nscd.c revision 184187
1/*-
2 * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in thereg
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/usr.sbin/nscd/nscd.c 184187 2008-10-23 00:27:35Z delphij $");
30
31#include <sys/types.h>
32#include <sys/event.h>
33#include <sys/socket.h>
34#include <sys/time.h>
35#include <sys/param.h>
36#include <sys/un.h>
37#include <assert.h>
38#include <err.h>
39#include <errno.h>
40#include <fcntl.h>
41#include <libutil.h>
42#include <pthread.h>
43#include <signal.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48
49#include "agents/passwd.h"
50#include "agents/group.h"
51#include "agents/services.h"
52#include "cachelib.h"
53#include "config.h"
54#include "debug.h"
55#include "log.h"
56#include "nscdcli.h"
57#include "parser.h"
58#include "query.h"
59#include "singletons.h"
60
61#ifndef CONFIG_PATH
62#define CONFIG_PATH "/etc/nscd.conf"
63#endif
64#define DEFAULT_CONFIG_PATH	"nscd.conf"
65
66#define MAX_SOCKET_IO_SIZE	4096
67
68struct processing_thread_args {
69	cache	the_cache;
70	struct configuration	*the_configuration;
71	struct runtime_env		*the_runtime_env;
72};
73
74static void accept_connection(struct kevent *, struct runtime_env *,
75	struct configuration *);
76static void destroy_cache_(cache);
77static void destroy_runtime_env(struct runtime_env *);
78static cache init_cache_(struct configuration *);
79static struct runtime_env *init_runtime_env(struct configuration *);
80static void processing_loop(cache, struct runtime_env *,
81	struct configuration *);
82static void process_socket_event(struct kevent *, struct runtime_env *,
83	struct configuration *);
84static void process_timer_event(struct kevent *, struct runtime_env *,
85	struct configuration *);
86static void *processing_thread(void *);
87static void usage(void);
88
89void get_time_func(struct timeval *);
90
91static void
92usage(void)
93{
94	fprintf(stderr,
95	    "usage: nscd [-dnst] [-i cachename] [-I cachename]\n");
96	exit(1);
97}
98
99static cache
100init_cache_(struct configuration *config)
101{
102	struct cache_params params;
103	cache retval;
104
105	struct configuration_entry *config_entry;
106	size_t	size, i;
107	int res;
108
109	TRACE_IN(init_cache_);
110
111	memset(&params, 0, sizeof(struct cache_params));
112	params.get_time_func = get_time_func;
113	retval = init_cache(&params);
114
115	size = configuration_get_entries_size(config);
116	for (i = 0; i < size; ++i) {
117		config_entry = configuration_get_entry(config, i);
118	    	/*
119	    	 * We should register common entries now - multipart entries
120	    	 * would be registered automatically during the queries.
121	    	 */
122		res = register_cache_entry(retval, (struct cache_entry_params *)
123			&config_entry->positive_cache_params);
124		config_entry->positive_cache_entry = find_cache_entry(retval,
125			config_entry->positive_cache_params.entry_name);
126		assert(config_entry->positive_cache_entry !=
127			INVALID_CACHE_ENTRY);
128
129		res = register_cache_entry(retval, (struct cache_entry_params *)
130			&config_entry->negative_cache_params);
131		config_entry->negative_cache_entry = find_cache_entry(retval,
132			config_entry->negative_cache_params.entry_name);
133		assert(config_entry->negative_cache_entry !=
134			INVALID_CACHE_ENTRY);
135	}
136
137	LOG_MSG_2("cache", "cache was successfully initialized");
138	TRACE_OUT(init_cache_);
139	return (retval);
140}
141
142static void
143destroy_cache_(cache the_cache)
144{
145	TRACE_IN(destroy_cache_);
146	destroy_cache(the_cache);
147	TRACE_OUT(destroy_cache_);
148}
149
150/*
151 * Socket and kqueues are prepared here. We have one global queue for both
152 * socket and timers events.
