364      Lex.Lex();
2365      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2366        return true;
2367    }
2368
2369    if (ParseInstruction(Inst, BB, PFS)) return true;
2370
2371    BB->getInstList().push_back(Inst);
2372
2373    // Set the name on the instruction.
2374    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2375  } while (!isa<TerminatorInst>(Inst));
2376
2377  return false;
2378}
2379
2380//===----------------------------------------------------------------------===//
2381// Instruction Parsing.
2382//===----------------------------------------------------------------------===//
2383
2384/// ParseInstruction - Parse one of the many different instructions.
2385///
2386bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2387                                PerFunctionState &PFS) {
2388  lltok::Kind Token = Lex.getKind();
2389  if (Token == lltok::Eof)
2390    return TokError("found end of file when expecting more instructions");
2391  LocTy Loc = Lex.getLoc();
2392  unsigned KeywordVal = Lex.getUIntVal();
2393  Lex.Lex();  // Eat the keyword.
2394
2395  switch (Token) {
2396  default:                    return Error(Loc, "expected instruction opcode");
2397  // Terminator Instructions.
2398  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2399  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2400  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2401  case lltok::kw_br:          return ParseBr(Inst, PFS);
2402  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2403  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2404  // Binary Operators.
2405  case lltok::kw_add:
2406  case lltok::kw_sub:
2407  case lltok::kw_mul:
2408    // API compatibility: Accept either integer or floating-point types.
2409    return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2410  case lltok::kw_fadd:
2411  case lltok::kw_fsub:
2412  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2413
2414  case lltok::kw_udiv:
2415  case lltok::kw_sdiv:
2416  case lltok::kw_urem:
2417  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2418  case lltok::kw_fdiv:
2419  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2420  case lltok::kw_shl:
2421  case lltok::kw_lshr:
2422  case lltok::kw_ashr:
2423  case lltok::kw_and:
2424  case lltok::kw_or:
2425  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2426  case lltok::kw_icmp:
2427  case lltok::kw_fcmp:
2428  case lltok::kw_vicmp:
2429  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, KeywordVal);
2430  // Casts.
2431  case lltok::kw_trunc:
2432  case lltok::kw_zext:
2433  case lltok::kw_sext:
2434  case lltok::kw_fptrunc:
2435  case lltok::kw_fpext:
2436  case lltok::kw_bitcast:
2437  case lltok::kw_uitofp:
2438  case lltok::kw_sitofp:
2439  case lltok::kw_fptoui:
2440  case lltok::kw_fptosi:
2441  case lltok::kw_inttoptr:
2442  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2443  // Other.
2444  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2445  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2446  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2447  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2448  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2449  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2450  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2451  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2452  // Memory.
2453  case lltok::kw_alloca:
2454  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2455  case lltok::kw_free:           return ParseFree(Inst, PFS);
2456  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2457  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2458  case lltok::kw_volatile:
2459    if (EatIfPresent(lltok::kw_load))
2460      return ParseLoad(Inst, PFS, true);
2461    else if (EatIfPresent(lltok::kw_store))
2462      return ParseStore(Inst, PFS, true);
2463    else
2464      return TokError("expected 'load' or 'store'");
2465  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2466  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2467  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2468  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2469  }
2470}
2471
2472/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2473bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2474  // FIXME: REMOVE vicmp/vfcmp!
2475  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2476    switch (Lex.getKind()) {
2477    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2478    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2479    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2480    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2481    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2482    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2483    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2484    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2485    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2486    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2487    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2488    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2489    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2490    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2491    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2492    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2493    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2494    }
2495  } else {
2496    switch (Lex.getKind()) {
2497    default: TokError("expected icmp predicate (e.g. 'eq')");
2498    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2499    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2500    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2501    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2502    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2503    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2504    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2505    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2506    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2507    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2508    }
2509  }
2510  Lex.Lex();
2511  return false;
2512}
2513
2514//===----------------------------------------------------------------------===//
2515// Terminator Instructions.
2516//===----------------------------------------------------------------------===//
2517
2518/// ParseRet - Parse a return instruction.
