TargetLowering.h revision 203954
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MachineModuleInfo;
51  class MCContext;
52  class MCExpr;
53  class DwarfWriter;
54  class SDNode;
55  class SDValue;
56  class SelectionDAG;
57  class TargetData;
58  class TargetMachine;
59  class TargetRegisterClass;
60  class TargetSubtarget;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  enum BooleanContent { // How the target represents true/false values.
98    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
99    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
100    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
101  };
102
103  enum SchedPreference {
104    SchedulingForLatency,          // Scheduling for shortest total latency.
105    SchedulingForRegPressure       // Scheduling for lowest register pressure.
106  };
107
108  /// NOTE: The constructor takes ownership of TLOF.
109  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
110  virtual ~TargetLowering();
111
112  TargetMachine &getTargetMachine() const { return TM; }
113  const TargetData *getTargetData() const { return TD; }
114  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
115
116  bool isBigEndian() const { return !IsLittleEndian; }
117  bool isLittleEndian() const { return IsLittleEndian; }
118  MVT getPointerTy() const { return PointerTy; }
119  MVT getShiftAmountTy() const { return ShiftAmountTy; }
120
121  /// isSelectExpensive - Return true if the select operation is expensive for
122  /// this target.
123  bool isSelectExpensive() const { return SelectIsExpensive; }
124
125  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
126  /// a sequence of several shifts, adds, and multiplies for this target.
127  bool isIntDivCheap() const { return IntDivIsCheap; }
128
129  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
130  /// srl/add/sra.
131  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
132
133  /// getSetCCResultType - Return the ValueType of the result of SETCC
134  /// operations.  Also used to obtain the target's preferred type for
135  /// the condition operand of SELECT and BRCOND nodes.  In the case of
136  /// BRCOND the argument passed is MVT::Other since there are no other
137  /// operands to get a type hint from.
138  virtual
139  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
140
141  /// getCmpLibcallReturnType - Return the ValueType for comparison
142  /// libcalls. Comparions libcalls include floating point comparion calls,
143  /// and Ordered/Unordered check calls on floating point numbers.
144  virtual
145  MVT::SimpleValueType getCmpLibcallReturnType() const;
146
147  /// getBooleanContents - For targets without i1 registers, this gives the
148  /// nature of the high-bits of boolean values held in types wider than i1.
149  /// "Boolean values" are special true/false values produced by nodes like
150  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
151  /// Not to be confused with general values promoted from i1.
152  BooleanContent getBooleanContents() const { return BooleanContents;}
153
154  /// getSchedulingPreference - Return target scheduling preference.
155  SchedPreference getSchedulingPreference() const {
156    return SchedPreferenceInfo;
157  }
158
159  /// getRegClassFor - Return the register class that should be used for the
160  /// specified value type.  This may only be called on legal types.
161  TargetRegisterClass *getRegClassFor(EVT VT) const {
162    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
163    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
164    assert(RC && "This value type is not natively supported!");
165    return RC;
166  }
167
168  /// isTypeLegal - Return true if the target has native support for the
169  /// specified value type.  This means that it has a register that directly
170  /// holds it without promotions or expansions.
171  bool isTypeLegal(EVT VT) const {
172    assert(!VT.isSimple() ||
173           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
174    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
175  }
176
177  class ValueTypeActionImpl {
178    /// ValueTypeActions - This is a bitvector that contains two bits for each
179    /// value type, where the two bits correspond to the LegalizeAction enum.
180    /// This can be queried with "getTypeAction(VT)".
181    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
182    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
183  public:
184    ValueTypeActionImpl() {
185      ValueTypeActions[0] = ValueTypeActions[1] = 0;
186      ValueTypeActions[2] = ValueTypeActions[3] = 0;
187    }
188    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
189      ValueTypeActions[0] = RHS.ValueTypeActions[0];
190      ValueTypeActions[1] = RHS.ValueTypeActions[1];
191      ValueTypeActions[2] = RHS.ValueTypeActions[2];
192      ValueTypeActions[3] = RHS.ValueTypeActions[3];
193    }
194
195    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
196      if (VT.isExtended()) {
197        if (VT.isVector()) {
198          return VT.isPow2VectorType() ? Expand : Promote;
199        }
200        if (VT.isInteger())
201          // First promote to a power-of-two size, then expand if necessary.
202          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
203        assert(0 && "Unsupported extended type!");
204        return Legal;
205      }
206      unsigned I = VT.getSimpleVT().SimpleTy;
207      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
208      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
209    }
210    void setTypeAction(EVT VT, LegalizeAction Action) {
211      unsigned I = VT.getSimpleVT().SimpleTy;
212      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
213      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
214    }
215  };
216
217  const ValueTypeActionImpl &getValueTypeActions() const {
218    return ValueTypeActions;
219  }
220
221  /// getTypeAction - Return how we should legalize values of this type, either
222  /// it is already legal (return 'Legal') or we need to promote it to a larger
223  /// type (return 'Promote'), or we need to expand it into multiple registers
224  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
225  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
226    return ValueTypeActions.getTypeAction(Context, VT);
227  }
228
229  /// getTypeToTransformTo - For types supported by the target, this is an
230  /// identity function.  For types that must be promoted to larger types, this
231  /// returns the larger type to promote to.  For integer types that are larger
232  /// than the largest integer register, this contains one step in the expansion
233  /// to get to the smaller register. For illegal floating point types, this
234  /// returns the integer type to transform to.
235  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
236    if (VT.isSimple()) {
237      assert((unsigned)VT.getSimpleVT().SimpleTy <
238             array_lengthof(TransformToType));
239      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
240      assert(getTypeAction(Context, NVT) != Promote &&
241             "Promote may not follow Expand or Promote");
242      return NVT;
243    }
244
245    if (VT.isVector()) {
246      EVT NVT = VT.getPow2VectorType(Context);
247      if (NVT == VT) {
248        // Vector length is a power of 2 - split to half the size.
249        unsigned NumElts = VT.getVectorNumElements();
250        EVT EltVT = VT.getVectorElementType();
251        return (NumElts == 1) ?
252          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
253      }
254      // Promote to a power of two size, avoiding multi-step promotion.
255      return getTypeAction(Context, NVT) == Promote ?
256        getTypeToTransformTo(Context, NVT) : NVT;
257    } else if (VT.isInteger()) {
258      EVT NVT = VT.getRoundIntegerType(Context);
259      if (NVT == VT)
260        // Size is a power of two - expand to half the size.
261        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
262      else
263        // Promote to a power of two size, avoiding multi-step promotion.
264        return getTypeAction(Context, NVT) == Promote ?
265          getTypeToTransformTo(Context, NVT) : NVT;
266    }
267    assert(0 && "Unsupported extended type!");
268    return MVT(MVT::Other); // Not reached
269  }
270
271  /// getTypeToExpandTo - For types supported by the target, this is an
272  /// identity function.  For types that must be expanded (i.e. integer types
273  /// that are larger than the largest integer register or illegal floating
274  /// point types), this returns the largest legal type it will be expanded to.
275  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
276    assert(!VT.isVector());
277    while (true) {
278      switch (getTypeAction(Context, VT)) {
279      case Legal:
280        return VT;
281      case Expand:
282        VT = getTypeToTransformTo(Context, VT);
283        break;
284      default:
285        assert(false && "Type is not legal nor is it to be expanded!");
286        return VT;
287      }
288    }
289    return VT;
290  }
291
292  /// getVectorTypeBreakdown - Vector types are broken down into some number of
293  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
294  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
295  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
296  ///
297  /// This method returns the number of registers needed, and the VT for each
298  /// register.  It also returns the VT and quantity of the intermediate values
299  /// before they are promoted/expanded.
