vm_map.c revision 270920
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 270920 2014-09-01 07:58:15Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136#ifdef INVARIANTS
137static void vm_map_zdtor(void *mem, int size, void *arg);
138static void vmspace_zdtor(void *mem, int size, void *arg);
139#endif
140static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142    int cow);
143static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144    vm_offset_t failed_addr);
145
146#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
147    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
148     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
149
150/*
151 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
152 * stable.
153 */
154#define PROC_VMSPACE_LOCK(p) do { } while (0)
155#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
156
157/*
158 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
159 *
160 *	Asserts that the starting and ending region
161 *	addresses fall within the valid range of the map.
162 */
163#define	VM_MAP_RANGE_CHECK(map, start, end)		\
164		{					\
165		if (start < vm_map_min(map))		\
166			start = vm_map_min(map);	\
167		if (end > vm_map_max(map))		\
168			end = vm_map_max(map);		\
169		if (start > end)			\
170			start = end;			\
171		}
172
173/*
174 *	vm_map_startup:
175 *
176 *	Initialize the vm_map module.  Must be called before
177 *	any other vm_map routines.
178 *
179 *	Map and entry structures are allocated from the general
180 *	purpose memory pool with some exceptions:
181 *
182 *	- The kernel map and kmem submap are allocated statically.
183 *	- Kernel map entries are allocated out of a static pool.
184 *
185 *	These restrictions are necessary since malloc() uses the
186 *	maps and requires map entries.
187 */
188
189void
190vm_map_startup(void)
191{
192	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
193	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
194#ifdef INVARIANTS
195	    vm_map_zdtor,
196#else
197	    NULL,
198#endif
199	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200	uma_prealloc(mapzone, MAX_KMAP);
201	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
202	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
203	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
204	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
205	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
206	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
207#ifdef INVARIANTS
208	    vmspace_zdtor,
209#else
210	    NULL,
211#endif
212	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
213}
214
215static int
216vmspace_zinit(void *mem, int size, int flags)
217{
218	struct vmspace *vm;
219
220	vm = (struct vmspace *)mem;
221
222	vm->vm_map.pmap = NULL;
223	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
224	PMAP_LOCK_INIT(vmspace_pmap(vm));
225	return (0);
226}
227
228static int
229vm_map_zinit(void *mem, int size, int flags)
230{
231	vm_map_t map;
232
233	map = (vm_map_t)mem;
234	memset(map, 0, sizeof(*map));
235	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
236	sx_init(&map->lock, "vm map (user)");
237	return (0);
238}
239
240#ifdef INVARIANTS
241static void
242vmspace_zdtor(void *mem, int size, void *arg)
243{
244	struct vmspace *vm;
245
246	vm = (struct vmspace *)mem;
247
248	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
249}
250static void
251vm_map_zdtor(void *mem, int size, void *arg)
252{
253	vm_map_t map;
254
255	map = (vm_map_t)mem;
256	KASSERT(map->nentries == 0,
257	    ("map %p nentries == %d on free.",
258	    map, map->nentries));
259	KASSERT(map->size == 0,
260	    ("map %p size == %lu on free.",
261	    map, (unsigned long)map->size));
262}
263#endif	/* INVARIANTS */
264
265/*
266 * Allocate a vmspace structure, including a vm_map and pmap,
267 * and initialize those structures.  The refcnt is set to 1.
268 *
269 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
270 */
271struct vmspace *
272vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
273{
274	struct vmspace *vm;
275
276	vm = uma_zalloc(vmspace_zone, M_WAITOK);
277
278	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
279
280	if (pinit == NULL)
281		pinit = &pmap_pinit;
282
283	if (!pinit(vmspace_pmap(vm))) {
284		uma_zfree(vmspace_zone, vm);
285		return (NULL);
286	}
287	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
288	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
289	vm->vm_refcnt = 1;
290	vm->vm_shm = NULL;
291	vm->vm_swrss = 0;
292	vm->vm_tsize = 0;
293	vm->vm_dsize = 0;
294	vm->vm_ssize = 0;
295	vm->vm_taddr = 0;
296	vm->vm_daddr = 0;
297	vm->vm_maxsaddr = 0;
298	return (vm);
299}
300
301static void
302vmspace_container_reset(struct proc *p)
303{
304
305#ifdef RACCT
306	PROC_LOCK(p);
307	racct_set(p, RACCT_DATA, 0);
308	racct_set(p, RACCT_STACK, 0);
309	racct_set(p, RACCT_RSS, 0);
310	racct_set(p, RACCT_MEMLOCK, 0);
311	racct_set(p, RACCT_VMEM, 0);
312	PROC_UNLOCK(p);
313#endif
314}
315
316static inline void
317vmspace_dofree(struct vmspace *vm)
318{
319
320	CTR1(KTR_VM, "vmspace_free: %p", vm);
321
322	/*
323	 * Make sure any SysV shm is freed, it might not have been in
324	 * exit1().
325	 */
326	shmexit(vm);
327
328	/*
329	 * Lock the map, to wait out all other references to it.
330	 * Delete all of the mappings and pages they hold, then call
331	 * the pmap module to reclaim anything left.
332	 */
333	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
334	    vm->vm_map.max_offset);
335
336	pmap_release(vmspace_pmap(vm));
337	vm->vm_map.pmap = NULL;
338	uma_zfree(vmspace_zone, vm);
339}
340
341void
342vmspace_free(struct vmspace *vm)
343{
344
345	if (vm->vm_refcnt == 0)
346		panic("vmspace_free: attempt to free already freed vmspace");
347
348	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
349		vmspace_dofree(vm);
350}
351
352void
353vmspace_exitfree(struct proc *p)
354{
355	struct vmspace *vm;
356
357	PROC_VMSPACE_LOCK(p);
358	vm = p->p_vmspace;
359	p->p_vmspace = NULL;
360	PROC_VMSPACE_UNLOCK(p);
361	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
362	vmspace_free(vm);
363}
364
365void
366vmspace_exit(struct thread *td)
367{
368	int refcnt;
369	struct vmspace *vm;
370	struct proc *p;
371
372	/*
373	 * Release user portion of address space.
374	 * This releases references to vnodes,
375	 * which could cause I/O if the file has been unlinked.
376	 * Need to do this early enough that we can still sleep.
377	 *
378	 * The last exiting process to reach this point releases as
379	 * much of the environment as it can. vmspace_dofree() is the
380	 * slower fallback in case another process had a temporary
381	 * reference to the vmspace.
382	 */
383
384	p = td->td_proc;
385	vm = p->p_vmspace;
386	atomic_add_int(&vmspace0.vm_refcnt, 1);
387	do {
388		refcnt = vm->vm_refcnt;
389		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
390			/* Switch now since other proc might free vmspace */
391			PROC_VMSPACE_LOCK(p);
392			p->p_vmspace = &vmspace0;
393			PROC_VMSPACE_UNLOCK(p);
394			pmap_activate(td);
395		}
396	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
397	if (refcnt == 1) {
398		if (p->p_vmspace != vm) {
399			/* vmspace not yet freed, switch back */
400			PROC_VMSPACE_LOCK(p);
401			p->p_vmspace = vm;
402			PROC_VMSPACE_UNLOCK(p);
403			pmap_activate(td);
404		}
405		pmap_remove_pages(vmspace_pmap(vm));
406		/* Switch now since this proc will free vmspace */
407		PROC_VMSPACE_LOCK(p);
408		p->p_vmspace = &vmspace0;
409		PROC_VMSPACE_UNLOCK(p);
410		pmap_activate(td);
411		vmspace_dofree(vm);
412	}
413	vmspace_container_reset(p);
414}
415
416/* Acquire reference to vmspace owned by another process. */
417
418struct vmspace *
419vmspace_acquire_ref(struct proc *p)
420{
421	struct vmspace *vm;
422	int refcnt;
423
424	PROC_VMSPACE_LOCK(p);
425	vm = p->p_vmspace;
426	if (vm == NULL) {
427		PROC_VMSPACE_UNLOCK(p);
428		return (NULL);
429	}
430	do {
431		refcnt = vm->vm_refcnt;
432		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
433			PROC_VMSPACE_UNLOCK(p);
434			return (NULL);
435		}
436	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
437	if (vm != p->p_vmspace) {
438		PROC_VMSPACE_UNLOCK(p);
439		vmspace_free(vm);
440		return (NULL);
441	}
442	PROC_VMSPACE_UNLOCK(p);
443	return (vm);
444}
445
446void
447_vm_map_lock(vm_map_t map, const char *file, int line)
448{
449
450	if (map->system_map)
451		mtx_lock_flags_(&map->system_mtx, 0, file, line);
452	else
453		sx_xlock_(&map->lock, file, line);
454	map->timestamp++;
455}
456
457static void
458vm_map_process_deferred(void)
459{
460	struct thread *td;
461	vm_map_entry_t entry, next;
462	vm_object_t object;
463
464	td = curthread;
465	entry = td->td_map_def_user;
466	td->td_map_def_user = NULL;
467	while (entry != NULL) {
468		next = entry->next;
469		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
470			/*
471			 * Decrement the object's writemappings and
472			 * possibly the vnode's v_writecount.
473			 */
474			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
475			    ("Submap with writecount"));
476			object = entry->object.vm_object;
477			KASSERT(object != NULL, ("No object for writecount"));
478			vnode_pager_release_writecount(object, entry->start,
479			    entry->end);
480		}
481		vm_map_entry_deallocate(entry, FALSE);
482		entry = next;
483	}
484}
485
486void
487_vm_map_unlock(vm_map_t map, const char *file, int line)
488{
489
490	if (map->system_map)
491		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
492	else {
493		sx_xunlock_(&map->lock, file, line);
494		vm_map_process_deferred();
495	}
496}
497
498void
499_vm_map_lock_read(vm_map_t map, const char *file, int line)
500{
501
502	if (map->system_map)
503		mtx_lock_flags_(&map->system_mtx, 0, file, line);
504	else
505		sx_slock_(&map->lock, file, line);
506}
507
508void
509_vm_map_unlock_read(vm_map_t map, const char *file, int line)
510{
511
512	if (map->system_map)
513		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
514	else {
515		sx_sunlock_(&map->lock, file, line);
516		vm_map_process_deferred();
517	}
518}
519
520int
521_vm_map_trylock(vm_map_t map, const char *file, int line)
522{
523	int error;
524
525	error = map->system_map ?
526	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
527	    !sx_try_xlock_(&map->lock, file, line);
528	if (error == 0)
529		map->timestamp++;
530	return (error == 0);
531}
532
533int
534_vm_map_trylock_read(vm_map_t map, const char *file, int line)
535{
536	int error;
537
538	error = map->system_map ?
539	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
540	    !sx_try_slock_(&map->lock, file, line);
541	return (error == 0);
542}
543
544/*
545 *	_vm_map_lock_upgrade:	[ internal use only ]
546 *
547 *	Tries to upgrade a read (shared) lock on the specified map to a write
548 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
549 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
550 *	returned without a read or write lock held.
551 *
552 *	Requires that the map be read locked.
553 */
554int
555_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
556{
557	unsigned int last_timestamp;
558
559	if (map->system_map) {
560		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
561	} else {
562		if (!sx_try_upgrade_(&map->lock, file, line)) {
563			last_timestamp = map->timestamp;
564			sx_sunlock_(&map->lock, file, line);
565			vm_map_process_deferred();
566			/*
567			 * If the map's timestamp does not change while the
568			 * map is unlocked, then the upgrade succeeds.
569			 */
570			sx_xlock_(&map->lock, file, line);
571			if (last_timestamp != map->timestamp) {
572				sx_xunlock_(&map->lock, file, line);
573				return (1);
574			}
575		}
576	}
577	map->timestamp++;
578	return (0);
579}
580
581void
582_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
583{
584
585	if (map->system_map) {
586		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
587	} else
588		sx_downgrade_(&map->lock, file, line);
589}
590
591/*
592 *	vm_map_locked:
593 *
594 *	Returns a non-zero value if the caller holds a write (exclusive) lock
595 *	on the specified map and the value "0" otherwise.
596 */
597int
598vm_map_locked(vm_map_t map)
599{
600
601	if (map->system_map)
602		return (mtx_owned(&map->system_mtx));
603	else
604		return (sx_xlocked(&map->lock));
605}
606
607#ifdef INVARIANTS
608static void
609_vm_map_assert_locked(vm_map_t map, const char *file, int line)
610{
611
612	if (map->system_map)
613		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
614	else
615		sx_assert_(&map->lock, SA_XLOCKED, file, line);
616}
617
618#define	VM_MAP_ASSERT_LOCKED(map) \
619    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
620#else
621#define	VM_MAP_ASSERT_LOCKED(map)
622#endif
623
624/*
625 *	_vm_map_unlock_and_wait:
626 *
627 *	Atomically releases the lock on the specified map and puts the calling
628 *	thread to sleep.  The calling thread will remain asleep until either
629 *	vm_map_wakeup() is performed on the map or the specified timeout is
630 *	exceeded.
631 *
632 *	WARNING!  This function does not perform deferred deallocations of
633 *	objects and map	entries.  Therefore, the calling thread is expected to
634 *	reacquire the map lock after reawakening and later perform an ordinary
635 *	unlock operation, such as vm_map_unlock(), before completing its
636 *	operation on the map.
637 */
638int
639_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
640{
641
642	mtx_lock(&map_sleep_mtx);
643	if (map->system_map)
644		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
645	else
646		sx_xunlock_(&map->lock, file, line);
647	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
648	    timo));
649}
650
651/*
652 *	vm_map_wakeup:
653 *
654 *	Awaken any threads that have slept on the map using
655 *	vm_map_unlock_and_wait().
656 */
657void
658vm_map_wakeup(vm_map_t map)
659{
660
661	/*
662	 * Acquire and release map_sleep_mtx to prevent a wakeup()
663	 * from being performed (and lost) between the map unlock
664	 * and the msleep() in _vm_map_unlock_and_wait().
665	 */
666	mtx_lock(&map_sleep_mtx);
667	mtx_unlock(&map_sleep_mtx);
668	wakeup(&map->root);
669}
670
671void
672vm_map_busy(vm_map_t map)
673{
674
675	VM_MAP_ASSERT_LOCKED(map);
676	map->busy++;
677}
678
679void
680vm_map_unbusy(vm_map_t map)
681{
682
683	VM_MAP_ASSERT_LOCKED(map);
684	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
685	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
686		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
687		wakeup(&map->busy);
688	}
689}
690
691void
692vm_map_wait_busy(vm_map_t map)
693{
694
695	VM_MAP_ASSERT_LOCKED(map);
696	while (map->busy) {
697		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
698		if (map->system_map)
699			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
700		else
701			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
702	}
703	map->timestamp++;
704}
705
706long
707vmspace_resident_count(struct vmspace *vmspace)
708{
709	return pmap_resident_count(vmspace_pmap(vmspace));
710}
711
712/*
713 *	vm_map_create:
714 *
715 *	Creates and returns a new empty VM map with
716 *	the given physical map structure, and having
717 *	the given lower and upper address bounds.
718 */
719vm_map_t
720vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
721{
722	vm_map_t result;
723
724	result = uma_zalloc(mapzone, M_WAITOK);
725	CTR1(KTR_VM, "vm_map_create: %p", result);
726	_vm_map_init(result, pmap, min, max);
727	return (result);
728}
729
730/*
731 * Initialize an existing vm_map structure
732 * such as that in the vmspace structure.
733 */
734static void
735_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
736{
737
738	map->header.next = map->header.prev = &map->header;
739	map->needs_wakeup = FALSE;
740	map->system_map = 0;
741	map->pmap = pmap;
742	map->min_offset = min;
743	map->max_offset = max;
744	map->flags = 0;
745	map->root = NULL;
746	map->timestamp = 0;
747	map->busy = 0;
748}
749
750void
751vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
752{
753
754	_vm_map_init(map, pmap, min, max);
755	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
756	sx_init(&map->lock, "user map");
757}
758
759/*
760 *	vm_map_entry_dispose:	[ internal use only ]
761 *
762 *	Inverse of vm_map_entry_create.
