17332Sjkh/* "Bag-of-pages" garbage collector for the GNU compiler.
27332Sjkh   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
37332Sjkh   Free Software Foundation, Inc.
47332Sjkh
57332SjkhThis file is part of GCC.
67332Sjkh
77332SjkhGCC is free software; you can redistribute it and/or modify it under
87332Sjkhthe terms of the GNU General Public License as published by the Free
97332SjkhSoftware Foundation; either version 2, or (at your option) any later
107332Sjkhversion.
117332Sjkh
127332SjkhGCC is distributed in the hope that it will be useful, but WITHOUT ANY
137332SjkhWARRANTY; without even the implied warranty of MERCHANTABILITY or
147332SjkhFITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
157332Sjkhfor more details.
167332Sjkh
177332SjkhYou should have received a copy of the GNU General Public License
187332Sjkhalong with GCC; see the file COPYING.  If not, write to the Free
197332SjkhSoftware Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
207332Sjkh02110-1301, USA.  */
217332Sjkh
227332Sjkh#include "config.h"
237332Sjkh#include "system.h"
247332Sjkh#include "coretypes.h"
257332Sjkh#include "tm.h"
267332Sjkh#include "tree.h"
277332Sjkh#include "rtl.h"
2897748Sschweikh#include "tm_p.h"
297332Sjkh#include "toplev.h"
307332Sjkh#include "flags.h"
317332Sjkh#include "ggc.h"
327332Sjkh#include "timevar.h"
337332Sjkh#include "params.h"
347332Sjkh#include "tree-flow.h"
357332Sjkh#ifdef ENABLE_VALGRIND_CHECKING
367332Sjkh# ifdef HAVE_VALGRIND_MEMCHECK_H
377332Sjkh#  include <valgrind/memcheck.h>
387332Sjkh# elif defined HAVE_MEMCHECK_H
397332Sjkh#  include <memcheck.h>
407332Sjkh# else
417332Sjkh#  include <valgrind.h>
427332Sjkh# endif
43119419Sobrien#else
44119419Sobrien/* Avoid #ifdef:s when we can help it.  */
457332Sjkh#define VALGRIND_DISCARD(x)
46119419Sobrien#endif
47106451Smdodd
487332Sjkh/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
497332Sjkh   file open.  Prefer either to valloc.  */
507332Sjkh#ifdef HAVE_MMAP_ANON
5161011Speter# undef HAVE_MMAP_DEV_ZERO
527332Sjkh
53106450Smdodd# include <sys/mman.h>
5460041Sphk# ifndef MAP_FAILED
557332Sjkh#  define MAP_FAILED -1
56106450Smdodd# endif
5761011Speter# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
587369Sbde#  define MAP_ANONYMOUS MAP_ANON
597332Sjkh# endif
607332Sjkh# define USING_MMAP
61106449Smdodd
62106449Smdodd#endif
63106449Smdodd
647332Sjkh#ifdef HAVE_MMAP_DEV_ZERO
65106449Smdodd
6612502Sjulian# include <sys/mman.h>
67106449Smdodd# ifndef MAP_FAILED
68106449Smdodd#  define MAP_FAILED -1
69106449Smdodd# endif
707332Sjkh# define USING_MMAP
717332Sjkh
727332Sjkh#endif
737332Sjkh
747332Sjkh#ifndef USING_MMAP
757332Sjkh#define USING_MALLOC_PAGE_GROUPS
767332Sjkh#endif
777332Sjkh
787332Sjkh/* Strategy:
797332Sjkh
807332Sjkh   This garbage-collecting allocator allocates objects on one of a set
817332Sjkh   of pages.  Each page can allocate objects of a single size only;
827332Sjkh   available sizes are powers of two starting at four bytes.  The size
837332Sjkh   of an allocation request is rounded up to the next power of two
847332Sjkh   (`order'), and satisfied from the appropriate page.
857332Sjkh
867332Sjkh   Each page is recorded in a page-entry, which also maintains an
877332Sjkh   in-use bitmap of object positions on the page.  This allows the
887332Sjkh   allocation state of a particular object to be flipped without
897332Sjkh   touching the page itself.
907332Sjkh
917332Sjkh   Each page-entry also has a context depth, which is used to track
927332Sjkh   pushing and popping of allocation contexts.  Only objects allocated
9311872Sphk   in the current (highest-numbered) context may be collected.
94106449Smdodd
95106449Smdodd   Page entries are arranged in an array of singly-linked lists.  The
96106449Smdodd   array is indexed by the allocation size, in bits, of the pages on
97106449Smdodd   it; i.e. all pages on a list allocate objects of the same size.
98106449Smdodd   Pages are ordered on the list such that all non-full pages precede
997332Sjkh   all full pages, with non-full pages arranged in order of decreasing
100106449Smdodd   context depth.
1017332Sjkh
1027332Sjkh   Empty pages (of all orders) are kept on a single page cache list,
103106449Smdodd   and are considered first when new pages are required; they are
104106449Smdodd   deallocated at the start of the next collection if they haven't
105106449Smdodd   been recycled by then.  */
106106449Smdodd
107106449Smdodd/* Define GGC_DEBUG_LEVEL to print debugging information.
1087332Sjkh     0: No debugging output.
1097332Sjkh     1: GC statistics only.
1107332Sjkh     2: Page-entry allocations/deallocations as well.
1117332Sjkh     3: Object allocations as well.
1127332Sjkh     4: Object marks as well.  */
113106449Smdodd#define GGC_DEBUG_LEVEL (0)
114106449Smdodd
115106449Smdodd#ifndef HOST_BITS_PER_PTR
116106449Smdodd#define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
117106449Smdodd#endif
118106449Smdodd
119106449Smdodd
120106449Smdodd/* A two-level tree is used to look up the page-entry for a given
1217332Sjkh   pointer.  Two chunks of the pointer's bits are extracted to index
122106449Smdodd   the first and second levels of the tree, as follows:
12325056Sbde
124106449Smdodd				   HOST_PAGE_SIZE_BITS
1257332Sjkh			   32		|      |
126106449Smdodd       msb +----------------+----+------+------+ lsb
127106449Smdodd			    |    |      |
128106449Smdodd			 PAGE_L1_BITS   |
129106449Smdodd				 |      |
130106449Smdodd			       PAGE_L2_BITS
131106449Smdodd
132106449Smdodd   The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133141031Ssobomax   pages are aligned on system page boundaries.  The next most
134106449Smdodd   significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
1357332Sjkh   index values in the lookup table, respectively.
1367332Sjkh
137106449Smdodd   For 32-bit architectures and the settings below, there are no
138106449Smdodd   leftover bits.  For architectures with wider pointers, the lookup
139106449Smdodd   tree points to a list of pages, which must be scanned to find the
1407332Sjkh   correct one.  */
1417332Sjkh
14212675Sjulian#define PAGE_L1_BITS	(8)
14312675Sjulian#define PAGE_L2_BITS	(32 - PAGE_L1_BITS - G.lg_pagesize)
14412675Sjulian#define PAGE_L1_SIZE	((size_t) 1 << PAGE_L1_BITS)
14512675Sjulian#define PAGE_L2_SIZE	((size_t) 1 << PAGE_L2_BITS)
14612675Sjulian
14774810Sphk#define LOOKUP_L1(p) \
14837389Sjulian  (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
149126080Sphk
150111815Sphk#define LOOKUP_L2(p) \
151111815Sphk  (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
152111815Sphk
153111815Sphk/* The number of objects per allocation page, for objects on a page of
154111815Sphk   the indicated ORDER.  */
155111815Sphk#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
156126080Sphk
15747625Sphk/* The number of objects in P.  */
15812675Sjulian#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
159106449Smdodd
160106449Smdodd/* The size of an object on a page of the indicated ORDER.  */
1617332Sjkh#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
162106449Smdodd
1638876Srgrimes/* For speed, we avoid doing a general integer divide to locate the
164106449Smdodd   offset in the allocation bitmap, by precalculating numbers M, S
1657332Sjkh   such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166106449Smdodd   within the page which is evenly divisible by the object size Z.  */
1677332Sjkh#define DIV_MULT(ORDER) inverse_table[ORDER].mult
168106490Smdodd#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169106490Smdodd#define OFFSET_TO_BIT(OFFSET, ORDER) \
170106490Smdodd  (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
1717332Sjkh
172106449Smdodd/* The number of extra orders, not corresponding to power-of-two sized
173106449Smdodd   objects.  */
174106449Smdodd
175106449Smdodd#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
176106451Smdodd
1777332Sjkh#define RTL_SIZE(NSLOTS) \
1787332Sjkh  (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
17912675Sjulian
180130585Sphk#define TREE_EXP_SIZE(OPS) \
1817332Sjkh  (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
182106449Smdodd
1837332Sjkh/* The Ith entry is the maximum size of an object to be stored in the
1848876Srgrimes   Ith extra order.  Adding a new entry to this array is the *only*
185106449Smdodd   thing you need to do to add a new special allocation size.  */
1867332Sjkh
1877332Sjkhstatic const size_t extra_order_size_table[] = {
188106490Smdodd  sizeof (struct stmt_ann_d),
189106451Smdodd  sizeof (struct var_ann_d),
1907332Sjkh  sizeof (struct tree_decl_non_common),
1917332Sjkh  sizeof (struct tree_field_decl),
192106490Smdodd  sizeof (struct tree_parm_decl),
193106451Smdodd  sizeof (struct tree_var_decl),
1947332Sjkh  sizeof (struct tree_list),
195106449Smdodd  sizeof (struct tree_ssa_name),
1967332Sjkh  sizeof (struct function),
197106449Smdodd  sizeof (struct basic_block_def),
198106449Smdodd  sizeof (bitmap_element),
199106451Smdodd  /* PHI nodes with one to three arguments are already covered by the
2007332Sjkh     above sizes.  */
201106490Smdodd  sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
2027332Sjkh  TREE_EXP_SIZE (2),
2037332Sjkh  RTL_SIZE (2),			/* MEM, PLUS, etc.  */
204106449Smdodd  RTL_SIZE (9),			/* INSN */
2057332Sjkh};
206106449Smdodd
2077332Sjkh/* The total number of orders.  */
208106449Smdodd
209106451Smdodd#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
2107332Sjkh
2117332Sjkh/* We use this structure to determine the alignment required for
2127332Sjkh   allocations.  For power-of-two sized allocations, that's not a
