nscd.c revision 171795
1/*-
2 * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in thereg
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/usr.sbin/nscd/nscd.c 171795 2007-08-09 13:06:12Z bushman $");
30
31#include <sys/types.h>
32#include <sys/event.h>
33#include <sys/socket.h>
34#include <sys/time.h>
35#include <sys/param.h>
36#include <sys/un.h>
37#include <assert.h>
38#include <err.h>
39#include <errno.h>
40#include <fcntl.h>
41#include <libutil.h>
42#include <pthread.h>
43#include <signal.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <unistd.h>
48
49#include "agents/passwd.h"
50#include "agents/group.h"
51#include "agents/services.h"
52#include "cachelib.h"
53#include "config.h"
54#include "debug.h"
55#include "log.h"
56#include "nscdcli.h"
57#include "parser.h"
58#include "query.h"
59#include "singletons.h"
60
61#ifndef CONFIG_PATH
62#define CONFIG_PATH "/etc/nscd.conf"
63#endif
64#define DEFAULT_CONFIG_PATH	"nscd.conf"
65
66#define MAX_SOCKET_IO_SIZE	4096
67
68struct processing_thread_args {
69	cache	the_cache;
70	struct configuration	*the_configuration;
71	struct runtime_env		*the_runtime_env;
72};
73
74static void accept_connection(struct kevent *, struct runtime_env *,
75	struct configuration *);
76static void destroy_cache_(cache);
77static void destroy_runtime_env(struct runtime_env *);
78static cache init_cache_(struct configuration *);
79static struct runtime_env *init_runtime_env(struct configuration *);
80static void print_version_info(void);
81static void processing_loop(cache, struct runtime_env *,
82	struct configuration *);
83static void process_socket_event(struct kevent *, struct runtime_env *,
84	struct configuration *);
85static void process_timer_event(struct kevent *, struct runtime_env *,
86	struct configuration *);
87static void *processing_thread(void *);
88static void usage(void);
89
90void get_time_func(struct timeval *);
91
92static void
93print_version_info(void)
94{
95	TRACE_IN(print_version_info);
96	printf("nscd v0.2 (20 Oct 2005)\nwas developed during SoC 2005\n");
97	TRACE_OUT(print_version_info);
98}
99
100static void
101usage(void)
102{
103	fprintf(stderr,
104	    "usage: nscd [-dnst] [-i cachename] [-I cachename]\n");
105	exit(1);
106}
107
108static cache
109init_cache_(struct configuration *config)
110{
111	struct cache_params params;
112	cache retval;
113
114	struct configuration_entry *config_entry;
115	size_t	size, i;
116	int res;
117
118	TRACE_IN(init_cache_);
119
120	memset(&params, 0, sizeof(struct cache_params));
121	params.get_time_func = get_time_func;
122	retval = init_cache(&params);
123
124	size = configuration_get_entries_size(config);
125	for (i = 0; i < size; ++i) {
126		config_entry = configuration_get_entry(config, i);
127	    	/*
128	    	 * We should register common entries now - multipart entries
129	    	 * would be registered automatically during the queries.
130	    	 */
131		res = register_cache_entry(retval, (struct cache_entry_params *)
132			&config_entry->positive_cache_params);
133		config_entry->positive_cache_entry = find_cache_entry(retval,
134			config_entry->positive_cache_params.entry_name);
135		assert(config_entry->positive_cache_entry !=
136			INVALID_CACHE_ENTRY);
137
138		res = register_cache_entry(retval, (struct cache_entry_params *)
139			&config_entry->negative_cache_params);
140		config_entry->negative_cache_entry = find_cache_entry(retval,
141			config_entry->negative_cache_params.entry_name);
142		assert(config_entry->negative_cache_entry !=
143			INVALID_CACHE_ENTRY);
144	}
145
146	LOG_MSG_2("cache", "cache was successfully initialized");
147	TRACE_OUT(init_cache_);
148	return (retval);
149}
150
151static void
152destroy_cache_(cache the_cache)
153{
154	TRACE_IN(destroy_cache_);
155	destroy_cache(the_cache);
156	TRACE_OUT(destroy_cache_);
157}
158
159/*
160 * Socket and kqueues are prepared here. We have one global queue for both
161 * socket and timers events.
