ScheduleDAG.h revision 234353
1//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers. This encapsulates the scheduling DAG,
12// which is shared between SelectionDAG and MachineInstr scheduling.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
17#define LLVM_CODEGEN_SCHEDULEDAG_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/BitVector.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/PointerIntPair.h"
26
27namespace llvm {
28  class AliasAnalysis;
29  class SUnit;
30  class MachineConstantPool;
31  class MachineFunction;
32  class MachineRegisterInfo;
33  class MachineInstr;
34  class TargetRegisterInfo;
35  class ScheduleDAG;
36  class SDNode;
37  class TargetInstrInfo;
38  class MCInstrDesc;
39  class TargetMachine;
40  class TargetRegisterClass;
41  template<class Graph> class GraphWriter;
42
43  /// SDep - Scheduling dependency. This represents one direction of an
44  /// edge in the scheduling DAG.
45  class SDep {
46  public:
47    /// Kind - These are the different kinds of scheduling dependencies.
48    enum Kind {
49      Data,        ///< Regular data dependence (aka true-dependence).
50      Anti,        ///< A register anti-dependedence (aka WAR).
51      Output,      ///< A register output-dependence (aka WAW).
52      Order        ///< Any other ordering dependency.
53    };
54
55  private:
56    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
57    /// indicating the kind of the dependency.
58    PointerIntPair<SUnit *, 2, Kind> Dep;
59
60    /// Contents - A union discriminated by the dependence kind.
61    union {
62      /// Reg - For Data, Anti, and Output dependencies, the associated
63      /// register. For Data dependencies that don't currently have a register
64      /// assigned, this is set to zero.
65      unsigned Reg;
66
67      /// Order - Additional information about Order dependencies.
68      struct {
69        /// isNormalMemory - True if both sides of the dependence
70        /// access memory in non-volatile and fully modeled ways.
71        bool isNormalMemory : 1;
72
73        /// isMustAlias - True if both sides of the dependence are known to
74        /// access the same memory.
75        bool isMustAlias : 1;
76
77        /// isArtificial - True if this is an artificial dependency, meaning
78        /// it is not necessary for program correctness, and may be safely
79        /// deleted if necessary.
80        bool isArtificial : 1;
81      } Order;
82    } Contents;
83
84    /// Latency - The time associated with this edge. Often this is just
85    /// the value of the Latency field of the predecessor, however advanced
86    /// models may provide additional information about specific edges.
87    unsigned Latency;
88
89  public:
90    /// SDep - Construct a null SDep. This is only for use by container
91    /// classes which require default constructors. SUnits may not
92    /// have null SDep edges.
93    SDep() : Dep(0, Data) {}
94
95    /// SDep - Construct an SDep with the specified values.
96    SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
97         bool isNormalMemory = false, bool isMustAlias = false,
98         bool isArtificial = false)
99      : Dep(S, kind), Contents(), Latency(latency) {
100      switch (kind) {
101      case Anti:
102      case Output:
103        assert(Reg != 0 &&
104               "SDep::Anti and SDep::Output must use a non-zero Reg!");
105        // fall through
106      case Data:
107        assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
108        assert(!isArtificial && "isArtificial only applies with SDep::Order!");
109        Contents.Reg = Reg;
110        break;
111      case Order:
112        assert(Reg == 0 && "Reg given for non-register dependence!");
113        Contents.Order.isNormalMemory = isNormalMemory;
114        Contents.Order.isMustAlias = isMustAlias;
115        Contents.Order.isArtificial = isArtificial;
116        break;
117      }
118    }
119
120    bool operator==(const SDep &Other) const {
121      if (Dep != Other.Dep || Latency != Other.Latency) return false;
122      switch (Dep.getInt()) {
123      case Data:
124      case Anti:
125      case Output:
126        return Contents.Reg == Other.Contents.Reg;
127      case Order:
128        return Contents.Order.isNormalMemory ==
129                 Other.Contents.Order.isNormalMemory &&
130               Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
131               Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
132      }
133      llvm_unreachable("Invalid dependency kind!");
134    }
135
136    bool operator!=(const SDep &Other) const {
137      return !operator==(Other);
138    }
139
140    /// getLatency - Return the latency value for this edge, which roughly
141    /// means the minimum number of cycles that must elapse between the
142    /// predecessor and the successor, given that they have this edge
143    /// between them.