213106449Smdodd   problem, but it does matter for odd-sized allocations.  */
214106451Smdodd
2157332Sjkhstruct max_alignment {
2167332Sjkh  char c;
2177332Sjkh  union {
218106490Smdodd    HOST_WIDEST_INT i;
219106490Smdodd    long double d;
2207332Sjkh  } u;
221106451Smdodd};
2227332Sjkh
2237332Sjkh/* The biggest alignment required.  */
22412675Sjulian
225130585Sphk#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
2267332Sjkh
227106449Smdodd/* Compute the smallest nonnegative number which when added to X gives
2288876Srgrimes   a multiple of F.  */
229106449Smdodd
2307332Sjkh#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
231106490Smdodd
232106451Smdodd/* Compute the smallest multiple of F that is >= X.  */
2337332Sjkh
234106490Smdodd#define ROUND_UP(x, f) (CEIL (x, f) * (f))
235106449Smdodd
236106490Smdodd/* The Ith entry is the number of objects on a page or order I.  */
2377332Sjkh
2387332Sjkhstatic unsigned objects_per_page_table[NUM_ORDERS];
2397332Sjkh
2407332Sjkh/* The Ith entry is the size of an object on a page of order I.  */
241106490Smdodd
2427332Sjkhstatic size_t object_size_table[NUM_ORDERS];
243106451Smdodd
2447332Sjkh/* The Ith entry is a pair of numbers (mult, shift) such that
2457332Sjkh   ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
24612675Sjulian   for all k evenly divisible by OBJECT_SIZE(I).  */
24759249Sphk
2487332Sjkhstatic struct
2497332Sjkh{
250106449Smdodd  size_t mult;
2517332Sjkh  unsigned int shift;
252106449Smdodd}
2537332Sjkhinverse_table[NUM_ORDERS];
2547332Sjkh
255106490Smdodd/* A page_entry records the status of an allocation page.  This
256106449Smdodd   structure is dynamically sized to fit the bitmap in_use_p.  */
25759249Sphktypedef struct page_entry
2587332Sjkh{
2597332Sjkh  /* The next page-entry with objects of the same size, or NULL if
2607332Sjkh     this is the last page-entry.  */
2617332Sjkh  struct page_entry *next;
26259249Sphk
26359249Sphk  /* The previous page-entry with objects of the same size, or NULL if
2647332Sjkh     this is the first page-entry.   The PREV pointer exists solely to
2657332Sjkh     keep the cost of ggc_free manageable.  */
2668876Srgrimes  struct page_entry *prev;
2677332Sjkh
26859249Sphk  /* The number of bytes allocated.  (This will always be a multiple
2697332Sjkh     of the host system page size.)  */
2708876Srgrimes  size_t bytes;
271106490Smdodd
27259249Sphk  /* The address at which the memory is allocated.  */
2737332Sjkh  char *page;
2747332Sjkh
2757332Sjkh#ifdef USING_MALLOC_PAGE_GROUPS
27659249Sphk  /* Back pointer to the page group this page came from.  */
2778876Srgrimes  struct page_group *group;
2787332Sjkh#endif
2797332Sjkh
280112946Sphk  /* This is the index in the by_depth varray where this page table
2817332Sjkh     can be found.  */
2828876Srgrimes  unsigned long index_by_depth;
2837332Sjkh
284106449Smdodd  /* Context depth of this page.  */
2857332Sjkh  unsigned short context_depth;
2867332Sjkh
2877332Sjkh  /* The number of free objects remaining on this page.  */
28859249Sphk  unsigned short num_free_objects;
2897332Sjkh
29059249Sphk  /* A likely candidate for the bit position of a free object for the
2917332Sjkh     next allocation from this page.  */
2927332Sjkh  unsigned short next_bit_hint;
2937332Sjkh
2947332Sjkh  /* The lg of size of objects allocated from this page.  */
2957332Sjkh  unsigned char order;
296106449Smdodd
2977332Sjkh  /* A bit vector indicating whether or not objects are in use.  The
29859249Sphk     Nth bit is one if the Nth object on this page is allocated.  This
29946573Speter     array is dynamically sized.  */
3008876Srgrimes  unsigned long in_use_p[1];
301106490Smdodd} page_entry;
3027332Sjkh
3037332Sjkh#ifdef USING_MALLOC_PAGE_GROUPS
3047332Sjkh/* A page_group describes a large allocation from malloc, from which
3057332Sjkh   we parcel out aligned pages.  */
306137046Sphktypedef struct page_group
30715574Sphk{
3087332Sjkh  /* A linked list of all extant page groups.  */
309106490Smdodd  struct page_group *next;
3107332Sjkh
3117332Sjkh  /* The address we received from malloc.  */
3127332Sjkh  char *allocation;
3137332Sjkh
3147332Sjkh  /* The size of the block.  */
3157332Sjkh  size_t alloc_size;
3167332Sjkh
317106490Smdodd  /* A bitmask of pages in use.  */
318106490Smdodd  unsigned int in_use;
3197332Sjkh} page_group;
3207332Sjkh#endif
321106490Smdodd
3227332Sjkh#if HOST_BITS_PER_PTR <= 32
3237332Sjkh
3247332Sjkh/* On 32-bit hosts, we use a two level page table, as pictured above.  */
32512675Sjuliantypedef page_entry **page_table[PAGE_L1_SIZE];
326130585Sphk
3277332Sjkh#else
328106449Smdodd
3298876Srgrimes/* On 64-bit hosts, we use the same two level page tables plus a linked
330106449Smdodd   list that disambiguates the top 32-bits.  There will almost always be
3317332Sjkh   exactly one entry in the list.  */
332106449Smdoddtypedef struct page_table_chain
3337332Sjkh{
334106490Smdodd  struct page_table_chain *next;
335106451Smdodd  size_t high_bits;
3367332Sjkh  page_entry **table[PAGE_L1_SIZE];
3377332Sjkh} *page_table;
338106450Smdodd
339106490Smdodd#endif
340106450Smdodd
341106450Smdodd/* The rest of the global variables.  */
342106450Smdoddstatic struct globals
343106490Smdodd{
344106450Smdodd  /* The Nth element in this array is a page with objects of size 2^N.
345106450Smdodd     If there are any pages with free objects, they will be at the
3467332Sjkh     head of the list.  NULL if there are no page-entries for this
347106449Smdodd     object size.  */
3487332Sjkh  page_entry *pages[NUM_ORDERS];
349106451Smdodd
3507332Sjkh  /* The Nth element in this array is the last page with objects of
351106449Smdodd     size 2^N.  NULL if there are no page-entries for this object
352141031Ssobomax     size.  */
353141031Ssobomax  page_entry *page_tails[NUM_ORDERS];
3547332Sjkh
355141031Ssobomax  /* Lookup table for associating allocation pages with object addresses.  */
3567332Sjkh  page_table lookup;
357106449Smdodd
3587332Sjkh  /* The system's page size.  */
359106449Smdodd  size_t pagesize;
36025460Sjoerg  size_t lg_pagesize;
361106449Smdodd
3627332Sjkh  /* Bytes currently allocated.  */
3637332Sjkh  size_t allocated;
3647332Sjkh
3657332Sjkh  /* Bytes currently allocated at the end of the last collection.  */
3667332Sjkh  size_t allocated_last_gc;
3677332Sjkh
3687332Sjkh  /* Total amount of memory mapped.  */
3697332Sjkh  size_t bytes_mapped;
370106451Smdodd
3717332Sjkh  /* Bit N set if any allocations have been done at context depth N.  */
372106449Smdodd  unsigned long context_depth_allocations;
3737332Sjkh
374106449Smdodd  /* Bit N set if any collections have been done at context depth N.  */
3757332Sjkh  unsigned long context_depth_collections;
376106451Smdodd
3777332Sjkh  /* The current depth in the context stack.  */
378106449Smdodd  unsigned short context_depth;
3797332Sjkh
380106449Smdodd  /* A file descriptor open to /dev/zero for reading.  */
3817332Sjkh#if defined (HAVE_MMAP_DEV_ZERO)
382106451Smdodd  int dev_zero_fd;
3837332Sjkh#endif
3847332Sjkh
3857332Sjkh  /* A cache of free system pages.  */
3867332Sjkh  page_entry *free_pages;
387106451Smdodd
3887332Sjkh#ifdef USING_MALLOC_PAGE_GROUPS
3897332Sjkh  page_group *page_groups;
3907332Sjkh#endif
3917332Sjkh
3927332Sjkh  /* The file descriptor for debugging output.  */
393106451Smdodd  FILE *debug_file;
3947332Sjkh
395106449Smdodd  /* Current number of elements in use in depth below.  */
396106451Smdodd  unsigned int depth_in_use;
3977332Sjkh
3987332Sjkh  /* Maximum number of elements that can be used before resizing.  */
3997332Sjkh  unsigned int depth_max;
4007332Sjkh
4017332Sjkh  /* Each element of this arry is an index in by_depth where the given
4027332Sjkh     depth starts.  This structure is indexed by that given depth we
4037332Sjkh     are interested in.  */
4047332Sjkh  unsigned int *depth;
405106449Smdodd
4067332Sjkh  /* Current number of elements in use in by_depth below.  */
4077332Sjkh  unsigned int by_depth_in_use;
4087332Sjkh
4097332Sjkh  /* Maximum number of elements that can be used before resizing.  */
41011872Sphk  unsigned int by_depth_max;
4117332Sjkh
412106490Smdodd  /* Each element of this array is a pointer to a page_entry, all
4137332Sjkh     page_entries can be found in here by increasing depth.
414106449Smdodd     index_by_depth in the page_entry is the index into this data
415106451Smdodd     structure where that page_entry can be found.  This is used to
416106449Smdodd     speed up finding all page_entries at a particular depth.  */
4177332Sjkh  page_entry **by_depth;
4187332Sjkh
419106449Smdodd  /* Each element is a pointer to the saved in_use_p bits, if any,
420106451Smdodd     zero otherwise.  We allocate them all together, to enable a
4217332Sjkh     better runtime data access pattern.  */
4227332Sjkh  unsigned long **save_in_use;
4237332Sjkh
424106449Smdodd#ifdef ENABLE_GC_ALWAYS_COLLECT
425106449Smdodd  /* List of free objects to be verified as actually free on the
4267332Sjkh     next collection.  */
427106490Smdodd  struct free_object
428106490Smdodd  {
4297332Sjkh    void *object;
430106490Smdodd    struct free_object *next;
431106451Smdodd  } *free_object_list;
4327332Sjkh#endif
433106490Smdodd
434106490Smdodd#ifdef GATHER_STATISTICS
4357332Sjkh  struct
436106449Smdodd  {
4377332Sjkh    /* Total memory allocated with ggc_alloc.  */
4387332Sjkh    unsigned long long total_allocated;
4397332Sjkh    /* Total overhead for memory to be allocated with ggc_alloc.  */
4407332Sjkh    unsigned long long total_overhead;
441106449Smdodd
4427332Sjkh    /* Total allocations and overhead for sizes less than 32, 64 and 128.