2519///   ::= 'ret' void
2520///   ::= 'ret' TypeAndValue
2521///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2522bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2523                        PerFunctionState &PFS) {
2524  PATypeHolder Ty(Type::VoidTy);
2525  if (ParseType(Ty, true /*void allowed*/)) return true;
2526
2527  if (Ty == Type::VoidTy) {
2528    Inst = ReturnInst::Create();
2529    return false;
2530  }
2531
2532  Value *RV;
2533  if (ParseValue(Ty, RV, PFS)) return true;
2534
2535  // The normal case is one return value.
2536  if (Lex.getKind() == lltok::comma) {
2537    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2538    // of 'ret {i32,i32} {i32 1, i32 2}'
2539    SmallVector<Value*, 8> RVs;
2540    RVs.push_back(RV);
2541
2542    while (EatIfPresent(lltok::comma)) {
2543      if (ParseTypeAndValue(RV, PFS)) return true;
2544      RVs.push_back(RV);
2545    }
2546
2547    RV = UndefValue::get(PFS.getFunction().getReturnType());
2548    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2549      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2550      BB->getInstList().push_back(I);
2551      RV = I;
2552    }
2553  }
2554  Inst = ReturnInst::Create(RV);
2555  return false;
2556}
2557
2558
2559/// ParseBr
2560///   ::= 'br' TypeAndValue
2561///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2562bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2563  LocTy Loc, Loc2;
2564  Value *Op0, *Op1, *Op2;
2565  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2566
2567  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2568    Inst = BranchInst::Create(BB);
2569    return false;
2570  }
2571
2572  if (Op0->getType() != Type::Int1Ty)
2573    return Error(Loc, "branch condition must have 'i1' type");
2574
2575  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2576      ParseTypeAndValue(Op1, Loc, PFS) ||
2577      ParseToken(lltok::comma, "expected ',' after true destination") ||
2578      ParseTypeAndValue(Op2, Loc2, PFS))
2579    return true;
2580
2581  if (!isa<BasicBlock>(Op1))
2582    return Error(Loc, "true destination of branch must be a basic block");
2583  if (!isa<BasicBlock>(Op2))
2584    return Error(Loc2, "true destination of branch must be a basic block");
2585
2586  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2587  return false;
2588}
2589
2590/// ParseSwitch
2591///  Instruction
2592///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2593///  JumpTable
2594///    ::= (TypeAndValue ',' TypeAndValue)*
2595bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2596  LocTy CondLoc, BBLoc;
2597  Value *Cond, *DefaultBB;
2598  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2599      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2600      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2601      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2602    return true;
2603
2604  if (!isa<IntegerType>(Cond->getType()))
2605    return Error(CondLoc, "switch condition must have integer type");
2606  if (!isa<BasicBlock>(DefaultBB))
2607    return Error(BBLoc, "default destination must be a basic block");
2608
2609  // Parse the jump table pairs.
2610  SmallPtrSet<Value*, 32> SeenCases;
2611  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2612  while (Lex.getKind() != lltok::rsquare) {
2613    Value *Constant, *DestBB;
2614
2615    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2616        ParseToken(lltok::comma, "expected ',' after case value") ||
2617        ParseTypeAndValue(DestBB, BBLoc, PFS))
2618      return true;
2619
2620    if (!SeenCases.insert(Constant))
2621      return Error(CondLoc, "duplicate case value in switch");
2622    if (!isa<ConstantInt>(Constant))
2623      return Error(CondLoc, "case value is not a constant integer");
2624    if (!isa<BasicBlock>(DestBB))
2625      return Error(BBLoc, "case destination is not a basic block");
2626
2627    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2628                                   cast<BasicBlock>(DestBB)));