144    unsigned getLatency() const {
145      return Latency;
146    }
147
148    /// setLatency - Set the latency for this edge.
149    void setLatency(unsigned Lat) {
150      Latency = Lat;
151    }
152
153    //// getSUnit - Return the SUnit to which this edge points.
154    SUnit *getSUnit() const {
155      return Dep.getPointer();
156    }
157
158    //// setSUnit - Assign the SUnit to which this edge points.
159    void setSUnit(SUnit *SU) {
160      Dep.setPointer(SU);
161    }
162
163    /// getKind - Return an enum value representing the kind of the dependence.
164    Kind getKind() const {
165      return Dep.getInt();
166    }
167
168    /// isCtrl - Shorthand for getKind() != SDep::Data.
169    bool isCtrl() const {
170      return getKind() != Data;
171    }
172
173    /// isNormalMemory - Test if this is an Order dependence between two
174    /// memory accesses where both sides of the dependence access memory
175    /// in non-volatile and fully modeled ways.
176    bool isNormalMemory() const {
177      return getKind() == Order && Contents.Order.isNormalMemory;
178    }
179
180    /// isMustAlias - Test if this is an Order dependence that is marked
181    /// as "must alias", meaning that the SUnits at either end of the edge
182    /// have a memory dependence on a known memory location.
183    bool isMustAlias() const {
184      return getKind() == Order && Contents.Order.isMustAlias;
185    }
186
187    /// isArtificial - Test if this is an Order dependence that is marked
188    /// as "artificial", meaning it isn't necessary for correctness.
189    bool isArtificial() const {
190      return getKind() == Order && Contents.Order.isArtificial;
191    }
192
193    /// isAssignedRegDep - Test if this is a Data dependence that is
194    /// associated with a register.
195    bool isAssignedRegDep() const {
196      return getKind() == Data && Contents.Reg != 0;
197    }
198
199    /// getReg - Return the register associated with this edge. This is
200    /// only valid on Data, Anti, and Output edges. On Data edges, this
201    /// value may be zero, meaning there is no associated register.
202    unsigned getReg() const {
203      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
204             "getReg called on non-register dependence edge!");
205      return Contents.Reg;
206    }
207
208    /// setReg - Assign the associated register for this edge. This is
209    /// only valid on Data, Anti, and Output edges. On Anti and Output
210    /// edges, this value must not be zero. On Data edges, the value may
211    /// be zero, which would mean that no specific register is associated
212    /// with this edge.
213    void setReg(unsigned Reg) {
214      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
215             "setReg called on non-register dependence edge!");
216      assert((getKind() != Anti || Reg != 0) &&
217             "SDep::Anti edge cannot use the zero register!");
218      assert((getKind() != Output || Reg != 0) &&
219             "SDep::Output edge cannot use the zero register!");
220      Contents.Reg = Reg;
221    }
222  };
223
224  template <>
225  struct isPodLike<SDep> { static const bool value = true; };
226
227  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
228  class SUnit {
229  private:
230    SDNode *Node;                       // Representative node.
231    MachineInstr *Instr;                // Alternatively, a MachineInstr.
232  public:
233    SUnit *OrigNode;                    // If not this, the node from which
234                                        // this node was cloned.
235                                        // (SD scheduling only)
236
237    // Preds/Succs - The SUnits before/after us in the graph.
238    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
239    SmallVector<SDep, 4> Succs;  // All sunit successors.
240
241    typedef SmallVector<SDep, 4>::iterator pred_iterator;
242    typedef SmallVector<SDep, 4>::iterator succ_iterator;
243    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
244    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
245
246    unsigned NodeNum;                   // Entry # of node in the node vector.