162 */
163static struct runtime_env *
164init_runtime_env(struct configuration *config)
165{
166	int serv_addr_len;
167	struct sockaddr_un serv_addr;
168
169	struct kevent eventlist;
170	struct timespec timeout;
171
172	struct runtime_env *retval;
173
174	TRACE_IN(init_runtime_env);
175	retval = (struct runtime_env *)malloc(sizeof(struct runtime_env));
176	assert(retval != NULL);
177	memset(retval, 0, sizeof(struct runtime_env));
178
179	retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);
180
181	if (config->force_unlink == 1)
182		unlink(config->socket_path);
183
184	memset(&serv_addr, 0, sizeof(struct sockaddr_un));
185	serv_addr.sun_family = PF_LOCAL;
186	strncpy(serv_addr.sun_path, config->socket_path,
187		sizeof(serv_addr.sun_path));
188	serv_addr_len = sizeof(serv_addr.sun_family) +
189		strlen(serv_addr.sun_path) + 1;
190
191	if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
192		serv_addr_len) == -1) {
193		close(retval->sockfd);
194		free(retval);
195
196		LOG_ERR_2("runtime environment", "can't bind socket to path: "
197			"%s", config->socket_path);
198		TRACE_OUT(init_runtime_env);
199		return (NULL);
200	}
201	LOG_MSG_2("runtime environment", "using socket %s",
202		config->socket_path);
203
204	/*
205	 * Here we're marking socket as non-blocking and setting its backlog
206	 * to the maximum value
207	 */
208	chmod(config->socket_path, config->socket_mode);
209	listen(retval->sockfd, -1);
210	fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);
211
212	retval->queue = kqueue();
213	assert(retval->queue != -1);
214
215	EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
216		0, 0, 0);
217	memset(&timeout, 0, sizeof(struct timespec));
218	kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);
219
220	LOG_MSG_2("runtime environment", "successfully initialized");
221	TRACE_OUT(init_runtime_env);
222	return (retval);
223}
224
225static void
226destroy_runtime_env(struct runtime_env *env)
227{
228	TRACE_IN(destroy_runtime_env);
229	close(env->queue);
230	close(env->sockfd);
231	free(env);
232	TRACE_OUT(destroy_runtime_env);
233}
234
235static void
236accept_connection(struct kevent *event_data, struct runtime_env *env,
237	struct configuration *config)
238{
239	struct kevent	eventlist[2];
240	struct timespec	timeout;
241	struct query_state	*qstate;
242
243	int	fd;
244	int	res;
245
246	uid_t	euid;
247	gid_t	egid;
248
249	TRACE_IN(accept_connection);
250	fd = accept(event_data->ident, NULL, NULL);
251	if (fd == -1) {
252		LOG_ERR_2("accept_connection", "error %d during accept()",
253		    errno);
254		TRACE_OUT(accept_connection);
255		return;
256	}
257
258	if (getpeereid(fd, &euid, &egid) != 0) {
259		LOG_ERR_2("accept_connection", "error %d during getpeereid()",
260			errno);
261		TRACE_OUT(accept_connection);
262		return;
263	}
264
265	qstate = init_query_state(fd, sizeof(int), euid, egid);
266	if (qstate == NULL) {
267		LOG_ERR_2("accept_connection", "can't init query_state");
268		TRACE_OUT(accept_connection);
269		return;
270	}
271
272	memset(&timeout, 0, sizeof(struct timespec));
273	EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
274		0, qstate->timeout.tv_sec * 1000, qstate);
275	EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
276		NOTE_LOWAT, qstate->kevent_watermark, qstate);
277	res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
278	if (res < 0)
279		LOG_ERR_2("accept_connection", "kevent error");
280
281	TRACE_OUT(accept_connection);
282}
283
284static void
285process_socket_event(struct kevent *event_data, struct runtime_env *env,
286	struct configuration *config)
287{
288	struct kevent	eventlist[2];
289	struct timeval	query_timeout;
290	struct timespec	kevent_timeout;
291	int	nevents;
292	int	eof_res, res;