2629  }
2630
2631  Lex.Lex();  // Eat the ']'.
2632
2633  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2634                                      Table.size());
2635  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2636    SI->addCase(Table[i].first, Table[i].second);
2637  Inst = SI;
2638  return false;
2639}
2640
2641/// ParseInvoke
2642///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2643///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2644bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2645  LocTy CallLoc = Lex.getLoc();
2646  unsigned CC, RetAttrs, FnAttrs;
2647  PATypeHolder RetType(Type::VoidTy);
2648  LocTy RetTypeLoc;
2649  ValID CalleeID;
2650  SmallVector<ParamInfo, 16> ArgList;
2651
2652  Value *NormalBB, *UnwindBB;
2653  if (ParseOptionalCallingConv(CC) ||
2654      ParseOptionalAttrs(RetAttrs, 1) ||
2655      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2656      ParseValID(CalleeID) ||
2657      ParseParameterList(ArgList, PFS) ||
2658      ParseOptionalAttrs(FnAttrs, 2) ||
2659      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2660      ParseTypeAndValue(NormalBB, PFS) ||
2661      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2662      ParseTypeAndValue(UnwindBB, PFS))
2663    return true;
2664
2665  if (!isa<BasicBlock>(NormalBB))
2666    return Error(CallLoc, "normal destination is not a basic block");
2667  if (!isa<BasicBlock>(UnwindBB))
2668    return Error(CallLoc, "unwind destination is not a basic block");
2669
2670  // If RetType is a non-function pointer type, then this is the short syntax
2671  // for the call, which means that RetType is just the return type.  Infer the
2672  // rest of the function argument types from the arguments that are present.
2673  const PointerType *PFTy = 0;
2674  const FunctionType *Ty = 0;
2675  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2676      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2677    // Pull out the types of all of the arguments...
2678    std::vector<const Type*> ParamTypes;
2679    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2680      ParamTypes.push_back(ArgList[i].V->getType());
2681
2682    if (!FunctionType::isValidReturnType(RetType))
2683      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2684
2685    Ty = FunctionType::get(RetType, ParamTypes, false);
2686    PFTy = PointerType::getUnqual(Ty);
2687  }
2688
2689  // Look up the callee.
2690  Value *Callee;
2691  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2692
2693  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2694  // function attributes.
2695  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2696  if (FnAttrs & ObsoleteFuncAttrs) {
2697    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2698    FnAttrs &= ~ObsoleteFuncAttrs;
2699  }
2700
2701  // Set up the Attributes for the function.
2702  SmallVector<AttributeWithIndex, 8> Attrs;
2703  if (RetAttrs != Attribute::None)
2704    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2705
2706  SmallVector<Value*, 8> Args;
2707
2708  // Loop through FunctionType's arguments and ensure they are specified
2709  // correctly.  Also, gather any parameter attributes.
2710  FunctionType::param_iterator I = Ty->param_begin();
2711  FunctionType::param_iterator E = Ty->param_end();
2712  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2713    const Type *ExpectedTy = 0;
2714    if (I != E) {
2715      ExpectedTy = *I++;
2716    } else if (!Ty->isVarArg()) {
2717      return Error(ArgList[i].Loc, "too many arguments specified");
2718    }
2719
2720    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2721      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2722                   ExpectedTy->getDescription() + "'");
2723    Args.push_back(ArgList[i].V);
2724    if (ArgList[i].Attrs != Attribute::None)
2725      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2726  }
2727
2728  if (I != E)
2729    return Error(CallLoc, "not enough parameters specified for call");
2730
2731  if (FnAttrs != Attribute::None)
2732    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2733
2734  // Finish off the Attributes and check them
2735  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2736
2737  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2738                                      cast<BasicBlock>(UnwindBB),
2739                                      Args.begin(), Args.end());
2740  II->setCallingConv(CC);
2741  II->setAttributes(PAL);
2742  Inst = II;
2743  return false;
2744}
2745
2746
2747
2748//===----------------------------------------------------------------------===//
2749// Binary Operators.
2750//===----------------------------------------------------------------------===//
2751
2752/// ParseArithmetic
2753///  ::= ArithmeticOps TypeAndValue ',' Value
2754///
2755/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2756/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2757bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2758                               unsigned Opc, unsigned OperandType) {
2759  LocTy Loc; Value *LHS, *RHS;
2760  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2761      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2762      ParseValue(LHS->getType(), RHS, PFS))
2763    return true;
2764
2765  bool Valid;
2766  switch (OperandType) {
2767  default: assert(0 && "Unknown operand type!");
2768  case 0: // int or FP.
