1193323Sed//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file defines the SmallVector class.
11193323Sed//
12193323Sed//===----------------------------------------------------------------------===//
13193323Sed
14193323Sed#ifndef LLVM_ADT_SMALLVECTOR_H
15193323Sed#define LLVM_ADT_SMALLVECTOR_H
16193323Sed
17243830Sdim#include "llvm/Support/AlignOf.h"
18239462Sdim#include "llvm/Support/Compiler.h"
19249423Sdim#include "llvm/Support/MathExtras.h"
20193323Sed#include "llvm/Support/type_traits.h"
21193323Sed#include <algorithm>
22193323Sed#include <cassert>
23210299Sed#include <cstddef>
24210299Sed#include <cstdlib>
25193323Sed#include <cstring>
26218893Sdim#include <iterator>
27193323Sed#include <memory>
28193323Sed
29193323Sednamespace llvm {
30193323Sed
31200581Srdivacky/// SmallVectorBase - This is all the non-templated stuff common to all
32200581Srdivacky/// SmallVectors.
33200581Srdivackyclass SmallVectorBase {
34193323Sedprotected:
35200581Srdivacky  void *BeginX, *EndX, *CapacityX;
36193323Sed
37200581Srdivackyprotected:
38243830Sdim  SmallVectorBase(void *FirstEl, size_t Size)
39243830Sdim    : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
40210299Sed
41226633Sdim  /// grow_pod - This is an implementation of the grow() method which only works
42226633Sdim  /// on POD-like data types and is out of line to reduce code duplication.
43243830Sdim  void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
44226633Sdim
45226633Sdimpublic:
46201360Srdivacky  /// size_in_bytes - This returns size()*sizeof(T).
47201360Srdivacky  size_t size_in_bytes() const {
48201360Srdivacky    return size_t((char*)EndX - (char*)BeginX);
49201360Srdivacky  }
50243830Sdim
51201360Srdivacky  /// capacity_in_bytes - This returns capacity()*sizeof(T).
52201360Srdivacky  size_t capacity_in_bytes() const {
53201360Srdivacky    return size_t((char*)CapacityX - (char*)BeginX);
54201360Srdivacky  }
55210299Sed
56200581Srdivacky  bool empty() const { return BeginX == EndX; }
57200581Srdivacky};
58201360Srdivacky
59243830Sdimtemplate <typename T, unsigned N> struct SmallVectorStorage;
60210299Sed
61243830Sdim/// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase
62243830Sdim/// which does not depend on whether the type T is a POD. The extra dummy
63243830Sdim/// template argument is used by ArrayRef to avoid unnecessarily requiring T
64243830Sdim/// to be complete.
65243830Sdimtemplate <typename T, typename = void>
66201360Srdivackyclass SmallVectorTemplateCommon : public SmallVectorBase {
67243830Sdimprivate:
68243830Sdim  template <typename, unsigned> friend struct SmallVectorStorage;
69243830Sdim
70243830Sdim  // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
71243830Sdim  // don't want it to be automatically run, so we need to represent the space as
72243830Sdim  // something else.  Use an array of char of sufficient alignment.
73243830Sdim  typedef llvm::AlignedCharArrayUnion<T> U;
74243830Sdim  U FirstEl;
75243830Sdim  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
76243830Sdim
77201360Srdivackyprotected:
78243830Sdim  SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
79234353Sdim
80243830Sdim  void grow_pod(size_t MinSizeInBytes, size_t TSize) {
81243830Sdim    SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
82243830Sdim  }
83243830Sdim
84243830Sdim  /// isSmall - Return true if this is a smallvector which has not had dynamic
85243830Sdim  /// memory allocated for it.
86243830Sdim  bool isSmall() const {
87243830Sdim    return BeginX == static_cast<const void*>(&FirstEl);
88243830Sdim  }
89243830Sdim
90243830Sdim  /// resetToSmall - Put this vector in a state of being small.
91243830Sdim  void resetToSmall() {
92243830Sdim    BeginX = EndX = CapacityX = &FirstEl;
93243830Sdim  }
94243830Sdim
95201360Srdivacky  void setEnd(T *P) { this->EndX = P; }
96200581Srdivackypublic:
97193323Sed  typedef size_t size_type;
98193323Sed  typedef ptrdiff_t difference_type;
99193323Sed  typedef T value_type;
100200581Srdivacky  typedef T *iterator;
101200581Srdivacky  typedef const T *const_iterator;
102210299Sed
103200581Srdivacky  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
104200581Srdivacky  typedef std::reverse_iterator<iterator> reverse_iterator;
105210299Sed
106200581Srdivacky  typedef T &reference;
107200581Srdivacky  typedef const T &const_reference;
108200581Srdivacky  typedef T *pointer;
109200581Srdivacky  typedef const T *const_pointer;
110210299Sed
111193323Sed  // forward iterator creation methods.
112201360Srdivacky  iterator begin() { return (iterator)this->BeginX; }
113201360Srdivacky  const_iterator begin() const { return (const_iterator)this->BeginX; }
114201360Srdivacky  iterator end() { return (iterator)this->EndX; }
115201360Srdivacky  const_iterator end() const { return (const_iterator)this->EndX; }
116201360Srdivackyprotected:
117201360Srdivacky  iterator capacity_ptr() { return (iterator)this->CapacityX; }
118201360Srdivacky  const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
119200581Srdivackypublic:
120210299Sed
121193323Sed  // reverse iterator creation methods.
