TargetLowering.h revision 201360
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/RuntimeLibcalls.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/DebugLoc.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class AllocaInst;
42  class CallInst;
43  class Function;
44  class FastISel;
45  class MachineBasicBlock;
46  class MachineFunction;
47  class MachineFrameInfo;
48  class MachineInstr;
49  class MachineModuleInfo;
50  class DwarfWriter;
51  class SDNode;
52  class SDValue;
53  class SelectionDAG;
54  class TargetData;
55  class TargetMachine;
56  class TargetRegisterClass;
57  class TargetSubtarget;
58  class TargetLoweringObjectFile;
59  class Value;
60
61  // FIXME: should this be here?
62  namespace TLSModel {
63    enum Model {
64      GeneralDynamic,
65      LocalDynamic,
66      InitialExec,
67      LocalExec
68    };
69  }
70  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
71
72
73//===----------------------------------------------------------------------===//
74/// TargetLowering - This class defines information used to lower LLVM code to
75/// legal SelectionDAG operators that the target instruction selector can accept
76/// natively.
77///
78/// This class also defines callbacks that targets must implement to lower
79/// target-specific constructs to SelectionDAG operators.
80///
81class TargetLowering {
82  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
83  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
84public:
85  /// LegalizeAction - This enum indicates whether operations are valid for a
86  /// target, and if not, what action should be used to make them valid.
87  enum LegalizeAction {
88    Legal,      // The target natively supports this operation.
89    Promote,    // This operation should be executed in a larger type.
90    Expand,     // Try to expand this to other ops, otherwise use a libcall.
91    Custom      // Use the LowerOperation hook to implement custom lowering.
92  };
93
94  enum BooleanContent { // How the target represents true/false values.
95    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
96    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
97    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
98  };
99
100  enum SchedPreference {
101    SchedulingForLatency,          // Scheduling for shortest total latency.
102    SchedulingForRegPressure       // Scheduling for lowest register pressure.
103  };
104
105  /// NOTE: The constructor takes ownership of TLOF.
106  explicit TargetLowering(TargetMachine &TM, TargetLoweringObjectFile *TLOF);
107  virtual ~TargetLowering();
108
109  TargetMachine &getTargetMachine() const { return TM; }
110  const TargetData *getTargetData() const { return TD; }
111  TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
112
113  bool isBigEndian() const { return !IsLittleEndian; }
114  bool isLittleEndian() const { return IsLittleEndian; }
115  MVT getPointerTy() const { return PointerTy; }
116  MVT getShiftAmountTy() const { return ShiftAmountTy; }
117
118  /// usesGlobalOffsetTable - Return true if this target uses a GOT for PIC
119  /// codegen.
120  bool usesGlobalOffsetTable() const { return UsesGlobalOffsetTable; }
121
122  /// isSelectExpensive - Return true if the select operation is expensive for
123  /// this target.
124  bool isSelectExpensive() const { return SelectIsExpensive; }
125
126  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
127  /// a sequence of several shifts, adds, and multiplies for this target.
128  bool isIntDivCheap() const { return IntDivIsCheap; }
129
130  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
131  /// srl/add/sra.
132  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
133
134  /// getSetCCResultType - Return the ValueType of the result of SETCC
135  /// operations.  Also used to obtain the target's preferred type for
136  /// the condition operand of SELECT and BRCOND nodes.  In the case of
137  /// BRCOND the argument passed is MVT::Other since there are no other
138  /// operands to get a type hint from.
139  virtual
140  MVT::SimpleValueType getSetCCResultType(EVT VT) const;
141
142  /// getCmpLibcallReturnType - Return the ValueType for comparison
143  /// libcalls. Comparions libcalls include floating point comparion calls,
144  /// and Ordered/Unordered check calls on floating point numbers.
145  virtual
146  MVT::SimpleValueType getCmpLibcallReturnType() const;
147
148  /// getBooleanContents - For targets without i1 registers, this gives the
149  /// nature of the high-bits of boolean values held in types wider than i1.
150  /// "Boolean values" are special true/false values produced by nodes like
151  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
152  /// Not to be confused with general values promoted from i1.
153  BooleanContent getBooleanContents() const { return BooleanContents;}
154
155  /// getSchedulingPreference - Return target scheduling preference.
156  SchedPreference getSchedulingPreference() const {
157    return SchedPreferenceInfo;
158  }
159
160  /// getRegClassFor - Return the register class that should be used for the
161  /// specified value type.  This may only be called on legal types.
162  TargetRegisterClass *getRegClassFor(EVT VT) const {
163    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
164    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
165    assert(RC && "This value type is not natively supported!");
166    return RC;
167  }
168
169  /// isTypeLegal - Return true if the target has native support for the
170  /// specified value type.  This means that it has a register that directly
171  /// holds it without promotions or expansions.
172  bool isTypeLegal(EVT VT) const {
173    assert(!VT.isSimple() ||
174           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
175    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
176  }
177
178  class ValueTypeActionImpl {
179    /// ValueTypeActions - This is a bitvector that contains two bits for each
180    /// value type, where the two bits correspond to the LegalizeAction enum.
181    /// This can be queried with "getTypeAction(VT)".
182    /// dimension by (MVT::MAX_ALLOWED_VALUETYPE/32) * 2
183    uint32_t ValueTypeActions[(MVT::MAX_ALLOWED_VALUETYPE/32)*2];
184  public:
185    ValueTypeActionImpl() {
186      ValueTypeActions[0] = ValueTypeActions[1] = 0;
187      ValueTypeActions[2] = ValueTypeActions[3] = 0;
188    }
189    ValueTypeActionImpl(const ValueTypeActionImpl &RHS) {
190      ValueTypeActions[0] = RHS.ValueTypeActions[0];
191      ValueTypeActions[1] = RHS.ValueTypeActions[1];
192      ValueTypeActions[2] = RHS.ValueTypeActions[2];
193      ValueTypeActions[3] = RHS.ValueTypeActions[3];
194    }
195
196    LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
197      if (VT.isExtended()) {
198        if (VT.isVector()) {
199          return VT.isPow2VectorType() ? Expand : Promote;
200        }
201        if (VT.isInteger())
202          // First promote to a power-of-two size, then expand if necessary.
203          return VT == VT.getRoundIntegerType(Context) ? Expand : Promote;
204        assert(0 && "Unsupported extended type!");
205        return Legal;
206      }
207      unsigned I = VT.getSimpleVT().SimpleTy;
208      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
209      return (LegalizeAction)((ValueTypeActions[I>>4] >> ((2*I) & 31)) & 3);
210    }
211    void setTypeAction(EVT VT, LegalizeAction Action) {
212      unsigned I = VT.getSimpleVT().SimpleTy;
213      assert(I<4*array_lengthof(ValueTypeActions)*sizeof(ValueTypeActions[0]));
214      ValueTypeActions[I>>4] |= Action << ((I*2) & 31);
215    }
216  };
217
218  const ValueTypeActionImpl &getValueTypeActions() const {
219    return ValueTypeActions;
220  }
221
222  /// getTypeAction - Return how we should legalize values of this type, either
223  /// it is already legal (return 'Legal') or we need to promote it to a larger
224  /// type (return 'Promote'), or we need to expand it into multiple registers
225  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
226  LegalizeAction getTypeAction(LLVMContext &Context, EVT VT) const {
227    return ValueTypeActions.getTypeAction(Context, VT);
228  }
229
230  /// getTypeToTransformTo - For types supported by the target, this is an
231  /// identity function.  For types that must be promoted to larger types, this
232  /// returns the larger type to promote to.  For integer types that are larger
233  /// than the largest integer register, this contains one step in the expansion
234  /// to get to the smaller register. For illegal floating point types, this
235  /// returns the integer type to transform to.
236  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
237    if (VT.isSimple()) {
238      assert((unsigned)VT.getSimpleVT().SimpleTy <
239             array_lengthof(TransformToType));
240      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
241      assert(getTypeAction(Context, NVT) != Promote &&
242             "Promote may not follow Expand or Promote");
243      return NVT;
244    }
245
246    if (VT.isVector()) {
247      EVT NVT = VT.getPow2VectorType(Context);
248      if (NVT == VT) {
249        // Vector length is a power of 2 - split to half the size.
250        unsigned NumElts = VT.getVectorNumElements();
251        EVT EltVT = VT.getVectorElementType();
252        return (NumElts == 1) ?