293	ssize_t	io_res;
294	struct query_state *qstate;
295
296	TRACE_IN(process_socket_event);
297	eof_res = event_data->flags & EV_EOF ? 1 : 0;
298	res = 0;
299
300	memset(&kevent_timeout, 0, sizeof(struct timespec));
301	EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
302		0, 0, NULL);
303	nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
304	if (nevents == -1) {
305		if (errno == ENOENT) {
306			/* the timer is already handling this event */
307			TRACE_OUT(process_socket_event);
308			return;
309		} else {
310			/* some other error happened */
311			LOG_ERR_2("process_socket_event", "kevent error, errno"
312				" is %d", errno);
313			TRACE_OUT(process_socket_event);
314			return;
315		}
316	}
317	qstate = (struct query_state *)event_data->udata;
318
319	/*
320	 * If the buffer that is to be send/received is too large,
321	 * we send it implicitly, by using query_io_buffer_read and
322	 * query_io_buffer_write functions in the query_state. These functions
323	 * use the temporary buffer, which is later send/received in parts.
324	 * The code below implements buffer splitting/mergind for send/receive
325	 * operations. It also does the actual socket IO operations.
326	 */
327	if (((qstate->use_alternate_io == 0) &&
328		(qstate->kevent_watermark <= event_data->data)) ||
329		((qstate->use_alternate_io != 0) &&
330		(qstate->io_buffer_watermark <= event_data->data))) {
331		if (qstate->use_alternate_io != 0) {
332			switch (qstate->io_buffer_filter) {
333			case EVFILT_READ:
334				io_res = query_socket_read(qstate,
335					qstate->io_buffer_p,
336					qstate->io_buffer_watermark);
337				if (io_res < 0) {
338					qstate->use_alternate_io = 0;
339					qstate->process_func = NULL;
340				} else {
341					qstate->io_buffer_p += io_res;
342					if (qstate->io_buffer_p ==
343					    	qstate->io_buffer +
344						qstate->io_buffer_size) {
345						qstate->io_buffer_p =
346						    qstate->io_buffer;
347						qstate->use_alternate_io = 0;
348					}
349				}
350			break;
351			default:
352			break;
353			}
354		}
355
356		if (qstate->use_alternate_io == 0) {
357			do {
358				res = qstate->process_func(qstate);
359			} while ((qstate->kevent_watermark == 0) &&
360					(qstate->process_func != NULL) &&
361					(res == 0));
362
363			if (res != 0)
364				qstate->process_func = NULL;
365		}
366
367		if ((qstate->use_alternate_io != 0) &&
368			(qstate->io_buffer_filter == EVFILT_WRITE)) {
369			io_res = query_socket_write(qstate, qstate->io_buffer_p,
370				qstate->io_buffer_watermark);
371			if (io_res < 0) {
372				qstate->use_alternate_io = 0;
373				qstate->process_func = NULL;
374			} else
375				qstate->io_buffer_p += io_res;
376		}
377	} else {
378		/* assuming that socket was closed */
379		qstate->process_func = NULL;
380		qstate->use_alternate_io = 0;
381	}
382
383	if (((qstate->process_func == NULL) &&
384	    	(qstate->use_alternate_io == 0)) ||
385		(eof_res != 0) || (res != 0)) {
386		destroy_query_state(qstate);
387		close(event_data->ident);
388		TRACE_OUT(process_socket_event);
389		return;
390	}
391
392	/* updating the query_state lifetime variable */
393	get_time_func(&query_timeout);
394	query_timeout.tv_usec = 0;
395	query_timeout.tv_sec -= qstate->creation_time.tv_sec;
396	if (query_timeout.tv_sec > qstate->timeout.tv_sec)
397		query_timeout.tv_sec = 0;
398	else
399		query_timeout.tv_sec = qstate->timeout.tv_sec -
400			query_timeout.tv_sec;
401
402	if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
403		qstate->io_buffer + qstate->io_buffer_size))
404		qstate->use_alternate_io = 0;
405
406	if (qstate->use_alternate_io == 0) {
407		/*
408		 * If we must send/receive the large block of data,
409		 * we should prepare the query_state's io_XXX fields.