153 */
154static struct runtime_env *
155init_runtime_env(struct configuration *config)
156{
157	int serv_addr_len;
158	struct sockaddr_un serv_addr;
159
160	struct kevent eventlist;
161	struct timespec timeout;
162
163	struct runtime_env *retval;
164
165	TRACE_IN(init_runtime_env);
166	retval = (struct runtime_env *)calloc(1, sizeof(struct runtime_env));
167	assert(retval != NULL);
168
169	retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);
170
171	if (config->force_unlink == 1)
172		unlink(config->socket_path);
173
174	memset(&serv_addr, 0, sizeof(struct sockaddr_un));
175	serv_addr.sun_family = PF_LOCAL;
176	strlcpy(serv_addr.sun_path, config->socket_path,
177		sizeof(serv_addr.sun_path));
178	serv_addr_len = sizeof(serv_addr.sun_family) +
179		strlen(serv_addr.sun_path) + 1;
180
181	if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
182		serv_addr_len) == -1) {
183		close(retval->sockfd);
184		free(retval);
185
186		LOG_ERR_2("runtime environment", "can't bind socket to path: "
187			"%s", config->socket_path);
188		TRACE_OUT(init_runtime_env);
189		return (NULL);
190	}
191	LOG_MSG_2("runtime environment", "using socket %s",
192		config->socket_path);
193
194	/*
195	 * Here we're marking socket as non-blocking and setting its backlog
196	 * to the maximum value
197	 */
198	chmod(config->socket_path, config->socket_mode);
199	listen(retval->sockfd, -1);
200	fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);
201
202	retval->queue = kqueue();
203	assert(retval->queue != -1);
204
205	EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
206		0, 0, 0);
207	memset(&timeout, 0, sizeof(struct timespec));
208	kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);
209
210	LOG_MSG_2("runtime environment", "successfully initialized");
211	TRACE_OUT(init_runtime_env);
212	return (retval);
213}
214
215static void
216destroy_runtime_env(struct runtime_env *env)
217{
218	TRACE_IN(destroy_runtime_env);
219	close(env->queue);
220	close(env->sockfd);
221	free(env);
222	TRACE_OUT(destroy_runtime_env);
223}
224
225static void
226accept_connection(struct kevent *event_data, struct runtime_env *env,
227	struct configuration *config)
228{
229	struct kevent	eventlist[2];
230	struct timespec	timeout;
231	struct query_state	*qstate;
232
233	int	fd;
234	int	res;
235
236	uid_t	euid;
237	gid_t	egid;
238
239	TRACE_IN(accept_connection);
240	fd = accept(event_data->ident, NULL, NULL);
241	if (fd == -1) {
242		LOG_ERR_2("accept_connection", "error %d during accept()",
243		    errno);
244		TRACE_OUT(accept_connection);
245		return;
246	}
247
248	if (getpeereid(fd, &euid, &egid) != 0) {
249		LOG_ERR_2("accept_connection", "error %d during getpeereid()",
250			errno);
251		TRACE_OUT(accept_connection);
252		return;
253	}
254
255	qstate = init_query_state(fd, sizeof(int), euid, egid);
256	if (qstate == NULL) {
257		LOG_ERR_2("accept_connection", "can't init query_state");
258		TRACE_OUT(accept_connection);
259		return;
260	}
261
262	memset(&timeout, 0, sizeof(struct timespec));
263	EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
264		0, qstate->timeout.tv_sec * 1000, qstate);
265	EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
266		NOTE_LOWAT, qstate->kevent_watermark, qstate);
267	res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
268	if (res < 0)
269		LOG_ERR_2("accept_connection", "kevent error");
270
271	TRACE_OUT(accept_connection);
272}
273
274static void
275process_socket_event(struct kevent *event_data, struct runtime_env *env,
276	struct configuration *config)
277{
278	struct kevent	eventlist[2];
279	struct timeval	query_timeout;
280	struct timespec	kevent_timeout;
281	int	nevents;
282	int	eof_res, res;
283	ssize_t	io_res;
284	struct query_state *qstate;
285
286	TRACE_IN(process_socket_event);
287	eof_res = event_data->flags & EV_EOF ? 1 : 0;
288	res = 0;
289
290	memset(&kevent_timeout, 0, sizeof(struct timespec));
291	EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
292		0, 0, NULL);
293	nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
294	if (nevents == -1) {
295		if (errno == ENOENT) {
296			/* the timer is already handling this event */
297			TRACE_OUT(process_socket_event);
298			return;
299		} else {
300			/* some other error happened */
301			LOG_ERR_2("process_socket_event", "kevent error, errno"
302				" is %d", errno);
303			TRACE_OUT(process_socket_event);
304			return;
305		}
306	}
307	qstate = (struct query_state *)event_data->udata;
308
309	/*
310	 * If the buffer that is to be send/received is too large,
311	 * we send it implicitly, by using query_io_buffer_read and
312	 * query_io_buffer_write functions in the query_state. These functions
313	 * use the temporary buffer, which is later send/received in parts.