763 */
764static void
765vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
766{
767	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
768}
769
770/*
771 *	vm_map_entry_create:	[ internal use only ]
772 *
773 *	Allocates a VM map entry for insertion.
774 *	No entry fields are filled in.
775 */
776static vm_map_entry_t
777vm_map_entry_create(vm_map_t map)
778{
779	vm_map_entry_t new_entry;
780
781	if (map->system_map)
782		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
783	else
784		new_entry = uma_zalloc(mapentzone, M_WAITOK);
785	if (new_entry == NULL)
786		panic("vm_map_entry_create: kernel resources exhausted");
787	return (new_entry);
788}
789
790/*
791 *	vm_map_entry_set_behavior:
792 *
793 *	Set the expected access behavior, either normal, random, or
794 *	sequential.
795 */
796static inline void
797vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
798{
799	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
800	    (behavior & MAP_ENTRY_BEHAV_MASK);
801}
802
803/*
804 *	vm_map_entry_set_max_free:
805 *
806 *	Set the max_free field in a vm_map_entry.
807 */
808static inline void
809vm_map_entry_set_max_free(vm_map_entry_t entry)
810{
811
812	entry->max_free = entry->adj_free;
813	if (entry->left != NULL && entry->left->max_free > entry->max_free)
814		entry->max_free = entry->left->max_free;
815	if (entry->right != NULL && entry->right->max_free > entry->max_free)
816		entry->max_free = entry->right->max_free;
817}
818
819/*
820 *	vm_map_entry_splay:
821 *
822 *	The Sleator and Tarjan top-down splay algorithm with the
823 *	following variation.  Max_free must be computed bottom-up, so
824 *	on the downward pass, maintain the left and right spines in
825 *	reverse order.  Then, make a second pass up each side to fix
826 *	the pointers and compute max_free.  The time bound is O(log n)
827 *	amortized.
828 *
829 *	The new root is the vm_map_entry containing "addr", or else an
830 *	adjacent entry (lower or higher) if addr is not in the tree.
831 *
832 *	The map must be locked, and leaves it so.
833 *
834 *	Returns: the new root.
835 */
836static vm_map_entry_t
837vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
838{
839	vm_map_entry_t llist, rlist;
840	vm_map_entry_t ltree, rtree;
841	vm_map_entry_t y;
842
843	/* Special case of empty tree. */
844	if (root == NULL)
845		return (root);
846
847	/*
848	 * Pass One: Splay down the tree until we find addr or a NULL
849	 * pointer where addr would go.  llist and rlist are the two
850	 * sides in reverse order (bottom-up), with llist linked by
851	 * the right pointer and rlist linked by the left pointer in
852	 * the vm_map_entry.  Wait until Pass Two to set max_free on
853	 * the two spines.
854	 */
855	llist = NULL;
856	rlist = NULL;
857	for (;;) {
858		/* root is never NULL in here. */
859		if (addr < root->start) {
860			y = root->left;
861			if (y == NULL)
862				break;
863			if (addr < y->start && y->left != NULL) {
864				/* Rotate right and put y on rlist. */
865				root->left = y->right;
866				y->right = root;
867				vm_map_entry_set_max_free(root);
868				root = y->left;
869				y->left = rlist;
870				rlist = y;
871			} else {
872				/* Put root on rlist. */
873				root->left = rlist;
874				rlist = root;
875				root = y;
876			}
877		} else if (addr >= root->end) {
878			y = root->right;
879			if (y == NULL)
880				break;
881			if (addr >= y->end && y->right != NULL) {
882				/* Rotate left and put y on llist. */
883				root->right = y->left;
884				y->left = root;
885				vm_map_entry_set_max_free(root);
886				root = y->right;
887				y->right = llist;
888				llist = y;
889			} else {
890				/* Put root on llist. */
891				root->right = llist;
892				llist = root;
893				root = y;
894			}
895		} else
896			break;
897	}
898
899	/*
900	 * Pass Two: Walk back up the two spines, flip the pointers
901	 * and set max_free.  The subtrees of the root go at the
902	 * bottom of llist and rlist.
903	 */
904	ltree = root->left;
905	while (llist != NULL) {
906		y = llist->right;
907		llist->right = ltree;
908		vm_map_entry_set_max_free(llist);
909		ltree = llist;
910		llist = y;
911	}
912	rtree = root->right;
913	while (rlist != NULL) {
914		y = rlist->left;
915		rlist->left = rtree;
916		vm_map_entry_set_max_free(rlist);
917		rtree = rlist;
918		rlist = y;
919	}
920
921	/*
922	 * Final assembly: add ltree and rtree as subtrees of root.
923	 */
924	root->left = ltree;
925	root->right = rtree;
926	vm_map_entry_set_max_free(root);
927
928	return (root);
929}
930
931/*
932 *	vm_map_entry_{un,}link:
933 *
934 *	Insert/remove entries from maps.
935 */
936static void
937vm_map_entry_link(vm_map_t map,
938		  vm_map_entry_t after_where,
939		  vm_map_entry_t entry)
940{
941
942	CTR4(KTR_VM,
943	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
944	    map->nentries, entry, after_where);
945	VM_MAP_ASSERT_LOCKED(map);
946	KASSERT(after_where == &map->header ||
947	    after_where->end <= entry->start,
948	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
949	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
950	KASSERT(after_where->next == &map->header ||
951	    entry->end <= after_where->next->start,
952	    ("vm_map_entry_link: new end %jx next start %jx overlap",
953	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
954
955	map->nentries++;
956	entry->prev = after_where;
957	entry->next = after_where->next;
958	entry->next->prev = entry;
959	after_where->next = entry;
960
961	if (after_where != &map->header) {
962		if (after_where != map->root)
963			vm_map_entry_splay(after_where->start, map->root);
964		entry->right = after_where->right;
965		entry->left = after_where;
966		after_where->right = NULL;
967		after_where->adj_free = entry->start - after_where->end;
968		vm_map_entry_set_max_free(after_where);
969	} else {
970		entry->right = map->root;
971		entry->left = NULL;
972	}
973	entry->adj_free = (entry->next == &map->header ? map->max_offset :
974	    entry->next->start) - entry->end;
975	vm_map_entry_set_max_free(entry);
976	map->root = entry;
977}
978
979static void
980vm_map_entry_unlink(vm_map_t map,
981		    vm_map_entry_t entry)
982{
983	vm_map_entry_t next, prev, root;
984
985	VM_MAP_ASSERT_LOCKED(map);
986	if (entry != map->root)
987		vm_map_entry_splay(entry->start, map->root);
988	if (entry->left == NULL)
989		root = entry->right;
990	else {
991		root = vm_map_entry_splay(entry->start, entry->left);
992		root->right = entry->right;
993		root->adj_free = (entry->next == &map->header ? map->max_offset :
994		    entry->next->start) - root->end;
995		vm_map_entry_set_max_free(root);
996	}
997	map->root = root;
998
999	prev = entry->prev;
1000	next = entry->next;
1001	next->prev = prev;
1002	prev->next = next;
1003	map->nentries--;
1004	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1005	    map->nentries, entry);
1006}
1007
1008/*
1009 *	vm_map_entry_resize_free:
1010 *
1011 *	Recompute the amount of free space following a vm_map_entry
1012 *	and propagate that value up the tree.  Call this function after
1013 *	resizing a map entry in-place, that is, without a call to
1014 *	vm_map_entry_link() or _unlink().
1015 *
1016 *	The map must be locked, and leaves it so.
1017 */
1018static void
1019vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1020{
1021
1022	/*
1023	 * Using splay trees without parent pointers, propagating
1024	 * max_free up the tree is done by moving the entry to the
1025	 * root and making the change there.
1026	 */
1027	if (entry != map->root)
1028		map->root = vm_map_entry_splay(entry->start, map->root);
1029
1030	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1031	    entry->next->start) - entry->end;
1032	vm_map_entry_set_max_free(entry);
1033}
1034
1035/*
1036 *	vm_map_lookup_entry:	[ internal use only ]
1037 *
1038 *	Finds the map entry containing (or
1039 *	immediately preceding) the specified address
1040 *	in the given map; the entry is returned
1041 *	in the "entry" parameter.  The boolean
1042 *	result indicates whether the address is
1043 *	actually contained in the map.
1044 */
1045boolean_t
1046vm_map_lookup_entry(
1047	vm_map_t map,
1048	vm_offset_t address,
1049	vm_map_entry_t *entry)	/* OUT */
1050{
1051	vm_map_entry_t cur;
1052	boolean_t locked;
1053
1054	/*
1055	 * If the map is empty, then the map entry immediately preceding
1056	 * "address" is the map's header.
1057	 */
1058	cur = map->root;
1059	if (cur == NULL)
1060		*entry = &map->header;
1061	else if (address >= cur->start && cur->end > address) {
1062		*entry = cur;
1063		return (TRUE);
1064	} else if ((locked = vm_map_locked(map)) ||
1065	    sx_try_upgrade(&map->lock)) {
1066		/*
1067		 * Splay requires a write lock on the map.  However, it only
1068		 * restructures the binary search tree; it does not otherwise
1069		 * change the map.  Thus, the map's timestamp need not change
1070		 * on a temporary upgrade.
1071		 */
1072		map->root = cur = vm_map_entry_splay(address, cur);
1073		if (!locked)
1074			sx_downgrade(&map->lock);
1075
1076		/*
1077		 * If "address" is contained within a map entry, the new root
1078		 * is that map entry.  Otherwise, the new root is a map entry
1079		 * immediately before or after "address".
1080		 */
1081		if (address >= cur->start) {
1082			*entry = cur;
1083			if (cur->end > address)
1084				return (TRUE);
1085		} else
1086			*entry = cur->prev;
1087	} else
1088		/*
1089		 * Since the map is only locked for read access, perform a
1090		 * standard binary search tree lookup for "address".
1091		 */
1092		for (;;) {
1093			if (address < cur->start) {
1094				if (cur->left == NULL) {
1095					*entry = cur->prev;
1096					break;
1097				}
1098				cur = cur->left;
1099			} else if (cur->end > address) {
1100				*entry = cur;
1101				return (TRUE);
1102			} else {
1103				if (cur->right == NULL) {
1104					*entry = cur;
1105					break;
1106				}
1107				cur = cur->right;
1108			}
1109		}
1110	return (FALSE);
1111}
1112
1113/*
1114 *	vm_map_insert:
1115 *
1116 *	Inserts the given whole VM object into the target
1117 *	map at the specified address range.  The object's
1118 *	size should match that of the address range.
1119 *
1120 *	Requires that the map be locked, and leaves it so.
1121 *
1122 *	If object is non-NULL, ref count must be bumped by caller
1123 *	prior to making call to account for the new entry.
1124 */
1125int
1126vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1127	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1128	      int cow)
1129{
1130	vm_map_entry_t new_entry;
1131	vm_map_entry_t prev_entry;
1132	vm_map_entry_t temp_entry;
1133	vm_eflags_t protoeflags;
1134	struct ucred *cred;
1135	vm_inherit_t inheritance;
1136	boolean_t charge_prev_obj;
1137
1138	VM_MAP_ASSERT_LOCKED(map);
1139
1140	/*
1141	 * Check that the start and end points are not bogus.
1142	 */
1143	if ((start < map->min_offset) || (end > map->max_offset) ||
1144	    (start >= end))
1145		return (KERN_INVALID_ADDRESS);
1146
1147	/*
1148	 * Find the entry prior to the proposed starting address; if it's part
1149	 * of an existing entry, this range is bogus.
1150	 */
1151	if (vm_map_lookup_entry(map, start, &temp_entry))
1152		return (KERN_NO_SPACE);
1153
1154	prev_entry = temp_entry;
1155
1156	/*
1157	 * Assert that the next entry doesn't overlap the end point.
1158	 */
1159	if ((prev_entry->next != &map->header) &&
1160	    (prev_entry->next->start < end))
1161		return (KERN_NO_SPACE);
1162
1163	protoeflags = 0;
1164	charge_prev_obj = FALSE;
1165
1166	if (cow & MAP_COPY_ON_WRITE)
1167		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1168
1169	if (cow & MAP_NOFAULT) {
1170		protoeflags |= MAP_ENTRY_NOFAULT;
1171
1172		KASSERT(object == NULL,
1173			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1174	}
1175	if (cow & MAP_DISABLE_SYNCER)
1176		protoeflags |= MAP_ENTRY_NOSYNC;
1177	if (cow & MAP_DISABLE_COREDUMP)
1178		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1179	if (cow & MAP_VN_WRITECOUNT)
1180		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1181	if (cow & MAP_INHERIT_SHARE)
1182		inheritance = VM_INHERIT_SHARE;
1183	else
1184		inheritance = VM_INHERIT_DEFAULT;
1185
1186	cred = NULL;
1187	KASSERT((object != kmem_object && object != kernel_object) ||
1188	    ((object == kmem_object || object == kernel_object) &&
1189		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1190	    ("kmem or kernel object and cow"));
1191	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1192		goto charged;
1193	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1194	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1195		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1196			return (KERN_RESOURCE_SHORTAGE);
1197		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1198		    object->cred == NULL,
1199		    ("OVERCOMMIT: vm_map_insert o %p", object));
1200		cred = curthread->td_ucred;
1201		crhold(cred);
1202		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1203			charge_prev_obj = TRUE;
1204	}
1205
1206charged:
1207	/* Expand the kernel pmap, if necessary. */
1208	if (map == kernel_map && end > kernel_vm_end)
1209		pmap_growkernel(end);
1210	if (object != NULL) {
1211		/*
1212		 * OBJ_ONEMAPPING must be cleared unless this mapping
1213		 * is trivially proven to be the only mapping for any
1214		 * of the object's pages.  (Object granularity
1215		 * reference counting is insufficient to recognize
1216		 * aliases with precision.)
1217		 */
1218		VM_OBJECT_WLOCK(object);
1219		if (object->ref_count > 1 || object->shadow_count != 0)
1220			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1221		VM_OBJECT_WUNLOCK(object);
1222	}
1223	else if ((prev_entry != &map->header) &&
1224		 (prev_entry->eflags == protoeflags) &&
1225		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1226		 (prev_entry->end == start) &&
1227		 (prev_entry->wired_count == 0) &&
1228		 (prev_entry->cred == cred ||
1229		  (prev_entry->object.vm_object != NULL &&
1230		   (prev_entry->object.vm_object->cred == cred))) &&
1231		   vm_object_coalesce(prev_entry->object.vm_object,
1232		       prev_entry->offset,
1233		       (vm_size_t)(prev_entry->end - prev_entry->start),
1234		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1235		/*
1236		 * We were able to extend the object.  Determine if we
1237		 * can extend the previous map entry to include the
1238		 * new range as well.
1239		 */
1240		if ((prev_entry->inheritance == inheritance) &&
1241		    (prev_entry->protection == prot) &&
1242		    (prev_entry->max_protection == max)) {
1243			map->size += (end - prev_entry->end);
1244			prev_entry->end = end;
1245			vm_map_entry_resize_free(map, prev_entry);
1246			vm_map_simplify_entry(map, prev_entry);
1247			if (cred != NULL)
1248				crfree(cred);
1249			return (KERN_SUCCESS);
1250		}
1251
1252		/*
1253		 * If we can extend the object but cannot extend the
1254		 * map entry, we have to create a new map entry.  We
1255		 * must bump the ref count on the extended object to
1256		 * account for it.  object may be NULL.
1257		 */
1258		object = prev_entry->object.vm_object;
1259		offset = prev_entry->offset +
1260			(prev_entry->end - prev_entry->start);
1261		vm_object_reference(object);
1262		if (cred != NULL && object != NULL && object->cred != NULL &&
1263		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1264			/* Object already accounts for this uid. */
1265			crfree(cred);
1266			cred = NULL;
1267		}
1268	}
1269
1270	/*
1271	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1272	 * in things like the buffer map where we manage kva but do not manage
1273	 * backing objects.