253          EltVT : EVT::getVectorVT(Context, EltVT, NumElts / 2);
254      }
255      // Promote to a power of two size, avoiding multi-step promotion.
256      return getTypeAction(Context, NVT) == Promote ?
257        getTypeToTransformTo(Context, NVT) : NVT;
258    } else if (VT.isInteger()) {
259      EVT NVT = VT.getRoundIntegerType(Context);
260      if (NVT == VT)
261        // Size is a power of two - expand to half the size.
262        return EVT::getIntegerVT(Context, VT.getSizeInBits() / 2);
263      else
264        // Promote to a power of two size, avoiding multi-step promotion.
265        return getTypeAction(Context, NVT) == Promote ?
266          getTypeToTransformTo(Context, NVT) : NVT;
267    }
268    assert(0 && "Unsupported extended type!");
269    return MVT(MVT::Other); // Not reached
270  }
271
272  /// getTypeToExpandTo - For types supported by the target, this is an
273  /// identity function.  For types that must be expanded (i.e. integer types
274  /// that are larger than the largest integer register or illegal floating
275  /// point types), this returns the largest legal type it will be expanded to.
276  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
277    assert(!VT.isVector());
278    while (true) {
279      switch (getTypeAction(Context, VT)) {
280      case Legal:
281        return VT;
282      case Expand:
283        VT = getTypeToTransformTo(Context, VT);
284        break;
285      default:
286        assert(false && "Type is not legal nor is it to be expanded!");
287        return VT;
288      }
289    }
290    return VT;
291  }
292
293  /// getVectorTypeBreakdown - Vector types are broken down into some number of
294  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
295  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
296  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
297  ///
298  /// This method returns the number of registers needed, and the VT for each
299  /// register.  It also returns the VT and quantity of the intermediate values
300  /// before they are promoted/expanded.
301  ///
302  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
303                                  EVT &IntermediateVT,
304                                  unsigned &NumIntermediates,
305                                  EVT &RegisterVT) const;
306
307  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
308  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
309  /// this is the case, it returns true and store the intrinsic
310  /// information into the IntrinsicInfo that was passed to the function.
311  typedef struct IntrinsicInfo {
312    unsigned     opc;         // target opcode
313    EVT          memVT;       // memory VT
314    const Value* ptrVal;      // value representing memory location
315    int          offset;      // offset off of ptrVal
316    unsigned     align;       // alignment
317    bool         vol;         // is volatile?
318    bool         readMem;     // reads memory?
319    bool         writeMem;    // writes memory?
320  } IntrinisicInfo;
321
322  virtual bool getTgtMemIntrinsic(IntrinsicInfo& Info,
323                                  CallInst &I, unsigned Intrinsic) {
324    return false;
325  }
326
327  /// getWidenVectorType: given a vector type, returns the type to widen to
328  /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
329  /// If there is no vector type that we want to widen to, returns MVT::Other
330  /// When and were to widen is target dependent based on the cost of
331  /// scalarizing vs using the wider vector type.
332  virtual EVT getWidenVectorType(EVT VT) const;
333
334  /// isFPImmLegal - Returns true if the target can instruction select the
335  /// specified FP immediate natively. If false, the legalizer will materialize
336  /// the FP immediate as a load from a constant pool.
337  virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const {
338    return false;
339  }
340
341  /// isShuffleMaskLegal - Targets can use this to indicate that they only
342  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
343  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
344  /// are assumed to be legal.
345  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
346                                  EVT VT) const {
347    return true;
348  }
349
350  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
351  /// used by Targets can use this to indicate if there is a suitable
352  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
353  /// pool entry.
354  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
355                                      EVT VT) const {
356    return false;
357  }
358
359  /// getOperationAction - Return how this operation should be treated: either
360  /// it is legal, needs to be promoted to a larger size, needs to be
361  /// expanded to some other code sequence, or the target has a custom expander
362  /// for it.
363  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
364    if (VT.isExtended()) return Expand;
365    assert(Op < array_lengthof(OpActions[0]) &&
366           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(OpActions[0][0])*8 &&
367           "Table isn't big enough!");
368    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
369    unsigned J = I & 31;
370    I = I >> 5;
371    return (LegalizeAction)((OpActions[I][Op] >> (J*2) ) & 3);
372  }
373
374  /// isOperationLegalOrCustom - Return true if the specified operation is
375  /// legal on this target or can be made legal with custom lowering. This
376  /// is used to help guide high-level lowering decisions.
377  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
378    return (VT == MVT::Other || isTypeLegal(VT)) &&
379      (getOperationAction(Op, VT) == Legal ||
380       getOperationAction(Op, VT) == Custom);
381  }
382
383  /// isOperationLegal - Return true if the specified operation is legal on this
384  /// target.
385  bool isOperationLegal(unsigned Op, EVT VT) const {
386    return (VT == MVT::Other || isTypeLegal(VT)) &&
387           getOperationAction(Op, VT) == Legal;
388  }
389
390  /// getLoadExtAction - Return how this load with extension should be treated:
391  /// either it is legal, needs to be promoted to a larger size, needs to be
392  /// expanded to some other code sequence, or the target has a custom expander
393  /// for it.
394  LegalizeAction getLoadExtAction(unsigned LType, EVT VT) const {
395    assert(LType < array_lengthof(LoadExtActions) &&
396           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(LoadExtActions[0])*4 &&
397           "Table isn't big enough!");
398    return (LegalizeAction)((LoadExtActions[LType] >>
399              (2*VT.getSimpleVT().SimpleTy)) & 3);
400  }
401
402  /// isLoadExtLegal - Return true if the specified load with extension is legal
403  /// on this target.
404  bool isLoadExtLegal(unsigned LType, EVT VT) const {
405    return VT.isSimple() &&
406      (getLoadExtAction(LType, VT) == Legal ||
407       getLoadExtAction(LType, VT) == Custom);
408  }
409
410  /// getTruncStoreAction - Return how this store with truncation should be
411  /// treated: either it is legal, needs to be promoted to a larger size, needs
412  /// to be expanded to some other code sequence, or the target has a custom
413  /// expander for it.
414  LegalizeAction getTruncStoreAction(EVT ValVT,
415                                     EVT MemVT) const {
416    assert((unsigned)ValVT.getSimpleVT().SimpleTy <
417             array_lengthof(TruncStoreActions) &&
418           (unsigned)MemVT.getSimpleVT().SimpleTy <
419             sizeof(TruncStoreActions[0])*4 &&
420           "Table isn't big enough!");
421    return (LegalizeAction)((TruncStoreActions[ValVT.getSimpleVT().SimpleTy] >>
422                             (2*MemVT.getSimpleVT().SimpleTy)) & 3);
423  }
424
425  /// isTruncStoreLegal - Return true if the specified store with truncation is
426  /// legal on this target.
427  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
428    return isTypeLegal(ValVT) && MemVT.isSimple() &&
429      (getTruncStoreAction(ValVT, MemVT) == Legal ||
430       getTruncStoreAction(ValVT, MemVT) == Custom);
431  }
432
433  /// getIndexedLoadAction - Return how the indexed load should be treated:
434  /// either it is legal, needs to be promoted to a larger size, needs to be
435  /// expanded to some other code sequence, or the target has a custom expander
436  /// for it.
437  LegalizeAction
438  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
439    assert( IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
440           ((unsigned)VT.getSimpleVT().SimpleTy) < MVT::LAST_VALUETYPE &&
441           "Table isn't big enough!");
442    return (LegalizeAction)((IndexedModeActions[
443                             (unsigned)VT.getSimpleVT().SimpleTy][0][IdxMode]));
444  }
445
446  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
447  /// on this target.
448  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
449    return VT.isSimple() &&
450      (getIndexedLoadAction(IdxMode, VT) == Legal ||
451       getIndexedLoadAction(IdxMode, VT) == Custom);
452  }
453
454  /// getIndexedStoreAction - Return how the indexed store should be treated:
455  /// either it is legal, needs to be promoted to a larger size, needs to be
456  /// expanded to some other code sequence, or the target has a custom expander
457  /// for it.
458  LegalizeAction
459  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
460    assert(IdxMode < array_lengthof(IndexedModeActions[0][1]) &&
461           (unsigned)VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
462           "Table isn't big enough!");
463    return (LegalizeAction)((IndexedModeActions[
464              (unsigned)VT.getSimpleVT().SimpleTy][1][IdxMode]));
465  }
466
467  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
468  /// on this target.
