ScheduleDAG.h revision 199989
1144513Simp//===------- llvm/CodeGen/ScheduleDAG.h - Common Base Class------*- C++ -*-===//
2144513Simp//
3144513Simp//                     The LLVM Compiler Infrastructure
4144513Simp//
5144513Simp// This file is distributed under the University of Illinois Open Source
6144513Simp// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ScheduleDAG class, which is used as the common
11// base class for instruction schedulers.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16#define LLVM_CODEGEN_SCHEDULEDAG_H
17
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/GraphTraits.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/PointerIntPair.h"
24
25namespace llvm {
26  class AliasAnalysis;
27  class SUnit;
28  class MachineConstantPool;
29  class MachineFunction;
30  class MachineModuleInfo;
31  class MachineRegisterInfo;
32  class MachineInstr;
33  class TargetRegisterInfo;
34  class ScheduleDAG;
35  class SDNode;
36  class TargetInstrInfo;
37  class TargetInstrDesc;
38  class TargetLowering;
39  class TargetMachine;
40  class TargetRegisterClass;
41  template<class Graph> class GraphWriter;
42
43  /// SDep - Scheduling dependency. This represents one direction of an
44  /// edge in the scheduling DAG.
45  class SDep {
46  public:
47    /// Kind - These are the different kinds of scheduling dependencies.
48    enum Kind {
49      Data,        ///< Regular data dependence (aka true-dependence).
50      Anti,        ///< A register anti-dependedence (aka WAR).
51      Output,      ///< A register output-dependence (aka WAW).
52      Order        ///< Any other ordering dependency.
53    };
54
55  private:
56    /// Dep - A pointer to the depending/depended-on SUnit, and an enum
57    /// indicating the kind of the dependency.
58    PointerIntPair<SUnit *, 2, Kind> Dep;
59
60    /// Contents - A union discriminated by the dependence kind.
61    union {
62      /// Reg - For Data, Anti, and Output dependencies, the associated
63      /// register. For Data dependencies that don't currently have a register
64      /// assigned, this is set to zero.
65      unsigned Reg;
66
67      /// Order - Additional information about Order dependencies.
68      struct {
69        /// isNormalMemory - True if both sides of the dependence
70        /// access memory in non-volatile and fully modeled ways.
71        bool isNormalMemory : 1;
72
73        /// isMustAlias - True if both sides of the dependence are known to
74        /// access the same memory.
75        bool isMustAlias : 1;
76
77        /// isArtificial - True if this is an artificial dependency, meaning
78        /// it is not necessary for program correctness, and may be safely
79        /// deleted if necessary.
80        bool isArtificial : 1;
81      } Order;
82    } Contents;
83
84    /// Latency - The time associated with this edge. Often this is just
85    /// the value of the Latency field of the predecessor, however advanced
86    /// models may provide additional information about specific edges.
87    unsigned Latency;
88
89  public:
90    /// SDep - Construct a null SDep. This is only for use by container
91    /// classes which require default constructors. SUnits may not
92    /// have null SDep edges.
93    SDep() : Dep(0, Data) {}
94
95    /// SDep - Construct an SDep with the specified values.
96    SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
97         bool isNormalMemory = false, bool isMustAlias = false,
98         bool isArtificial = false)
99      : Dep(S, kind), Contents(), Latency(latency) {
100      switch (kind) {
101      case Anti:
102      case Output:
103        assert(Reg != 0 &&
104               "SDep::Anti and SDep::Output must use a non-zero Reg!");
105        // fall through
106      case Data:
107        assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
108        assert(!isArtificial && "isArtificial only applies with SDep::Order!");
109        Contents.Reg = Reg;
110        break;
111      case Order:
112        assert(Reg == 0 && "Reg given for non-register dependence!");
113        Contents.Order.isNormalMemory = isNormalMemory;
114        Contents.Order.isMustAlias = isMustAlias;
115        Contents.Order.isArtificial = isArtificial;
116        break;
117      }
118    }
119
120    bool operator==(const SDep &Other) const {
121      if (Dep != Other.Dep || Latency != Other.Latency) return false;
122      switch (Dep.getInt()) {
123      case Data:
124      case Anti:
125      case Output:
126        return Contents.Reg == Other.Contents.Reg;
127      case Order:
128        return Contents.Order.isNormalMemory ==
129                 Other.Contents.Order.isNormalMemory &&
130               Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
131               Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
132      }
133      assert(0 && "Invalid dependency kind!");
134      return false;
135    }
136
137    bool operator!=(const SDep &Other) const {
138      return !operator==(Other);
139    }
140
141    /// getLatency - Return the latency value for this edge, which roughly
142    /// means the minimum number of cycles that must elapse between the
143    /// predecessor and the successor, given that they have this edge
144    /// between them.