410		 * We should also substitute its write_func and read_func
411		 * with the query_io_buffer_write and query_io_buffer_read,
412		 * which will allow us to implicitly send/receive this large
413		 * buffer later (in the subsequent calls to the
414		 * process_socket_event).
415		 */
416		if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
417			if (qstate->io_buffer != NULL)
418				free(qstate->io_buffer);
419
420			qstate->io_buffer = (char *)malloc(
421				qstate->kevent_watermark);
422			assert(qstate->io_buffer != NULL);
423			memset(qstate->io_buffer, 0, qstate->kevent_watermark);
424
425			qstate->io_buffer_p = qstate->io_buffer;
426			qstate->io_buffer_size = qstate->kevent_watermark;
427			qstate->io_buffer_filter = qstate->kevent_filter;
428
429			qstate->write_func = query_io_buffer_write;
430			qstate->read_func = query_io_buffer_read;
431
432			if (qstate->kevent_filter == EVFILT_READ)
433				qstate->use_alternate_io = 1;
434
435			qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
436			EV_SET(&eventlist[1], event_data->ident,
437				qstate->kevent_filter, EV_ADD | EV_ONESHOT,
438				NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
439		} else {
440			EV_SET(&eventlist[1], event_data->ident,
441		    		qstate->kevent_filter, EV_ADD | EV_ONESHOT,
442		    		NOTE_LOWAT, qstate->kevent_watermark, qstate);
443		}
444	} else {
445		if (qstate->io_buffer + qstate->io_buffer_size -
446		    	qstate->io_buffer_p <
447			MAX_SOCKET_IO_SIZE) {
448			qstate->io_buffer_watermark = qstate->io_buffer +
449				qstate->io_buffer_size - qstate->io_buffer_p;
450			EV_SET(&eventlist[1], event_data->ident,
451			    	qstate->io_buffer_filter,
452				EV_ADD | EV_ONESHOT, NOTE_LOWAT,
453				qstate->io_buffer_watermark,
454				qstate);
455		} else {
456			qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
457			EV_SET(&eventlist[1], event_data->ident,
458		    		qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
459		    		NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
460		}
461	}
462	EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
463		EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
464	kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);
465
466	TRACE_OUT(process_socket_event);
467}
468
469/*
470 * This routine is called if timer event has been signaled in the kqueue. It
471 * just closes the socket and destroys the query_state.