469  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
470    return VT.isSimple() &&
471      (getIndexedStoreAction(IdxMode, VT) == Legal ||
472       getIndexedStoreAction(IdxMode, VT) == Custom);
473  }
474
475  /// getConvertAction - Return how the conversion should be treated:
476  /// either it is legal, needs to be promoted to a larger size, needs to be
477  /// expanded to some other code sequence, or the target has a custom expander
478  /// for it.
479  LegalizeAction
480  getConvertAction(EVT FromVT, EVT ToVT) const {
481    assert((unsigned)FromVT.getSimpleVT().SimpleTy <
482              array_lengthof(ConvertActions) &&
483           (unsigned)ToVT.getSimpleVT().SimpleTy <
484              sizeof(ConvertActions[0])*4 &&
485           "Table isn't big enough!");
486    return (LegalizeAction)((ConvertActions[FromVT.getSimpleVT().SimpleTy] >>
487                             (2*ToVT.getSimpleVT().SimpleTy)) & 3);
488  }
489
490  /// isConvertLegal - Return true if the specified conversion is legal
491  /// on this target.
492  bool isConvertLegal(EVT FromVT, EVT ToVT) const {
493    return isTypeLegal(FromVT) && isTypeLegal(ToVT) &&
494      (getConvertAction(FromVT, ToVT) == Legal ||
495       getConvertAction(FromVT, ToVT) == Custom);
496  }
497
498  /// getCondCodeAction - Return how the condition code should be treated:
499  /// either it is legal, needs to be expanded to some other code sequence,
500  /// or the target has a custom expander for it.
501  LegalizeAction
502  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
503    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
504           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
505           "Table isn't big enough!");
506    LegalizeAction Action = (LegalizeAction)
507      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
508    assert(Action != Promote && "Can't promote condition code!");
509    return Action;
510  }
511
512  /// isCondCodeLegal - Return true if the specified condition code is legal
513  /// on this target.
514  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
515    return getCondCodeAction(CC, VT) == Legal ||
516           getCondCodeAction(CC, VT) == Custom;
517  }
518
519
520  /// getTypeToPromoteTo - If the action for this operation is to promote, this
521  /// method returns the ValueType to promote to.
522  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
523    assert(getOperationAction(Op, VT) == Promote &&
524           "This operation isn't promoted!");
525
526    // See if this has an explicit type specified.
527    std::map<std::pair<unsigned, MVT::SimpleValueType>,
528             MVT::SimpleValueType>::const_iterator PTTI =
529      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
530    if (PTTI != PromoteToType.end()) return PTTI->second;
531
532    assert((VT.isInteger() || VT.isFloatingPoint()) &&
533           "Cannot autopromote this type, add it with AddPromotedToType.");
534
535    EVT NVT = VT;
536    do {
537      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
538      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
539             "Didn't find type to promote to!");
540    } while (!isTypeLegal(NVT) ||
541              getOperationAction(Op, NVT) == Promote);
542    return NVT;
543  }
544
545  /// getValueType - Return the EVT corresponding to this LLVM type.
546  /// This is fixed by the LLVM operations except for the pointer size.  If
547  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
548  /// counterpart (e.g. structs), otherwise it will assert.
549  EVT getValueType(const Type *Ty, bool AllowUnknown = false) const {
550    EVT VT = EVT::getEVT(Ty, AllowUnknown);
551    return VT == MVT:: iPTR ? PointerTy : VT;
552  }
553
554  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
555  /// function arguments in the caller parameter area.  This is the actual
556  /// alignment, not its logarithm.
557  virtual unsigned getByValTypeAlignment(const Type *Ty) const;
558
559  /// getRegisterType - Return the type of registers that this ValueType will
560  /// eventually require.
561  EVT getRegisterType(MVT VT) const {
562    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
563    return RegisterTypeForVT[VT.SimpleTy];
564  }
565
566  /// getRegisterType - Return the type of registers that this ValueType will
567  /// eventually require.
568  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
569    if (VT.isSimple()) {
570      assert((unsigned)VT.getSimpleVT().SimpleTy <
571                array_lengthof(RegisterTypeForVT));
572      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
573    }
574    if (VT.isVector()) {
575      EVT VT1, RegisterVT;
576      unsigned NumIntermediates;
577      (void)getVectorTypeBreakdown(Context, VT, VT1,
578                                   NumIntermediates, RegisterVT);
579      return RegisterVT;
580    }
581    if (VT.isInteger()) {
582      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
583    }
584    assert(0 && "Unsupported extended type!");
585    return EVT(MVT::Other); // Not reached
586  }
587
588  /// getNumRegisters - Return the number of registers that this ValueType will
589  /// eventually require.  This is one for any types promoted to live in larger
590  /// registers, but may be more than one for types (like i64) that are split
591  /// into pieces.  For types like i140, which are first promoted then expanded,
592  /// it is the number of registers needed to hold all the bits of the original
593  /// type.  For an i140 on a 32 bit machine this means 5 registers.
594  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
595    if (VT.isSimple()) {
596      assert((unsigned)VT.getSimpleVT().SimpleTy <
597                array_lengthof(NumRegistersForVT));
598      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
599    }
600    if (VT.isVector()) {
601      EVT VT1, VT2;
602      unsigned NumIntermediates;
603      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
604    }
605    if (VT.isInteger()) {
606      unsigned BitWidth = VT.getSizeInBits();
607      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
608      return (BitWidth + RegWidth - 1) / RegWidth;
609    }
610    assert(0 && "Unsupported extended type!");
611    return 0; // Not reached
612  }
613
614  /// ShouldShrinkFPConstant - If true, then instruction selection should
615  /// seek to shrink the FP constant of the specified type to a smaller type
616  /// in order to save space and / or reduce runtime.
617  virtual bool ShouldShrinkFPConstant(EVT VT) const { return true; }
618
619  /// hasTargetDAGCombine - If true, the target has custom DAG combine
620  /// transformations that it can perform for the specified node.
621  bool hasTargetDAGCombine(ISD::NodeType NT) const {
622    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
623    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
624  }
625
626  /// This function returns the maximum number of store operations permitted
627  /// to replace a call to llvm.memset. The value is set by the target at the
628  /// performance threshold for such a replacement.
629  /// @brief Get maximum # of store operations permitted for llvm.memset
630  unsigned getMaxStoresPerMemset() const { return maxStoresPerMemset; }
631
632  /// This function returns the maximum number of store operations permitted
633  /// to replace a call to llvm.memcpy. The value is set by the target at the
634  /// performance threshold for such a replacement.
635  /// @brief Get maximum # of store operations permitted for llvm.memcpy
636  unsigned getMaxStoresPerMemcpy() const { return maxStoresPerMemcpy; }
637
638  /// This function returns the maximum number of store operations permitted
639  /// to replace a call to llvm.memmove. The value is set by the target at the
640  /// performance threshold for such a replacement.
641  /// @brief Get maximum # of store operations permitted for llvm.memmove
642  unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
643
644  /// This function returns true if the target allows unaligned memory accesses.
645  /// of the specified type. This is used, for example, in situations where an
646  /// array copy/move/set is  converted to a sequence of store operations. It's
647  /// use helps to ensure that such replacements don't generate code that causes
648  /// an alignment error  (trap) on the target machine.
649  /// @brief Determine if the target supports unaligned memory accesses.
650  virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
651    return false;
652  }
653
654  /// This function returns true if the target would benefit from code placement
655  /// optimization.
656  /// @brief Determine if the target should perform code placement optimization.
657  bool shouldOptimizeCodePlacement() const {
658    return benefitFromCodePlacementOpt;
659  }
660
661  /// getOptimalMemOpType - Returns the target specific optimal type for load
662  /// and store operations as a result of memset, memcpy, and memmove lowering.
663  /// It returns EVT::iAny if SelectionDAG should be responsible for
664  /// determining it.
665  virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
666                                  bool isSrcConst, bool isSrcStr,
667                                  SelectionDAG &DAG) const {
668    return MVT::iAny;
669  }
670
671  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
672  /// to implement llvm.setjmp.
673  bool usesUnderscoreSetJmp() const {
674    return UseUnderscoreSetJmp;
675  }
676
677  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
678  /// to implement llvm.longjmp.
