ScheduleDAG.h revision 249423
1157400Srwatson//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2157400Srwatson//
3157400Srwatson//                     The LLVM Compiler Infrastructure
4157400Srwatson//
5157400Srwatson// This file is distributed under the University of Illinois Open Source
6157400Srwatson// License. See LICENSE.TXT for details.
7157400Srwatson//
8157400Srwatson//===----------------------------------------------------------------------===//
9157400Srwatson//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers. This encapsulates the scheduling DAG,
12// which is shared between SelectionDAG and MachineInstr scheduling.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
17#define LLVM_CODEGEN_SCHEDULEDAG_H
18
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/GraphTraits.h"
21#include "llvm/ADT/PointerIntPair.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/Target/TargetLowering.h"
25
26namespace llvm {
27  class AliasAnalysis;
28  class SUnit;
29  class MachineConstantPool;
30  class MachineFunction;
31  class MachineRegisterInfo;
32  class MachineInstr;
33  struct MCSchedClassDesc;
34  class TargetRegisterInfo;
35  class ScheduleDAG;
36  class SDNode;
37  class TargetInstrInfo;
38  class MCInstrDesc;
39  class TargetMachine;
40  class TargetRegisterClass;
41  template<class Graph> class GraphWriter;
42
43  /// SDep - Scheduling dependency. This represents one direction of an
44  /// edge in the scheduling DAG.
45  class SDep {
46  public:
47    /// Kind - These are the different kinds of scheduling dependencies.
48    enum Kind {
49      Data,        ///< Regular data dependence (aka true-dependence).
50      Anti,        ///< A register anti-dependedence (aka WAR).
51      Output,      ///< A register output-dependence (aka WAW).
52      Order        ///< Any other ordering dependency.
53    };
54
55    // Strong dependencies must be respected by the scheduler. Artificial
56    // dependencies may be removed only if they are redundant with another
57    // strong depedence.
58    //
59    // Weak dependencies may be violated by the scheduling strategy, but only if
60    // the strategy can prove it is correct to do so.
61    //
62    // Strong OrderKinds must occur before "Weak".
63    // Weak OrderKinds must occur after "Weak".
64    enum OrderKind {
65      Barrier,      ///< An unknown scheduling barrier.
66      MayAliasMem,  ///< Nonvolatile load/Store instructions that may alias.
67      MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
68      Artificial,   ///< Arbitrary strong DAG edge (no real dependence).
69      Weak,         ///< Arbitrary weak DAG edge.
70      Cluster       ///< Weak DAG edge linking a chain of clustered instrs.
71    };
72
73  private:
74    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
75    /// indicating the kind of the dependency.
76    PointerIntPair<SUnit *, 2, Kind> Dep;
77
78    /// Contents - A union discriminated by the dependence kind.
79    union {
80      /// Reg - For Data, Anti, and Output dependencies, the associated
81      /// register. For Data dependencies that don't currently have a register
82      /// assigned, this is set to zero.
83      unsigned Reg;
84
85      /// Order - Additional information about Order dependencies.
86      unsigned OrdKind; // enum OrderKind
87    } Contents;
88
89    /// Latency - The time associated with this edge. Often this is just
90    /// the value of the Latency field of the predecessor, however advanced
91    /// models may provide additional information about specific edges.
92    unsigned Latency;
93    /// Record MinLatency seperately from "expected" Latency.
94    ///
95    /// FIXME: this field is not packed on LP64. Convert to 16-bit DAG edge
96    /// latency after introducing saturating truncation.
97    unsigned MinLatency;
98
99  public:
100    /// SDep - Construct a null SDep. This is only for use by container
101    /// classes which require default constructors. SUnits may not
102    /// have null SDep edges.
103    SDep() : Dep(0, Data) {}
104
105    /// SDep - Construct an SDep with the specified values.