122193323Sed  reverse_iterator rbegin()            { return reverse_iterator(end()); }
123193323Sed  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
124193323Sed  reverse_iterator rend()              { return reverse_iterator(begin()); }
125193323Sed  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
126193323Sed
127200581Srdivacky  size_type size() const { return end()-begin(); }
128200581Srdivacky  size_type max_size() const { return size_type(-1) / sizeof(T); }
129210299Sed
130200581Srdivacky  /// capacity - Return the total number of elements in the currently allocated
131200581Srdivacky  /// buffer.
132200581Srdivacky  size_t capacity() const { return capacity_ptr() - begin(); }
133210299Sed
134200581Srdivacky  /// data - Return a pointer to the vector's buffer, even if empty().
135200581Srdivacky  pointer data() { return pointer(begin()); }
136200581Srdivacky  /// data - Return a pointer to the vector's buffer, even if empty().
137200581Srdivacky  const_pointer data() const { return const_pointer(begin()); }
138210299Sed
139193323Sed  reference operator[](unsigned idx) {
140200581Srdivacky    assert(begin() + idx < end());
141200581Srdivacky    return begin()[idx];
142193323Sed  }
143193323Sed  const_reference operator[](unsigned idx) const {
144200581Srdivacky    assert(begin() + idx < end());
145200581Srdivacky    return begin()[idx];
146193323Sed  }
147193323Sed
148193323Sed  reference front() {
149249423Sdim    assert(!empty());
150193323Sed    return begin()[0];
151193323Sed  }
152193323Sed  const_reference front() const {
153249423Sdim    assert(!empty());
154193323Sed    return begin()[0];
155193323Sed  }
156193323Sed
157193323Sed  reference back() {
158249423Sdim    assert(!empty());
159193323Sed    return end()[-1];
160193323Sed  }
161193323Sed  const_reference back() const {
162249423Sdim    assert(!empty());
163193323Sed    return end()[-1];
164193323Sed  }
165201360Srdivacky};
166210299Sed
167201360Srdivacky/// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
168201360Srdivacky/// implementations that are designed to work with non-POD-like T's.
169201360Srdivackytemplate <typename T, bool isPodLike>
170201360Srdivackyclass SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
171234353Sdimprotected:
172201360Srdivacky  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
173193323Sed
174201360Srdivacky  static void destroy_range(T *S, T *E) {
175201360Srdivacky    while (S != E) {
176201360Srdivacky      --E;
177201360Srdivacky      E->~T();
178193323Sed    }
179193323Sed  }
180210299Sed
181239462Sdim  /// move - Use move-assignment to move the range [I, E) onto the
182239462Sdim  /// objects starting with "Dest".  This is just <memory>'s
183239462Sdim  /// std::move, but not all stdlibs actually provide that.
184201360Srdivacky  template<typename It1, typename It2>
185239462Sdim  static It2 move(It1 I, It1 E, It2 Dest) {
186249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
187239462Sdim    for (; I != E; ++I, ++Dest)
188239462Sdim      *Dest = ::std::move(*I);
189239462Sdim    return Dest;
190239462Sdim#else
191239462Sdim    return ::std::copy(I, E, Dest);
192239462Sdim#endif
193239462Sdim  }
194239462Sdim
195239462Sdim  /// move_backward - Use move-assignment to move the range
196239462Sdim  /// [I, E) onto the objects ending at "Dest", moving objects
197239462Sdim  /// in reverse order.  This is just <algorithm>'s
198239462Sdim  /// std::move_backward, but not all stdlibs actually provide that.
199239462Sdim  template<typename It1, typename It2>
200239462Sdim  static It2 move_backward(It1 I, It1 E, It2 Dest) {
201249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
202239462Sdim    while (I != E)
203239462Sdim      *--Dest = ::std::move(*--E);
204239462Sdim    return Dest;
205239462Sdim#else
206239462Sdim    return ::std::copy_backward(I, E, Dest);
207239462Sdim#endif
208239462Sdim  }
209239462Sdim
210239462Sdim  /// uninitialized_move - Move the range [I, E) into the uninitialized
211239462Sdim  /// memory starting with "Dest", constructing elements as needed.
212239462Sdim  template<typename It1, typename It2>
213239462Sdim  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
214249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
215239462Sdim    for (; I != E; ++I, ++Dest)
216239462Sdim      ::new ((void*) &*Dest) T(::std::move(*I));
217239462Sdim#else
218239462Sdim    ::std::uninitialized_copy(I, E, Dest);
219239462Sdim#endif
220239462Sdim  }
221239462Sdim
222239462Sdim  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized
223239462Sdim  /// memory starting with "Dest", constructing elements as needed.
224239462Sdim  template<typename It1, typename It2>
225201360Srdivacky  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
226201360Srdivacky    std::uninitialized_copy(I, E, Dest);
227193323Sed  }
228210299Sed
229239462Sdim  /// grow - Grow the allocated memory (without initializing new
230239462Sdim  /// elements), doubling the size of the allocated memory.
231239462Sdim  /// Guarantees space for at least one more element, or MinSize more
232239462Sdim  /// elements if specified.