300  ///
301  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
302                                  EVT &IntermediateVT,
303                                  unsigned &NumIntermediates,
304                                  EVT &RegisterVT) const;
305
306  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
307  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
308  /// this is the case, it returns true and store the intrinsic
309  /// information into the IntrinsicInfo that was passed to the function.
310  typedef struct IntrinsicInfo {
311    unsigned     opc;         // target opcode
312    EVT          memVT;       // memory VT
313    const Value* ptrVal;      // value representing memory location
314    int          offset;      // offset off of ptrVal
315    unsigned     align;       // alignment
316    bool         vol;         // is volatile?
317    bool         readMem;     // reads memory?
318    bool         writeMem;    // writes memory?
319  } IntrinisicInfo;
320
321  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
322                                  CallInst &I, unsigned Intrinsic) {
323    return false;
324  }
325
326  /// getWidenVectorType: given a vector type, returns the type to widen to
327  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
328  /// If there is no vector type that we want to widen to, returns MVT::Other
329  /// When and were to widen is target dependent based on the cost of
330  /// scalarizing vs using the wider vector type.
331  virtual EVT getWidenVectorType(EVT VT) const;
332
333  /// isFPImmLegal - Returns true if the target can instruction select the
334  /// specified FP immediate natively. If false, the legalizer will materialize
335  /// the FP immediate as a load from a constant pool.
336  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
337    return false;
338  }
339
340  /// isShuffleMaskLegal - Targets can use this to indicate that they only
341  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
342  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
343  /// are assumed to be legal.
344  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
345                                  EVT VT) const {
346    return true;
347  }
348
349  /// canOpTrap - Returns true if the operation can trap for the value type.
350  /// VT must be a legal type. By default, we optimistically assume most
351  /// operations don't trap except for divide and remainder.
352  virtual bool canOpTrap(unsigned Op, EVT VT) const;
353
354  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
355  /// used by Targets can use this to indicate if there is a suitable
356  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
357  /// pool entry.
358  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
359                                      EVT VT) const {
360    return false;
361  }
362
363  /// getOperationAction - Return how this operation should be treated: either
364  /// it is legal, needs to be promoted to a larger size, needs to be
365  /// expanded to some other code sequence, or the target has a custom expander
366  /// for it.
367  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
368    if (VT.isExtended()) return Expand;
369    assert(Op < array_lengthof(OpActions[0]) &&
370           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
371           "Table isn't big enough!");
372    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
373    unsigned J = I & 31;
374    I = I >> 5;
375    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
376  }
377
378  /// isOperationLegalOrCustom - Return true if the specified operation is
379  /// legal on this target or can be made legal with custom lowering. This
380  /// is used to help guide high-level lowering decisions.
381  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
382    return (VT == MVT::Other || isTypeLegal(VT)) &&
383      (getOperationAction(Op, VT) == Legal ||
384       getOperationAction(Op, VT) == Custom);
385  }
386
387  /// isOperationLegal - Return true if the specified operation is legal on this
388  /// target.
389  bool isOperationLegal(unsigned Op, EVT VT) const {
390    return (VT == MVT::Other || isTypeLegal(VT)) &&
391           getOperationAction(Op, VT) == Legal;
392  }
393
394  /// getLoadExtAction - Return how this load with extension should be treated:
395  /// either it is legal, needs to be promoted to a larger size, needs to be
396  /// expanded to some other code sequence, or the target has a custom expander
397  /// for it.
398  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
399    assert(LType < array_lengthof(LoadExtActions) &&
400           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
401           "Table isn't big enough!");
402    return (LegalizeAction)((LoadExtActions[LType] >>
403              (2*VT.getSimpleVT().SimpleTy)) & 3);
404  }
405
406  /// isLoadExtLegal - Return true if the specified load with extension is legal
407  /// on this target.
408  bool isLoadExtLegal(unsigned LType, EVT VT) const {
409    return VT.isSimple() &&
410      (getLoadExtAction(LType, VT) == Legal ||
411       getLoadExtAction(LType, VT) == Custom);
412  }
413
414  /// getTruncStoreAction - Return how this store with truncation should be
415  /// treated: either it is legal, needs to be promoted to a larger size, needs
416  /// to be expanded to some other code sequence, or the target has a custom
417  /// expander for it.
418  LegalizeAction getTruncStoreAction(EVT ValVT,
419                                     EVT MemVT) const {
420    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
421             array_lengthof(TruncStoreActions) &&
422           (unsigned)MemVT.getSimpleVT().SimpleTy <
423             sizeof(TruncStoreActions[0])*4 &&
424           "Table isn't big enough!");
425    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
426                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
427  }
428
429  /// isTruncStoreLegal - Return true if the specified store with truncation is
430  /// legal on this target.
431  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
432    return isTypeLegal(ValVT) && MemVT.isSimple() &&
433      (getTruncStoreAction(ValVT, MemVT) == Legal ||
434       getTruncStoreAction(ValVT, MemVT) == Custom);
435  }
436
437  /// getIndexedLoadAction - Return how the indexed load should be treated:
438  /// either it is legal, needs to be promoted to a larger size, needs to be
439  /// expanded to some other code sequence, or the target has a custom expander
440  /// for it.
441  LegalizeAction
442  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
443    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
444           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
445           "Table isn't big enough!");
446    return (LegalizeAction)((IndexedModeActions[
447                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
448  }
449
450  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
451  /// on this target.
452  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
453    return VT.isSimple() &&
454      (getIndexedLoadAction(IdxMode, VT) == Legal ||
455       getIndexedLoadAction(IdxMode, VT) == Custom);
456  }
457
458  /// getIndexedStoreAction - Return how the indexed store should be treated:
459  /// either it is legal, needs to be promoted to a larger size, needs to be
460  /// expanded to some other code sequence, or the target has a custom expander
461  /// for it.
462  LegalizeAction
463  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
464    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
465           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
466           "Table isn't big enough!");
467    return (LegalizeAction)((IndexedModeActions[
468              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
469  }
470
471  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
472  /// on this target.
473  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
474    return VT.isSimple() &&
475      (getIndexedStoreAction(IdxMode, VT) == Legal ||
476       getIndexedStoreAction(IdxMode, VT) == Custom);
477  }
478
479  /// getConvertAction - Return how the conversion should be treated:
480  /// either it is legal, needs to be promoted to a larger size, needs to be
481  /// expanded to some other code sequence, or the target has a custom expander
482  /// for it.
483  LegalizeAction
484  getConvertAction(EVT FromVT, EVT ToVT) const {
485    assert((unsigned)FromVT.getSimpleVT().SimpleTy <
486              array_lengthof(ConvertActions) &&
487           (unsigned)ToVT.getSimpleVT().SimpleTy <
488              sizeof(ConvertActions[0])*4 &&
489           "Table isn't big enough!");
490    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT().SimpleTy] >>
491                             (2*ToVT.getSimpleVT().SimpleTy)) & 3);
492  }
493
494  /// isConvertLegal - Return true if the specified conversion is legal
495  /// on this target.
