uma_int.h revision 316835
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * $FreeBSD: stable/10/sys/vm/uma_int.h 316835 2017-04-14 14:11:59Z avg $
28 *
29 */
30
31/*
32 * This file includes definitions, structures, prototypes, and inlines that
33 * should not be used outside of the actual implementation of UMA.
34 */
35
36/*
37 * Here's a quick description of the relationship between the objects:
38 *
39 * Kegs contain lists of slabs which are stored in either the full bin, empty
40 * bin, or partially allocated bin, to reduce fragmentation.  They also contain
41 * the user supplied value for size, which is adjusted for alignment purposes
42 * and rsize is the result of that.  The Keg also stores information for
43 * managing a hash of page addresses that maps pages to uma_slab_t structures
44 * for pages that don't have embedded uma_slab_t's.
45 *
46 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
47 * be allocated off the page from a special slab zone.  The free list within a
48 * slab is managed with a bitmask.  For item sizes that would yield more than
49 * 10% memory waste we potentially allocate a separate uma_slab_t if this will
50 * improve the number of items per slab that will fit.
51 *
52 * The only really gross cases, with regards to memory waste, are for those
53 * items that are just over half the page size.   You can get nearly 50% waste,
54 * so you fall back to the memory footprint of the power of two allocator. I
55 * have looked at memory allocation sizes on many of the machines available to
56 * me, and there does not seem to be an abundance of allocations at this range
57 * so at this time it may not make sense to optimize for it.  This can, of
58 * course, be solved with dynamic slab sizes.
59 *
60 * Kegs may serve multiple Zones but by far most of the time they only serve
61 * one.  When a Zone is created, a Keg is allocated and setup for it.  While
62 * the backing Keg stores slabs, the Zone caches Buckets of items allocated
63 * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
64 * pair, as well as with its own set of small per-CPU caches, layered above
65 * the Zone's general Bucket cache.
66 *
67 * The PCPU caches are protected by critical sections, and may be accessed
68 * safely only from their associated CPU, while the Zones backed by the same
69 * Keg all share a common Keg lock (to coalesce contention on the backing
70 * slabs).  The backing Keg typically only serves one Zone but in the case of
71 * multiple Zones, one of the Zones is considered the Master Zone and all
72 * Zone-related stats from the Keg are done in the Master Zone.  For an
73 * example of a Multi-Zone setup, refer to the Mbuf allocation code.
74 */
75
76/*
77 *	This is the representation for normal (Non OFFPAGE slab)
78 *
79 *	i == item
80 *	s == slab pointer
81 *
82 *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
83 *	___________________________________________________________
84 *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
85 *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
86 *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
87 *     |___________________________________________________________|
88 *
89 *
90 *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
91 *
92 *	___________________________________________________________
93 *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
94 *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
95 *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
96 *     |___________________________________________________________|
97 *       ___________    ^
98 *	|slab header|   |
99 *	|___________|---*
100 *
101 */
102
103#ifndef VM_UMA_INT_H
104#define VM_UMA_INT_H
105
106#define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
107#define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
108#define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
109
110#define UMA_BOOT_PAGES		64	/* Pages allocated for startup */
111
112/* Max waste percentage before going to off page slab management */
113#define UMA_MAX_WASTE	10
114
115/*
116 * I doubt there will be many cases where this is exceeded. This is the initial
117 * size of the hash table for uma_slabs that are managed off page. This hash
118 * does expand by powers of two.  Currently it doesn't get smaller.
119 */
120#define UMA_HASH_SIZE_INIT	32
121
122/*
123 * I should investigate other hashing algorithms.  This should yield a low
124 * number of collisions if the pages are relatively contiguous.
125 */
126
127#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
128
129#define UMA_HASH_INSERT(h, s, mem)					\
130		SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),	\
131		    (mem))], (s), us_hlink)
132#define UMA_HASH_REMOVE(h, s, mem)					\
133		SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h),		\
134		    (mem))], (s), uma_slab, us_hlink)
135
136/* Hash table for freed address -> slab translation */
137
138SLIST_HEAD(slabhead, uma_slab);
139
140struct uma_hash {
141	struct slabhead	*uh_slab_hash;	/* Hash table for slabs */
142	int		uh_hashsize;	/* Current size of the hash table */
143	int		uh_hashmask;	/* Mask used during hashing */
144};
145
146/*
147 * align field or structure to cache line
148 */
149#if defined(__amd64__)
150#define UMA_ALIGN	__aligned(CACHE_LINE_SIZE)
151#else
152#define UMA_ALIGN
153#endif
154
155/*
156 * Structures for per cpu queues.