233201360Srdivacky  void grow(size_t MinSize = 0);
234234353Sdim
235234353Sdimpublic:
236234353Sdim  void push_back(const T &Elt) {
237234353Sdim    if (this->EndX < this->CapacityX) {
238234353Sdim    Retry:
239239462Sdim      ::new ((void*) this->end()) T(Elt);
240234353Sdim      this->setEnd(this->end()+1);
241234353Sdim      return;
242234353Sdim    }
243234353Sdim    this->grow();
244234353Sdim    goto Retry;
245234353Sdim  }
246239462Sdim
247249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
248239462Sdim  void push_back(T &&Elt) {
249239462Sdim    if (this->EndX < this->CapacityX) {
250239462Sdim    Retry:
251239462Sdim      ::new ((void*) this->end()) T(::std::move(Elt));
252239462Sdim      this->setEnd(this->end()+1);
253239462Sdim      return;
254239462Sdim    }
255239462Sdim    this->grow();
256239462Sdim    goto Retry;
257239462Sdim  }
258239462Sdim#endif
259234353Sdim
260234353Sdim  void pop_back() {
261234353Sdim    this->setEnd(this->end()-1);
262234353Sdim    this->end()->~T();
263234353Sdim  }
264201360Srdivacky};
265193323Sed
266201360Srdivacky// Define this out-of-line to dissuade the C++ compiler from inlining it.
267201360Srdivackytemplate <typename T, bool isPodLike>
268201360Srdivackyvoid SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
269201360Srdivacky  size_t CurCapacity = this->capacity();
270201360Srdivacky  size_t CurSize = this->size();
271249423Sdim  // Always grow, even from zero.
272249423Sdim  size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
273201360Srdivacky  if (NewCapacity < MinSize)
274201360Srdivacky    NewCapacity = MinSize;
275210299Sed  T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
276210299Sed
277239462Sdim  // Move the elements over.
278239462Sdim  this->uninitialized_move(this->begin(), this->end(), NewElts);
279210299Sed
280201360Srdivacky  // Destroy the original elements.
281201360Srdivacky  destroy_range(this->begin(), this->end());
282210299Sed
283201360Srdivacky  // If this wasn't grown from the inline copy, deallocate the old space.
284201360Srdivacky  if (!this->isSmall())
285210299Sed    free(this->begin());
286210299Sed
287201360Srdivacky  this->setEnd(NewElts+CurSize);
288201360Srdivacky  this->BeginX = NewElts;
289201360Srdivacky  this->CapacityX = this->begin()+NewCapacity;
290201360Srdivacky}
291210299Sed
292210299Sed
293201360Srdivacky/// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
294201360Srdivacky/// implementations that are designed to work with POD-like T's.
295201360Srdivackytemplate <typename T>
296201360Srdivackyclass SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
297234353Sdimprotected:
298201360Srdivacky  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
299210299Sed
300201360Srdivacky  // No need to do a destroy loop for POD's.
301201360Srdivacky  static void destroy_range(T *, T *) {}
302210299Sed
303239462Sdim  /// move - Use move-assignment to move the range [I, E) onto the
304239462Sdim  /// objects starting with "Dest".  For PODs, this is just memcpy.
305239462Sdim  template<typename It1, typename It2>
306239462Sdim  static It2 move(It1 I, It1 E, It2 Dest) {
307239462Sdim    return ::std::copy(I, E, Dest);
308239462Sdim  }
309239462Sdim
310239462Sdim  /// move_backward - Use move-assignment to move the range
311239462Sdim  /// [I, E) onto the objects ending at "Dest", moving objects
312239462Sdim  /// in reverse order.
313239462Sdim  template<typename It1, typename It2>
314239462Sdim  static It2 move_backward(It1 I, It1 E, It2 Dest) {
315239462Sdim    return ::std::copy_backward(I, E, Dest);
316239462Sdim  }
317239462Sdim
318239462Sdim  /// uninitialized_move - Move the range [I, E) onto the uninitialized memory
319239462Sdim  /// starting with "Dest", constructing elements into it as needed.
320239462Sdim  template<typename It1, typename It2>
321239462Sdim  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
322239462Sdim    // Just do a copy.
323239462Sdim    uninitialized_copy(I, E, Dest);
324239462Sdim  }
325239462Sdim
326201360Srdivacky  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
327201360Srdivacky  /// starting with "Dest", constructing elements into it as needed.
328201360Srdivacky  template<typename It1, typename It2>
329201360Srdivacky  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
330206083Srdivacky    // Arbitrary iterator types; just use the basic implementation.
331206083Srdivacky    std::uninitialized_copy(I, E, Dest);
332193323Sed  }
333206083Srdivacky
334206083Srdivacky  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
335206083Srdivacky  /// starting with "Dest", constructing elements into it as needed.
336206083Srdivacky  template<typename T1, typename T2>
337206083Srdivacky  static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
338206083Srdivacky    // Use memcpy for PODs iterated by pointers (which includes SmallVector
339206083Srdivacky    // iterators): std::uninitialized_copy optimizes to memmove, but we can
340206083Srdivacky    // use memcpy here.
341206083Srdivacky    memcpy(Dest, I, (E-I)*sizeof(T));
342206083Srdivacky  }
343206083Srdivacky
344201360Srdivacky  /// grow - double the size of the allocated memory, guaranteeing space for at
345201360Srdivacky  /// least one more element or MinSize if specified.