106    SDep(SUnit *S, Kind kind, unsigned Reg)
107      : Dep(S, kind), Contents() {
108      switch (kind) {
109      default:
110        llvm_unreachable("Reg given for non-register dependence!");
111      case Anti:
112      case Output:
113        assert(Reg != 0 &&
114               "SDep::Anti and SDep::Output must use a non-zero Reg!");
115        Contents.Reg = Reg;
116        Latency = 0;
117        break;
118      case Data:
119        Contents.Reg = Reg;
120        Latency = 1;
121        break;
122      }
123      MinLatency = Latency;
124    }
125    SDep(SUnit *S, OrderKind kind)
126      : Dep(S, Order), Contents(), Latency(0), MinLatency(0) {
127      Contents.OrdKind = kind;
128    }
129
130    /// Return true if the specified SDep is equivalent except for latency.
131    bool overlaps(const SDep &Other) const {
132      if (Dep != Other.Dep) return false;
133      switch (Dep.getInt()) {
134      case Data:
135      case Anti:
136      case Output:
137        return Contents.Reg == Other.Contents.Reg;
138      case Order:
139        return Contents.OrdKind == Other.Contents.OrdKind;
140      }
141      llvm_unreachable("Invalid dependency kind!");
142    }
143
144    bool operator==(const SDep &Other) const {
145      return overlaps(Other)
146        && Latency == Other.Latency && MinLatency == Other.MinLatency;
147    }
148
149    bool operator!=(const SDep &Other) const {
150      return !operator==(Other);
151    }
152
153    /// getLatency - Return the latency value for this edge, which roughly
154    /// means the minimum number of cycles that must elapse between the
155    /// predecessor and the successor, given that they have this edge
156    /// between them.
157    unsigned getLatency() const {
158      return Latency;
159    }
160
161    /// setLatency - Set the latency for this edge.
162    void setLatency(unsigned Lat) {
163      Latency = Lat;
164    }
165
166    /// getMinLatency - Return the minimum latency for this edge. Minimum
167    /// latency is used for scheduling groups, while normal (expected) latency
168    /// is for instruction cost and critical path.
169    unsigned getMinLatency() const {
170      return MinLatency;
171    }
172
173    /// setMinLatency - Set the minimum latency for this edge.
174    void setMinLatency(unsigned Lat) {
175      MinLatency = Lat;
176    }
177
178    //// getSUnit - Return the SUnit to which this edge points.
179    SUnit *getSUnit() const {
180      return Dep.getPointer();
181    }
182
183    //// setSUnit - Assign the SUnit to which this edge points.
184    void setSUnit(SUnit *SU) {
185      Dep.setPointer(SU);
186    }
187
188    /// getKind - Return an enum value representing the kind of the dependence.
189    Kind getKind() const {
190      return Dep.getInt();
191    }
192
193    /// isCtrl - Shorthand for getKind() != SDep::Data.
194    bool isCtrl() const {
195      return getKind() != Data;
196    }
197
198    /// isNormalMemory - Test if this is an Order dependence between two
199    /// memory accesses where both sides of the dependence access memory
200    /// in non-volatile and fully modeled ways.
201    bool isNormalMemory() const {
202      return getKind() == Order && (Contents.OrdKind == MayAliasMem
203                                    || Contents.OrdKind == MustAliasMem);
204    }
205
206    /// isMustAlias - Test if this is an Order dependence that is marked
207    /// as "must alias", meaning that the SUnits at either end of the edge
208    /// have a memory dependence on a known memory location.
209    bool isMustAlias() const {
210      return getKind() == Order && Contents.OrdKind == MustAliasMem;
211    }
212
213    /// isWeak - Test if this a weak dependence. Weak dependencies are
214    /// considered DAG edges for height computation and other heuristics, but do
215    /// not force ordering. Breaking a weak edge may require the scheduler to
216    /// compensate, for example by inserting a copy.