145    unsigned getLatency() const {
146      return Latency;
147    }
148
149    /// setLatency - Set the latency for this edge.
150    void setLatency(unsigned Lat) {
151      Latency = Lat;
152    }
153
154    //// getSUnit - Return the SUnit to which this edge points.
155    SUnit *getSUnit() const {
156      return Dep.getPointer();
157    }
158
159    //// setSUnit - Assign the SUnit to which this edge points.
160    void setSUnit(SUnit *SU) {
161      Dep.setPointer(SU);
162    }
163
164    /// getKind - Return an enum value representing the kind of the dependence.
165    Kind getKind() const {
166      return Dep.getInt();
167    }
168
169    /// isCtrl - Shorthand for getKind() != SDep::Data.
170    bool isCtrl() const {
171      return getKind() != Data;
172    }
173
174    /// isNormalMemory - Test if this is an Order dependence between two
175    /// memory accesses where both sides of the dependence access memory
176    /// in non-volatile and fully modeled ways.
177    bool isNormalMemory() const {
178      return getKind() == Order && Contents.Order.isNormalMemory;
179    }
180
181    /// isMustAlias - Test if this is an Order dependence that is marked
182    /// as "must alias", meaning that the SUnits at either end of the edge
183    /// have a memory dependence on a known memory location.
184    bool isMustAlias() const {
185      return getKind() == Order && Contents.Order.isMustAlias;
186    }
187
188    /// isArtificial - Test if this is an Order dependence that is marked
189    /// as "artificial", meaning it isn't necessary for correctness.
190    bool isArtificial() const {
191      return getKind() == Order && Contents.Order.isArtificial;
192    }
193
194    /// isAssignedRegDep - Test if this is a Data dependence that is
195    /// associated with a register.
196    bool isAssignedRegDep() const {
197      return getKind() == Data && Contents.Reg != 0;
198    }
199
200    /// getReg - Return the register associated with this edge. This is
201    /// only valid on Data, Anti, and Output edges. On Data edges, this
202    /// value may be zero, meaning there is no associated register.
203    unsigned getReg() const {
204      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
205             "getReg called on non-register dependence edge!");
206      return Contents.Reg;
207    }
208
209    /// setReg - Assign the associated register for this edge. This is
210    /// only valid on Data, Anti, and Output edges. On Anti and Output
211    /// edges, this value must not be zero. On Data edges, the value may
212    /// be zero, which would mean that no specific register is associated
213    /// with this edge.
214    void setReg(unsigned Reg) {
215      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
216             "setReg called on non-register dependence edge!");
217      assert((getKind() != Anti || Reg != 0) &&
218             "SDep::Anti edge cannot use the zero register!");
219      assert((getKind() != Output || Reg != 0) &&
220             "SDep::Output edge cannot use the zero register!");
221      Contents.Reg = Reg;
222    }
223  };
224
225  /// SUnit - Scheduling unit. This is a node in the scheduling DAG.
226  class SUnit {
227  private:
228    SDNode *Node;                       // Representative node.
229    MachineInstr *Instr;                // Alternatively, a MachineInstr.
230  public:
231    SUnit *OrigNode;                    // If not this, the node from which
232                                        // this node was cloned.
233
234    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
235    // is true if the edge is a token chain edge, false if it is a value edge.