4437332Sjkh       These sizes are interesting because they are typical cache line
4447332Sjkh       sizes.  */
4457332Sjkh
4467332Sjkh    unsigned long long total_allocated_under32;
4477332Sjkh    unsigned long long total_overhead_under32;
4487332Sjkh
4497332Sjkh    unsigned long long total_allocated_under64;
4507332Sjkh    unsigned long long total_overhead_under64;
4517332Sjkh
452106449Smdodd    unsigned long long total_allocated_under128;
4537332Sjkh    unsigned long long total_overhead_under128;
4547332Sjkh
4557332Sjkh    /* The allocations for each of the allocation orders.  */
4567332Sjkh    unsigned long long total_allocated_per_order[NUM_ORDERS];
457106449Smdodd
4587332Sjkh    /* The overhead for each of the allocation orders.  */
4597332Sjkh    unsigned long long total_overhead_per_order[NUM_ORDERS];
4607332Sjkh  } stats;
461106449Smdodd#endif
4627332Sjkh} G;
463106449Smdodd
4647332Sjkh/* The size in bytes required to maintain a bitmap for the objects
4657332Sjkh   on a page-entry.  */
466106449Smdodd#define BITMAP_SIZE(Num_objects) \
4677332Sjkh  (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
4687332Sjkh
4697332Sjkh/* Allocate pages in chunks of this size, to throttle calls to memory
4707332Sjkh   allocation routines.  The first page is used, the rest go onto the
471106490Smdodd   free list.  This cannot be larger than HOST_BITS_PER_INT for the
472106449Smdodd   in_use bitmask for page_group.  Hosts that need a different value
473106451Smdodd   can override this by defining GGC_QUIRE_SIZE explicitly.  */
4747332Sjkh#ifndef GGC_QUIRE_SIZE
475106449Smdodd# ifdef USING_MMAP
476106451Smdodd#  define GGC_QUIRE_SIZE 256
4777332Sjkh# else
4787332Sjkh#  define GGC_QUIRE_SIZE 16
4797332Sjkh# endif
4807332Sjkh#endif
481106490Smdodd
482106490Smdodd/* Initial guess as to how many page table entries we might need.  */
483106451Smdodd#define INITIAL_PTE_COUNT 128
4847332Sjkh
4857332Sjkhstatic int ggc_allocated_p (const void *);
4867332Sjkhstatic page_entry *lookup_page_table_entry (const void *);
487106449Smdoddstatic void set_page_table_entry (void *, page_entry *);
4887332Sjkh#ifdef USING_MMAP
4897332Sjkhstatic char *alloc_anon (char *, size_t);
490106449Smdodd#endif
491106490Smdodd#ifdef USING_MALLOC_PAGE_GROUPS
492106451Smdoddstatic size_t page_group_index (char *, char *);
4937332Sjkhstatic void set_page_group_in_use (page_group *, char *);
4947332Sjkhstatic void clear_page_group_in_use (page_group *, char *);
4957332Sjkh#endif
496106449Smdoddstatic struct page_entry * alloc_page (unsigned);
4977332Sjkhstatic void free_page (struct page_entry *);
4987332Sjkhstatic void release_pages (void);
4997332Sjkhstatic void clear_marks (void);
500106490Smdoddstatic void sweep_pages (void);
501106451Smdoddstatic void ggc_recalculate_in_use_p (page_entry *);
5027332Sjkhstatic void compute_inverse (unsigned);
503106449Smdoddstatic inline void adjust_depth (void);
504106451Smdoddstatic void move_ptes_to_front (int, int);
5057332Sjkh
506106449Smdoddvoid debug_print_page_list (int);
507106451Smdoddstatic void push_depth (unsigned int);
5088876Srgrimesstatic void push_by_depth (page_entry *, unsigned long *);
509106490Smdodd
510106490Smdodd/* Push an entry onto G.depth.  */
511106490Smdodd
512106490Smdoddinline static void
5137332Sjkhpush_depth (unsigned int i)
514106449Smdodd{
515106490Smdodd  if (G.depth_in_use >= G.depth_max)
516106490Smdodd    {
517106490Smdodd      G.depth_max *= 2;
5187332Sjkh      G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
519106451Smdodd    }
5207332Sjkh  G.depth[G.depth_in_use++] = i;
5217332Sjkh}
5227332Sjkh
523106449Smdodd/* Push an entry onto G.by_depth and G.save_in_use.  */
5247332Sjkh
525106449Smdoddinline static void
526106449Smdoddpush_by_depth (page_entry *p, unsigned long *s)
527106451Smdodd{
528106449Smdodd  if (G.by_depth_in_use >= G.by_depth_max)
5297332Sjkh    {
5307332Sjkh      G.by_depth_max *= 2;
5317332Sjkh      G.by_depth = xrealloc (G.by_depth,
532106449Smdodd			     G.by_depth_max * sizeof (page_entry *));
5337332Sjkh      G.save_in_use = xrealloc (G.save_in_use,
5347332Sjkh				G.by_depth_max * sizeof (unsigned long *));
535106490Smdodd    }
536106490Smdodd  G.by_depth[G.by_depth_in_use] = p;
5377332Sjkh  G.save_in_use[G.by_depth_in_use++] = s;
538106449Smdodd}
539106449Smdodd
540106449Smdodd#if (GCC_VERSION < 3001)
5417332Sjkh#define prefetch(X) ((void) X)
542106451Smdodd#else
5437332Sjkh#define prefetch(X) __builtin_prefetch (X)
544106451Smdodd#endif
5457332Sjkh
5467332Sjkh#define save_in_use_p_i(__i) \
5477332Sjkh  (G.save_in_use[__i])
548141031Ssobomax#define save_in_use_p(__p) \
5497332Sjkh  (save_in_use_p_i (__p->index_by_depth))
5507332Sjkh
5517332Sjkh/* Returns nonzero if P was allocated in GC'able memory.  */
5527332Sjkh
553106449Smdoddstatic inline int
554106449Smdoddggc_allocated_p (const void *p)
5557332Sjkh{
556106449Smdodd  page_entry ***base;
557106451Smdodd  size_t L1, L2;
5587332Sjkh
559106449Smdodd#if HOST_BITS_PER_PTR <= 32
560106451Smdodd  base = &G.lookup[0];
5617332Sjkh#else
562106449Smdodd  page_table table = G.lookup;
563106451Smdodd  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
5647332Sjkh  while (1)
565106490Smdodd    {
5667332Sjkh      if (table == NULL)
5677332Sjkh	return 0;
5687332Sjkh      if (table->high_bits == high_bits)
5697332Sjkh	break;
5707332Sjkh      table = table->next;
5717332Sjkh    }
5727332Sjkh  base = &table->table[0];
5737332Sjkh#endif
5747332Sjkh
5757332Sjkh  /* Extract the level 1 and 2 indices.  */
5767332Sjkh  L1 = LOOKUP_L1 (p);
577141031Ssobomax  L2 = LOOKUP_L2 (p);
578141031Ssobomax
579141031Ssobomax  return base[L1] && base[L1][L2];
580141031Ssobomax}
581141031Ssobomax
582141031Ssobomax/* Traverse the page table and find the entry for a page.
583106451Smdodd   Die (probably) if the object wasn't allocated via GC.  */
5847332Sjkh
5857332Sjkhstatic inline page_entry *
586106449Smdoddlookup_page_table_entry (const void *p)
587106449Smdodd{
58842552Seivind  page_entry ***base;
5897332Sjkh  size_t L1, L2;
5907332Sjkh
5917332Sjkh#if HOST_BITS_PER_PTR <= 32
5927332Sjkh  base = &G.lookup[0];
5937332Sjkh#else
5947332Sjkh  page_table table = G.lookup;
595106490Smdodd  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
5967332Sjkh  while (table->high_bits != high_bits)
5977332Sjkh    table = table->next;
5987332Sjkh  base = &table->table[0];
5997332Sjkh#endif
6007332Sjkh
601106449Smdodd  /* Extract the level 1 and 2 indices.  */
6027332Sjkh  L1 = LOOKUP_L1 (p);
6037332Sjkh  L2 = LOOKUP_L2 (p);
6047332Sjkh
6057332Sjkh  return base[L1][L2];
6067332Sjkh}
607106449Smdodd
608106449Smdodd/* Set the page table entry for a page.  */
609106449Smdodd
6107332Sjkhstatic void
611106449Smdoddset_page_table_entry (void *p, page_entry *entry)
6127332Sjkh{
6137332Sjkh  page_entry ***base;
6147332Sjkh  size_t L1, L2;
6157332Sjkh
6167332Sjkh#if HOST_BITS_PER_PTR <= 32
617106449Smdodd  base = &G.lookup[0];
6187332Sjkh#else
619106449Smdodd  page_table table;
620106449Smdodd  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
6217332Sjkh  for (table = G.lookup; table; table = table->next)
6227332Sjkh    if (table->high_bits == high_bits)
6237332Sjkh      goto found;
6247332Sjkh
6257332Sjkh  /* Not found -- allocate a new table.  */
6267332Sjkh  table = xcalloc (1, sizeof(*table));
6277332Sjkh  table->next = G.lookup;
6287332Sjkh  table->high_bits = high_bits;
6297332Sjkh  G.lookup = table;
6307332Sjkhfound:
6317332Sjkh  base = &table->table[0];
6327332Sjkh#endif
6337332Sjkh
6347332Sjkh  /* Extract the level 1 and 2 indices.  */
6357332Sjkh  L1 = LOOKUP_L1 (p);
6367332Sjkh  L2 = LOOKUP_L2 (p);
6377332Sjkh
638106490Smdodd  if (base[L1] == NULL)
6397332Sjkh    base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
6407332Sjkh
641106490Smdodd  base[L1][L2] = entry;
6427332Sjkh}
643106490Smdodd
6447332Sjkh/* Prints the page-entry for object size ORDER, for debugging.  */
645106449Smdodd
6467332Sjkhvoid
6477332Sjkhdebug_print_page_list (int order)
6487332Sjkh{
649106449Smdodd  page_entry *p;
6507332Sjkh  printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
6517332Sjkh	  (void *) G.page_tails[order]);
6527332Sjkh  p = G.pages[order];
653106449Smdodd  while (p != NULL)
654106449Smdodd    {
655106451Smdodd      printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
656106449Smdodd	      p->num_free_objects);
657106451Smdodd      p = p->next;
658106451Smdodd    }
6597332Sjkh  printf ("NULL\n");
6607332Sjkh  fflush (stdout);
6617332Sjkh}
6627332Sjkh
6637332Sjkh#ifdef USING_MMAP
664106449Smdodd/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
665106449Smdodd   (if non-null).  The ifdef structure here is intended to cause a
6667332Sjkh   compile error unless exactly one of the HAVE_* is defined.  */
6677332Sjkh
6687332Sjkhstatic inline char *
6697332Sjkhalloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
6707332Sjkh{
6717332Sjkh#ifdef HAVE_MMAP_ANON
6727332Sjkh  char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
6737332Sjkh		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
6747332Sjkh#endif
6757332Sjkh#ifdef HAVE_MMAP_DEV_ZERO
6767332Sjkh  char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
6777332Sjkh		     MAP_PRIVATE, G.dev_zero_fd, 0);
67825056Sbde#endif
67925056Sbde
680106449Smdodd  if (page == (char *) MAP_FAILED)
681106449Smdodd    {
682106449Smdodd      perror ("virtual memory exhausted");
683106449Smdodd      exit (FATAL_EXIT_CODE);
68425056Sbde    }
68525056Sbde
68625056Sbde  /* Remember that we allocated this memory.  */
687106449Smdodd  G.bytes_mapped += size;
6887332Sjkh
689106449Smdodd  /* Pretend we don't have access to the allocated pages.  We'll enable
69059249Sphk     access to smaller pieces of the area in ggc_alloc.  Discard the
691106449Smdodd     handle to avoid handle leak.  */
6927332Sjkh  VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
6937332Sjkh
6947332Sjkh  return page;
6957332Sjkh}
6967332Sjkh#endif
6977332Sjkh#ifdef USING_MALLOC_PAGE_GROUPS
6987332Sjkh/* Compute the index for this page into the page group.  */
699106449Smdodd
7007332Sjkhstatic inline size_t
7017332Sjkhpage_group_index (char *allocation, char *page)
7027332Sjkh{
7037332Sjkh  return (size_t) (page - allocation) >> G.lg_pagesize;
7047332Sjkh}
705106449Smdodd
7067332Sjkh/* Set and clear the in_use bit for this page in the page group.  */
7077332Sjkh
7087332Sjkhstatic inline void
709106449Smdoddset_page_group_in_use (page_group *group, char *page)
710106449Smdodd{
7117332Sjkh  group->in_use |= 1 << page_group_index (group->allocation, page);
712106449Smdodd}
7137332Sjkh
7147332Sjkhstatic inline void
7157332Sjkhclear_page_group_in_use (page_group *group, char *page)
7167332Sjkh{
717106449Smdodd  group->in_use &= ~(1 << page_group_index (group->allocation, page));
718106449Smdodd}
719106449Smdodd#endif
7207332Sjkh
7217332Sjkh/* Allocate a new page for allocating objects of size 2^ORDER,
7228876Srgrimes   and return an entry for it.  The entry is not added to the
723106449Smdodd   appropriate page_table list.  */
7247332Sjkh
7257332Sjkhstatic inline struct page_entry *
726106490Smdoddalloc_page (unsigned order)
727106449Smdodd{
7287332Sjkh  struct page_entry *entry, *p, **pp;
7297332Sjkh  char *page;
7307332Sjkh  size_t num_objects;
731106490Smdodd  size_t bitmap_size;
7327332Sjkh  size_t page_entry_size;