472 */
473static void
474process_timer_event(struct kevent *event_data, struct runtime_env *env,
475	struct configuration *config)
476{
477	struct query_state	*qstate;
478
479	TRACE_IN(process_timer_event);
480	qstate = (struct query_state *)event_data->udata;
481	destroy_query_state(qstate);
482	close(event_data->ident);
483	TRACE_OUT(process_timer_event);
484}
485
486/*
487 * Processing loop is the basic processing routine, that forms a body of each
488 * procssing thread
489 */
490static void
491processing_loop(cache the_cache, struct runtime_env *env,
492	struct configuration *config)
493{
494	struct timespec timeout;
495	const int eventlist_size = 1;
496	struct kevent eventlist[eventlist_size];
497	int nevents, i;
498
499	TRACE_MSG("=> processing_loop");
500	memset(&timeout, 0, sizeof(struct timespec));
501	memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);
502
503	for (;;) {
504		nevents = kevent(env->queue, NULL, 0, eventlist,
505	    		eventlist_size, NULL);
506		/*
507		 * we can only receive 1 event on success
508		 */
509		if (nevents == 1) {
510			struct kevent *event_data;
511			event_data = &eventlist[0];
512
513			if (event_data->ident == env->sockfd) {
514				for (i = 0; i < event_data->data; ++i)
515				    accept_connection(event_data, env, config);
516
517				EV_SET(eventlist, s_runtime_env->sockfd,
518				    EVFILT_READ, EV_ADD | EV_ONESHOT,
519				    0, 0, 0);
520				memset(&timeout, 0,
521				    sizeof(struct timespec));
522				kevent(s_runtime_env->queue, eventlist,
523				    1, NULL, 0, &timeout);
524
525			} else {
526				switch (event_data->filter) {
527				case EVFILT_READ:
528				case EVFILT_WRITE:
529					process_socket_event(event_data,
530						env, config);
531					break;
532				case EVFILT_TIMER:
533					process_timer_event(event_data,
534						env, config);
535					break;
536				default:
537					break;
538				}
539			}
540		} else {
541			/* this branch shouldn't be currently executed */
542		}
543	}
544
545	TRACE_MSG("<= processing_loop");
546}
547
548/*
549 * Wrapper above the processing loop function. It sets the thread signal mask
550 * to avoid SIGPIPE signals (which can happen if the client works incorrectly).
551 */
552static void *
553processing_thread(void *data)
554{
555	struct processing_thread_args	*args;
556	sigset_t new;
557
558	TRACE_MSG("=> processing_thread");
559	args = (struct processing_thread_args *)data;
560
561	sigemptyset(&new);
562	sigaddset(&new, SIGPIPE);
563	if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
564		LOG_ERR_1("processing thread",
565			"thread can't block the SIGPIPE signal");
566
567	processing_loop(args->the_cache, args->the_runtime_env,
568		args->the_configuration);
569	free(args);
570	TRACE_MSG("<= processing_thread");
571
572	return (NULL);
573}
574
575void
576get_time_func(struct timeval *time)
577{
578	struct timespec res;
579	memset(&res, 0, sizeof(struct timespec));
580	clock_gettime(CLOCK_MONOTONIC, &res);
581
582	time->tv_sec = res.tv_sec;
583	time->tv_usec = 0;
584}
585
586/*
587 * The idea of _nss_cache_cycle_prevention_function is that nsdispatch will
588 * search for this symbol in the executable. This symbol is the attribute of
589 * the caching daemon. So, if it exists, nsdispatch won't try to connect to
590 * the caching daemon and will just ignore the 'cache' source in the
591 * nsswitch.conf. This method helps to avoid cycles and organize
592 * self-performing requests.