314	 * The code below implements buffer splitting/mergind for send/receive
315	 * operations. It also does the actual socket IO operations.
316	 */
317	if (((qstate->use_alternate_io == 0) &&
318		(qstate->kevent_watermark <= event_data->data)) ||
319		((qstate->use_alternate_io != 0) &&
320		(qstate->io_buffer_watermark <= event_data->data))) {
321		if (qstate->use_alternate_io != 0) {
322			switch (qstate->io_buffer_filter) {
323			case EVFILT_READ:
324				io_res = query_socket_read(qstate,
325					qstate->io_buffer_p,
326					qstate->io_buffer_watermark);
327				if (io_res < 0) {
328					qstate->use_alternate_io = 0;
329					qstate->process_func = NULL;
330				} else {
331					qstate->io_buffer_p += io_res;
332					if (qstate->io_buffer_p ==
333					    	qstate->io_buffer +
334						qstate->io_buffer_size) {
335						qstate->io_buffer_p =
336						    qstate->io_buffer;
337						qstate->use_alternate_io = 0;
338					}
339				}
340			break;
341			default:
342			break;
343			}
344		}
345
346		if (qstate->use_alternate_io == 0) {
347			do {
348				res = qstate->process_func(qstate);
349			} while ((qstate->kevent_watermark == 0) &&
350					(qstate->process_func != NULL) &&
351					(res == 0));
352
353			if (res != 0)
354				qstate->process_func = NULL;
355		}
356
357		if ((qstate->use_alternate_io != 0) &&
358			(qstate->io_buffer_filter == EVFILT_WRITE)) {
359			io_res = query_socket_write(qstate, qstate->io_buffer_p,
360				qstate->io_buffer_watermark);
361			if (io_res < 0) {
362				qstate->use_alternate_io = 0;
363				qstate->process_func = NULL;
364			} else
365				qstate->io_buffer_p += io_res;
366		}
367	} else {
368		/* assuming that socket was closed */
369		qstate->process_func = NULL;
370		qstate->use_alternate_io = 0;
371	}
372
373	if (((qstate->process_func == NULL) &&
374	    	(qstate->use_alternate_io == 0)) ||
375		(eof_res != 0) || (res != 0)) {
376		destroy_query_state(qstate);
377		close(event_data->ident);
378		TRACE_OUT(process_socket_event);
379		return;
380	}
381
382	/* updating the query_state lifetime variable */
383	get_time_func(&query_timeout);
384	query_timeout.tv_usec = 0;
385	query_timeout.tv_sec -= qstate->creation_time.tv_sec;
386	if (query_timeout.tv_sec > qstate->timeout.tv_sec)
387		query_timeout.tv_sec = 0;
388	else
389		query_timeout.tv_sec = qstate->timeout.tv_sec -
390			query_timeout.tv_sec;
391
392	if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
393		qstate->io_buffer + qstate->io_buffer_size))
394		qstate->use_alternate_io = 0;
395
396	if (qstate->use_alternate_io == 0) {
397		/*
398		 * If we must send/receive the large block of data,
399		 * we should prepare the query_state's io_XXX fields.
400		 * We should also substitute its write_func and read_func
401		 * with the query_io_buffer_write and query_io_buffer_read,
402		 * which will allow us to implicitly send/receive this large
403		 * buffer later (in the subsequent calls to the
404		 * process_socket_event).
405		 */
406		if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
407			if (qstate->io_buffer != NULL)
408				free(qstate->io_buffer);
409
410			qstate->io_buffer = (char *)calloc(1,
411				qstate->kevent_watermark);
412			assert(qstate->io_buffer != NULL);
413
414			qstate->io_buffer_p = qstate->io_buffer;
415			qstate->io_buffer_size = qstate->kevent_watermark;
416			qstate->io_buffer_filter = qstate->kevent_filter;
417
418			qstate->write_func = query_io_buffer_write;
419			qstate->read_func = query_io_buffer_read;
420
421			if (qstate->kevent_filter == EVFILT_READ)
422				qstate->use_alternate_io = 1;
423
424			qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
425			EV_SET(&eventlist[1], event_data->ident,
426				qstate->kevent_filter, EV_ADD | EV_ONESHOT,
427				NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
428		} else {
429			EV_SET(&eventlist[1], event_data->ident,
430		    		qstate->kevent_filter, EV_ADD | EV_ONESHOT,
431		    		NOTE_LOWAT, qstate->kevent_watermark, qstate);
432		}
433	} else {
434		if (qstate->io_buffer + qstate->io_buffer_size -
435		    	qstate->io_buffer_p <
436			MAX_SOCKET_IO_SIZE) {
437			qstate->io_buffer_watermark = qstate->io_buffer +
438				qstate->io_buffer_size - qstate->io_buffer_p;
439			EV_SET(&eventlist[1], event_data->ident,
440			    	qstate->io_buffer_filter,
441				EV_ADD | EV_ONESHOT, NOTE_LOWAT,
442				qstate->io_buffer_watermark,
443				qstate);
444		} else {
445			qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
446			EV_SET(&eventlist[1], event_data->ident,
447		    		qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
448		    		NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
449		}
450	}
451	EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
452		EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
453	kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);
454
455	TRACE_OUT(process_socket_event);
456}
457
458/*
459 * This routine is called if timer event has been signaled in the kqueue. It
460 * just closes the socket and destroys the query_state.