346201360Srdivacky  void grow(size_t MinSize = 0) {
347201360Srdivacky    this->grow_pod(MinSize*sizeof(T), sizeof(T));
348201360Srdivacky  }
349234353Sdimpublic:
350234353Sdim  void push_back(const T &Elt) {
351234353Sdim    if (this->EndX < this->CapacityX) {
352234353Sdim    Retry:
353239462Sdim      memcpy(this->end(), &Elt, sizeof(T));
354234353Sdim      this->setEnd(this->end()+1);
355234353Sdim      return;
356234353Sdim    }
357234353Sdim    this->grow();
358234353Sdim    goto Retry;
359234353Sdim  }
360234353Sdim
361234353Sdim  void pop_back() {
362234353Sdim    this->setEnd(this->end()-1);
363234353Sdim  }
364201360Srdivacky};
365210299Sed
366210299Sed
367201360Srdivacky/// SmallVectorImpl - This class consists of common code factored out of the
368201360Srdivacky/// SmallVector class to reduce code duplication based on the SmallVector 'N'
369201360Srdivacky/// template parameter.
370201360Srdivackytemplate <typename T>
371201360Srdivackyclass SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
372201360Srdivacky  typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
373218893Sdim
374249423Sdim  SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION;
375201360Srdivackypublic:
376201360Srdivacky  typedef typename SuperClass::iterator iterator;
377201360Srdivacky  typedef typename SuperClass::size_type size_type;
378210299Sed
379234353Sdimprotected:
380201360Srdivacky  // Default ctor - Initialize to empty.
381201360Srdivacky  explicit SmallVectorImpl(unsigned N)
382201360Srdivacky    : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
383201360Srdivacky  }
384210299Sed
385234353Sdimpublic:
386201360Srdivacky  ~SmallVectorImpl() {
387201360Srdivacky    // Destroy the constructed elements in the vector.
388201360Srdivacky    this->destroy_range(this->begin(), this->end());
389210299Sed
390201360Srdivacky    // If this wasn't grown from the inline copy, deallocate the old space.
391201360Srdivacky    if (!this->isSmall())
392210299Sed      free(this->begin());
393201360Srdivacky  }
394210299Sed
395210299Sed
396193323Sed  void clear() {
397201360Srdivacky    this->destroy_range(this->begin(), this->end());
398201360Srdivacky    this->EndX = this->BeginX;
399193323Sed  }
400193323Sed
401193323Sed  void resize(unsigned N) {
402201360Srdivacky    if (N < this->size()) {
403201360Srdivacky      this->destroy_range(this->begin()+N, this->end());
404201360Srdivacky      this->setEnd(this->begin()+N);
405201360Srdivacky    } else if (N > this->size()) {
406201360Srdivacky      if (this->capacity() < N)
407201360Srdivacky        this->grow(N);
408234353Sdim      std::uninitialized_fill(this->end(), this->begin()+N, T());
409201360Srdivacky      this->setEnd(this->begin()+N);
410193323Sed    }
411193323Sed  }
412193323Sed
413193323Sed  void resize(unsigned N, const T &NV) {
414201360Srdivacky    if (N < this->size()) {
415201360Srdivacky      this->destroy_range(this->begin()+N, this->end());
416201360Srdivacky      this->setEnd(this->begin()+N);
417201360Srdivacky    } else if (N > this->size()) {
418201360Srdivacky      if (this->capacity() < N)
419201360Srdivacky        this->grow(N);
420234353Sdim      std::uninitialized_fill(this->end(), this->begin()+N, NV);
421201360Srdivacky      this->setEnd(this->begin()+N);
422193323Sed    }
423193323Sed  }
424193323Sed
425193323Sed  void reserve(unsigned N) {
426201360Srdivacky    if (this->capacity() < N)
427201360Srdivacky      this->grow(N);
428193323Sed  }
429210299Sed
430201360Srdivacky  T pop_back_val() {
431249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
432239462Sdim    T Result = ::std::move(this->back());
433239462Sdim#else
434201360Srdivacky    T Result = this->back();
435239462Sdim#endif
436234353Sdim    this->pop_back();
437201360Srdivacky    return Result;
438201360Srdivacky  }
439210299Sed
440193323Sed  void swap(SmallVectorImpl &RHS);
441210299Sed
442193323Sed  /// append - Add the specified range to the end of the SmallVector.
443193323Sed  ///
444193323Sed  template<typename in_iter>
445193323Sed  void append(in_iter in_start, in_iter in_end) {
446193323Sed    size_type NumInputs = std::distance(in_start, in_end);
447193323Sed    // Grow allocated space if needed.
448201360Srdivacky    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
449201360Srdivacky      this->grow(this->size()+NumInputs);
450210299Sed
451193323Sed    // Copy the new elements over.
452201360Srdivacky    // TODO: NEED To compile time dispatch on whether in_iter is a random access
453201360Srdivacky    // iterator to use the fast uninitialized_copy.
454201360Srdivacky    std::uninitialized_copy(in_start, in_end, this->end());
455201360Srdivacky    this->setEnd(this->end() + NumInputs);
456193323Sed  }
457210299Sed
458193323Sed  /// append - Add the specified range to the end of the SmallVector.
459193323Sed  ///
460193323Sed  void append(size_type NumInputs, const T &Elt) {
461193323Sed    // Grow allocated space if needed.
462201360Srdivacky    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
463201360Srdivacky      this->grow(this->size()+NumInputs);
464210299Sed
465193323Sed    // Copy the new elements over.