236    SmallVector<SDep, 4> Preds;  // All sunit predecessors.
237    SmallVector<SDep, 4> Succs;  // All sunit successors.
238
239    typedef SmallVector<SDep, 4>::iterator pred_iterator;
240    typedef SmallVector<SDep, 4>::iterator succ_iterator;
241    typedef SmallVector<SDep, 4>::const_iterator const_pred_iterator;
242    typedef SmallVector<SDep, 4>::const_iterator const_succ_iterator;
243
244    unsigned NodeNum;                   // Entry # of node in the node vector.
245    unsigned NodeQueueId;               // Queue id of node.
246    unsigned short Latency;             // Node latency.
247    unsigned NumPreds;                  // # of SDep::Data preds.
248    unsigned NumSuccs;                  // # of SDep::Data sucss.
249    unsigned NumPredsLeft;              // # of preds not scheduled.
250    unsigned NumSuccsLeft;              // # of succs not scheduled.
251    bool isTwoAddress     : 1;          // Is a two-address instruction.
252    bool isCommutable     : 1;          // Is a commutable instruction.
253    bool hasPhysRegDefs   : 1;          // Has physreg defs that are being used.
254    bool hasPhysRegClobbers : 1;        // Has any physreg defs, used or not.
255    bool isPending        : 1;          // True once pending.
256    bool isAvailable      : 1;          // True once available.
257    bool isScheduled      : 1;          // True once scheduled.
258    bool isScheduleHigh   : 1;          // True if preferable to schedule high.
259    bool isCloned         : 1;          // True if this node has been cloned.
260  private:
261    bool isDepthCurrent   : 1;          // True if Depth is current.
262    bool isHeightCurrent  : 1;          // True if Height is current.
263    unsigned Depth;                     // Node depth.
264    unsigned Height;                    // Node height.
265  public:
266    const TargetRegisterClass *CopyDstRC; // Is a special copy node if not null.
267    const TargetRegisterClass *CopySrcRC;
268
269    /// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
270    /// an SDNode and any nodes flagged to it.
271    SUnit(SDNode *node, unsigned nodenum)
272      : Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
273        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
274        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
275        hasPhysRegClobbers(false),
276        isPending(false), isAvailable(false), isScheduled(false),
277        isScheduleHigh(false), isCloned(false),
278        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
279        CopyDstRC(NULL), CopySrcRC(NULL) {}
280
281    /// SUnit - Construct an SUnit for post-regalloc scheduling to represent
282    /// a MachineInstr.
283    SUnit(MachineInstr *instr, unsigned nodenum)
284      : Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
285        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
286        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
287        hasPhysRegClobbers(false),
288        isPending(false), isAvailable(false), isScheduled(false),
289        isScheduleHigh(false), isCloned(false),
290        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
291        CopyDstRC(NULL), CopySrcRC(NULL) {}
292
293    /// SUnit - Construct a placeholder SUnit.
294    SUnit()
295      : Node(0), Instr(0), OrigNode(0), NodeNum(~0u), NodeQueueId(0),
296        Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
297        isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
298        hasPhysRegClobbers(false),
299        isPending(false), isAvailable(false), isScheduled(false),
300        isScheduleHigh(false), isCloned(false),
301        isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
302        CopyDstRC(NULL), CopySrcRC(NULL) {}
303
304    /// setNode - Assign the representative SDNode for this SUnit.
305    /// This may be used during pre-regalloc scheduling.
306    void setNode(SDNode *N) {
307      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
308      Node = N;
309    }
310
311    /// getNode - Return the representative SDNode for this SUnit.
312    /// This may be used during pre-regalloc scheduling.
313    SDNode *getNode() const {
314      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
315      return Node;
316    }
317
318    /// setInstr - Assign the instruction for the SUnit.
319    /// This may be used during post-regalloc scheduling.
320    void setInstr(MachineInstr *MI) {
321      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
322      Instr = MI;
323    }
324
325    /// getInstr - Return the representative MachineInstr for this SUnit.
326    /// This may be used during post-regalloc scheduling.