679  bool usesUnderscoreLongJmp() const {
680    return UseUnderscoreLongJmp;
681  }
682
683  /// getStackPointerRegisterToSaveRestore - If a physical register, this
684  /// specifies the register that llvm.savestack/llvm.restorestack should save
685  /// and restore.
686  unsigned getStackPointerRegisterToSaveRestore() const {
687    return StackPointerRegisterToSaveRestore;
688  }
689
690  /// getExceptionAddressRegister - If a physical register, this returns
691  /// the register that receives the exception address on entry to a landing
692  /// pad.
693  unsigned getExceptionAddressRegister() const {
694    return ExceptionPointerRegister;
695  }
696
697  /// getExceptionSelectorRegister - If a physical register, this returns
698  /// the register that receives the exception typeid on entry to a landing
699  /// pad.
700  unsigned getExceptionSelectorRegister() const {
701    return ExceptionSelectorRegister;
702  }
703
704  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
705  /// set, the default is 200)
706  unsigned getJumpBufSize() const {
707    return JumpBufSize;
708  }
709
710  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
711  /// (if never set, the default is 0)
712  unsigned getJumpBufAlignment() const {
713    return JumpBufAlignment;
714  }
715
716  /// getIfCvtBlockLimit - returns the target specific if-conversion block size
717  /// limit. Any block whose size is greater should not be predicated.
718  unsigned getIfCvtBlockSizeLimit() const {
719    return IfCvtBlockSizeLimit;
720  }
721
722  /// getIfCvtDupBlockLimit - returns the target specific size limit for a
723  /// block to be considered for duplication. Any block whose size is greater
724  /// should not be duplicated to facilitate its predication.
725  unsigned getIfCvtDupBlockSizeLimit() const {
726    return IfCvtDupBlockSizeLimit;
727  }
728
729  /// getPrefLoopAlignment - return the preferred loop alignment.
730  ///
731  unsigned getPrefLoopAlignment() const {
732    return PrefLoopAlignment;
733  }
734
735  /// getPreIndexedAddressParts - returns true by value, base pointer and
736  /// offset pointer and addressing mode by reference if the node's address
737  /// can be legally represented as pre-indexed load / store address.
738  virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
739                                         SDValue &Offset,
740                                         ISD::MemIndexedMode &AM,
741                                         SelectionDAG &DAG) const {
742    return false;
743  }
744
745  /// getPostIndexedAddressParts - returns true by value, base pointer and
746  /// offset pointer and addressing mode by reference if this node can be
747  /// combined with a load / store to form a post-indexed load / store.
748  virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
749                                          SDValue &Base, SDValue &Offset,
750                                          ISD::MemIndexedMode &AM,
751                                          SelectionDAG &DAG) const {
752    return false;
753  }
754
755  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
756  /// jumptable.
757  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
758                                             SelectionDAG &DAG) const;
759
760  /// isOffsetFoldingLegal - Return true if folding a constant offset
761  /// with the given GlobalAddress is legal.  It is frequently not legal in
762  /// PIC relocation models.
763  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
764
765  /// getFunctionAlignment - Return the Log2 alignment of this function.
766  virtual unsigned getFunctionAlignment(const Function *) const = 0;
767
768  //===--------------------------------------------------------------------===//
769  // TargetLowering Optimization Methods
770  //
771
772  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
773  /// SDValues for returning information from TargetLowering to its clients
774  /// that want to combine
775  struct TargetLoweringOpt {
776    SelectionDAG &DAG;
777    SDValue Old;
778    SDValue New;
779
780    explicit TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
781
782    bool CombineTo(SDValue O, SDValue N) {
783      Old = O;
784      New = N;
785      return true;
786    }
787
788    /// ShrinkDemandedConstant - Check to see if the specified operand of the
789    /// specified instruction is a constant integer.  If so, check to see if
790    /// there are any bits set in the constant that are not demanded.  If so,
791    /// shrink the constant and return true.
792    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
793
794    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
795    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
796    /// cast, but it could be generalized for targets with other types of
797    /// implicit widening casts.
798    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
799                          DebugLoc dl);
800  };
801
802  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
803  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
804  /// use this information to simplify Op, create a new simplified DAG node and
805  /// return true, returning the original and new nodes in Old and New.
806  /// Otherwise, analyze the expression and return a mask of KnownOne and
807  /// KnownZero bits for the expression (used to simplify the caller).
808  /// The KnownZero/One bits may only be accurate for those bits in the
809  /// DemandedMask.
810  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
811                            APInt &KnownZero, APInt &KnownOne,
812                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
813
814  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
815  /// Mask are known to be either zero or one and return them in the
816  /// KnownZero/KnownOne bitsets.
817  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
818                                              const APInt &Mask,
819                                              APInt &KnownZero,
820                                              APInt &KnownOne,
821                                              const SelectionDAG &DAG,
822                                              unsigned Depth = 0) const;
823
824  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
825  /// targets that want to expose additional information about sign bits to the
826  /// DAG Combiner.
827  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
828                                                   unsigned Depth = 0) const;
829
830  struct DAGCombinerInfo {
831    void *DC;  // The DAG Combiner object.
832    bool BeforeLegalize;
833    bool BeforeLegalizeOps;
834    bool CalledByLegalizer;
835  public:
836    SelectionDAG &DAG;
837
838    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
839      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
840        CalledByLegalizer(cl), DAG(dag) {}
841
842    bool isBeforeLegalize() const { return BeforeLegalize; }
843    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
844    bool isCalledByLegalizer() const { return CalledByLegalizer; }
845
846    void AddToWorklist(SDNode *N);
847    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
848                      bool AddTo = true);
849    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
850    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
851
852    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
853  };
854
855  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
856  /// and cc. If it is unable to simplify it, return a null SDValue.
857  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
858                          ISD::CondCode Cond, bool foldBooleans,
859                          DAGCombinerInfo &DCI, DebugLoc dl) const;
860
861  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
862  /// node is a GlobalAddress + offset.
863  virtual bool
864  isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
865
866  /// PerformDAGCombine - This method will be invoked for all target nodes and
867  /// for any target-independent nodes that the target has registered with
868  /// invoke it for.
869  ///
870  /// The semantics are as follows:
871  /// Return Value:
872  ///   SDValue.Val == 0   - No change was made
873  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
874  ///   otherwise          - N should be replaced by the returned Operand.
875  ///
876  /// In addition, methods provided by DAGCombinerInfo may be used to perform
877  /// more complex transformations.
878  ///
879  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
880
881  //===--------------------------------------------------------------------===//
882  // TargetLowering Configuration Methods - These methods should be invoked by
883  // the derived class constructor to configure this object for the target.
884  //
885
886protected:
887  /// setUsesGlobalOffsetTable - Specify that this target does or doesn't use a
888  /// GOT for PC-relative code.
889  void setUsesGlobalOffsetTable(bool V) { UsesGlobalOffsetTable = V; }
890
891  /// setShiftAmountType - Describe the type that should be used for shift
892  /// amounts.  This type defaults to the pointer type.
893  void setShiftAmountType(MVT VT) { ShiftAmountTy = VT; }
894
895  /// setBooleanContents - Specify how the target extends the result of a
896  /// boolean value from i1 to a wider type.  See getBooleanContents.
897  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
898
899  /// setSchedulingPreference - Specify the target scheduling preference.
900  void setSchedulingPreference(SchedPreference Pref) {
901    SchedPreferenceInfo = Pref;
902  }
903
904  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
905  /// use _setjmp to implement llvm.setjmp or the non _ version.
906  /// Defaults to false.
907  void setUseUnderscoreSetJmp(bool Val) {
908    UseUnderscoreSetJmp = Val;
909  }
910
911  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
912  /// use _longjmp to implement llvm.longjmp or the non _ version.
913  /// Defaults to false.
914  void setUseUnderscoreLongJmp(bool Val) {
915    UseUnderscoreLongJmp = Val;
916  }
917
918  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
919  /// specifies the register that llvm.savestack/llvm.restorestack should save
920  /// and restore.
921  void setStackPointerRegisterToSaveRestore(unsigned R) {
922    StackPointerRegisterToSaveRestore = R;
923  }
924
925  /// setExceptionPointerRegister - If set to a physical register, this sets
926  /// the register that receives the exception address on entry to a landing
927  /// pad.