1274	 */
1275
1276	/*
1277	 * Create a new entry
1278	 */
1279	new_entry = vm_map_entry_create(map);
1280	new_entry->start = start;
1281	new_entry->end = end;
1282	new_entry->cred = NULL;
1283
1284	new_entry->eflags = protoeflags;
1285	new_entry->object.vm_object = object;
1286	new_entry->offset = offset;
1287	new_entry->avail_ssize = 0;
1288
1289	new_entry->inheritance = inheritance;
1290	new_entry->protection = prot;
1291	new_entry->max_protection = max;
1292	new_entry->wired_count = 0;
1293	new_entry->wiring_thread = NULL;
1294	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1295	new_entry->next_read = OFF_TO_IDX(offset);
1296
1297	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1298	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1299	new_entry->cred = cred;
1300
1301	/*
1302	 * Insert the new entry into the list
1303	 */
1304	vm_map_entry_link(map, prev_entry, new_entry);
1305	map->size += new_entry->end - new_entry->start;
1306
1307	/*
1308	 * It may be possible to merge the new entry with the next and/or
1309	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1310	 * panic can result from merging such entries.
1311	 */
1312	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1313		vm_map_simplify_entry(map, new_entry);
1314
1315	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1316		vm_map_pmap_enter(map, start, prot,
1317				    object, OFF_TO_IDX(offset), end - start,
1318				    cow & MAP_PREFAULT_PARTIAL);
1319	}
1320
1321	return (KERN_SUCCESS);
1322}
1323
1324/*
1325 *	vm_map_findspace:
1326 *
1327 *	Find the first fit (lowest VM address) for "length" free bytes
1328 *	beginning at address >= start in the given map.
1329 *
1330 *	In a vm_map_entry, "adj_free" is the amount of free space
1331 *	adjacent (higher address) to this entry, and "max_free" is the
1332 *	maximum amount of contiguous free space in its subtree.  This
1333 *	allows finding a free region in one path down the tree, so
1334 *	O(log n) amortized with splay trees.
1335 *
1336 *	The map must be locked, and leaves it so.
1337 *
1338 *	Returns: 0 on success, and starting address in *addr,
1339 *		 1 if insufficient space.
1340 */
1341int
1342vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1343    vm_offset_t *addr)	/* OUT */
1344{
1345	vm_map_entry_t entry;
1346	vm_offset_t st;
1347
1348	/*
1349	 * Request must fit within min/max VM address and must avoid
1350	 * address wrap.
1351	 */
1352	if (start < map->min_offset)
1353		start = map->min_offset;
1354	if (start + length > map->max_offset || start + length < start)
1355		return (1);
1356
1357	/* Empty tree means wide open address space. */
1358	if (map->root == NULL) {
1359		*addr = start;
1360		return (0);
1361	}
1362
1363	/*
1364	 * After splay, if start comes before root node, then there
1365	 * must be a gap from start to the root.
1366	 */
1367	map->root = vm_map_entry_splay(start, map->root);
1368	if (start + length <= map->root->start) {
1369		*addr = start;
1370		return (0);
1371	}
1372
1373	/*
1374	 * Root is the last node that might begin its gap before
1375	 * start, and this is the last comparison where address
1376	 * wrap might be a problem.
1377	 */
1378	st = (start > map->root->end) ? start : map->root->end;
1379	if (length <= map->root->end + map->root->adj_free - st) {
1380		*addr = st;
1381		return (0);
1382	}
1383
1384	/* With max_free, can immediately tell if no solution. */
1385	entry = map->root->right;
1386	if (entry == NULL || length > entry->max_free)
1387		return (1);
1388
1389	/*
1390	 * Search the right subtree in the order: left subtree, root,
1391	 * right subtree (first fit).  The previous splay implies that
1392	 * all regions in the right subtree have addresses > start.
1393	 */
1394	while (entry != NULL) {
1395		if (entry->left != NULL && entry->left->max_free >= length)
1396			entry = entry->left;
1397		else if (entry->adj_free >= length) {
1398			*addr = entry->end;
1399			return (0);
1400		} else
1401			entry = entry->right;
1402	}
1403
1404	/* Can't get here, so panic if we do. */
1405	panic("vm_map_findspace: max_free corrupt");
1406}
1407
1408int
1409vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1410    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1411    vm_prot_t max, int cow)
1412{
1413	vm_offset_t end;
1414	int result;
1415
1416	end = start + length;
1417	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1418	    object == NULL,
1419	    ("vm_map_fixed: non-NULL backing object for stack"));
1420	vm_map_lock(map);
1421	VM_MAP_RANGE_CHECK(map, start, end);
1422	if ((cow & MAP_CHECK_EXCL) == 0)
1423		vm_map_delete(map, start, end);
1424	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1425		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1426		    prot, max, cow);
1427	} else {
1428		result = vm_map_insert(map, object, offset, start, end,
1429		    prot, max, cow);
1430	}
1431	vm_map_unlock(map);
1432	return (result);
1433}
1434
1435/*
1436 *	vm_map_find finds an unallocated region in the target address
1437 *	map with the given length.  The search is defined to be
1438 *	first-fit from the specified address; the region found is
1439 *	returned in the same parameter.
1440 *
1441 *	If object is non-NULL, ref count must be bumped by caller
1442 *	prior to making call to account for the new entry.
1443 */
1444int
1445vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1446	    vm_offset_t *addr,	/* IN/OUT */
1447	    vm_size_t length, vm_offset_t max_addr, int find_space,
1448	    vm_prot_t prot, vm_prot_t max, int cow)
1449{
1450	vm_offset_t alignment, initial_addr, start;
1451	int result;
1452
1453	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1454	    object == NULL,
1455	    ("vm_map_find: non-NULL backing object for stack"));
1456	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1457	    (object->flags & OBJ_COLORED) == 0))
1458		find_space = VMFS_ANY_SPACE;
1459	if (find_space >> 8 != 0) {
1460		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1461		alignment = (vm_offset_t)1 << (find_space >> 8);
1462	} else
1463		alignment = 0;
1464	initial_addr = *addr;
1465again:
1466	start = initial_addr;
1467	vm_map_lock(map);
1468	do {
1469		if (find_space != VMFS_NO_SPACE) {
1470			if (vm_map_findspace(map, start, length, addr) ||
1471			    (max_addr != 0 && *addr + length > max_addr)) {
1472				vm_map_unlock(map);
1473				if (find_space == VMFS_OPTIMAL_SPACE) {
1474					find_space = VMFS_ANY_SPACE;
1475					goto again;
1476				}
1477				return (KERN_NO_SPACE);
1478			}
1479			switch (find_space) {
1480			case VMFS_SUPER_SPACE:
1481			case VMFS_OPTIMAL_SPACE:
1482				pmap_align_superpage(object, offset, addr,
1483				    length);
1484				break;
1485			case VMFS_ANY_SPACE:
1486				break;
1487			default:
1488				if ((*addr & (alignment - 1)) != 0) {
1489					*addr &= ~(alignment - 1);
1490					*addr += alignment;
1491				}
1492				break;
1493			}
1494
1495			start = *addr;
1496		}
1497		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1498			result = vm_map_stack_locked(map, start, length,
1499			    sgrowsiz, prot, max, cow);
1500		} else {
1501			result = vm_map_insert(map, object, offset, start,
1502			    start + length, prot, max, cow);
1503		}
1504	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1505	    find_space != VMFS_ANY_SPACE);
1506	vm_map_unlock(map);
1507	return (result);
1508}
1509
1510/*
1511 *	vm_map_simplify_entry:
1512 *
1513 *	Simplify the given map entry by merging with either neighbor.  This
1514 *	routine also has the ability to merge with both neighbors.
1515 *
1516 *	The map must be locked.
1517 *
1518 *	This routine guarentees that the passed entry remains valid (though
1519 *	possibly extended).  When merging, this routine may delete one or
1520 *	both neighbors.
1521 */
1522void
1523vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1524{
1525	vm_map_entry_t next, prev;
1526	vm_size_t prevsize, esize;
1527
1528	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1529		return;
1530
1531	prev = entry->prev;
1532	if (prev != &map->header) {
1533		prevsize = prev->end - prev->start;
1534		if ( (prev->end == entry->start) &&
1535		     (prev->object.vm_object == entry->object.vm_object) &&
1536		     (!prev->object.vm_object ||
1537			(prev->offset + prevsize == entry->offset)) &&
1538		     (prev->eflags == entry->eflags) &&
1539		     (prev->protection == entry->protection) &&
1540		     (prev->max_protection == entry->max_protection) &&
1541		     (prev->inheritance == entry->inheritance) &&
1542		     (prev->wired_count == entry->wired_count) &&
1543		     (prev->cred == entry->cred)) {
1544			vm_map_entry_unlink(map, prev);
1545			entry->start = prev->start;
1546			entry->offset = prev->offset;
1547			if (entry->prev != &map->header)
1548				vm_map_entry_resize_free(map, entry->prev);
1549
1550			/*
1551			 * If the backing object is a vnode object,
1552			 * vm_object_deallocate() calls vrele().
1553			 * However, vrele() does not lock the vnode
1554			 * because the vnode has additional
1555			 * references.  Thus, the map lock can be kept
1556			 * without causing a lock-order reversal with
1557			 * the vnode lock.
1558			 *
1559			 * Since we count the number of virtual page
1560			 * mappings in object->un_pager.vnp.writemappings,
1561			 * the writemappings value should not be adjusted
1562			 * when the entry is disposed of.
1563			 */
1564			if (prev->object.vm_object)
1565				vm_object_deallocate(prev->object.vm_object);
1566			if (prev->cred != NULL)
1567				crfree(prev->cred);
1568			vm_map_entry_dispose(map, prev);
1569		}
1570	}
1571
1572	next = entry->next;
1573	if (next != &map->header) {
1574		esize = entry->end - entry->start;
1575		if ((entry->end == next->start) &&
1576		    (next->object.vm_object == entry->object.vm_object) &&
1577		     (!entry->object.vm_object ||
1578			(entry->offset + esize == next->offset)) &&
1579		    (next->eflags == entry->eflags) &&
1580		    (next->protection == entry->protection) &&
1581		    (next->max_protection == entry->max_protection) &&
1582		    (next->inheritance == entry->inheritance) &&
1583		    (next->wired_count == entry->wired_count) &&
1584		    (next->cred == entry->cred)) {
1585			vm_map_entry_unlink(map, next);
1586			entry->end = next->end;
1587			vm_map_entry_resize_free(map, entry);
1588
1589			/*
1590			 * See comment above.
1591			 */
1592			if (next->object.vm_object)
1593				vm_object_deallocate(next->object.vm_object);
1594			if (next->cred != NULL)
1595				crfree(next->cred);
1596			vm_map_entry_dispose(map, next);
1597		}
1598	}
1599}
1600/*
1601 *	vm_map_clip_start:	[ internal use only ]
1602 *
1603 *	Asserts that the given entry begins at or after
1604 *	the specified address; if necessary,
1605 *	it splits the entry into two.
1606 */
1607#define vm_map_clip_start(map, entry, startaddr) \
1608{ \
1609	if (startaddr > entry->start) \
1610		_vm_map_clip_start(map, entry, startaddr); \
1611}
1612
1613/*
1614 *	This routine is called only when it is known that
1615 *	the entry must be split.
1616 */
1617static void
1618_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1619{
1620	vm_map_entry_t new_entry;
1621
1622	VM_MAP_ASSERT_LOCKED(map);
1623
1624	/*
1625	 * Split off the front portion -- note that we must insert the new
1626	 * entry BEFORE this one, so that this entry has the specified
1627	 * starting address.
1628	 */
1629	vm_map_simplify_entry(map, entry);
1630
1631	/*
1632	 * If there is no object backing this entry, we might as well create
1633	 * one now.  If we defer it, an object can get created after the map
1634	 * is clipped, and individual objects will be created for the split-up
1635	 * map.  This is a bit of a hack, but is also about the best place to
1636	 * put this improvement.
1637	 */
1638	if (entry->object.vm_object == NULL && !map->system_map) {
1639		vm_object_t object;
1640		object = vm_object_allocate(OBJT_DEFAULT,
1641				atop(entry->end - entry->start));
1642		entry->object.vm_object = object;
1643		entry->offset = 0;
1644		if (entry->cred != NULL) {
1645			object->cred = entry->cred;
1646			object->charge = entry->end - entry->start;
1647			entry->cred = NULL;
1648		}
1649	} else if (entry->object.vm_object != NULL &&
1650		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1651		   entry->cred != NULL) {
1652		VM_OBJECT_WLOCK(entry->object.vm_object);
1653		KASSERT(entry->object.vm_object->cred == NULL,
1654		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1655		entry->object.vm_object->cred = entry->cred;
1656		entry->object.vm_object->charge = entry->end - entry->start;
1657		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1658		entry->cred = NULL;
1659	}
1660
1661	new_entry = vm_map_entry_create(map);
1662	*new_entry = *entry;
1663
1664	new_entry->end = start;
1665	entry->offset += (start - entry->start);
1666	entry->start = start;
1667	if (new_entry->cred != NULL)
1668		crhold(entry->cred);
1669
1670	vm_map_entry_link(map, entry->prev, new_entry);
1671
1672	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1673		vm_object_reference(new_entry->object.vm_object);
1674		/*
1675		 * The object->un_pager.vnp.writemappings for the
1676		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1677		 * kept as is here.  The virtual pages are
1678		 * re-distributed among the clipped entries, so the sum is
1679		 * left the same.
1680		 */
1681	}
1682}
1683
1684/*
1685 *	vm_map_clip_end:	[ internal use only ]
1686 *
1687 *	Asserts that the given entry ends at or before
1688 *	the specified address; if necessary,
1689 *	it splits the entry into two.
1690 */
1691#define vm_map_clip_end(map, entry, endaddr) \
1692{ \
1693	if ((endaddr) < (entry->end)) \
1694		_vm_map_clip_end((map), (entry), (endaddr)); \
1695}
1696
1697/*
1698 *	This routine is called only when it is known that
1699 *	the entry must be split.
1700 */
1701static void
1702_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1703{
1704	vm_map_entry_t new_entry;
1705
1706	VM_MAP_ASSERT_LOCKED(map);
1707
1708	/*
1709	 * If there is no object backing this entry, we might as well create
1710	 * one now.  If we defer it, an object can get created after the map
1711	 * is clipped, and individual objects will be created for the split-up
1712	 * map.  This is a bit of a hack, but is also about the best place to
1713	 * put this improvement.
1714	 */
1715	if (entry->object.vm_object == NULL && !map->system_map) {
1716		vm_object_t object;
1717		object = vm_object_allocate(OBJT_DEFAULT,
1718				atop(entry->end - entry->start));
1719		entry->object.vm_object = object;
1720		entry->offset = 0;
1721		if (entry->cred != NULL) {
1722			object->cred = entry->cred;
1723			object->charge = entry->end - entry->start;
1724			entry->cred = NULL;
1725		}
1726	} else if (entry->object.vm_object != NULL &&
1727		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1728		   entry->cred != NULL) {
1729		VM_OBJECT_WLOCK(entry->object.vm_object);
1730		KASSERT(entry->object.vm_object->cred == NULL,
1731		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1732		entry->object.vm_object->cred = entry->cred;
1733		entry->object.vm_object->charge = entry->end - entry->start;
1734		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1735		entry->cred = NULL;
1736	}
1737
1738	/*
1739	 * Create a new entry and insert it AFTER the specified entry
1740	 */
1741	new_entry = vm_map_entry_create(map);
1742	*new_entry = *entry;
1743
1744	new_entry->start = entry->end = end;
1745	new_entry->offset += (end - entry->start);
1746	if (new_entry->cred != NULL)
1747		crhold(entry->cred);
1748
1749	vm_map_entry_link(map, entry, new_entry);
1750
1751	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1752		vm_object_reference(new_entry->object.vm_object);
1753	}
1754}
1755
1756/*
1757 *	vm_map_submap:		[ kernel use only ]
1758 *
1759 *	Mark the given range as handled by a subordinate map.