496  bool isConvertLegal(EVT FromVT, EVT ToVT) const {
497    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
498      (getConvertAction(FromVT, ToVT) == Legal ||
499       getConvertAction(FromVT, ToVT) == Custom);
500  }
501
502  /// getCondCodeAction - Return how the condition code should be treated:
503  /// either it is legal, needs to be expanded to some other code sequence,
504  /// or the target has a custom expander for it.
505  LegalizeAction
506  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
507    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
508           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
509           "Table isn't big enough!");
510    LegalizeAction Action = (LegalizeAction)
511      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
512    assert(Action != Promote && "Can't promote condition code!");
513    return Action;
514  }
515
516  /// isCondCodeLegal - Return true if the specified condition code is legal
517  /// on this target.
518  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
519    return getCondCodeAction(CC, VT) == Legal ||
520           getCondCodeAction(CC, VT) == Custom;
521  }
522
523
524  /// getTypeToPromoteTo - If the action for this operation is to promote, this
525  /// method returns the ValueType to promote to.
526  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
527    assert(getOperationAction(Op, VT) == Promote &&
528           "This operation isn't promoted!");
529
530    // See if this has an explicit type specified.
531    std::map<std::pair<unsigned, MVT::SimpleValueType>,
532             MVT::SimpleValueType>::const_iterator PTTI =
533      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
534    if (PTTI != PromoteToType.end()) return PTTI->second;
535
536    assert((VT.isInteger() || VT.isFloatingPoint()) &&
537           "Cannot autopromote this type, add it with AddPromotedToType.");
538
539    EVT NVT = VT;
540    do {
541      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
542      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
543             "Didn't find type to promote to!");
544    } while (!isTypeLegal(NVT) ||
545              getOperationAction(Op, NVT) == Promote);
546    return NVT;
547  }
548
549  /// getValueType - Return the EVT corresponding to this LLVM type.
550  /// This is fixed by the LLVM operations except for the pointer size.  If
551  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
552  /// counterpart (e.g. structs), otherwise it will assert.
553  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
554    EVT VT = EVT::getEVT(Ty, AllowUnknown);
555    return VT == MVT:: iPTR ? PointerTy : VT;
556  }
557
558  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
559  /// function arguments in the caller parameter area.  This is the actual
560  /// alignment, not its logarithm.
561  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
562
563  /// getRegisterType - Return the type of registers that this ValueType will
564  /// eventually require.
565  EVT getRegisterType(MVT VT) const {
566    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
567    return RegisterTypeForVT[VT.SimpleTy];
568  }
569
570  /// getRegisterType - Return the type of registers that this ValueType will
571  /// eventually require.
572  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
573    if (VT.isSimple()) {
574      assert((unsigned)VT.getSimpleVT().SimpleTy <
575                array_lengthof(RegisterTypeForVT));
576      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
577    }
578    if (VT.isVector()) {
579      EVT VT1, RegisterVT;
580      unsigned NumIntermediates;
581      (void)getVectorTypeBreakdown(Context, VT, VT1,
582                                   NumIntermediates, RegisterVT);
583      return RegisterVT;
584    }
585    if (VT.isInteger()) {
586      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
587    }
588    assert(0 && "Unsupported extended type!");
589    return EVT(MVT::Other); // Not reached
590  }
591
592  /// getNumRegisters - Return the number of registers that this ValueType will
593  /// eventually require.  This is one for any types promoted to live in larger
594  /// registers, but may be more than one for types (like i64) that are split
595  /// into pieces.  For types like i140, which are first promoted then expanded,
596  /// it is the number of registers needed to hold all the bits of the original
597  /// type.  For an i140 on a 32 bit machine this means 5 registers.
598  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
599    if (VT.isSimple()) {
600      assert((unsigned)VT.getSimpleVT().SimpleTy <
601                array_lengthof(NumRegistersForVT));
602      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
603    }
604    if (VT.isVector()) {
605      EVT VT1, VT2;
606      unsigned NumIntermediates;
607      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
608    }
609    if (VT.isInteger()) {
610      unsigned BitWidth = VT.getSizeInBits();
611      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
612      return (BitWidth + RegWidth - 1) / RegWidth;
613    }
614    assert(0 && "Unsupported extended type!");
615    return 0; // Not reached
616  }
617
618  /// ShouldShrinkFPConstant - If true, then instruction selection should
619  /// seek to shrink the FP constant of the specified type to a smaller type
620  /// in order to save space and / or reduce runtime.
621  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
622
623  /// hasTargetDAGCombine - If true, the target has custom DAG combine
624  /// transformations that it can perform for the specified node.
625  bool hasTargetDAGCombine(ISD::NodeType NT) const {
626    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
627    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
628  }
629
630  /// This function returns the maximum number of store operations permitted
631  /// to replace a call to llvm.memset. The value is set by the target at the
632  /// performance threshold for such a replacement.
633  /// @brief Get maximum # of store operations permitted for llvm.memset
634  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
635
636  /// This function returns the maximum number of store operations permitted
637  /// to replace a call to llvm.memcpy. The value is set by the target at the
638  /// performance threshold for such a replacement.
639  /// @brief Get maximum # of store operations permitted for llvm.memcpy
640  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
641
642  /// This function returns the maximum number of store operations permitted
643  /// to replace a call to llvm.memmove. The value is set by the target at the
644  /// performance threshold for such a replacement.
645  /// @brief Get maximum # of store operations permitted for llvm.memmove
646  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
647
648  /// This function returns true if the target allows unaligned memory accesses.
649  /// of the specified type. This is used, for example, in situations where an
650  /// array copy/move/set is  converted to a sequence of store operations. It's
651  /// use helps to ensure that such replacements don't generate code that causes
652  /// an alignment error  (trap) on the target machine.
653  /// @brief Determine if the target supports unaligned memory accesses.
654  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
655    return false;
656  }
657
658  /// This function returns true if the target would benefit from code placement
659  /// optimization.
660  /// @brief Determine if the target should perform code placement optimization.
661  bool shouldOptimizeCodePlacement() const {
662    return benefitFromCodePlacementOpt;
663  }
664
665  /// getOptimalMemOpType - Returns the target specific optimal type for load
666  /// and store operations as a result of memset, memcpy, and memmove lowering.
667  /// It returns EVT::iAny if SelectionDAG should be responsible for
668  /// determining it.
669  virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
670                                  bool isSrcConst, bool isSrcStr,
671                                  SelectionDAG &DAG) const {
672    return MVT::iAny;
673  }
674
675  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
676  /// to implement llvm.setjmp.
677  bool usesUnderscoreSetJmp() const {
678    return UseUnderscoreSetJmp;
679  }
680
681  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
682  /// to implement llvm.longjmp.
683  bool usesUnderscoreLongJmp() const {
684    return UseUnderscoreLongJmp;
685  }
686
687  /// getStackPointerRegisterToSaveRestore - If a physical register, this
688  /// specifies the register that llvm.savestack/llvm.restorestack should save
689  /// and restore.
690  unsigned getStackPointerRegisterToSaveRestore() const {
691    return StackPointerRegisterToSaveRestore;
692  }
693
694  /// getExceptionAddressRegister - If a physical register, this returns
695  /// the register that receives the exception address on entry to a landing
696  /// pad.
697  unsigned getExceptionAddressRegister() const {
698    return ExceptionPointerRegister;
699  }
700
701  /// getExceptionSelectorRegister - If a physical register, this returns
702  /// the register that receives the exception typeid on entry to a landing
703  /// pad.