466201360Srdivacky    std::uninitialized_fill_n(this->end(), NumInputs, Elt);
467201360Srdivacky    this->setEnd(this->end() + NumInputs);
468193323Sed  }
469210299Sed
470193323Sed  void assign(unsigned NumElts, const T &Elt) {
471193323Sed    clear();
472201360Srdivacky    if (this->capacity() < NumElts)
473201360Srdivacky      this->grow(NumElts);
474201360Srdivacky    this->setEnd(this->begin()+NumElts);
475234353Sdim    std::uninitialized_fill(this->begin(), this->end(), Elt);
476193323Sed  }
477210299Sed
478193323Sed  iterator erase(iterator I) {
479239462Sdim    assert(I >= this->begin() && "Iterator to erase is out of bounds.");
480239462Sdim    assert(I < this->end() && "Erasing at past-the-end iterator.");
481239462Sdim
482193323Sed    iterator N = I;
483193323Sed    // Shift all elts down one.
484239462Sdim    this->move(I+1, this->end(), I);
485193323Sed    // Drop the last elt.
486234353Sdim    this->pop_back();
487193323Sed    return(N);
488193323Sed  }
489210299Sed
490193323Sed  iterator erase(iterator S, iterator E) {
491239462Sdim    assert(S >= this->begin() && "Range to erase is out of bounds.");
492239462Sdim    assert(S <= E && "Trying to erase invalid range.");
493239462Sdim    assert(E <= this->end() && "Trying to erase past the end.");
494239462Sdim
495193323Sed    iterator N = S;
496193323Sed    // Shift all elts down.
497239462Sdim    iterator I = this->move(E, this->end(), S);
498193323Sed    // Drop the last elts.
499201360Srdivacky    this->destroy_range(I, this->end());
500201360Srdivacky    this->setEnd(I);
501193323Sed    return(N);
502193323Sed  }
503210299Sed
504249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
505239462Sdim  iterator insert(iterator I, T &&Elt) {
506239462Sdim    if (I == this->end()) {  // Important special case for empty vector.
507239462Sdim      this->push_back(::std::move(Elt));
508239462Sdim      return this->end()-1;
509239462Sdim    }
510239462Sdim
511239462Sdim    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
512239462Sdim    assert(I <= this->end() && "Inserting past the end of the vector.");
513239462Sdim
514239462Sdim    if (this->EndX < this->CapacityX) {
515239462Sdim    Retry:
516239462Sdim      ::new ((void*) this->end()) T(::std::move(this->back()));
517239462Sdim      this->setEnd(this->end()+1);
518239462Sdim      // Push everything else over.
519239462Sdim      this->move_backward(I, this->end()-1, this->end());
520239462Sdim
521239462Sdim      // If we just moved the element we're inserting, be sure to update
522239462Sdim      // the reference.
523239462Sdim      T *EltPtr = &Elt;
524239462Sdim      if (I <= EltPtr && EltPtr < this->EndX)
525239462Sdim        ++EltPtr;
526239462Sdim
527239462Sdim      *I = ::std::move(*EltPtr);
528239462Sdim      return I;
529239462Sdim    }
530239462Sdim    size_t EltNo = I-this->begin();
531239462Sdim    this->grow();
532239462Sdim    I = this->begin()+EltNo;
533239462Sdim    goto Retry;
534239462Sdim  }
535239462Sdim#endif
536239462Sdim
537193323Sed  iterator insert(iterator I, const T &Elt) {
538201360Srdivacky    if (I == this->end()) {  // Important special case for empty vector.
539234353Sdim      this->push_back(Elt);
540201360Srdivacky      return this->end()-1;
541193323Sed    }
542210299Sed
543239462Sdim    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
544239462Sdim    assert(I <= this->end() && "Inserting past the end of the vector.");
545239462Sdim
546201360Srdivacky    if (this->EndX < this->CapacityX) {
547201360Srdivacky    Retry:
548239462Sdim      ::new ((void*) this->end()) T(this->back());
549201360Srdivacky      this->setEnd(this->end()+1);
550193323Sed      // Push everything else over.
551239462Sdim      this->move_backward(I, this->end()-1, this->end());
552224145Sdim
553224145Sdim      // If we just moved the element we're inserting, be sure to update
554224145Sdim      // the reference.
555224145Sdim      const T *EltPtr = &Elt;
556224145Sdim      if (I <= EltPtr && EltPtr < this->EndX)
557224145Sdim        ++EltPtr;
558224145Sdim
559224145Sdim      *I = *EltPtr;
560193323Sed      return I;
561193323Sed    }
562201360Srdivacky    size_t EltNo = I-this->begin();
563201360Srdivacky    this->grow();
564201360Srdivacky    I = this->begin()+EltNo;
565193323Sed    goto Retry;
566193323Sed  }
567210299Sed
568193323Sed  iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
569239462Sdim    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
570239462Sdim    size_t InsertElt = I - this->begin();
571239462Sdim
572201360Srdivacky    if (I == this->end()) {  // Important special case for empty vector.
573193323Sed      append(NumToInsert, Elt);
574239462Sdim      return this->begin()+InsertElt;
575193323Sed    }
576210299Sed
577239462Sdim    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
578239462Sdim    assert(I <= this->end() && "Inserting past the end of the vector.");
579210299Sed
580193323Sed    // Ensure there is enough space.
581201360Srdivacky    reserve(static_cast<unsigned>(this->size() + NumToInsert));
582210299Sed
583193323Sed    // Uninvalidate the iterator.
584201360Srdivacky    I = this->begin()+InsertElt;
585210299Sed
586193323Sed    // If there are more elements between the insertion point and the end of the
587193323Sed    // range than there are being inserted, we can use a simple approach to
588193323Sed    // insertion.  Since we already reserved space, we know that this won't
589193323Sed    // reallocate the vector.