247    unsigned NodeQueueId;               // Queue id of node.
248    unsigned NumPreds;                  // # of SDep::Data preds.
249    unsigned NumSuccs;                  // # of SDep::Data sucss.
250    unsigned NumPredsLeft;              // # of preds not scheduled.
251    unsigned NumSuccsLeft;              // # of succs not scheduled.
252    unsigned short NumRegDefsLeft;      // # of reg defs with no scheduled use.
253    unsigned short Latency;             // Node latency.
254    bool isVRegCycle      : 1;          // May use and def the same vreg.
255    bool isCall           : 1;          // Is a function call.
256    bool isCallOp         : 1;          // Is a function call operand.
257    bool isTwoAddress     : 1;          // Is a two-address instruction.
258    bool isCommutable     : 1;          // Is a commutable instruction.
259    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
260    bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
261    bool isPending        : 1;          // True once pending.
262    bool isAvailable      : 1;          // True once available.
263    bool isScheduled      : 1;          // True once scheduled.
264    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
265    bool isScheduleLow    : 1;          // True if preferable to schedule low.
266    bool isCloned         : 1;          // True if this node has been cloned.
267    Sched::Preference SchedulingPref;   // Scheduling preference.
268
269  private:
270    bool isDepthCurrent   : 1;          // True if Depth is current.
271    bool isHeightCurrent  : 1;          // True if Height is current.
272    unsigned Depth;                     // Node depth.
273    unsigned Height;                    // Node height.
274  public:
275    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
276    const TargetRegisterClass *CopySrcRC;
277
278    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
279    /// an SDNode and any nodes flagged to it.
280    SUnit(SDNode *node, unsigned nodenum)
281      : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum),
282        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
283        NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
284        isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
285        isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
286        isPending(false), isAvailable(false), isScheduled(false),
287        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
288        SchedulingPref(Sched::None),
289        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
290        CopyDstRC(NULL), CopySrcRC(NULL) {}
291
292    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
293    /// a MachineInstr.
294    SUnit(MachineInstr *instr, unsigned nodenum)
295      : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum),
296        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
297        NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
298        isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
299        isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
300        isPending(false), isAvailable(false), isScheduled(false),
301        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
302        SchedulingPref(Sched::None),
303        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
304        CopyDstRC(NULL), CopySrcRC(NULL) {}
305
306    /// SUnit - Construct a placeholder SUnit.
307    SUnit()
308      : Node(0), Instr(0), OrigNode(0), NodeNum(~0u),
309        NodeQueueId(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
310        NumSuccsLeft(0), NumRegDefsLeft(0), Latency(0),
311        isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
312        isCommutable(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
313        isPending(false), isAvailable(false), isScheduled(false),
314        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
315        SchedulingPref(Sched::None),
316        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
317        CopyDstRC(NULL), CopySrcRC(NULL) {}
318
319    /// setNode - Assign the representative SDNode for this SUnit.
320    /// This may be used during pre-regalloc scheduling.
321    void setNode(SDNode *N) {
322      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
323      Node = N;
324    }
325
326    /// getNode - Return the representative SDNode for this SUnit.
327    /// This may be used during pre-regalloc scheduling.
328    SDNode *getNode() const {
329      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
330      return Node;
331    }
332
333    /// isInstr - Return true if this SUnit refers to a machine instruction as
334    /// opposed to an SDNode.
335    bool isInstr() const { return Instr; }
336
337    /// setInstr - Assign the instruction for the SUnit.
338    /// This may be used during post-regalloc scheduling.
339    void setInstr(MachineInstr *MI) {
340      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
341      Instr = MI;
342    }
343
344    /// getInstr - Return the representative MachineInstr for this SUnit.
345    /// This may be used during post-regalloc scheduling.
346    MachineInstr *getInstr() const {
347      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
348      return Instr;
349    }
350
351    /// addPred - This adds the specified edge as a pred of the current node if
352    /// not already.  It also adds the current node as a successor of the
353    /// specified node.