7337332Sjkh  size_t entry_size;
73459249Sphk#ifdef USING_MALLOC_PAGE_GROUPS
7357332Sjkh  page_group *group;
7367332Sjkh#endif
7377332Sjkh
738106490Smdodd  num_objects = OBJECTS_PER_PAGE (order);
7397332Sjkh  bitmap_size = BITMAP_SIZE (num_objects + 1);
7407332Sjkh  page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
741121212Sphk  entry_size = num_objects * OBJECT_SIZE (order);
7427332Sjkh  if (entry_size < G.pagesize)
743106449Smdodd    entry_size = G.pagesize;
7447332Sjkh
7457332Sjkh  entry = NULL;
7467332Sjkh  page = NULL;
7477332Sjkh
748106449Smdodd  /* Check the list of free pages for one we can use.  */
749106449Smdodd  for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
750106449Smdodd    if (p->bytes == entry_size)
7517332Sjkh      break;
752106449Smdodd
7537332Sjkh  if (p != NULL)
7547332Sjkh    {
7557332Sjkh      /* Recycle the allocated memory from this page ...  */
756106449Smdodd      *pp = p->next;
757106449Smdodd      page = p->page;
7587332Sjkh
7597332Sjkh#ifdef USING_MALLOC_PAGE_GROUPS
7607332Sjkh      group = p->group;
761106449Smdodd#endif
762106449Smdodd
7637332Sjkh      /* ... and, if possible, the page entry itself.  */
764106449Smdodd      if (p->order == order)
7657332Sjkh	{
7667332Sjkh	  entry = p;
767106449Smdodd	  memset (entry, 0, page_entry_size);
768106449Smdodd	}
769106449Smdodd      else
7707332Sjkh	free (p);
7717332Sjkh    }
772106449Smdodd#ifdef USING_MMAP
773106449Smdodd  else if (entry_size == G.pagesize)
7747332Sjkh    {
775106449Smdodd      /* We want just one page.  Allocate a bunch of them and put the
776106449Smdodd	 extras on the freelist.  (Can only do this optimization with
7777332Sjkh	 mmap for backing store.)  */
7787332Sjkh      struct page_entry *e, *f = G.free_pages;
779106449Smdodd      int i;
780106490Smdodd
7817332Sjkh      page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
7827332Sjkh
783106449Smdodd      /* This loop counts down so that the chain will be in ascending
7847332Sjkh	 memory order.  */
7857332Sjkh      for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
7867332Sjkh	{
7877332Sjkh	  e = xcalloc (1, page_entry_size);
7887332Sjkh	  e->order = order;
789106449Smdodd	  e->bytes = G.pagesize;
790106449Smdodd	  e->page = page + (i << G.lg_pagesize);
7917332Sjkh	  e->next = f;
792106449Smdodd	  f = e;
7937332Sjkh	}
7947332Sjkh
795106449Smdodd      G.free_pages = f;
796106449Smdodd    }
797106449Smdodd  else
7987332Sjkh    page = alloc_anon (NULL, entry_size);
7997332Sjkh#endif
800106449Smdodd#ifdef USING_MALLOC_PAGE_GROUPS
8017332Sjkh  else
8027332Sjkh    {
8037332Sjkh      /* Allocate a large block of memory and serve out the aligned
8047332Sjkh	 pages therein.  This results in much less memory wastage
805106490Smdodd	 than the traditional implementation of valloc.  */
806106449Smdodd
807106449Smdodd      char *allocation, *a, *enda;
8087332Sjkh      size_t alloc_size, head_slop, tail_slop;
809106449Smdodd      int multiple_pages = (entry_size == G.pagesize);
810106449Smdodd
8117332Sjkh      if (multiple_pages)
8127332Sjkh	alloc_size = GGC_QUIRE_SIZE * G.pagesize;
8137332Sjkh      else
8147332Sjkh	alloc_size = entry_size + G.pagesize - 1;
815106719Smdodd      allocation = xmalloc (alloc_size);
816106449Smdodd
817106449Smdodd      page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
818106449Smdodd      head_slop = page - allocation;
819106449Smdodd      if (multiple_pages)
820106449Smdodd	tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
821106449Smdodd      else
822106449Smdodd	tail_slop = alloc_size - entry_size - head_slop;
823106719Smdodd      enda = allocation + alloc_size - tail_slop;
8247332Sjkh
8257332Sjkh      /* We allocated N pages, which are likely not aligned, leaving
8267332Sjkh	 us with N-1 usable pages.  We plan to place the page_group
827106449Smdodd	 structure somewhere in the slop.  */
8287332Sjkh      if (head_slop >= sizeof (page_group))
8297332Sjkh	group = (page_group *)page - 1;
8307332Sjkh      else
8317332Sjkh	{
832106449Smdodd	  /* We magically got an aligned allocation.  Too bad, we have
833106449Smdodd	     to waste a page anyway.  */
8347332Sjkh	  if (tail_slop == 0)
8357332Sjkh	    {
8367332Sjkh	      enda -= G.pagesize;
837106449Smdodd	      tail_slop += G.pagesize;
838106449Smdodd	    }
8397332Sjkh	  gcc_assert (tail_slop >= sizeof (page_group));
840106449Smdodd	  group = (page_group *)enda;
8417332Sjkh	  tail_slop -= sizeof (page_group);
842106449Smdodd	}
8437332Sjkh
8447332Sjkh      /* Remember that we allocated this memory.  */
845106449Smdodd      group->next = G.page_groups;
846106449Smdodd      group->allocation = allocation;
847106490Smdodd      group->alloc_size = alloc_size;
8487332Sjkh      group->in_use = 0;
849106449Smdodd      G.page_groups = group;
850106449Smdodd      G.bytes_mapped += alloc_size;
8517332Sjkh
8527332Sjkh      /* If we allocated multiple pages, put the rest on the free list.  */
853106449Smdodd      if (multiple_pages)
8547332Sjkh	{
8557332Sjkh	  struct page_entry *e, *f = G.free_pages;
8567332Sjkh	  for (a = enda - G.pagesize; a != page; a -= G.pagesize)
85759249Sphk	    {
858106449Smdodd	      e = xcalloc (1, page_entry_size);
859106449Smdodd	      e->order = order;
8607332Sjkh	      e->bytes = G.pagesize;
8617332Sjkh	      e->page = a;
8627332Sjkh	      e->group = group;
863106449Smdodd	      e->next = f;
8647332Sjkh	      f = e;
8657332Sjkh	    }
8667332Sjkh	  G.free_pages = f;
8677332Sjkh	}
8687332Sjkh    }
8697332Sjkh#endif
870106449Smdodd
871106449Smdodd  if (entry == NULL)
8727332Sjkh    entry = xcalloc (1, page_entry_size);
873106449Smdodd
8747332Sjkh  entry->bytes = entry_size;
8757332Sjkh  entry->page = page;
8767332Sjkh  entry->context_depth = G.context_depth;
8777332Sjkh  entry->order = order;
878106449Smdodd  entry->num_free_objects = num_objects;
879106449Smdodd  entry->next_bit_hint = 1;
880106449Smdodd
8817332Sjkh  G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
8827332Sjkh
883106451Smdodd#ifdef USING_MALLOC_PAGE_GROUPS
8847332Sjkh  entry->group = group;
885106449Smdodd  set_page_group_in_use (group, page);
8867332Sjkh#endif
8877332Sjkh
8887332Sjkh  /* Set the one-past-the-end in-use bit.  This acts as a sentry as we
889106449Smdodd     increment the hint.  */
890106449Smdodd  entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
8917332Sjkh    = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
8927332Sjkh
8937332Sjkh  set_page_table_entry (page, entry);
8947332Sjkh
895106449Smdodd  if (GGC_DEBUG_LEVEL >= 2)
8967332Sjkh    fprintf (G.debug_file,
8977332Sjkh	     "Allocating page at %p, object size=%lu, data %p-%p\n",
8987332Sjkh	     (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
8997332Sjkh	     page + entry_size - 1);
900106449Smdodd
9017332Sjkh  return entry;
9027332Sjkh}
903106449Smdodd
9047332Sjkh/* Adjust the size of G.depth so that no index greater than the one
9057332Sjkh   used by the top of the G.by_depth is used.  */
906106490Smdodd
9077332Sjkhstatic inline void
9087332Sjkhadjust_depth (void)
9097332Sjkh{
9107332Sjkh  page_entry *top;
911106449Smdodd
9127332Sjkh  if (G.by_depth_in_use)
9137332Sjkh    {
9147332Sjkh      top = G.by_depth[G.by_depth_in_use-1];
915106449Smdodd
9167332Sjkh      /* Peel back indices in depth that index into by_depth, so that
9177332Sjkh	 as new elements are added to by_depth, we note the indices
9187332Sjkh	 of those elements, if they are for new context depths.  */
9197332Sjkh      while (G.depth_in_use > (size_t)top->context_depth+1)
9207332Sjkh	--G.depth_in_use;
9217332Sjkh    }
9227332Sjkh}
9237332Sjkh
9247332Sjkh/* For a page that is no longer needed, put it on the free page list.  */
92559249Sphk
9267332Sjkhstatic void
9277332Sjkhfree_page (page_entry *entry)
928106490Smdodd{
929106449Smdodd  if (GGC_DEBUG_LEVEL >= 2)
9307332Sjkh    fprintf (G.debug_file,
9317332Sjkh	     "Deallocating page at %p, data %p-%p\n", (void *) entry,
9327332Sjkh	     entry->page, entry->page + entry->bytes - 1);
9337332Sjkh
9347332Sjkh  /* Mark the page as inaccessible.  Discard the handle to avoid handle
935106449Smdodd     leak.  */
9367332Sjkh  VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
9377332Sjkh
9387332Sjkh  set_page_table_entry (entry->page, NULL);
9397332Sjkh
9407332Sjkh#ifdef USING_MALLOC_PAGE_GROUPS
94159249Sphk  clear_page_group_in_use (entry->group, entry->page);
94259249Sphk#endif
94359249Sphk
9447332Sjkh  if (G.by_depth_in_use > 1)
9457332Sjkh    {
946106490Smdodd      page_entry *top = G.by_depth[G.by_depth_in_use-1];
947106449Smdodd      int i = entry->index_by_depth;
9487332Sjkh
9497332Sjkh      /* We cannot free a page from a context deeper than the current
9507332Sjkh	 one.  */
951106449Smdodd      gcc_assert (entry->context_depth == top->context_depth);
9527332Sjkh
9537332Sjkh      /* Put top element into freed slot.  */
9547332Sjkh      G.by_depth[i] = top;
9557332Sjkh      G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
9567332Sjkh      top->index_by_depth = i;
9577332Sjkh    }
958106490Smdodd  --G.by_depth_in_use;
9597332Sjkh
9607332Sjkh  adjust_depth ();
9617332Sjkh
9627332Sjkh  entry->next = G.free_pages;
9637332Sjkh  G.free_pages = entry;
9647332Sjkh}
9657332Sjkh
9667332Sjkh/* Release the free page cache to the system.  */
9677332Sjkh
9687332Sjkhstatic void
969106490Smdoddrelease_pages (void)
9707332Sjkh{
9717332Sjkh#ifdef USING_MMAP
9727332Sjkh  page_entry *p, *next;
9737332Sjkh  char *start;
9747332Sjkh  size_t len;
9757332Sjkh
976106449Smdodd  /* Gather up adjacent pages so they are unmapped together.  */
9777332Sjkh  p = G.free_pages;
9787332Sjkh
9797332Sjkh  while (p)
9807332Sjkh    {
981106449Smdodd      start = p->page;
982106449Smdodd      next = p->next;
983106449Smdodd      len = p->bytes;
9847332Sjkh      free (p);
985106451Smdodd      p = next;
9867332Sjkh
9877332Sjkh      while (p && p->page == start + len)
988106449Smdodd	{
9897332Sjkh	  next = p->next;
9907332Sjkh	  len += p->bytes;
9917332Sjkh	  free (p);
9927332Sjkh	  p = next;
9937332Sjkh	}
9947332Sjkh
9957332Sjkh      munmap (start, len);
996106449Smdodd      G.bytes_mapped -= len;
9977332Sjkh    }
9987332Sjkh
9997332Sjkh  G.free_pages = NULL;
1000106449Smdodd#endif
10017332Sjkh#ifdef USING_MALLOC_PAGE_GROUPS
10027332Sjkh  page_entry **pp, *p;
10037332Sjkh  page_group **gp, *g;
1004106449Smdodd
10057332Sjkh  /* Remove all pages from free page groups from the list.  */
10067332Sjkh  pp = &G.free_pages;
10077332Sjkh  while ((p = *pp) != NULL)
1008106449Smdodd    if (p->group->in_use == 0)
1009106449Smdodd      {
10107332Sjkh	*pp = p->next;
10117332Sjkh	free (p);
10127332Sjkh      }
1013106449Smdodd    else
10147332Sjkh      pp = &p->next;
10157332Sjkh
10167332Sjkh  /* Remove all free page groups, and release the storage.  */
10177332Sjkh  gp = &G.page_groups;
1018106451Smdodd  while ((g = *gp) != NULL)
10197332Sjkh    if (g->in_use == 0)
10207332Sjkh      {
10217332Sjkh	*gp = g->next;
10227332Sjkh	G.bytes_mapped -= g->alloc_size;
10237332Sjkh	free (g->allocation);
10247332Sjkh      }
10257332Sjkh    else
1026106449Smdodd      gp = &g->next;
10277332Sjkh#endif
10287332Sjkh}
10297332Sjkh
10307332Sjkh/* This table provides a fast way to determine ceil(log_2(size)) for
10317332Sjkh   allocation requests.  The minimum allocation size is eight bytes.  */
10327332Sjkh#define NUM_SIZE_LOOKUP 512