157 */
158
159struct uma_bucket {
160	LIST_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
161	int16_t	ub_cnt;				/* Count of free items. */
162	int16_t	ub_entries;			/* Max items. */
163	void	*ub_bucket[];			/* actual allocation storage */
164};
165
166typedef struct uma_bucket * uma_bucket_t;
167
168struct uma_cache {
169	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
170	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
171	uint64_t	uc_allocs;	/* Count of allocations */
172	uint64_t	uc_frees;	/* Count of frees */
173} UMA_ALIGN;
174
175typedef struct uma_cache * uma_cache_t;
176
177/*
178 * Keg management structure
179 *
180 * TODO: Optimize for cache line size
181 *
182 */
183struct uma_keg {
184	struct mtx_padalign	uk_lock;	/* Lock for the keg */
185	struct uma_hash	uk_hash;
186
187	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
188	LIST_HEAD(,uma_slab)	uk_part_slab;	/* partially allocated slabs */
189	LIST_HEAD(,uma_slab)	uk_free_slab;	/* empty slab list */
190	LIST_HEAD(,uma_slab)	uk_full_slab;	/* full slabs */
191
192	uint32_t	uk_align;	/* Alignment mask */
193	uint32_t	uk_pages;	/* Total page count */
194	uint32_t	uk_free;	/* Count of items free in slabs */
195	uint32_t	uk_reserve;	/* Number of reserved items. */
196	uint32_t	uk_size;	/* Requested size of each item */
197	uint32_t	uk_rsize;	/* Real size of each item */
198	uint32_t	uk_maxpages;	/* Maximum number of pages to alloc */
199
200	uma_init	uk_init;	/* Keg's init routine */
201	uma_fini	uk_fini;	/* Keg's fini routine */
202	uma_alloc	uk_allocf;	/* Allocation function */
203	uma_free	uk_freef;	/* Free routine */
204
205	u_long		uk_offset;	/* Next free offset from base KVA */
206	vm_offset_t	uk_kva;		/* Zone base KVA */
207	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
208
209	uint16_t	uk_pgoff;	/* Offset to uma_slab struct */
210	uint16_t	uk_ppera;	/* pages per allocation from backend */
211	uint16_t	uk_ipers;	/* Items per slab */
212	uint32_t	uk_flags;	/* Internal flags */
213
214	/* Least used fields go to the last cache line. */
215	const char	*uk_name;		/* Name of creating zone. */
216	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
217};
218typedef struct uma_keg	* uma_keg_t;
219
220/*
221 * Free bits per-slab.
222 */
223#define	SLAB_SETSIZE	(PAGE_SIZE / UMA_SMALLEST_UNIT)
224BITSET_DEFINE(slabbits, SLAB_SETSIZE);
225
226/*
227 * The slab structure manages a single contiguous allocation from backing
228 * store and subdivides it into individually allocatable items.
229 */
230struct uma_slab {
231	uma_keg_t	us_keg;			/* Keg we live in */
232	union {
233		LIST_ENTRY(uma_slab)	_us_link;	/* slabs in zone */
234		unsigned long	_us_size;	/* Size of allocation */
235	} us_type;
236	SLIST_ENTRY(uma_slab)	us_hlink;	/* Link for hash table */
237	uint8_t		*us_data;		/* First item */
238	struct slabbits	us_free;		/* Free bitmask. */
239#ifdef INVARIANTS
240	struct slabbits	us_debugfree;		/* Debug bitmask. */
241#endif
242	uint16_t	us_freecount;		/* How many are free? */
243	uint8_t		us_flags;		/* Page flags see uma.h */
244	uint8_t		us_pad;			/* Pad to 32bits, unused. */
245};
246
247#define	us_link	us_type._us_link
248#define	us_size	us_type._us_size
249
250/*
251 * The slab structure for UMA_ZONE_REFCNT zones for whose items we
252 * maintain reference counters in the slab for.
253 */
254struct uma_slab_refcnt {
255	struct uma_slab		us_head;	/* slab header data */
256	uint32_t		us_refcnt[0];	/* Actually larger. */
257};
258
259typedef struct uma_slab * uma_slab_t;
260typedef struct uma_slab_refcnt * uma_slabrefcnt_t;
261typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int);
262
263struct uma_klink {
264	LIST_ENTRY(uma_klink)	kl_link;
265	uma_keg_t		kl_keg;
266};
267typedef struct uma_klink *uma_klink_t;
268
269/*
270 * Zone management structure
271 *
272 * TODO: Optimize for cache line size
273 *
274 */
275struct uma_zone {
276	struct mtx_padalign	uz_lock;	/* Lock for the zone */
277	struct mtx_padalign	*uz_lockptr;
278	const char		*uz_name;	/* Text name of the zone */
279
280	LIST_ENTRY(uma_zone)	uz_link;	/* List of all zones in keg */
281	LIST_HEAD(,uma_bucket)	uz_buckets;	/* full buckets */
282
283	LIST_HEAD(,uma_klink)	uz_kegs;	/* List of kegs. */
284	struct uma_klink	uz_klink;	/* klink for first keg. */
285
286	uma_slaballoc	uz_slab;	/* Allocate a slab from the backend. */
287	uma_ctor	uz_ctor;	/* Constructor for each allocation */
288	uma_dtor	uz_dtor;	/* Destructor */
289	uma_init	uz_init;	/* Initializer for each item */
290	uma_fini	uz_fini;	/* Finalizer for each item. */
291	uma_import	uz_import;	/* Import new memory to cache. */
292	uma_release	uz_release;	/* Release memory from cache. */
293	void		*uz_arg;	/* Import/release argument. */
294
295	uint32_t	uz_flags;	/* Flags inherited from kegs */
296	uint32_t	uz_size;	/* Size inherited from kegs */
297
298	volatile u_long	uz_allocs UMA_ALIGN; /* Total number of allocations */
299	volatile u_long	uz_fails;	/* Total number of alloc failures */
300	volatile u_long	uz_frees;	/* Total number of frees */
301	uint64_t	uz_sleeps;	/* Total number of alloc sleeps */
302	uint16_t	uz_count;	/* Amount of items in full bucket */
303	uint16_t	uz_count_min;	/* Minimal amount of items there */
304
305	/* The next three fields are used to print a rate-limited warnings. */
306	const char	*uz_warning;	/* Warning to print on failure */
307	struct timeval	uz_ratecheck;	/* Warnings rate-limiting */
308
309	/*
310	 * This HAS to be the last item because we adjust the zone size
311	 * based on NCPU and then allocate the space for the zones.