354    bool addPred(const SDep &D);
355
356    /// removePred - This removes the specified edge as a pred of the current
357    /// node if it exists.  It also removes the current node as a successor of
358    /// the specified node.
359    void removePred(const SDep &D);
360
361    /// getDepth - Return the depth of this node, which is the length of the
362    /// maximum path up to any node which has no predecessors.
363    unsigned getDepth() const {
364      if (!isDepthCurrent)
365        const_cast<SUnit *>(this)->ComputeDepth();
366      return Depth;
367    }
368
369    /// getHeight - Return the height of this node, which is the length of the
370    /// maximum path down to any node which has no successors.
371    unsigned getHeight() const {
372      if (!isHeightCurrent)
373        const_cast<SUnit *>(this)->ComputeHeight();
374      return Height;
375    }
376
377    /// setDepthToAtLeast - If NewDepth is greater than this node's
378    /// depth value, set it to be the new depth value. This also
379    /// recursively marks successor nodes dirty.
380    void setDepthToAtLeast(unsigned NewDepth);
381
382    /// setDepthToAtLeast - If NewDepth is greater than this node's
383    /// depth value, set it to be the new height value. This also
384    /// recursively marks predecessor nodes dirty.
385    void setHeightToAtLeast(unsigned NewHeight);
386
387    /// setDepthDirty - Set a flag in this node to indicate that its
388    /// stored Depth value will require recomputation the next time
389    /// getDepth() is called.
390    void setDepthDirty();
391
392    /// setHeightDirty - Set a flag in this node to indicate that its
393    /// stored Height value will require recomputation the next time
394    /// getHeight() is called.
395    void setHeightDirty();
396
397    /// isPred - Test if node N is a predecessor of this node.
398    bool isPred(SUnit *N) {
399      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
400        if (Preds[i].getSUnit() == N)
401          return true;
402      return false;
403    }
404
405    /// isSucc - Test if node N is a successor of this node.
406    bool isSucc(SUnit *N) {
407      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
408        if (Succs[i].getSUnit() == N)
409          return true;
410      return false;
411    }
412
413    bool isTopReady() const {
414      return NumPredsLeft == 0;
415    }
416    bool isBottomReady() const {
417      return NumSuccsLeft == 0;
418    }
419
420    void dump(const ScheduleDAG *G) const;
421    void dumpAll(const ScheduleDAG *G) const;
422    void print(raw_ostream &O, const ScheduleDAG *G) const;
423
424  private:
425    void ComputeDepth();
426    void ComputeHeight();
427  };
428
429  //===--------------------------------------------------------------------===//
430  /// SchedulingPriorityQueue - This interface is used to plug different
431  /// priorities computation algorithms into the list scheduler. It implements
432  /// the interface of a standard priority queue, where nodes are inserted in
433  /// arbitrary order and returned in priority order.  The computation of the
434  /// priority and the representation of the queue are totally up to the
435  /// implementation to decide.
436  ///
437  class SchedulingPriorityQueue {
438    virtual void anchor();
439    unsigned CurCycle;
440    bool HasReadyFilter;
441  public:
442    SchedulingPriorityQueue(bool rf = false):
443      CurCycle(0), HasReadyFilter(rf) {}
444    virtual ~SchedulingPriorityQueue() {}
445
446    virtual bool isBottomUp() const = 0;
447
448    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
449    virtual void addNode(const SUnit *SU) = 0;
450    virtual void updateNode(const SUnit *SU) = 0;
451    virtual void releaseState() = 0;
452
453    virtual bool empty() const = 0;
454
455    bool hasReadyFilter() const { return HasReadyFilter; }
456
457    virtual bool tracksRegPressure() const { return false; }
458
459    virtual bool isReady(SUnit *) const {
460      assert(!HasReadyFilter && "The ready filter must override isReady()");
461      return true;
462    }
463    virtual void push(SUnit *U) = 0;
464
465    void push_all(const std::vector<SUnit *> &Nodes) {
466      for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
467           E = Nodes.end(); I != E; ++I)
468        push(*I);
469    }
470
471    virtual SUnit *pop() = 0;
472
473    virtual void remove(SUnit *SU) = 0;
474
475    virtual void dump(ScheduleDAG *) const {}
476
477    /// scheduledNode - As each node is scheduled, this method is invoked.  This
478    /// allows the priority function to adjust the priority of related
479    /// unscheduled nodes, for example.