10337332Sjkhstatic unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1034106449Smdodd{
10357332Sjkh  3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1036106449Smdodd  4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1037106451Smdodd  5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
10387332Sjkh  6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
10397332Sjkh  6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1040106449Smdodd  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1041106449Smdodd  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
10427332Sjkh  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
10437332Sjkh  7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
10447332Sjkh  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1045106451Smdodd  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
10467332Sjkh  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
10477332Sjkh  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1048106451Smdodd  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
10497332Sjkh  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
10507332Sjkh  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1051106449Smdodd  8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10527332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1053106451Smdodd  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10547332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10557332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10567332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10577332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10587332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10597332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10607332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10617332Sjkh  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1062106451Smdodd  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10638876Srgrimes  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1064106451Smdodd  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1065132771Skan  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10668876Srgrimes  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1067106451Smdodd};
1068132771Skan
10698876Srgrimes/* Typed allocation function.  Does nothing special in this collector.  */
1070106451Smdodd
1071132771Skanvoid *
10728876Srgrimesggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1073106451Smdodd		      MEM_STAT_DECL)
1074132771Skan{
10758876Srgrimes  return ggc_alloc_stat (size PASS_MEM_STAT);
1076106451Smdodd}
1077132771Skan
1078106451Smdodd/* Allocate a chunk of memory of SIZE bytes.  Its contents are undefined.  */
10797332Sjkh
10807332Sjkhvoid *
10817332Sjkhggc_alloc_stat (size_t size MEM_STAT_DECL)
1082106449Smdodd{
10837332Sjkh  size_t order, word, bit, object_offset, object_size;
10847332Sjkh  struct page_entry *entry;
10857332Sjkh  void *result;
10867332Sjkh
10877332Sjkh  if (size < NUM_SIZE_LOOKUP)
10887332Sjkh    {
1089106453Smdodd      order = size_lookup[size];
10907332Sjkh      object_size = OBJECT_SIZE (order);
1091106451Smdodd    }
10927332Sjkh  else
1093106449Smdodd    {
1094106451Smdodd      order = 10;
10957332Sjkh      while (size > (object_size = OBJECT_SIZE (order)))
1096106449Smdodd	order++;
1097106451Smdodd    }
10987332Sjkh
1099106449Smdodd  /* If there are non-full pages for this size allocation, they are at
11007332Sjkh     the head of the list.  */
11017332Sjkh  entry = G.pages[order];
11027332Sjkh
11037332Sjkh  /* If there is no page for this object size, or all pages in this
1104106490Smdodd     context are full, allocate a new page.  */
1105106490Smdodd  if (entry == NULL || entry->num_free_objects == 0)
11067332Sjkh    {
1107106449Smdodd      struct page_entry *new_entry;
11087332Sjkh      new_entry = alloc_page (order);
1109106490Smdodd
1110106490Smdodd      new_entry->index_by_depth = G.by_depth_in_use;
1111106490Smdodd      push_by_depth (new_entry, 0);
1112106490Smdodd
1113106490Smdodd      /* We can skip context depths, if we do, make sure we go all the
1114106490Smdodd	 way to the new depth.  */
1115106490Smdodd      while (new_entry->context_depth >= G.depth_in_use)
1116106490Smdodd	push_depth (G.by_depth_in_use-1);
11177332Sjkh
11187332Sjkh      /* If this is the only entry, it's also the tail.  If it is not
1119106449Smdodd	 the only entry, then we must update the PREV pointer of the
1120106449Smdodd	 ENTRY (G.pages[order]) to point to our new page entry.  */
1121106449Smdodd      if (entry == NULL)
1122106449Smdodd	G.page_tails[order] = new_entry;
11237332Sjkh      else
1124106490Smdodd	entry->prev = new_entry;
1125106490Smdodd
1126106490Smdodd      /* Put new pages at the head of the page list.  By definition the
11277332Sjkh	 entry at the head of the list always has a NULL pointer.  */
11287332Sjkh      new_entry->next = entry;
11297332Sjkh      new_entry->prev = NULL;
1130106490Smdodd      entry = new_entry;
11317332Sjkh      G.pages[order] = new_entry;
11327332Sjkh
1133106490Smdodd      /* For a new page, we know the word and bit positions (in the
11347332Sjkh	 in_use bitmap) of the first available object -- they're zero.  */
1135106490Smdodd      new_entry->next_bit_hint = 1;
1136106490Smdodd      word = 0;
1137106490Smdodd      bit = 0;
11387332Sjkh      object_offset = 0;
11397332Sjkh    }
11407332Sjkh  else
1141106490Smdodd    {
11427332Sjkh      /* First try to use the hint left from the previous allocation
1143106451Smdodd	 to locate a clear bit in the in-use bitmap.  We've made sure
11447332Sjkh	 that the one-past-the-end bit is always set, so if the hint
11457332Sjkh	 has run over, this test will fail.  */
11467332Sjkh      unsigned hint = entry->next_bit_hint;
1147106449Smdodd      word = hint / HOST_BITS_PER_LONG;
11487332Sjkh      bit = hint % HOST_BITS_PER_LONG;
11497332Sjkh
11507332Sjkh      /* If the hint didn't work, scan the bitmap from the beginning.  */
1151106449Smdodd      if ((entry->in_use_p[word] >> bit) & 1)
1152106449Smdodd	{
11537332Sjkh	  word = bit = 0;
1154106449Smdodd	  while (~entry->in_use_p[word] == 0)
11557332Sjkh	    ++word;
11567332Sjkh
11577332Sjkh#if GCC_VERSION >= 3004
11587332Sjkh	  bit = __builtin_ctzl (~entry->in_use_p[word]);
1159106449Smdodd#else
11607332Sjkh	  while ((entry->in_use_p[word] >> bit) & 1)
11617332Sjkh	    ++bit;
11627332Sjkh#endif
1163106449Smdodd
11647332Sjkh	  hint = word * HOST_BITS_PER_LONG + bit;
11657332Sjkh	}
11667332Sjkh
11677332Sjkh      /* Next time, try the next bit.  */
1168106449Smdodd      entry->next_bit_hint = hint + 1;
1169106451Smdodd
1170106449Smdodd      object_offset = hint * object_size;
11717332Sjkh    }
11727332Sjkh
1173106449Smdodd  /* Set the in-use bit.  */
11747332Sjkh  entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1175106449Smdodd
11767332Sjkh  /* Keep a running total of the number of free objects.  If this page
1177106451Smdodd     fills up, we may have to move it to the end of the list if the
11787332Sjkh     next page isn't full.  If the next page is full, all subsequent
11797332Sjkh     pages are full, so there's no need to move it.  */
11807332Sjkh  if (--entry->num_free_objects == 0
11817332Sjkh      && entry->next != NULL
1182106449Smdodd      && entry->next->num_free_objects > 0)
11837332Sjkh    {
11847332Sjkh      /* We have a new head for the list.  */
11857332Sjkh      G.pages[order] = entry->next;
11867332Sjkh
11877332Sjkh      /* We are moving ENTRY to the end of the page table list.
11887332Sjkh	 The new page at the head of the list will have NULL in
1189106449Smdodd	 its PREV field and ENTRY will have NULL in its NEXT field.  */
1190106449Smdodd      entry->next->prev = NULL;
1191106451Smdodd      entry->next = NULL;
11927332Sjkh
11937332Sjkh      /* Append ENTRY to the tail of the list.  */
1194106449Smdodd      entry->prev = G.page_tails[order];
11957332Sjkh      G.page_tails[order]->next = entry;
1196106449Smdodd      G.page_tails[order] = entry;
1197106449Smdodd    }
11987332Sjkh
11997332Sjkh  /* Calculate the object's address.  */
1200106449Smdodd  result = entry->page + object_offset;
12017332Sjkh#ifdef GATHER_STATISTICS
1202106449Smdodd  ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1203106449Smdodd		       result PASS_MEM_STAT);
1204106451Smdodd#endif
12057332Sjkh
12068876Srgrimes#ifdef ENABLE_GC_CHECKING
12077332Sjkh  /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
12087332Sjkh     exact same semantics in presence of memory bugs, regardless of
12097332Sjkh     ENABLE_VALGRIND_CHECKING.  We override this request below.  Drop the
1210106449Smdodd     handle to avoid handle leak.  */
1211106449Smdodd  VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
12127332Sjkh
12137332Sjkh  /* `Poison' the entire allocated object, including any padding at
1214106449Smdodd     the end.  */
12157332Sjkh  memset (result, 0xaf, object_size);
1216106449Smdodd
12177332Sjkh  /* Make the bytes after the end of the object unaccessible.  Discard the
1218106449Smdodd     handle to avoid handle leak.  */
121911872Sphk  VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1220106451Smdodd					    object_size - size));
12217332Sjkh#endif
1222106449Smdodd
1223106449Smdodd  /* Tell Valgrind that the memory is there, but its content isn't
12247332Sjkh     defined.  The bytes at the end of the object are still marked
1225106449Smdodd     unaccessible.  */
1226102412Scharnier  VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
12277332Sjkh
1228106449Smdodd  /* Keep track of how many bytes are being allocated.  This
1229106451Smdodd     information is used in deciding when to collect.  */
12307332Sjkh  G.allocated += object_size;
12317332Sjkh
1232106449Smdodd  /* For timevar statistics.  */
1233106449Smdodd  timevar_ggc_mem_total += object_size;
1234106451Smdodd
12357332Sjkh#ifdef GATHER_STATISTICS
12367332Sjkh  {
12377332Sjkh    size_t overhead = object_size - size;
12387332Sjkh
1239106449Smdodd    G.stats.total_overhead += overhead;
12407332Sjkh    G.stats.total_allocated += object_size;
1241106490Smdodd    G.stats.total_overhead_per_order[order] += overhead;
12427332Sjkh    G.stats.total_allocated_per_order[order] += object_size;
12437332Sjkh
1244106449Smdodd    if (size <= 32)
12457332Sjkh      {
12467332Sjkh	G.stats.total_overhead_under32 += overhead;
1247106449Smdodd	G.stats.total_allocated_under32 += object_size;
12487332Sjkh      }
12497332Sjkh    if (size <= 64)
12507332Sjkh      {
1251106449Smdodd	G.stats.total_overhead_under64 += overhead;
12527332Sjkh	G.stats.total_allocated_under64 += object_size;
1253106449Smdodd      }
12547332Sjkh    if (size <= 128)
12557332Sjkh      {
12567332Sjkh	G.stats.total_overhead_under128 += overhead;
12577332Sjkh	G.stats.total_allocated_under128 += object_size;
12587332Sjkh      }
12597332Sjkh  }
1260106449Smdodd#endif
12617332Sjkh
1262106449Smdodd  if (GGC_DEBUG_LEVEL >= 3)
12637332Sjkh    fprintf (G.debug_file,
12647332Sjkh	     "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
12657332Sjkh	     (unsigned long) size, (unsigned long) object_size, result,
12667332Sjkh	     (void *) entry);
12677332Sjkh
12687332Sjkh  return result;
1269106449Smdodd}
12707332Sjkh
1271106451Smdodd/* If P is not marked, marks it and return false.  Otherwise return true.