1760 *
1761 *	This range must have been created with vm_map_find,
1762 *	and no other operations may have been performed on this
1763 *	range prior to calling vm_map_submap.
1764 *
1765 *	Only a limited number of operations can be performed
1766 *	within this rage after calling vm_map_submap:
1767 *		vm_fault
1768 *	[Don't try vm_map_copy!]
1769 *
1770 *	To remove a submapping, one must first remove the
1771 *	range from the superior map, and then destroy the
1772 *	submap (if desired).  [Better yet, don't try it.]
1773 */
1774int
1775vm_map_submap(
1776	vm_map_t map,
1777	vm_offset_t start,
1778	vm_offset_t end,
1779	vm_map_t submap)
1780{
1781	vm_map_entry_t entry;
1782	int result = KERN_INVALID_ARGUMENT;
1783
1784	vm_map_lock(map);
1785
1786	VM_MAP_RANGE_CHECK(map, start, end);
1787
1788	if (vm_map_lookup_entry(map, start, &entry)) {
1789		vm_map_clip_start(map, entry, start);
1790	} else
1791		entry = entry->next;
1792
1793	vm_map_clip_end(map, entry, end);
1794
1795	if ((entry->start == start) && (entry->end == end) &&
1796	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1797	    (entry->object.vm_object == NULL)) {
1798		entry->object.sub_map = submap;
1799		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1800		result = KERN_SUCCESS;
1801	}
1802	vm_map_unlock(map);
1803
1804	return (result);
1805}
1806
1807/*
1808 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1809 */
1810#define	MAX_INIT_PT	96
1811
1812/*
1813 *	vm_map_pmap_enter:
1814 *
1815 *	Preload the specified map's pmap with mappings to the specified
1816 *	object's memory-resident pages.  No further physical pages are
1817 *	allocated, and no further virtual pages are retrieved from secondary
1818 *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1819 *	limited number of page mappings are created at the low-end of the
1820 *	specified address range.  (For this purpose, a superpage mapping
1821 *	counts as one page mapping.)  Otherwise, all resident pages within
1822 *	the specified address range are mapped.  Because these mappings are
1823 *	being created speculatively, cached pages are not reactivated and
1824 *	mapped.
1825 */
1826void
1827vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1828    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1829{
1830	vm_offset_t start;
1831	vm_page_t p, p_start;
1832	vm_pindex_t mask, psize, threshold, tmpidx;
1833
1834	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1835		return;
1836	VM_OBJECT_RLOCK(object);
1837	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1838		VM_OBJECT_RUNLOCK(object);
1839		VM_OBJECT_WLOCK(object);
1840		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1841			pmap_object_init_pt(map->pmap, addr, object, pindex,
1842			    size);
1843			VM_OBJECT_WUNLOCK(object);
1844			return;
1845		}
1846		VM_OBJECT_LOCK_DOWNGRADE(object);
1847	}
1848
1849	psize = atop(size);
1850	if (psize + pindex > object->size) {
1851		if (object->size < pindex) {
1852			VM_OBJECT_RUNLOCK(object);
1853			return;
1854		}
1855		psize = object->size - pindex;
1856	}
1857
1858	start = 0;
1859	p_start = NULL;
1860	threshold = MAX_INIT_PT;
1861
1862	p = vm_page_find_least(object, pindex);
1863	/*
1864	 * Assert: the variable p is either (1) the page with the
1865	 * least pindex greater than or equal to the parameter pindex
1866	 * or (2) NULL.
1867	 */
1868	for (;
1869	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1870	     p = TAILQ_NEXT(p, listq)) {
1871		/*
1872		 * don't allow an madvise to blow away our really
1873		 * free pages allocating pv entries.
1874		 */
1875		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1876		    cnt.v_free_count < cnt.v_free_reserved) ||
1877		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1878		    tmpidx >= threshold)) {
1879			psize = tmpidx;
1880			break;
1881		}
1882		if (p->valid == VM_PAGE_BITS_ALL) {
1883			if (p_start == NULL) {
1884				start = addr + ptoa(tmpidx);
1885				p_start = p;
1886			}
1887			/* Jump ahead if a superpage mapping is possible. */
1888			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1889			    (pagesizes[p->psind] - 1)) == 0) {
1890				mask = atop(pagesizes[p->psind]) - 1;
1891				if (tmpidx + mask < psize &&
1892				    vm_page_ps_is_valid(p)) {
1893					p += mask;
1894					threshold += mask;
1895				}
1896			}
1897		} else if (p_start != NULL) {
1898			pmap_enter_object(map->pmap, start, addr +
1899			    ptoa(tmpidx), p_start, prot);
1900			p_start = NULL;
1901		}
1902	}
1903	if (p_start != NULL)
1904		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1905		    p_start, prot);
1906	VM_OBJECT_RUNLOCK(object);
1907}
1908
1909/*
1910 *	vm_map_protect:
1911 *
1912 *	Sets the protection of the specified address
1913 *	region in the target map.  If "set_max" is
1914 *	specified, the maximum protection is to be set;
1915 *	otherwise, only the current protection is affected.
1916 */
1917int
1918vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1919	       vm_prot_t new_prot, boolean_t set_max)
1920{
1921	vm_map_entry_t current, entry;
1922	vm_object_t obj;
1923	struct ucred *cred;
1924	vm_prot_t old_prot;
1925
1926	if (start == end)
1927		return (KERN_SUCCESS);
1928
1929	vm_map_lock(map);
1930
1931	VM_MAP_RANGE_CHECK(map, start, end);
1932
1933	if (vm_map_lookup_entry(map, start, &entry)) {
1934		vm_map_clip_start(map, entry, start);
1935	} else {
1936		entry = entry->next;
1937	}
1938
1939	/*
1940	 * Make a first pass to check for protection violations.
1941	 */
1942	current = entry;
1943	while ((current != &map->header) && (current->start < end)) {
1944		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1945			vm_map_unlock(map);
1946			return (KERN_INVALID_ARGUMENT);
1947		}
1948		if ((new_prot & current->max_protection) != new_prot) {
1949			vm_map_unlock(map);
1950			return (KERN_PROTECTION_FAILURE);
1951		}
1952		current = current->next;
1953	}
1954
1955
1956	/*
1957	 * Do an accounting pass for private read-only mappings that
1958	 * now will do cow due to allowed write (e.g. debugger sets
1959	 * breakpoint on text segment)
1960	 */
1961	for (current = entry; (current != &map->header) &&
1962	     (current->start < end); current = current->next) {
1963
1964		vm_map_clip_end(map, current, end);
1965
1966		if (set_max ||
1967		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1968		    ENTRY_CHARGED(current)) {
1969			continue;
1970		}
1971
1972		cred = curthread->td_ucred;
1973		obj = current->object.vm_object;
1974
1975		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1976			if (!swap_reserve(current->end - current->start)) {
1977				vm_map_unlock(map);
1978				return (KERN_RESOURCE_SHORTAGE);
1979			}
1980			crhold(cred);
1981			current->cred = cred;
1982			continue;
1983		}
1984
1985		VM_OBJECT_WLOCK(obj);
1986		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1987			VM_OBJECT_WUNLOCK(obj);
1988			continue;
1989		}
1990
1991		/*
1992		 * Charge for the whole object allocation now, since
1993		 * we cannot distinguish between non-charged and
1994		 * charged clipped mapping of the same object later.
1995		 */
1996		KASSERT(obj->charge == 0,
1997		    ("vm_map_protect: object %p overcharged (entry %p)",
1998		    obj, current));
1999		if (!swap_reserve(ptoa(obj->size))) {
2000			VM_OBJECT_WUNLOCK(obj);
2001			vm_map_unlock(map);
2002			return (KERN_RESOURCE_SHORTAGE);
2003		}
2004
2005		crhold(cred);
2006		obj->cred = cred;
2007		obj->charge = ptoa(obj->size);
2008		VM_OBJECT_WUNLOCK(obj);
2009	}
2010
2011	/*
2012	 * Go back and fix up protections. [Note that clipping is not
2013	 * necessary the second time.]
2014	 */
2015	current = entry;
2016	while ((current != &map->header) && (current->start < end)) {
2017		old_prot = current->protection;
2018
2019		if (set_max)
2020			current->protection =
2021			    (current->max_protection = new_prot) &
2022			    old_prot;
2023		else
2024			current->protection = new_prot;
2025
2026		/*
2027		 * For user wired map entries, the normal lazy evaluation of
2028		 * write access upgrades through soft page faults is
2029		 * undesirable.  Instead, immediately copy any pages that are
2030		 * copy-on-write and enable write access in the physical map.
2031		 */
2032		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2033		    (current->protection & VM_PROT_WRITE) != 0 &&
2034		    (old_prot & VM_PROT_WRITE) == 0)
2035			vm_fault_copy_entry(map, map, current, current, NULL);
2036
2037		/*
2038		 * When restricting access, update the physical map.  Worry
2039		 * about copy-on-write here.
2040		 */
2041		if ((old_prot & ~current->protection) != 0) {
2042#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2043							VM_PROT_ALL)
2044			pmap_protect(map->pmap, current->start,
2045			    current->end,
2046			    current->protection & MASK(current));
2047#undef	MASK
2048		}
2049		vm_map_simplify_entry(map, current);
2050		current = current->next;
2051	}
2052	vm_map_unlock(map);
2053	return (KERN_SUCCESS);
2054}
2055
2056/*
2057 *	vm_map_madvise:
2058 *
2059 *	This routine traverses a processes map handling the madvise
2060 *	system call.  Advisories are classified as either those effecting
2061 *	the vm_map_entry structure, or those effecting the underlying
2062 *	objects.
2063 */
2064int
2065vm_map_madvise(
2066	vm_map_t map,
2067	vm_offset_t start,
2068	vm_offset_t end,
2069	int behav)
2070{
2071	vm_map_entry_t current, entry;
2072	int modify_map = 0;
2073
2074	/*
2075	 * Some madvise calls directly modify the vm_map_entry, in which case
2076	 * we need to use an exclusive lock on the map and we need to perform
2077	 * various clipping operations.  Otherwise we only need a read-lock
2078	 * on the map.
2079	 */
2080	switch(behav) {
2081	case MADV_NORMAL:
2082	case MADV_SEQUENTIAL:
2083	case MADV_RANDOM:
2084	case MADV_NOSYNC:
2085	case MADV_AUTOSYNC:
2086	case MADV_NOCORE:
2087	case MADV_CORE:
2088		if (start == end)
2089			return (KERN_SUCCESS);
2090		modify_map = 1;
2091		vm_map_lock(map);
2092		break;
2093	case MADV_WILLNEED:
2094	case MADV_DONTNEED:
2095	case MADV_FREE:
2096		if (start == end)
2097			return (KERN_SUCCESS);
2098		vm_map_lock_read(map);
2099		break;
2100	default:
2101		return (KERN_INVALID_ARGUMENT);
2102	}
2103
2104	/*
2105	 * Locate starting entry and clip if necessary.
2106	 */
2107	VM_MAP_RANGE_CHECK(map, start, end);
2108
2109	if (vm_map_lookup_entry(map, start, &entry)) {
2110		if (modify_map)
2111			vm_map_clip_start(map, entry, start);
2112	} else {
2113		entry = entry->next;
2114	}
2115
2116	if (modify_map) {
2117		/*
2118		 * madvise behaviors that are implemented in the vm_map_entry.
2119		 *
2120		 * We clip the vm_map_entry so that behavioral changes are
2121		 * limited to the specified address range.
2122		 */
2123		for (current = entry;
2124		     (current != &map->header) && (current->start < end);
2125		     current = current->next
2126		) {
2127			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2128				continue;
2129
2130			vm_map_clip_end(map, current, end);
2131
2132			switch (behav) {
2133			case MADV_NORMAL:
2134				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2135				break;
2136			case MADV_SEQUENTIAL:
2137				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2138				break;
2139			case MADV_RANDOM:
2140				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2141				break;
2142			case MADV_NOSYNC:
2143				current->eflags |= MAP_ENTRY_NOSYNC;
2144				break;
2145			case MADV_AUTOSYNC:
2146				current->eflags &= ~MAP_ENTRY_NOSYNC;
2147				break;
2148			case MADV_NOCORE:
2149				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2150				break;
2151			case MADV_CORE:
2152				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2153				break;
2154			default:
2155				break;
2156			}
2157			vm_map_simplify_entry(map, current);
2158		}
2159		vm_map_unlock(map);
2160	} else {
2161		vm_pindex_t pstart, pend;
2162
2163		/*
2164		 * madvise behaviors that are implemented in the underlying
2165		 * vm_object.
2166		 *
2167		 * Since we don't clip the vm_map_entry, we have to clip
2168		 * the vm_object pindex and count.
2169		 */
2170		for (current = entry;
2171		     (current != &map->header) && (current->start < end);
2172		     current = current->next
2173		) {
2174			vm_offset_t useEnd, useStart;
2175
2176			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2177				continue;
2178
2179			pstart = OFF_TO_IDX(current->offset);
2180			pend = pstart + atop(current->end - current->start);
2181			useStart = current->start;
2182			useEnd = current->end;
2183
2184			if (current->start < start) {
2185				pstart += atop(start - current->start);
2186				useStart = start;
2187			}
2188			if (current->end > end) {
2189				pend -= atop(current->end - end);
2190				useEnd = end;
2191			}
2192
2193			if (pstart >= pend)
2194				continue;
2195
2196			/*
2197			 * Perform the pmap_advise() before clearing
2198			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2199			 * concurrent pmap operation, such as pmap_remove(),
2200			 * could clear a reference in the pmap and set
2201			 * PGA_REFERENCED on the page before the pmap_advise()
2202			 * had completed.  Consequently, the page would appear
2203			 * referenced based upon an old reference that
2204			 * occurred before this pmap_advise() ran.
2205			 */
2206			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2207				pmap_advise(map->pmap, useStart, useEnd,
2208				    behav);
2209
2210			vm_object_madvise(current->object.vm_object, pstart,
2211			    pend, behav);
2212			if (behav == MADV_WILLNEED) {
2213				vm_map_pmap_enter(map,
2214				    useStart,
2215				    current->protection,
2216				    current->object.vm_object,
2217				    pstart,
2218				    ptoa(pend - pstart),
2219				    MAP_PREFAULT_MADVISE
2220				);
2221			}
2222		}
2223		vm_map_unlock_read(map);
2224	}
2225	return (0);
2226}
2227
2228
2229/*
2230 *	vm_map_inherit:
2231 *
2232 *	Sets the inheritance of the specified address
2233 *	range in the target map.  Inheritance
2234 *	affects how the map will be shared with
2235 *	child maps at the time of vmspace_fork.
2236 */
2237int
2238vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2239	       vm_inherit_t new_inheritance)
2240{
2241	vm_map_entry_t entry;
2242	vm_map_entry_t temp_entry;
2243
2244	switch (new_inheritance) {
2245	case VM_INHERIT_NONE:
2246	case VM_INHERIT_COPY:
2247	case VM_INHERIT_SHARE:
2248		break;
2249	default:
2250		return (KERN_INVALID_ARGUMENT);
2251	}
2252	if (start == end)
2253		return (KERN_SUCCESS);
2254	vm_map_lock(map);
2255	VM_MAP_RANGE_CHECK(map, start, end);
2256	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2257		entry = temp_entry;
2258		vm_map_clip_start(map, entry, start);
2259	} else
2260		entry = temp_entry->next;
2261	while ((entry != &map->header) && (entry->start < end)) {
2262		vm_map_clip_end(map, entry, end);
2263		entry->inheritance = new_inheritance;
2264		vm_map_simplify_entry(map, entry);
2265		entry = entry->next;
2266	}
2267	vm_map_unlock(map);
2268	return (KERN_SUCCESS);
2269}
2270
2271/*
2272 *	vm_map_unwire:
2273 *
2274 *	Implements both kernel and user unwiring.