480    ///
481    virtual void scheduledNode(SUnit *) {}
482
483    virtual void unscheduledNode(SUnit *) {}
484
485    void setCurCycle(unsigned Cycle) {
486      CurCycle = Cycle;
487    }
488
489    unsigned getCurCycle() const {
490      return CurCycle;
491    }
492  };
493
494  class ScheduleDAG {
495  public:
496    const TargetMachine &TM;              // Target processor
497    const TargetInstrInfo *TII;           // Target instruction information
498    const TargetRegisterInfo *TRI;        // Target processor register info
499    MachineFunction &MF;                  // Machine function
500    MachineRegisterInfo &MRI;             // Virtual/real register map
501    std::vector<SUnit> SUnits;            // The scheduling units.
502    SUnit EntrySU;                        // Special node for the region entry.
503    SUnit ExitSU;                         // Special node for the region exit.
504
505#ifdef NDEBUG
506    static const bool StressSched = false;
507#else
508    bool StressSched;
509#endif
510
511    explicit ScheduleDAG(MachineFunction &mf);
512
513    virtual ~ScheduleDAG();
514
515    /// clearDAG - clear the DAG state (between regions).
516    void clearDAG();
517
518    /// getInstrDesc - Return the MCInstrDesc of this SUnit.
519    /// Return NULL for SDNodes without a machine opcode.
520    const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
521      if (SU->isInstr()) return &SU->getInstr()->getDesc();
522      return getNodeDesc(SU->getNode());
523    }
524
525    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
526    /// using 'dot'.
527    ///
528    void viewGraph(const Twine &Name, const Twine &Title);
529    void viewGraph();
530
531    virtual void dumpNode(const SUnit *SU) const = 0;
532
533    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
534    /// of the ScheduleDAG.
535    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
536
537    /// getDAGLabel - Return a label for the region of code covered by the DAG.
538    virtual std::string getDAGName() const = 0;
539
540    /// addCustomGraphFeatures - Add custom features for a visualization of
541    /// the ScheduleDAG.
542    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
543
544#ifndef NDEBUG
545    /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
546    /// their state is consistent. Return the number of scheduled SUnits.
547    unsigned VerifyScheduledDAG(bool isBottomUp);
548#endif
549
550  protected:
551    /// ComputeLatency - Compute node latency.
552    ///
553    virtual void computeLatency(SUnit *SU) = 0;
554
555    /// ComputeOperandLatency - Override dependence edge latency using
556    /// operand use/def information
557    ///
558    virtual void computeOperandLatency(SUnit *, SUnit *,
559                                       SDep&) const { }
560
561    /// ForceUnitLatencies - Return true if all scheduling edges should be given
562    /// a latency value of one.  The default is to return false; schedulers may
563    /// override this as needed.
564    virtual bool forceUnitLatencies() const { return false; }
565
566  private:
567    // Return the MCInstrDesc of this SDNode or NULL.
568    const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
569  };
570
571  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
572                                             SUnit, ptrdiff_t> {
573    SUnit *Node;
574    unsigned Operand;
575
576    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
577  public:
578    bool operator==(const SUnitIterator& x) const {
579      return Operand == x.Operand;
580    }
581    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
582
583    const SUnitIterator &operator=(const SUnitIterator &I) {
584      assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
585      Operand = I.Operand;
586      return *this;
587    }
588
589    pointer operator*() const {
590      return Node->Preds[Operand].getSUnit();
591    }
592    pointer operator->() const { return operator*(); }
593
594    SUnitIterator& operator++() {                // Preincrement
595      ++Operand;
596      return *this;
597    }
598    SUnitIterator operator++(int) { // Postincrement
599      SUnitIterator tmp = *this; ++*this; return tmp;
600    }
601
602    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
603    static SUnitIterator end  (SUnit *N) {
604      return SUnitIterator(N, (unsigned)N->Preds.size());
605    }
606
607    unsigned getOperand() const { return Operand; }
608    const SUnit *getNode() const { return Node; }
609    /// isCtrlDep - Test if this is not an SDep::Data dependence.