12727332Sjkh   P must have been allocated by the GC allocator; it mustn't point to
1273106449Smdodd   static objects, stack variables, or memory allocated with malloc.  */
12747332Sjkh
12757332Sjkhint
12767332Sjkhggc_set_mark (const void *p)
12777332Sjkh{
12787332Sjkh  page_entry *entry;
12797332Sjkh  unsigned bit, word;
12807332Sjkh  unsigned long mask;
12817332Sjkh
12827332Sjkh  /* Look up the page on which the object is alloced.  If the object
12837332Sjkh     wasn't allocated by the collector, we'll probably die.  */
12847332Sjkh  entry = lookup_page_table_entry (p);
12857332Sjkh  gcc_assert (entry);
1286106449Smdodd
12877332Sjkh  /* Calculate the index of the object on the page; this is its bit
1288106449Smdodd     position in the in_use_p bitmap.  */
12897332Sjkh  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
12907332Sjkh  word = bit / HOST_BITS_PER_LONG;
12917332Sjkh  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
12927332Sjkh
12937332Sjkh  /* If the bit was previously set, skip it.  */
12947332Sjkh  if (entry->in_use_p[word] & mask)
12957332Sjkh    return 1;
1296167086Sjhb
12977332Sjkh  /* Otherwise set it, and decrement the free object count.  */
12987332Sjkh  entry->in_use_p[word] |= mask;
12997332Sjkh  entry->num_free_objects -= 1;
13007332Sjkh
13017332Sjkh  if (GGC_DEBUG_LEVEL >= 4)
1302106451Smdodd    fprintf (G.debug_file, "Marking %p\n", p);
13037332Sjkh
13047332Sjkh  return 0;
13057332Sjkh}
1306106449Smdodd
13077332Sjkh/* Return 1 if P has been marked, zero otherwise.
13087332Sjkh   P must have been allocated by the GC allocator; it mustn't point to
1309106449Smdodd   static objects, stack variables, or memory allocated with malloc.  */
1310106451Smdodd
13117332Sjkhint
13127332Sjkhggc_marked_p (const void *p)
13137332Sjkh{
13147332Sjkh  page_entry *entry;
1315106449Smdodd  unsigned bit, word;
13167332Sjkh  unsigned long mask;
13177332Sjkh
13187332Sjkh  /* Look up the page on which the object is alloced.  If the object
1319106490Smdodd     wasn't allocated by the collector, we'll probably die.  */
1320106449Smdodd  entry = lookup_page_table_entry (p);
1321106451Smdodd  gcc_assert (entry);
13227332Sjkh
13237332Sjkh  /* Calculate the index of the object on the page; this is its bit
1324106490Smdodd     position in the in_use_p bitmap.  */
1325106490Smdodd  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
13267332Sjkh  word = bit / HOST_BITS_PER_LONG;
13277332Sjkh  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1328106451Smdodd
13297332Sjkh  return (entry->in_use_p[word] & mask) != 0;
13307332Sjkh}
13317332Sjkh
1332106449Smdodd/* Return the size of the gc-able object P.  */
13337332Sjkh
13347332Sjkhsize_t
13357332Sjkhggc_get_size (const void *p)
13367332Sjkh{
1337106490Smdodd  page_entry *pe = lookup_page_table_entry (p);
1338106449Smdodd  return OBJECT_SIZE (pe->order);
1339106451Smdodd}
13407332Sjkh
13417332Sjkh/* Release the memory for object P.  */
13427332Sjkh
13437332Sjkhvoid
13447332Sjkhggc_free (void *p)
1345106490Smdodd{
13468876Srgrimes  page_entry *pe = lookup_page_table_entry (p);
13477332Sjkh  size_t order = pe->order;
1348106490Smdodd  size_t size = OBJECT_SIZE (order);
1349106451Smdodd
13507332Sjkh#ifdef GATHER_STATISTICS
13517332Sjkh  ggc_free_overhead (p);
13527332Sjkh#endif
13537332Sjkh
1354106451Smdodd  if (GGC_DEBUG_LEVEL >= 3)
13557332Sjkh    fprintf (G.debug_file,
13567332Sjkh	     "Freeing object, actual size=%lu, at %p on %p\n",
1357106490Smdodd	     (unsigned long) size, p, (void *) pe);
13587332Sjkh
13597332Sjkh#ifdef ENABLE_GC_CHECKING
13607332Sjkh  /* Poison the data, to indicate the data is garbage.  */
13617332Sjkh  VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1362106490Smdodd  memset (p, 0xa5, size);
1363106490Smdodd#endif
1364106490Smdodd  /* Let valgrind know the object is free.  */
13657332Sjkh  VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
13667332Sjkh
13677332Sjkh#ifdef ENABLE_GC_ALWAYS_COLLECT
13687332Sjkh  /* In the completely-anal-checking mode, we do *not* immediately free
1369106451Smdodd     the data, but instead verify that the data is *actually* not
13707332Sjkh     reachable the next time we collect.  */
1371106451Smdodd  {
13727332Sjkh    struct free_object *fo = XNEW (struct free_object);
13737332Sjkh    fo->object = p;
137412517Sjulian    fo->next = G.free_object_list;
137525460Sjoerg    G.free_object_list = fo;
1376106449Smdodd  }
137725460Sjoerg#else
137825460Sjoerg  {
137925460Sjoerg    unsigned int bit_offset, word, bit;
138025460Sjoerg
1381106490Smdodd    G.allocated -= size;
1382106449Smdodd
1383106451Smdodd    /* Mark the object not-in-use.  */
138425460Sjoerg    bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
138525460Sjoerg    word = bit_offset / HOST_BITS_PER_LONG;
138625460Sjoerg    bit = bit_offset % HOST_BITS_PER_LONG;
138725460Sjoerg    pe->in_use_p[word] &= ~(1UL << bit);
138825460Sjoerg
1389106490Smdodd    if (pe->num_free_objects++ == 0)
139025460Sjoerg      {
139125460Sjoerg	page_entry *p, *q;
1392106490Smdodd
1393106451Smdodd	/* If the page is completely full, then it's supposed to
139425460Sjoerg	   be after all pages that aren't.  Since we've freed one
139525460Sjoerg	   object from a page that was full, we need to move the
1396106490Smdodd	   page to the head of the list.
139725460Sjoerg
139825460Sjoerg	   PE is the node we want to move.  Q is the previous node
139925460Sjoerg	   and P is the next node in the list.  */
140025460Sjoerg	q = pe->prev;
1401106490Smdodd	if (q && q->num_free_objects == 0)
1402106490Smdodd	  {
1403106490Smdodd	    p = pe->next;
140425460Sjoerg
140525460Sjoerg	    q->next = p;
140625460Sjoerg
140725460Sjoerg	    /* If PE was at the end of the list, then Q becomes the
140825460Sjoerg	       new end of the list.  If PE was not the end of the
1409106451Smdodd	       list, then we need to update the PREV field for P.  */
141025460Sjoerg	    if (!p)
1411	      G.page_tails[order] = q;
1412	    else
1413	      p->prev = q;
1414
1415	    /* Move PE to the head of the list.  */
1416	    pe->next = G.pages[order];
1417	    pe->prev = NULL;
1418	    G.pages[order]->prev = pe;
1419	    G.pages[order] = pe;
1420	  }
1421
1422	/* Reset the hint bit to point to the only free object.  */
1423	pe->next_bit_hint = bit_offset;
1424      }
1425  }
1426#endif
1427}
1428
1429/* Subroutine of init_ggc which computes the pair of numbers used to
1430   perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1431
1432   This algorithm is taken from Granlund and Montgomery's paper
1433   "Division by Invariant Integers using Multiplication"
1434   (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1435   constants).  */
1436
1437static void
1438compute_inverse (unsigned order)
1439{
1440  size_t size, inv;
1441  unsigned int e;
1442
1443  size = OBJECT_SIZE (order);
1444  e = 0;
1445  while (size % 2 == 0)
1446    {
1447      e++;
1448      size >>= 1;
1449    }
1450
1451  inv = size;
1452  while (inv * size != 1)
1453    inv = inv * (2 - inv*size);
1454
1455  DIV_MULT (order) = inv;
1456  DIV_SHIFT (order) = e;
1457}
1458
1459/* Initialize the ggc-mmap allocator.  */
1460void
1461init_ggc (void)
1462{
1463  unsigned order;
1464
1465  G.pagesize = getpagesize();
1466  G.lg_pagesize = exact_log2 (G.pagesize);
1467
1468#ifdef HAVE_MMAP_DEV_ZERO
1469  G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1470  if (G.dev_zero_fd == -1)
1471    internal_error ("open /dev/zero: %m");
1472#endif
1473
1474#if 0
1475  G.debug_file = fopen ("ggc-mmap.debug", "w");
1476#else
1477  G.debug_file = stdout;
1478#endif
1479
1480#ifdef USING_MMAP
1481  /* StunOS has an amazing off-by-one error for the first mmap allocation
1482     after fiddling with RLIMIT_STACK.  The result, as hard as it is to
1483     believe, is an unaligned page allocation, which would cause us to
1484     hork badly if we tried to use it.  */
1485  {
1486    char *p = alloc_anon (NULL, G.pagesize);
1487    struct page_entry *e;
1488    if ((size_t)p & (G.pagesize - 1))
1489      {
1490	/* How losing.  Discard this one and try another.  If we still
1491	   can't get something useful, give up.  */
1492
1493	p = alloc_anon (NULL, G.pagesize);
1494	gcc_assert (!((size_t)p & (G.pagesize - 1)));
1495      }
1496
1497    /* We have a good page, might as well hold onto it...  */
1498    e = XCNEW (struct page_entry);
1499    e->bytes = G.pagesize;
1500    e->page = p;
1501    e->next = G.free_pages;
1502    G.free_pages = e;
1503  }
1504#endif
1505
1506  /* Initialize the object size table.  */
1507  for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1508    object_size_table[order] = (size_t) 1 << order;
1509  for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1510    {
1511      size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1512
1513      /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1514	 so that we're sure of getting aligned memory.  */
1515      s = ROUND_UP (s, MAX_ALIGNMENT);
1516      object_size_table[order] = s;
1517    }
1518
1519  /* Initialize the objects-per-page and inverse tables.  */
1520  for (order = 0; order < NUM_ORDERS; ++order)
1521    {
1522      objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1523      if (objects_per_page_table[order] == 0)
1524	objects_per_page_table[order] = 1;
1525      compute_inverse (order);
1526    }
1527
1528  /* Reset the size_lookup array to put appropriately sized objects in
1529     the special orders.  All objects bigger than the previous power
1530     of two, but no greater than the special size, should go in the
1531     new order.  */
1532  for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1533    {
1534      int o;
1535      int i;
1536
1537      i = OBJECT_SIZE (order);
1538      if (i >= NUM_SIZE_LOOKUP)
1539	continue;
1540
1541      for (o = size_lookup[i]; o == size_lookup [i]; --i)
1542	size_lookup[i] = order;
1543    }
1544
1545  G.depth_in_use = 0;
1546  G.depth_max = 10;
1547  G.depth = XNEWVEC (unsigned int, G.depth_max);
1548
1549  G.by_depth_in_use = 0;
1550  G.by_depth_max = INITIAL_PTE_COUNT;
1551  G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1552  G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1553}
1554
1555/* Start a new GGC zone.  */
1556
1557struct alloc_zone *
1558new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1559{
1560  return NULL;
1561}
1562
1563/* Destroy a GGC zone.  */
1564void
1565destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1566{
1567}
1568
1569/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1570   reflects reality.  Recalculate NUM_FREE_OBJECTS as well.  */
1571
1572static void
1573ggc_recalculate_in_use_p (page_entry *p)
1574{
1575  unsigned int i;
1576  size_t num_objects;
1577
1578  /* Because the past-the-end bit in in_use_p is always set, we
1579     pretend there is one additional object.  */
1580  num_objects = OBJECTS_IN_PAGE (p) + 1;
1581
1582  /* Reset the free object count.  */
1583  p->num_free_objects = num_objects;
1584
1585  /* Combine the IN_USE_P and SAVE_IN_USE_P arrays.  */
1586  for (i = 0;
1587       i < CEIL (BITMAP_SIZE (num_objects),
1588		 sizeof (*p->in_use_p));
1589       ++i)
1590    {
1591      unsigned long j;
1592
1593      /* Something is in use if it is marked, or if it was in use in a
1594	 context further down the context stack.  */