2769    Valid = LHS->getType()->isIntOrIntVector() ||
2770            LHS->getType()->isFPOrFPVector();
2771    break;
2772  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2773  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2774  }
2775
2776  if (!Valid)
2777    return Error(Loc, "invalid operand type for instruction");
2778
2779  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2780  return false;
2781}
2782
2783/// ParseLogical
2784///  ::= ArithmeticOps TypeAndValue ',' Value {
2785bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2786                            unsigned Opc) {
2787  LocTy Loc; Value *LHS, *RHS;
2788  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2789      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2790      ParseValue(LHS->getType(), RHS, PFS))
2791    return true;
2792
2793  if (!LHS->getType()->isIntOrIntVector())
2794    return Error(Loc,"instruction requires integer or integer vector operands");
2795
2796  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2797  return false;
2798}
2799
2800
2801/// ParseCompare
2802///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2803///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2804///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2805///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2806bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2807                            unsigned Opc) {
2808  // Parse the integer/fp comparison predicate.
2809  LocTy Loc;
2810  unsigned Pred;
2811  Value *LHS, *RHS;
2812  if (ParseCmpPredicate(Pred, Opc) ||
2813      ParseTypeAndValue(LHS, Loc, PFS) ||
2814      ParseToken(lltok::comma, "expected ',' after compare value") ||
2815      ParseValue(LHS->getType(), RHS, PFS))
2816    return true;
2817
2818  if (Opc == Instruction::FCmp) {
2819    if (!LHS->getType()->isFPOrFPVector())
2820      return Error(Loc, "fcmp requires floating point operands");
2821    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2822  } else if (Opc == Instruction::ICmp) {
2823    if (!LHS->getType()->isIntOrIntVector() &&
2824        !isa<PointerType>(LHS->getType()))
2825      return Error(Loc, "icmp requires integer operands");
2826    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2827  } else if (Opc == Instruction::VFCmp) {
2828    if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2829      return Error(Loc, "vfcmp requires vector floating point operands");
2830    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2831  } else if (Opc == Instruction::VICmp) {
2832    if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2833      return Error(Loc, "vicmp requires vector floating point operands");
2834    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2835  }
2836  return false;
2837}
2838
2839//===----------------------------------------------------------------------===//
2840// Other Instructions.
2841//===----------------------------------------------------------------------===//
2842
2843
2844/// ParseCast
2845///   ::= CastOpc TypeAndValue 'to' Type
2846bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2847                         unsigned Opc) {
2848  LocTy Loc;  Value *Op;
2849  PATypeHolder DestTy(Type::VoidTy);
2850  if (ParseTypeAndValue(Op, Loc, PFS) ||
2851      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2852      ParseType(DestTy))
2853    return true;
2854
2855  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2856    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2857    return Error(Loc, "invalid cast opcode for cast from '" +
2858                 Op->getType()->getDescription() + "' to '" +
2859                 DestTy->getDescription() + "'");
2860  }
2861  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2862  return false;
2863}
2864
2865/// ParseSelect
2866///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2867bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2868  LocTy Loc;
2869  Value *Op0, *Op1, *Op2;
2870  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2871      ParseToken(lltok::comma, "expected ',' after select condition") ||
2872      ParseTypeAndValue(Op1, PFS) ||
2873      ParseToken(lltok::comma, "expected ',' after select value") ||
2874      ParseTypeAndValue(Op2, PFS))
2875    return true;
2876
2877  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2878    return Error(Loc, Reason);
2879
2880  Inst = SelectInst::Create(Op0, Op1, Op2);
2881  return false;
2882}
2883
2884/// ParseVA_Arg
2885///   ::= 'va_arg' TypeAndValue ',' Type
2886bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2887  Value *Op;
2888  PATypeHolder EltTy(Type::VoidTy);
2889  LocTy TypeLoc;
2890  if (ParseTypeAndValue(Op, PFS) ||
2891      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2892      ParseType(EltTy, TypeLoc))
2893    return true;
2894
2895  if (!EltTy->isFirstClassType())