327    MachineInstr *getInstr() const {
328      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
329      return Instr;
330    }
331
332    /// addPred - This adds the specified edge as a pred of the current node if
333    /// not already.  It also adds the current node as a successor of the
334    /// specified node.
335    void addPred(const SDep &D);
336
337    /// removePred - This removes the specified edge as a pred of the current
338    /// node if it exists.  It also removes the current node as a successor of
339    /// the specified node.
340    void removePred(const SDep &D);
341
342    /// getDepth - Return the depth of this node, which is the length of the
343    /// maximum path up to any node with has no predecessors.
344    unsigned getDepth() const {
345      if (!isDepthCurrent)
346        const_cast<SUnit *>(this)->ComputeDepth();
347      return Depth;
348    }
349
350    /// getHeight - Return the height of this node, which is the length of the
351    /// maximum path down to any node with has no successors.
352    unsigned getHeight() const {
353      if (!isHeightCurrent)
354        const_cast<SUnit *>(this)->ComputeHeight();
355      return Height;
356    }
357
358    /// setDepthToAtLeast - If NewDepth is greater than this node's
359    /// depth value, set it to be the new depth value. This also
360    /// recursively marks successor nodes dirty.
361    void setDepthToAtLeast(unsigned NewDepth);
362
363    /// setDepthToAtLeast - If NewDepth is greater than this node's
364    /// depth value, set it to be the new height value. This also
365    /// recursively marks predecessor nodes dirty.
366    void setHeightToAtLeast(unsigned NewHeight);
367
368    /// setDepthDirty - Set a flag in this node to indicate that its
369    /// stored Depth value will require recomputation the next time
370    /// getDepth() is called.
371    void setDepthDirty();
372
373    /// setHeightDirty - Set a flag in this node to indicate that its
374    /// stored Height value will require recomputation the next time
375    /// getHeight() is called.
376    void setHeightDirty();
377
378    /// isPred - Test if node N is a predecessor of this node.
379    bool isPred(SUnit *N) {
380      for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
381        if (Preds[i].getSUnit() == N)
382          return true;
383      return false;
384    }
385
386    /// isSucc - Test if node N is a successor of this node.
387    bool isSucc(SUnit *N) {
388      for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
389        if (Succs[i].getSUnit() == N)
390          return true;
391      return false;
392    }
393
394    void dump(const ScheduleDAG *G) const;
395    void dumpAll(const ScheduleDAG *G) const;
396    void print(raw_ostream &O, const ScheduleDAG *G) const;
397
398  private:
399    void ComputeDepth();
400    void ComputeHeight();
401  };
402
403  //===--------------------------------------------------------------------===//
404  /// SchedulingPriorityQueue - This interface is used to plug different
405  /// priorities computation algorithms into the list scheduler. It implements
406  /// the interface of a standard priority queue, where nodes are inserted in
407  /// arbitrary order and returned in priority order.  The computation of the
408  /// priority and the representation of the queue are totally up to the
409  /// implementation to decide.
410  ///
411  class SchedulingPriorityQueue {
412  public:
413    virtual ~SchedulingPriorityQueue() {}
414
415    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
416    virtual void addNode(const SUnit *SU) = 0;
417    virtual void updateNode(const SUnit *SU) = 0;
418    virtual void releaseState() = 0;
419
420    virtual unsigned size() const = 0;
421    virtual bool empty() const = 0;
422    virtual void push(SUnit *U) = 0;
423
424    virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
425    virtual SUnit *pop() = 0;
426
427    virtual void remove(SUnit *SU) = 0;
428
429    /// ScheduledNode - As each node is scheduled, this method is invoked.  This
430    /// allows the priority function to adjust the priority of related
431    /// unscheduled nodes, for example.