2275 */
2276int
2277vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2278    int flags)
2279{
2280	vm_map_entry_t entry, first_entry, tmp_entry;
2281	vm_offset_t saved_start;
2282	unsigned int last_timestamp;
2283	int rv;
2284	boolean_t need_wakeup, result, user_unwire;
2285
2286	if (start == end)
2287		return (KERN_SUCCESS);
2288	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2289	vm_map_lock(map);
2290	VM_MAP_RANGE_CHECK(map, start, end);
2291	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2292		if (flags & VM_MAP_WIRE_HOLESOK)
2293			first_entry = first_entry->next;
2294		else {
2295			vm_map_unlock(map);
2296			return (KERN_INVALID_ADDRESS);
2297		}
2298	}
2299	last_timestamp = map->timestamp;
2300	entry = first_entry;
2301	while (entry != &map->header && entry->start < end) {
2302		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2303			/*
2304			 * We have not yet clipped the entry.
2305			 */
2306			saved_start = (start >= entry->start) ? start :
2307			    entry->start;
2308			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2309			if (vm_map_unlock_and_wait(map, 0)) {
2310				/*
2311				 * Allow interruption of user unwiring?
2312				 */
2313			}
2314			vm_map_lock(map);
2315			if (last_timestamp+1 != map->timestamp) {
2316				/*
2317				 * Look again for the entry because the map was
2318				 * modified while it was unlocked.
2319				 * Specifically, the entry may have been
2320				 * clipped, merged, or deleted.
2321				 */
2322				if (!vm_map_lookup_entry(map, saved_start,
2323				    &tmp_entry)) {
2324					if (flags & VM_MAP_WIRE_HOLESOK)
2325						tmp_entry = tmp_entry->next;
2326					else {
2327						if (saved_start == start) {
2328							/*
2329							 * First_entry has been deleted.
2330							 */
2331							vm_map_unlock(map);
2332							return (KERN_INVALID_ADDRESS);
2333						}
2334						end = saved_start;
2335						rv = KERN_INVALID_ADDRESS;
2336						goto done;
2337					}
2338				}
2339				if (entry == first_entry)
2340					first_entry = tmp_entry;
2341				else
2342					first_entry = NULL;
2343				entry = tmp_entry;
2344			}
2345			last_timestamp = map->timestamp;
2346			continue;
2347		}
2348		vm_map_clip_start(map, entry, start);
2349		vm_map_clip_end(map, entry, end);
2350		/*
2351		 * Mark the entry in case the map lock is released.  (See
2352		 * above.)
2353		 */
2354		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2355		    entry->wiring_thread == NULL,
2356		    ("owned map entry %p", entry));
2357		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2358		entry->wiring_thread = curthread;
2359		/*
2360		 * Check the map for holes in the specified region.
2361		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2362		 */
2363		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2364		    (entry->end < end && (entry->next == &map->header ||
2365		    entry->next->start > entry->end))) {
2366			end = entry->end;
2367			rv = KERN_INVALID_ADDRESS;
2368			goto done;
2369		}
2370		/*
2371		 * If system unwiring, require that the entry is system wired.
2372		 */
2373		if (!user_unwire &&
2374		    vm_map_entry_system_wired_count(entry) == 0) {
2375			end = entry->end;
2376			rv = KERN_INVALID_ARGUMENT;
2377			goto done;
2378		}
2379		entry = entry->next;
2380	}
2381	rv = KERN_SUCCESS;
2382done:
2383	need_wakeup = FALSE;
2384	if (first_entry == NULL) {
2385		result = vm_map_lookup_entry(map, start, &first_entry);
2386		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2387			first_entry = first_entry->next;
2388		else
2389			KASSERT(result, ("vm_map_unwire: lookup failed"));
2390	}
2391	for (entry = first_entry; entry != &map->header && entry->start < end;
2392	    entry = entry->next) {
2393		/*
2394		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2395		 * space in the unwired region could have been mapped
2396		 * while the map lock was dropped for draining
2397		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2398		 * could be simultaneously wiring this new mapping
2399		 * entry.  Detect these cases and skip any entries
2400		 * marked as in transition by us.
2401		 */
2402		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2403		    entry->wiring_thread != curthread) {
2404			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2405			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2406			continue;
2407		}
2408
2409		if (rv == KERN_SUCCESS && (!user_unwire ||
2410		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2411			if (user_unwire)
2412				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2413			if (entry->wired_count == 1)
2414				vm_map_entry_unwire(map, entry);
2415			else
2416				entry->wired_count--;
2417		}
2418		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2419		    ("vm_map_unwire: in-transition flag missing %p", entry));
2420		KASSERT(entry->wiring_thread == curthread,
2421		    ("vm_map_unwire: alien wire %p", entry));
2422		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2423		entry->wiring_thread = NULL;
2424		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2425			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2426			need_wakeup = TRUE;
2427		}
2428		vm_map_simplify_entry(map, entry);
2429	}
2430	vm_map_unlock(map);
2431	if (need_wakeup)
2432		vm_map_wakeup(map);
2433	return (rv);
2434}
2435
2436/*
2437 *	vm_map_wire_entry_failure:
2438 *
2439 *	Handle a wiring failure on the given entry.
2440 *
2441 *	The map should be locked.
2442 */
2443static void
2444vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2445    vm_offset_t failed_addr)
2446{
2447
2448	VM_MAP_ASSERT_LOCKED(map);
2449	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2450	    entry->wired_count == 1,
2451	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2452	KASSERT(failed_addr < entry->end,
2453	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2454
2455	/*
2456	 * If any pages at the start of this entry were successfully wired,
2457	 * then unwire them.
2458	 */
2459	if (failed_addr > entry->start) {
2460		pmap_unwire(map->pmap, entry->start, failed_addr);
2461		vm_object_unwire(entry->object.vm_object, entry->offset,
2462		    failed_addr - entry->start, PQ_ACTIVE);
2463	}
2464
2465	/*
2466	 * Assign an out-of-range value to represent the failure to wire this
2467	 * entry.
2468	 */
2469	entry->wired_count = -1;
2470}
2471
2472/*
2473 *	vm_map_wire:
2474 *
2475 *	Implements both kernel and user wiring.
2476 */
2477int
2478vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2479    int flags)
2480{
2481	vm_map_entry_t entry, first_entry, tmp_entry;
2482	vm_offset_t faddr, saved_end, saved_start;
2483	unsigned int last_timestamp;
2484	int rv;
2485	boolean_t need_wakeup, result, user_wire;
2486	vm_prot_t prot;
2487
2488	if (start == end)
2489		return (KERN_SUCCESS);
2490	prot = 0;
2491	if (flags & VM_MAP_WIRE_WRITE)
2492		prot |= VM_PROT_WRITE;
2493	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2494	vm_map_lock(map);
2495	VM_MAP_RANGE_CHECK(map, start, end);
2496	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2497		if (flags & VM_MAP_WIRE_HOLESOK)
2498			first_entry = first_entry->next;
2499		else {
2500			vm_map_unlock(map);
2501			return (KERN_INVALID_ADDRESS);
2502		}
2503	}
2504	last_timestamp = map->timestamp;
2505	entry = first_entry;
2506	while (entry != &map->header && entry->start < end) {
2507		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2508			/*
2509			 * We have not yet clipped the entry.
2510			 */
2511			saved_start = (start >= entry->start) ? start :
2512			    entry->start;
2513			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2514			if (vm_map_unlock_and_wait(map, 0)) {
2515				/*
2516				 * Allow interruption of user wiring?
2517				 */
2518			}
2519			vm_map_lock(map);
2520			if (last_timestamp + 1 != map->timestamp) {
2521				/*
2522				 * Look again for the entry because the map was
2523				 * modified while it was unlocked.
2524				 * Specifically, the entry may have been
2525				 * clipped, merged, or deleted.
2526				 */
2527				if (!vm_map_lookup_entry(map, saved_start,
2528				    &tmp_entry)) {
2529					if (flags & VM_MAP_WIRE_HOLESOK)
2530						tmp_entry = tmp_entry->next;
2531					else {
2532						if (saved_start == start) {
2533							/*
2534							 * first_entry has been deleted.
2535							 */
2536							vm_map_unlock(map);
2537							return (KERN_INVALID_ADDRESS);
2538						}
2539						end = saved_start;
2540						rv = KERN_INVALID_ADDRESS;
2541						goto done;
2542					}
2543				}
2544				if (entry == first_entry)
2545					first_entry = tmp_entry;
2546				else
2547					first_entry = NULL;
2548				entry = tmp_entry;
2549			}
2550			last_timestamp = map->timestamp;
2551			continue;
2552		}
2553		vm_map_clip_start(map, entry, start);
2554		vm_map_clip_end(map, entry, end);
2555		/*
2556		 * Mark the entry in case the map lock is released.  (See
2557		 * above.)
2558		 */
2559		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2560		    entry->wiring_thread == NULL,
2561		    ("owned map entry %p", entry));
2562		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2563		entry->wiring_thread = curthread;
2564		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2565		    || (entry->protection & prot) != prot) {
2566			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2567			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2568				end = entry->end;
2569				rv = KERN_INVALID_ADDRESS;
2570				goto done;
2571			}
2572			goto next_entry;
2573		}
2574		if (entry->wired_count == 0) {
2575			entry->wired_count++;
2576			saved_start = entry->start;
2577			saved_end = entry->end;
2578
2579			/*
2580			 * Release the map lock, relying on the in-transition
2581			 * mark.  Mark the map busy for fork.
2582			 */
2583			vm_map_busy(map);
2584			vm_map_unlock(map);
2585
2586			faddr = saved_start;
2587			do {
2588				/*
2589				 * Simulate a fault to get the page and enter
2590				 * it into the physical map.
2591				 */
2592				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2593				    VM_FAULT_CHANGE_WIRING)) != KERN_SUCCESS)
2594					break;
2595			} while ((faddr += PAGE_SIZE) < saved_end);
2596			vm_map_lock(map);
2597			vm_map_unbusy(map);
2598			if (last_timestamp + 1 != map->timestamp) {
2599				/*
2600				 * Look again for the entry because the map was
2601				 * modified while it was unlocked.  The entry
2602				 * may have been clipped, but NOT merged or
2603				 * deleted.
2604				 */
2605				result = vm_map_lookup_entry(map, saved_start,
2606				    &tmp_entry);
2607				KASSERT(result, ("vm_map_wire: lookup failed"));
2608				if (entry == first_entry)
2609					first_entry = tmp_entry;
2610				else
2611					first_entry = NULL;
2612				entry = tmp_entry;
2613				while (entry->end < saved_end) {
2614					/*
2615					 * In case of failure, handle entries
2616					 * that were not fully wired here;
2617					 * fully wired entries are handled
2618					 * later.
2619					 */
2620					if (rv != KERN_SUCCESS &&
2621					    faddr < entry->end)
2622						vm_map_wire_entry_failure(map,
2623						    entry, faddr);
2624					entry = entry->next;
2625				}
2626			}
2627			last_timestamp = map->timestamp;
2628			if (rv != KERN_SUCCESS) {
2629				vm_map_wire_entry_failure(map, entry, faddr);
2630				end = entry->end;
2631				goto done;
2632			}
2633		} else if (!user_wire ||
2634			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2635			entry->wired_count++;
2636		}
2637		/*
2638		 * Check the map for holes in the specified region.
2639		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2640		 */
2641	next_entry:
2642		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2643		    (entry->end < end && (entry->next == &map->header ||
2644		    entry->next->start > entry->end))) {
2645			end = entry->end;
2646			rv = KERN_INVALID_ADDRESS;
2647			goto done;
2648		}
2649		entry = entry->next;
2650	}
2651	rv = KERN_SUCCESS;
2652done:
2653	need_wakeup = FALSE;
2654	if (first_entry == NULL) {
2655		result = vm_map_lookup_entry(map, start, &first_entry);
2656		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2657			first_entry = first_entry->next;
2658		else
2659			KASSERT(result, ("vm_map_wire: lookup failed"));
2660	}
2661	for (entry = first_entry; entry != &map->header && entry->start < end;
2662	    entry = entry->next) {
2663		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2664			goto next_entry_done;
2665
2666		/*
2667		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2668		 * space in the unwired region could have been mapped
2669		 * while the map lock was dropped for faulting in the
2670		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2671		 * Moreover, another thread could be simultaneously
2672		 * wiring this new mapping entry.  Detect these cases
2673		 * and skip any entries marked as in transition by us.
2674		 */
2675		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2676		    entry->wiring_thread != curthread) {
2677			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2678			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2679			continue;
2680		}
2681
2682		if (rv == KERN_SUCCESS) {
2683			if (user_wire)
2684				entry->eflags |= MAP_ENTRY_USER_WIRED;
2685		} else if (entry->wired_count == -1) {
2686			/*
2687			 * Wiring failed on this entry.  Thus, unwiring is
2688			 * unnecessary.
2689			 */
2690			entry->wired_count = 0;
2691		} else if (!user_wire ||
2692		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2693			/*
2694			 * Undo the wiring.  Wiring succeeded on this entry
2695			 * but failed on a later entry.
2696			 */
2697			if (entry->wired_count == 1)
2698				vm_map_entry_unwire(map, entry);
2699			else
2700				entry->wired_count--;
2701		}
2702	next_entry_done:
2703		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2704		    ("vm_map_wire: in-transition flag missing %p", entry));
2705		KASSERT(entry->wiring_thread == curthread,
2706		    ("vm_map_wire: alien wire %p", entry));
2707		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2708		    MAP_ENTRY_WIRE_SKIPPED);
2709		entry->wiring_thread = NULL;
2710		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2711			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2712			need_wakeup = TRUE;
2713		}
2714		vm_map_simplify_entry(map, entry);
2715	}
2716	vm_map_unlock(map);
2717	if (need_wakeup)
2718		vm_map_wakeup(map);
2719	return (rv);
2720}
2721
2722/*
2723 * vm_map_sync
2724 *
2725 * Push any dirty cached pages in the address range to their pager.
2726 * If syncio is TRUE, dirty pages are written synchronously.
2727 * If invalidate is TRUE, any cached pages are freed as well.
2728 *
2729 * If the size of the region from start to end is zero, we are
2730 * supposed to flush all modified pages within the region containing
2731 * start.  Unfortunately, a region can be split or coalesced with
2732 * neighboring regions, making it difficult to determine what the
2733 * original region was.  Therefore, we approximate this requirement by
2734 * flushing the current region containing start.
2735 *
2736 * Returns an error if any part of the specified range is not mapped.
2737 */
2738int
2739vm_map_sync(
2740	vm_map_t map,
2741	vm_offset_t start,
2742	vm_offset_t end,
2743	boolean_t syncio,
2744	boolean_t invalidate)
2745{
2746	vm_map_entry_t current;
2747	vm_map_entry_t entry;
2748	vm_size_t size;
2749	vm_object_t object;
2750	vm_ooffset_t offset;
2751	unsigned int last_timestamp;
2752	boolean_t failed;
2753
2754	vm_map_lock_read(map);
2755	VM_MAP_RANGE_CHECK(map, start, end);
2756	if (!vm_map_lookup_entry(map, start, &entry)) {
2757		vm_map_unlock_read(map);
2758		return (KERN_INVALID_ADDRESS);
2759	} else if (start == end) {
2760		start = entry->start;
2761		end = entry->end;
2762	}
2763	/*
2764	 * Make a first pass to check for user-wired memory and holes.
2765	 */
2766	for (current = entry; current != &map->header && current->start < end;
2767	    current = current->next) {
2768		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2769			vm_map_unlock_read(map);
2770			return (KERN_INVALID_ARGUMENT);
2771		}
2772		if (end > current->end &&
2773		    (current->next == &map->header ||
2774			current->end != current->next->start)) {
2775			vm_map_unlock_read(map);
2776			return (KERN_INVALID_ADDRESS);
2777		}
2778	}
2779
2780	if (invalidate)
2781		pmap_remove(map->pmap, start, end);
2782	failed = FALSE;
2783
2784	/*
2785	 * Make a second pass, cleaning/uncaching pages from the indicated
2786	 * objects as we go.