2896    return Error(TypeLoc, "va_arg requires operand with first class type");
2897
2898  Inst = new VAArgInst(Op, EltTy);
2899  return false;
2900}
2901
2902/// ParseExtractElement
2903///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2904bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2905  LocTy Loc;
2906  Value *Op0, *Op1;
2907  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2908      ParseToken(lltok::comma, "expected ',' after extract value") ||
2909      ParseTypeAndValue(Op1, PFS))
2910    return true;
2911
2912  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2913    return Error(Loc, "invalid extractelement operands");
2914
2915  Inst = new ExtractElementInst(Op0, Op1);
2916  return false;
2917}
2918
2919/// ParseInsertElement
2920///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2921bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2922  LocTy Loc;
2923  Value *Op0, *Op1, *Op2;
2924  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2925      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2926      ParseTypeAndValue(Op1, PFS) ||
2927      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2928      ParseTypeAndValue(Op2, PFS))
2929    return true;
2930
2931  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2932    return Error(Loc, "invalid extractelement operands");
2933
2934  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2935  return false;
2936}
2937
2938/// ParseShuffleVector
2939///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2940bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2941  LocTy Loc;
2942  Value *Op0, *Op1, *Op2;
2943  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2944      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2945      ParseTypeAndValue(Op1, PFS) ||
2946      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2947      ParseTypeAndValue(Op2, PFS))
2948    return true;
2949
2950  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2951    return Error(Loc, "invalid extractelement operands");
2952
2953  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2954  return false;
2955}
2956
2957/// ParsePHI
2958///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value�� ']')*
2959bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2960  PATypeHolder Ty(Type::VoidTy);
2961  Value *Op0, *Op1;
2962  LocTy TypeLoc = Lex.getLoc();
2963
2964  if (ParseType(Ty) ||
2965      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2966      ParseValue(Ty, Op0, PFS) ||
2967      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2968      ParseValue(Type::LabelTy, Op1, PFS) ||
2969      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2970    return true;
2971
2972  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2973  while (1) {
2974    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2975
2976    if (!EatIfPresent(lltok::comma))
2977      break;
2978
2979    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2980        ParseValue(Ty, Op0, PFS) ||
2981        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2982        ParseValue(Type::LabelTy, Op1, PFS) ||
2983        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2984      return true;
2985  }
2986
2987  if (!Ty->isFirstClassType())
2988    return Error(TypeLoc, "phi node must have first class type");
2989
2990  PHINode *PN = PHINode::Create(Ty);
2991  PN->reserveOperandSpace(PHIVals.size());
2992  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2993    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2994  Inst = PN;
2995  return false;
2996}
2997
2998/// ParseCall
2999///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3000///       ParameterList OptionalAttrs
3001bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3002                         bool isTail) {
3003  unsigned CC, RetAttrs, FnAttrs;
3004  PATypeHolder RetType(Type::VoidTy);
3005  LocTy RetTypeLoc;
3006  ValID CalleeID;
3007  SmallVector<ParamInfo, 16> ArgList;
3008  LocTy CallLoc = Lex.getLoc();
3009
3010  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3011      ParseOptionalCallingConv(CC) ||
3012      ParseOptionalAttrs(RetAttrs, 1) ||
3013      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3014      ParseValID(CalleeID) ||
3015      ParseParameterList(ArgList, PFS) ||
3016      ParseOptionalAttrs(FnAttrs, 2))
3017    return true;
3018
3019  // If RetType is a non-function pointer type, then this is the short syntax
3020  // for the call, which means that RetType is just the return type.  Infer the
3021  // rest of the function argument types from the arguments that are present.
3022  const PointerType *PFTy = 0;
3023  const FunctionType *Ty = 0;
3024  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3025      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3026    // Pull out the types of all of the arguments...