217    bool isWeak() const {
218      return getKind() == Order && Contents.OrdKind >= Weak;
219    }
220
221    /// isArtificial - Test if this is an Order dependence that is marked
222    /// as "artificial", meaning it isn't necessary for correctness.
223    bool isArtificial() const {
224      return getKind() == Order && Contents.OrdKind == Artificial;
225    }
226
227    /// isCluster - Test if this is an Order dependence that is marked
228    /// as "cluster", meaning it is artificial and wants to be adjacent.
229    bool isCluster() const {
230      return getKind() == Order && Contents.OrdKind == Cluster;
231    }
232
233    /// isAssignedRegDep - Test if this is a Data dependence that is
234    /// associated with a register.
235    bool isAssignedRegDep() const {
236      return getKind() == Data && Contents.Reg != 0;
237    }
238
239    /// getReg - Return the register associated with this edge. This is
240    /// only valid on Data, Anti, and Output edges. On Data edges, this
241    /// value may be zero, meaning there is no associated register.
242    unsigned getReg() const {
243      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
244             "getReg called on non-register dependence edge!");
245      return Contents.Reg;
246    }
247
248    /// setReg - Assign the associated register for this edge. This is
249    /// only valid on Data, Anti, and Output edges. On Anti and Output
250    /// edges, this value must not be zero. On Data edges, the value may
251    /// be zero, which would mean that no specific register is associated
252    /// with this edge.
253    void setReg(unsigned Reg) {
254      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
255             "setReg called on non-register dependence edge!");
256      assert((getKind() != Anti || Reg != 0) &&
257             "SDep::Anti edge cannot use the zero register!");
258      assert((getKind() != Output || Reg != 0) &&
259             "SDep::Output edge cannot use the zero register!");
260      Contents.Reg = Reg;
261    }
262  };
263
264  template <>
265  struct isPodLike<SDep> { static const bool value = true; };
266
267  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
268  class SUnit {
269  private:
270    enum { BoundaryID = ~0u };
271
272    SDNode *Node;                       // Representative node.
273    MachineInstr *Instr;                // Alternatively, a MachineInstr.
274  public:
275    SUnit *OrigNode;                    // If not this, the node from which
276                                        // this node was cloned.
277                                        // (SD scheduling only)
278
279    const MCSchedClassDesc *SchedClass; // NULL or resolved SchedClass.
280
281    // Preds/Succs - The SUnits before/after us in the graph.
282    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
283    SmallVector<SDep, 4> Succs;  // All sunit successors.
284
285    typedef SmallVector<SDep, 4>::iterator pred_iterator;
286    typedef SmallVector<SDep, 4>::iterator succ_iterator;
287    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
288    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
289
290    unsigned NodeNum;                   // Entry # of node in the node vector.
291    unsigned NodeQueueId;               // Queue id of node.
292    unsigned NumPreds;                  // # of SDep::Data preds.
293    unsigned NumSuccs;                  // # of SDep::Data sucss.
294    unsigned NumPredsLeft;              // # of preds not scheduled.
295    unsigned NumSuccsLeft;              // # of succs not scheduled.
296    unsigned WeakPredsLeft;             // # of weak preds not scheduled.
297    unsigned WeakSuccsLeft;             // # of weak succs not scheduled.
298    unsigned short NumRegDefsLeft;      // # of reg defs with no scheduled use.
299    unsigned short Latency;             // Node latency.
300    bool isVRegCycle      : 1;          // May use and def the same vreg.
301    bool isCall           : 1;          // Is a function call.
302    bool isCallOp         : 1;          // Is a function call operand.
303    bool isTwoAddress     : 1;          // Is a two-address instruction.
304    bool isCommutable     : 1;          // Is a commutable instruction.
305    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
306    bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
307    bool isPending        : 1;          // True once pending.
308    bool isAvailable      : 1;          // True once available.
309    bool isScheduled      : 1;          // True once scheduled.
310    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
311    bool isScheduleLow    : 1;          // True if preferable to schedule low.