610    bool isCtrlDep() const {
611      return getSDep().isCtrl();
612    }
613    bool isArtificialDep() const {
614      return getSDep().isArtificial();
615    }
616    const SDep &getSDep() const {
617      return Node->Preds[Operand];
618    }
619  };
620
621  template <> struct GraphTraits<SUnit*> {
622    typedef SUnit NodeType;
623    typedef SUnitIterator ChildIteratorType;
624    static inline NodeType *getEntryNode(SUnit *N) { return N; }
625    static inline ChildIteratorType child_begin(NodeType *N) {
626      return SUnitIterator::begin(N);
627    }
628    static inline ChildIteratorType child_end(NodeType *N) {
629      return SUnitIterator::end(N);
630    }
631  };
632
633  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
634    typedef std::vector<SUnit>::iterator nodes_iterator;
635    static nodes_iterator nodes_begin(ScheduleDAG *G) {
636      return G->SUnits.begin();
637    }
638    static nodes_iterator nodes_end(ScheduleDAG *G) {
639      return G->SUnits.end();
640    }
641  };
642
643  /// ScheduleDAGTopologicalSort is a class that computes a topological
644  /// ordering for SUnits and provides methods for dynamically updating
645  /// the ordering as new edges are added.
646  ///
647  /// This allows a very fast implementation of IsReachable, for example.
648  ///
649  class ScheduleDAGTopologicalSort {
650    /// SUnits - A reference to the ScheduleDAG's SUnits.
651    std::vector<SUnit> &SUnits;
652
653    /// Index2Node - Maps topological index to the node number.
654    std::vector<int> Index2Node;
655    /// Node2Index - Maps the node number to its topological index.
656    std::vector<int> Node2Index;
657    /// Visited - a set of nodes visited during a DFS traversal.
658    BitVector Visited;
659
660    /// DFS - make a DFS traversal and mark all nodes affected by the
661    /// edge insertion. These nodes will later get new topological indexes
662    /// by means of the Shift method.
663    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
664
665    /// Shift - reassign topological indexes for the nodes in the DAG
666    /// to preserve the topological ordering.
667    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
668
669    /// Allocate - assign the topological index to the node n.
670    void Allocate(int n, int index);
671
672  public:
673    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
674
675    /// InitDAGTopologicalSorting - create the initial topological
676    /// ordering from the DAG to be scheduled.
677    void InitDAGTopologicalSorting();
678
679    /// IsReachable - Checks if SU is reachable from TargetSU.
680    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
681
682    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
683    /// will create a cycle.
684    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
685
686    /// AddPred - Updates the topological ordering to accommodate an edge
687    /// to be added from SUnit X to SUnit Y.
688    void AddPred(SUnit *Y, SUnit *X);
689
690    /// RemovePred - Updates the topological ordering to accommodate an
691    /// an edge to be removed from the specified node N from the predecessors
692    /// of the current node M.
693    void RemovePred(SUnit *M, SUnit *N);
694
695    typedef std::vector<int>::iterator iterator;
696    typedef std::vector<int>::const_iterator const_iterator;
697    iterator begin() { return Index2Node.begin(); }
698    const_iterator begin() const { return Index2Node.begin(); }
699    iterator end() { return Index2Node.end(); }
700    const_iterator end() const { return Index2Node.end(); }
701
702    typedef std::vector<int>::reverse_iterator reverse_iterator;
703    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
704    reverse_iterator rbegin() { return Index2Node.rbegin(); }
705    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
706    reverse_iterator rend() { return Index2Node.rend(); }
707    const_reverse_iterator rend() const { return Index2Node.rend(); }
708  };
709}
710
711#endif
712