1595      p->in_use_p[i] |= save_in_use_p (p)[i];
1596
1597      /* Decrement the free object count for every object allocated.  */
1598      for (j = p->in_use_p[i]; j; j >>= 1)
1599	p->num_free_objects -= (j & 1);
1600    }
1601
1602  gcc_assert (p->num_free_objects < num_objects);
1603}
1604
1605/* Unmark all objects.  */
1606
1607static void
1608clear_marks (void)
1609{
1610  unsigned order;
1611
1612  for (order = 2; order < NUM_ORDERS; order++)
1613    {
1614      page_entry *p;
1615
1616      for (p = G.pages[order]; p != NULL; p = p->next)
1617	{
1618	  size_t num_objects = OBJECTS_IN_PAGE (p);
1619	  size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1620
1621	  /* The data should be page-aligned.  */
1622	  gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1623
1624	  /* Pages that aren't in the topmost context are not collected;
1625	     nevertheless, we need their in-use bit vectors to store GC
1626	     marks.  So, back them up first.  */
1627	  if (p->context_depth < G.context_depth)
1628	    {
1629	      if (! save_in_use_p (p))
1630		save_in_use_p (p) = xmalloc (bitmap_size);
1631	      memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1632	    }
1633
1634	  /* Reset reset the number of free objects and clear the
1635             in-use bits.  These will be adjusted by mark_obj.  */
1636	  p->num_free_objects = num_objects;
1637	  memset (p->in_use_p, 0, bitmap_size);
1638
1639	  /* Make sure the one-past-the-end bit is always set.  */
1640	  p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1641	    = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1642	}
1643    }
1644}
1645
1646/* Free all empty pages.  Partially empty pages need no attention
1647   because the `mark' bit doubles as an `unused' bit.  */
1648
1649static void
1650sweep_pages (void)
1651{
1652  unsigned order;
1653
1654  for (order = 2; order < NUM_ORDERS; order++)
1655    {
1656      /* The last page-entry to consider, regardless of entries
1657	 placed at the end of the list.  */
1658      page_entry * const last = G.page_tails[order];
1659
1660      size_t num_objects;
1661      size_t live_objects;
1662      page_entry *p, *previous;
1663      int done;
1664
1665      p = G.pages[order];
1666      if (p == NULL)
1667	continue;
1668
1669      previous = NULL;
1670      do
1671	{
1672	  page_entry *next = p->next;
1673
1674	  /* Loop until all entries have been examined.  */
1675	  done = (p == last);
1676
1677	  num_objects = OBJECTS_IN_PAGE (p);
1678
1679	  /* Add all live objects on this page to the count of
1680             allocated memory.  */
1681	  live_objects = num_objects - p->num_free_objects;
1682
1683	  G.allocated += OBJECT_SIZE (order) * live_objects;
1684
1685	  /* Only objects on pages in the topmost context should get
1686	     collected.  */
1687	  if (p->context_depth < G.context_depth)
1688	    ;
1689
1690	  /* Remove the page if it's empty.  */
1691	  else if (live_objects == 0)
1692	    {
1693	      /* If P was the first page in the list, then NEXT
1694		 becomes the new first page in the list, otherwise
1695		 splice P out of the forward pointers.  */
1696	      if (! previous)
1697		G.pages[order] = next;
1698	      else
1699		previous->next = next;
1700
1701	      /* Splice P out of the back pointers too.  */
1702	      if (next)
1703		next->prev = previous;
1704
1705	      /* Are we removing the last element?  */
1706	      if (p == G.page_tails[order])
1707		G.page_tails[order] = previous;
1708	      free_page (p);
1709	      p = previous;
1710	    }
1711
1712	  /* If the page is full, move it to the end.  */
1713	  else if (p->num_free_objects == 0)
1714	    {
1715	      /* Don't move it if it's already at the end.  */
1716	      if (p != G.page_tails[order])
1717		{
1718		  /* Move p to the end of the list.  */
1719		  p->next = NULL;
1720		  p->prev = G.page_tails[order];
1721		  G.page_tails[order]->next = p;
1722
1723		  /* Update the tail pointer...  */
1724		  G.page_tails[order] = p;
1725
1726		  /* ... and the head pointer, if necessary.  */
1727		  if (! previous)
1728		    G.pages[order] = next;
1729		  else
1730		    previous->next = next;
1731
1732		  /* And update the backpointer in NEXT if necessary.  */
1733		  if (next)
1734		    next->prev = previous;
1735
1736		  p = previous;
1737		}
1738	    }
1739
1740	  /* If we've fallen through to here, it's a page in the
1741	     topmost context that is neither full nor empty.  Such a
1742	     page must precede pages at lesser context depth in the
1743	     list, so move it to the head.  */
1744	  else if (p != G.pages[order])
1745	    {
1746	      previous->next = p->next;
1747
1748	      /* Update the backchain in the next node if it exists.  */
1749	      if (p->next)
1750		p->next->prev = previous;
1751
1752	      /* Move P to the head of the list.  */
1753	      p->next = G.pages[order];
1754	      p->prev = NULL;
1755	      G.pages[order]->prev = p;
1756
1757	      /* Update the head pointer.  */
1758	      G.pages[order] = p;
1759
1760	      /* Are we moving the last element?  */
1761	      if (G.page_tails[order] == p)
1762	        G.page_tails[order] = previous;
1763	      p = previous;
1764	    }
1765
1766	  previous = p;
1767	  p = next;
1768	}
1769      while (! done);
1770
1771      /* Now, restore the in_use_p vectors for any pages from contexts
1772         other than the current one.  */
1773      for (p = G.pages[order]; p; p = p->next)
1774	if (p->context_depth != G.context_depth)
1775	  ggc_recalculate_in_use_p (p);
1776    }
1777}
1778
1779#ifdef ENABLE_GC_CHECKING
1780/* Clobber all free objects.  */
1781
1782static void
1783poison_pages (void)
1784{
1785  unsigned order;
1786
1787  for (order = 2; order < NUM_ORDERS; order++)
1788    {
1789      size_t size = OBJECT_SIZE (order);
1790      page_entry *p;
1791
1792      for (p = G.pages[order]; p != NULL; p = p->next)
1793	{
1794	  size_t num_objects;
1795	  size_t i;
1796
1797	  if (p->context_depth != G.context_depth)
1798	    /* Since we don't do any collection for pages in pushed
1799	       contexts, there's no need to do any poisoning.  And
1800	       besides, the IN_USE_P array isn't valid until we pop
1801	       contexts.  */
1802	    continue;
1803
1804	  num_objects = OBJECTS_IN_PAGE (p);
1805	  for (i = 0; i < num_objects; i++)
1806	    {
1807	      size_t word, bit;
1808	      word = i / HOST_BITS_PER_LONG;
1809	      bit = i % HOST_BITS_PER_LONG;
1810	      if (((p->in_use_p[word] >> bit) & 1) == 0)
1811		{
1812		  char *object = p->page + i * size;
1813
1814		  /* Keep poison-by-write when we expect to use Valgrind,
1815		     so the exact same memory semantics is kept, in case
1816		     there are memory errors.  We override this request
1817		     below.  */
1818		  VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1819		  memset (object, 0xa5, size);
1820
1821		  /* Drop the handle to avoid handle leak.  */
1822		  VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1823		}
1824	    }
1825	}
1826    }
1827}
1828#else
1829#define poison_pages()
1830#endif
1831
1832#ifdef ENABLE_GC_ALWAYS_COLLECT
1833/* Validate that the reportedly free objects actually are.  */
1834
1835static void
1836validate_free_objects (void)
1837{
1838  struct free_object *f, *next, *still_free = NULL;
1839
1840  for (f = G.free_object_list; f ; f = next)
1841    {
1842      page_entry *pe = lookup_page_table_entry (f->object);
1843      size_t bit, word;
1844
1845      bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1846      word = bit / HOST_BITS_PER_LONG;
1847      bit = bit % HOST_BITS_PER_LONG;
1848      next = f->next;
1849
1850      /* Make certain it isn't visible from any root.  Notice that we
1851	 do this check before sweep_pages merges save_in_use_p.  */
1852      gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1853
1854      /* If the object comes from an outer context, then retain the
1855	 free_object entry, so that we can verify that the address
1856	 isn't live on the stack in some outer context.  */
1857      if (pe->context_depth != G.context_depth)
1858	{
1859	  f->next = still_free;
1860	  still_free = f;
1861	}
1862      else
1863	free (f);
1864    }
1865
1866  G.free_object_list = still_free;
1867}
1868#else
1869#define validate_free_objects()
1870#endif
1871
1872/* Top level mark-and-sweep routine.  */
1873
1874void
1875ggc_collect (void)
1876{
1877  /* Avoid frequent unnecessary work by skipping collection if the
1878     total allocations haven't expanded much since the last
1879     collection.  */
1880  float allocated_last_gc =
1881    MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1882
1883  float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1884
1885  if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1886    return;
1887
1888  timevar_push (TV_GC);
1889  if (!quiet_flag)
1890    fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1891  if (GGC_DEBUG_LEVEL >= 2)
1892    fprintf (G.debug_file, "BEGIN COLLECTING\n");
1893
1894  /* Zero the total allocated bytes.  This will be recalculated in the
1895     sweep phase.  */
1896  G.allocated = 0;
1897
1898  /* Release the pages we freed the last time we collected, but didn't
1899     reuse in the interim.  */
1900  release_pages ();
1901
1902  /* Indicate that we've seen collections at this context depth.  */
1903  G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1904
1905  clear_marks ();
1906  ggc_mark_roots ();
1907#ifdef GATHER_STATISTICS
1908  ggc_prune_overhead_list ();
1909#endif
1910  poison_pages ();
1911  validate_free_objects ();
1912  sweep_pages ();
1913
1914  G.allocated_last_gc = G.allocated;
1915
1916  timevar_pop (TV_GC);
1917
1918  if (!quiet_flag)
1919    fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1920  if (GGC_DEBUG_LEVEL >= 2)
1921    fprintf (G.debug_file, "END COLLECTING\n");
1922}
1923
1924/* Print allocation statistics.  */
1925#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1926		  ? (x) \
1927		  : ((x) < 1024*1024*10 \
1928		     ? (x) / 1024 \
1929		     : (x) / (1024*1024))))
1930#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1931
1932void
1933ggc_print_statistics (void)
1934{
1935  struct ggc_statistics stats;
1936  unsigned int i;
1937  size_t total_overhead = 0;
1938
1939  /* Clear the statistics.  */
1940  memset (&stats, 0, sizeof (stats));
1941
1942  /* Make sure collection will really occur.  */
1943  G.allocated_last_gc = 0;
1944
1945  /* Collect and print the statistics common across collectors.  */
1946  ggc_print_common_statistics (stderr, &stats);
1947
1948  /* Release free pages so that we will not count the bytes allocated
1949     there as part of the total allocated memory.  */
1950  release_pages ();
1951
1952  /* Collect some information about the various sizes of
1953     allocation.  */
1954  fprintf (stderr,
1955           "Memory still allocated at the end of the compilation process\n");
1956  fprintf (stderr, "%-5s %10s  %10s  %10s\n",
1957	   "Size", "Allocated", "Used", "Overhead");
1958  for (i = 0; i < NUM_ORDERS; ++i)
1959    {
1960      page_entry *p;
1961      size_t allocated;
1962      size_t in_use;
1963      size_t overhead;
1964
1965      /* Skip empty entries.  */
1966      if (!G.pages[i])
1967	continue;
1968
1969      overhead = allocated = in_use = 0;
1970