704  unsigned getExceptionSelectorRegister() const {
705    return ExceptionSelectorRegister;
706  }
707
708  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
709  /// set, the default is 200)
710  unsigned getJumpBufSize() const {
711    return JumpBufSize;
712  }
713
714  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
715  /// (if never set, the default is 0)
716  unsigned getJumpBufAlignment() const {
717    return JumpBufAlignment;
718  }
719
720  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
721  /// limit. Any block whose size is greater should not be predicated.
722  unsigned getIfCvtBlockSizeLimit() const {
723    return IfCvtBlockSizeLimit;
724  }
725
726  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
727  /// block to be considered for duplication. Any block whose size is greater
728  /// should not be duplicated to facilitate its predication.
729  unsigned getIfCvtDupBlockSizeLimit() const {
730    return IfCvtDupBlockSizeLimit;
731  }
732
733  /// getPrefLoopAlignment - return the preferred loop alignment.
734  ///
735  unsigned getPrefLoopAlignment() const {
736    return PrefLoopAlignment;
737  }
738
739  /// getPreIndexedAddressParts - returns true by value, base pointer and
740  /// offset pointer and addressing mode by reference if the node's address
741  /// can be legally represented as pre-indexed load / store address.
742  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
743                                         SDValue &Offset,
744                                         ISD::MemIndexedMode &AM,
745                                         SelectionDAG &DAG) const {
746    return false;
747  }
748
749  /// getPostIndexedAddressParts - returns true by value, base pointer and
750  /// offset pointer and addressing mode by reference if this node can be
751  /// combined with a load / store to form a post-indexed load / store.
752  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
753                                          SDValue &Base, SDValue &Offset,
754                                          ISD::MemIndexedMode &AM,
755                                          SelectionDAG &DAG) const {
756    return false;
757  }
758
759  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
760  /// current function.  The returned value is a member of the
761  /// MachineJumpTableInfo::JTEntryKind enum.
762  virtual unsigned getJumpTableEncoding() const;
763
764  virtual const MCExpr *
765  LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
766                            const MachineBasicBlock *MBB, unsigned uid,
767                            MCContext &Ctx) const {
768    assert(0 && "Need to implement this hook if target has custom JTIs");
769    return 0;
770  }
771
772  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
773  /// jumptable.
774  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
775                                           SelectionDAG &DAG) const;
776
777  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
778  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
779  /// MCExpr.
780  virtual const MCExpr *
781  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
782                               unsigned JTI, MCContext &Ctx) const;
783
784  /// isOffsetFoldingLegal - Return true if folding a constant offset
785  /// with the given GlobalAddress is legal.  It is frequently not legal in
786  /// PIC relocation models.
787  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
788
789  /// getFunctionAlignment - Return the Log2 alignment of this function.
790  virtual unsigned getFunctionAlignment(const Function *) const = 0;
791
792  //===--------------------------------------------------------------------===//
793  // TargetLowering Optimization Methods
794  //
795
796  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
797  /// SDValues for returning information from TargetLowering to its clients
798  /// that want to combine
799  struct TargetLoweringOpt {
800    SelectionDAG &DAG;
801    bool ShrinkOps;
802    SDValue Old;
803    SDValue New;
804
805    explicit TargetLoweringOpt(SelectionDAG &InDAG, bool Shrink = false) :
806      DAG(InDAG), ShrinkOps(Shrink) {}
807
808    bool CombineTo(SDValue O, SDValue N) {
809      Old = O;
810      New = N;
811      return true;
812    }
813
814    /// ShrinkDemandedConstant - Check to see if the specified operand of the
815    /// specified instruction is a constant integer.  If so, check to see if
816    /// there are any bits set in the constant that are not demanded.  If so,
817    /// shrink the constant and return true.
818    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
819
820    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
821    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
822    /// cast, but it could be generalized for targets with other types of
823    /// implicit widening casts.
824    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
825                          DebugLoc dl);
826  };
827
828  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
829  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
830  /// use this information to simplify Op, create a new simplified DAG node and
831  /// return true, returning the original and new nodes in Old and New.
832  /// Otherwise, analyze the expression and return a mask of KnownOne and
833  /// KnownZero bits for the expression (used to simplify the caller).
834  /// The KnownZero/One bits may only be accurate for those bits in the
835  /// DemandedMask.
836  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
837                            APInt &KnownZero, APInt &KnownOne,
838                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
839
840  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
841  /// Mask are known to be either zero or one and return them in the
842  /// KnownZero/KnownOne bitsets.
843  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
844                                              const APInt &Mask,
845                                              APInt &KnownZero,
846                                              APInt &KnownOne,
847                                              const SelectionDAG &DAG,
848                                              unsigned Depth = 0) const;
849
850  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
851  /// targets that want to expose additional information about sign bits to the
852  /// DAG Combiner.
853  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
854                                                   unsigned Depth = 0) const;
855
856  struct DAGCombinerInfo {
857    void *DC;  // The DAG Combiner object.
858    bool BeforeLegalize;
859    bool BeforeLegalizeOps;
860    bool CalledByLegalizer;
861  public:
862    SelectionDAG &DAG;
863
864    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
865      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
866        CalledByLegalizer(cl), DAG(dag) {}
867
868    bool isBeforeLegalize() const { return BeforeLegalize; }
869    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
870    bool isCalledByLegalizer() const { return CalledByLegalizer; }
871
872    void AddToWorklist(SDNode *N);
873    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
874                      bool AddTo = true);
875    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
876    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
877
878    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
879  };
880
881  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
882  /// and cc. If it is unable to simplify it, return a null SDValue.
883  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
884                          ISD::CondCode Cond, bool foldBooleans,
885                          DAGCombinerInfo &DCI, DebugLoc dl) const;
886
887  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
888  /// node is a GlobalAddress + offset.
889  virtual bool
890  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
891
892  /// PerformDAGCombine - This method will be invoked for all target nodes and
893  /// for any target-independent nodes that the target has registered with
894  /// invoke it for.
895  ///
896  /// The semantics are as follows:
897  /// Return Value:
898  ///   SDValue.Val == 0   - No change was made
899  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
900  ///   otherwise          - N should be replaced by the returned Operand.
901  ///
902  /// In addition, methods provided by DAGCombinerInfo may be used to perform
903  /// more complex transformations.
904  ///
905  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
906
907  //===--------------------------------------------------------------------===//
908  // TargetLowering Configuration Methods - These methods should be invoked by
909  // the derived class constructor to configure this object for the target.
910  //
911
912protected:
913  /// setShiftAmountType - Describe the type that should be used for shift
914  /// amounts.  This type defaults to the pointer type.
915  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
916
917  /// setBooleanContents - Specify how the target extends the result of a
918  /// boolean value from i1 to a wider type.  See getBooleanContents.
919  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
920
921  /// setSchedulingPreference - Specify the target scheduling preference.
922  void setSchedulingPreference(SchedPreference Pref) {
923    SchedPreferenceInfo = Pref;
924  }
925
926  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
927  /// use _setjmp to implement llvm.setjmp or the non _ version.
928  /// Defaults to false.
929  void setUseUnderscoreSetJmp(bool Val) {
930    UseUnderscoreSetJmp = Val;
931  }
932
933  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
934  /// use _longjmp to implement llvm.longjmp or the non _ version.
935  /// Defaults to false.
936  void setUseUnderscoreLongJmp(bool Val) {
937    UseUnderscoreLongJmp = Val;
938  }
939
940  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
941  /// specifies the register that llvm.savestack/llvm.restorestack should save
942  /// and restore.