590201360Srdivacky    if (size_t(this->end()-I) >= NumToInsert) {
591201360Srdivacky      T *OldEnd = this->end();
592201360Srdivacky      append(this->end()-NumToInsert, this->end());
593210299Sed
594193323Sed      // Copy the existing elements that get replaced.
595239462Sdim      this->move_backward(I, OldEnd-NumToInsert, OldEnd);
596210299Sed
597193323Sed      std::fill_n(I, NumToInsert, Elt);
598193323Sed      return I;
599193323Sed    }
600210299Sed
601193323Sed    // Otherwise, we're inserting more elements than exist already, and we're
602193323Sed    // not inserting at the end.
603210299Sed
604239462Sdim    // Move over the elements that we're about to overwrite.
605201360Srdivacky    T *OldEnd = this->end();
606201360Srdivacky    this->setEnd(this->end() + NumToInsert);
607193323Sed    size_t NumOverwritten = OldEnd-I;
608239462Sdim    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
609210299Sed
610193323Sed    // Replace the overwritten part.
611193323Sed    std::fill_n(I, NumOverwritten, Elt);
612210299Sed
613193323Sed    // Insert the non-overwritten middle part.
614193323Sed    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
615193323Sed    return I;
616193323Sed  }
617210299Sed
618193323Sed  template<typename ItTy>
619193323Sed  iterator insert(iterator I, ItTy From, ItTy To) {
620239462Sdim    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
621239462Sdim    size_t InsertElt = I - this->begin();
622239462Sdim
623201360Srdivacky    if (I == this->end()) {  // Important special case for empty vector.
624193323Sed      append(From, To);
625239462Sdim      return this->begin()+InsertElt;
626193323Sed    }
627210299Sed
628239462Sdim    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
629239462Sdim    assert(I <= this->end() && "Inserting past the end of the vector.");
630239462Sdim
631193323Sed    size_t NumToInsert = std::distance(From, To);
632210299Sed
633193323Sed    // Ensure there is enough space.
634201360Srdivacky    reserve(static_cast<unsigned>(this->size() + NumToInsert));
635210299Sed
636193323Sed    // Uninvalidate the iterator.
637201360Srdivacky    I = this->begin()+InsertElt;
638210299Sed
639193323Sed    // If there are more elements between the insertion point and the end of the
640193323Sed    // range than there are being inserted, we can use a simple approach to
641193323Sed    // insertion.  Since we already reserved space, we know that this won't
642193323Sed    // reallocate the vector.
643201360Srdivacky    if (size_t(this->end()-I) >= NumToInsert) {
644201360Srdivacky      T *OldEnd = this->end();
645201360Srdivacky      append(this->end()-NumToInsert, this->end());
646210299Sed
647193323Sed      // Copy the existing elements that get replaced.
648239462Sdim      this->move_backward(I, OldEnd-NumToInsert, OldEnd);
649210299Sed
650193323Sed      std::copy(From, To, I);
651193323Sed      return I;
652193323Sed    }
653210299Sed
654193323Sed    // Otherwise, we're inserting more elements than exist already, and we're
655193323Sed    // not inserting at the end.
656210299Sed
657239462Sdim    // Move over the elements that we're about to overwrite.
658201360Srdivacky    T *OldEnd = this->end();
659201360Srdivacky    this->setEnd(this->end() + NumToInsert);
660193323Sed    size_t NumOverwritten = OldEnd-I;
661239462Sdim    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
662210299Sed
663193323Sed    // Replace the overwritten part.
664239462Sdim    for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
665239462Sdim      *J = *From;
666239462Sdim      ++J; ++From;
667206083Srdivacky    }
668210299Sed
669193323Sed    // Insert the non-overwritten middle part.
670206083Srdivacky    this->uninitialized_copy(From, To, OldEnd);
671193323Sed    return I;
672193323Sed  }
673210299Sed
674239462Sdim  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
675210299Sed
676249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
677239462Sdim  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
678239462Sdim#endif
679239462Sdim
680193323Sed  bool operator==(const SmallVectorImpl &RHS) const {
681201360Srdivacky    if (this->size() != RHS.size()) return false;
682201360Srdivacky    return std::equal(this->begin(), this->end(), RHS.begin());
683193323Sed  }
684201360Srdivacky  bool operator!=(const SmallVectorImpl &RHS) const {
685201360Srdivacky    return !(*this == RHS);
686201360Srdivacky  }
687210299Sed
688193323Sed  bool operator<(const SmallVectorImpl &RHS) const {
689201360Srdivacky    return std::lexicographical_compare(this->begin(), this->end(),
690193323Sed                                        RHS.begin(), RHS.end());
691193323Sed  }
692210299Sed
693243830Sdim  /// Set the array size to \p N, which the current array must have enough
694243830Sdim  /// capacity for.
695198090Srdivacky  ///
696198090Srdivacky  /// This does not construct or destroy any elements in the vector.
697198090Srdivacky  ///
698198090Srdivacky  /// Clients can use this in conjunction with capacity() to write past the end
699198090Srdivacky  /// of the buffer when they know that more elements are available, and only
700198090Srdivacky  /// update the size later. This avoids the cost of value initializing elements
701198090Srdivacky  /// which will only be overwritten.
702198090Srdivacky  void set_size(unsigned N) {
703201360Srdivacky    assert(N <= this->capacity());
704201360Srdivacky    this->setEnd(this->begin() + N);
705198090Srdivacky  }
706193323Sed};
707193323Sed
708210299Sed
709193323Sedtemplate <typename T>
710193323Sedvoid SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
711193323Sed  if (this == &RHS) return;
712193323Sed
713193323Sed  // We can only avoid copying elements if neither vector is small.