312    bool isCloned         : 1;          // True if this node has been cloned.
313    Sched::Preference SchedulingPref;   // Scheduling preference.
314
315  private:
316    bool isDepthCurrent   : 1;          // True if Depth is current.
317    bool isHeightCurrent  : 1;          // True if Height is current.
318    unsigned Depth;                     // Node depth.
319    unsigned Height;                    // Node height.
320  public:
321    unsigned TopReadyCycle; // Cycle relative to start when node is ready.
322    unsigned BotReadyCycle; // Cycle relative to end when node is ready.
323
324    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
325    const TargetRegisterClass *CopySrcRC;
326
327    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
328    /// an SDNode and any nodes flagged to it.
329    SUnit(SDNode *node, unsigned nodenum)
330      : Node(node), Instr(0), OrigNode(0), SchedClass(0), NodeNum(nodenum),
331        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
332        NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
333        Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
334        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
335        hasPhysRegClobbers(false), isPending(false), isAvailable(false),
336        isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
337        isCloned(false), SchedulingPref(Sched::None),
338        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
339        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
340
341    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
342    /// a MachineInstr.
343    SUnit(MachineInstr *instr, unsigned nodenum)
344      : Node(0), Instr(instr), OrigNode(0), SchedClass(0), NodeNum(nodenum),
345        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
346        NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
347        Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
348        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
349        hasPhysRegClobbers(false), isPending(false), isAvailable(false),
350        isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
351        isCloned(false), SchedulingPref(Sched::None),
352        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
353        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
354
355    /// SUnit - Construct a placeholder SUnit.
356    SUnit()
357      : Node(0), Instr(0), OrigNode(0), SchedClass(0), NodeNum(BoundaryID),
358        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
359        NumSuccsLeft(0), WeakPredsLeft(0), WeakSuccsLeft(0), NumRegDefsLeft(0),
360        Latency(0), isVRegCycle(false), isCall(false), isCallOp(false),
361        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
362        hasPhysRegClobbers(false), isPending(false), isAvailable(false),
363        isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
364        isCloned(false), SchedulingPref(Sched::None),
365        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
366        TopReadyCycle(0), BotReadyCycle(0), CopyDstRC(NULL), CopySrcRC(NULL) {}
367
368    /// \brief Boundary nodes are placeholders for the boundary of the
369    /// scheduling region.
370    ///
371    /// BoundaryNodes can have DAG edges, including Data edges, but they do not
372    /// correspond to schedulable entities (e.g. instructions) and do not have a
373    /// valid ID. Consequently, always check for boundary nodes before accessing
374    /// an assoicative data structure keyed on node ID.
375    bool isBoundaryNode() const { return NodeNum == BoundaryID; };
376
377    /// setNode - Assign the representative SDNode for this SUnit.
378    /// This may be used during pre-regalloc scheduling.
379    void setNode(SDNode *N) {
380      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
381      Node = N;
382    }
383
384    /// getNode - Return the representative SDNode for this SUnit.
385    /// This may be used during pre-regalloc scheduling.
386    SDNode *getNode() const {
387      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
388      return Node;
389    }
390
391    /// isInstr - Return true if this SUnit refers to a machine instruction as
392    /// opposed to an SDNode.
393    bool isInstr() const { return Instr; }
394
395    /// setInstr - Assign the instruction for the SUnit.
396    /// This may be used during post-regalloc scheduling.
397    void setInstr(MachineInstr *MI) {
398      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
399      Instr = MI;
400    }
401
402    /// getInstr - Return the representative MachineInstr for this SUnit.
403    /// This may be used during post-regalloc scheduling.
404    MachineInstr *getInstr() const {
405      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
406      return Instr;
407    }
408
409    /// addPred - This adds the specified edge as a pred of the current node if
410    /// not already.  It also adds the current node as a successor of the
411    /// specified node.