1971      /* Figure out the total number of bytes allocated for objects of
1972	 this size, and how many of them are actually in use.  Also figure
1973	 out how much memory the page table is using.  */
1974      for (p = G.pages[i]; p; p = p->next)
1975	{
1976	  allocated += p->bytes;
1977	  in_use +=
1978	    (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
1979
1980	  overhead += (sizeof (page_entry) - sizeof (long)
1981		       + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
1982	}
1983      fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1984	       (unsigned long) OBJECT_SIZE (i),
1985	       SCALE (allocated), STAT_LABEL (allocated),
1986	       SCALE (in_use), STAT_LABEL (in_use),
1987	       SCALE (overhead), STAT_LABEL (overhead));
1988      total_overhead += overhead;
1989    }
1990  fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1991	   SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
1992	   SCALE (G.allocated), STAT_LABEL(G.allocated),
1993	   SCALE (total_overhead), STAT_LABEL (total_overhead));
1994
1995#ifdef GATHER_STATISTICS
1996  {
1997    fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
1998
1999    fprintf (stderr, "Total Overhead:                        %10lld\n",
2000             G.stats.total_overhead);
2001    fprintf (stderr, "Total Allocated:                       %10lld\n",
2002             G.stats.total_allocated);
2003
2004    fprintf (stderr, "Total Overhead  under  32B:            %10lld\n",
2005             G.stats.total_overhead_under32);
2006    fprintf (stderr, "Total Allocated under  32B:            %10lld\n",
2007             G.stats.total_allocated_under32);
2008    fprintf (stderr, "Total Overhead  under  64B:            %10lld\n",
2009             G.stats.total_overhead_under64);
2010    fprintf (stderr, "Total Allocated under  64B:            %10lld\n",
2011             G.stats.total_allocated_under64);
2012    fprintf (stderr, "Total Overhead  under 128B:            %10lld\n",
2013             G.stats.total_overhead_under128);
2014    fprintf (stderr, "Total Allocated under 128B:            %10lld\n",
2015             G.stats.total_allocated_under128);
2016
2017    for (i = 0; i < NUM_ORDERS; i++)
2018      if (G.stats.total_allocated_per_order[i])
2019        {
2020          fprintf (stderr, "Total Overhead  page size %7d:     %10lld\n",
2021                   OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
2022          fprintf (stderr, "Total Allocated page size %7d:     %10lld\n",
2023                   OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
2024        }
2025  }
2026#endif
2027}
2028
2029struct ggc_pch_data
2030{
2031  struct ggc_pch_ondisk
2032  {
2033    unsigned totals[NUM_ORDERS];
2034  } d;
2035  size_t base[NUM_ORDERS];
2036  size_t written[NUM_ORDERS];
2037};
2038
2039struct ggc_pch_data *
2040init_ggc_pch (void)
2041{
2042  return XCNEW (struct ggc_pch_data);
2043}
2044
2045void
2046ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2047		      size_t size, bool is_string ATTRIBUTE_UNUSED,
2048		      enum gt_types_enum type ATTRIBUTE_UNUSED)
2049{
2050  unsigned order;
2051
2052  if (size < NUM_SIZE_LOOKUP)
2053    order = size_lookup[size];
2054  else
2055    {
2056      order = 10;
2057      while (size > OBJECT_SIZE (order))
2058	order++;
2059    }
2060
2061  d->d.totals[order]++;
2062}
2063
2064size_t
2065ggc_pch_total_size (struct ggc_pch_data *d)
2066{
2067  size_t a = 0;
2068  unsigned i;
2069
2070  for (i = 0; i < NUM_ORDERS; i++)
2071    a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2072  return a;
2073}
2074
2075void
2076ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2077{
2078  size_t a = (size_t) base;
2079  unsigned i;
2080
2081  for (i = 0; i < NUM_ORDERS; i++)
2082    {
2083      d->base[i] = a;
2084      a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2085    }
2086}
2087
2088
2089char *
2090ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2091		      size_t size, bool is_string ATTRIBUTE_UNUSED,
2092		      enum gt_types_enum type ATTRIBUTE_UNUSED)
2093{
2094  unsigned order;
2095  char *result;
2096
2097  if (size < NUM_SIZE_LOOKUP)
2098    order = size_lookup[size];
2099  else
2100    {
2101      order = 10;
2102      while (size > OBJECT_SIZE (order))
2103	order++;
2104    }
2105
2106  result = (char *) d->base[order];
2107  d->base[order] += OBJECT_SIZE (order);
2108  return result;
2109}
2110
2111void
2112ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2113		       FILE *f ATTRIBUTE_UNUSED)
2114{
2115  /* Nothing to do.  */
2116}
2117
2118void
2119ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2120		      FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2121		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2122{
2123  unsigned order;
2124  static const char emptyBytes[256];
2125
2126  if (size < NUM_SIZE_LOOKUP)
2127    order = size_lookup[size];
2128  else
2129    {
2130      order = 10;
2131      while (size > OBJECT_SIZE (order))
2132	order++;
2133    }
2134
2135  if (fwrite (x, size, 1, f) != 1)
2136    fatal_error ("can't write PCH file: %m");
2137
2138  /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2139     object out to OBJECT_SIZE(order).  This happens for strings.  */
2140
2141  if (size != OBJECT_SIZE (order))
2142    {
2143      unsigned padding = OBJECT_SIZE(order) - size;
2144
2145      /* To speed small writes, we use a nulled-out array that's larger
2146         than most padding requests as the source for our null bytes.  This
2147         permits us to do the padding with fwrite() rather than fseek(), and
2148         limits the chance the OS may try to flush any outstanding writes.  */
2149      if (padding <= sizeof(emptyBytes))
2150        {
2151          if (fwrite (emptyBytes, 1, padding, f) != padding)
2152            fatal_error ("can't write PCH file");
2153        }
2154      else
2155        {
2156          /* Larger than our buffer?  Just default to fseek.  */
2157          if (fseek (f, padding, SEEK_CUR) != 0)
2158            fatal_error ("can't write PCH file");
2159        }
2160    }
2161
2162  d->written[order]++;
2163  if (d->written[order] == d->d.totals[order]
2164      && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2165				   G.pagesize),
2166		SEEK_CUR) != 0)
2167    fatal_error ("can't write PCH file: %m");
2168}
2169
2170void
2171ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2172{
2173  if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2174    fatal_error ("can't write PCH file: %m");
2175  free (d);
2176}
2177
2178/* Move the PCH PTE entries just added to the end of by_depth, to the
2179   front.  */
2180
2181static void
2182move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2183{
2184  unsigned i;
2185
2186  /* First, we swap the new entries to the front of the varrays.  */
2187  page_entry **new_by_depth;
2188  unsigned long **new_save_in_use;
2189
2190  new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2191  new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2192
2193  memcpy (&new_by_depth[0],
2194	  &G.by_depth[count_old_page_tables],
2195	  count_new_page_tables * sizeof (void *));
2196  memcpy (&new_by_depth[count_new_page_tables],
2197	  &G.by_depth[0],
2198	  count_old_page_tables * sizeof (void *));
2199  memcpy (&new_save_in_use[0],
2200	  &G.save_in_use[count_old_page_tables],
2201	  count_new_page_tables * sizeof (void *));
2202  memcpy (&new_save_in_use[count_new_page_tables],
2203	  &G.save_in_use[0],
2204	  count_old_page_tables * sizeof (void *));
2205
2206  free (G.by_depth);
2207  free (G.save_in_use);
2208
2209  G.by_depth = new_by_depth;
2210  G.save_in_use = new_save_in_use;
2211
2212  /* Now update all the index_by_depth fields.  */
2213  for (i = G.by_depth_in_use; i > 0; --i)
2214    {
2215      page_entry *p = G.by_depth[i-1];
2216      p->index_by_depth = i-1;
2217    }
2218
2219  /* And last, we update the depth pointers in G.depth.  The first
2220     entry is already 0, and context 0 entries always start at index
2221     0, so there is nothing to update in the first slot.  We need a
2222     second slot, only if we have old ptes, and if we do, they start
2223     at index count_new_page_tables.  */
2224  if (count_old_page_tables)
2225    push_depth (count_new_page_tables);
2226}
2227
2228void
2229ggc_pch_read (FILE *f, void *addr)
2230{
2231  struct ggc_pch_ondisk d;
2232  unsigned i;
2233  char *offs = addr;
2234  unsigned long count_old_page_tables;
2235  unsigned long count_new_page_tables;
2236
2237  count_old_page_tables = G.by_depth_in_use;
2238
2239  /* We've just read in a PCH file.  So, every object that used to be
2240     allocated is now free.  */
2241  clear_marks ();
2242#ifdef ENABLE_GC_CHECKING
2243  poison_pages ();
2244#endif
2245
2246  /* No object read from a PCH file should ever be freed.  So, set the
2247     context depth to 1, and set the depth of all the currently-allocated
2248     pages to be 1 too.  PCH pages will have depth 0.  */
2249  gcc_assert (!G.context_depth);
2250  G.context_depth = 1;
2251  for (i = 0; i < NUM_ORDERS; i++)
2252    {
2253      page_entry *p;
2254      for (p = G.pages[i]; p != NULL; p = p->next)
2255	p->context_depth = G.context_depth;
2256    }
2257
2258  /* Allocate the appropriate page-table entries for the pages read from
2259     the PCH file.  */
2260  if (fread (&d, sizeof (d), 1, f) != 1)
2261    fatal_error ("can't read PCH file: %m");
2262
2263  for (i = 0; i < NUM_ORDERS; i++)
2264    {
2265      struct page_entry *entry;
2266      char *pte;
2267      size_t bytes;
2268      size_t num_objs;
2269      size_t j;
2270
2271      if (d.totals[i] == 0)
2272	continue;
2273
2274      bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2275      num_objs = bytes / OBJECT_SIZE (i);
2276      entry = xcalloc (1, (sizeof (struct page_entry)
2277			   - sizeof (long)
2278			   + BITMAP_SIZE (num_objs + 1)));
2279      entry->bytes = bytes;
2280      entry->page = offs;
2281      entry->context_depth = 0;
2282      offs += bytes;
2283      entry->num_free_objects = 0;
2284      entry->order = i;
2285
2286      for (j = 0;
2287	   j + HOST_BITS_PER_LONG <= num_objs + 1;
2288	   j += HOST_BITS_PER_LONG)
2289	entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2290      for (; j < num_objs + 1; j++)
2291	entry->in_use_p[j / HOST_BITS_PER_LONG]
2292	  |= 1L << (j % HOST_BITS_PER_LONG);
2293
2294      for (pte = entry->page;
2295	   pte < entry->page + entry->bytes;
2296	   pte += G.pagesize)
2297	set_page_table_entry (pte, entry);
2298
2299      if (G.page_tails[i] != NULL)
2300	G.page_tails[i]->next = entry;
2301      else
2302	G.pages[i] = entry;
2303      G.page_tails[i] = entry;
2304
2305      /* We start off by just adding all the new information to the
2306	 end of the varrays, later, we will move the new information
2307	 to the front of the varrays, as the PCH page tables are at
2308	 context 0.  */
2309      push_by_depth (entry, 0);
2310    }
2311
2312  /* Now, we update the various data structures that speed page table
2313     handling.  */
2314  count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2315
2316  move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2317
2318  /* Update the statistics.  */
2319  G.allocated = G.allocated_last_gc = offs - (char *)addr;
2320}
2321