928  void setExceptionPointerRegister(unsigned R) {
929    ExceptionPointerRegister = R;
930  }
931
932  /// setExceptionSelectorRegister - If set to a physical register, this sets
933  /// the register that receives the exception typeid on entry to a landing
934  /// pad.
935  void setExceptionSelectorRegister(unsigned R) {
936    ExceptionSelectorRegister = R;
937  }
938
939  /// SelectIsExpensive - Tells the code generator not to expand operations
940  /// into sequences that use the select operations if possible.
941  void setSelectIsExpensive() { SelectIsExpensive = true; }
942
943  /// setIntDivIsCheap - Tells the code generator that integer divide is
944  /// expensive, and if possible, should be replaced by an alternate sequence
945  /// of instructions not containing an integer divide.
946  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
947
948  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
949  /// srl/add/sra for a signed divide by power of two, and let the target handle
950  /// it.
951  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
952
953  /// addRegisterClass - Add the specified register class as an available
954  /// regclass for the specified value type.  This indicates the selector can
955  /// handle values of that class natively.
956  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
957    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
958    AvailableRegClasses.push_back(std::make_pair(VT, RC));
959    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
960  }
961
962  /// computeRegisterProperties - Once all of the register classes are added,
963  /// this allows us to compute derived properties we expose.
964  void computeRegisterProperties();
965
966  /// setOperationAction - Indicate that the specified operation does not work
967  /// with the specified type and indicate what to do about it.
968  void setOperationAction(unsigned Op, MVT VT,
969                          LegalizeAction Action) {
970    unsigned I = (unsigned)VT.SimpleTy;
971    unsigned J = I & 31;
972    I = I >> 5;
973    OpActions[I][Op] &= ~(uint64_t(3UL) << (J*2));
974    OpActions[I][Op] |= (uint64_t)Action << (J*2);
975  }
976
977  /// setLoadExtAction - Indicate that the specified load with extension does
978  /// not work with the with specified type and indicate what to do about it.
979  void setLoadExtAction(unsigned ExtType, MVT VT,
980                      LegalizeAction Action) {
981    assert((unsigned)VT.SimpleTy*2 < 63 &&
982           ExtType < array_lengthof(LoadExtActions) &&
983           "Table isn't big enough!");
984    LoadExtActions[ExtType] &= ~(uint64_t(3UL) << VT.SimpleTy*2);
985    LoadExtActions[ExtType] |= (uint64_t)Action << VT.SimpleTy*2;
986  }
987
988  /// setTruncStoreAction - Indicate that the specified truncating store does
989  /// not work with the with specified type and indicate what to do about it.
990  void setTruncStoreAction(MVT ValVT, MVT MemVT,
991                           LegalizeAction Action) {
992    assert((unsigned)ValVT.SimpleTy < array_lengthof(TruncStoreActions) &&
993           (unsigned)MemVT.SimpleTy*2 < 63 &&
994           "Table isn't big enough!");
995    TruncStoreActions[ValVT.SimpleTy] &= ~(uint64_t(3UL)  << MemVT.SimpleTy*2);
996    TruncStoreActions[ValVT.SimpleTy] |= (uint64_t)Action << MemVT.SimpleTy*2;
997  }
998
999  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1000  /// does not work with the with specified type and indicate what to do abort
1001  /// it. NOTE: All indexed mode loads are initialized to Expand in
1002  /// TargetLowering.cpp
1003  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1004                            LegalizeAction Action) {
1005    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1006           IdxMode < array_lengthof(IndexedModeActions[0][0]) &&
1007           "Table isn't big enough!");
1008    IndexedModeActions[(unsigned)VT.SimpleTy][0][IdxMode] = (uint8_t)Action;
1009  }
1010
1011  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1012  /// does not work with the with specified type and indicate what to do about
1013  /// it. NOTE: All indexed mode stores are initialized to Expand in
1014  /// TargetLowering.cpp
1015  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1016                             LegalizeAction Action) {
1017    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1018           IdxMode < array_lengthof(IndexedModeActions[0][1] ) &&
1019           "Table isn't big enough!");
1020    IndexedModeActions[(unsigned)VT.SimpleTy][1][IdxMode] = (uint8_t)Action;
1021  }
1022
1023  /// setConvertAction - Indicate that the specified conversion does or does
1024  /// not work with the with specified type and indicate what to do about it.
1025  void setConvertAction(MVT FromVT, MVT ToVT,
1026                        LegalizeAction Action) {
1027    assert((unsigned)FromVT.SimpleTy < array_lengthof(ConvertActions) &&
1028           (unsigned)ToVT.SimpleTy < MVT::LAST_VALUETYPE &&
1029           "Table isn't big enough!");
1030    ConvertActions[FromVT.SimpleTy] &= ~(uint64_t(3UL)  << ToVT.SimpleTy*2);
1031    ConvertActions[FromVT.SimpleTy] |= (uint64_t)Action << ToVT.SimpleTy*2;
1032  }
1033
1034  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1035  /// supported on the target and indicate what to do about it.
1036  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1037                         LegalizeAction Action) {
1038    assert((unsigned)VT.SimpleTy < MVT::LAST_VALUETYPE &&
1039           (unsigned)CC < array_lengthof(CondCodeActions) &&
1040           "Table isn't big enough!");
1041    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1042    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1043  }
1044
1045  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1046  /// promotion code defaults to trying a larger integer/fp until it can find
1047  /// one that works.  If that default is insufficient, this method can be used
1048  /// by the target to override the default.
1049  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1050    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1051  }
1052
1053  /// setTargetDAGCombine - Targets should invoke this method for each target
1054  /// independent node that they want to provide a custom DAG combiner for by
1055  /// implementing the PerformDAGCombine virtual method.
1056  void setTargetDAGCombine(ISD::NodeType NT) {
1057    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1058    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1059  }
1060
1061  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1062  /// bytes); default is 200
1063  void setJumpBufSize(unsigned Size) {
1064    JumpBufSize = Size;
1065  }
1066
1067  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1068  /// alignment (in bytes); default is 0
1069  void setJumpBufAlignment(unsigned Align) {
1070    JumpBufAlignment = Align;
1071  }
1072
1073  /// setIfCvtBlockSizeLimit - Set the target's if-conversion block size
1074  /// limit (in number of instructions); default is 2.
1075  void setIfCvtBlockSizeLimit(unsigned Limit) {
1076    IfCvtBlockSizeLimit = Limit;
1077  }
1078
1079  /// setIfCvtDupBlockSizeLimit - Set the target's block size limit (in number
1080  /// of instructions) to be considered for code duplication during
1081  /// if-conversion; default is 2.
1082  void setIfCvtDupBlockSizeLimit(unsigned Limit) {
1083    IfCvtDupBlockSizeLimit = Limit;
1084  }
1085
1086  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1087  /// alignment is zero, it means the target does not care about loop alignment.
1088  void setPrefLoopAlignment(unsigned Align) {
1089    PrefLoopAlignment = Align;
1090  }
1091
1092public:
1093
1094  virtual const TargetSubtarget *getSubtarget() {
1095    assert(0 && "Not Implemented");
1096    return NULL;    // this is here to silence compiler errors
1097  }
1098
1099  //===--------------------------------------------------------------------===//
1100  // Lowering methods - These methods must be implemented by targets so that
1101  // the SelectionDAGLowering code knows how to lower these.
1102  //
1103
1104  /// LowerFormalArguments - This hook must be implemented to lower the
1105  /// incoming (formal) arguments, described by the Ins array, into the
1106  /// specified DAG. The implementation should fill in the InVals array
1107  /// with legal-type argument values, and return the resulting token
1108  /// chain value.
1109  ///
1110  virtual SDValue
1111    LowerFormalArguments(SDValue Chain,
1112                         CallingConv::ID CallConv, bool isVarArg,
1113                         const SmallVectorImpl<ISD::InputArg> &Ins,
1114                         DebugLoc dl, SelectionDAG &DAG,
1115                         SmallVectorImpl<SDValue> &InVals) {
1116    assert(0 && "Not Implemented");
1117    return SDValue();    // this is here to silence compiler errors
1118  }
1119
1120  /// LowerCallTo - This function lowers an abstract call to a function into an
1121  /// actual call.  This returns a pair of operands.  The first element is the
1122  /// return value for the function (if RetTy is not VoidTy).  The second
1123  /// element is the outgoing token chain. It calls LowerCall to do the actual
1124  /// lowering.