593 */
594void
595_nss_cache_cycle_prevention_function(void)
596{
597}
598
599int
600main(int argc, char *argv[])
601{
602	struct processing_thread_args *thread_args;
603	pthread_t *threads;
604
605	struct pidfh *pidfile;
606	pid_t pid;
607
608	char const *config_file;
609	char const *error_str;
610	int error_line;
611	int i, res;
612
613	int trace_mode_enabled;
614	int force_single_threaded;
615	int do_not_daemonize;
616	int clear_user_cache_entries, clear_all_cache_entries;
617	char *user_config_entry_name, *global_config_entry_name;
618	int show_statistics;
619	int daemon_mode, interactive_mode;
620
621
622	/* by default all debug messages are omitted */
623	TRACE_OFF();
624
625	/* startup output */
626	print_version_info();
627
628	/* parsing command line arguments */
629	trace_mode_enabled = 0;
630	force_single_threaded = 0;
631	do_not_daemonize = 0;
632	clear_user_cache_entries = 0;
633	clear_all_cache_entries = 0;
634	show_statistics = 0;
635	user_config_entry_name = NULL;
636	global_config_entry_name = NULL;
637	while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
638		switch (res) {
639		case 'n':
640			do_not_daemonize = 1;
641			break;
642		case 's':
643			force_single_threaded = 1;
644			break;
645		case 't':
646			trace_mode_enabled = 1;
647			break;
648		case 'i':
649			clear_user_cache_entries = 1;
650			if (optarg != NULL)
651				if (strcmp(optarg, "all") != 0)
652					user_config_entry_name = strdup(optarg);
653			break;
654		case 'I':
655			clear_all_cache_entries = 1;
656			if (optarg != NULL)
657				if (strcmp(optarg, "all") != 0)
658					global_config_entry_name =
659						strdup(optarg);
660			break;
661		case 'd':
662			show_statistics = 1;
663			break;
664		case '?':
665		default:
666			usage();
667			/* NOT REACHED */
668		}
669	}
670
671	daemon_mode = do_not_daemonize | force_single_threaded |
672		trace_mode_enabled;
673	interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
674		show_statistics;
675
676	if ((daemon_mode != 0) && (interactive_mode != 0)) {
677		LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
678			"can't be used together");
679		usage();
680	}
681
682	if (interactive_mode != 0) {
683		FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
684		char pidbuf[256];
685
686		struct nscd_connection_params connection_params;
687		nscd_connection connection;
688
689		int result;
690
691		if (pidfin == NULL)
692			errx(EXIT_FAILURE, "There is no daemon running.");
693
694		memset(pidbuf, 0, sizeof(pidbuf));
695		fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
696		fclose(pidfin);
697
698		if (ferror(pidfin) != 0)
699			errx(EXIT_FAILURE, "Can't read from pidfile.");
700
701		if (sscanf(pidbuf, "%d", &pid) != 1)
702			errx(EXIT_FAILURE, "Invalid pidfile.");
703		LOG_MSG_1("main", "daemon PID is %d", pid);
704
705
706		memset(&connection_params, 0,
707			sizeof(struct nscd_connection_params));
708		connection_params.socket_path = DEFAULT_SOCKET_PATH;
709		connection = open_nscd_connection__(&connection_params);
710		if (connection == INVALID_NSCD_CONNECTION)
711			errx(EXIT_FAILURE, "Can't connect to the daemon.");
712
713		if (clear_user_cache_entries != 0) {
714			result = nscd_transform__(connection,
715				user_config_entry_name, TT_USER);
716			if (result != 0)
717				LOG_MSG_1("main",
718					"user cache transformation failed");
719			else
720				LOG_MSG_1("main",
721					"user cache_transformation "
722					"succeeded");
723		}
724
725		if (clear_all_cache_entries != 0) {
726			if (geteuid() != 0)
727				errx(EXIT_FAILURE, "Only root can initiate "
728					"global cache transformation.");
729
730			result = nscd_transform__(connection,
731				global_config_entry_name, TT_ALL);
732			if (result != 0)
733				LOG_MSG_1("main",
734					"global cache transformation "
735					"failed");
736			else
737				LOG_MSG_1("main",
738					"global cache transformation "
739					"succeeded");
740		}
741
742		close_nscd_connection__(connection);
743
744		free(user_config_entry_name);
745		free(global_config_entry_name);
746		return (EXIT_SUCCESS);
747	}
748
749	pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
750	if (pidfile == NULL) {
751		if (errno == EEXIST)