943  void setStackPointerRegisterToSaveRestore(unsigned R) {
944    StackPointerRegisterToSaveRestore = R;
945  }
946
947  /// setExceptionPointerRegister - If set to a physical register, this sets
948  /// the register that receives the exception address on entry to a landing
949  /// pad.
950  void setExceptionPointerRegister(unsigned R) {
951    ExceptionPointerRegister = R;
952  }
953
954  /// setExceptionSelectorRegister - If set to a physical register, this sets
955  /// the register that receives the exception typeid on entry to a landing
956  /// pad.
957  void setExceptionSelectorRegister(unsigned R) {
958    ExceptionSelectorRegister = R;
959  }
960
961  /// SelectIsExpensive - Tells the code generator not to expand operations
962  /// into sequences that use the select operations if possible.
963  void setSelectIsExpensive() { SelectIsExpensive = true; }
964
965  /// setIntDivIsCheap - Tells the code generator that integer divide is
966  /// expensive, and if possible, should be replaced by an alternate sequence
967  /// of instructions not containing an integer divide.
968  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
969
970  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
971  /// srl/add/sra for a signed divide by power of two, and let the target handle
972  /// it.
973  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
974
975  /// addRegisterClass - Add the specified register class as an available
976  /// regclass for the specified value type.  This indicates the selector can
977  /// handle values of that class natively.
978  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
979    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
980    AvailableRegClasses.push_back(std::make_pair(VT, RC));
981    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
982  }
983
984  /// computeRegisterProperties - Once all of the register classes are added,
985  /// this allows us to compute derived properties we expose.
986  void computeRegisterProperties();
987
988  /// setOperationAction - Indicate that the specified operation does not work
989  /// with the specified type and indicate what to do about it.
990  void setOperationAction(unsigned Op, MVT VT,
991                          LegalizeAction Action) {
992    unsigned I = (unsigned)VT.SimpleTy;
993    unsigned J = I & 31;
994    I = I >> 5;
995    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
996    OpActions[I][Op] |= (uint64_t)Action << (J*2);
997  }
998
999  /// setLoadExtAction - Indicate that the specified load with extension does
1000  /// not work with the with specified type and indicate what to do about it.
1001  void setLoadExtAction(unsigned ExtType, MVT VT,
1002                      LegalizeAction Action) {
1003    assert((unsigned)VT.SimpleTy*2 < 63 &&
1004           ExtType < array_lengthof(LoadExtActions) &&
1005           "Table isn't big enough!");
1006    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
1007    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
1008  }
1009
1010  /// setTruncStoreAction - Indicate that the specified truncating store does
1011  /// not work with the with specified type and indicate what to do about it.
1012  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1013                           LegalizeAction Action) {
1014    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
1015           (unsigned)MemVT.SimpleTy*2 < 63 &&
1016           "Table isn't big enough!");
1017    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
1018    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
1019  }
1020
1021  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1022  /// does not work with the with specified type and indicate what to do abort
1023  /// it. NOTE: All indexed mode loads are initialized to Expand in
1024  /// TargetLowering.cpp
1025  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1026                            LegalizeAction Action) {
1027    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1028           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1029           "Table isn't big enough!");
1030    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1031  }
1032
1033  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1034  /// does not work with the with specified type and indicate what to do about
1035  /// it. NOTE: All indexed mode stores are initialized to Expand in
1036  /// TargetLowering.cpp
1037  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1038                             LegalizeAction Action) {
1039    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1040           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1041           "Table isn't big enough!");
1042    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1043  }
1044
1045  /// setConvertAction - Indicate that the specified conversion does or does
1046  /// not work with the with specified type and indicate what to do about it.
1047  void setConvertAction(MVT FromVT, MVT ToVT,
1048                        LegalizeAction Action) {
1049    assert((unsigned)FromVT.SimpleTy < array_lengthof(ConvertActions) &&
1050           (unsigned)ToVT.SimpleTy < MVT::LAST_VALUETYPE &&
1051           "Table isn't big enough!");
1052    ConvertActions[FromVT.SimpleTy] &= ~(uint64_t(3UL)  << ToVT.SimpleTy*2);
1053    ConvertActions[FromVT.SimpleTy] |= (uint64_t)Action << ToVT.SimpleTy*2;
1054  }
1055
1056  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1057  /// supported on the target and indicate what to do about it.
1058  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1059                         LegalizeAction Action) {
1060    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1061           (unsigned)CC < array_lengthof(CondCodeActions) &&
1062           "Table isn't big enough!");
1063    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1064    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1065  }
1066
1067  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1068  /// promotion code defaults to trying a larger integer/fp until it can find
1069  /// one that works.  If that default is insufficient, this method can be used
1070  /// by the target to override the default.
1071  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1072    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1073  }
1074
1075  /// setTargetDAGCombine - Targets should invoke this method for each target
1076  /// independent node that they want to provide a custom DAG combiner for by
1077  /// implementing the PerformDAGCombine virtual method.
1078  void setTargetDAGCombine(ISD::NodeType NT) {
1079    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1080    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1081  }
1082
1083  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1084  /// bytes); default is 200
1085  void setJumpBufSize(unsigned Size) {
1086    JumpBufSize = Size;
1087  }
1088
1089  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1090  /// alignment (in bytes); default is 0
1091  void setJumpBufAlignment(unsigned Align) {
1092    JumpBufAlignment = Align;
1093  }
1094
1095  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1096  /// limit (in number of instructions); default is 2.
1097  void setIfCvtBlockSizeLimit(unsigned Limit) {
1098    IfCvtBlockSizeLimit = Limit;
1099  }
1100
1101  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1102  /// of instructions) to be considered for code duplication during
1103  /// if-conversion; default is 2.
1104  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1105    IfCvtDupBlockSizeLimit = Limit;
1106  }
1107
1108  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1109  /// alignment is zero, it means the target does not care about loop alignment.
1110  void setPrefLoopAlignment(unsigned Align) {
1111    PrefLoopAlignment = Align;
1112  }
1113
1114public:
1115
1116  virtual const TargetSubtarget *getSubtarget() {
1117    assert(0 && "Not Implemented");
1118    return NULL;    // this is here to silence compiler errors
1119  }
1120
1121  //===--------------------------------------------------------------------===//
1122  // Lowering methods - These methods must be implemented by targets so that
1123  // the SelectionDAGLowering code knows how to lower these.
1124  //
1125
1126  /// LowerFormalArguments - This hook must be implemented to lower the
1127  /// incoming (formal) arguments, described by the Ins array, into the
1128  /// specified DAG. The implementation should fill in the InVals array
1129  /// with legal-type argument values, and return the resulting token
1130  /// chain value.
1131  ///
1132  virtual SDValue
1133    LowerFormalArguments(SDValue Chain,
1134                         CallingConv::ID CallConv, bool isVarArg,
1135                         const SmallVectorImpl<ISD::InputArg> &Ins,
1136                         DebugLoc dl, SelectionDAG &DAG,
1137                         SmallVectorImpl<SDValue> &InVals) {
1138    assert(0 && "Not Implemented");
1139    return SDValue();    // this is here to silence compiler errors
1140  }
1141
1142  /// LowerCallTo - This function lowers an abstract call to a function into an
1143  /// actual call.  This returns a pair of operands.  The first element is the
1144  /// return value for the function (if RetTy is not VoidTy).  The second
1145  /// element is the outgoing token chain. It calls LowerCall to do the actual
1146  /// lowering.