461 */
462static void
463process_timer_event(struct kevent *event_data, struct runtime_env *env,
464	struct configuration *config)
465{
466	struct query_state	*qstate;
467
468	TRACE_IN(process_timer_event);
469	qstate = (struct query_state *)event_data->udata;
470	destroy_query_state(qstate);
471	close(event_data->ident);
472	TRACE_OUT(process_timer_event);
473}
474
475/*
476 * Processing loop is the basic processing routine, that forms a body of each
477 * procssing thread
478 */
479static void
480processing_loop(cache the_cache, struct runtime_env *env,
481	struct configuration *config)
482{
483	struct timespec timeout;
484	const int eventlist_size = 1;
485	struct kevent eventlist[eventlist_size];
486	int nevents, i;
487
488	TRACE_MSG("=> processing_loop");
489	memset(&timeout, 0, sizeof(struct timespec));
490	memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);
491
492	for (;;) {
493		nevents = kevent(env->queue, NULL, 0, eventlist,
494	    		eventlist_size, NULL);
495		/*
496		 * we can only receive 1 event on success
497		 */
498		if (nevents == 1) {
499			struct kevent *event_data;
500			event_data = &eventlist[0];
501
502			if (event_data->ident == env->sockfd) {
503				for (i = 0; i < event_data->data; ++i)
504				    accept_connection(event_data, env, config);
505
506				EV_SET(eventlist, s_runtime_env->sockfd,
507				    EVFILT_READ, EV_ADD | EV_ONESHOT,
508				    0, 0, 0);
509				memset(&timeout, 0,
510				    sizeof(struct timespec));
511				kevent(s_runtime_env->queue, eventlist,
512				    1, NULL, 0, &timeout);
513
514			} else {
515				switch (event_data->filter) {
516				case EVFILT_READ:
517				case EVFILT_WRITE:
518					process_socket_event(event_data,
519						env, config);
520					break;
521				case EVFILT_TIMER:
522					process_timer_event(event_data,
523						env, config);
524					break;
525				default:
526					break;
527				}
528			}
529		} else {
530			/* this branch shouldn't be currently executed */
531		}
532	}
533
534	TRACE_MSG("<= processing_loop");
535}
536
537/*
538 * Wrapper above the processing loop function. It sets the thread signal mask
539 * to avoid SIGPIPE signals (which can happen if the client works incorrectly).
540 */
541static void *
542processing_thread(void *data)
543{
544	struct processing_thread_args	*args;
545	sigset_t new;
546
547	TRACE_MSG("=> processing_thread");
548	args = (struct processing_thread_args *)data;
549
550	sigemptyset(&new);
551	sigaddset(&new, SIGPIPE);
552	if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
553		LOG_ERR_1("processing thread",
554			"thread can't block the SIGPIPE signal");
555
556	processing_loop(args->the_cache, args->the_runtime_env,
557		args->the_configuration);
558	free(args);
559	TRACE_MSG("<= processing_thread");
560
561	return (NULL);
562}
563
564void
565get_time_func(struct timeval *time)
566{
567	struct timespec res;
568	memset(&res, 0, sizeof(struct timespec));
569	clock_gettime(CLOCK_MONOTONIC, &res);
570
571	time->tv_sec = res.tv_sec;
572	time->tv_usec = 0;
573}
574
575/*
576 * The idea of _nss_cache_cycle_prevention_function is that nsdispatch will
577 * search for this symbol in the executable. This symbol is the attribute of
578 * the caching daemon. So, if it exists, nsdispatch won't try to connect to
579 * the caching daemon and will just ignore the 'cache' source in the
580 * nsswitch.conf. This method helps to avoid cycles and organize
581 * self-performing requests.