412    bool addPred(const SDep &D, bool Required = true);
413
414    /// removePred - This removes the specified edge as a pred of the current
415    /// node if it exists.  It also removes the current node as a successor of
416    /// the specified node.
417    void removePred(const SDep &D);
418
419    /// getDepth - Return the depth of this node, which is the length of the
420    /// maximum path up to any node which has no predecessors.
421    unsigned getDepth() const {
422      if (!isDepthCurrent)
423        const_cast<SUnit *>(this)->ComputeDepth();
424      return Depth;
425    }
426
427    /// getHeight - Return the height of this node, which is the length of the
428    /// maximum path down to any node which has no successors.
429    unsigned getHeight() const {
430      if (!isHeightCurrent)
431        const_cast<SUnit *>(this)->ComputeHeight();
432      return Height;
433    }
434
435    /// setDepthToAtLeast - If NewDepth is greater than this node's
436    /// depth value, set it to be the new depth value. This also
437    /// recursively marks successor nodes dirty.
438    void setDepthToAtLeast(unsigned NewDepth);
439
440    /// setDepthToAtLeast - If NewDepth is greater than this node's
441    /// depth value, set it to be the new height value. This also
442    /// recursively marks predecessor nodes dirty.
443    void setHeightToAtLeast(unsigned NewHeight);
444
445    /// setDepthDirty - Set a flag in this node to indicate that its
446    /// stored Depth value will require recomputation the next time
447    /// getDepth() is called.
448    void setDepthDirty();
449
450    /// setHeightDirty - Set a flag in this node to indicate that its
451    /// stored Height value will require recomputation the next time
452    /// getHeight() is called.
453    void setHeightDirty();
454
455    /// isPred - Test if node N is a predecessor of this node.
456    bool isPred(SUnit *N) {
457      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
458        if (Preds[i].getSUnit() == N)
459          return true;
460      return false;
461    }
462
463    /// isSucc - Test if node N is a successor of this node.
464    bool isSucc(SUnit *N) {
465      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
466        if (Succs[i].getSUnit() == N)
467          return true;
468      return false;
469    }
470
471    bool isTopReady() const {
472      return NumPredsLeft == 0;
473    }
474    bool isBottomReady() const {
475      return NumSuccsLeft == 0;
476    }
477
478    /// \brief Order this node's predecessor edges such that the critical path
479    /// edge occurs first.
480    void biasCriticalPath();
481
482    void dump(const ScheduleDAG *G) const;
483    void dumpAll(const ScheduleDAG *G) const;
484    void print(raw_ostream &O, const ScheduleDAG *G) const;
485
486  private:
487    void ComputeDepth();
488    void ComputeHeight();
489  };
490
491  //===--------------------------------------------------------------------===//
492  /// SchedulingPriorityQueue - This interface is used to plug different
493  /// priorities computation algorithms into the list scheduler. It implements
494  /// the interface of a standard priority queue, where nodes are inserted in
495  /// arbitrary order and returned in priority order.  The computation of the
496  /// priority and the representation of the queue are totally up to the
497  /// implementation to decide.
498  ///
499  class SchedulingPriorityQueue {
500    virtual void anchor();
501    unsigned CurCycle;
502    bool HasReadyFilter;
503  public:
504    SchedulingPriorityQueue(bool rf = false):
505      CurCycle(0), HasReadyFilter(rf) {}
506    virtual ~SchedulingPriorityQueue() {}
507
508    virtual bool isBottomUp() const = 0;
509
510    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
511    virtual void addNode(const SUnit *SU) = 0;
512    virtual void updateNode(const SUnit *SU) = 0;
513    virtual void releaseState() = 0;
514
515    virtual bool empty() const = 0;
516
517    bool hasReadyFilter() const { return HasReadyFilter; }
518
519    virtual bool tracksRegPressure() const { return false; }
520
521    virtual bool isReady(SUnit *) const {
522      assert(!HasReadyFilter && "The ready filter must override isReady()");
523      return true;
524    }
525    virtual void push(SUnit *U) = 0;
526
527    void push_all(const std::vector<SUnit *> &Nodes) {
528      for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
529           E = Nodes.end(); I != E; ++I)
530        push(*I);
531    }
532
533    virtual SUnit *pop() = 0;
534
535    virtual void remove(SUnit *SU) = 0;
536
537    virtual void dump(ScheduleDAG *) const {}
538
539    /// scheduledNode - As each node is scheduled, this method is invoked.  This
540    /// allows the priority function to adjust the priority of related
541    /// unscheduled nodes, for example.