2787	 */
2788	for (current = entry; current != &map->header && current->start < end;) {
2789		offset = current->offset + (start - current->start);
2790		size = (end <= current->end ? end : current->end) - start;
2791		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2792			vm_map_t smap;
2793			vm_map_entry_t tentry;
2794			vm_size_t tsize;
2795
2796			smap = current->object.sub_map;
2797			vm_map_lock_read(smap);
2798			(void) vm_map_lookup_entry(smap, offset, &tentry);
2799			tsize = tentry->end - offset;
2800			if (tsize < size)
2801				size = tsize;
2802			object = tentry->object.vm_object;
2803			offset = tentry->offset + (offset - tentry->start);
2804			vm_map_unlock_read(smap);
2805		} else {
2806			object = current->object.vm_object;
2807		}
2808		vm_object_reference(object);
2809		last_timestamp = map->timestamp;
2810		vm_map_unlock_read(map);
2811		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2812			failed = TRUE;
2813		start += size;
2814		vm_object_deallocate(object);
2815		vm_map_lock_read(map);
2816		if (last_timestamp == map->timestamp ||
2817		    !vm_map_lookup_entry(map, start, &current))
2818			current = current->next;
2819	}
2820
2821	vm_map_unlock_read(map);
2822	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2823}
2824
2825/*
2826 *	vm_map_entry_unwire:	[ internal use only ]
2827 *
2828 *	Make the region specified by this entry pageable.
2829 *
2830 *	The map in question should be locked.
2831 *	[This is the reason for this routine's existence.]
2832 */
2833static void
2834vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2835{
2836
2837	VM_MAP_ASSERT_LOCKED(map);
2838	KASSERT(entry->wired_count > 0,
2839	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2840	pmap_unwire(map->pmap, entry->start, entry->end);
2841	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2842	    entry->start, PQ_ACTIVE);
2843	entry->wired_count = 0;
2844}
2845
2846static void
2847vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2848{
2849
2850	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2851		vm_object_deallocate(entry->object.vm_object);
2852	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2853}
2854
2855/*
2856 *	vm_map_entry_delete:	[ internal use only ]
2857 *
2858 *	Deallocate the given entry from the target map.
2859 */
2860static void
2861vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2862{
2863	vm_object_t object;
2864	vm_pindex_t offidxstart, offidxend, count, size1;
2865	vm_ooffset_t size;
2866
2867	vm_map_entry_unlink(map, entry);
2868	object = entry->object.vm_object;
2869	size = entry->end - entry->start;
2870	map->size -= size;
2871
2872	if (entry->cred != NULL) {
2873		swap_release_by_cred(size, entry->cred);
2874		crfree(entry->cred);
2875	}
2876
2877	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2878	    (object != NULL)) {
2879		KASSERT(entry->cred == NULL || object->cred == NULL ||
2880		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2881		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2882		count = OFF_TO_IDX(size);
2883		offidxstart = OFF_TO_IDX(entry->offset);
2884		offidxend = offidxstart + count;
2885		VM_OBJECT_WLOCK(object);
2886		if (object->ref_count != 1 &&
2887		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2888		    object == kernel_object || object == kmem_object)) {
2889			vm_object_collapse(object);
2890
2891			/*
2892			 * The option OBJPR_NOTMAPPED can be passed here
2893			 * because vm_map_delete() already performed
2894			 * pmap_remove() on the only mapping to this range
2895			 * of pages.
2896			 */
2897			vm_object_page_remove(object, offidxstart, offidxend,
2898			    OBJPR_NOTMAPPED);
2899			if (object->type == OBJT_SWAP)
2900				swap_pager_freespace(object, offidxstart, count);
2901			if (offidxend >= object->size &&
2902			    offidxstart < object->size) {
2903				size1 = object->size;
2904				object->size = offidxstart;
2905				if (object->cred != NULL) {
2906					size1 -= object->size;
2907					KASSERT(object->charge >= ptoa(size1),
2908					    ("vm_map_entry_delete: object->charge < 0"));
2909					swap_release_by_cred(ptoa(size1), object->cred);
2910					object->charge -= ptoa(size1);
2911				}
2912			}
2913		}
2914		VM_OBJECT_WUNLOCK(object);
2915	} else
2916		entry->object.vm_object = NULL;
2917	if (map->system_map)
2918		vm_map_entry_deallocate(entry, TRUE);
2919	else {
2920		entry->next = curthread->td_map_def_user;
2921		curthread->td_map_def_user = entry;
2922	}
2923}
2924
2925/*
2926 *	vm_map_delete:	[ internal use only ]
2927 *
2928 *	Deallocates the given address range from the target
2929 *	map.
2930 */
2931int
2932vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2933{
2934	vm_map_entry_t entry;
2935	vm_map_entry_t first_entry;
2936
2937	VM_MAP_ASSERT_LOCKED(map);
2938	if (start == end)
2939		return (KERN_SUCCESS);
2940
2941	/*
2942	 * Find the start of the region, and clip it
2943	 */
2944	if (!vm_map_lookup_entry(map, start, &first_entry))
2945		entry = first_entry->next;
2946	else {
2947		entry = first_entry;
2948		vm_map_clip_start(map, entry, start);
2949	}
2950
2951	/*
2952	 * Step through all entries in this region
2953	 */
2954	while ((entry != &map->header) && (entry->start < end)) {
2955		vm_map_entry_t next;
2956
2957		/*
2958		 * Wait for wiring or unwiring of an entry to complete.
2959		 * Also wait for any system wirings to disappear on
2960		 * user maps.
2961		 */
2962		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2963		    (vm_map_pmap(map) != kernel_pmap &&
2964		    vm_map_entry_system_wired_count(entry) != 0)) {
2965			unsigned int last_timestamp;
2966			vm_offset_t saved_start;
2967			vm_map_entry_t tmp_entry;
2968
2969			saved_start = entry->start;
2970			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2971			last_timestamp = map->timestamp;
2972			(void) vm_map_unlock_and_wait(map, 0);
2973			vm_map_lock(map);
2974			if (last_timestamp + 1 != map->timestamp) {
2975				/*
2976				 * Look again for the entry because the map was
2977				 * modified while it was unlocked.
2978				 * Specifically, the entry may have been
2979				 * clipped, merged, or deleted.
2980				 */
2981				if (!vm_map_lookup_entry(map, saved_start,
2982							 &tmp_entry))
2983					entry = tmp_entry->next;
2984				else {
2985					entry = tmp_entry;
2986					vm_map_clip_start(map, entry,
2987							  saved_start);
2988				}
2989			}
2990			continue;
2991		}
2992		vm_map_clip_end(map, entry, end);
2993
2994		next = entry->next;
2995
2996		/*
2997		 * Unwire before removing addresses from the pmap; otherwise,
2998		 * unwiring will put the entries back in the pmap.
2999		 */
3000		if (entry->wired_count != 0) {
3001			vm_map_entry_unwire(map, entry);
3002		}
3003
3004		pmap_remove(map->pmap, entry->start, entry->end);
3005
3006		/*
3007		 * Delete the entry only after removing all pmap
3008		 * entries pointing to its pages.  (Otherwise, its
3009		 * page frames may be reallocated, and any modify bits
3010		 * will be set in the wrong object!)
3011		 */
3012		vm_map_entry_delete(map, entry);
3013		entry = next;
3014	}
3015	return (KERN_SUCCESS);
3016}
3017
3018/*
3019 *	vm_map_remove:
3020 *
3021 *	Remove the given address range from the target map.
3022 *	This is the exported form of vm_map_delete.
3023 */
3024int
3025vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3026{
3027	int result;
3028
3029	vm_map_lock(map);
3030	VM_MAP_RANGE_CHECK(map, start, end);
3031	result = vm_map_delete(map, start, end);
3032	vm_map_unlock(map);
3033	return (result);
3034}
3035
3036/*
3037 *	vm_map_check_protection:
3038 *
3039 *	Assert that the target map allows the specified privilege on the
3040 *	entire address region given.  The entire region must be allocated.
3041 *
3042 *	WARNING!  This code does not and should not check whether the
3043 *	contents of the region is accessible.  For example a smaller file
3044 *	might be mapped into a larger address space.
3045 *
3046 *	NOTE!  This code is also called by munmap().
3047 *
3048 *	The map must be locked.  A read lock is sufficient.
3049 */
3050boolean_t
3051vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3052			vm_prot_t protection)
3053{
3054	vm_map_entry_t entry;
3055	vm_map_entry_t tmp_entry;
3056
3057	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3058		return (FALSE);
3059	entry = tmp_entry;
3060
3061	while (start < end) {
3062		if (entry == &map->header)
3063			return (FALSE);
3064		/*
3065		 * No holes allowed!
3066		 */
3067		if (start < entry->start)
3068			return (FALSE);
3069		/*
3070		 * Check protection associated with entry.
3071		 */
3072		if ((entry->protection & protection) != protection)
3073			return (FALSE);
3074		/* go to next entry */
3075		start = entry->end;
3076		entry = entry->next;
3077	}
3078	return (TRUE);
3079}
3080
3081/*
3082 *	vm_map_copy_entry:
3083 *
3084 *	Copies the contents of the source entry to the destination
3085 *	entry.  The entries *must* be aligned properly.
3086 */
3087static void
3088vm_map_copy_entry(
3089	vm_map_t src_map,
3090	vm_map_t dst_map,
3091	vm_map_entry_t src_entry,
3092	vm_map_entry_t dst_entry,
3093	vm_ooffset_t *fork_charge)
3094{
3095	vm_object_t src_object;
3096	vm_map_entry_t fake_entry;
3097	vm_offset_t size;
3098	struct ucred *cred;
3099	int charged;
3100
3101	VM_MAP_ASSERT_LOCKED(dst_map);
3102
3103	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3104		return;
3105
3106	if (src_entry->wired_count == 0 ||
3107	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3108		/*
3109		 * If the source entry is marked needs_copy, it is already
3110		 * write-protected.
3111		 */
3112		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3113		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3114			pmap_protect(src_map->pmap,
3115			    src_entry->start,
3116			    src_entry->end,
3117			    src_entry->protection & ~VM_PROT_WRITE);
3118		}
3119
3120		/*
3121		 * Make a copy of the object.
3122		 */
3123		size = src_entry->end - src_entry->start;
3124		if ((src_object = src_entry->object.vm_object) != NULL) {
3125			VM_OBJECT_WLOCK(src_object);
3126			charged = ENTRY_CHARGED(src_entry);
3127			if ((src_object->handle == NULL) &&
3128				(src_object->type == OBJT_DEFAULT ||
3129				 src_object->type == OBJT_SWAP)) {
3130				vm_object_collapse(src_object);
3131				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3132					vm_object_split(src_entry);
3133					src_object = src_entry->object.vm_object;
3134				}
3135			}
3136			vm_object_reference_locked(src_object);
3137			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3138			if (src_entry->cred != NULL &&
3139			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3140				KASSERT(src_object->cred == NULL,
3141				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3142				     src_object));
3143				src_object->cred = src_entry->cred;
3144				src_object->charge = size;
3145			}
3146			VM_OBJECT_WUNLOCK(src_object);
3147			dst_entry->object.vm_object = src_object;
3148			if (charged) {
3149				cred = curthread->td_ucred;
3150				crhold(cred);
3151				dst_entry->cred = cred;
3152				*fork_charge += size;
3153				if (!(src_entry->eflags &
3154				      MAP_ENTRY_NEEDS_COPY)) {
3155					crhold(cred);
3156					src_entry->cred = cred;
3157					*fork_charge += size;
3158				}
3159			}
3160			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3161			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3162			dst_entry->offset = src_entry->offset;
3163			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3164				/*
3165				 * MAP_ENTRY_VN_WRITECNT cannot
3166				 * indicate write reference from
3167				 * src_entry, since the entry is
3168				 * marked as needs copy.  Allocate a
3169				 * fake entry that is used to
3170				 * decrement object->un_pager.vnp.writecount
3171				 * at the appropriate time.  Attach
3172				 * fake_entry to the deferred list.
3173				 */
3174				fake_entry = vm_map_entry_create(dst_map);
3175				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3176				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3177				vm_object_reference(src_object);
3178				fake_entry->object.vm_object = src_object;
3179				fake_entry->start = src_entry->start;
3180				fake_entry->end = src_entry->end;
3181				fake_entry->next = curthread->td_map_def_user;
3182				curthread->td_map_def_user = fake_entry;
3183			}
3184		} else {
3185			dst_entry->object.vm_object = NULL;
3186			dst_entry->offset = 0;
3187			if (src_entry->cred != NULL) {
3188				dst_entry->cred = curthread->td_ucred;
3189				crhold(dst_entry->cred);
3190				*fork_charge += size;
3191			}
3192		}
3193
3194		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3195		    dst_entry->end - dst_entry->start, src_entry->start);
3196	} else {
3197		/*
3198		 * We don't want to make writeable wired pages copy-on-write.
3199		 * Immediately copy these pages into the new map by simulating
3200		 * page faults.  The new pages are pageable.
3201		 */
3202		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3203		    fork_charge);
3204	}
3205}
3206
3207/*
3208 * vmspace_map_entry_forked:
3209 * Update the newly-forked vmspace each time a map entry is inherited
3210 * or copied.  The values for vm_dsize and vm_tsize are approximate
3211 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3212 */
3213static void
3214vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3215    vm_map_entry_t entry)
3216{
3217	vm_size_t entrysize;
3218	vm_offset_t newend;
3219
3220	entrysize = entry->end - entry->start;
3221	vm2->vm_map.size += entrysize;
3222	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3223		vm2->vm_ssize += btoc(entrysize);
3224	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3225	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3226		newend = MIN(entry->end,
3227		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3228		vm2->vm_dsize += btoc(newend - entry->start);
3229	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3230	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3231		newend = MIN(entry->end,
3232		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3233		vm2->vm_tsize += btoc(newend - entry->start);
3234	}
3235}
3236
3237/*
3238 * vmspace_fork:
3239 * Create a new process vmspace structure and vm_map
3240 * based on those of an existing process.  The new map
3241 * is based on the old map, according to the inheritance
3242 * values on the regions in that map.
3243 *
3244 * XXX It might be worth coalescing the entries added to the new vmspace.
3245 *
3246 * The source map must not be locked.
3247 */
3248struct vmspace *
3249vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3250{
3251	struct vmspace *vm2;
3252	vm_map_t new_map, old_map;
3253	vm_map_entry_t new_entry, old_entry;
3254	vm_object_t object;
3255	int locked;
3256
3257	old_map = &vm1->vm_map;
3258	/* Copy immutable fields of vm1 to vm2. */
3259	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3260	if (vm2 == NULL)
3261		return (NULL);
3262	vm2->vm_taddr = vm1->vm_taddr;
3263	vm2->vm_daddr = vm1->vm_daddr;
3264	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3265	vm_map_lock(old_map);
3266	if (old_map->busy)
3267		vm_map_wait_busy(old_map);
3268	new_map = &vm2->vm_map;
3269	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3270	KASSERT(locked, ("vmspace_fork: lock failed"));
3271
3272	old_entry = old_map->header.next;
3273
3274	while (old_entry != &old_map->header) {
3275		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3276			panic("vm_map_fork: encountered a submap");
3277
3278		switch (old_entry->inheritance) {
3279		case VM_INHERIT_NONE:
3280			break;
3281
3282		case VM_INHERIT_SHARE:
3283			/*
3284			 * Clone the entry, creating the shared object if necessary.