1147  struct ArgListEntry {
1148    SDValue Node;
1149    const Type* Ty;
1150    bool isSExt  : 1;
1151    bool isZExt  : 1;
1152    bool isInReg : 1;
1153    bool isSRet  : 1;
1154    bool isNest  : 1;
1155    bool isByVal : 1;
1156    uint16_t Alignment;
1157
1158    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1159      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1160  };
1161  typedef std::vector<ArgListEntry> ArgListTy;
1162  std::pair<SDValue, SDValue>
1163  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1164              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1165              CallingConv::ID CallConv, bool isTailCall,
1166              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1167              SelectionDAG &DAG, DebugLoc dl, unsigned Order);
1168
1169  /// LowerCall - This hook must be implemented to lower calls into the
1170  /// the specified DAG. The outgoing arguments to the call are described
1171  /// by the Outs array, and the values to be returned by the call are
1172  /// described by the Ins array. The implementation should fill in the
1173  /// InVals array with legal-type return values from the call, and return
1174  /// the resulting token chain value.
1175  virtual SDValue
1176    LowerCall(SDValue Chain, SDValue Callee,
1177              CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
1178              const SmallVectorImpl<ISD::OutputArg> &Outs,
1179              const SmallVectorImpl<ISD::InputArg> &Ins,
1180              DebugLoc dl, SelectionDAG &DAG,
1181              SmallVectorImpl<SDValue> &InVals) {
1182    assert(0 && "Not Implemented");
1183    return SDValue();    // this is here to silence compiler errors
1184  }
1185
1186  /// CanLowerReturn - This hook should be implemented to check whether the
1187  /// return values described by the Outs array can fit into the return
1188  /// registers.  If false is returned, an sret-demotion is performed.
1189  ///
1190  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1191               const SmallVectorImpl<EVT> &OutTys,
1192               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1193               SelectionDAG &DAG)
1194  {
1195    // Return true by default to get preexisting behavior.
1196    return true;
1197  }
1198  /// LowerReturn - This hook must be implemented to lower outgoing
1199  /// return values, described by the Outs array, into the specified
1200  /// DAG. The implementation should return the resulting token chain
1201  /// value.
1202  ///
1203  virtual SDValue
1204    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1205                const SmallVectorImpl<ISD::OutputArg> &Outs,
1206                DebugLoc dl, SelectionDAG &DAG) {
1207    assert(0 && "Not Implemented");
1208    return SDValue();    // this is here to silence compiler errors
1209  }
1210
1211  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1212  /// memcpy. This can be used by targets to provide code sequences for cases
1213  /// that don't fit the target's parameters for simple loads/stores and can be
1214  /// more efficient than using a library call. This function can return a null
1215  /// SDValue if the target declines to use custom code and a different
1216  /// lowering strategy should be used.
1217  ///
1218  /// If AlwaysInline is true, the size is constant and the target should not
1219  /// emit any calls and is strongly encouraged to attempt to emit inline code
1220  /// even if it is beyond the usual threshold because this intrinsic is being
1221  /// expanded in a place where calls are not feasible (e.g. within the prologue
1222  /// for another call). If the target chooses to decline an AlwaysInline
1223  /// request here, legalize will resort to using simple loads and stores.
1224  virtual SDValue
1225  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1226                          SDValue Chain,
1227                          SDValue Op1, SDValue Op2,
1228                          SDValue Op3, unsigned Align,
1229                          bool AlwaysInline,
1230                          const Value *DstSV, uint64_t DstOff,
1231                          const Value *SrcSV, uint64_t SrcOff) {
1232    return SDValue();
1233  }
1234
1235  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1236  /// memmove. This can be used by targets to provide code sequences for cases
1237  /// that don't fit the target's parameters for simple loads/stores and can be
1238  /// more efficient than using a library call. This function can return a null
1239  /// SDValue if the target declines to use custom code and a different
1240  /// lowering strategy should be used.
1241  virtual SDValue
1242  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1243                           SDValue Chain,
1244                           SDValue Op1, SDValue Op2,
1245                           SDValue Op3, unsigned Align,
1246                           const Value *DstSV, uint64_t DstOff,
1247                           const Value *SrcSV, uint64_t SrcOff) {
1248    return SDValue();
1249  }
1250
1251  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1252  /// memset. This can be used by targets to provide code sequences for cases
1253  /// that don't fit the target's parameters for simple stores and can be more
1254  /// efficient than using a library call. This function can return a null
1255  /// SDValue if the target declines to use custom code and a different
1256  /// lowering strategy should be used.
1257  virtual SDValue
1258  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1259                          SDValue Chain,
1260                          SDValue Op1, SDValue Op2,
1261                          SDValue Op3, unsigned Align,
1262                          const Value *DstSV, uint64_t DstOff) {
1263    return SDValue();
1264  }
1265
1266  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1267  /// to legalize nodes with an illegal operand type but legal result types.
1268  /// It replaces the LowerOperation callback in the type Legalizer.
1269  /// The reason we can not do away with LowerOperation entirely is that
1270  /// LegalizeDAG isn't yet ready to use this callback.
1271  /// TODO: Consider merging with ReplaceNodeResults.
1272
1273  /// The target places new result values for the node in Results (their number
1274  /// and types must exactly match those of the original return values of
1275  /// the node), or leaves Results empty, which indicates that the node is not
1276  /// to be custom lowered after all.
1277  /// The default implementation calls LowerOperation.
1278  virtual void LowerOperationWrapper(SDNode *N,
1279                                     SmallVectorImpl<SDValue> &Results,
1280                                     SelectionDAG &DAG);
1281
1282  /// LowerOperation - This callback is invoked for operations that are
1283  /// unsupported by the target, which are registered to use 'custom' lowering,
1284  /// and whose defined values are all legal.
1285  /// If the target has no operations that require custom lowering, it need not
1286  /// implement this.  The default implementation of this aborts.
1287  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1288
1289  /// ReplaceNodeResults - This callback is invoked when a node result type is
1290  /// illegal for the target, and the operation was registered to use 'custom'
1291  /// lowering for that result type.  The target places new result values for
1292  /// the node in Results (their number and types must exactly match those of
1293  /// the original return values of the node), or leaves Results empty, which
1294  /// indicates that the node is not to be custom lowered after all.
1295  ///
1296  /// If the target has no operations that require custom lowering, it need not
1297  /// implement this.  The default implementation aborts.
1298  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1299                                  SelectionDAG &DAG) {
1300    assert(0 && "ReplaceNodeResults not implemented for this target!");
1301  }
1302
1303  /// getTargetNodeName() - This method returns the name of a target specific
1304  /// DAG node.
1305  virtual const char *getTargetNodeName(unsigned Opcode) const;
1306
1307  /// createFastISel - This method returns a target specific FastISel object,
1308  /// or null if the target does not support "fast" ISel.
1309  virtual FastISel *
1310  createFastISel(MachineFunction &,
1311                 MachineModuleInfo *, DwarfWriter *,
1312                 DenseMap<const Value *, unsigned> &,
1313                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1314                 DenseMap<const AllocaInst *, int> &
1315#ifndef NDEBUG
1316                 , SmallSet<Instruction*, 8> &CatchInfoLost
1317#endif
1318                 ) {
1319    return 0;
1320  }
1321
1322  //===--------------------------------------------------------------------===//
1323  // Inline Asm Support hooks
1324  //
1325
1326  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1327  /// call to be explicit llvm code if it wants to.  This is useful for
1328  /// turning simple inline asms into LLVM intrinsics, which gives the
1329  /// compiler more information about the behavior of the code.