1125  struct ArgListEntry {
1126    SDValue Node;
1127    const Type* Ty;
1128    bool isSExt  : 1;
1129    bool isZExt  : 1;
1130    bool isInReg : 1;
1131    bool isSRet  : 1;
1132    bool isNest  : 1;
1133    bool isByVal : 1;
1134    uint16_t Alignment;
1135
1136    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1137      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1138  };
1139  typedef std::vector<ArgListEntry> ArgListTy;
1140  std::pair<SDValue, SDValue>
1141  LowerCallTo(SDValue Chain, const Type *RetTy, bool RetSExt, bool RetZExt,
1142              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1143              CallingConv::ID CallConv, bool isTailCall,
1144              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1145              SelectionDAG &DAG, DebugLoc dl, unsigned Order);
1146
1147  /// LowerCall - This hook must be implemented to lower calls into the
1148  /// the specified DAG. The outgoing arguments to the call are described
1149  /// by the Outs array, and the values to be returned by the call are
1150  /// described by the Ins array. The implementation should fill in the
1151  /// InVals array with legal-type return values from the call, and return
1152  /// the resulting token chain value.
1153  ///
1154  /// The isTailCall flag here is normative. If it is true, the
1155  /// implementation must emit a tail call. The
1156  /// IsEligibleForTailCallOptimization hook should be used to catch
1157  /// cases that cannot be handled.
1158  ///
1159  virtual SDValue
1160    LowerCall(SDValue Chain, SDValue Callee,
1161              CallingConv::ID CallConv, bool isVarArg, bool isTailCall,
1162              const SmallVectorImpl<ISD::OutputArg> &Outs,
1163              const SmallVectorImpl<ISD::InputArg> &Ins,
1164              DebugLoc dl, SelectionDAG &DAG,
1165              SmallVectorImpl<SDValue> &InVals) {
1166    assert(0 && "Not Implemented");
1167    return SDValue();    // this is here to silence compiler errors
1168  }
1169
1170  /// CanLowerReturn - This hook should be implemented to check whether the
1171  /// return values described by the Outs array can fit into the return
1172  /// registers.  If false is returned, an sret-demotion is performed.
1173  ///
1174  virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1175               const SmallVectorImpl<EVT> &OutTys,
1176               const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1177               SelectionDAG &DAG)
1178  {
1179    // Return true by default to get preexisting behavior.
1180    return true;
1181  }
1182  /// LowerReturn - This hook must be implemented to lower outgoing
1183  /// return values, described by the Outs array, into the specified
1184  /// DAG. The implementation should return the resulting token chain
1185  /// value.
1186  ///
1187  virtual SDValue
1188    LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1189                const SmallVectorImpl<ISD::OutputArg> &Outs,
1190                DebugLoc dl, SelectionDAG &DAG) {
1191    assert(0 && "Not Implemented");
1192    return SDValue();    // this is here to silence compiler errors
1193  }
1194
1195  /// EmitTargetCodeForMemcpy - Emit target-specific code that performs a
1196  /// memcpy. This can be used by targets to provide code sequences for cases
1197  /// that don't fit the target's parameters for simple loads/stores and can be
1198  /// more efficient than using a library call. This function can return a null
1199  /// SDValue if the target declines to use custom code and a different
1200  /// lowering strategy should be used.
1201  ///
1202  /// If AlwaysInline is true, the size is constant and the target should not
1203  /// emit any calls and is strongly encouraged to attempt to emit inline code
1204  /// even if it is beyond the usual threshold because this intrinsic is being
1205  /// expanded in a place where calls are not feasible (e.g. within the prologue
1206  /// for another call). If the target chooses to decline an AlwaysInline
1207  /// request here, legalize will resort to using simple loads and stores.
1208  virtual SDValue
1209  EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1210                          SDValue Chain,
1211                          SDValue Op1, SDValue Op2,
1212                          SDValue Op3, unsigned Align,
1213                          bool AlwaysInline,
1214                          const Value *DstSV, uint64_t DstOff,
1215                          const Value *SrcSV, uint64_t SrcOff) {
1216    return SDValue();
1217  }
1218
1219  /// EmitTargetCodeForMemmove - Emit target-specific code that performs a
1220  /// memmove. This can be used by targets to provide code sequences for cases
1221  /// that don't fit the target's parameters for simple loads/stores and can be
1222  /// more efficient than using a library call. This function can return a null
1223  /// SDValue if the target declines to use custom code and a different
1224  /// lowering strategy should be used.
1225  virtual SDValue
1226  EmitTargetCodeForMemmove(SelectionDAG &DAG, DebugLoc dl,
1227                           SDValue Chain,
1228                           SDValue Op1, SDValue Op2,
1229                           SDValue Op3, unsigned Align,
1230                           const Value *DstSV, uint64_t DstOff,
1231                           const Value *SrcSV, uint64_t SrcOff) {
1232    return SDValue();
1233  }
1234
1235  /// EmitTargetCodeForMemset - Emit target-specific code that performs a
1236  /// memset. This can be used by targets to provide code sequences for cases
1237  /// that don't fit the target's parameters for simple stores and can be more
1238  /// efficient than using a library call. This function can return a null
1239  /// SDValue if the target declines to use custom code and a different
1240  /// lowering strategy should be used.
1241  virtual SDValue
1242  EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
1243                          SDValue Chain,
1244                          SDValue Op1, SDValue Op2,
1245                          SDValue Op3, unsigned Align,
1246                          const Value *DstSV, uint64_t DstOff) {
1247    return SDValue();
1248  }
1249
1250  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1251  /// to legalize nodes with an illegal operand type but legal result types.
1252  /// It replaces the LowerOperation callback in the type Legalizer.
1253  /// The reason we can not do away with LowerOperation entirely is that
1254  /// LegalizeDAG isn't yet ready to use this callback.
1255  /// TODO: Consider merging with ReplaceNodeResults.
1256
1257  /// The target places new result values for the node in Results (their number
1258  /// and types must exactly match those of the original return values of
1259  /// the node), or leaves Results empty, which indicates that the node is not
1260  /// to be custom lowered after all.
1261  /// The default implementation calls LowerOperation.
1262  virtual void LowerOperationWrapper(SDNode *N,
1263                                     SmallVectorImpl<SDValue> &Results,
1264                                     SelectionDAG &DAG);
1265
1266  /// LowerOperation - This callback is invoked for operations that are
1267  /// unsupported by the target, which are registered to use 'custom' lowering,
1268  /// and whose defined values are all legal.
1269  /// If the target has no operations that require custom lowering, it need not
1270  /// implement this.  The default implementation of this aborts.
1271  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
1272
1273  /// ReplaceNodeResults - This callback is invoked when a node result type is
1274  /// illegal for the target, and the operation was registered to use 'custom'
1275  /// lowering for that result type.  The target places new result values for
1276  /// the node in Results (their number and types must exactly match those of
1277  /// the original return values of the node), or leaves Results empty, which
1278  /// indicates that the node is not to be custom lowered after all.
1279  ///
1280  /// If the target has no operations that require custom lowering, it need not
1281  /// implement this.  The default implementation aborts.
1282  virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
1283                                  SelectionDAG &DAG) {
1284    assert(0 && "ReplaceNodeResults not implemented for this target!");
1285  }
1286
1287  /// IsEligibleForTailCallOptimization - Check whether the call is eligible for
1288  /// tail call optimization. Targets which want to do tail call optimization
1289  /// should override this function.
1290  virtual bool
1291  IsEligibleForTailCallOptimization(SDValue Callee,
1292                                    CallingConv::ID CalleeCC,
1293                                    bool isVarArg,
1294                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1295                                    SelectionDAG& DAG) const {
1296    // Conservative default: no calls are eligible.
1297    return false;
1298  }
1299
1300  /// getTargetNodeName() - This method returns the name of a target specific
1301  /// DAG node.
1302  virtual const char *getTargetNodeName(unsigned Opcode) const;
1303
1304  /// createFastISel - This method returns a target specific FastISel object,
1305  /// or null if the target does not support "fast" ISel.