432    ///
433    virtual void ScheduledNode(SUnit *) {}
434
435    virtual void UnscheduledNode(SUnit *) {}
436  };
437
438  class ScheduleDAG {
439  public:
440    MachineBasicBlock *BB;          // The block in which to insert instructions
441    MachineBasicBlock::iterator InsertPos;// The position to insert instructions
442    const TargetMachine &TM;              // Target processor
443    const TargetInstrInfo *TII;           // Target instruction information
444    const TargetRegisterInfo *TRI;        // Target processor register info
445    const TargetLowering *TLI;            // Target lowering info
446    MachineFunction &MF;                  // Machine function
447    MachineRegisterInfo &MRI;             // Virtual/real register map
448    MachineConstantPool *ConstPool;       // Target constant pool
449    std::vector<SUnit*> Sequence;         // The schedule. Null SUnit*'s
450                                          // represent noop instructions.
451    std::vector<SUnit> SUnits;            // The scheduling units.
452    SUnit EntrySU;                        // Special node for the region entry.
453    SUnit ExitSU;                         // Special node for the region exit.
454
455    explicit ScheduleDAG(MachineFunction &mf);
456
457    virtual ~ScheduleDAG();
458
459    /// viewGraph - Pop up a GraphViz/gv window with the ScheduleDAG rendered
460    /// using 'dot'.
461    ///
462    void viewGraph();
463
464    /// EmitSchedule - Insert MachineInstrs into the MachineBasicBlock
465    /// according to the order specified in Sequence.
466    ///
467    virtual MachineBasicBlock*
468    EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*>*) = 0;
469
470    void dumpSchedule() const;
471
472    virtual void dumpNode(const SUnit *SU) const = 0;
473
474    /// getGraphNodeLabel - Return a label for an SUnit node in a visualization
475    /// of the ScheduleDAG.
476    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
477
478    /// addCustomGraphFeatures - Add custom features for a visualization of
479    /// the ScheduleDAG.
480    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
481
482#ifndef NDEBUG
483    /// VerifySchedule - Verify that all SUnits were scheduled and that
484    /// their state is consistent.
485    void VerifySchedule(bool isBottomUp);
486#endif
487
488  protected:
489    /// Run - perform scheduling.
490    ///
491    void Run(MachineBasicBlock *bb, MachineBasicBlock::iterator insertPos);
492
493    /// BuildSchedGraph - Build SUnits and set up their Preds and Succs
494    /// to form the scheduling dependency graph.
495    ///
496    virtual void BuildSchedGraph(AliasAnalysis *AA) = 0;
497
498    /// ComputeLatency - Compute node latency.
499    ///
500    virtual void ComputeLatency(SUnit *SU) = 0;
501
502    /// ComputeOperandLatency - Override dependence edge latency using
503    /// operand use/def information
504    ///
505    virtual void ComputeOperandLatency(SUnit *, SUnit *,
506                                       SDep&) const { }
507
508    /// Schedule - Order nodes according to selected style, filling
509    /// in the Sequence member.
510    ///
511    virtual void Schedule() = 0;
512
513    /// ForceUnitLatencies - Return true if all scheduling edges should be given
514    /// a latency value of one.  The default is to return false; schedulers may
515    /// override this as needed.
516    virtual bool ForceUnitLatencies() const { return false; }
517
518    /// EmitNoop - Emit a noop instruction.
519    ///
520    void EmitNoop();
521
522    void EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap);
523  };
524
525  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
526                                             SUnit, ptrdiff_t> {
527    SUnit *Node;
528    unsigned Operand;
529
530    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
531  public:
532    bool operator==(const SUnitIterator& x) const {
533      return Operand == x.Operand;
534    }
535    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
536
537    const SUnitIterator &operator=(const SUnitIterator &I) {
538      assert(I.Node==Node && "Cannot assign iterators to two different nodes!");
539      Operand = I.Operand;
540      return *this;
541    }
542
543    pointer operator*() const {
544      return Node->Preds[Operand].getSUnit();
545    }
546    pointer operator->() const { return operator*(); }
547
548    SUnitIterator& operator++() {                // Preincrement
549      ++Operand;
550      return *this;
551    }
552    SUnitIterator operator++(int) { // Postincrement
553      SUnitIterator tmp = *this; ++*this; return tmp;
554    }
555
556    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
557    static SUnitIterator end  (SUnit *N) {
558      return SUnitIterator(N, (unsigned)N->Preds.size());
559    }
560
561    unsigned getOperand() const { return Operand; }
562    const SUnit *getNode() const { return Node; }
563    /// isCtrlDep - Test if this is not an SDep::Data dependence.