1330  virtual bool ExpandInlineAsm(CallInst *CI) const {
1331    return false;
1332  }
1333
1334  enum ConstraintType {
1335    C_Register,            // Constraint represents specific register(s).
1336    C_RegisterClass,       // Constraint represents any of register(s) in class.
1337    C_Memory,              // Memory constraint.
1338    C_Other,               // Something else.
1339    C_Unknown              // Unsupported constraint.
1340  };
1341
1342  /// AsmOperandInfo - This contains information for each constraint that we are
1343  /// lowering.
1344  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1345    /// ConstraintCode - This contains the actual string for the code, like "m".
1346    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1347    /// most closely matches the operand.
1348    std::string ConstraintCode;
1349
1350    /// ConstraintType - Information about the constraint code, e.g. Register,
1351    /// RegisterClass, Memory, Other, Unknown.
1352    TargetLowering::ConstraintType ConstraintType;
1353
1354    /// CallOperandval - If this is the result output operand or a
1355    /// clobber, this is null, otherwise it is the incoming operand to the
1356    /// CallInst.  This gets modified as the asm is processed.
1357    Value *CallOperandVal;
1358
1359    /// ConstraintVT - The ValueType for the operand value.
1360    EVT ConstraintVT;
1361
1362    /// isMatchingInputConstraint - Return true of this is an input operand that
1363    /// is a matching constraint like "4".
1364    bool isMatchingInputConstraint() const;
1365
1366    /// getMatchedOperand - If this is an input matching constraint, this method
1367    /// returns the output operand it matches.
1368    unsigned getMatchedOperand() const;
1369
1370    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1371      : InlineAsm::ConstraintInfo(info),
1372        ConstraintType(TargetLowering::C_Unknown),
1373        CallOperandVal(0), ConstraintVT(MVT::Other) {
1374    }
1375  };
1376
1377  /// ComputeConstraintToUse - Determines the constraint code and constraint
1378  /// type to use for the specific AsmOperandInfo, setting
1379  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1380  /// being passed in is available, it can be passed in as Op, otherwise an
1381  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1382  /// constraint of the inline asm instruction being processed is 'm'.
1383  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1384                                      SDValue Op,
1385                                      bool hasMemory,
1386                                      SelectionDAG *DAG = 0) const;
1387
1388  /// getConstraintType - Given a constraint, return the type of constraint it
1389  /// is for this target.
1390  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1391
1392  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1393  /// return a list of registers that can be used to satisfy the constraint.
1394  /// This should only be used for C_RegisterClass constraints.
1395  virtual std::vector<unsigned>
1396  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1397                                    EVT VT) const;
1398
1399  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1400  /// {edx}), return the register number and the register class for the
1401  /// register.
1402  ///
1403  /// Given a register class constraint, like 'r', if this corresponds directly
1404  /// to an LLVM register class, return a register of 0 and the register class
1405  /// pointer.
1406  ///
1407  /// This should only be used for C_Register constraints.  On error,
1408  /// this returns a register number of 0 and a null register class pointer..
1409  virtual std::pair<unsigned, const TargetRegisterClass*>
1410    getRegForInlineAsmConstraint(const std::string &Constraint,
1411                                 EVT VT) const;
1412
1413  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1414  /// with another that has more specific requirements based on the type of the
1415  /// corresponding operand.  This returns null if there is no replacement to
1416  /// make.
1417  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1418
1419  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1420  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1421  /// it means one of the asm constraint of the inline asm instruction being
1422  /// processed is 'm'.
1423  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1424                                            bool hasMemory,
1425                                            std::vector<SDValue> &Ops,
1426                                            SelectionDAG &DAG) const;
1427
1428  //===--------------------------------------------------------------------===//
1429  // Instruction Emitting Hooks
1430  //
1431
1432  // EmitInstrWithCustomInserter - This method should be implemented by targets
1433  // that mark instructions with the 'usesCustomInserter' flag.  These
1434  // instructions are special in various ways, which require special support to
1435  // insert.  The specified MachineInstr is created but not inserted into any
1436  // basic blocks, and this method is called to expand it into a sequence of
1437  // instructions, potentially also creating new basic blocks and control flow.
1438  // When new basic blocks are inserted and the edges from MBB to its successors
1439  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1440  // DenseMap.
1441  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1442                                                         MachineBasicBlock *MBB,
1443                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1444
1445  //===--------------------------------------------------------------------===//
1446  // Addressing mode description hooks (used by LSR etc).
1447  //
1448
1449  /// AddrMode - This represents an addressing mode of:
1450  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1451  /// If BaseGV is null,  there is no BaseGV.
1452  /// If BaseOffs is zero, there is no base offset.
1453  /// If HasBaseReg is false, there is no base register.
1454  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1455  /// no scale.
1456  ///
1457  struct AddrMode {
1458    GlobalValue *BaseGV;
1459    int64_t      BaseOffs;
1460    bool         HasBaseReg;
1461    int64_t      Scale;
1462    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1463  };
1464
1465  /// isLegalAddressingMode - Return true if the addressing mode represented by
1466  /// AM is legal for this target, for a load/store of the specified type.
1467  /// The type may be VoidTy, in which case only return true if the addressing
1468  /// mode is legal for a load/store of any legal type.
1469  /// TODO: Handle pre/postinc as well.
1470  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1471
1472  /// isTruncateFree - Return true if it's free to truncate a value of
1473  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1474  /// register EAX to i16 by referencing its sub-register AX.
1475  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1476    return false;
1477  }
1478
1479  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1480    return false;
1481  }
1482
1483  /// isZExtFree - Return true if any actual instruction that defines a
1484  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1485  /// register. This does not necessarily include registers defined in
1486  /// unknown ways, such as incoming arguments, or copies from unknown
1487  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1488  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1489  /// all instructions that define 32-bit values implicit zero-extend the
1490  /// result out to 64 bits.
1491  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1492    return false;
1493  }
1494
1495  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1496    return false;
1497  }
1498
1499  /// isNarrowingProfitable - Return true if it's profitable to narrow
1500  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1501  /// from i32 to i8 but not from i32 to i16.
1502  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1503    return false;
1504  }
1505
1506  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1507  /// icmp immediate, that is the target has icmp instructions which can compare
1508  /// a register against the immediate without having to materialize the
1509  /// immediate into a register.
1510  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1511    return true;
1512  }
1513
1514  //===--------------------------------------------------------------------===//
1515  // Div utility functions
1516  //
1517  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1518                      std::vector<SDNode*>* Created) const;
1519  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1520                      std::vector<SDNode*>* Created) const;
1521
1522
1523  //===--------------------------------------------------------------------===//
1524  // Runtime Library hooks
1525  //
1526
1527  /// setLibcallName - Rename the default libcall routine name for the specified
1528  /// libcall.
1529  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1530    LibcallRoutineNames[Call] = Name;
1531  }
1532
1533  /// getLibcallName - Get the libcall routine name for the specified libcall.
1534  ///
1535  const char *getLibcallName(RTLIB::Libcall Call) const {
1536    return LibcallRoutineNames[Call];
1537  }
1538
1539  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1540  /// result of the comparison libcall against zero.