3027    std::vector<const Type*> ParamTypes;
3028    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3029      ParamTypes.push_back(ArgList[i].V->getType());
3030
3031    if (!FunctionType::isValidReturnType(RetType))
3032      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3033
3034    Ty = FunctionType::get(RetType, ParamTypes, false);
3035    PFTy = PointerType::getUnqual(Ty);
3036  }
3037
3038  // Look up the callee.
3039  Value *Callee;
3040  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3041
3042  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3043  // function attributes.
3044  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3045  if (FnAttrs & ObsoleteFuncAttrs) {
3046    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3047    FnAttrs &= ~ObsoleteFuncAttrs;
3048  }
3049
3050  // Set up the Attributes for the function.
3051  SmallVector<AttributeWithIndex, 8> Attrs;
3052  if (RetAttrs != Attribute::None)
3053    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3054
3055  SmallVector<Value*, 8> Args;
3056
3057  // Loop through FunctionType's arguments and ensure they are specified
3058  // correctly.  Also, gather any parameter attributes.
3059  FunctionType::param_iterator I = Ty->param_begin();
3060  FunctionType::param_iterator E = Ty->param_end();
3061  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3062    const Type *ExpectedTy = 0;
3063    if (I != E) {
3064      ExpectedTy = *I++;
3065    } else if (!Ty->isVarArg()) {
3066      return Error(ArgList[i].Loc, "too many arguments specified");
3067    }
3068
3069    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3070      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3071                   ExpectedTy->getDescription() + "'");
3072    Args.push_back(ArgList[i].V);
3073    if (ArgList[i].Attrs != Attribute::None)
3074      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3075  }
3076
3077  if (I != E)
3078    return Error(CallLoc, "not enough parameters specified for call");
3079
3080  if (FnAttrs != Attribute::None)
3081    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3082
3083  // Finish off the Attributes and check them
3084  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3085
3086  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3087  CI->setTailCall(isTail);
3088  CI->setCallingConv(CC);
3089  CI->setAttributes(PAL);
3090  Inst = CI;
3091  return false;
3092}
3093
3094//===----------------------------------------------------------------------===//
3095// Memory Instructions.
3096//===----------------------------------------------------------------------===//
3097
3098/// ParseAlloc
3099///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3100///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3101bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3102                          unsigned Opc) {
3103  PATypeHolder Ty(Type::VoidTy);
3104  Value *Size = 0;
3105  LocTy SizeLoc = 0;
3106  unsigned Alignment = 0;
3107  if (ParseType(Ty)) return true;
3108
3109  if (EatIfPresent(lltok::comma)) {
3110    if (Lex.getKind() == lltok::kw_align) {
3111      if (ParseOptionalAlignment(Alignment)) return true;
3112    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3113               ParseOptionalCommaAlignment(Alignment)) {
3114      return true;
3115    }
3116  }
3117
3118  if (Size && Size->getType() != Type::Int32Ty)
3119    return Error(SizeLoc, "element count must be i32");
3120
3121  if (Opc == Instruction::Malloc)
3122    Inst = new MallocInst(Ty, Size, Alignment);
3123  else
3124    Inst = new AllocaInst(Ty, Size, Alignment);
3125  return false;
3126}
3127
3128/// ParseFree
3129///   ::= 'free' TypeAndValue
3130bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3131  Value *Val; LocTy Loc;
3132  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3133  if (!isa<PointerType>(Val->getType()))
3134    return Error(Loc, "operand to free must be a pointer");
3135  Inst = new FreeInst(Val);
3136  return false;
3137}
3138
3139/// ParseLoad
3140///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3141bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3142                         bool isVolatile) {
3143  Value *Val; LocTy Loc;
3144  unsigned Alignment;
3145  if (ParseTypeAndValue(Val, Loc, PFS) ||
3146      ParseOptionalCommaAlignment(Alignment))
3147    return true;
3148
3149  if (!isa<PointerType>(Val->getType()) ||
3150      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3151    return Error(Loc, "load operand must be a pointer to a first class type");
3152
3153  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3154  return false;
3155}
3156
3157/// ParseStore
3158///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3159bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3160                          bool isVolatile) {