542    ///
543    virtual void scheduledNode(SUnit *) {}
544
545    virtual void unscheduledNode(SUnit *) {}
546
547    void setCurCycle(unsigned Cycle) {
548      CurCycle = Cycle;
549    }
550
551    unsigned getCurCycle() const {
552      return CurCycle;
553    }
554  };
555
556  class ScheduleDAG {
557  public:
558    const TargetMachine &TM;              // Target processor
559    const TargetInstrInfo *TII;           // Target instruction information
560    const TargetRegisterInfo *TRI;        // Target processor register info
561    MachineFunction &MF;                  // Machine function
562    MachineRegisterInfo &MRI;             // Virtual/real register map
563    std::vector<SUnit> SUnits;            // The scheduling units.
564    SUnit EntrySU;                        // Special node for the region entry.
565    SUnit ExitSU;                         // Special node for the region exit.
566
567#ifdef NDEBUG
568    static const bool StressSched = false;
569#else
570    bool StressSched;
571#endif
572
573    explicit ScheduleDAG(MachineFunction &mf);
574
575    virtual ~ScheduleDAG();
576
577    /// clearDAG - clear the DAG state (between regions).
578    void clearDAG();
579
580    /// getInstrDesc - Return the MCInstrDesc of this SUnit.
581    /// Return NULL for SDNodes without a machine opcode.
582    const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
583      if (SU->isInstr()) return &SU->getInstr()->getDesc();
584      return getNodeDesc(SU->getNode());
585    }
586
587    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
588    /// using 'dot'.
589    ///
590    virtual void viewGraph(const Twine &Name, const Twine &Title);
591    virtual void viewGraph();
592
593    virtual void dumpNode(const SUnit *SU) const = 0;
594
595    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
596    /// of the ScheduleDAG.
597    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
598
599    /// getDAGLabel - Return a label for the region of code covered by the DAG.
600    virtual std::string getDAGName() const = 0;
601
602    /// addCustomGraphFeatures - Add custom features for a visualization of
603    /// the ScheduleDAG.
604    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
605
606#ifndef NDEBUG
607    /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
608    /// their state is consistent. Return the number of scheduled SUnits.
609    unsigned VerifyScheduledDAG(bool isBottomUp);
610#endif
611
612  private:
613    // Return the MCInstrDesc of this SDNode or NULL.
614    const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
615  };
616
617  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
618                                             SUnit, ptrdiff_t> {
619    SUnit *Node;
620    unsigned Operand;
621
622    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
623  public:
624    bool operator==(const SUnitIterator& x) const {
625      return Operand == x.Operand;
626    }
627    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
628
629    const SUnitIterator &operator=(const SUnitIterator &I) {
630      assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
631      Operand = I.Operand;
632      return *this;
633    }
634
635    pointer operator*() const {
636      return Node->Preds[Operand].getSUnit();
637    }
638    pointer operator->() const { return operator*(); }
639
640    SUnitIterator& operator++() {                // Preincrement
641      ++Operand;
642      return *this;
643    }
644    SUnitIterator operator++(int) { // Postincrement
645      SUnitIterator tmp = *this; ++*this; return tmp;
646    }
647
648    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
649    static SUnitIterator end  (SUnit *N) {
650      return SUnitIterator(N, (unsigned)N->Preds.size());
651    }
652
653    unsigned getOperand() const { return Operand; }
654    const SUnit *getNode() const { return Node; }
655    /// isCtrlDep - Test if this is not an SDep::Data dependence.