582 */
583void
584_nss_cache_cycle_prevention_function(void)
585{
586}
587
588int
589main(int argc, char *argv[])
590{
591	struct processing_thread_args *thread_args;
592	pthread_t *threads;
593
594	struct pidfh *pidfile;
595	pid_t pid;
596
597	char const *config_file;
598	char const *error_str;
599	int error_line;
600	int i, res;
601
602	int trace_mode_enabled;
603	int force_single_threaded;
604	int do_not_daemonize;
605	int clear_user_cache_entries, clear_all_cache_entries;
606	char *user_config_entry_name, *global_config_entry_name;
607	int show_statistics;
608	int daemon_mode, interactive_mode;
609
610
611	/* by default all debug messages are omitted */
612	TRACE_OFF();
613
614	/* parsing command line arguments */
615	trace_mode_enabled = 0;
616	force_single_threaded = 0;
617	do_not_daemonize = 0;
618	clear_user_cache_entries = 0;
619	clear_all_cache_entries = 0;
620	show_statistics = 0;
621	user_config_entry_name = NULL;
622	global_config_entry_name = NULL;
623	while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
624		switch (res) {
625		case 'n':
626			do_not_daemonize = 1;
627			break;
628		case 's':
629			force_single_threaded = 1;
630			break;
631		case 't':
632			trace_mode_enabled = 1;
633			break;
634		case 'i':
635			clear_user_cache_entries = 1;
636			if (optarg != NULL)
637				if (strcmp(optarg, "all") != 0)
638					user_config_entry_name = strdup(optarg);
639			break;
640		case 'I':
641			clear_all_cache_entries = 1;
642			if (optarg != NULL)
643				if (strcmp(optarg, "all") != 0)
644					global_config_entry_name =
645						strdup(optarg);
646			break;
647		case 'd':
648			show_statistics = 1;
649			break;
650		case '?':
651		default:
652			usage();
653			/* NOT REACHED */
654		}
655	}
656
657	daemon_mode = do_not_daemonize | force_single_threaded |
658		trace_mode_enabled;
659	interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
660		show_statistics;
661
662	if ((daemon_mode != 0) && (interactive_mode != 0)) {
663		LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
664			"can't be used together");
665		usage();
666	}
667
668	if (interactive_mode != 0) {
669		FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
670		char pidbuf[256];
671
672		struct nscd_connection_params connection_params;
673		nscd_connection connection;
674
675		int result;
676
677		if (pidfin == NULL)
678			errx(EXIT_FAILURE, "There is no daemon running.");
679
680		memset(pidbuf, 0, sizeof(pidbuf));
681		fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
682		fclose(pidfin);
683
684		if (ferror(pidfin) != 0)
685			errx(EXIT_FAILURE, "Can't read from pidfile.");
686
687		if (sscanf(pidbuf, "%d", &pid) != 1)
688			errx(EXIT_FAILURE, "Invalid pidfile.");
689		LOG_MSG_1("main", "daemon PID is %d", pid);
690
691
692		memset(&connection_params, 0,
693			sizeof(struct nscd_connection_params));
694		connection_params.socket_path = DEFAULT_SOCKET_PATH;
695		connection = open_nscd_connection__(&connection_params);
696		if (connection == INVALID_NSCD_CONNECTION)
697			errx(EXIT_FAILURE, "Can't connect to the daemon.");
698
699		if (clear_user_cache_entries != 0) {
700			result = nscd_transform__(connection,
701				user_config_entry_name, TT_USER);
702			if (result != 0)
703				LOG_MSG_1("main",
704					"user cache transformation failed");
705			else
706				LOG_MSG_1("main",
707					"user cache_transformation "
708					"succeeded");
709		}
710
711		if (clear_all_cache_entries != 0) {
712			if (geteuid() != 0)
713				errx(EXIT_FAILURE, "Only root can initiate "
714					"global cache transformation.");
715
716			result = nscd_transform__(connection,
717				global_config_entry_name, TT_ALL);
718			if (result != 0)
719				LOG_MSG_1("main",
720					"global cache transformation "
721					"failed");
722			else
723				LOG_MSG_1("main",
724					"global cache transformation "
725					"succeeded");
726		}
727
728		close_nscd_connection__(connection);
729
730		free(user_config_entry_name);
731		free(global_config_entry_name);
732		return (EXIT_SUCCESS);
733	}
734
735	pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
736	if (pidfile == NULL) {