564    bool isCtrlDep() const {
565      return getSDep().isCtrl();
566    }
567    bool isArtificialDep() const {
568      return getSDep().isArtificial();
569    }
570    const SDep &getSDep() const {
571      return Node->Preds[Operand];
572    }
573  };
574
575  template <> struct GraphTraits<SUnit*> {
576    typedef SUnit NodeType;
577    typedef SUnitIterator ChildIteratorType;
578    static inline NodeType *getEntryNode(SUnit *N) { return N; }
579    static inline ChildIteratorType child_begin(NodeType *N) {
580      return SUnitIterator::begin(N);
581    }
582    static inline ChildIteratorType child_end(NodeType *N) {
583      return SUnitIterator::end(N);
584    }
585  };
586
587  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
588    typedef std::vector<SUnit>::iterator nodes_iterator;
589    static nodes_iterator nodes_begin(ScheduleDAG *G) {
590      return G->SUnits.begin();
591    }
592    static nodes_iterator nodes_end(ScheduleDAG *G) {
593      return G->SUnits.end();
594    }
595  };
596
597  /// ScheduleDAGTopologicalSort is a class that computes a topological
598  /// ordering for SUnits and provides methods for dynamically updating
599  /// the ordering as new edges are added.
600  ///
601  /// This allows a very fast implementation of IsReachable, for example.
602  ///
603  class ScheduleDAGTopologicalSort {
604    /// SUnits - A reference to the ScheduleDAG's SUnits.
605    std::vector<SUnit> &SUnits;
606
607    /// Index2Node - Maps topological index to the node number.
608    std::vector<int> Index2Node;
609    /// Node2Index - Maps the node number to its topological index.
610    std::vector<int> Node2Index;
611    /// Visited - a set of nodes visited during a DFS traversal.
612    BitVector Visited;
613
614    /// DFS - make a DFS traversal and mark all nodes affected by the
615    /// edge insertion. These nodes will later get new topological indexes
616    /// by means of the Shift method.
617    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
618
619    /// Shift - reassign topological indexes for the nodes in the DAG
620    /// to preserve the topological ordering.
621    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
622
623    /// Allocate - assign the topological index to the node n.
624    void Allocate(int n, int index);
625
626  public:
627    explicit ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits);
628
629    /// InitDAGTopologicalSorting - create the initial topological
630    /// ordering from the DAG to be scheduled.
631    void InitDAGTopologicalSorting();
632
633    /// IsReachable - Checks if SU is reachable from TargetSU.
634    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
635
636    /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU
637    /// will create a cycle.
638    bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
639
640    /// AddPred - Updates the topological ordering to accomodate an edge
641    /// to be added from SUnit X to SUnit Y.
642    void AddPred(SUnit *Y, SUnit *X);
643
644    /// RemovePred - Updates the topological ordering to accomodate an
645    /// an edge to be removed from the specified node N from the predecessors
646    /// of the current node M.
647    void RemovePred(SUnit *M, SUnit *N);
648
649    typedef std::vector<int>::iterator iterator;
650    typedef std::vector<int>::const_iterator const_iterator;
651    iterator begin() { return Index2Node.begin(); }
652    const_iterator begin() const { return Index2Node.begin(); }
653    iterator end() { return Index2Node.end(); }
654    const_iterator end() const { return Index2Node.end(); }
655
656    typedef std::vector<int>::reverse_iterator reverse_iterator;
657    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
658    reverse_iterator rbegin() { return Index2Node.rbegin(); }
659    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
660    reverse_iterator rend() { return Index2Node.rend(); }
661    const_reverse_iterator rend() const { return Index2Node.rend(); }
662  };
663}
664
665#endif
666