1306  virtual FastISel *
1307  createFastISel(MachineFunction &,
1308                 MachineModuleInfo *, DwarfWriter *,
1309                 DenseMap<const Value *, unsigned> &,
1310                 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
1311                 DenseMap<const AllocaInst *, int> &
1312#ifndef NDEBUG
1313                 , SmallSet<Instruction*, 8> &CatchInfoLost
1314#endif
1315                 ) {
1316    return 0;
1317  }
1318
1319  //===--------------------------------------------------------------------===//
1320  // Inline Asm Support hooks
1321  //
1322
1323  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1324  /// call to be explicit llvm code if it wants to.  This is useful for
1325  /// turning simple inline asms into LLVM intrinsics, which gives the
1326  /// compiler more information about the behavior of the code.
1327  virtual bool ExpandInlineAsm(CallInst *CI) const {
1328    return false;
1329  }
1330
1331  enum ConstraintType {
1332    C_Register,            // Constraint represents specific register(s).
1333    C_RegisterClass,       // Constraint represents any of register(s) in class.
1334    C_Memory,              // Memory constraint.
1335    C_Other,               // Something else.
1336    C_Unknown              // Unsupported constraint.
1337  };
1338
1339  /// AsmOperandInfo - This contains information for each constraint that we are
1340  /// lowering.
1341  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1342    /// ConstraintCode - This contains the actual string for the code, like "m".
1343    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1344    /// most closely matches the operand.
1345    std::string ConstraintCode;
1346
1347    /// ConstraintType - Information about the constraint code, e.g. Register,
1348    /// RegisterClass, Memory, Other, Unknown.
1349    TargetLowering::ConstraintType ConstraintType;
1350
1351    /// CallOperandval - If this is the result output operand or a
1352    /// clobber, this is null, otherwise it is the incoming operand to the
1353    /// CallInst.  This gets modified as the asm is processed.
1354    Value *CallOperandVal;
1355
1356    /// ConstraintVT - The ValueType for the operand value.
1357    EVT ConstraintVT;
1358
1359    /// isMatchingInputConstraint - Return true of this is an input operand that
1360    /// is a matching constraint like "4".
1361    bool isMatchingInputConstraint() const;
1362
1363    /// getMatchedOperand - If this is an input matching constraint, this method
1364    /// returns the output operand it matches.
1365    unsigned getMatchedOperand() const;
1366
1367    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1368      : InlineAsm::ConstraintInfo(info),
1369        ConstraintType(TargetLowering::C_Unknown),
1370        CallOperandVal(0), ConstraintVT(MVT::Other) {
1371    }
1372  };
1373
1374  /// ComputeConstraintToUse - Determines the constraint code and constraint
1375  /// type to use for the specific AsmOperandInfo, setting
1376  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1377  /// being passed in is available, it can be passed in as Op, otherwise an
1378  /// empty SDValue can be passed. If hasMemory is true it means one of the asm
1379  /// constraint of the inline asm instruction being processed is 'm'.
1380  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1381                                      SDValue Op,
1382                                      bool hasMemory,
1383                                      SelectionDAG *DAG = 0) const;
1384
1385  /// getConstraintType - Given a constraint, return the type of constraint it
1386  /// is for this target.
1387  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1388
1389  /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1390  /// return a list of registers that can be used to satisfy the constraint.
1391  /// This should only be used for C_RegisterClass constraints.
1392  virtual std::vector<unsigned>
1393  getRegClassForInlineAsmConstraint(const std::string &Constraint,
1394                                    EVT VT) const;
1395
1396  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1397  /// {edx}), return the register number and the register class for the
1398  /// register.
1399  ///
1400  /// Given a register class constraint, like 'r', if this corresponds directly
1401  /// to an LLVM register class, return a register of 0 and the register class
1402  /// pointer.
1403  ///
1404  /// This should only be used for C_Register constraints.  On error,
1405  /// this returns a register number of 0 and a null register class pointer..
1406  virtual std::pair<unsigned, const TargetRegisterClass*>
1407    getRegForInlineAsmConstraint(const std::string &Constraint,
1408                                 EVT VT) const;
1409
1410  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1411  /// with another that has more specific requirements based on the type of the
1412  /// corresponding operand.  This returns null if there is no replacement to
1413  /// make.
1414  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1415
1416  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1417  /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
1418  /// it means one of the asm constraint of the inline asm instruction being
1419  /// processed is 'm'.
1420  virtual void LowerAsmOperandForConstraint(SDValue Op, char ConstraintLetter,
1421                                            bool hasMemory,
1422                                            std::vector<SDValue> &Ops,
1423                                            SelectionDAG &DAG) const;
1424
1425  //===--------------------------------------------------------------------===//
1426  // Instruction Emitting Hooks
1427  //
1428
1429  // EmitInstrWithCustomInserter - This method should be implemented by targets
1430  // that mark instructions with the 'usesCustomInserter' flag.  These
1431  // instructions are special in various ways, which require special support to
1432  // insert.  The specified MachineInstr is created but not inserted into any
1433  // basic blocks, and this method is called to expand it into a sequence of
1434  // instructions, potentially also creating new basic blocks and control flow.
1435  // When new basic blocks are inserted and the edges from MBB to its successors
1436  // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
1437  // DenseMap.
1438  virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
1439                                                         MachineBasicBlock *MBB,
1440                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
1441
1442  //===--------------------------------------------------------------------===//
1443  // Addressing mode description hooks (used by LSR etc).
1444  //
1445
1446  /// AddrMode - This represents an addressing mode of:
1447  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1448  /// If BaseGV is null,  there is no BaseGV.
1449  /// If BaseOffs is zero, there is no base offset.
1450  /// If HasBaseReg is false, there is no base register.
1451  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1452  /// no scale.
1453  ///
1454  struct AddrMode {
1455    GlobalValue *BaseGV;
1456    int64_t      BaseOffs;
1457    bool         HasBaseReg;
1458    int64_t      Scale;
1459    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1460  };
1461
1462  /// isLegalAddressingMode - Return true if the addressing mode represented by
1463  /// AM is legal for this target, for a load/store of the specified type.
1464  /// The type may be VoidTy, in which case only return true if the addressing
1465  /// mode is legal for a load/store of any legal type.
1466  /// TODO: Handle pre/postinc as well.
1467  virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty) const;
1468
1469  /// isTruncateFree - Return true if it's free to truncate a value of
1470  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1471  /// register EAX to i16 by referencing its sub-register AX.
1472  virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const {
1473    return false;
1474  }
1475
1476  virtual bool isTruncateFree(EVT VT1, EVT VT2) const {
1477    return false;
1478  }
1479
1480  /// isZExtFree - Return true if any actual instruction that defines a
1481  /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1482  /// register. This does not necessarily include registers defined in
1483  /// unknown ways, such as incoming arguments, or copies from unknown
1484  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1485  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1486  /// all instructions that define 32-bit values implicit zero-extend the
1487  /// result out to 64 bits.
1488  virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const {
1489    return false;
1490  }
1491
1492  virtual bool isZExtFree(EVT VT1, EVT VT2) const {
1493    return false;
1494  }
1495
1496  /// isNarrowingProfitable - Return true if it's profitable to narrow
1497  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1498  /// from i32 to i8 but not from i32 to i16.
1499  virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const {
1500    return false;
1501  }
1502
1503  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1504  /// icmp immediate, that is the target has icmp instructions which can compare
1505  /// a register against the immediate without having to materialize the
1506  /// immediate into a register.
1507  virtual bool isLegalICmpImmediate(int64_t Imm) const {
1508    return true;
1509  }
1510
1511  //===--------------------------------------------------------------------===//
1512  // Div utility functions
1513  //
1514  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG,
1515                      std::vector<SDNode*>* Created) const;
1516  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG,
1517                      std::vector<SDNode*>* Created) const;
1518
1519
1520  //===--------------------------------------------------------------------===//
1521  // Runtime Library hooks
1522  //
1523
1524  /// setLibcallName - Rename the default libcall routine name for the specified
1525  /// libcall.
1526  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1527    LibcallRoutineNames[Call] = Name;
1528  }
1529
1530  /// getLibcallName - Get the libcall routine name for the specified libcall.
1531  ///
1532  const char *getLibcallName(RTLIB::Libcall Call) const {
1533    return LibcallRoutineNames[Call];
1534  }
1535
1536  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1537  /// result of the comparison libcall against zero.
1538  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1539    CmpLibcallCCs[Call] = CC;
1540  }
1541
1542  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1543  /// the comparison libcall against zero.