714201360Srdivacky  if (!this->isSmall() && !RHS.isSmall()) {
715201360Srdivacky    std::swap(this->BeginX, RHS.BeginX);
716201360Srdivacky    std::swap(this->EndX, RHS.EndX);
717201360Srdivacky    std::swap(this->CapacityX, RHS.CapacityX);
718193323Sed    return;
719193323Sed  }
720201360Srdivacky  if (RHS.size() > this->capacity())
721201360Srdivacky    this->grow(RHS.size());
722201360Srdivacky  if (this->size() > RHS.capacity())
723201360Srdivacky    RHS.grow(this->size());
724193323Sed
725193323Sed  // Swap the shared elements.
726201360Srdivacky  size_t NumShared = this->size();
727193323Sed  if (NumShared > RHS.size()) NumShared = RHS.size();
728193323Sed  for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
729200581Srdivacky    std::swap((*this)[i], RHS[i]);
730193323Sed
731193323Sed  // Copy over the extra elts.
732201360Srdivacky  if (this->size() > RHS.size()) {
733201360Srdivacky    size_t EltDiff = this->size() - RHS.size();
734201360Srdivacky    this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
735200581Srdivacky    RHS.setEnd(RHS.end()+EltDiff);
736201360Srdivacky    this->destroy_range(this->begin()+NumShared, this->end());
737201360Srdivacky    this->setEnd(this->begin()+NumShared);
738201360Srdivacky  } else if (RHS.size() > this->size()) {
739201360Srdivacky    size_t EltDiff = RHS.size() - this->size();
740201360Srdivacky    this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
741201360Srdivacky    this->setEnd(this->end() + EltDiff);
742201360Srdivacky    this->destroy_range(RHS.begin()+NumShared, RHS.end());
743200581Srdivacky    RHS.setEnd(RHS.begin()+NumShared);
744193323Sed  }
745193323Sed}
746193323Sed
747193323Sedtemplate <typename T>
748239462SdimSmallVectorImpl<T> &SmallVectorImpl<T>::
749201360Srdivacky  operator=(const SmallVectorImpl<T> &RHS) {
750193323Sed  // Avoid self-assignment.
751193323Sed  if (this == &RHS) return *this;
752193323Sed
753193323Sed  // If we already have sufficient space, assign the common elements, then
754193323Sed  // destroy any excess.
755200581Srdivacky  size_t RHSSize = RHS.size();
756201360Srdivacky  size_t CurSize = this->size();
757193323Sed  if (CurSize >= RHSSize) {
758193323Sed    // Assign common elements.
759193323Sed    iterator NewEnd;
760193323Sed    if (RHSSize)
761201360Srdivacky      NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
762193323Sed    else
763201360Srdivacky      NewEnd = this->begin();
764193323Sed
765193323Sed    // Destroy excess elements.
766201360Srdivacky    this->destroy_range(NewEnd, this->end());
767193323Sed
768193323Sed    // Trim.
769201360Srdivacky    this->setEnd(NewEnd);
770193323Sed    return *this;
771193323Sed  }
772193323Sed
773193323Sed  // If we have to grow to have enough elements, destroy the current elements.
774193323Sed  // This allows us to avoid copying them during the grow.
775239462Sdim  // FIXME: don't do this if they're efficiently moveable.
776201360Srdivacky  if (this->capacity() < RHSSize) {
777193323Sed    // Destroy current elements.
778201360Srdivacky    this->destroy_range(this->begin(), this->end());
779201360Srdivacky    this->setEnd(this->begin());
780193323Sed    CurSize = 0;
781201360Srdivacky    this->grow(RHSSize);
782193323Sed  } else if (CurSize) {
783193323Sed    // Otherwise, use assignment for the already-constructed elements.
784201360Srdivacky    std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
785193323Sed  }
786193323Sed
787193323Sed  // Copy construct the new elements in place.
788201360Srdivacky  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
789201360Srdivacky                           this->begin()+CurSize);
790193323Sed
791193323Sed  // Set end.
792201360Srdivacky  this->setEnd(this->begin()+RHSSize);
793193323Sed  return *this;
794193323Sed}
795193323Sed
796249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
797239462Sdimtemplate <typename T>
798239462SdimSmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
799239462Sdim  // Avoid self-assignment.
800239462Sdim  if (this == &RHS) return *this;
801201360Srdivacky
802239462Sdim  // If the RHS isn't small, clear this vector and then steal its buffer.
803239462Sdim  if (!RHS.isSmall()) {
804239462Sdim    this->destroy_range(this->begin(), this->end());
805239462Sdim    if (!this->isSmall()) free(this->begin());
806239462Sdim    this->BeginX = RHS.BeginX;
807239462Sdim    this->EndX = RHS.EndX;
808239462Sdim    this->CapacityX = RHS.CapacityX;
809239462Sdim    RHS.resetToSmall();
810239462Sdim    return *this;
811239462Sdim  }
812239462Sdim
813239462Sdim  // If we already have sufficient space, assign the common elements, then
814239462Sdim  // destroy any excess.
815239462Sdim  size_t RHSSize = RHS.size();
816239462Sdim  size_t CurSize = this->size();
817239462Sdim  if (CurSize >= RHSSize) {
818239462Sdim    // Assign common elements.