3285			 */
3286			object = old_entry->object.vm_object;
3287			if (object == NULL) {
3288				object = vm_object_allocate(OBJT_DEFAULT,
3289					atop(old_entry->end - old_entry->start));
3290				old_entry->object.vm_object = object;
3291				old_entry->offset = 0;
3292				if (old_entry->cred != NULL) {
3293					object->cred = old_entry->cred;
3294					object->charge = old_entry->end -
3295					    old_entry->start;
3296					old_entry->cred = NULL;
3297				}
3298			}
3299
3300			/*
3301			 * Add the reference before calling vm_object_shadow
3302			 * to insure that a shadow object is created.
3303			 */
3304			vm_object_reference(object);
3305			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3306				vm_object_shadow(&old_entry->object.vm_object,
3307				    &old_entry->offset,
3308				    old_entry->end - old_entry->start);
3309				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3310				/* Transfer the second reference too. */
3311				vm_object_reference(
3312				    old_entry->object.vm_object);
3313
3314				/*
3315				 * As in vm_map_simplify_entry(), the
3316				 * vnode lock will not be acquired in
3317				 * this call to vm_object_deallocate().
3318				 */
3319				vm_object_deallocate(object);
3320				object = old_entry->object.vm_object;
3321			}
3322			VM_OBJECT_WLOCK(object);
3323			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3324			if (old_entry->cred != NULL) {
3325				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3326				object->cred = old_entry->cred;
3327				object->charge = old_entry->end - old_entry->start;
3328				old_entry->cred = NULL;
3329			}
3330
3331			/*
3332			 * Assert the correct state of the vnode
3333			 * v_writecount while the object is locked, to
3334			 * not relock it later for the assertion
3335			 * correctness.
3336			 */
3337			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3338			    object->type == OBJT_VNODE) {
3339				KASSERT(((struct vnode *)object->handle)->
3340				    v_writecount > 0,
3341				    ("vmspace_fork: v_writecount %p", object));
3342				KASSERT(object->un_pager.vnp.writemappings > 0,
3343				    ("vmspace_fork: vnp.writecount %p",
3344				    object));
3345			}
3346			VM_OBJECT_WUNLOCK(object);
3347
3348			/*
3349			 * Clone the entry, referencing the shared object.
3350			 */
3351			new_entry = vm_map_entry_create(new_map);
3352			*new_entry = *old_entry;
3353			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3354			    MAP_ENTRY_IN_TRANSITION);
3355			new_entry->wiring_thread = NULL;
3356			new_entry->wired_count = 0;
3357			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3358				vnode_pager_update_writecount(object,
3359				    new_entry->start, new_entry->end);
3360			}
3361
3362			/*
3363			 * Insert the entry into the new map -- we know we're
3364			 * inserting at the end of the new map.
3365			 */
3366			vm_map_entry_link(new_map, new_map->header.prev,
3367			    new_entry);
3368			vmspace_map_entry_forked(vm1, vm2, new_entry);
3369
3370			/*
3371			 * Update the physical map
3372			 */
3373			pmap_copy(new_map->pmap, old_map->pmap,
3374			    new_entry->start,
3375			    (old_entry->end - old_entry->start),
3376			    old_entry->start);
3377			break;
3378
3379		case VM_INHERIT_COPY:
3380			/*
3381			 * Clone the entry and link into the map.
3382			 */
3383			new_entry = vm_map_entry_create(new_map);
3384			*new_entry = *old_entry;
3385			/*
3386			 * Copied entry is COW over the old object.
3387			 */
3388			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3389			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3390			new_entry->wiring_thread = NULL;
3391			new_entry->wired_count = 0;
3392			new_entry->object.vm_object = NULL;
3393			new_entry->cred = NULL;
3394			vm_map_entry_link(new_map, new_map->header.prev,
3395			    new_entry);
3396			vmspace_map_entry_forked(vm1, vm2, new_entry);
3397			vm_map_copy_entry(old_map, new_map, old_entry,
3398			    new_entry, fork_charge);
3399			break;
3400		}
3401		old_entry = old_entry->next;
3402	}
3403	/*
3404	 * Use inlined vm_map_unlock() to postpone handling the deferred
3405	 * map entries, which cannot be done until both old_map and
3406	 * new_map locks are released.
3407	 */
3408	sx_xunlock(&old_map->lock);
3409	sx_xunlock(&new_map->lock);
3410	vm_map_process_deferred();
3411
3412	return (vm2);
3413}
3414
3415int
3416vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3417    vm_prot_t prot, vm_prot_t max, int cow)
3418{
3419	vm_size_t growsize, init_ssize;
3420	rlim_t lmemlim, vmemlim;
3421	int rv;
3422
3423	growsize = sgrowsiz;
3424	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3425	vm_map_lock(map);
3426	PROC_LOCK(curproc);
3427	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3428	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3429	PROC_UNLOCK(curproc);
3430	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3431		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3432			rv = KERN_NO_SPACE;
3433			goto out;
3434		}
3435	}
3436	/* If we would blow our VMEM resource limit, no go */
3437	if (map->size + init_ssize > vmemlim) {
3438		rv = KERN_NO_SPACE;
3439		goto out;
3440	}
3441	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3442	    max, cow);
3443out:
3444	vm_map_unlock(map);
3445	return (rv);
3446}
3447
3448static int
3449vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3450    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3451{
3452	vm_map_entry_t new_entry, prev_entry;
3453	vm_offset_t bot, top;
3454	vm_size_t init_ssize;
3455	int orient, rv;
3456
3457	/*
3458	 * The stack orientation is piggybacked with the cow argument.
3459	 * Extract it into orient and mask the cow argument so that we
3460	 * don't pass it around further.
3461	 * NOTE: We explicitly allow bi-directional stacks.
3462	 */
3463	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3464	KASSERT(orient != 0, ("No stack grow direction"));
3465
3466	if (addrbos < vm_map_min(map) ||
3467	    addrbos > vm_map_max(map) ||
3468	    addrbos + max_ssize < addrbos)
3469		return (KERN_NO_SPACE);
3470
3471	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3472
3473	/* If addr is already mapped, no go */
3474	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3475		return (KERN_NO_SPACE);
3476
3477	/*
3478	 * If we can't accomodate max_ssize in the current mapping, no go.
3479	 * However, we need to be aware that subsequent user mappings might
3480	 * map into the space we have reserved for stack, and currently this
3481	 * space is not protected.
3482	 *
3483	 * Hopefully we will at least detect this condition when we try to
3484	 * grow the stack.
3485	 */
3486	if ((prev_entry->next != &map->header) &&
3487	    (prev_entry->next->start < addrbos + max_ssize))
3488		return (KERN_NO_SPACE);
3489
3490	/*
3491	 * We initially map a stack of only init_ssize.  We will grow as
3492	 * needed later.  Depending on the orientation of the stack (i.e.
3493	 * the grow direction) we either map at the top of the range, the
3494	 * bottom of the range or in the middle.
3495	 *
3496	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3497	 * and cow to be 0.  Possibly we should eliminate these as input
3498	 * parameters, and just pass these values here in the insert call.
3499	 */
3500	if (orient == MAP_STACK_GROWS_DOWN)
3501		bot = addrbos + max_ssize - init_ssize;
3502	else if (orient == MAP_STACK_GROWS_UP)
3503		bot = addrbos;
3504	else
3505		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3506	top = bot + init_ssize;
3507	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3508
3509	/* Now set the avail_ssize amount. */
3510	if (rv == KERN_SUCCESS) {
3511		if (prev_entry != &map->header)
3512			vm_map_clip_end(map, prev_entry, bot);
3513		new_entry = prev_entry->next;
3514		if (new_entry->end != top || new_entry->start != bot)
3515			panic("Bad entry start/end for new stack entry");
3516
3517		new_entry->avail_ssize = max_ssize - init_ssize;
3518		if (orient & MAP_STACK_GROWS_DOWN)
3519			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3520		if (orient & MAP_STACK_GROWS_UP)
3521			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3522	}
3523
3524	return (rv);
3525}
3526
3527static int stack_guard_page = 0;
3528TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3529SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3530    &stack_guard_page, 0,
3531    "Insert stack guard page ahead of the growable segments.");
3532
3533/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3534 * desired address is already mapped, or if we successfully grow
3535 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3536 * stack range (this is strange, but preserves compatibility with
3537 * the grow function in vm_machdep.c).
3538 */
3539int
3540vm_map_growstack(struct proc *p, vm_offset_t addr)
3541{
3542	vm_map_entry_t next_entry, prev_entry;
3543	vm_map_entry_t new_entry, stack_entry;
3544	struct vmspace *vm = p->p_vmspace;
3545	vm_map_t map = &vm->vm_map;
3546	vm_offset_t end;
3547	vm_size_t growsize;
3548	size_t grow_amount, max_grow;
3549	rlim_t lmemlim, stacklim, vmemlim;
3550	int is_procstack, rv;
3551	struct ucred *cred;
3552#ifdef notyet
3553	uint64_t limit;
3554#endif
3555#ifdef RACCT
3556	int error;
3557#endif
3558
3559Retry:
3560	PROC_LOCK(p);
3561	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3562	stacklim = lim_cur(p, RLIMIT_STACK);
3563	vmemlim = lim_cur(p, RLIMIT_VMEM);
3564	PROC_UNLOCK(p);
3565
3566	vm_map_lock_read(map);
3567
3568	/* If addr is already in the entry range, no need to grow.*/
3569	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3570		vm_map_unlock_read(map);
3571		return (KERN_SUCCESS);
3572	}
3573
3574	next_entry = prev_entry->next;
3575	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3576		/*
3577		 * This entry does not grow upwards. Since the address lies
3578		 * beyond this entry, the next entry (if one exists) has to
3579		 * be a downward growable entry. The entry list header is
3580		 * never a growable entry, so it suffices to check the flags.
3581		 */
3582		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3583			vm_map_unlock_read(map);
3584			return (KERN_SUCCESS);
3585		}
3586		stack_entry = next_entry;
3587	} else {
3588		/*
3589		 * This entry grows upward. If the next entry does not at
3590		 * least grow downwards, this is the entry we need to grow.
3591		 * otherwise we have two possible choices and we have to
3592		 * select one.
3593		 */
3594		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3595			/*
3596			 * We have two choices; grow the entry closest to
3597			 * the address to minimize the amount of growth.
3598			 */
3599			if (addr - prev_entry->end <= next_entry->start - addr)
3600				stack_entry = prev_entry;
3601			else
3602				stack_entry = next_entry;
3603		} else
3604			stack_entry = prev_entry;
3605	}
3606
3607	if (stack_entry == next_entry) {
3608		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3609		KASSERT(addr < stack_entry->start, ("foo"));
3610		end = (prev_entry != &map->header) ? prev_entry->end :
3611		    stack_entry->start - stack_entry->avail_ssize;
3612		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3613		max_grow = stack_entry->start - end;
3614	} else {
3615		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3616		KASSERT(addr >= stack_entry->end, ("foo"));
3617		end = (next_entry != &map->header) ? next_entry->start :
3618		    stack_entry->end + stack_entry->avail_ssize;
3619		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3620		max_grow = end - stack_entry->end;
3621	}
3622
3623	if (grow_amount > stack_entry->avail_ssize) {
3624		vm_map_unlock_read(map);
3625		return (KERN_NO_SPACE);
3626	}
3627
3628	/*
3629	 * If there is no longer enough space between the entries nogo, and
3630	 * adjust the available space.  Note: this  should only happen if the
3631	 * user has mapped into the stack area after the stack was created,
3632	 * and is probably an error.
3633	 *
3634	 * This also effectively destroys any guard page the user might have
3635	 * intended by limiting the stack size.
3636	 */
3637	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3638		if (vm_map_lock_upgrade(map))
3639			goto Retry;
3640
3641		stack_entry->avail_ssize = max_grow;
3642
3643		vm_map_unlock(map);
3644		return (KERN_NO_SPACE);
3645	}
3646
3647	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3648
3649	/*
3650	 * If this is the main process stack, see if we're over the stack
3651	 * limit.
3652	 */
3653	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3654		vm_map_unlock_read(map);
3655		return (KERN_NO_SPACE);
3656	}
3657#ifdef RACCT
3658	PROC_LOCK(p);
3659	if (is_procstack &&
3660	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3661		PROC_UNLOCK(p);
3662		vm_map_unlock_read(map);
3663		return (KERN_NO_SPACE);
3664	}
3665	PROC_UNLOCK(p);
3666#endif
3667
3668	/* Round up the grow amount modulo sgrowsiz */
3669	growsize = sgrowsiz;
3670	grow_amount = roundup(grow_amount, growsize);
3671	if (grow_amount > stack_entry->avail_ssize)
3672		grow_amount = stack_entry->avail_ssize;
3673	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3674		grow_amount = trunc_page((vm_size_t)stacklim) -
3675		    ctob(vm->vm_ssize);
3676	}
3677#ifdef notyet
3678	PROC_LOCK(p);
3679	limit = racct_get_available(p, RACCT_STACK);
3680	PROC_UNLOCK(p);
3681	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3682		grow_amount = limit - ctob(vm->vm_ssize);
3683#endif
3684	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3685		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3686			vm_map_unlock_read(map);
3687			rv = KERN_NO_SPACE;
3688			goto out;
3689		}
3690#ifdef RACCT
3691		PROC_LOCK(p);
3692		if (racct_set(p, RACCT_MEMLOCK,
3693		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3694			PROC_UNLOCK(p);
3695			vm_map_unlock_read(map);
3696			rv = KERN_NO_SPACE;
3697			goto out;
3698		}
3699		PROC_UNLOCK(p);
3700#endif
3701	}
3702	/* If we would blow our VMEM resource limit, no go */
3703	if (map->size + grow_amount > vmemlim) {
3704		vm_map_unlock_read(map);
3705		rv = KERN_NO_SPACE;
3706		goto out;
3707	}
3708#ifdef RACCT
3709	PROC_LOCK(p);
3710	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3711		PROC_UNLOCK(p);
3712		vm_map_unlock_read(map);
3713		rv = KERN_NO_SPACE;
3714		goto out;
3715	}
3716	PROC_UNLOCK(p);
3717#endif
3718
3719	if (vm_map_lock_upgrade(map))
3720		goto Retry;
3721
3722	if (stack_entry == next_entry) {
3723		/*
3724		 * Growing downward.
3725		 */
3726		/* Get the preliminary new entry start value */
3727		addr = stack_entry->start - grow_amount;
3728
3729		/*
3730		 * If this puts us into the previous entry, cut back our
3731		 * growth to the available space. Also, see the note above.
3732		 */
3733		if (addr < end) {
3734			stack_entry->avail_ssize = max_grow;
3735			addr = end;
3736			if (stack_guard_page)
3737				addr += PAGE_SIZE;
3738		}
3739
3740		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3741		    next_entry->protection, next_entry->max_protection, 0);
3742
3743		/* Adjust the available stack space by the amount we grew. */
3744		if (rv == KERN_SUCCESS) {
3745			if (prev_entry != &map->header)
3746				vm_map_clip_end(map, prev_entry, addr);
3747			new_entry = prev_entry->next;
3748			KASSERT(new_entry == stack_entry->prev, ("foo"));
3749			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3750			KASSERT(new_entry->start == addr, ("foo"));
3751			grow_amount = new_entry->end - new_entry->start;
3752			new_entry->avail_ssize = stack_entry->avail_ssize -
3753			    grow_amount;
3754			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3755			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3756		}
3757	} else {
3758		/*
3759		 * Growing upward.
3760		 */
3761		addr = stack_entry->end + grow_amount;
3762
3763		/*
3764		 * If this puts us into the next entry, cut back our growth
3765		 * to the available space. Also, see the note above.