1544  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1545    return CmpLibcallCCs[Call];
1546  }
1547
1548  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1549  /// specified libcall.
1550  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1551    LibcallCallingConvs[Call] = CC;
1552  }
1553
1554  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1555  /// specified libcall.
1556  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1557    return LibcallCallingConvs[Call];
1558  }
1559
1560private:
1561  TargetMachine &TM;
1562  const TargetData *TD;
1563  TargetLoweringObjectFile &TLOF;
1564
1565  /// PointerTy - The type to use for pointers, usually i32 or i64.
1566  ///
1567  MVT PointerTy;
1568
1569  /// IsLittleEndian - True if this is a little endian target.
1570  ///
1571  bool IsLittleEndian;
1572
1573  /// UsesGlobalOffsetTable - True if this target uses a GOT for PIC codegen.
1574  ///
1575  bool UsesGlobalOffsetTable;
1576
1577  /// SelectIsExpensive - Tells the code generator not to expand operations
1578  /// into sequences that use the select operations if possible.
1579  bool SelectIsExpensive;
1580
1581  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1582  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1583  /// a real cost model is in place.  If we ever optimize for size, this will be
1584  /// set to true unconditionally.
1585  bool IntDivIsCheap;
1586
1587  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1588  /// srl/add/sra for a signed divide by power of two, and let the target handle
1589  /// it.
1590  bool Pow2DivIsCheap;
1591
1592  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1593  /// llvm.setjmp.  Defaults to false.
1594  bool UseUnderscoreSetJmp;
1595
1596  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1597  /// llvm.longjmp.  Defaults to false.
1598  bool UseUnderscoreLongJmp;
1599
1600  /// ShiftAmountTy - The type to use for shift amounts, usually i8 or whatever
1601  /// PointerTy is.
1602  MVT ShiftAmountTy;
1603
1604  /// BooleanContents - Information about the contents of the high-bits in
1605  /// boolean values held in a type wider than i1.  See getBooleanContents.
1606  BooleanContent BooleanContents;
1607
1608  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1609  /// total cycles or lowest register usage.
1610  SchedPreference SchedPreferenceInfo;
1611
1612  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1613  unsigned JumpBufSize;
1614
1615  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1616  /// buffers
1617  unsigned JumpBufAlignment;
1618
1619  /// IfCvtBlockSizeLimit - The maximum allowed size for a block to be
1620  /// if-converted.
1621  unsigned IfCvtBlockSizeLimit;
1622
1623  /// IfCvtDupBlockSizeLimit - The maximum allowed size for a block to be
1624  /// duplicated during if-conversion.
1625  unsigned IfCvtDupBlockSizeLimit;
1626
1627  /// PrefLoopAlignment - The perferred loop alignment.
1628  ///
1629  unsigned PrefLoopAlignment;
1630
1631  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1632  /// specifies the register that llvm.savestack/llvm.restorestack should save
1633  /// and restore.
1634  unsigned StackPointerRegisterToSaveRestore;
1635
1636  /// ExceptionPointerRegister - If set to a physical register, this specifies
1637  /// the register that receives the exception address on entry to a landing
1638  /// pad.
1639  unsigned ExceptionPointerRegister;
1640
1641  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1642  /// the register that receives the exception typeid on entry to a landing
1643  /// pad.
1644  unsigned ExceptionSelectorRegister;
1645
1646  /// RegClassForVT - This indicates the default register class to use for
1647  /// each ValueType the target supports natively.
1648  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1649  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1650  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1651
1652  /// TransformToType - For any value types we are promoting or expanding, this
1653  /// contains the value type that we are changing to.  For Expanded types, this
1654  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1655  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1656  /// by the system, this holds the same type (e.g. i32 -> i32).
1657  EVT TransformToType[MVT::LAST_VALUETYPE];
1658
1659  /// OpActions - For each operation and each value type, keep a LegalizeAction
1660  /// that indicates how instruction selection should deal with the operation.
1661  /// Most operations are Legal (aka, supported natively by the target), but
1662  /// operations that are not should be described.  Note that operations on
1663  /// non-legal value types are not described here.
1664  /// This array is accessed using VT.getSimpleVT(), so it is subject to
1665  /// the MVT::MAX_ALLOWED_VALUETYPE * 2 bits.
1666  uint64_t OpActions[MVT::MAX_ALLOWED_VALUETYPE/(sizeof(uint64_t)*4)][ISD::BUILTIN_OP_END];
1667
1668  /// LoadExtActions - For each load of load extension type and each value type,
1669  /// keep a LegalizeAction that indicates how instruction selection should deal
1670  /// with the load.
1671  uint64_t LoadExtActions[ISD::LAST_LOADEXT_TYPE];
1672
1673  /// TruncStoreActions - For each truncating store, keep a LegalizeAction that
1674  /// indicates how instruction selection should deal with the store.
1675  uint64_t TruncStoreActions[MVT::LAST_VALUETYPE];
1676
1677  /// IndexedModeActions - For each indexed mode and each value type,
1678  /// keep a pair of LegalizeAction that indicates how instruction
1679  /// selection should deal with the load / store.  The first
1680  /// dimension is now the value_type for the reference.  The second
1681  /// dimension is the load [0] vs. store[1].  The third dimension
1682  /// represents the various modes for load store.
1683  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][2][ISD::LAST_INDEXED_MODE];
1684
1685  /// ConvertActions - For each conversion from source type to destination type,
1686  /// keep a LegalizeAction that indicates how instruction selection should
1687  /// deal with the conversion.
1688  /// Currently, this is used only for floating->floating conversions
1689  /// (FP_EXTEND and FP_ROUND).
1690  uint64_t ConvertActions[MVT::LAST_VALUETYPE];
1691
1692  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1693  /// LegalizeAction that indicates how instruction selection should
1694  /// deal with the condition code.
1695  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1696
1697  ValueTypeActionImpl ValueTypeActions;
1698
1699  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1700
1701  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1702  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1703  /// which sets a bit in this array.
1704  unsigned char
1705  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1706
1707  /// PromoteToType - For operations that must be promoted to a specific type,
1708  /// this holds the destination type.  This map should be sparse, so don't hold
1709  /// it as an array.
1710  ///
1711  /// Targets add entries to this map with AddPromotedToType(..), clients access
1712  /// this with getTypeToPromoteTo(..).
1713  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1714    PromoteToType;
1715
1716  /// LibcallRoutineNames - Stores the name each libcall.
1717  ///
1718  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1719
1720  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1721  /// of each of the comparison libcall against zero.
1722  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1723
1724  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1725  /// libcall.
1726  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1727
1728protected:
1729  /// When lowering \@llvm.memset this field specifies the maximum number of
1730  /// store operations that may be substituted for the call to memset. Targets
1731  /// must set this value based on the cost threshold for that target. Targets
1732  /// should assume that the memset will be done using as many of the largest
1733  /// store operations first, followed by smaller ones, if necessary, per
1734  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1735  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1736  /// store.  This only applies to setting a constant array of a constant size.
1737  /// @brief Specify maximum number of store instructions per memset call.
1738  unsigned maxStoresPerMemset;
1739
1740  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1741  /// store operations that may be substituted for a call to memcpy. Targets
1742  /// must set this value based on the cost threshold for that target. Targets
1743  /// should assume that the memcpy will be done using as many of the largest
1744  /// store operations first, followed by smaller ones, if necessary, per
1745  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1746  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1747  /// and one 1-byte store. This only applies to copying a constant array of
1748  /// constant size.
1749  /// @brief Specify maximum bytes of store instructions per memcpy call.
1750  unsigned maxStoresPerMemcpy;
1751
1752  /// When lowering \@llvm.memmove this field specifies the maximum number of
1753  /// store instructions that may be substituted for a call to memmove. Targets
1754  /// must set this value based on the cost threshold for that target. Targets
1755  /// should assume that the memmove will be done using as many of the largest
1756  /// store operations first, followed by smaller ones, if necessary, per
1757  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1758  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1759  /// applies to copying a constant array of constant size.
1760  /// @brief Specify maximum bytes of store instructions per memmove call.
1761  unsigned maxStoresPerMemmove;
1762
1763  /// This field specifies whether the target can benefit from code placement
1764  /// optimization.
1765  bool benefitFromCodePlacementOpt;
1766};
1767} // end llvm namespace
1768
1769#endif
1770