1541  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1542    CmpLibcallCCs[Call] = CC;
1543  }
1544
1545  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1546  /// the comparison libcall against zero.
1547  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1548    return CmpLibcallCCs[Call];
1549  }
1550
1551  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1552  /// specified libcall.
1553  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1554    LibcallCallingConvs[Call] = CC;
1555  }
1556
1557  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1558  /// specified libcall.
1559  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1560    return LibcallCallingConvs[Call];
1561  }
1562
1563private:
1564  TargetMachine &TM;
1565  const TargetData *TD;
1566  TargetLoweringObjectFile &TLOF;
1567
1568  /// PointerTy - The type to use for pointers, usually i32 or i64.
1569  ///
1570  MVT PointerTy;
1571
1572  /// IsLittleEndian - True if this is a little endian target.
1573  ///
1574  bool IsLittleEndian;
1575
1576  /// SelectIsExpensive - Tells the code generator not to expand operations
1577  /// into sequences that use the select operations if possible.
1578  bool SelectIsExpensive;
1579
1580  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1581  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1582  /// a real cost model is in place.  If we ever optimize for size, this will be
1583  /// set to true unconditionally.
1584  bool IntDivIsCheap;
1585
1586  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1587  /// srl/add/sra for a signed divide by power of two, and let the target handle
1588  /// it.
1589  bool Pow2DivIsCheap;
1590
1591  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1592  /// llvm.setjmp.  Defaults to false.
1593  bool UseUnderscoreSetJmp;
1594
1595  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1596  /// llvm.longjmp.  Defaults to false.
1597  bool UseUnderscoreLongJmp;
1598
1599  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1600  /// PointerTy is.
1601  MVT ShiftAmountTy;
1602
1603  /// BooleanContents - Information about the contents of the high-bits in
1604  /// boolean values held in a type wider than i1.  See getBooleanContents.
1605  BooleanContent BooleanContents;
1606
1607  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1608  /// total cycles or lowest register usage.
1609  SchedPreference SchedPreferenceInfo;
1610
1611  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1612  unsigned JumpBufSize;
1613
1614  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1615  /// buffers
1616  unsigned JumpBufAlignment;
1617
1618  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1619  /// if-converted.
1620  unsigned IfCvtBlockSizeLimit;
1621
1622  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1623  /// duplicated during if-conversion.
1624  unsigned IfCvtDupBlockSizeLimit;
1625
1626  /// PrefLoopAlignment - The perferred loop alignment.
1627  ///
1628  unsigned PrefLoopAlignment;
1629
1630  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1631  /// specifies the register that llvm.savestack/llvm.restorestack should save
1632  /// and restore.
1633  unsigned StackPointerRegisterToSaveRestore;
1634
1635  /// ExceptionPointerRegister - If set to a physical register, this specifies
1636  /// the register that receives the exception address on entry to a landing
1637  /// pad.
1638  unsigned ExceptionPointerRegister;
1639
1640  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1641  /// the register that receives the exception typeid on entry to a landing
1642  /// pad.
1643  unsigned ExceptionSelectorRegister;
1644
1645  /// RegClassForVT - This indicates the default register class to use for
1646  /// each ValueType the target supports natively.
1647  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1648  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1649  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1650
1651  /// TransformToType - For any value types we are promoting or expanding, this
1652  /// contains the value type that we are changing to.  For Expanded types, this
1653  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1654  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1655  /// by the system, this holds the same type (e.g. i32 -> i32).
1656  EVT TransformToType[MVT::LAST_VALUETYPE];
1657
1658  /// OpActions - For each operation and each value type, keep a LegalizeAction
1659  /// that indicates how instruction selection should deal with the operation.
1660  /// Most operations are Legal (aka, supported natively by the target), but
1661  /// operations that are not should be described.  Note that operations on
1662  /// non-legal value types are not described here.
1663  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1664  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1665  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1666
1667  /// LoadExtActions - For each load of load extension type and each value type,
1668  /// keep a LegalizeAction that indicates how instruction selection should deal
1669  /// with the load.
1670  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1671
1672  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1673  /// indicates how instruction selection should deal with the store.
1674  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1675
1676  /// IndexedModeActions - For each indexed mode and each value type,
1677  /// keep a pair of LegalizeAction that indicates how instruction
1678  /// selection should deal with the load / store.  The first
1679  /// dimension is now the value_type for the reference.  The second
1680  /// dimension is the load [0] vs. store[1].  The third dimension
1681  /// represents the various modes for load store.
1682  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1683
1684  /// ConvertActions - For each conversion from source type to destination type,
1685  /// keep a LegalizeAction that indicates how instruction selection should
1686  /// deal with the conversion.
1687  /// Currently, this is used only for floating->floating conversions
1688  /// (FP_EXTEND and FP_ROUND).
1689  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1690
1691  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1692  /// LegalizeAction that indicates how instruction selection should
1693  /// deal with the condition code.
1694  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1695
1696  ValueTypeActionImpl ValueTypeActions;
1697
1698  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1699
1700  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1701  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1702  /// which sets a bit in this array.
1703  unsigned char
1704  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1705
1706  /// PromoteToType - For operations that must be promoted to a specific type,
1707  /// this holds the destination type.  This map should be sparse, so don't hold
1708  /// it as an array.
1709  ///
1710  /// Targets add entries to this map with AddPromotedToType(..), clients access
1711  /// this with getTypeToPromoteTo(..).
1712  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1713    PromoteToType;
1714
1715  /// LibcallRoutineNames - Stores the name each libcall.
1716  ///
1717  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1718
1719  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1720  /// of each of the comparison libcall against zero.
1721  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1722
1723  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1724  /// libcall.
1725  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1726
1727protected:
1728  /// When lowering \@llvm.memset this field specifies the maximum number of
1729  /// store operations that may be substituted for the call to memset. Targets
1730  /// must set this value based on the cost threshold for that target. Targets
1731  /// should assume that the memset will be done using as many of the largest
1732  /// store operations first, followed by smaller ones, if necessary, per
1733  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1734  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1735  /// store.  This only applies to setting a constant array of a constant size.
1736  /// @brief Specify maximum number of store instructions per memset call.
1737  unsigned maxStoresPerMemset;
1738
1739  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1740  /// store operations that may be substituted for a call to memcpy. Targets
1741  /// must set this value based on the cost threshold for that target. Targets
1742  /// should assume that the memcpy will be done using as many of the largest
1743  /// store operations first, followed by smaller ones, if necessary, per
1744  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1745  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1746  /// and one 1-byte store. This only applies to copying a constant array of
1747  /// constant size.
1748  /// @brief Specify maximum bytes of store instructions per memcpy call.
1749  unsigned maxStoresPerMemcpy;
1750
1751  /// When lowering \@llvm.memmove this field specifies the maximum number of
1752  /// store instructions that may be substituted for a call to memmove. Targets
1753  /// must set this value based on the cost threshold for that target. Targets
1754  /// should assume that the memmove will be done using as many of the largest
1755  /// store operations first, followed by smaller ones, if necessary, per
1756  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1757  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1758  /// applies to copying a constant array of constant size.
1759  /// @brief Specify maximum bytes of store instructions per memmove call.
1760  unsigned maxStoresPerMemmove;
1761
1762  /// This field specifies whether the target can benefit from code placement
1763  /// optimization.
1764  bool benefitFromCodePlacementOpt;
1765};
1766} // end llvm namespace
1767
1768#endif
1769