312	 */
313	struct uma_cache	uz_cpu[1]; /* Per cpu caches */
314};
315
316/*
317 * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
318 */
319#define	UMA_ZFLAG_MULTI		0x04000000	/* Multiple kegs in the zone. */
320#define	UMA_ZFLAG_DRAINING	0x08000000	/* Running zone_drain. */
321#define	UMA_ZFLAG_BUCKET	0x10000000	/* Bucket zone. */
322#define UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
323#define UMA_ZFLAG_FULL		0x40000000	/* Reached uz_maxpages */
324#define UMA_ZFLAG_CACHEONLY	0x80000000	/* Don't ask VM for buckets. */
325
326#define	UMA_ZFLAG_INHERIT						\
327    (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET)
328
329static inline uma_keg_t
330zone_first_keg(uma_zone_t zone)
331{
332	uma_klink_t klink;
333
334	klink = LIST_FIRST(&zone->uz_kegs);
335	return (klink != NULL) ? klink->kl_keg : NULL;
336}
337
338#undef UMA_ALIGN
339
340#ifdef _KERNEL
341/* Internal prototypes */
342static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
343void *uma_large_malloc(vm_size_t size, int wait);
344void uma_large_free(uma_slab_t slab);
345
346/* Lock Macros */
347
348#define	KEG_LOCK_INIT(k, lc)					\
349	do {							\
350		if ((lc))					\
351			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
352			    (k)->uk_name, MTX_DEF | MTX_DUPOK);	\
353		else						\
354			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
355			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
356	} while (0)
357
358#define	KEG_LOCK_FINI(k)	mtx_destroy(&(k)->uk_lock)
359#define	KEG_LOCK(k)	mtx_lock(&(k)->uk_lock)
360#define	KEG_UNLOCK(k)	mtx_unlock(&(k)->uk_lock)
361
362#define	ZONE_LOCK_INIT(z, lc)					\
363	do {							\
364		if ((lc))					\
365			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
366			    (z)->uz_name, MTX_DEF | MTX_DUPOK);	\
367		else						\
368			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
369			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
370	} while (0)
371
372#define	ZONE_LOCK(z)	mtx_lock((z)->uz_lockptr)
373#define	ZONE_TRYLOCK(z)	mtx_trylock((z)->uz_lockptr)
374#define	ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lockptr)
375#define	ZONE_LOCK_FINI(z)	mtx_destroy(&(z)->uz_lock)
376
377/*
378 * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
379 * the slab structure.
380 *
381 * Arguments:
382 *	hash  The hash table to search.
383 *	data  The base page of the item.
384 *
385 * Returns:
386 *	A pointer to a slab if successful, else NULL.
387 */
388static __inline uma_slab_t
389hash_sfind(struct uma_hash *hash, uint8_t *data)
390{
391        uma_slab_t slab;
392        int hval;
393
394        hval = UMA_HASH(hash, data);
395
396        SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
397                if ((uint8_t *)slab->us_data == data)
398                        return (slab);
399        }
400        return (NULL);
401}
402
403static __inline uma_slab_t
404vtoslab(vm_offset_t va)
405{
406	vm_page_t p;
407
408	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
409	return ((uma_slab_t)p->plinks.s.pv);
410}
411
412static __inline void
413vsetslab(vm_offset_t va, uma_slab_t slab)
414{
415	vm_page_t p;
416
417	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
418	p->plinks.s.pv = slab;
419}
420
421/*
422 * The following two functions may be defined by architecture specific code
423 * if they can provide more effecient allocation functions.  This is useful
424 * for using direct mapped addresses.
425 */
426void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag,
427    int wait);
428void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
429#endif /* _KERNEL */
430
431#endif /* VM_UMA_INT_H */
432