656    bool isCtrlDep() const {
657      return getSDep().isCtrl();
658    }
659    bool isArtificialDep() const {
660      return getSDep().isArtificial();
661    }
662    const SDep &getSDep() const {
663      return Node->Preds[Operand];
664    }
665  };
666
667  template <> struct GraphTraits<SUnit*> {
668    typedef SUnit NodeType;
669    typedef SUnitIterator ChildIteratorType;
670    static inline NodeType *getEntryNode(SUnit *N) { return N; }
671    static inline ChildIteratorType child_begin(NodeType *N) {
672      return SUnitIterator::begin(N);
673    }
674    static inline ChildIteratorType child_end(NodeType *N) {
675      return SUnitIterator::end(N);
676    }
677  };
678
679  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
680    typedef std::vector<SUnit>::iterator nodes_iterator;
681    static nodes_iterator nodes_begin(ScheduleDAG *G) {
682      return G->SUnits.begin();
683    }
684    static nodes_iterator nodes_end(ScheduleDAG *G) {
685      return G->SUnits.end();
686    }
687  };
688
689  /// ScheduleDAGTopologicalSort is a class that computes a topological
690  /// ordering for SUnits and provides methods for dynamically updating
691  /// the ordering as new edges are added.
692  ///
693  /// This allows a very fast implementation of IsReachable, for example.
694  ///
695  class ScheduleDAGTopologicalSort {
696    /// SUnits - A reference to the ScheduleDAG's SUnits.
697    std::vector<SUnit> &SUnits;
698    SUnit *ExitSU;
699
700    /// Index2Node - Maps topological index to the node number.
701    std::vector<int> Index2Node;
702    /// Node2Index - Maps the node number to its topological index.
703    std::vector<int> Node2Index;
704    /// Visited - a set of nodes visited during a DFS traversal.
705    BitVector Visited;
706
707    /// DFS - make a DFS traversal and mark all nodes affected by the
708    /// edge insertion. These nodes will later get new topological indexes
709    /// by means of the Shift method.
710    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
711
712    /// Shift - reassign topological indexes for the nodes in the DAG
713    /// to preserve the topological ordering.
714    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
715
716    /// Allocate - assign the topological index to the node n.
717    void Allocate(int n, int index);
718
719  public:
720    ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
721
722    /// InitDAGTopologicalSorting - create the initial topological
723    /// ordering from the DAG to be scheduled.
724    void InitDAGTopologicalSorting();
725
726    /// IsReachable - Checks if SU is reachable from TargetSU.
727    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
728
729    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
730    /// will create a cycle.
731    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
732
733    /// AddPred - Updates the topological ordering to accommodate an edge
734    /// to be added from SUnit X to SUnit Y.
735    void AddPred(SUnit *Y, SUnit *X);
736
737    /// RemovePred - Updates the topological ordering to accommodate an
738    /// an edge to be removed from the specified node N from the predecessors
739    /// of the current node M.
740    void RemovePred(SUnit *M, SUnit *N);
741
742    typedef std::vector<int>::iterator iterator;
743    typedef std::vector<int>::const_iterator const_iterator;
744    iterator begin() { return Index2Node.begin(); }
745    const_iterator begin() const { return Index2Node.begin(); }
746    iterator end() { return Index2Node.end(); }
747    const_iterator end() const { return Index2Node.end(); }
748
749    typedef std::vector<int>::reverse_iterator reverse_iterator;
750    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
751    reverse_iterator rbegin() { return Index2Node.rbegin(); }
752    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
753    reverse_iterator rend() { return Index2Node.rend(); }
754    const_reverse_iterator rend() const { return Index2Node.rend(); }
755  };
756}
757
758#endif
759