819239462Sdim    iterator NewEnd = this->begin();
820239462Sdim    if (RHSSize)
821239462Sdim      NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
822239462Sdim
823239462Sdim    // Destroy excess elements and trim the bounds.
824239462Sdim    this->destroy_range(NewEnd, this->end());
825239462Sdim    this->setEnd(NewEnd);
826239462Sdim
827239462Sdim    // Clear the RHS.
828239462Sdim    RHS.clear();
829239462Sdim
830239462Sdim    return *this;
831239462Sdim  }
832239462Sdim
833239462Sdim  // If we have to grow to have enough elements, destroy the current elements.
834239462Sdim  // This allows us to avoid copying them during the grow.
835239462Sdim  // FIXME: this may not actually make any sense if we can efficiently move
836239462Sdim  // elements.
837239462Sdim  if (this->capacity() < RHSSize) {
838239462Sdim    // Destroy current elements.
839239462Sdim    this->destroy_range(this->begin(), this->end());
840239462Sdim    this->setEnd(this->begin());
841239462Sdim    CurSize = 0;
842239462Sdim    this->grow(RHSSize);
843239462Sdim  } else if (CurSize) {
844239462Sdim    // Otherwise, use assignment for the already-constructed elements.
845239462Sdim    this->move(RHS.begin(), RHS.end(), this->begin());
846239462Sdim  }
847239462Sdim
848239462Sdim  // Move-construct the new elements in place.
849239462Sdim  this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
850239462Sdim                           this->begin()+CurSize);
851239462Sdim
852239462Sdim  // Set end.
853239462Sdim  this->setEnd(this->begin()+RHSSize);
854239462Sdim
855239462Sdim  RHS.clear();
856239462Sdim  return *this;
857239462Sdim}
858239462Sdim#endif
859239462Sdim
860243830Sdim/// Storage for the SmallVector elements which aren't contained in
861243830Sdim/// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
862243830Sdim/// element is in the base class. This is specialized for the N=1 and N=0 cases
863243830Sdim/// to avoid allocating unnecessary storage.
864243830Sdimtemplate <typename T, unsigned N>
865243830Sdimstruct SmallVectorStorage {
866243830Sdim  typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
867243830Sdim};
868243830Sdimtemplate <typename T> struct SmallVectorStorage<T, 1> {};
869243830Sdimtemplate <typename T> struct SmallVectorStorage<T, 0> {};
870243830Sdim
871193323Sed/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
872193323Sed/// for the case when the array is small.  It contains some number of elements
873193323Sed/// in-place, which allows it to avoid heap allocation when the actual number of
874193323Sed/// elements is below that threshold.  This allows normal "small" cases to be
875193323Sed/// fast without losing generality for large inputs.
876193323Sed///
877193323Sed/// Note that this does not attempt to be exception safe.
878193323Sed///
879193323Sedtemplate <typename T, unsigned N>
880193323Sedclass SmallVector : public SmallVectorImpl<T> {
881243830Sdim  /// Storage - Inline space for elements which aren't stored in the base class.
882243830Sdim  SmallVectorStorage<T, N> Storage;
883193323Sedpublic:
884243830Sdim  SmallVector() : SmallVectorImpl<T>(N) {
885193323Sed  }
886193323Sed
887193323Sed  explicit SmallVector(unsigned Size, const T &Value = T())
888243830Sdim    : SmallVectorImpl<T>(N) {
889234353Sdim    this->assign(Size, Value);
890193323Sed  }
891193323Sed
892193323Sed  template<typename ItTy>
893243830Sdim  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
894193323Sed    this->append(S, E);
895193323Sed  }
896193323Sed
897243830Sdim  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
898193323Sed    if (!RHS.empty())
899193323Sed      SmallVectorImpl<T>::operator=(RHS);
900193323Sed  }
901193323Sed
902193323Sed  const SmallVector &operator=(const SmallVector &RHS) {
903193323Sed    SmallVectorImpl<T>::operator=(RHS);
904193323Sed    return *this;
905193323Sed  }
906193323Sed
907249423Sdim#if LLVM_HAS_RVALUE_REFERENCES
908243830Sdim  SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
909239462Sdim    if (!RHS.empty())
910239462Sdim      SmallVectorImpl<T>::operator=(::std::move(RHS));
911239462Sdim  }
912239462Sdim
913239462Sdim  const SmallVector &operator=(SmallVector &&RHS) {
914239462Sdim    SmallVectorImpl<T>::operator=(::std::move(RHS));
915239462Sdim    return *this;
916239462Sdim  }
917239462Sdim#endif
918239462Sdim
919193323Sed};
920193323Sed
921226633Sdimtemplate<typename T, unsigned N>
922226633Sdimstatic inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
923226633Sdim  return X.capacity_in_bytes();
924226633Sdim}
925226633Sdim
926193323Sed} // End llvm namespace
927193323Sed
928193323Sednamespace std {
929193323Sed  /// Implement std::swap in terms of SmallVector swap.
930193323Sed  template<typename T>
931193323Sed  inline void
932193323Sed  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
933193323Sed    LHS.swap(RHS);
934193323Sed  }
935193323Sed
936193323Sed  /// Implement std::swap in terms of SmallVector swap.
937193323Sed  template<typename T, unsigned N>
938193323Sed  inline void
939193323Sed  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
940193323Sed    LHS.swap(RHS);
941193323Sed  }
942193323Sed}
943193323Sed
944193323Sed#endif
945