752			errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
753				pid);
754		warn("Cannot open or create pidfile");
755	}
756
757	if (trace_mode_enabled == 1)
758		TRACE_ON();
759
760	/* blocking the main thread from receiving SIGPIPE signal */
761	sigblock(sigmask(SIGPIPE));
762
763	/* daemonization */
764	if (do_not_daemonize == 0) {
765		res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
766		if (res != 0) {
767			LOG_ERR_1("main", "can't daemonize myself: %s",
768		    		strerror(errno));
769			pidfile_remove(pidfile);
770			goto fin;
771		} else
772			LOG_MSG_1("main", "successfully daemonized");
773	}
774
775	pidfile_write(pidfile);
776
777	s_agent_table = init_agent_table();
778	register_agent(s_agent_table, init_passwd_agent());
779	register_agent(s_agent_table, init_passwd_mp_agent());
780	register_agent(s_agent_table, init_group_agent());
781	register_agent(s_agent_table, init_group_mp_agent());
782	register_agent(s_agent_table, init_services_agent());
783	register_agent(s_agent_table, init_services_mp_agent());
784	LOG_MSG_1("main", "request agents registered successfully");
785
786	/*
787 	 * Hosts agent can't work properly until we have access to the
788	 * appropriate dtab structures, which are used in nsdispatch
789	 * calls
790	 *
791	 register_agent(s_agent_table, init_hosts_agent());
792	*/
793
794	/* configuration initialization */
795	s_configuration = init_configuration();
796	fill_configuration_defaults(s_configuration);
797
798	error_str = NULL;
799	error_line = 0;
800	config_file = CONFIG_PATH;
801
802	res = parse_config_file(s_configuration, config_file, &error_str,
803		&error_line);
804	if ((res != 0) && (error_str == NULL)) {
805		config_file = DEFAULT_CONFIG_PATH;
806		res = parse_config_file(s_configuration, config_file,
807			&error_str, &error_line);
808	}
809
810	if (res != 0) {
811		if (error_str != NULL) {
812		LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
813			config_file, error_line, error_str);
814		} else {
815		LOG_ERR_1("main", "no configuration file found "
816		    	"- was looking for %s and %s",
817			CONFIG_PATH, DEFAULT_CONFIG_PATH);
818		}
819		destroy_configuration(s_configuration);
820		return (-1);
821	}
822
823	if (force_single_threaded == 1)
824		s_configuration->threads_num = 1;
825
826	/* cache initialization */
827	s_cache = init_cache_(s_configuration);
828	if (s_cache == NULL) {
829		LOG_ERR_1("main", "can't initialize the cache");
830		destroy_configuration(s_configuration);
831		return (-1);
832	}
833
834	/* runtime environment initialization */
835	s_runtime_env = init_runtime_env(s_configuration);
836	if (s_runtime_env == NULL) {
837		LOG_ERR_1("main", "can't initialize the runtime environment");
838		destroy_configuration(s_configuration);
839		destroy_cache_(s_cache);
840		return (-1);
841	}
842
843	if (s_configuration->threads_num > 1) {
844		threads = (pthread_t *)malloc(sizeof(pthread_t) *
845			s_configuration->threads_num);
846		memset(threads, 0, sizeof(pthread_t) *
847	    		s_configuration->threads_num);
848		for (i = 0; i < s_configuration->threads_num; ++i) {
849			thread_args = (struct processing_thread_args *)malloc(
850				sizeof(struct processing_thread_args));
851			thread_args->the_cache = s_cache;
852			thread_args->the_runtime_env = s_runtime_env;
853			thread_args->the_configuration = s_configuration;
854
855			LOG_MSG_1("main", "thread #%d was successfully created",
856				i);
857			pthread_create(&threads[i], NULL, processing_thread,
858				thread_args);
859
860			thread_args = NULL;
861		}
862
863		for (i = 0; i < s_configuration->threads_num; ++i)
864			pthread_join(threads[i], NULL);
865	} else {
866		LOG_MSG_1("main", "working in single-threaded mode");
867		processing_loop(s_cache, s_runtime_env, s_configuration);
868	}
869
870fin:
871	/* runtime environment destruction */
872	destroy_runtime_env(s_runtime_env);
873
874	/* cache destruction */
875	destroy_cache_(s_cache);
876
877	/* configuration destruction */
878	destroy_configuration(s_configuration);
879
880	/* agents table destruction */
881	destroy_agent_table(s_agent_table);
882
883	pidfile_remove(pidfile);
884	return (EXIT_SUCCESS);
885}
886