3161  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3162  unsigned Alignment;
3163  if (ParseTypeAndValue(Val, Loc, PFS) ||
3164      ParseToken(lltok::comma, "expected ',' after store operand") ||
3165      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3166      ParseOptionalCommaAlignment(Alignment))
3167    return true;
3168
3169  if (!isa<PointerType>(Ptr->getType()))
3170    return Error(PtrLoc, "store operand must be a pointer");
3171  if (!Val->getType()->isFirstClassType())
3172    return Error(Loc, "store operand must be a first class value");
3173  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3174    return Error(Loc, "stored value and pointer type do not match");
3175
3176  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3177  return false;
3178}
3179
3180/// ParseGetResult
3181///   ::= 'getresult' TypeAndValue ',' uint
3182/// FIXME: Remove support for getresult in LLVM 3.0
3183bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3184  Value *Val; LocTy ValLoc, EltLoc;
3185  unsigned Element;
3186  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3187      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3188      ParseUInt32(Element, EltLoc))
3189    return true;
3190
3191  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3192    return Error(ValLoc, "getresult inst requires an aggregate operand");
3193  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3194    return Error(EltLoc, "invalid getresult index for value");
3195  Inst = ExtractValueInst::Create(Val, Element);
3196  return false;
3197}
3198
3199/// ParseGetElementPtr
3200///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3201bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3202  Value *Ptr, *Val; LocTy Loc, EltLoc;
3203  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3204
3205  if (!isa<PointerType>(Ptr->getType()))
3206    return Error(Loc, "base of getelementptr must be a pointer");
3207
3208  SmallVector<Value*, 16> Indices;
3209  while (EatIfPresent(lltok::comma)) {
3210    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3211    if (!isa<IntegerType>(Val->getType()))
3212      return Error(EltLoc, "getelementptr index must be an integer");
3213    Indices.push_back(Val);
3214  }
3215
3216  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3217                                         Indices.begin(), Indices.end()))
3218    return Error(Loc, "invalid getelementptr indices");
3219  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3220  return false;
3221}
3222
3223/// ParseExtractValue
3224///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3225bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3226  Value *Val; LocTy Loc;
3227  SmallVector<unsigned, 4> Indices;
3228  if (ParseTypeAndValue(Val, Loc, PFS) ||
3229      ParseIndexList(Indices))
3230    return true;
3231
3232  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3233    return Error(Loc, "extractvalue operand must be array or struct");
3234
3235  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3236                                        Indices.end()))
3237    return Error(Loc, "invalid indices for extractvalue");
3238  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3239  return false;
3240}
3241
3242/// ParseInsertValue
3243///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3244bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3245  Value *Val0, *Val1; LocTy Loc0, Loc1;
3246  SmallVector<unsigned, 4> Indices;
3247  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3248      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3249      ParseTypeAndValue(Val1, Loc1, PFS) ||
3250      ParseIndexList(Indices))
3251    return true;
3252
3253  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3254    return Error(Loc0, "extractvalue operand must be array or struct");
3255
3256  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3257                                        Indices.end()))
3258    return Error(Loc0, "invalid indices for insertvalue");
3259  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3260  return false;
3261}
3262
3263//===----------------------------------------------------------------------===//
3264// Embedded metadata.
3265//===----------------------------------------------------------------------===//
3266
3267/// ParseMDNodeVector
3268///   ::= Element (',' Element)*
3269/// Element
3270///   ::= 'null' | TypeAndValue
3271bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3272  assert(Lex.getKind() == lltok::lbrace);
3273  Lex.Lex();
3274  do {
3275    Value *V;
3276    if (Lex.getKind() == lltok::kw_null) {
3277      Lex.Lex();
3278      V = 0;
3279    } else {
3280      Constant *C;
3281      if (ParseGlobalTypeAndValue(C)) return true;
3282      V = C;
3283    }
3284    Elts.push_back(V);
3285  } while (EatIfPresent(lltok::comma));
3286
3287  return false;
3288}
3289