3766		 */
3767		if (addr > end) {
3768			stack_entry->avail_ssize = end - stack_entry->end;
3769			addr = end;
3770			if (stack_guard_page)
3771				addr -= PAGE_SIZE;
3772		}
3773
3774		grow_amount = addr - stack_entry->end;
3775		cred = stack_entry->cred;
3776		if (cred == NULL && stack_entry->object.vm_object != NULL)
3777			cred = stack_entry->object.vm_object->cred;
3778		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3779			rv = KERN_NO_SPACE;
3780		/* Grow the underlying object if applicable. */
3781		else if (stack_entry->object.vm_object == NULL ||
3782			 vm_object_coalesce(stack_entry->object.vm_object,
3783			 stack_entry->offset,
3784			 (vm_size_t)(stack_entry->end - stack_entry->start),
3785			 (vm_size_t)grow_amount, cred != NULL)) {
3786			map->size += (addr - stack_entry->end);
3787			/* Update the current entry. */
3788			stack_entry->end = addr;
3789			stack_entry->avail_ssize -= grow_amount;
3790			vm_map_entry_resize_free(map, stack_entry);
3791			rv = KERN_SUCCESS;
3792
3793			if (next_entry != &map->header)
3794				vm_map_clip_start(map, next_entry, addr);
3795		} else
3796			rv = KERN_FAILURE;
3797	}
3798
3799	if (rv == KERN_SUCCESS && is_procstack)
3800		vm->vm_ssize += btoc(grow_amount);
3801
3802	vm_map_unlock(map);
3803
3804	/*
3805	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3806	 */
3807	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3808		vm_map_wire(map,
3809		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3810		    (stack_entry == next_entry) ? stack_entry->start : addr,
3811		    (p->p_flag & P_SYSTEM)
3812		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3813		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3814	}
3815
3816out:
3817#ifdef RACCT
3818	if (rv != KERN_SUCCESS) {
3819		PROC_LOCK(p);
3820		error = racct_set(p, RACCT_VMEM, map->size);
3821		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3822		if (!old_mlock) {
3823			error = racct_set(p, RACCT_MEMLOCK,
3824			    ptoa(pmap_wired_count(map->pmap)));
3825			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3826		}
3827	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3828		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3829		PROC_UNLOCK(p);
3830	}
3831#endif
3832
3833	return (rv);
3834}
3835
3836/*
3837 * Unshare the specified VM space for exec.  If other processes are
3838 * mapped to it, then create a new one.  The new vmspace is null.
3839 */
3840int
3841vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3842{
3843	struct vmspace *oldvmspace = p->p_vmspace;
3844	struct vmspace *newvmspace;
3845
3846	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3847	    ("vmspace_exec recursed"));
3848	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3849	if (newvmspace == NULL)
3850		return (ENOMEM);
3851	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3852	/*
3853	 * This code is written like this for prototype purposes.  The
3854	 * goal is to avoid running down the vmspace here, but let the
3855	 * other process's that are still using the vmspace to finally
3856	 * run it down.  Even though there is little or no chance of blocking
3857	 * here, it is a good idea to keep this form for future mods.
3858	 */
3859	PROC_VMSPACE_LOCK(p);
3860	p->p_vmspace = newvmspace;
3861	PROC_VMSPACE_UNLOCK(p);
3862	if (p == curthread->td_proc)
3863		pmap_activate(curthread);
3864	curthread->td_pflags |= TDP_EXECVMSPC;
3865	return (0);
3866}
3867
3868/*
3869 * Unshare the specified VM space for forcing COW.  This
3870 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3871 */
3872int
3873vmspace_unshare(struct proc *p)
3874{
3875	struct vmspace *oldvmspace = p->p_vmspace;
3876	struct vmspace *newvmspace;
3877	vm_ooffset_t fork_charge;
3878
3879	if (oldvmspace->vm_refcnt == 1)
3880		return (0);
3881	fork_charge = 0;
3882	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3883	if (newvmspace == NULL)
3884		return (ENOMEM);
3885	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3886		vmspace_free(newvmspace);
3887		return (ENOMEM);
3888	}
3889	PROC_VMSPACE_LOCK(p);
3890	p->p_vmspace = newvmspace;
3891	PROC_VMSPACE_UNLOCK(p);
3892	if (p == curthread->td_proc)
3893		pmap_activate(curthread);
3894	vmspace_free(oldvmspace);
3895	return (0);
3896}
3897
3898/*
3899 *	vm_map_lookup:
3900 *
3901 *	Finds the VM object, offset, and
3902 *	protection for a given virtual address in the
3903 *	specified map, assuming a page fault of the
3904 *	type specified.
3905 *
3906 *	Leaves the map in question locked for read; return
3907 *	values are guaranteed until a vm_map_lookup_done
3908 *	call is performed.  Note that the map argument
3909 *	is in/out; the returned map must be used in
3910 *	the call to vm_map_lookup_done.
3911 *
3912 *	A handle (out_entry) is returned for use in
3913 *	vm_map_lookup_done, to make that fast.
3914 *
3915 *	If a lookup is requested with "write protection"
3916 *	specified, the map may be changed to perform virtual
3917 *	copying operations, although the data referenced will
3918 *	remain the same.
3919 */
3920int
3921vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3922	      vm_offset_t vaddr,
3923	      vm_prot_t fault_typea,
3924	      vm_map_entry_t *out_entry,	/* OUT */
3925	      vm_object_t *object,		/* OUT */
3926	      vm_pindex_t *pindex,		/* OUT */
3927	      vm_prot_t *out_prot,		/* OUT */
3928	      boolean_t *wired)			/* OUT */
3929{
3930	vm_map_entry_t entry;
3931	vm_map_t map = *var_map;
3932	vm_prot_t prot;
3933	vm_prot_t fault_type = fault_typea;
3934	vm_object_t eobject;
3935	vm_size_t size;
3936	struct ucred *cred;
3937
3938RetryLookup:;
3939
3940	vm_map_lock_read(map);
3941
3942	/*
3943	 * Lookup the faulting address.
3944	 */
3945	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3946		vm_map_unlock_read(map);
3947		return (KERN_INVALID_ADDRESS);
3948	}
3949
3950	entry = *out_entry;
3951
3952	/*
3953	 * Handle submaps.
3954	 */
3955	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3956		vm_map_t old_map = map;
3957
3958		*var_map = map = entry->object.sub_map;
3959		vm_map_unlock_read(old_map);
3960		goto RetryLookup;
3961	}
3962
3963	/*
3964	 * Check whether this task is allowed to have this page.
3965	 */
3966	prot = entry->protection;
3967	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3968	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3969		vm_map_unlock_read(map);
3970		return (KERN_PROTECTION_FAILURE);
3971	}
3972	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3973	    (entry->eflags & MAP_ENTRY_COW) &&
3974	    (fault_type & VM_PROT_WRITE)) {
3975		vm_map_unlock_read(map);
3976		return (KERN_PROTECTION_FAILURE);
3977	}
3978	if ((fault_typea & VM_PROT_COPY) != 0 &&
3979	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3980	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3981		vm_map_unlock_read(map);
3982		return (KERN_PROTECTION_FAILURE);
3983	}
3984
3985	/*
3986	 * If this page is not pageable, we have to get it for all possible
3987	 * accesses.
3988	 */
3989	*wired = (entry->wired_count != 0);
3990	if (*wired)
3991		fault_type = entry->protection;
3992	size = entry->end - entry->start;
3993	/*
3994	 * If the entry was copy-on-write, we either ...
3995	 */
3996	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3997		/*
3998		 * If we want to write the page, we may as well handle that
3999		 * now since we've got the map locked.
4000		 *
4001		 * If we don't need to write the page, we just demote the
4002		 * permissions allowed.
4003		 */
4004		if ((fault_type & VM_PROT_WRITE) != 0 ||
4005		    (fault_typea & VM_PROT_COPY) != 0) {
4006			/*
4007			 * Make a new object, and place it in the object
4008			 * chain.  Note that no new references have appeared
4009			 * -- one just moved from the map to the new
4010			 * object.
4011			 */
4012			if (vm_map_lock_upgrade(map))
4013				goto RetryLookup;
4014
4015			if (entry->cred == NULL) {
4016				/*
4017				 * The debugger owner is charged for
4018				 * the memory.
4019				 */
4020				cred = curthread->td_ucred;
4021				crhold(cred);
4022				if (!swap_reserve_by_cred(size, cred)) {
4023					crfree(cred);
4024					vm_map_unlock(map);
4025					return (KERN_RESOURCE_SHORTAGE);
4026				}
4027				entry->cred = cred;
4028			}
4029			vm_object_shadow(&entry->object.vm_object,
4030			    &entry->offset, size);
4031			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4032			eobject = entry->object.vm_object;
4033			if (eobject->cred != NULL) {
4034				/*
4035				 * The object was not shadowed.
4036				 */
4037				swap_release_by_cred(size, entry->cred);
4038				crfree(entry->cred);
4039				entry->cred = NULL;
4040			} else if (entry->cred != NULL) {
4041				VM_OBJECT_WLOCK(eobject);
4042				eobject->cred = entry->cred;
4043				eobject->charge = size;
4044				VM_OBJECT_WUNLOCK(eobject);
4045				entry->cred = NULL;
4046			}
4047
4048			vm_map_lock_downgrade(map);
4049		} else {
4050			/*
4051			 * We're attempting to read a copy-on-write page --
4052			 * don't allow writes.
4053			 */
4054			prot &= ~VM_PROT_WRITE;
4055		}
4056	}
4057
4058	/*
4059	 * Create an object if necessary.
4060	 */
4061	if (entry->object.vm_object == NULL &&
4062	    !map->system_map) {
4063		if (vm_map_lock_upgrade(map))
4064			goto RetryLookup;
4065		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4066		    atop(size));
4067		entry->offset = 0;
4068		if (entry->cred != NULL) {
4069			VM_OBJECT_WLOCK(entry->object.vm_object);
4070			entry->object.vm_object->cred = entry->cred;
4071			entry->object.vm_object->charge = size;
4072			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4073			entry->cred = NULL;
4074		}
4075		vm_map_lock_downgrade(map);
4076	}
4077
4078	/*
4079	 * Return the object/offset from this entry.  If the entry was
4080	 * copy-on-write or empty, it has been fixed up.
4081	 */
4082	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4083	*object = entry->object.vm_object;
4084
4085	*out_prot = prot;
4086	return (KERN_SUCCESS);
4087}
4088
4089/*
4090 *	vm_map_lookup_locked:
4091 *
4092 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4093 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4094 */
4095int
4096vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4097		     vm_offset_t vaddr,
4098		     vm_prot_t fault_typea,
4099		     vm_map_entry_t *out_entry,	/* OUT */
4100		     vm_object_t *object,	/* OUT */
4101		     vm_pindex_t *pindex,	/* OUT */
4102		     vm_prot_t *out_prot,	/* OUT */
4103		     boolean_t *wired)		/* OUT */
4104{
4105	vm_map_entry_t entry;
4106	vm_map_t map = *var_map;
4107	vm_prot_t prot;
4108	vm_prot_t fault_type = fault_typea;
4109
4110	/*
4111	 * Lookup the faulting address.
4112	 */
4113	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4114		return (KERN_INVALID_ADDRESS);
4115
4116	entry = *out_entry;
4117
4118	/*
4119	 * Fail if the entry refers to a submap.
4120	 */
4121	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4122		return (KERN_FAILURE);
4123
4124	/*
4125	 * Check whether this task is allowed to have this page.
4126	 */
4127	prot = entry->protection;
4128	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4129	if ((fault_type & prot) != fault_type)
4130		return (KERN_PROTECTION_FAILURE);
4131	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4132	    (entry->eflags & MAP_ENTRY_COW) &&
4133	    (fault_type & VM_PROT_WRITE))
4134		return (KERN_PROTECTION_FAILURE);
4135
4136	/*
4137	 * If this page is not pageable, we have to get it for all possible
4138	 * accesses.
4139	 */
4140	*wired = (entry->wired_count != 0);
4141	if (*wired)
4142		fault_type = entry->protection;
4143
4144	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4145		/*
4146		 * Fail if the entry was copy-on-write for a write fault.
4147		 */
4148		if (fault_type & VM_PROT_WRITE)
4149			return (KERN_FAILURE);
4150		/*
4151		 * We're attempting to read a copy-on-write page --
4152		 * don't allow writes.
4153		 */
4154		prot &= ~VM_PROT_WRITE;
4155	}
4156
4157	/*
4158	 * Fail if an object should be created.
4159	 */
4160	if (entry->object.vm_object == NULL && !map->system_map)
4161		return (KERN_FAILURE);
4162
4163	/*
4164	 * Return the object/offset from this entry.  If the entry was
4165	 * copy-on-write or empty, it has been fixed up.
4166	 */
4167	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4168	*object = entry->object.vm_object;
4169
4170	*out_prot = prot;
4171	return (KERN_SUCCESS);
4172}
4173
4174/*
4175 *	vm_map_lookup_done:
4176 *
4177 *	Releases locks acquired by a vm_map_lookup
4178 *	(according to the handle returned by that lookup).
4179 */
4180void
4181vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4182{
4183	/*
4184	 * Unlock the main-level map
4185	 */
4186	vm_map_unlock_read(map);
4187}
4188
4189#include "opt_ddb.h"
4190#ifdef DDB
4191#include <sys/kernel.h>
4192
4193#include <ddb/ddb.h>
4194
4195static void
4196vm_map_print(vm_map_t map)
4197{
4198	vm_map_entry_t entry;
4199
4200	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4201	    (void *)map,
4202	    (void *)map->pmap, map->nentries, map->timestamp);
4203
4204	db_indent += 2;
4205	for (entry = map->header.next; entry != &map->header;
4206	    entry = entry->next) {
4207		db_iprintf("map entry %p: start=%p, end=%p\n",
4208		    (void *)entry, (void *)entry->start, (void *)entry->end);
4209		{
4210			static char *inheritance_name[4] =
4211			{"share", "copy", "none", "donate_copy"};
4212
4213			db_iprintf(" prot=%x/%x/%s",
4214			    entry->protection,
4215			    entry->max_protection,
4216			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4217			if (entry->wired_count != 0)
4218				db_printf(", wired");
4219		}
4220		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4221			db_printf(", share=%p, offset=0x%jx\n",
4222			    (void *)entry->object.sub_map,
4223			    (uintmax_t)entry->offset);
4224			if ((entry->prev == &map->header) ||
4225			    (entry->prev->object.sub_map !=
4226				entry->object.sub_map)) {
4227				db_indent += 2;
4228				vm_map_print((vm_map_t)entry->object.sub_map);
4229				db_indent -= 2;
4230			}
4231		} else {
4232			if (entry->cred != NULL)
4233				db_printf(", ruid %d", entry->cred->cr_ruid);
4234			db_printf(", object=%p, offset=0x%jx",
4235			    (void *)entry->object.vm_object,
4236			    (uintmax_t)entry->offset);
4237			if (entry->object.vm_object && entry->object.vm_object->cred)
4238				db_printf(", obj ruid %d charge %jx",
4239				    entry->object.vm_object->cred->cr_ruid,
4240				    (uintmax_t)entry->object.vm_object->charge);
4241			if (entry->eflags & MAP_ENTRY_COW)
4242				db_printf(", copy (%s)",
4243				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4244			db_printf("\n");
4245
4246			if ((entry->prev == &map->header) ||
4247			    (entry->prev->object.vm_object !=
4248				entry->object.vm_object)) {
4249				db_indent += 2;
4250				vm_object_print((db_expr_t)(intptr_t)
4251						entry->object.vm_object,
4252						0, 0, (char *)0);
4253				db_indent -= 2;
4254			}
4255		}
4256	}
4257	db_indent -= 2;
4258}
4259
4260DB_SHOW_COMMAND(map, map)
4261{
4262
4263	if (!have_addr) {
4264		db_printf("usage: show map <addr>\n");
4265		return;
4266	}
4267	vm_map_print((vm_map_t)addr);
4268}
4269
4270DB_SHOW_COMMAND(procvm, procvm)
4271{
4272	struct proc *p;
4273
4274	if (have_addr) {
4275		p = (struct proc *) addr;
4276	} else {
4277		p = curproc;
4278	}
4279
4280	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4281	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4282	    (void *)vmspace_pmap(p->p_vmspace));
4283
4284	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4285}
4286
4287#endif /* DDB */
4288