737		if (errno == EEXIST)
738			errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
739				pid);
740		warn("Cannot open or create pidfile");
741	}
742
743	if (trace_mode_enabled == 1)
744		TRACE_ON();
745
746	/* blocking the main thread from receiving SIGPIPE signal */
747	sigblock(sigmask(SIGPIPE));
748
749	/* daemonization */
750	if (do_not_daemonize == 0) {
751		res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
752		if (res != 0) {
753			LOG_ERR_1("main", "can't daemonize myself: %s",
754		    		strerror(errno));
755			pidfile_remove(pidfile);
756			goto fin;
757		} else
758			LOG_MSG_1("main", "successfully daemonized");
759	}
760
761	pidfile_write(pidfile);
762
763	s_agent_table = init_agent_table();
764	register_agent(s_agent_table, init_passwd_agent());
765	register_agent(s_agent_table, init_passwd_mp_agent());
766	register_agent(s_agent_table, init_group_agent());
767	register_agent(s_agent_table, init_group_mp_agent());
768	register_agent(s_agent_table, init_services_agent());
769	register_agent(s_agent_table, init_services_mp_agent());
770	LOG_MSG_1("main", "request agents registered successfully");
771
772	/*
773 	 * Hosts agent can't work properly until we have access to the
774	 * appropriate dtab structures, which are used in nsdispatch
775	 * calls
776	 *
777	 register_agent(s_agent_table, init_hosts_agent());
778	*/
779
780	/* configuration initialization */
781	s_configuration = init_configuration();
782	fill_configuration_defaults(s_configuration);
783
784	error_str = NULL;
785	error_line = 0;
786	config_file = CONFIG_PATH;
787
788	res = parse_config_file(s_configuration, config_file, &error_str,
789		&error_line);
790	if ((res != 0) && (error_str == NULL)) {
791		config_file = DEFAULT_CONFIG_PATH;
792		res = parse_config_file(s_configuration, config_file,
793			&error_str, &error_line);
794	}
795
796	if (res != 0) {
797		if (error_str != NULL) {
798		LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
799			config_file, error_line, error_str);
800		} else {
801		LOG_ERR_1("main", "no configuration file found "
802		    	"- was looking for %s and %s",
803			CONFIG_PATH, DEFAULT_CONFIG_PATH);
804		}
805		destroy_configuration(s_configuration);
806		return (-1);
807	}
808
809	if (force_single_threaded == 1)
810		s_configuration->threads_num = 1;
811
812	/* cache initialization */
813	s_cache = init_cache_(s_configuration);
814	if (s_cache == NULL) {
815		LOG_ERR_1("main", "can't initialize the cache");
816		destroy_configuration(s_configuration);
817		return (-1);
818	}
819
820	/* runtime environment initialization */
821	s_runtime_env = init_runtime_env(s_configuration);
822	if (s_runtime_env == NULL) {
823		LOG_ERR_1("main", "can't initialize the runtime environment");
824		destroy_configuration(s_configuration);
825		destroy_cache_(s_cache);
826		return (-1);
827	}
828
829	if (s_configuration->threads_num > 1) {
830		threads = (pthread_t *)calloc(1, sizeof(pthread_t) *
831			s_configuration->threads_num);
832		for (i = 0; i < s_configuration->threads_num; ++i) {
833			thread_args = (struct processing_thread_args *)malloc(
834				sizeof(struct processing_thread_args));
835			thread_args->the_cache = s_cache;
836			thread_args->the_runtime_env = s_runtime_env;
837			thread_args->the_configuration = s_configuration;
838
839			LOG_MSG_1("main", "thread #%d was successfully created",
840				i);
841			pthread_create(&threads[i], NULL, processing_thread,
842				thread_args);
843
844			thread_args = NULL;
845		}
846
847		for (i = 0; i < s_configuration->threads_num; ++i)
848			pthread_join(threads[i], NULL);
849	} else {
850		LOG_MSG_1("main", "working in single-threaded mode");
851		processing_loop(s_cache, s_runtime_env, s_configuration);
852	}
853
854fin:
855	/* runtime environment destruction */
856	destroy_runtime_env(s_runtime_env);
857
858	/* cache destruction */
859	destroy_cache_(s_cache);
860
861	/* configuration destruction */
862	destroy_configuration(s_configuration);
863
864	/* agents table destruction */
865	destroy_agent_table(s_agent_table);
866
867	pidfile_remove(pidfile);
868	return (EXIT_SUCCESS);
869}
870