divsf3.c revision 214152
1//===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements single-precision soft-float division
11// with the IEEE-754 default rounding (to nearest, ties to even).
12//
13// For simplicity, this implementation currently flushes denormals to zero.
14// It should be a fairly straightforward exercise to implement gradual
15// underflow with correct rounding.
16//
17//===----------------------------------------------------------------------===//
18
19#define SINGLE_PRECISION
20#include "fp_lib.h"
21
22fp_t __divsf3(fp_t a, fp_t b) {
23
24    const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
25    const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
26    const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
27
28    rep_t aSignificand = toRep(a) & significandMask;
29    rep_t bSignificand = toRep(b) & significandMask;
30    int scale = 0;
31
32    // Detect if a or b is zero, denormal, infinity, or NaN.
33    if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
34
35        const rep_t aAbs = toRep(a) & absMask;
36        const rep_t bAbs = toRep(b) & absMask;
37
38        // NaN / anything = qNaN
39        if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
40        // anything / NaN = qNaN
41        if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
42
43        if (aAbs == infRep) {
44            // infinity / infinity = NaN
45            if (bAbs == infRep) return fromRep(qnanRep);
46            // infinity / anything else = +/- infinity
47            else return fromRep(aAbs | quotientSign);
48        }
49
50        // anything else / infinity = +/- 0
51        if (bAbs == infRep) return fromRep(quotientSign);
52
53        if (!aAbs) {
54            // zero / zero = NaN
55            if (!bAbs) return fromRep(qnanRep);
56            // zero / anything else = +/- zero
57            else return fromRep(quotientSign);
58        }
59        // anything else / zero = +/- infinity
60        if (!bAbs) return fromRep(infRep | quotientSign);
61
62        // one or both of a or b is denormal, the other (if applicable) is a
63        // normal number.  Renormalize one or both of a and b, and set scale to
64        // include the necessary exponent adjustment.
65        if (aAbs < implicitBit) scale += normalize(&aSignificand);
66        if (bAbs < implicitBit) scale -= normalize(&bSignificand);
67    }
68
69    // Or in the implicit significand bit.  (If we fell through from the
70    // denormal path it was already set by normalize( ), but setting it twice
71    // won't hurt anything.)
72    aSignificand |= implicitBit;
73    bSignificand |= implicitBit;
74    int quotientExponent = aExponent - bExponent + scale;
75
76    // Align the significand of b as a Q31 fixed-point number in the range
77    // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
78    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
79    // is accurate to about 3.5 binary digits.
80    uint32_t q31b = bSignificand << 8;
81    uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
82
83    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
84    //
85    //     x1 = x0 * (2 - x0 * b)
86    //
87    // This doubles the number of correct binary digits in the approximation
88    // with each iteration, so after three iterations, we have about 28 binary
89    // digits of accuracy.
90    uint32_t correction;
91    correction = -((uint64_t)reciprocal * q31b >> 32);
92    reciprocal = (uint64_t)reciprocal * correction >> 31;
93    correction = -((uint64_t)reciprocal * q31b >> 32);
94    reciprocal = (uint64_t)reciprocal * correction >> 31;
95    correction = -((uint64_t)reciprocal * q31b >> 32);
96    reciprocal = (uint64_t)reciprocal * correction >> 31;
97
98    // Exhaustive testing shows that the error in reciprocal after three steps
99    // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
100    // expectations.  We bump the reciprocal by a tiny value to force the error
101    // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
102    // be specific).  This also causes 1/1 to give a sensible approximation
103    // instead of zero (due to overflow).
104    reciprocal -= 2;
105
106    // The numerical reciprocal is accurate to within 2^-28, lies in the
107    // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
108    // than the true reciprocal of b.  Multiplying a by this reciprocal thus
109    // gives a numerical q = a/b in Q24 with the following properties:
110    //
111    //    1. q < a/b
112    //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
113    //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
114    //       from the fact that we truncate the product, and the 2^27 term
115    //       is the error in the reciprocal of b scaled by the maximum
116    //       possible value of a.  As a consequence of this error bound,
117    //       either q or nextafter(q) is the correctly rounded
118    rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
119
120    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
121    // In either case, we are going to compute a residual of the form
122    //
123    //     r = a - q*b
124    //
125    // We know from the construction of q that r satisfies:
126    //
127    //     0 <= r < ulp(q)*b
128    //
129    // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
130    // already have the correct result.  The exact halfway case cannot occur.
131    // We also take this time to right shift quotient if it falls in the [1,2)
132    // range and adjust the exponent accordingly.
133    rep_t residual;
134    if (quotient < (implicitBit << 1)) {
135        residual = (aSignificand << 24) - quotient * bSignificand;
136        quotientExponent--;
137    } else {
138        quotient >>= 1;
139        residual = (aSignificand << 23) - quotient * bSignificand;
140    }
141
142    const int writtenExponent = quotientExponent + exponentBias;
143
144    if (writtenExponent >= maxExponent) {
145        // If we have overflowed the exponent, return infinity.
146        return fromRep(infRep | quotientSign);
147    }
148
149    else if (writtenExponent < 1) {
150        // Flush denormals to zero.  In the future, it would be nice to add
151        // code to round them correctly.
152        return fromRep(quotientSign);
153    }
154
155    else {
156        const bool round = (residual << 1) > bSignificand;
157        // Clear the implicit bit
158        rep_t absResult = quotient & significandMask;
159        // Insert the exponent
160        absResult |= (rep_t)writtenExponent << significandBits;
161        // Round
162        absResult += round;
163        // Insert the sign and return
164        return fromRep(absResult | quotientSign);
165    }
166}
167